JBoss Enterprise Application Platform 6.3
Migration Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

		[image:]

	

 ⁠Red Hat Customer Content Services JBoss EAP Team

Legal Notice

		Copyright © 2014 Red Hat, Inc..
	

		This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

			This book is a guide to migrating your application from previous versions of Red Hat JBoss Enterprise Application Platform.
		

 ⁠Preface

 ⁠1. Document Conventions

		This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.
	

		In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later include the Liberation Fonts set by default.
	

 ⁠1.1. Typographic Conventions

			Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.
		

			Mono-spaced Bold
		

			Used to highlight system input, including shell commands, file names and paths. Also used to highlight keys and key combinations. For example:
		

				To see the contents of the file my_next_bestselling_novel in your current working directory, enter the cat my_next_bestselling_novel command at the shell prompt and press Enter to execute the command.
			

			The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all distinguishable thanks to context.
		

			Key combinations can be distinguished from an individual key by the plus sign that connects each part of a key combination. For example:
		

				Press Enter to execute the command.
			

				Press Ctrl+Alt+F2 to switch to a virtual terminal.
			

			The first example highlights a particular key to press. The second example highlights a key combination: a set of three keys pressed simultaneously.
		

			If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:
		

				File-related classes include filesystem for file systems, file for files, and dir for directories. Each class has its own associated set of permissions.
			

			Proportional Bold
		

			This denotes words or phrases encountered on a system, including application names; dialog-box text; labeled buttons; check-box and radio-button labels; menu titles and submenu titles. For example:
		

				Choose System → Preferences → Mouse from the main menu bar to launch Mouse Preferences. In the Buttons tab, select the Left-handed mouse check box and click Close to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).
			

				To insert a special character into a gedit file, choose Applications → Accessories → Character Map from the main menu bar. Next, choose Search → Find… from the Character Map menu bar, type the name of the character in the Search field and click Next. The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the Copy button. Now switch back to your document and choose Edit → Paste from the gedit menu bar.
			

			The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.
		

			Mono-spaced Bold Italic or Proportional Bold Italic
		

			Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:
		

				To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the remote machine is example.com and your username on that machine is john, type ssh john@example.com.
			

				The mount -o remount file-system command remounts the named file system. For example, to remount the /home file system, the command is mount -o remount /home.
			

				To see the version of a currently installed package, use the rpm -q package command. It will return a result as follows: package-version-release.
			

			Note the words in bold italics above: username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.
		

			Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:
		

				Publican is a DocBook publishing system.
			

 ⁠1.2. Pull-quote Conventions

			Terminal output and source code listings are set off visually from the surrounding text.
		

			Output sent to a terminal is set in mono-spaced roman and presented thus:
		
books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

			Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:
		
static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
 struct kvm_assigned_pci_dev *assigned_dev)
{
 int r = 0;
 struct kvm_assigned_dev_kernel *match;

 mutex_lock(&kvm->lock);

 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
 assigned_dev->assigned_dev_id);
 if (!match) {
 printk(KERN_INFO "%s: device hasn't been assigned before, "
 "so cannot be deassigned\n", __func__);
 r = -EINVAL;
 goto out;
 }

 kvm_deassign_device(kvm, match);

 kvm_free_assigned_device(kvm, match);

out:
 mutex_unlock(&kvm->lock);
 return r;
}

 ⁠1.3. Notes and Warnings

			Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.
		
Note

				Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.
			

Important

				Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring a box labeled “Important” will not cause data loss but may cause irritation and frustration.
			

Warning

				Warnings should not be ignored. Ignoring warnings will most likely cause data loss.
			

 ⁠2. Getting Help and Giving Feedback

 ⁠2.1. Do You Need Help?

			If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer Portal at http://access.redhat.com. Through the customer portal, you can:
		
	
					search or browse through a knowledgebase of technical support articles about Red Hat products.
				

	
					submit a support case to Red Hat Global Support Services (GSS).
				

	
					access other product documentation.
				

			Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo. Click on the name of any mailing list to subscribe to that list or to access the list archives.
		

 ⁠2.2. We Need Feedback!

			If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/ against the product JBoss Enterprise Application Platform.
		

			When submitting a bug report, be sure to mention the manual's identifier: Migration_Guide
		

			If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.
		

 ⁠Chapter 1. Introduction

 ⁠1.1. About Red Hat JBoss Enterprise Application Platform 6

		Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a middleware platform built on open standards and compliant with the Java Enterprise Edition 6 specification. It integrates JBoss Application Server 7 with high-availability clustering, messaging, distributed caching, and other technologies.
	

		JBoss EAP 6 includes a new, modular structure that allows service enabling only when required, improving start-up speed.
	

		The Management Console and Management Command Line Interface make editing XML configuration files unnecessary and add the ability to script and automate tasks.
	

		In addition, JBoss EAP 6 includes APIs and development frameworks for quickly developing secure and scalable Java EE applications.
	

		Report a bug
	

 ⁠1.2. About the Migration Guide

		JBoss EAP 6 is a fast, lightweight, powerful implementation of the Java Enterprise Edition 6 specification. The architecture is built on the Modular Service Container and enables services on-demand when your application requires them. Due to this new architecture, applications that run on JBoss EAP 5 may need modifications to run on JBoss EAP 6.
	

		The purpose of this guide is to document the changes that are required to successfully run and deploy JBoss EAP 5.1 applications on JBoss EAP 6. It provides information on how to resolve deployment and runtime problems and to how prevent changes in application behavior. This is the first step in moving to the new platform. Once the application is successfully deployed and running, plans can be made to upgrade individual components to use the new functions and features of JBoss EAP 6.
	

		Report a bug
	

 ⁠Chapter 2. Prepare for Migration

 ⁠2.1. Prepare for Migration

			Because the application server is structured differently than in previous versions, you may want to do some research and planning before you attempt to migrate your application.
		
	Review What's New and Different in JBoss EAP 6

				A number of things have changed in this release that may impact deployment of JBoss EAP 5 applications. These include changes to the file directory structure, scripts, deployment configuration, class loading and JNDI lookups. See Section 2.2, “Review What's New and Different in JBoss EAP 6” for details.
			

	Review the Get Started documentation

				Be sure to review the chapter entitled Get Started Developing Applications in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/. It contains important information about the following:
					
							Java EE 6
						

	
							The new modular class loading system
						

	
							File structure changes
						

	
							How to download and install JBoss EAP 6
						

	
							How to download and install JBoss Developer Studio
						

	
							How to configure Maven for your development environment
						

	
							How to download and run the quickstart example applications that ship with the product.
						

			

	Learn How to Use JBoss EAP 6 Dependencies in your Maven Project

				Be sure to review the chapter entitled Maven Guide in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/. The Manage Project Dependencies section contains important information on how to configure your project to use JBoss EAP Bill of Material (BOM) artifacts.
			

	Analyze and Understand your Application

				Each application is unique and you must thoroughly understand the components and architecture of the existing application before you attempt the migration.
			

		Important

				Before making any modifications to your application, make sure to create a backup copy.
			

	

		Report a bug
	

 ⁠2.2. Review What's New and Different in JBoss EAP 6

Introduction

			The following is a list of notable differences in JBoss EAP 6 from the previous release.
		
	Module based class loading
	
					In JBoss EAP 5, the class loading architecture was hierarchical. In JBoss EAP 6, class loading is based on JBoss Modules. This offers true application isolation, hides server implementation classes, and only loads the classes your application needs. Class loading is concurrent for better performance. Applications written for JBoss EAP 5 must be modified to specify module dependencies and in some cases, repackage archives. For more information, refer to Class Loading and Modules in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
				

	Domain Management
	
					In JBoss EAP 6, the server can be run as a standalone server or in a managed domain. In a managed domain, you can configure entire groups of servers at once, keeping configurations synchronized across your entire network of servers. While this should not impact applications built for previous releases, this can simplify management of deployments to multiple servers. For more information, refer to About Managed Domains in the Administration and Configuration Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
				

	Deployment Configuration
		Standalone Servers and Managed Domains
	
								JBoss EAP 5 used profile based deployment configuration. These profiles were located in the EAP_HOME/server/ directory. Applications often contained multiple configuration files for security, database, resource adapter, and other configurations. In JBoss EAP 6, deployment configuration is done using one file. This file is used to configure all the services and subsystems used for the deployment. A standalone server is configured using the EAP_HOME/standalone/configuration/standalone.xml file. For servers running in a managed domain, the server is configured using the EAP_HOME/domain/configuration/domain.xml file. The information contained in the multiple JBoss EAP 5 configuration files must be migrated to the new single configuration file.
							

	Ordering of deployments
	
								JBoss EAP 6 uses fast, concurrent initialization for deployment resulting in improved performance and efficiency. In most cases, the application server is able to automatically determine dependencies in advance and choose the most efficient deployment strategy. However, JBoss EAP 5 applications that consist of multiple modules deployed as EARs and use legacy JNDI lookups instead of CDI injection or resource-ref entries may require configuration changes.
							

	Directory Structure and Scripts
	
					As previously mentioned, JBoss EAP 6 no longer uses profile based deployment configuration, so there is no EAP_HOME/server/ directory. Configuration files for standalone servers are now located in the EAP_HOME/standalone/configuration/ directory and deployments are located in the EAP_HOME/standalone/deployments/ directory. For servers running in a managed domain, configuration files can be found in the EAP_HOME/domain/configuration/ directory.
				

					In JBoss EAP 5, the Linux script EAP_HOME/bin/run.sh or Windows script EAP_HOME/bin/run.bat was used to start the server. In JBoss EAP 6, the server start script is dependent on how you run your server. The Linux script EAP_HOME/bin/standalone.sh or Windows script EAP_HOME/bin/standalone.bat is used to start a standalone server. The Linux script EAP_HOME/bin/domain.sh or Windows script EAP_HOME/bin/domain.bat is used to start a managed domain.
				

	JNDI Lookups
	
					JBoss EAP 6 now uses standardized portable JNDI namespaces. Applications written for JBoss EAP 5 that use JNDI lookups must be changed to follow the new standardized JNDI namespace convention. For more information about JNDI naming syntax, see Section 3.1.8.2, “Portable EJB JNDI Names”.
				

		For additional information, refer to New and Changed Features in JBoss EAP 6 in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
	

		Report a bug
	

 ⁠2.3. Review The List of Deprecated and Unsupported Features

		Before you migrate your application, you should be aware that some features that were available in previous releases of JBoss EAP may be deprecated or no longer supported. For a comprehensive list, refer to the Unsupported Features section of the Release Notes for JBoss EAP 6 located on the Customer Portal at https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
	

		Report a bug
	

 ⁠Chapter 3. Migrate Your Application

 ⁠3.1. Changes Required by Most Applications

 ⁠3.1.1. Review Changes Required by Most Applications

			Class loading and configuration changes in JBoss EAP 6 will impact almost every application. JBoss EAP 6 also uses new standard portable JNDI naming syntax. These changes will impact most applications, so it is suggested you review the following information first when you migrate your application.
		
	
				 Section 3.1.2.1, “Update the Application Due to Class Loading Changes”
			

	
				 Section 3.1.6.1, “Update the Application Due to Configuration Changes”
			

	
				 Section 3.1.8.1, “Update Application JNDI Namespace Names”
			

		Report a bug
	

 ⁠3.1.2. Class Loading Changes

 ⁠3.1.2.1. Update the Application Due to Class Loading Changes

			Modular class loading is a significant change in JBoss EAP 6 and will impact almost every application. Review the following information first when you migrate your application.
		
	
				First, look at the packaging of your application and its dependencies. For more information, see: Section 3.1.2.3, “Update Application Dependencies Due to Class Loading Changes”
			

	
				If your application does logging, you need to specify the correct module dependencies. For more information, see: Section 3.1.4.1, “Modify Logging Dependencies”
			

	
				Due to the modular class loading changes, you may have to change the packaging structure of your EAR or WAR. For more information, see: Section 3.1.5.1, “Modify Packaging of EARs and WARs”
			

		Report a bug
	

 ⁠3.1.2.2. Understand Module Dependencies

Summary

			A module is only able to access its own classes and the classes of any module on which it has an explicit or implicit dependency.
		

 ⁠Procedure 3.1. Understand Module Dependencies
	Understand implicit dependencies

				The deployers within the server implicitly automatically add some commonly used module dependencies, like the javax.api and sun.jdk. This makes the classes visible to the deployment at runtime and relieves the developer of the task of explicitly adding the dependencies. For details on how and when these implicit dependencies are added, refer to Implicit Module Dependencies in the chapter entitled Class Loading and Modules in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
			

	Understand explicit dependencies

				For other classes, the modules must be specified explicitly or else the missing dependencies result in deployment or runtime errors. If a dependency is missing, you see ClassNotFoundExceptions or NoClassDefFoundErrors traces in the server log. If more than one module loads the same JAR or a module loads a class that extends a class loaded by a different module, you see ClassCastExceptions traces in the server log. To specify dependencies explicitly, modify the MANIFEST.MF or create a JBoss specific deployment descriptor file jboss-deployment-structure.xml. For more information on module dependencies, refer to Overview of Class Loading and Modules in the chapter entitled Class Loading and Module in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
			

		Report a bug
	

 ⁠3.1.2.3. Update Application Dependencies Due to Class Loading Changes

Summary

			Class loading in JBoss EAP 6 is considerably different than in previous versions of JBoss EAP. Class loading is now based on the JBoss Modules project. Rather than a single, hierarchical class loader that loads all JARs into a flat class path, each library becomes a module that only links against the exact modules on which it depends. Deployments in JBoss EAP 6 are also modules and do not have access to classes that are defined in JARs in the application server unless an explicit dependency on those classes is defined. Some module dependencies defined by the application server are set up for you automatically. For instance, if you are deploying a Java EE application, a dependency on the Java EE API is added automatically, or implicitly. For the complete list of dependencies automatically added by the server, refer to Implicit Module Dependencies in the chapter entitled Class Loading and Modules in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
		
Tasks

			When you migrate your application to JBoss EAP 6, you may need to perform one or more of the following tasks due to the modular class loading changes:
		
	
				 Section 3.1.2.2, “Understand Module Dependencies”
			

	
				 Section 4.1.3, “Use Tattletale to Find Application Dependencies”
			

	
				 Section 3.1.3.1, “Create or Modify Files That Control Class Loading in JBoss EAP 6”
			

	
				 Section 3.1.3.3, “Package Resources for the New Modular Class Loading System”
			

		Report a bug
	

 ⁠3.1.3. Configuration File Changes

 ⁠3.1.3.1. Create or Modify Files That Control Class Loading in JBoss EAP 6

Summary

			Due to the change in JBoss EAP 6 to use modular class loading, you may need to create or modify one or more files to add dependencies or to prevent automatic dependencies from loading. For more information on class loading and class loading precedence, refer to the chapter entitled Class Loading and Modules in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
		

		The following files are used to control class loading in JBoss EAP 6.
	
	jboss-web.xml
	
					If you have defined a <class-loading> element in the jboss-web.xml file, you need to remove it. The behavior that this evoked in JBoss EAP 5 is now the default class loading behavior in JBoss EAP 6, so it is no longer necessary. If you do not remove this element, you see a ParseError and XMLStreamException in your server log.
				

					This is an example of a <class-loading> element in the jboss-web.xml file that is commented out.

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 4.2//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_4_2.dtd">
<jboss-web>
<!--
 <class-loading java2ClassLoadingCompliance="false">
 <loader-repository>
 seam.jboss.org:loader=MyApplication
 <loader-repository-config>java2ParentDelegation=false</loader-repository-config>
 </loader-repository>
 </class-loading>
 -->
 </jboss-web>

				

	MANIFEST.MF
	
						Manually edited
	
									Depending on which components or modules your application uses, you may need to add one or more dependencies to this file. You can add them as either Dependencies or Class-Path entries.
								

									The following is an example of MANIFEST.MF edited by a developer:
Manifest-Version: 1.0
Dependencies: org.jboss.logmanager
Class-Path: OrderManagerEJB.jar

								

									If you modify this file, make sure to include a newline character at the end of the file.
								

	Generated using Maven
	
									If you use Maven, you need to modify your pom.xml file to generate the dependencies for the MANIFEST.MF file. If your application uses EJB 3.0, you may have a section in the pom.xml file that looks like the following:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-ejb-plugin</artifactId>
 <configuration>
 <ejbVersion>3.0</ejbVersion>
 </configuration>
</plugin>

								

									If the EJB 3.0 code uses org.apache.commons.log, you need that dependency in the MANIFEST.MF file. To generate that dependency, add the <plugin> element to the pom.xml file as follows:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-ejb-plugin</artifactId>
 <configuration>
 <ejbVersion>3.0</ejbVersion>
 <archive>
 <manifestFile>src/main/resources/META-INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
</plugin>

								

									In the above example, the src/main/resources/META-INF/MANIFEST.MF file only needs to contain the dependency entry:

Dependencies: org.apache.commons.logging

								

									Maven will generate the complete MANIFEST.MF file:

Manifest-Version: 1.0
Dependencies: org.apache.commons.logging

								

				

	jboss-deployment-structure.xml
	
					This file is a JBoss specific deployment descriptor that can be used to control class loading in a fine grained manner. Like the MANIFEST.MF, this file can be used to add dependencies. It can also prevent automatic dependencies from being added, define additional modules, change an EAR deployment's isolated class loading behavior, and add additional resource roots to a module.
				

					The following is an example of a jboss-deployment-structure.xml file that adds a dependency for JSF 1.2 module and prevents the automatic loading of the JSF 2.0 module.

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>
 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 <module name="com.sun.jsf-impl" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 <module name="com.sun.jsf-impl" slot="1.2"/>
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

				

					For additional information about this file, see: Section 3.1.3.2, “jboss-deployment-structure.xml”.
				

	application.xml
	
					In previous versions of JBoss EAP, you controlled the order of deployments within an EAR using the jboss-app.xml file. This is no longer the case. The Java EE6 spec provides the <initialize-in-order> element in the application.xml which allows control of the order in which the Java EE modules within an EAR are deployed.
				

					In most cases you do not need to specify deployment order. If your application uses dependency injections and resource-refs to refer to components in external modules, in most cases the <initialize-in-order> element is not required because the application server is able to implicitly determine the correct and optimal way of ordering the components.
				

					Let's assume you have an application that contains a myBeans.jar and a myApp.war that are packaged within a myApp.ear. A servlet in the myApp.war uses an @EJB annotation to inject a bean from the myBeans.jar. In this case, the application server has the appropriate knowledge to make sure that the EJB component is available before the servlet is started and you do not have to use the <initialize-in-order> element.
				

					However, if that servlet uses legacy JNDI lookup style remote references like the following to access the bean, you may need to specify module order.

init() {
 Context ctx = new InitialContext();
 ctx.lookup("TheBeanInMyBeansModule");
}

					 In this case, the server is not able to determine that the EJB component is in the myBeans.jar and you need to enforce that the components in the myBeans.jar are initialized and started before the components in myApp.war. To do this, you set the <initialize-in-order> element to true and specify the order of the myBeans.jar and myApp.war modules in the application.xml file.
				

					The following is an example that uses the <initialize-in-order> element to control deployment order. The myBeans.jar is deployed before the myApp.war file.

<application xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="6"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/application_6.xsd">
 <application-name>myApp</application-name>
 <initialize-in-order>true</initialize-in-order>
 <module>
 <ejb>myBeans.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>myApp.war</web-uri>
 <context-root>myApp</context-root>
 </web>
 </module>
</application>

				

					The schema for the application.xml file can be found here at http://java.sun.com/xml/ns/javaee/application_6.xsd.
				
Note

						You should be aware that setting the <initialize-in-order> element to true slows down deployment. It is preferable to define proper dependencies using dependency injections or resource-refs because it allows the container more flexibility in optimizing deployments.
					

	jboss-ejb3.xml
	
					The jboss-ejb3.xml deployment descriptor replaces the jboss.xml deployment descriptor to override and add to the features provided by the Java Enterprise Edition (EE) defined ejb-jar.xml deployment descriptor. The new file is incompatible with jboss.xml, and the jboss.xml is now ignored in deployments.
				

	login-config.xml
	
					The login-config.xml file is no longer used for security configuration. Security is now configured in the <security-domain> element in the server configuration file. For a standalone server, this is the standalone/configuration/standalone.xml file. If you are running your server in a managed domain, this is the domain/configuration/domain.xml file.
				

		Report a bug
	

 ⁠3.1.3.2. jboss-deployment-structure.xml

		jboss-deployment-structure.xml is a new optional deployment descriptor for JBoss EAP 6. This deployment descriptor provides control over class loading in the deployment.
	

		The XML schema for this deployment descriptor is in EAP_HOME/docs/schema/jboss-deployment-structure-1_2.xsd
	

		Report a bug
	

 ⁠3.1.3.3. Package Resources for the New Modular Class Loading System

Summary

			In previous versions of JBoss EAP, all resources inside the WEB-INF/ directory were added to the WAR classpath. In JBoss EAP 6, web application artifacts are only loaded from the WEB-INF/classes and WEB-INF/lib directories. Failure to package application artifacts in the specified locations can result in ClassNotFoundException, NoClassDefError, or other runtime errors.
		

		To resolve these class loading errors, you must modify the structure of your application archive or define a custom module.
	

	Modify the Resource Packaging
	
					To make the resources available only to the application, you must bundle the properties files, JARs, or other artifacts with the WAR by moving them to the WEB-INF/classes/ or WEB-INF/lib/ directory. This approach is described in more detail here: Section 3.1.3.4, “Change ResourceBundle Properties Location”
				

	Create a Custom Module
	
					If you want make custom resources available to all applications running on the JBoss EAP 6 server, you must create a custom module. This approach is described in more detail here: Section 3.1.3.5, “Create a Custom Module”
				

		Report a bug
	

 ⁠3.1.3.4. Change ResourceBundle Properties Location

Summary

			In previous versions of JBoss EAP, the EAP_HOME/server/SERVER_NAME/conf/ directory was in the classpath and available to the application. To make properties available to the classpath of the application in JBoss EAP 6, you must package them within your application.
		

 ⁠Procedure 3.2. Change the ResourceBundle Properties Location
	
				If you are deploying a WAR archive, you must package those properties in the WAR's WEB-INF/classes/ folder.
			

	
				If you want those properties accessible to all components in an EAR, then you must package them at the root of a JAR and then place the JAR in EAR's lib/ folder.
			

		Report a bug
	

 ⁠3.1.3.5. Create a Custom Module

		The following procedure describes how to create a custom module in order to make properties files and other resources available to all applications running on the JBoss EAP server.
	

 ⁠Procedure 3.3. Create a Custom Module
	
				Create and populate the module/ directory structure.
			
	
						Create a directory structure under the EAP_HOME/module directory to contain the files and JARs. For example:

$ cd EAP_HOME/modules/
$ mkdir -p myorg-conf/main/properties

					

	
						Move the properties files to the EAP_HOME/modules/myorg-conf/main/properties/ directory you created in the previous step.
					

	
						Create a module.xml file in the EAP_HOME/modules/myorg-conf/main/ directory containing the following XML:

<module xmlns="urn:jboss:module:1.1" name="myorg-conf">
 <resources>
 <resource-root path="properties"/>
 </resources>
</module>

					

	
				Modify the ee subsystem in the server configuration file. You can use the JBoss CLI or you can manually edit the file.
			

					
						Follow these steps to modify the server configuration file using the JBoss CLI.
					
	
								Start the server and connect to the Management CLI.
							

									
										For Linux, enter the following at the command line:
									

$ EAP_HOME/bin/jboss-cli.sh --connect

								 	
										For Windows, enter the following at a command line:
									

C:\>EAP_HOME\bin\jboss-cli.bat --connect

							

								You should see the following response:
Connected to standalone controller at localhost:9999

							

	
								To create the myorg-conf <global-modules> element in the ee subsystem, type the following in the command line:
							

/subsystem=ee:write-attribute(name=global-modules, value=[{"name"=>"myorg-conf","slot"=>"main"}])

								You should see the following result:
							

{"outcome" => "success"}

				 	
						Follow these steps if you prefer to manually edit the server configuration file.
					
	
								Stop the server and open the server configuration file in a text editor. If you are running a standalone server, this is the EAP_HOME/standalone/configuration/standalone.xml file, or the EAP_HOME/domain/configuration/domain.xml file if you are running a managed domain.
							

	
								Find the ee subsystem and add the global module for myorg-conf. The following is an example of the ee subsystem element, modified to include the myorg-conf element:

<subsystem xmlns="urn:jboss:domain:ee:1.0" >
 <global-modules>
 <module name="myorg-conf" slot="main" />
 </global-modules>
</subsystem>

							

			

	
				Assuming you copied a file named my.properties into the correct module location, you are now able to load properties files using code similar to the following:

Thread.currentThread().getContextClassLoader().getResource("my.properties");

			

		Report a bug
	

 ⁠3.1.4. Logging Changes

 ⁠3.1.4.1. Modify Logging Dependencies

Summary

			JBoss LogManager supports front ends for all logging frameworks, so you can keep your current logging code or move to the new JBoss logging infrastructure. Regardless of your decision, because of the modular class loading changes, you probably need to modify your application to add the required dependencies.
		

 ⁠Procedure 3.4. Update application logging code
	
				 Section 3.1.4.2, “Update Application Code for Third-party Logging Frameworks”
			

	
				 Section 3.1.4.3, “Modify Code to Use the New JBoss Logging Framework”
			

		Report a bug
	

 ⁠3.1.4.2. Update Application Code for Third-party Logging Frameworks

Summary

			In JBoss EAP 6, logging dependencies for common third-party frameworks like Apache Commons Logging, Apache log4j, SLF4J, and Java Logging are added by default. In most cases, it is preferable to use the logging framework provided by the JBoss EAP container. However, if you require specific functionality provided by a third-party framework, you must exclude the corresponding JBoss EAP module from your deployment. Note that although your deployment uses the third-party logging framework, the server logs continue to use the JBoss EAP logging subsytem configuration.
		

		The following procedures demonstrate how to exclude the JBoss EAP 6 org.apache.log4j module from your deployment. The first procedure works on any release of JBoss EAP 6. The second procedure applies only to JBoss EAP 6.3 or later.
	

 ⁠Procedure 3.5. Configure JBoss EAP 6 to use a log4j.properties or log4j.xml file

			This procedure works for all versions of JBoss EAP 6.
			Note

					Because this method uses a log4j configuration file, you will no longer be able to change the log4j logging configuration at runtime.
				

		
	
				Create a jboss-deployment-structure.xml with the following content:
			

				

<jboss-deployment-structure>
 <deployment>
 <!-- Exclusions allow you to prevent the server from automatically adding some dependencies -->
 <exclusions>
 <module name="org.apache.log4j" />
 </exclusions>
 </deployment>
</jboss-deployment-structure>

			

	
				Place the jboss-deployment-structure.xml file in either the META-INF/ directory or the WEB-INF/ directory if you are deploying a WAR, or in the META-INF/ directory if you are deploying an EAR. If your deployment includes dependent child deployments, you must also exclude the module for each subdeployment.
			

	
				Include the log4j.properties or log4j.xml file in the lib/ directory of your EAR, or the WEB-INF/classes/ directory of your WAR deployment. If you prefer to place the file in lib/ directory of your WAR, you must specify the <resource-root> path in the jboss-deployment-structure.xml file.
			

				

<jboss-deployment-structure>
 <deployment>
 <!-- Exclusions allow you to prevent the server from automatically adding some dependencies -->
 <exclusions>
 <module name="org.apache.log4j" />
 </exclusions>
 <resources>
 <resource-root path="lib" />
 </resources>
 </deployment>
</jboss-deployment-structure>

			

	
				Start the JBoss EAP 6 server with the following runtime argument to prevent a ClassCastException from appearing in the console when you deploy the application:
-Dorg.jboss.as.logging.per-deployment=false

			

	
				Deploy your application.
			

 ⁠Procedure 3.6. Configure Logging Dependencies for JBoss EAP 6.3 or later

			In JBoss EAP 6.3 and later, you can use the new add-logging-api-dependencies logging system attribute to exclude 3rd party logging framework dependencies. The following steps demonstrate how to modify this logging attribute on a JBoss EAP standalone server.
		
	
				Start the JBoss EAP 6 server with the following runtime argument to prevent a ClassCastException from appearing in the console when you deploy the application:
-Dorg.jboss.as.logging.per-deployment=false

			

	
				Open a terminal and connect to the Management CLI.
			

					
						For Linux, enter the following at the command line:
					

$ EAP_HOME/bin/jboss-cli.sh --connect

				 	
						For Windows, enter the following at a command line:
					

C:\>EAP_HOME\bin\jboss-cli.bat --connect

			

	
				Modify the add-logging-api-dependencies attribute in the logging subsystem.
			

				This attribute controls whether the container adds implicit logging API dependencies to your deployments.
					
							If set to true, which is the default, all implicit logging API dependencies are added.
						

	
							If set to false, the dependencies are not added to your deployments.
						

			

				To exclude the third-party logging framework dependencies, you must set this attribute to false using the following command:
/subsystem=logging:write-attribute(name=add-logging-api-dependencies, value=false)

			

				This command adds the <add-logging-api-dependencies> element to the logging subsystem of the standalone.xml configuration file.

<subsystem xmlns="urn:jboss:domain:logging:1.4">
 <add-logging-api-dependencies value="false"/>

</subsystem>

			

	
				Deploy your application.
			

		Report a bug
	

 ⁠3.1.4.3. Modify Code to Use the New JBoss Logging Framework

Summary

			To use the new framework, change your imports and code as follows:
		

 ⁠Procedure 3.7. Modify Code and Dependencies to Use the JBoss Logging Framework
	Change your imports and logging code

				The following is an example of code that uses the new JBoss Logging framework:

import org.jboss.logging.Level;
import org.jboss.logging.Logger;

private static final Logger logger = Logger.getLogger(MyClass.class.toString());

if(logger.isTraceEnabled()) {
 logger.tracef("Starting...", subsystem);
}

			

	Add the logging dependency

				The JAR containing the JBoss Logging classes is located in the module named org.jboss.logging. Your MANIFEST-MF file should look like this:
			

				

Manifest-Version: 1.0
Dependencies: org.jboss.logging

			

				For more information on how to find the module dependency, please see Section 3.1.2.3, “Update Application Dependencies Due to Class Loading Changes” and Section 4.2.1, “Debug and Resolve Migration Issues”.
			

		Report a bug
	

 ⁠3.1.5. Application Packaging Changes

 ⁠3.1.5.1. Modify Packaging of EARs and WARs

Summary

			When you migrate your application, you may have to change the packaging structure of your EAR or WAR due to the change to modular class loading. Module dependencies are loaded in this specific order:
				
						System dependencies
					

	
						User dependencies
					

	
						Local resources
					

	
						Inter-deployment dependencies
					

		

 ⁠Procedure 3.8. Modify archive packaging
	Package a WAR

				A WAR is a single module and all classes in the WAR are loaded with the same class loader. This means classes packaged in the WEB-INF/lib/ directory are treated the same as classes in the WEB-INF/classes directory.
			

	Package an EAR

				An EAR consists of multiple modules. The EAR/lib/ directory is a single module and every WAR or EJB jar subdeployment within the EAR is a separate module. Classes do not have access to classes in other modules within the EAR unless explicit dependencies have been defined. Subdeployments always have an automatic dependency on the parent module which gives them access to classes in the EAR/lib/ directory. However, subdeployments do not always have an automatic dependency to allow them to access each other. This behavior is controlled by setting the <ear-subdeployments-isolated> element in the ee subsystem configuration as follows:
			

				

<subsystem xmlns="urn:jboss:domain:ee:1.0" >
 <ear-subdeployments-isolated>false</ear-subdeployments-isolated>
</subsystem>

			

				By default this is set to false which allows the subdeployments to see classes belonging to other subdeployments within the EAR.
			

				For more information on class loading, refer to the chapter entitled Class Loading and Modules in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
			

		Report a bug
	

 ⁠3.1.6. Datasource and Resource Adapter Configuration Changes

 ⁠3.1.6.1. Update the Application Due to Configuration Changes

			In JBoss EAP 5, services and subsystems were configured in many different files. In JBoss EAP 6, configuration is now done mainly in one file. If your application uses any of the following resources or services, configuration changes may be needed.
		
	
				If your application uses a datasource, see: Section 3.1.6.2, “Update the DataSource Configuration”.
			

	
				If your application uses JPA and currently bundles the Hibernate JARs, see the following for your migration options: Section 3.1.6.4, “Configure the Datasource for Hibernate or JPA”.
			

	
				If your application uses a resource adapter, see: Section 3.1.6.5, “Update the Resource Adapter Configuration”.
			

	
				Review the following for information on how to configure changes for basic security: Section 3.1.7.1, “Configure Application Security Changes”.
			

		Report a bug
	

 ⁠3.1.6.2. Update the DataSource Configuration

Summary

			In previous versions of JBoss EAP, the JCA datasource configuration was defined in a file with a suffix of *-ds.xml. This file was then deployed in the server's deploy/ directory or packaged with the application. The JDBC driver was copied to the server/lib/ directory or packaged in the application's WEB-INF/lib/ directory. While this method of configuring a datasource is still supported for development, it is not recommended for production because it is not supported by the JBoss administrative and management tools.
		

		In JBoss EAP 6, the datasource is configured in the server configuration file. If the JBoss EAP 6 instance is running in a managed domain, the datasource is configured in the domain/configuration/domain.xml file. If the JBoss EAP 6 instance is running as a standalone server, the datasource is configured in the standalone/configuration/standalone.xml file. Datasources configured this way can be managed and controlled using the JBoss management interfaces, including the Web Management Console and command line interface (CLI). These tools make it easy to manage deployments and configure multiple servers running in a managed domain.
	

		The following section describes how to modify your datasource configuration so that it can be managed and supported by the available management tools.
	
Migrate to a Manageable Datasource Configuration for JBoss EAP 6

			A JDBC 4.0 compliant driver can be installed as a deployment or as a core module. A driver that is JDBC 4.0 compliant contains a META-INF/services/java.sql.Driver file that specifies the driver class name. A driver that is not JDBC 4.0 compliant requires additional steps. For details on how to make a driver JDBC 4.0 compliant and how update your current datasource configuration to one that is manageable by the Web Management Console and CLI, see Section 3.1.6.3, “Install and Configure the JDBC Driver”.
		

		If your application uses Hibernate or JPA, it may require additional changes. See Section 3.1.6.4, “Configure the Datasource for Hibernate or JPA” for more information.
	
Use the IronJacamar Migration Tool to Convert Configuration Data

			You can use the IronJacamar tool to migrate datasource and resource adapter configurations. This tool converts the *-ds.xml style configuration files into the format expected by JBoss EAP 6. For more information, see: Section 4.1.6, “Use the IronJacamar Tool to Migrate Datasource and Resource Adapter Configurations”.
		

		Report a bug
	

 ⁠3.1.6.3. Install and Configure the JDBC Driver

Summary

			The JDBC driver can be installed into the container in one of the following two ways:
				
						As a deployment
					

	
						As a core module
					

			 The pros and cons of each approach are noted below.
		

		In JBoss EAP 6, the datasource is configured in the server configuration file. If the JBoss EAP 6 instance is running in a managed domain, the datasource is configured in the domain/configuration/domain.xml file. If the JBoss EAP 6 instance is running as a standalone server, the datasource is configured in the standalone/configuration/standalone.xml file. Schema reference information, which is the same for both modes, can be found in the docs/schema/ directory of the JBoss EAP 6 install. For purposes of this discussion, assume the server is running as standalone server and the datasource is configured in the standalone.xml file.
	

 ⁠Procedure 3.9. Install and Configure the JDBC Driver

		
	Install the JDBC Driver.
	Install the JDBC Driver as a deployment.

						This is the recommended way to install the driver. When the JDBC driver is installed as a deployment, it is deployed as a regular JAR. If the JBoss EAP 6 instance is running as a standalone server, copy the JDBC 4.0 compliant JAR into the EAP_HOME/standalone/deployments/ directory. For a managed domain, you must use the Management Console or Managment CLI to deploy the JAR to the server groups.
					

						The following is an example of a MySQL JDBC driver installed as a deployment to a standalone server:
$cp mysql-connector-java-5.1.15.jar EAP_HOME/standalone/deployments/

					

						Any JDBC 4.0 compliant driver is automatically recognized and installed into the system by name and version. A JDBC 4.0 compliant JAR contains a text file named META-INF/services/java.sql.Driver which specifies the driver class name(s). If the driver is not JDBC 4.0 compliant, it can be made deployable in one of the following ways:
							
									Create and add a java.sql.Driver file to the JAR under the META-INF/services/ path. This file should contain the driver class name, for example:
com.mysql.jdbc.Driver

								

	
									Create a java.sql.Driver file in the deployment directory. For a JBoss EAP 6 instance running as a standalone server, the file should be placed here: EAP_HOME/standalone/deployments/META-INF/services/java.sql.Driver. If the server is in a managed domain, you must use the Management Console or Managment CLI to deploy the file.
								

					

						The pros of this approach are:
							
									This is the easiest method because there is no need to define a module.
								

	
									When the server is running in a managed domain, deployments that use this approach are automatically propagated to all servers in the domain. This means the administrator does not need to distribute the driver JAR manually.
								

						 The cons of this approach are:
							
									If the JDBC driver consists of more than one JAR, for example the driver JAR plus a dependent license JAR or localization JAR, you can not install the driver as a deployment. You must install the JDBC driver as a core module.
								

	
									If the driver is not JDBC 4.0 compliant, a file must be created containing the driver class name(s) and must be imported into the JAR or overlayed in the deployments/ directory.
								

					

	Install the JDBC Driver as a core module.

						To install a JDBC driver as a core module, you must create a file path structure under the EAP_HOME/modules/ directory. This structure contains the JDBC driver JAR, any additional vendor license or localization JARs, and a module.xml file to define the module.
					

							Install the MySQL JDBC Driver as a core module
	
										Create the directory structure EAP_HOME/modules/com/mysql/main/
									

	
										In the main/ subdirectory, create a module.xml file containing the following module definition for the MySQL JDBC driver:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
<resources>
 <resource-root path="mysql-connector-java-5.1.15.jar"/>
</resources>
<dependencies>
 <module name="javax.api"/>
</dependencies>
</module>

									

										The module name, "com.mysql", matches the directory structure for this module. The <dependencies> element is used to specify this module's dependencies on other modules. In this case, as is the case with all JDBC datasources, it is dependent on the Java JDBC APIs which are defined in another module named javax.api. That module is located under the modules/system/layers/base/javax/api/main/ directory.
									
Note

											Make sure you do NOT have a space at the beginning of module.xml file or you will get a "New missing/unsatisfied dependencies" error for this driver.
										

	
										Copy the MySQL JDBC driver JAR into the EAP_HOME/modules/com/mysql/main/ directory:
$ cp mysql-connector-java-5.1.15.jar EAP_HOME/modules/com/mysql/main/

									

						 	Install the IBM DB2 JDBC driver and license JAR as a core module.

								This example is provided to only demonstrate how to deploy drivers that require JARs in addition to the JDBC Driver JAR.
							
	
										Create the directory structure EAP_HOME/modules/com/ibm/db2/main/.
									

	
										In the main/ subdirectory, create a module.xml file containing the following module definition for the IBM DB2 JDBC driver and license:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.1" name="com.ibm.db2">
 <resources>
 <resource-root path="db2jcc.jar"/>
 <resource-root path="db2jcc_license_cisuz.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

									
Note

											Make sure you do NOT have a space at the beginning of module.xml file or you will get a "New missing/unsatisfied dependencies" error for this driver.
										

	
										Copy the JDBC driver and license JAR to the EAP_HOME/modules/com/ibm/db2/main/ directory.

$ cp db2jcc.jar EAP_HOME/modules/com/ibm/db2/main/
$ cp db2jcc_license_cisuz.jar EAP_HOME/modules/com/ibm/db2/main/

									

					

						The pros of this approach are:
							
									This is the only approach that works when the JDBC driver consists of more than one JAR.
								

	
									With this approach, drivers that are not JDBC 4.0 compliant can be installed without modifying the driver JAR or creating a file overlay.
								

						 The cons of this approach are:
							
									It is more difficult to set up a module.
								

	
									The module must be manually copied to every server running in a managed domain.
								

					

	Configure the datasource.
	Add the database driver.

						Add the <driver> element to the <drivers> element of the same file. Again, this contains some of the same datasource information that was previously defined in the *-ds.xml file.
					

						First determine if the driver JAR is JDBC 4.0 compliant. A JAR that is JDBC 4.0 compliant contains a META-INF/services/java.sql.Driver file that specifies the driver class name. The server uses this file to find the name of the driver class(es) in the JAR. A driver that is JDBC 4.0 compliant does not require a <driver-class> element since it is already specified in the JAR. This is an example of the driver element for a JDBC 4.0 compliant MySQL driver:

<driver name="mysql-connector-java-5.1.15.jar" module="com.mysql"/>

						 A driver that is not JDBC 4.0 compliant requires a <driver-class> attribute to identify the driver class since there is no META-INF/services/java.sql.Driver file that specifies the driver class name. This is an example of the driver element for driver that is not JDBC 4.0 compliant:

<driver name="mysql-connector-java-5.1.15.jar" module="com.mysql">
<driver-class>com.mysql.jdbc.Driver</driver-class></driver>

					

	Create the datasource.

						Create a <datasource> element in the <datasources> section of the standalone.xml file. This file contains much of the same datasource information that was previously defined in the *-ds.xml file.
					
Important

							You must stop the server before editing the server configuration file for your change to be persisted on server restart.
						

						The following is an example of a MySQL datasource element in the standalone.xml file:

<datasource jndi-name="java:/YourDatasourceName" pool-name="YourDatasourceName">
 <connection-url>jdbc:mysql://localhost:3306/YourApplicationURL</connection-url>
 <driver>mysql-connector-java-5.1.15.jar</driver>
 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
 <pool>
 <min-pool-size>100</min-pool-size>
 <max-pool-size>200</max-pool-size>
 </pool>
 <security>
 <user-name>USERID</user-name>
 <password>PASSWORD</password>
 </security>
 <statement>
 <prepared-statement-cache-size>100</prepared-statement-cache-size>
 <share-prepared-statements/>
 </statement>
</datasource>

					

	Update JNDI references in the application code.

				You must replace outdated JNDI lookup names in the application source code to use the new JNDI standardized datasource names you have defined. For more information, see: Section 3.1.8.4, “Modify the Application to Follow the New JNDI Namespace Rules”.
			

				You must also replace any existing @Resource annotations that access the datasource to use the new JNDI name. For example:

@Resource(name = "java:/YourDatasourceName").

			

		Report a bug
	

 ⁠3.1.6.4. Configure the Datasource for Hibernate or JPA

		If your application uses JPA and currently bundles the Hibernate JARs, you may want to use the Hibernate that is included with JBoss EAP 6. To use this version of Hibernate, you must remove the old Hibernate bundle from your application.
	

 ⁠Procedure 3.10. Remove the Hibernate bundle
	
				Remove the Hibernate JARs from your application library folders.
			

	
				Remove or comment out the <hibernate.transaction.manager_lookup_class> element in your persistence.xml file as this element is not needed.
			

		Report a bug
	

 ⁠3.1.6.5. Update the Resource Adapter Configuration

Summary

			In previous versions of the application server, the resource adapter configuration was defined in a file with a suffix of *-ds.xml. In JBoss EAP 6, a resource adapter is configured in the server configuration file. If you are running in a managed domain, the configuration file is the EAP_HOME/domain/configuration/domain.xml file. If you are running as a standalone server, configure the resource adapter in the EAP_HOME/standalone/configuration/standalone.xml file. Schema reference information, which is the same for both modes, can be found under Schemas on the IronJacamar web site here: http://www.ironjacamar.org/documentation.html.
		
Important

			You must stop the server before editing the server configuration file for your change to be persisted on server restart.
		

Define the resource adapter

			The resource adapter descriptor information is defined under the following subsystem element in the server configuration file:
<subsystem xmlns="urn:jboss:domain:resource-adapters:1.1"/>

			 You will use some of the same information that was previously defined in the resource adapter *-ds.xml file.
		

		The following is an example of a resource adapter element in the server configuration file:
<resource-adapters>
 <resource-adapter>
 <archive>multiple-full.rar</archive>
 <config-property name="Name">ResourceAdapterValue</config-property>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition
 class-name="org.jboss.jca.test.deployers.spec.rars.multiple.MultipleManagedConnectionFactory1"
 enabled="true" jndi-name="java:/eis/MultipleConnectionFactory1"
 pool-name="MultipleConnectionFactory1">
 <config-property name="Name">MultipleConnectionFactory1Value</config-property>
 </connection-definition>
 <connection-definition
 class-name="org.jboss.jca.test.deployers.spec.rars.multiple.MultipleManagedConnectionFactory2"
 enabled="true" jndi-name="java:/eis/MultipleConnectionFactory2"
 pool-name="MultipleConnectionFactory2">
 <config-property name="Name">MultipleConnectionFactory2Value</config-property>
 </connection-definition>
 </connection-definitions>
 <admin-objects>
 <admin-object
 class-name="org.jboss.jca.test.deployers.spec.rars.multiple.MultipleAdminObject1Impl"
 jndi-name="java:/eis/MultipleAdminObject1">
 <config-property name="Name">MultipleAdminObject1Value</config-property>
 </admin-object>
 <admin-object class-name="org.jboss.jca.test.deployers.spec.rars.multiple.MultipleAdminObject2Impl"
 jndi-name="java:/eis/MultipleAdminObject2">
 <config-property name="Name">MultipleAdminObject2Value</config-property>
 </admin-object>
 </admin-objects>
 </resource-adapter>
</resource-adapters>

	

		Report a bug
	

 ⁠3.1.7. Security Changes

 ⁠3.1.7.1. Configure Application Security Changes

Configure security for basic authentication

			In previous versions of JBoss EAP, properties files placed in the EAP_HOME/server/SERVER_NAME/conf/ directory were on classpath and could be easily found by the UsersRolesLoginModule. In JBoss EAP 6, the directory structure has changed. Properties files must be packaged within the application to make them available in the classpath.
		
Important

			You must stop the server before editing the server configuration file for your change to be persisted on server restart.
		

		To configure security for basic authentication, add a new security domain under security-domains to the standalone/configuration/standalone.xml or the domain/configuration/domain.xml server configuration file:
<security-domain name="example">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties"
 value="${jboss.server.config.dir}/example-users.properties"/>
 <module-option name="rolesProperties"
 value="${jboss.server.config.dir}/example-roles.properties"/>
 </login-module>
 </authentication>
</security-domain>

	

		If the JBoss EAP 6 instance is running as a standalone server, ${jboss.server.config.dir} refers to the EAP_HOME/standalone/configuration/ directory. If the instance is running in a managed domain, ${jboss.server.config.dir} refers to the EAP_HOME/domain/configuration/ directory.
	
Modify security domain names

			In JBoss EAP 6, security domains no longer use the prefix java:/jaas/ in their names.
				
						For Web applications, you must remove this prefix from the security domain configurations in the jboss-web.xml.
					

	
						For Enterprise applications, you must remove this prefix from the security domain configurations in the jboss-ejb3.xml file. This file has replaced the jboss.xml in JBoss EAP 6.
					

		

	

		Report a bug
	

 ⁠3.1.7.2. Update Applications That Use PicketLink STS and Web Services

Summary

			If your JBoss EAP 6.1 application uses PicketLink STS and Web services, you may need to make changes when you migrate to JBoss EAP 6.2 or later. A fix applied to JBoss EAP to address CVE-2013-2133 enforces authorization checks by the container before running any JAXWS handlers attached to EJB3-based WS endpoints. As a consequence, some PicketLink STS functionality can be affected because the PicketLink SAML2Handler establishes a security principal that is intended to be used later in the process. You may see a NullPointerException in the server log because the principal is NULL when the HandlerAuthInterceptor accesses the SAML2Handler. You must disable this security check to fix this problem.
		

 ⁠Procedure 3.11. Disable Additional Authorization Checks
	
				You can disable the additional authorization checks and keep using the existing PicketLink deployments by using one of the following methods.
			

					Set a System-wide Property

						You can disable additional authorization checks at the server level by setting the org.jboss.ws.cxf.disableHandlerAuthChecks system property value to true. This method affects any deployment made to the application server.
					

						For information on how to set a system property, see the topic entitled Configure System Properties Using the Management CLI in the Administration and Configuration Guide for JBoss EAP.
					

				 	Create a Property in the Deployment's Web Services Descriptor File

						You can disable additional authorization checks at the deployment level by setting the org.jboss.ws.cxf.disableHandlerAuthChecks property value to true in the jboss-webservices.xml file. This method impacts only the specific deployment.
					
	
								Create a jboss-webservices.xml file in the META-INF/ directory of the deployment in which you want to disable additional authorization checks.
							

	
								Add the following content:

<?xml version="1.1" encoding="UTF-8"?>
<webservices xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 version="1.2" xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">
 <property>
 <name>org.jboss.ws.cxf.disableHandlerAuthChecks</name>
 <value>true</value>
 </property>
</webservices>

							

			

Note

			Enabling the org.jboss.ws.cxf.disableHandlerAuthChecks property renders a system vulnerable to CVE-2013-2133. If the application expects security restrictions declared on EJB methods to be applied and does not apply them independent to the JAX-WS handler, then the property should not be enabled. The property should only be used for purposes of backwards compatibility when needed to avoid breaking the application.
		

		Report a bug
	

 ⁠3.1.8. JNDI Changes

 ⁠3.1.8.1. Update Application JNDI Namespace Names

Summary

			EJB 3.1 introduced a standardized global JNDI namespace and a series of related namespaces that map to the various scopes of a Java EE application. Portable EJB names only get bound to three of them: java:global, java:module, and java:app. Applications with EJBs that use JNDI must be changed to follow the new standardized JNDI namespace convention.
		

 ⁠Procedure 3.12. Modify JNDI lookups
	
				 Learn more about Section 3.1.8.2, “Portable EJB JNDI Names”
			

	
				 Section 3.1.8.3, “Review the JNDI Namespace Rules”
			

	
				 Section 3.1.8.4, “Modify the Application to Follow the New JNDI Namespace Rules”
			

Example JNDI Mappings

			Examples of JNDI namespaces in previous releases and how they are specified in JBoss EAP 6 can be found here: Section 3.1.8.5, “Examples of JNDI Namespaces in Previous Releases and How They are Specified in JBoss EAP 6”
		

		Report a bug
	

 ⁠3.1.8.2. Portable EJB JNDI Names

Summary

			The Java EE 6 specification defines four logical namespaces, each with its own scope, but portable EJB names only get bound to three of them. The following table details when and how to use each namespace.
		

 ⁠Table 3.1. Portable JNDI Namespaces
	
						JNDI Namespace
						
						Description
					
	
						java:global
						
						
							Names in this namespace are shared by all applications deployed in an application server instance. Use names in this namespace to find EJBs external archives deployed to the same server.
						

						
							The following is an example of a java:global namespace: java:global/jboss-seam-booking/jboss-seam-booking-jar/HotelBookingAction
						

					
	
						java:module
						
						
							Names in this namespace are shared by all components in a module, for example, all enterprise beans in a single EJB module or all components in a web module.
						

						
							The following is an example of a java:module namespace: java:module/HotelBookingAction!org.jboss.seam.example.booking.HotelBooking
						

					
	
						java:app
						
						
							Names in this namespace are shared by all components in all modules in a single application. For example, a WAR and an EJB jar file in the same EAR file would have access to resources in the java:app namespace.
						

						
							The following is an example of a java:app namespace: java:app/jboss-seam-booking-jar/HotelBookingAction
						

					

		You can find more information about JNDI naming contexts in section EE.5.2.2, "Application Component Environment Namespaces" in the "JSR 316: JavaTM Platform, Enterprise Edition (Java EE) Specification, v6". You can download the specification from here: http://jcp.org/en/jsr/detail?id=316
	

		Report a bug
	

 ⁠3.1.8.3. Review the JNDI Namespace Rules

Summary

			JBoss EAP 6 has improved upon JNDI namespace names, not only to provide predictable and consistent rules for every name bound in the application server, but also to prevent future compatibility issues. This means you might run into issues with the current namespaces in your application if they don't follow the new rules.
		
Namespaces should follow these rules:

				
						Unqualified relative names like DefaultDS or jdbc/DefaultDS should be qualified relative to java:comp/env, java:module/env, or java:jboss/env, depending on the context.
					

	
						Unqualified absolute names like /jdbc/DefaultDS should be qualified relative to a java:jboss/root name.
					

	
						Qualified absolute names like java:/jdbc/DefaultDS should be qualified the same way as Unqualified absolute names above.
					

	
						The special java:jboss namespace is shared across the entire AS server instance.
					

	
						Any relative name with a java: prefix must be in one of the five namespaces: comp, module, app, global, or the proprietary jboss. Any name starting with java:xxx where xxx does not match any of the above five would result in an invalid name error.
					

		

		Report a bug
	

 ⁠3.1.8.4. Modify the Application to Follow the New JNDI Namespace Rules

			
					Here is an example of a JNDI lookup in JBoss EAP 5.1. This code is usually found in an initialization method.
				

					

private ProductManager productManager;
try {
 context = new InitialContext();
 productManager = (ProductManager) context.lookup("OrderManagerApp/ProductManagerBean/local");
} catch(Exception lookupError) {
 throw new ServletException("Unable to find the ProductManager bean", lookupError);
}

				

					Note the lookup name is OrderManagerApp/ProductManagerBean/local.
				

	
					The following is an example of how the same lookup would be coded in JBoss EAP 6 using dependency injection.
				

					

@EJB(lookup="java:app/OrderManagerEJB/ProductManagerBean!services.ejb.ProductManager")
private ProductManager productManager;

				

					The lookup values are now defined as member variables and use the new portable java:app JNDI namespace name java:app/OrderManagerEJB/ProductManagerBean!services.ejb.ProductManager.
				

	
					If you prefer not to use dependency injection, you can continue to create the new InitialContext as above and modify the lookup to use the new JNDI namespace name.

private ProductManager productManager;
try {
 context = new InitialContext();
 productManager = (ProductManager) context.lookup("java:app/OrderManagerEJB/ProductManagerBean!services.ejb.ProductManager");
} catch(Exception lookupError) {
 throw new ServletException("Unable to find the ProductManager bean", lookupError);
}

				

	

		Report a bug
	

 ⁠3.1.8.5. Examples of JNDI Namespaces in Previous Releases and How They are Specified in JBoss EAP 6

 ⁠Table 3.2. JNDI Namespace Mapping Table
	
						Namespace in JBoss EAP 5.x
						
						Namespace in JBoss EAP 6
						
						Additional Comments
					
	
						OrderManagerApp/ProductManagerBean/local
						
						java:module/ProductManagerBean!services.ejb.ProductManager
						
						Java EE 6 standard binding. Scoped to the current module and only accessible within the same module.
					
	
						OrderManagerApp/ProductManagerBean/local
						
						java:app/OrderManagerEJB/ProductManagerBean!services.ejb.ProductManager
						
						Java EE 6 standard binding. Scoped to the current application and only accessible within the same application.
					
	
						OrderManagerApp/ProductManagerBean/local
						
						java:global/OrderManagerApp/OrderManagerEJB/ProductManagerBean!services.ejb.ProductManager
						
						Java EE 6 standard binding. Scoped to the application server and globally accessible.
					
	
						java:comp/UserTransaction
						
						java:comp/UserTransaction
						
						Namespace is scoped to the current component. Not accessible for threads that are not Java EE 6, for example, threads created directly by your application.
					
	
						java:comp/UserTransaction
						
						java:jboss/UserTransaction
						
						Globally accessible. Use this if java:comp/UserTransaction is not available.
					
	
						java:/TransactionManager
						
						java:jboss/TransactionManager
						

					
	
						java:/TransactionSynchronizationRegistry
						
						java:jboss/TransactionSynchronizationRegistry
						

					

		Report a bug
	

 ⁠3.2. Changes Dependent on Your Application Architecture and Components

 ⁠3.2.1. Review Changes Dependent on Your Application Architecture and Components

		If your application uses any of the following technologies or components, you may need to make modifications to your application when you migrate to JBoss EAP 6.
	
	Hibernate and JPA
	
					If your application uses Hibernate or JPA, your application may need some modifications. For more information, see: Section 3.2.2.1, “Update Applications That Use Hibernate and/or JPA”.
				

	REST
	
					If your application uses JAX-RS, you should be aware that JBoss EAP 6 automatically sets up RESTEasy, so you no longer need to configure it yourself. For more information, see: Section 3.2.5.1, “Configure JAX-RS and RESTEasy Changes”
				

	LDAP
	
					The LDAP security realm is configured differently in JBoss EAP 6. If your application uses LDAP, refer to the following topic for more information: Section 3.2.6.1, “Configure LDAP Security Realm Changes”.
				

	Messaging
	
					JBoss Messaging is no longer included in JBoss EAP 6. If your application uses JBoss Messaging as the messaging provider, you need to replace the JBoss Messaging code with HornetQ. The following topic describes what you need to do: Section 3.2.7.4, “Migrate Your Application to Use HornetQ as the JMS Provider”.
				

	Clustering
	
					The way you enable clustering has changed in JBoss EAP 6. For details, see: Section 3.2.8.1, “Make Changes to Your Application for Clustering”.
				

	Service-style deployment
	
					Although JBoss EAP 6 no longer uses service-style descriptors, the container supports these service-style deployments without change where possible. For deployment information, see: Section 3.2.9.1, “Update Applications That Use Service-style Deployments”
				

	Remote invocation
	
					If your application makes remote invocations, you can still use JNDI to lookup a proxy for your bean and invoke on that returned proxy. For more information about required syntax and namespaces changes, see: Section 3.2.10.1, “Migrate JBoss EAP 5 Deployed Applications That Make Remote Invocations to JBoss EAP 6”.
				

	Seam 2.2
	
					If your application uses Seam 2.2, refer to the following topic for changes you need to make: Section 3.2.13.1, “Migrate Seam 2.2 Archives to JBoss EAP 6”.
				

	Spring
	
					If your application uses Spring, see: Section 3.2.14.1, “Migrate Spring Applications”.
				

	Other changes that may impact your migration
	
					For additional changes in JBoss EAP 6 that may impact your application, see: Section 3.2.15.1, “Become Familiar with Other Changes That May Affect Your Migration”.
				

		Report a bug
	

 ⁠3.2.2. Hibernate and JPA Changes

 ⁠3.2.2.1. Update Applications That Use Hibernate and/or JPA

Summary

			If your application uses Hibernate or JPA, read through the following sections and make any changes necessary to migrate to JBoss EAP 6.
		
	
				Section 3.2.2.2, “Configure Changes for Applications That Use Hibernate and JPA”
			

	
				Section 3.2.2.4, “Update Your Hibernate 3 Application to Use Hibernate 4”
			

	
				Section 3.2.2.9, “Update Your Application to Conform to the JPA 2.0 Specification”
			

	
				Section 3.2.2.10, “Replace JPA/Hibernate Second Level Cache with Infinispan”
			

	
				Section 3.2.2.12, “Migrate to Hibernate Validator 4”
			

		Report a bug
	

 ⁠3.2.2.2. Configure Changes for Applications That Use Hibernate and JPA

Summary

			If your application contains a persistence.xml file or the code uses the annotations @PersistenceContext or @PersistenceUnit, JBoss EAP 6 detects this during deployment and assumes the application uses JPA. It implicitly adds Hibernate 4 plus a few other dependencies to your application classpath.
		

		If your application currently uses Hibernate 3 libraries, in most cases you will be able to switch to using Hibernate 4 and run successfully. However, if you see ClassNotFoundExceptions when you deploy your application, you can try to resolve them using one of the following approaches.
	
Important

			Applications that use Hibernate directly with Seam 2.2 may use a version of Hibernate 3 packaged inside the application. Hibernate 4, which is provided through the org.hibernate module of JBoss EAP 6, is not supported by Seam 2.2. This example is intended to help you get your application running on JBoss EAP 6 as a first step. Please be aware that packaging Hibernate 3 with a Seam 2.2 application is not a supported configuration.
		

 ⁠Procedure 3.13. Configure the Application
	Copy the required Hibernate 3 JARs to your application library.

				You may be able to resolve the issue by copying the specific Hibernate 3 JARs that contain the missing classes into the application's lib/ directory or by adding them to the classpath using some other method. In some cases this may result in ClassCastExceptions or other class loading issues due to the mixed use of the Hibernate versions. If that happens, you need to use the next approach.
			

	Instruct the server to use only the Hibernate 3 libraries.

				JBoss EAP 6 allows you to package Hibernate 3.5 (or greater) persistence provider jars with the application. To direct the server to use only the Hibernate 3 libraries and to exclude the Hibernate 4 libraries, you need to set the jboss.as.jpa.providerModule to hibernate3-bundled in the persistence.xml as follows:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
 <persistence-unit name="plannerdatasource_pu">
 <description>Hibernate 3 Persistence Unit.</description>
 <jta-data-source>java:jboss/datasources/PlannerDS</jta-data-source>
 <properties>
 <property name="hibernate.show_sql" value="false" />
 <property name="jboss.as.jpa.providerModule" value="hibernate3-bundled" />
 </properties>
 </persistence-unit>
</persistence>

				 The Java Persistence API (JPA) deployer will detect the presence of a persistence provider in the application and use the Hibernate 3 libraries. For more information on the JPA persistence properties, see Section 3.2.2.3, “Persistence Unit Properties”.
			

	Disable Hibernate second-level cache

				Second-level cache for Hibernate 3 does not exhibit the same behavior with JBoss EAP 6 as it did in previous releases. If you are using Hibernate second-level cache with your application, you must disable it until you upgrade to Hibernate 4. To disable second-level cache, set the <hibernate.cache.use_second_level_cache> to false in the persistence.xml file.
			

		Report a bug
	

 ⁠3.2.2.3. Persistence Unit Properties

Hibernate 4.x configuration properties

			JBoss EAP 6 automatically sets the following Hibernate 4.x configuration properties:
		

 ⁠Table 3.3. Hibernate Persistence Unit Properties
	
						Property Name
						
						Default Value
						
						Purpose
					
	
						hibernate.id.new_generator_mappings
						
						true
						
						
							This setting is relevant if you use @GeneratedValue(AUTO) to generate unique index key values for new entities. New applications should keep the default value of true. Existing applications that used Hibernate 3.3.x might need to change it to false to continue using a sequence object or table based generator and maintain backward compatibility. The application can override this value in the persistence.xml file.
						

						
							More information on this behavior is provided below.
						

					
	
						hibernate.transaction.jta.platform
						
						Instance of org.hibernate.service.jta.platform.spi.JtaPlatform Interface
						
						
							This class passes the transaction manager, user transaction, and transaction synchronization registry into Hibernate.
						

					
	
						hibernate.ejb.resource_scanner
						
						Instance of org.hibernate.ejb.packaging.Scanner Interface
						
						
							This class knows how to use the JBoss EAP 6 annotation indexer to provide faster deployment.
						

					
	
						hibernate.transaction.manager_lookup_class
						

						
						
							This property is removed if found in the persistence.xml because it could conflict with hibernate.transaction.jta.platform
						

					
	
						hibernate.session_factory_name
						
						QUALIFIED_PERSISTENCE_UNIT_NAME
						
						
							This is set to the application name + persistence unit name. The application can specify a different value, but it must be unique across all application deployments on the JBoss EAP 6 instance.
						

					
	
						hibernate.session_factory_name_is_jndi
						
						false
						
						
							This is set only if the application did not specify a value for the hibernate.session_factory_name.
						

					
	
						hibernate.ejb.entitymanager_factory_name
						
						QUALIFIED_PERSISTENCE_UNIT_NAME
						
						
							This is set to the application name + persistence unit name. The application can specify a different value but it needs to be unique across all application deployments on the JBoss EAP 6 instance.
						

					

		In Hibernate 4.x, if new_generator_mappings is set to true:
	
	
				@GeneratedValue(AUTO) maps to org.hibernate.id.enhanced.SequenceStyleGenerator.
			

	
				@GeneratedValue(TABLE) maps to org.hibernate.id.enhanced.TableGenerator.
			

	
				@GeneratedValue(SEQUENCE) maps to org.hibernate.id.enhanced.SequenceStyleGenerator.
			

		In Hibernate 4.x, if new_generator_mappings is set to false:
	
	
				@GeneratedValue(AUTO) maps to Hibernate "native".
			

	
				@GeneratedValue(TABLE) maps to org.hibernate.id.MultipleHiLoPerTableGenerator.
			

	
				@GeneratedValue(SEQUENCE) maps to Hibernate "seqhilo".
			

		For more information about these properties, go to http://www.hibernate.org/docs and view the Hibernate 4.1 Developer Guide.
	
JPA persistence properties

			The following JPA properties are supported in the persistence unit definition in the persistence.xml file:
		

 ⁠Table 3.4. JPA Persistence Unit Properties
	
						Property Name
						
						Default Value
						
						Purpose
					
	
						jboss.as.jpa.providerModule
						
						org.hibernate
						
						
							The name of the persistence provider module.
						

						
							The value should be hibernate3-bundled if Hibernate 3 JARs are in the application archive.
						

						
							If a persistence provider is packaged with the application, this value should be application.
						

					
	
						jboss.as.jpa.adapterModule
						
						org.jboss.as.jpa.hibernate:4
						
						
							The name of the integration classes that help JBoss EAP 6 to work with the persistence provider.
						

						
							Current valid values are:
								
										org.jboss.as.jpa.hibernate:4: This is for the Hibernate 4 integration classes
									

	
										org.jboss.as.jpa.hibernate:3: This is for the Hibernate 3 integration classes
									

						

					

		Report a bug
	

 ⁠3.2.2.4. Update Your Hibernate 3 Application to Use Hibernate 4

Summary

			When you update your application to use Hibernate 4, some updates are general and apply regardless of version of Hibernate currently used by the application. For other updates, you must determine which version the application currently uses.
		

 ⁠Procedure 3.14. Update the application to use Hibernate 4
	
				The default behavior of autoincrement sequence generator has changed in JBoss EAP 6. For more information, see Section 3.2.2.5, “Preserve the Existing Behavior of the Hibernate Identity Auto Generated Value”.
			

	
				Determine the version of Hibernate currently used by the application and choose the correct update procedure below.
			

					
						 Section 3.2.2.6, “Migrate Your Hibernate 3.3.x Application to Hibernate 4.x”
					

				 	
						 Section 3.2.2.7, “Migrate Your Hibernate 3.5.x Application to Hibernate 4.x”
					

			

	
				See Section 3.2.2.8, “Modify Persistence Properties for Migrated Seam and Hibernate Applications that Run in a Clustered Environment” if you plan to run your application in a clustered environment.
			

		Report a bug
	

 ⁠3.2.2.5. Preserve the Existing Behavior of the Hibernate Identity Auto Generated Value

		Hibernate 3.5 introduced a core property named hibernate.id.new_generator_mappings that directs how identity or sequence columns are generated when using @GeneratedValue. In JBoss EAP 6, the default value for this property is set as follows:
	
	
				When you deploy a native Hibernate application, the default value is false.
			

	
				When you deploy a JPA application, the default value is true.
			

Guidelines for New Applications

			New applications that use the @GeneratedValue annotation should set the value for the hibernate.id.new_generator_mappings property to true. This is the preferred setting because it is more portable across different databases. In most cases it is more efficient and, in some cases, it addresses compatibility with the JPA 2 specification.
		
	
				For new JPA applications, JBoss EAP 6 defaults the hibernate.id.new_generator_mappings property to true and it should not be changed.
			

	
				For new native Hibernate applications, JBoss EAP 6 defaults the hibernate.id.new_generator_mappings property to false. You should set this property to true.
			

Guidelines for Existing JBoss EAP 5 Applications

			Existing applications that use the @GeneratedValue annotation should make sure that the same generator is used to create primary key values for new entities when the application is migrated to JBoss EAP 6.
		
	
				For existing JPA applications, JBoss EAP 6 defaults the hibernate.id.new_generator_mappings property to true. You should set this property to false in the persistence.xml file.
			

	
				For existing native Hibernate applications, JBoss EAP 6 defaults the hibernate.id.new_generator_mappings to false and it should not be changed.
			

		For more information about these property settings, see Section 3.2.2.3, “Persistence Unit Properties”.
	

		Report a bug
	

 ⁠3.2.2.6. Migrate Your Hibernate 3.3.x Application to Hibernate 4.x

	Map Hibernate text types to JDBC LONGVARCHAR

				In versions of Hibernate prior to 3.5, text type was mapped to JDBC CLOB. A new Hibernate type, materialized_clob, was added in Hibernate 4 to map Java String properties to JDBC CLOB. If your application has properties configured as type="text" that are intended to be mapped to JDBC CLOB, you must do one of the following:
			
	
						If your application uses hbm mapping files, change the property to type="materialized_clob".
					

	
						If your application uses annotations, you should replace @Type(type = "text") with @Lob.
					

	Review code to find changes in returned value types

				Numeric aggregate criteria projections now return the same value type as their HQL counterparts. As a result, the return types from the following projections in org.hibernate.criterion have changed.
			
	
						Due to changes in CountProjection, Projections.rowCount(), Projections.count(propertyName), and Projections.countDistinct(propertyName), the count and count distinct projections now return a Long value.
					

	
						Due to changes in Projections.sum(propertyName), the sum projections now return a value type that depends on the property type.
						Note

								Failure to modify your application code could result in a java.lang.ClassCastException.
							

					
	
								For properties mapped as Long, Short, Integer, or primitive integer types, a Long value is returned;
							

	
								For properties mapped as Float, Double, or primitive floating point types, a Double value is returned.
							

		Report a bug
	

 ⁠3.2.2.7. Migrate Your Hibernate 3.5.x Application to Hibernate 4.x

	
				Merge the AnnotationConfiguration into the Configuration.
			

				Although AnnotationConfiguration is now deprecated, it should not affect your migration.
			

				If you are still using an hbm.xml file, you should be aware that JBoss EAP 6 now uses the org.hibernate.cfg.EJB3NamingStrategy in AnnotationConfiguration instead of the org.hibernate.cfg.DefaultNamingStrategy that was used in previous releases. This can result in naming mismatches. If you rely on the naming strategy to default the name of an association (many-to-many and collections of elements) table, you may see this issue. To resolve it, you can tell Hibernate to use the legacy org.hibernate.cfg.DefaultNamingStrategy by calling Configuration#setNamingStrategy and passing it org.hibernate.cfg.DefaultNamingStrategy#INSTANCE.
			

	
				Modify the namespaces to conform to the new Hibernate DTD file names as noted in the following table.
			

				
 ⁠Table 3.5. DTD Namespace Mapping Table
	
									Previous DTD Namespace
									
									New DTD Namespace
								
	
									http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
									
									http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd
								
	
									http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
									
									http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd
								

			

	
				Modify environment variables.
			
	
						If you are using Oracle and using the materialized_clob or materialized_blob properties, the global environment variable hibernate.jdbc.use_streams_for_binary must be set to true.
					

	
						If you are using PostgreSQL and using the CLOB or BLOB properties, the global environment variable hibernate.jdbc.use_streams_for_binary must be set to false.
					

		Report a bug
	

 ⁠3.2.2.8. Modify Persistence Properties for Migrated Seam and Hibernate Applications that Run in a Clustered Environment

		If you migrate a JPA container-managed application, the properties that influence serialization of extended persistence contexts are automatically passed to the container.
	

		However, due to changes in Hibernate, you may run into serialization issues if you run your migrated Seam or Hibernate application in a clustered environment. You may see error log messages similar to the following:

javax.ejb.EJBTransactionRolledbackException: JBAS010361: Failed to deserialize
....
Caused by: java.io.InvalidObjectException: could not resolve session factory during session deserialization [uuid=8aa29e74373ce3a301373ce3a44b0000, name=null]

		 To resolve these errors, you need to modify properties in the configuration file. In most cases this is the persistence.xml file. For native Hibernate API applications, this is the hibernate.cfg.xml file.
	

 ⁠Procedure 3.15. Set persistence properties to run in a clustered environment
	
				Set the hibernate.session_factory_name value to a unique name. This name must be unique across all application deployments on the JBoss EAP 6 instance. For example:
			

<property name="hibernate.session_factory_name" value="jboss-seam-booking.ear_session_factory"/>

	
				Set the hibernate.ejb.entitymanager_factory_name value to a unique name. This name must be unique across all application deployments on the JBoss EAP 6 instance. For example:
			

<property name="hibernate.ejb.entitymanager_factory_name" value="seam-booking.ear_PersistenceUnitName"/>

		For more information about the Hibernate JPA Persistence Unit Property settings, see Section 3.2.2.3, “Persistence Unit Properties”.
	

		Report a bug
	

 ⁠3.2.2.9. Update Your Application to Conform to the JPA 2.0 Specification

Summary

			The JPA 2.0 specification requires that a persistence context cannot be propagated outside of a JTA transaction. If your application uses only transaction-scoped persistence contexts, the behavior is the same in JBoss EAP 6 as it was in previous versions of the application server and no changes are required. However, if your application uses an extended persistence context (XPC) to allow queuing or batching of data modifications, you may need to make changes to your application.
		
Persistence context propagation behavior

			If your application has a stateful session bean, Bean1, that uses an extended persistence context, and it calls a stateless session bean, Bean2, that uses a transaction-scoped persistence context, you can expect the following behavior to occur:
				
						If Bean1 starts a JTA transaction and makes the Bean2 method invocation with the JTA transaction active, the behavior in JBoss EAP 6 is the same as previous releases and no change is necessary.
					

	
						If Bean1 does not start a JTA transaction and makes the Bean2 method invocation, JBoss EAP 6 does not propagate the extended persistence context into Bean2. This behavior is different than in previous releases which did propagate the extended persistence context into Bean2. If your application expects the extended persistence context to be propagated to the bean with the transactional entity manager, you need to change your application to do the invocation within an active JTA transaction.
					

		

		Report a bug
	

 ⁠3.2.2.10. Replace JPA/Hibernate Second Level Cache with Infinispan

Summary

			JBoss Cache has been replaced by Infinispan for second-level cache (2LC). This requires a change to the persistence.xml file. The syntax is slightly different, depending on if you are using JPA or Hibernate second level cache. These examples assume you are using Hibernate.
		

		This is an example of how properties for second level cache were specified in the persistence.xml file in JBoss EAP 5.x.

<property name="hibernate.cache.region.factory_class"
 value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>
<property name="hibernate.cache.region.jbc2.cachefactory" value="java:CacheManager"/>
<property name="hibernate.cache.use_second_level_cache" value="true"/>
<property name="hibernate.cache.region.jbc2.cfg.entity" value="mvcc-entity"/>
<property name="hibernate.cache.region_prefix" value="services"/>

		 The following steps will use this example to configure Infinispan in JBoss EAP 6.
	

 ⁠Procedure 3.16. Modify the persistence.xml file to use Infinispan
	Configure Infinispan for a JPA application in JBoss EAP 6

				This is how you specify properties to achieve the same configuration for a JPA application using Infinispan in JBoss EAP 6:

<property name="hibernate.cache.use_second_level_cache" value="true"/>

				 In addition, you need to specify a shared-cache-mode with a value of ENABLE_SELECTIVE or ALL as follows:
			

					
						ENABLE_SELECTIVE is the default and recommended value. It means entities are not cached unless you explicitly mark them as cacheable.

<shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

					

				 	
						ALL means entities are always cached even if you mark them as not cacheable.

<shared-cache-mode>ALL</shared-cache-mode>

					

			

	Configure Infinispan for a native Hibernate application in JBoss EAP 6

				This is how you specify the same configuration for a native Hibernate application using Infinispan with JBoss EAP 6:

<property name="hibernate.cache.region.factory_class"
 value="org.jboss.as.jpa.hibernate4.infinispan.InfinispanRegionFactory"/>
<property name="hibernate.cache.infinispan.cachemanager"
 value="java:jboss/infinispan/container/hibernate"/>
<property name="hibernate.transaction.manager_lookup_class"
 value="org.hibernate.transaction.JBossTransactionManagerLookup"/>
<property name="hibernate.cache.use_second_level_cache" value="true"/>

				 You must also add the following dependencies to the MANIFEST.MF file:

Manifest-Version: 1.0
Dependencies: org.infinispan, org.hibernate

			

		For more information about Hibernate cache properties, see: Section 3.2.2.11, “Hibernate Cache Properties”.
	

		Report a bug
	

 ⁠3.2.2.11. Hibernate Cache Properties

 ⁠Table 3.6. Properties
	
						Property Name
						
						Description
					
	
						hibernate.cache.region.factory_class
						
						
							The classname of a custom CacheProvider.
						

					
	
						hibernate.cache.use_minimal_puts
						
						
							Boolean. Optimizes second-level cache operation to minimize writes, at the cost of more frequent reads. This setting is most useful for clustered caches and, in Hibernate3, is enabled by default for clustered cache implementations.
						

					
	
						hibernate.cache.use_query_cache
						
						
							Boolean. Enables the query cache. Individual queries still have to be set cacheable.
						

					
	
						hibernate.cache.use_second_level_cache
						
						
							Boolean. Used to completely disable the second level cache, which is enabled by default for classes that specify a <cache> mapping.
						

					
	
						hibernate.cache.query_cache_factory
						
						
							The classname of a custom QueryCache interface. The default value is the built-in StandardQueryCache.
						

					
	
						hibernate.cache.region_prefix
						
						
							A prefix to use for second-level cache region names.
						

					
	
						hibernate.cache.use_structured_entries
						
						
							Boolean. Forces Hibernate to store data in the second-level cache in a more human-friendly format.
						

					
	
						hibernate.cache.default_cache_concurrency_strategy
						
						
							Setting used to give the name of the default org.hibernate.annotations.CacheConcurrencyStrategy to use when either @Cacheable or @Cache is used. @Cache(strategy="..") is used to override this default.
						

					

		Report a bug
	

 ⁠3.2.2.12. Migrate to Hibernate Validator 4

Summary

			Hibernate Validator 4.x is a completely new code base that implements JSR 303 - Bean Validation. The migration process from Validator 3.x to 4.x is fairly straightforward, but there are a few changes you must make when you migrate your application.
		

 ⁠Procedure 3.17. You may need to perform one or more of the following tasks
	Access the default ValidatorFactory

				JBoss EAP 6 binds a default ValidatorFactory to the JNDI context under the name java:comp/ValidatorFactory.
			

	Understand life cycle triggered validation

				When used in combination with Hibernate Core 4, life-cycle based validation is automatically enabled by Hibernate Core.
			
	
						Validation occurs on entity INSERT, UPDATE, and DELETE operations.
					

	
						You can configure the groups to be validated by event type using the following properties:
							
									javax.persistence.validation.group.pre-persist,
								

	
									javax.persistence.validation.group.pre-update, and
								

	
									javax.persistence.validation.group.pre-remove.
								

						 The values of these properties are the comma-separated, fully qualified class names of the groups to validate.
					

						Validation groups are a new feature of the Bean Validation specification. If you do not want to take advantage of this new feature, no changes are required when you migrate to Hibernate Validator 4.
					

	
						You can disable life-cycle based validation by setting the javax.persistence.validation.mode property to none. Other valid values for this property are auto (the default), callback and ddl.
					

	Configure your application to use manual validation

			
	
						If you want to manually control validation, you can create a Validator in either of the following ways:
							
									Create a Validator instance from the ValidatorFactory using the getValidator() method.
								

	
									Inject Validator instances in your EJB, CDI bean or any other Java EE injectable resource.
								

					

	
						You can use the ValidatorContext returned by the ValidatorFactory.usingContext() to customize your Validator instance. Using this API you can configure a custom MessageInterpolator, TraverableResolver and ConstraintValidatorFactory. These interfaces are specified in the Bean Validation specification and are new to Hibernate Validator 4.
					

	Modify code to use the new Bean Validation constraints

				The new Bean level validation constraints require code changes when you migrate to Hibernate Validator 4.
			
	
						To upgrade to Hibernate Validator 4, you must use the constraints in the following packages:
							
									javax.validation.constraints
								

	
									org.hibernate.validator.constraints
								

					

	
						All constraints that existed in Hibernate Validator 3 are still available in Hibernate Validator 4. To use them, you need to import the specified class, and in some cases, change the name or type of the constraint parameter.
					

	Use custom constraints

				In Hibernate Validator 3, a custom constraint needed to implement the org.hibernate.validator.Validator interface. In Hibernate Validator 4, you need to implement the javax.validation.ConstraintValidator interface. This interface contains the same initialize() and isValid() methods as the previous interface, however, the method signature has changed. In addition, DDL alteration is no longer supported in Hibernate Validator 4.
			

		Report a bug
	

 ⁠3.2.3. JSF changes

 ⁠3.2.3.1. Enable Applications To Use Older Versions of JSF

Summary

			If your application uses an older version of JSF, you do not need to upgrade to JSF 2.0. Instead, you can create a jboss-deployment-structure.xml file to request that JBoss EAP 6 use JSF 1.2 rather than JSF 2.0 with your application deployment. This JBoss specific deployment descriptor is used to control class loading and is placed in the META-INF/ or WEB-INF/ directory of your WAR, or in the META-INF/ directory of your EAR.
		

		The following is an example of a jboss-deployment-structure.xml file that adds a dependency for the JSF 1.2 module and excludes or prevents the automatic loading of the JSF 2.0 module.

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>
 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 <module name="com.sun.jsf-impl" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 <module name="com.sun.jsf-impl" slot="1.2"/>
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

	

		Report a bug
	

 ⁠3.2.4. Web Services Changes

 ⁠3.2.4.1. Web Services Changes

		JBoss EAP 6 includes support for deploying JAX-WS Web Service endpoints. This support is provided by JBossWS. For more information about Web Services, refer to the chapter entitled JAX-WS Web Services in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
	

		JBossWS 4 includes the following changes that may impact your migration.
	
	JBossWS API Project Changes
	
					SPI and Common components were refactored in JBossWS 4. The following table lists API and packaging changes may affect your application migration.
				

					
 ⁠Table 3.7. Size Log Handler Properties
	
										Old JAR
										
										Old Package
										
										New JAR
										
										New Package
									
	
										JBossWS SPI
										
										org.jboss.wsf.spi.annotation.*
										
										JBossWS API
										
										org.jboss.ws.api.annotation.*
									
	
										JBossWS SPI
										
										org.jboss.wsf.spi.binding.*
										
										JBossWS API
										
										org.jboss.ws.api.binding.*
									
	
										JBossWS SPI
										
										org.jboss.wsf.spi.management.recording.*
										
										JBossWS API
										
										org.jboss.ws.api.monitoring.*
									
	
										JBossWS SPI
										
										org.jboss.wsf.spi.tools.*
										
										JBossWS API
										
										org.jboss.ws.api.tools.*
									
	
										JBossWS SPI
										
										org.jboss.wsf.spi.tools.ant.*
										
										JBossWS API
										
										org.jboss.ws.tools.ant.*
									
	
										JBossWS SPI
										
										org.jboss.wsf.spi.tools.cmd.*
										
										JBossWS API
										
										org.jboss.ws.tools.cmd.*
									
	
										JBossWS SPI
										
										org.jboss.wsf.spi.util.ServiceLoader
										
										JBossWS API
										
										org.jboss.ws.api.util.ServiceLoader
									
	
										JBossWS Common
										
										org.jboss.wsf.common.*
										
										JBossWS API
										
										org.jboss.ws.common.*
									
	
										JBossWS Common
										
										org.jboss.wsf.common.handler.*
										
										JBossWS API
										
										org.jboss.ws.api.handler.*
									
	
										JBossWS Common
										
										org.jboss.wsf.common.addressing.*
										
										JBossWS API
										
										org.jboss.ws.api.addressing.*
									
	
										JBossWS Common
										
										org.jboss.wsf.common.DOMUtils
										
										JBossWS API
										
										org.jboss.ws.api.util.DOMUtils
									
	
										JBossWS Native
										
										org.jboss.ws.annotation.EndpointConfig
										
										JBossWS API
										
										org.jboss.ws.api.annotation.EndpointConfig
									

				

	@WebContext Annotation
	
					In JBossWS 3.4.x, this annotation was packaged as org.jboss.wsf.spi.annotation.WebContext in the JBossWS SPI project. In JBossWS 4.0, this annotation was moved to org.jboss.ws.api.annotation.WebContext in the JBossWS API project. If your application includes the obsolete dependency, you must replace the imports and dependencies in your application source code and compile it against the new JBossWS API JAR.
				

					There is also a change to an attribute that is not backward compatible. The String[] virtualHosts attribute has been changed to String virtualHost. In JBoss EAP 6, you can specify only one virtual host per deployment. If multiple webservices use the @WebContext annotation, the virtualHost value must be identical for all endpoints defined in the deployment archive.
				

	Endpoint Configuration
	
					JBossWS 4.0 provides integration of the JBoss Web Services stack with most of the Apache CXF project modules. The integration layer allows the use of standard webservices APIs, including JAX-WS. It also allows the use of Apache CFX advanced features on top of the JBoss EAP 6 container without requiring complex configuration or setup.
				

					The webservice subsystem in the domain configuration of JBoss EAP 6 includes predefined endpoint configurations. You can also define your own additional endpoint configurations. The @org.jboss.ws.api.annotation.EndpointConfig annotation is used to reference a given endpoint configuration.
				

					For more information on how to configure webservice endpoints in the JBoss server, refer to the chapter entitled JAX-WS Web Services in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
				

	jboss-webservices.xml Deployment Descriptor
	
					JBossWS 4.0 introduces a new deployment descriptor to configure web services. The jboss-webservices.xml file provides additional information for the given deployment and partially replaces the obsolete jboss.xml file.
				

					For EJB webservice deployments, the expected location of the jboss-webservices.xml descriptor file is in the META-INF/ directory. For POJO and EJB webservice endpoints bundled in WAR file, the expected location of the jboss-webservices.xml file is in the WEB-INF/ directory.
				

					The following is an example of a jboss-webservices.xml descriptor file and a table describing the elements.

<webservices>
 <context-root>foo<context-root>
 <config-name>Standard WSSecurity Endpoint</config-name>
 <config-file>META-INF/custom.xml</config-file>
 <property>
 <name>prop.name</name>
 <value>prop.value</value>
 </property>
 <port-component>
 <ejb-name>TestService</ejb-name>
 <port-component-name>TestServicePort</port-component-name>
 <port-component-uri>/*</port-component-uri>
 <auth-method>BASIC</auth-method>
 <transport-guarantee>NONE</transport-guarantee>
 <secure-wsdl-access>true</secure-wsdl-access>
 </port-component>
 <webservice-description>
 <webservice-description-name>TestService</webservice-description-name>
 <wsdl-publish-location>file:///bar/foo.wsdl</wsdl-publish-location>
 </webservice-description>
</webservices>

					
 ⁠Table 3.8. jboss-webservice.xml File Element Description
	
										Element Name
										
										Description
									
	
										
											context-root
										

										
										
											Used to customize the context root of the webservices deployment.
										

									
	
										
											config-name
										

										
											config-file
										

										
										
											Used to associate an endpoint deployment with a given endpoint configuration. Endpoint configurations are specified in the referenced configuration file or in the webservices subsystem of the domain configuration.
										

									
	
										
											property
										

										
										
											Used to set up simple property name value pairs to configure the webservice stack behavior.
										

									
	
										
											port-component
										

										
										
											Used to customize the EJB endpoint target URI or to configure security related properties.
										

									
	
										
											webservice-description
										

										
										
											Used to customize or override the webservice WSDL published location.
										

									

				

		Report a bug
	

 ⁠3.2.5. JAX-RS and RESTEasy Changes

 ⁠3.2.5.1. Configure JAX-RS and RESTEasy Changes

		JBoss EAP 6 automatically sets up RESTEasy, so you do not need to configure it yourself. Therefore, you should remove all of the existing RESTEasy configuration from your web.xml file and replace it with one of the following three options:
	
	
				Subclass javax.ws.rs.core.Application and use the @ApplicationPath annotation.
			

				This is the easiest option and does not require any xml configuration. Simply subclass javax.ws.rs.core.Application in your application and annotate it with the path where you want to make your JAX-RS classes available. For example:
			

				

@ApplicationPath("/mypath")
public class MyApplication extends Application {
}

			

				In the above example, your JAX-RS resources are available in the path /MY_WEB_APP_CONTEXT/mypath/.
			
Note

					Note the path should be specified as /mypath, not /mypath/*. There should be no trailing forward-slash or asterisk.
				

	
				Subclass javax.ws.rs.core.Application and use the web.xml file to set up the JAX-RS mapping.
			

				If you do not wish to use the @ApplicationPath annotation, you still need to subclass javax.ws.rs.core.Application. You then set up the JAX-RS mapping in the web.xml file. For example:
			

				

public class MyApplication extends Application {
}

			

				
<servlet-mapping>
 <servlet-name>com.acme.MyApplication</servlet-name>
 <url-pattern>/hello/*</url-pattern>
</servlet-mapping>

			

				In the above example, your JAX-RS resources are available in the path /MY_WEB_APP_CONTEXT/hello.
			
Note

					You can also use this approach to override an application path that was set using the @ApplicationPath annotation.
				

	
				Modify the web.xml file.
			

				If you do not want to subclass Application, you can set up the JAX-RS mapping in the web.xml file as follows:
			

				
<servlet-mapping>
 <servlet-name>javax.ws.rs.core.Application</servlet-name>
 <url-pattern>/hello/*</url-pattern>
</servlet-mapping>

			

				In the above example, your JAX-RS resources are available in the path /MY_WEB_APP_CONTEXT/hello.
			
Note

					When you choose this option, you only need to add the mapping. You do not need to add the corresponding servlet. The server is responsible for adding the corresponding servlet automatically.
				

		Report a bug
	

 ⁠3.2.6. LDAP Security Realm Changes

 ⁠3.2.6.1. Configure LDAP Security Realm Changes

		In JBoss EAP 5, the LDAP security realm was configured in an <application-policy> element in the login-config.xml file. In JBoss EAP 6, the LDAP security realm is configured in the <security-domain> element in the server configuration file. For a standalone server, this is the standalone/configuration/standalone.xml file. If you are running your server in a managed domain, this is the domain/configuration/domain.xml file.
	

		The following is an example of LDAP security realm configuration in the login-config.xml file in JBoss EAP 5:
<application-policy name="mcp_ldap_domain">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.LdapExtLoginModule" flag="required">
 <module-option name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</module-option>
 <module-option name="java.naming.security.authentication">simple</module-option>

 </login-module>
 </authentication>
</application-policy>

	

		This is an example of the LDAP configuration in the server configuration file in JBoss EAP 6:
<subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-domains>
 <security-domain name="mcp_ldap_domain" cache-type="default">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.LdapLoginModule" flag="required">
 <module-option name="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.security.authentication" value="simple"/>
 ...
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

	
Note

			The XML parser changed in JBoss EAP 6. In JBoss EAP 5, you specified the module options as element content like this:
<module-option name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</module-option>

			 Now, the module options must be specified as element attributes with "value=" as follows:
<module-option name="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory"/>

		

		Report a bug
	

 ⁠3.2.7. HornetQ Changes

 ⁠3.2.7.1. About HornetQ and NFS

		In most cases, NFS is not an appropriate method of storing JMS data for use with HornetQ, when using NIO as the journal type, due to the way the synchronous locking mechanism works. However, NFS can be used in certain circumstances, only on Red Hat Enterprise Linux servers. This is due to the NFS implementation used by Red Hat Enterprise Linux.
	

		The Red Hat Enterprise Linux NFS implementation supports both direct I/O (opening files with the O_DIRECT flag set), and kernel based asynchronous I/O. With both of these features present, it is possible to use NFS as a shared storage option, under strict configuration rules:
	
	
				The Red Hat Enterprise Linux NFS client cache must be disabled.
			

Important

			The server log should be checked after JBoss EAP 6 is started, to ensure that the native library successfully loaded, and that the ASYNCIO journal type is being used. If the native library fails to load, HornetQ will gracefully fail to the NIO journal type, and this will be stated in the server log.
		

Important

			The native library that implements asynchronous I/O requires that libaio is installed on the Red Hat Enterprise Linux system where JBoss EAP 6 is running.
		

		Report a bug
	

 ⁠3.2.7.2. Configure a JMS Bridge to Migrate Existing JMS Messages to JBoss EAP 6

		JBoss EAP 6 replaced JBoss Messaging with HornetQ as the default JMS implementation. The easiest way to migrate JMS messages from one environment to the other is to use a JMS bridge. The function of a JMS bridge is to consume messages from a source JMS destination, and send them to a target JMS destination. You can configure and deploy a JMS bridge to a JBoss EAP 5.x server or to JBoss EAP 6.1 or later server.
	

		For details on how to migrate JMS messages from JBoss EAP 5.x to JBoss EAP 6.x, see: Section 3.2.7.3, “Create a JMS Bridge”
	

		Report a bug
	

 ⁠3.2.7.3. Create a JMS Bridge

Summary

			A JMS bridge consumes messages from a source JMS queue or topic and sends them to a target JMS queue or topic, which is typically on a different server. It can be used to bridge messages between any JMS servers, as long as they are JMS 1.1 compliant. The source and destination JMS resources are looked up using JNDI and the client classes for the JNDI lookup must be bundled in a module. The module name is then declared in the JMS bridge configuration.
		

 ⁠Procedure 3.18. Create a JMS Bridge

			This procedure demonstrates how to configure a JMS bridge to migrate messages from a JBoss EAP 5.x server to a JBoss EAP 6 server.
		
	Configure the Bridge on the Source JBoss EAP 5.x Server

				To avoid conflicts in classes between releases, you must follow these steps to configure the JMS bridge on JBoss EAP 5.x. The names of the SAR directory and bridge are arbitrary and can be changed if you prefer.
			
	
						Create a subdirectory in the JBoss EAP 5 deployment directory to contain the SAR, for example: EAP5_HOME/server/PROFILE_NAME/deploy/myBridge.sar/.
					

	
						Create a subdirectory named META-INF in EAP5_HOME/server/PROFILE_NAME/deploy/myBridge.sar/.
					

	
						Create a jboss-service.xml file in the EAP5_HOME/server/PROFILE_NAME/deploy/myBridge.sar/META-INF/ directory. It should contain information similar to the following example.
					

						
<server>
 <loader-repository>
 com.example:archive=unique-archive-name
 <loader-repository-config>java2ParentDelegation=false</loader-repository-config>
 </loader-repository>

 <!-- JBoss EAP 6 JMS Provider -->
 <mbean code="org.jboss.jms.jndi.JMSProviderLoader" name="jboss.messaging:service=JMSProviderLoader,name=EnterpriseApplicationPlatform6JMSProvider">
 <attribute name="ProviderName">EnterpriseApplicationPlatform6JMSProvider</attribute>
 <attribute name="ProviderAdapterClass">org.jboss.jms.jndi.JNDIProviderAdapter</attribute>
 <attribute name="FactoryRef">jms/RemoteConnectionFactory</attribute>
 <attribute name="QueueFactoryRef">jms/RemoteConnectionFactory</attribute>
 <attribute name="TopicFactoryRef">jms/RemoteConnectionFactory</attribute>
 <attribute name="Properties">
 java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory
 java.naming.provider.url=remote://EnterpriseApplicationPlatform6host:4447
 java.naming.security.principal=jbossuser
 java.naming.security.credentials=jbosspass
 </attribute>
 </mbean>

 <mbean code="org.jboss.jms.server.bridge.BridgeService" name="jboss.jms:service=Bridge,name=MyBridgeName" xmbean-dd="xmdesc/Bridge-xmbean.xml">
 <depends optional-attribute-name="SourceProviderLoader">jboss.messaging:service=JMSProviderLoader,name=JMSProvider</depends>
 <depends optional-attribute-name="TargetProviderLoader">jboss.messaging:service=JMSProviderLoader,name=EnterpriseApplicationPlatform6JMSProvider</depends>
 <attribute name="SourceDestinationLookup">/queue/A</attribute>
 <attribute name="TargetDestinationLookup">jms/queue/test</attribute>
 <attribute name="QualityOfServiceMode">1</attribute>
 <attribute name="MaxBatchSize">1</attribute>
 <attribute name="MaxBatchTime">-1</attribute>
 <attribute name="FailureRetryInterval">60000</attribute>
 <attribute name="MaxRetries">-1</attribute>
 <attribute name="AddMessageIDInHeader">false</attribute>
 <attribute name="TargetUsername">jbossuser</attribute>
 <attribute name="TargetPassword">jbosspass</attribute>
 </mbean>
</server>

					
Note

							The load-repository element is present to ensure the SAR has an isolated classloader. Also note both the JNDI look-up and the bridge "target" include security credentials for user "jbossuser" with password "jbosspass". This is because JBoss EAP 6 is secured by default. The user named "jbossuser" with password "jbosspass" was created in the ApplicationRealm with the guest role using the EAP_HOME/bin/add_user.sh script.
						

	
						Copy the following JARs from the EAP_HOME/modules/system/layers/base/ directory into the EAP5_HOME/server/PROFILE_NAME/deploy/myBridge.sar/ directory. Replace each VERSION_NUMBER with the actual version number in your JBoss EAP 6 distribution.
							
									org/hornetq/main/hornetq-core-VERSION_NUMBER.jar
								

	
									org/hornetq/main/hornetq-jms-VERSION_NUMBER.jar
								

	
									org/jboss/ejb-client/main/jboss-ejb-client-VERSION_NUMBER.jar
								

	
									org/jboss/logging/main/jboss-logging-VERSION_NUMBER.jar
								

	
									org/jboss/logmanager/main/jboss-logmanager-VERSION_NUMBER.jar
								

	
									org/jboss/marshalling/main/jboss-marshalling-VERSION_NUMBER.jar
								

	
									org/jboss/marshalling/river/main/jboss-marshalling-river-VERSION_NUMBER.jar
								

	
									org/jboss/remote-naming/main/jboss-remote-naming-VERSION_NUMBER.jar
								

	
									org/jboss/remoting3/main/jboss-remoting-VERSION_NUMBER.jar
								

	
									org/jboss/sasl/main/jboss-sasl-VERSION_NUMBER.jar
								

	
									org/jboss/netty/main/netty-VERSION_NUMBER.jar
								

	
									org/jboss/remoting3/remote-jmx/main/remoting-jmx-VERSION_NUMBER.jar
								

	
									org/jboss/xnio/main/xnio-api-VERSION_NUMBER.jar
								

	
									org/jboss/xnio/nio/main.xnio-nio-VERSION_NUMBER.jar
								

					
Note

							Do not simply copy the EAP_HOME/bin/client/jboss-client.jar because the javax API classes will conflict with those in JBoss EAP 5.x.
						

	Configure the Bridge on the Destination JBoss EAP 6 Server

				In JBoss EAP 6.1 and later, the JMS bridge can be used to bridge messages from any JMS 1.1 compliant server. Because the source and target JMS resources are looked up using JNDI, the JNDI lookup classes of the source messaging provider, or message broker, must be bundled in a JBoss Module. The following steps use the fictitious 'MyCustomMQ' message broker as an example.
			
	
						Create the JBoss module for the messaging provider.
					
	
								Create a directory structure under EAP_HOME/modules/system/layers/base/ for the new module. The main/ subdirectory will contain the client JARs and module.xml file. The following is an example of the directory structure created for the MyCustomMQ messaging provider: EAP_HOME/modules/system/layers/base/org/mycustommq/main/
							

	
								In the main/ subdirectory, create a module.xml file containing the module definition for the messaging provider. The following is an example of the module.xml created for the MyCustomMQ messaging provider.

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.1" name="org.mycustommq">
 <properties>
 <property name="jboss.api" value="private"/>
 </properties>

 <resources>
 <!-- Insert resources required to connect to the source or target -->
 <resource-root path="mycustommq-1.2.3.jar" />
 <resource-root path="mylogapi-0.0.1.jar" />
 </resources>

 <dependencies>
 <!-- Add the dependencies required by JMS Bridge code -->
 <module name="javax.api" />
 <module name="javax.jms.api" />
 <module name="javax.transaction.api"/>
 <!-- Add a dependency on the org.hornetq module since we send -->
 <!-- messages tothe HornetQ server embedded in the local EAP instance -->
 <module name="org.hornetq" />
 </dependencies>
</module>

							

	
								Copy the messaging provider JARs required for the JNDI lookup of the source resources to the module's main/ subdirectory. The directory structure for the MyCustomMQ module should now look like the following.

modules/
`-- system
 `-- layers
 `-- base
 `-- org
 `-- mycustommq
 `-- main
 |-- mycustommq-1.2.3.jar
 |-- mylogapi-0.0.1.jar
 |-- module.xml

							

	
						Configure the JMS bridge in the messaging subsystem of the JBoss EAP 6 server.
					
	
								Before you begin, stop the server and back up the current server configuration files. If you are running a standalone server, this is the EAP_HOME/standalone/configuration/standalone-full-ha.xml file. If you are running a managed domain, back up both the EAP_HOME/domain/configuration/domain.xml and the EAP_HOME/domain/configuration/host.xml files.
							

	
								Add the jms-bridge element to the messaging subsystem in the server configuration file. The source and target elements provide the names of the JMS resources used for JNDI lookups. If user and password credentials are specified, they are passed as arguments when JMS connection is created.
							

								The following is an example of the jms-bridge element configured for the MyCustomMQ messaging provider:

<subsystem xmlns="urn:jboss:domain:messaging:1.3">
 ...
 <jms-bridge name="myBridge" module="org.mycustommq">
 <source>
 <connection-factory name="ConnectionFactory"/>
 <destination name="sourceQ"/>
 <user>user1</user>
 <password>pwd1</password>
 <context>
 <property key="java.naming.factory.initial" value="org.mycustommq.jndi.MyCustomMQInitialContextFactory"/>
 <property key="java.naming.provider.url" value="tcp://127.0.0.1:9292"/>
 </context>
 </source>
 <target>
 <connection-factory name="java:/ConnectionFactory"/>
 <destination name="/jms/targetQ"/>
 </target>
 <quality-of-service>DUPLICATES_OK</quality-of-service>
 <failure-retry-interval>500</failure-retry-interval>
 <max-retries>1</max-retries>
 <max-batch-size>500</max-batch-size>
 <max-batch-time>500</max-batch-time>
 <add-messageID-in-header>true</add-messageID-in-header>
 </jms-bridge>
</subsystem>

								 In the above example, the JNDI properties are defined in the context element for the source. If the context element is omitted, as in the target example above, the JMS resources are looked up in the local instance.
							

	

		Report a bug
	

 ⁠3.2.7.4. Migrate Your Application to Use HornetQ as the JMS Provider

		JBoss Messaging is no longer included in JBoss EAP 6. If your application uses JBoss Messaging as the messaging provider, you need to replace the JBoss Messaging code with HornetQ.
	

 ⁠Procedure 3.19. Before you start
	
				Shut down the client and server.
			

	
				Make a backup copy of any JBoss Messaging data. The message data is stored in a database in tables prefixed with JBM_.
			

 ⁠Procedure 3.20. Change your provider to HornetQ
	Transfer configurations

				Transfer the existing JBoss Messaging configurations to the JBoss EAP 6 configuration. The following configurations can be found in deployment descriptors located on the JBoss Messaging server:
			
	
						Connection Factories Service Configuration
					

						This configuration describes the JMS connection factories deployed with the JBoss Messaging server. JBoss Messaging configures connection factories in a file named connection-factories-service.xml which is located in the deployment directory of the application server.
					

	
						Destination Configuration
					

						This configuration describes JMS queues and topics deployed with JBoss Messaging server. By default, JBoss Messaging configures destinations in a file named destinations-service.xml which is located in the deployment directory of the application server.
					

	
						Message Bridge Service Configuration
					

						This configuration includes bridge services deployed with JBoss Messaging server. No bridges are deployed by default so the name of the deployment file varies depending on your JBoss Messaging installation.
					

	Modify your application code

				If the application code uses standard JMS, no code changes are required. However, if the application will be connecting to a cluster, you must carefully review the HornetQ documentation on clustering semantics. Clustering is outside the scope of the JMS specification and HornetQ and JBoss Messaging have taken substantially different approaches in their respective implementations of clustering functionality.
			

				If the application uses features specific to JBoss Messaging, you must modify the code to use the equivalent features available in HornetQ.
			

				For more information on how to configure messaging with HornetQ, see: Section 3.2.7.5, “Configure Messaging with HornetQ”
			

	Migrate existing messages

				Move any messages in the JBoss Messaging database to the HornetQ journal using a JMS bridge. Instructions for configuring the JMS bridge can be found here: Section 3.2.7.2, “Configure a JMS Bridge to Migrate Existing JMS Messages to JBoss EAP 6”.
			

		Report a bug
	

 ⁠3.2.7.5. Configure Messaging with HornetQ

		The recommended method of configuring messaging in JBoss EAP 6 is in either the Management Console or Management CLI. You can make persistent changes with either of these management tools without needing to manually edit the standalone.xml or domain.xml configuration files. It is useful however to familiarize yourself with the messaging components of the default configuration files, where documentation examples using management tools give configuration file snippets for reference.
	

		Report a bug
	

 ⁠3.2.8. Clustering Changes

 ⁠3.2.8.1. Make Changes to Your Application for Clustering

	Start JBoss EAP 6 with clustering enabled

				To enable clustering in JBoss EAP 5.x, you needed to start your server instances using the all profile or some derivation of it, like this:
			

				
$ EAP5_HOME/bin/run.sh -c all

			

				In JBoss EAP 6, the method for enabling clustering depends on whether the servers are standalone or running in a managed domain.
			
	Enable clustering for servers running in a managed domain

						To enable clustering for servers started using the domain controller, update your domain.xml and designate a server group to use the ha profile and ha-sockets socket binding group. For example:
<server-groups>
 <server-group name="main-server-group" profile="ha">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="ha-sockets"/>
 </server-group>
</server-group>

					

	Enable clustering for standalone servers

						To enable clustering for standalone servers, start the server using the appropriate configuration file as follows:
$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -Djboss.node.name=UNIQUE_NODE_NAME

					

	Specify the bind address

				In JBoss EAP 5.x, you would typically indicate the bind address used for clustering using the -b command line argument like this:
$ EAP5_HOME/bin/run.sh -c all -b 192.168.0.2

			

				JBoss EAP 6 binds sockets to the IP addresses and interfaces contained in the <interfaces> elements in standalone.xml, domain.xml and host.xml files. The standard configurations that ship with JBoss EAP include two interface configurations:
<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
</interfaces>

				 These interface configurations use the values of the system properties jboss.bind.address.management and jboss.bind.address. If these system properties are not set, the default 127.0.0.1 is used for each value.
			

				You can also specify the bind address as a command line argument when you start the server or you can explicitly define it within the JBoss EAP 6 server configuration file.
			

					
						Specify the bind argument on the command line when you start the JBoss EAP standalone server.
					

						The following is an example of how to specify the bind address on the command line for a standalone server:
EAP_HOME/bin/standalone.sh -Djboss.bind.address=127.0.0.1

						 Note

								You can also use the -b argument, which is a shortcut for -Djboss.bind.address=127.0.0.1:
EAP_HOME/bin/standalone.sh -b=127.0.0.1

							

								The JBoss EAP 5 syntax format is also still supported:
EAP_HOME/bin/standalone.sh -b 127.0.0.1

								 Note that the -b argument only changes the public interface. It does not affect the management interface.
							

					

				 	
						Specify the bind address in the server configuration file.
					

						For servers running in a managed domain, specify the bind addresses in the domain/configuration/host.xml file. For standalone servers, specify the bind addresses in the standalone-ha.xml file.
					

						In the following example, the public interface is specified as the default interface for all sockets within the ha-sockets socket binding group.
<interfaces>
 <interface name="management">
 <inet-address value="192.168.0.2"/>
 </interface>
 <interface name="public">
 <inet-address value="192.168.0.2"/>
 </interface>
</interfaces>

						

<socket-binding-groups>
 <socket-binding-group name="ha-sockets" default-interface="public">
 <!-- ... -->
 </socket-binding-group>
</socket-binding-groups>

						 Note

								If you specify the bind address as a hard-coded value rather than a system property in the configuration file, you can not override it with a command line argument.
							

					

			

	Configure jvmRoute to support mod_jk and mod_proxy

				In JBoss EAP 5, the web server jvmRoute was configured using a property in the server.xml file. In JBoss EAP 6, the jvmRoute attribute is configured in the web subsystem of the server configuration file using the instance-id attribute as follows:

<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-host" native="false" instance-id="{JVM_ROUTE_SERVER}">

				 The {JVM_ROUTE_SERVER} above should be replaced by the jvmRoute server ID.
			

				The instance-id can also be set using the Management Console.
			

	Specify the multicast address and port

				In JBoss EAP 5.x, you could specify the multicast address and port used for intra-cluster communication using the command line arguments -u and -m, respectively, like this:
$ EAP5_HOME/bin/run.sh -c all -u 228.11.11.11 -m 45688

			

				In JBoss EAP 6, the multicast address and port used for intra-cluster communication are defined by the socket-binding referenced by the relevant JGroups protocol stack as follows:
<subsystem xmlns="urn:jboss:domain:jgroups:1.0" default-stack="udp">
 <stack name="udp">
 <transport type="UDP" socket-binding="jgroups-udp"/>
 <!-- ... -->
 </stack>
</subsystem>

				

<socket-binding-groups>
 <socket-binding-group name="ha-sockets" default-interface="public">
 <!-- ... -->
 <socket-binding name="jgroups-udp" port="55200" multicast-address="228.11.11.11" multicast-port="45688"/>
 <!-- ... -->
 </socket-binding-group>
</socket-binding-groups>

				 If you prefer to specify the multicast address and port in the command line, you can define the multicast address and ports as system properties and then use those properties on the command line when you start the server. In the following example, jboss.mcast.addr is the variable name for the multicast address and jboss.mcast.port is the variable name for the port.

<socket-binding name="jgroups-udp" port="55200"
 multicast-address="${jboss.mcast.addr:230.0.0.4}" multicast-port="${jboss.mcast.port:45688}"/>

				 You can then start your server using the following command line arguments:
$ EAP_HOME/bin/domain.sh -Djboss.mcast.addr=228.11.11.11 -Djboss.mcast.port=45688

			

	Use an alternate protocol stack

				In JBoss EAP 5.x, you could manipulate the default protocol stack used for all clustering services using the jboss.default.jgroups.stack system property.
$ EAP5_HOME/bin/run.sh -c all -Djboss.default.jgroups.stack=tcp

			

				In JBoss EAP 6, the default protocol stack is defined by the JGroups subsystem within domain.xml or standalone-ha.xml:

<subsystem xmlns="urn:jboss:domain:jgroups:1.0" default-stack="udp">
 <stack name="udp">
 <!-- ... -->
 </stack>
</subsystem>

			

	Replace Buddy Replication

				JBoss EAP 5.x used JBoss Cache Buddy Replication to suppress replication of data to all instances in a cluster.
			

				In JBoss EAP 6, Buddy Replication has been replaced by Infinispan's distributed cache, also known as DIST mode. Distribution is a powerful clustering mode which allows Infinispan to scale linearly as more servers are added to the cluster. The following is an example of how to configure the server to use the DIST caching mode.
			
	
						Open a command line and start the server with either the HA or Full Profile, for example:
EAP_HOME/bin/standalone.sh -c standalone-ha.xml

					

	
						Open another command line and connect to the Management CLI.
					

							
								For Linux, enter the following at the command line:
							

$ EAP_HOME/bin/jboss-cli.sh --connect

						 	
								For Windows, enter the following at a command line:
							

C:\>EAP_HOME\bin\jboss-cli.bat --connect

					

						You should see the following response:
Connected to standalone controller at localhost:9999

					

	
						Issue the following commands:

/subsystem=infinispan/cache-container=web/:write-attribute(name=default-cache,value=dist)
/subsystem=infinispan/cache-container=web/distributed-cache=dist/:write-attribute(name=owners,value=3)
:reload

					

						You should see the following response after each command:

"outcome" => "success"

					

						These commands modify the dist <distributed-cache> element in the web <cache-container> configuration in the infinispan subsystem of the standalone-ha.xml file as follows:

<cache-container name="web" aliases="standard-session-cache" default-cache="dist" module="org.jboss.as.clustering.web.infinispan">
 <transport lock-timeout="60000"/>
 <replicated-cache name="repl" mode="ASYNC" batching="true">
 <file-store/>
 </replicated-cache>
 <replicated-cache name="sso" mode="SYNC" batching="true"/>
 <distributed-cache name="dist" owners="3" l1-lifespan="0" mode="ASYNC" batching="true">
 <file-store/>
 </distributed-cache>
</cache-container>

						 For more information, refer to the chapter entitled Clustering in Web Applications in the Development Guide for JBoss EAP 6 located on the Customer Portal at https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
					

		Report a bug
	

 ⁠3.2.8.2. Implement an HA Singleton

Summary

			The following procedure demonstrates how to deploy of a Service that is wrapped with the SingletonService decorator and used as a cluster-wide singleton service. The service activates a scheduled timer, which is started only once in the cluster.
		

 ⁠Procedure 3.21. Implement an HA Singleton Service
	Write the HA singleton service application.

				The following is a simple example of a Service that is wrapped with the SingletonService decorator to be deployed as a singleton service. A complete example can be found in the cluster-ha-singleton quickstart that ships with Red Hat JBoss Enterprise Application Platform 6. This quickstart contains all the instructions to build and deploy the application.
			
	Create a service.

						The following listing is an example of a service:

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import java.util.Date;
import java.util.concurrent.atomic.AtomicBoolean;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import org.jboss.logging.Logger;
import org.jboss.msc.service.Service;
import org.jboss.msc.service.ServiceName;
import org.jboss.msc.service.StartContext;
import org.jboss.msc.service.StartException;
import org.jboss.msc.service.StopContext;

/**
 * @author Wolf-Dieter Fink
 */
public class HATimerService implements Service<String> {
 private static final Logger LOGGER = Logger.getLogger(HATimerService.class);
 public static final ServiceName SINGLETON_SERVICE_NAME = ServiceName.JBOSS.append("quickstart", "ha", "singleton", "timer");

 /**
 * A flag whether the service is started.
 */
 private final AtomicBoolean started = new AtomicBoolean(false);

 /**
 * @return the name of the server node
 */
 public String getValue() throws IllegalStateException, IllegalArgumentException {
 LOGGER.infof("%s is %s at %s", HATimerService.class.getSimpleName(), (started.get() ? "started" : "not started"), System.getProperty("jboss.node.name"));
 return "";
 }

 public void start(StartContext arg0) throws StartException {
 if (!started.compareAndSet(false, true)) {
 throw new StartException("The service is still started!");
 }
 LOGGER.info("Start HASingleton timer service '" + this.getClass().getName() + "'");

 final String node = System.getProperty("jboss.node.name");
 try {
 InitialContext ic = new InitialContext();
 ((Scheduler) ic.lookup("global/jboss-cluster-ha-singleton-service/SchedulerBean!org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.Scheduler")).initialize("HASingleton timer @" + node + " " + new Date());
 } catch (NamingException e) {
 throw new StartException("Could not initialize timer", e);
 }
 }

 public void stop(StopContext arg0) {
 if (!started.compareAndSet(true, false)) {
 LOGGER.warn("The service '" + this.getClass().getName() + "' is not active!");
 } else {
 LOGGER.info("Stop HASingleton timer service '" + this.getClass().getName() + "'");
 try {
 InitialContext ic = new InitialContext();
 ((Scheduler) ic.lookup("global/jboss-cluster-ha-singleton-service/SchedulerBean!org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.Scheduler")).stop();
 } catch (NamingException e) {
 LOGGER.error("Could not stop timer", e);
 }
 }
 }
}

					

	Create an activator that installs the Service as a clustered singleton.

						The following listing is an example of a Service activator that installs the HATimerService as a clustered singleton service:

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import org.jboss.as.clustering.singleton.SingletonService;
import org.jboss.logging.Logger;
import org.jboss.msc.service.DelegatingServiceContainer;
import org.jboss.msc.service.ServiceActivator;
import org.jboss.msc.service.ServiceActivatorContext;
import org.jboss.msc.service.ServiceController;

/**
 * Service activator that installs the HATimerService as a clustered singleton service
 * during deployment.
 *
 * @author Paul Ferraro
 */
public class HATimerServiceActivator implements ServiceActivator {
 private final Logger log = Logger.getLogger(this.getClass());

 @Override
 public void activate(ServiceActivatorContext context) {
 log.info("HATimerService will be installed!");

 HATimerService service = new HATimerService();
 SingletonService<String> singleton = new SingletonService<String>(service, HATimerService.SINGLETON_SERVICE_NAME);
 /*
 * To pass a chain of election policies to the singleton, for example,
 * to tell JGroups to prefer running the singleton on a node with a
 * particular name, uncomment the following line:
 */
 // singleton.setElectionPolicy(new PreferredSingletonElectionPolicy(new SimpleSingletonElectionPolicy(), new NamePreference("node2/cluster")));

 singleton.build(new DelegatingServiceContainer(context.getServiceTarget(), context.getServiceRegistry()))
 .setInitialMode(ServiceController.Mode.ACTIVE)
 .install()
 ;
 }
}

						 Note

								The above code example uses a class, org.jboss.as.clustering.singleton.SingletonService, that is part of the JBoss EAP private API. A public API will become available in the EAP 7 release and the private class will be deprecated, but this classes will be maintained and available for the duration of the EAP 6.x release cycle.
							

					

	Create a ServiceActivator File

						Create a file named org.jboss.msc.service.ServiceActivator in the application's resources/META-INF/services/ directory. Add a line containing the fully qualified name of the ServiceActivator class created in the previous step.
org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.HATimerServiceActivator

					

	Create a Singleton bean that implements a timer to be used as a cluster-wide singleton timer.

						This Singleton bean must not have a remote interface and you must not reference its local interface from another EJB in any application. This prevents a lookup by a client or other component and ensures the SingletonService has total control of the Singleton.
					
	Create the Scheduler interface

								

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

/**
 * @author Wolf-Dieter Fink
 */
public interface Scheduler {

 void initialize(String info);

 void stop();

}

							

	Create the Singleton bean that implements the cluster-wide singleton timer.

								

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import javax.annotation.Resource;
import javax.ejb.ScheduleExpression;
import javax.ejb.Singleton;
import javax.ejb.Timeout;
import javax.ejb.Timer;
import javax.ejb.TimerConfig;
import javax.ejb.TimerService;

import org.jboss.logging.Logger;

/**
 * A simple example to demonstrate a implementation of a cluster-wide singleton timer.
 *
 * @author Wolf-Dieter Fink
 */
@Singleton
public class SchedulerBean implements Scheduler {
 private static Logger LOGGER = Logger.getLogger(SchedulerBean.class);
 @Resource
 private TimerService timerService;

 @Timeout
 public void scheduler(Timer timer) {
 LOGGER.info("HASingletonTimer: Info=" + timer.getInfo());
 }

 @Override
 public void initialize(String info) {
 ScheduleExpression sexpr = new ScheduleExpression();
 // set schedule to every 10 seconds for demonstration
 sexpr.hour("*").minute("*").second("0/10");
 // persistent must be false because the timer is started by the HASingleton service
 timerService.createCalendarTimer(sexpr, new TimerConfig(info, false));
 }

 @Override
 public void stop() {
 LOGGER.info("Stop all existing HASingleton timers");
 for (Timer timer : timerService.getTimers()) {
 LOGGER.trace("Stop HASingleton timer: " + timer.getInfo());
 timer.cancel();
 }
 }
}

							

	Start each JBoss EAP 6 instance with clustering enabled.

			

				To enable clustering for standalone servers, you must start each server with the HA profile, using a unique node name and port offset for each instance.
			

					
						For Linux, use the following command syntax to start the servers:
					

						EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -Djboss.node.name=UNIQUE_NODE_NAME -Djboss.socket.binding.port-offset=PORT_OFFSET

 ⁠Example 3.1. Start multiple standalone servers on Linux
$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -Djboss.node.name=node1
$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -Djboss.node.name=node2 -Djboss.socket.binding.port-offset=100

					

				 	
						For Microsoft Windows, use the following command syntax to start the servers:
					
EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -Djboss.node.name=UNIQUE_NODE_NAME -Djboss.socket.binding.port-offset=PORT_OFFSET

 ⁠Example 3.2. Start multiple standalone servers on Microsoft Windows
C:> EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -Djboss.node.name=node1
C:> EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -Djboss.node.name=node2 -Djboss.socket.binding.port-offset=100

			
Note

					If you prefer not to use command line arguments, you can configure the standalone-ha.xml file for each server instance to bind on a separate interface.
				

	Deploy the application to the servers

				The following Maven command deploys the application to a standalone server running on the default ports.
			

				
mvn clean install jboss-as:deploy

			

				To deploy to additional servers, pass the server name. if it is on a different host, and port number on the command line:
			

				
mvn clean package jboss-as:deploy -Djboss-as.hostname=localhost -Djboss-as.port=10099

			

				See the cluster-ha-singleton quickstart that ships with JBoss EAP 6 for Maven configuration and deployment details.
			

		Report a bug
	

 ⁠3.2.9. Service-style Deployment Changes

 ⁠3.2.9.1. Update Applications That Use Service-style Deployments

Summary

			Although JBoss EAP 6 no longer uses service-style descriptors, the container supports these service-style deployments without change where possible. This means that if you used jboss-service.xml or jboss-beans.xml deployment descriptors in your JBoss EAP 5.x application, they should run with little or no modification in JBoss EAP 6. You can continue to package the files in the EAR or SAR, or you can place the files directly in the deployments directory. If you are running a standalone server, the deployments directory is located here: EAP_HOME/standalone/deployments/. If you are running a managed domain, you must use the console or CLI to deploy the application.
		

		Report a bug
	

 ⁠3.2.10. Remote Invocation Changes

 ⁠3.2.10.1. Migrate JBoss EAP 5 Deployed Applications That Make Remote Invocations to JBoss EAP 6

Summary

			In JBoss EAP 5, the EJB remote interface was bound in JNDI, by default, under the name "ejbName/local" for local interfaces, and "ejbName/remote" for the remote interfaces. The client application then looked up the bean using "ejbName/remote".
		

		In JBoss EAP 6, a new specific EJB client API was introduced to do the invocation. However, if you do not want to rewrite your code to use the new API, you can modify the existing code to use the ejb:BEAN_REFERENCE for remote access to EJBs with the following syntax.
	

		For stateless beans, the ejb:BEAN_REFERENCE syntax is:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>

		 For stateful beans, the ejb:BEAN_REFERENCE syntax is:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>?stateful

	

		The values to be substituted in the above syntax are:
			
					<app-name> - the application name of the deployed EJBs. This is typically the ear name without the .ear suffix, however, the name can be overridden in the application.xml file. If the application is not deployed as a .ear, this value is an empty string. Assume this example was not deployed as an EAR.
				

	
					<module-name> - the module name of the deployed EJBs on the server. This is typically the jar name of the EJB deployment, without the .jar suffix, but can be overridden using the ejb-jar.xml. In this example, assume the EJBs were deployed in a jboss-ejb-remote-app.jar, so the module name is jboss-ejb-remote-app.
				

	
					<distinct-name> - an optional distinct name for the EJB. This example does not use a distinct name, so it uses an empty string.
				

	
					<bean-name> - by default, is the simple class name of the bean implementation class.
				

	
					<fully-qualified-classname-of-the-remote-interface> - the remote view fully qualified class name.
				

	
Update the client code

			Assume you have deployed the following stateless EJB to a JBoss EAP 6 server. Note that it exposes a remote view for the bean.

@Stateless
@Remote(RemoteCalculator.class)
public class CalculatorBean implements RemoteCalculator {

 @Override
 public int add(int a, int b) {
 return a + b;
 }

 @Override
 public int subtract(int a, int b) {
 return a - b;
 }
}

			 In JBoss EAP 5, the client EJB lookup and invocation was coded something like this:

InitialContext ctx = new InitialContext();
RemoteCalculator calculator = (RemoteCalculator) ctx.lookup("CalculatorBean/remote");
int a = 204;
int b = 340;
int sum = calculator.add(a, b);

			 In JBoss EAP 6, using the information described above, the client lookup and invocation is coded like this:

final Hashtable jndiProperties = new Hashtable();
jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
final Context context = new InitialContext(jndiProperties);
final String appName = "";
final String moduleName = "jboss-ejb-remote-app";
final String distinctName = "";
final String beanName = CalculatorBean.class.getSimpleName();
final String viewClassName = RemoteCalculator.class.getName();
final RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup("ejb:" + appName + "/" + moduleName + "/" + distinctName + "/" + beanName + "!" + viewClassName);

int a = 204;
int b = 340;
int sum = statelessRemoteCalculator.add(a, b);

			 If your client is accessing a stateful EJB, you must append "?stateful" to the end of the context lookup like this:

final RemoteCalculator statefulRemoteCalculator = (RemoteCalculator) context.lookup("ejb:" + appName + "/" + moduleName + "/" + distinctName + "/" + beanName + "!" + viewClassName + "?stateful")

		

		A complete working example, including both server and client code, can be found in the Quickstarts. For more information, refer to Review the Quickstart Tutorials in the chapter entitled Get Started Developing Applications in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
	

		For more information on remote invocations using JNDI, refer to Section 3.2.10.2, “Invoke a Session Bean Remotely using JNDI” .
	

		Report a bug
	

 ⁠3.2.10.2. Invoke a Session Bean Remotely using JNDI

		This task describes how to add support to a remote client for the invocation of session beans using JNDI. The task assumes that the project is being built using Maven.
	

		The ejb-remote quickstart contains working Maven projects that demonstrate this functionality. The quickstart contains projects for both the session beans to deploy and the remote client. The code samples below are taken from the remote client project.
	

		This task assumes that the session beans do not require authentication.
	
Prerequisites

			The following prerequisites must be satisfied before beginning:
		
	
				You must already have a Maven project created ready to use.
			

	
				Configuration for the JBoss EAP 6 Maven repository has already been added.
			

	
				The session beans that you want to invoke are already deployed.
			

	
				The deployed session beans implement remote business interfaces.
			

	
				The remote business interfaces of the session beans are available as a Maven dependency. If the remote business interfaces are only available as a JAR file then it is recommended to add the JAR to your Maven repository as an artifact. Refer to the Maven documentation for the install:install-file goal for directions, http://maven.apache.org/plugins/maven-install-plugin/usage.html
			

	
				You need to know the hostname and JNDI port of the server hosting the session beans.
			

		To invoke a session bean from a remote client you must first configure the project correctly.
	

 ⁠Procedure 3.22. Add Maven Project Configuration for Remote Invocation of Session Beans
	Add the required project dependencies

				The pom.xml for the project must be updated to include the necessary dependencies.
			

	Add the jboss-ejb-client.properties file

				The JBoss EJB client API expects to find a file in the root of the project named jboss-ejb-client.properties that contains the connection information for the JNDI service. Add this file to the src/main/resources/ directory of your project with the following content.
			

In the following line, set SSL_ENABLED to true for SSL
remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=default
Uncomment the following line to set SSL_STARTTLS to true for SSL
remote.connection.default.connect.options.org.xnio.Options.SSL_STARTTLS=true
remote.connection.default.host=localhost
remote.connection.default.port = 4447
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
Add any of the following SASL options if required
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOPLAINTEXT=false
remote.connection.default.connect.options.org.xnio.Options.SASL_DISALLOWED_MECHANISMS=JBOSS-LOCAL-USER

				Change the host name and port to match your server. 4447 is the default port number. For a secure connection, set the SSL_ENABLED line to true and uncomment the SSL_STARTTLS line. The Remoting interface in the container supports secured and unsecured connections using the same port.
			

	Add dependencies for the remote business interfaces

				Add the Maven dependencies to the pom.xml for the remote business interfaces of the session beans.
			
<dependency>
 <groupId>org.jboss.as.quickstarts</groupId>
 <artifactId>jboss-ejb-remote-server-side</artifactId>
 <type>ejb-client</type>
 <version>${project.version}</version>
</dependency>

		Now that the project has been configured correctly, you can add the code to access and invoke the session beans.
	

 ⁠Procedure 3.23. Obtain a Bean Proxy using JNDI and Invoke Methods of the Bean
	Handle checked exceptions

				Two of the methods used in the following code (InitialContext() and lookup()) have a checked exception of type javax.naming.NamingException. These method calls must either be enclosed in a try/catch block that catches NamingException or in a method that is declared to throw NamingException. The ejb-remote quickstart uses the second technique.
			

	Create a JNDI Context

				A JNDI Context object provides the mechanism for requesting resources from the server. Create a JNDI context using the following code:
			
final Hashtable jndiProperties = new Hashtable();
jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
final Context context = new InitialContext(jndiProperties);

				The connection properties for the JNDI service are read from the jboss-ejb-client.properties file.
			

	Use the JNDI Context's lookup() method to obtain a bean proxy

				Invoke the lookup() method of the bean proxy and pass it the JNDI name of the session bean you require. This will return an object that must be cast to the type of the remote business interface that contains the methods you want to invoke.
			

final RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(
 "ejb:/jboss-ejb-remote-server-side//CalculatorBean!" +
 RemoteCalculator.class.getName());

				Session bean JNDI names are defined using a special syntax. For more information, see Section 3.2.10.3, “EJB JNDI Naming Reference” .
			

	Invoke methods

				Now that you have a proxy bean object you can invoke any of the methods contained in the remote business interface.
			
int a = 204;
int b = 340;
System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator deployed on the server");
int sum = statelessRemoteCalculator.add(a, b);
System.out.println("Remote calculator returned sum = " + sum);

				The proxy bean passes the method invocation request to the session bean on the server, where it is executed. The result is returned to the proxy bean which then returns it to the caller. The communication between the proxy bean and the remote session bean is transparent to the caller.
			

		You should now be able to configure a Maven project to support invoking session beans on a remote server and write the code invoke the session beans methods using a proxy bean retrieved from the server using JNDI.
	

		Report a bug
	

 ⁠3.2.10.3. EJB JNDI Naming Reference

		The JNDI lookup name for a session bean has the syntax of:
	
 ejb:<appName>/<moduleName>/<distinctName>/<beanName>!<viewClassName>?stateful
	<appName>
	
					If the session bean's JAR file has been deployed within an enterprise archive (EAR) then this is the name of that EAR. By default, the name of an EAR is its filename without the .ear suffix. The application name can also be overridden in its application.xml file. If the session bean is not deployed in an EAR then leave this blank.
				

	<moduleName>
	
					The module name is the name of the JAR file that the session bean is deployed in. By the default, the name of the JAR file is its filename without the .jar suffix. The module name can also be overridden in the JAR's ejb-jar.xml file.
				

	<distinctName>
	
					JBoss EAP 6 allows each deployment to specify an optional distinct name. If the deployment does not have a distinct name then leave this blank.
				

	<beanName>
	
					The bean name is the classname of the session bean to be invoked.
				

	<viewClassName>
	
					The view class name is the fully qualified classname of the remote interface. This includes the package name of the interface.
				

	?stateful
	
					The ?stateful suffix is required when the JNDI name refers to a stateful session bean. It is not included for other bean types.
				

		Report a bug
	

 ⁠3.2.11. EJB 2.x Changes

 ⁠3.2.11.1. Update Applications That Use EJB 2.x

		JBoss EAP 6 was built on open standards and is compliant with the Java Enterprise Edition 6 specification. While the application server provides support for EJB 2.x, it may no longer support features which go beyond the specification. Keep in mind that the Java EE 7 specification has marked EJB 2.x as optional, so it is strongly recommended that you rewrite your application code to the EJB 3.x specification.
	

		If you still want to migrate your EJB 2.x code, in most cases you will need to make some modifications to run in JBoss EAP 6. This topic describes some of the changes you may need to run EJB 2.x on JBoss EAP 6.
	
Configuration Changes Required to Run EJB 2.x on JBoss EAP 6

		
	Start the Server With the Full Profile
	
					EJB 2.x Container Managed Persistence (CMP) beans require the Java Enterprise Edition 6 Full Profile. This profile contains configuration elements that are needed to run CMP EJBs.
				

					This configuration profile contains the org.jboss.as.cmp extension module:
<extensions>
 ...
 <extension module="org.jboss.as.cmp"/>
 ...
</extensions>

					 It also contains the cmp subsystem:
<profiles>
 ...
 <subsystem xmlns="urn:jboss:domain:cmp:1.1"/>
 ...
</profiles>

					 .
				

					To start a JBoss EAP 6 standalone server with the full profile, pass the -c standalone-full.xml or -c standalone-full-ha.xml argument on the command line when you start the server.
				

	Container Configuration Is No Longer Supported
	
					In previous versions of JBoss EAP, it was possible to configure different container for CMP entity and other beans and use it by setting references inside the jboss.xml application deployment descriptor file. For example, there were different configurations for SLSB to session beans in general.
				

					In JBoss EAP 6.x, it is possible to use EJB 2 Entity beans with a standard container. However, the different container configurations are no longer supported. The recommended approach is to migrate the EJB2 Stateful Session Beans (SFSB), Stateless Session Beans (SLSB), Message Driven Beans (MDB) to EJB 3, and the Container-Managed Persistence (CMP) and Bean-Managed Persistence (BMP) Entity Beans, and use the Java Persistence API (JPA) according to the EJB 3 specification.
				

					The default container configuration in JBoss EAP 6 contains several changes for EJB 2 CMP beans:
						
								Pessimistic locking is active by default. This can result in deadlocks.
							

	
								The deadLock detection code that was in the CMP layer in JBoss EAP 5.x is no longer in JBoss EAP 6.
							

				

					In JBoss EAP 5.x, it was also possible to customize caching, pooling, commit-options, and the interceptor stack. In JBoss EAP 6, this is no longer possible. There is only one implementation, which is similar to the Instance Per Transaction policy with commit-option C. If you migrate an application that uses the cmp2.x jdbc2 pm entity bean container configuration, which uses CMP2.x compatible JDBC based persistence manager, there will be a performance impact. This container was optimized for performance. It is recommended that you migrate these entities to EJB 3 before migrating the application.
				

	Server Side Interceptor Configuration
	
					JBoss EAP 6 supports the standard Java EE Interceptor using the @Interceptors and @AroundInvoke annotations. However, this does not allow manipulation outside the Security or Transaction.
				

					In previous versions of JBoss EAP, it was possible to modify the interceptor stack to have custom Interceptors for each EJB invocation. This was often used to implement customized security or retry mechanisms before security checks or transaction checks or creation. JBoss EAP 6.1 introduced container interceptors to provide similar functionality. For more information about container interceptors, see the chapter entitled Container Interceptors in the Development Guide for JBoss EAP.
				

					Another approach to provide more control before, during, or after the commit phase of a transaction while keeping with the Java EE specification is to use the Transaction Synchronization Registry to add a listener.
				

					The resource can be retrieved using one of the following methods:
						
								Use the InitialContext
TransactionSynchronizationRegistry tsr = (TransactionSynchronizationRegistry)
		new InitialContext().lookup("java:jboss/TransactionSynchronizationRegistry");
tsr.registerInterposedSynchronization(new MyTxCallback());

							

	
								Use Injection
@Resource(mappedName = "java:comp/TransactionSynchronizationRegistry")
TransactionSynchronizationRegistry tsr;
...
tsr.registerInterposedSynchronization(new MyTxCallback());

							

					 The callback routine must implement the javax.transaction.Synchronization Interface. Use the beforeCompletion{} method to perform any checks before the transaction is committed or rolled back. If a RuntimeException is thrown from this method, the transaction is rolled back and the client is informed with a EJBTransactionRolledbackException. In case of an XA-Transaction, all resources will be rolled back according to the XA contract. It is also possible for enable business logic to depend on the transaction state using the afterCompletion(int txStatus) method. If a RuntimeException is thrown from this method, the transaction remains in the former state, either committed or rolled-back, and the client is not informed. Only the transaction manager shows a warning within the server log files.
				

	 Server Side Configuration for Client Side Interceptors
	
					In previous versions of JBoss EAP, it was possible to configure the client interceptors within the server configuration and provide only the classes with the client API.
				

					In JBoss EAP 6, this is no longer possible because the client Proxy is no longer created on the server side and transmitted to the client after the lookup. The proxy is now generated on the client side. This optimization avoids a server invocation for the lookup and class uploads,
				

	Entity Bean Pool Configuration
	
					Entity bean pool configuration is not recommended in JBoss EAP 6. Because it is limited to configuration of the <strict-max-pool> element, deadlocks and other issues can occur if the pool is too small to load all entities in the result set. Entity beans do not have large lifecycle methods during initialization, so creating the instance and surrounding container is no slower than when using a pooled entity bean instance.
				

	Replace the jboss.xml Deployment Descriptor File
	
					The jboss-ejb3.xml deployment descriptor replaces the jboss.xml deployment descriptor file. This file is used to override and add to the features provided by the Java Enterprise Edition (EE) defined ejb-jar.xml deployment descriptor. The new file is incompatible with jboss.xml, and the jboss.xml is now ignored in deployments.
				

					For example, in previous releases of JBoss EAP, if you defined a <resource-ref> in the ejb-jar.xml file, you needed a corresponding resource definition for the JNDI name in the jboss.xml file. XDoclet automatically generated both of these deployment descriptor files. In JBoss EAP 6, the JNDI mapping information is now defined in the jboss-ejb3.xml file. Assume the datasource is defined in the Java source code as follows.
DataSource ds1 = (DataSource) new InitialContext().lookup("java:comp/env/jdbc/Resource1");
DataSource ds2 = (DataSource) new InitialContext().lookup("java:comp/env/jdbc/Resource2");

					 The ejb-jar.xml defines the following resource references.
<resource-ref >
 <res-ref-name>jdbc/Resource1</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>
<resource-ref >
 <res-ref-name>java:comp/env/jdbc/Resource2</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>	

				

					The jboss-ejb3.jxml file maps the JNDI names to the references using the following XML syntax.
<resource-ref>
 <res-ref-name>jdbc/Resource1</res-ref-name>
 <jndi-name>java:jboss/datasources/ExampleDS</jndi-name>
</resource-ref>
<resource-ref>
 <res-ref-name>java:comp/env/jdbc/Resource2</res-ref-name>
 <jndi-name>java:jboss/datasources/ExampleDS</jndi-name>
</resource-ref>

				

					Some of the configuraton options that were available in the JBoss EAP 5.x jboss.xml file were not implemented in JBoss EAP 6. The following list describes some of the commonly used attributes in the jboss.xml file and whether there is an alternate way to achieve them in JBoss EAP 6.
				

						
								The method-attribute element was used to configure individual entity and session beans methods.
									
											The read-only and idempotent configuration options were not ported to JBoss EAP 6.
										

	
											The transaction-timeout option is now configurate in the jboss-ejb3.xml file.
										

							

	
								The missing-method-permission-exclude-mode attribute changed the behavior of methods without implementing explicit security metadata on a secured bean. In JBoss EAP 6, the absence of a @RolesAllowed annotation is currently treated in a similar manner to the @PermitAll
							

				

	DataSource Type Mapping Configuration
	
					In previous versions of JBoss EAP, it was possible to configure the datasource type-mapping within the *-ds.xml datasource deployment configuration file.
				

					In JBoss EAP 6, this must now be done in the jbosscmp-jdbc.xml deployment descriptor file.
<defaults>
 <datasource-mapping>mySQL</datasource-mapping>
 <create-table>true</create-table>

</defaults>

				

					In previous versions of JBoss EAP, customized mapping was done in the standardjbosscmp-jdbc.xml file. This file is no longer available and mapping is now done in the jbosscmp-jdbc.xml deployment descriptor file.
				

Additional Container-Managed Persistence (CMP) and Container-Managed Relaationship(CMR) Changes

		
	Container Managed Relationship (CMR) Iterator and Collection Changes
	
					In previous releases of JBoss EAP, it was possible for some containers, for example the cmp2.x jdbc2 pm container, to iterate CMR collections and remove or add relations. Because container configuration is not supported, this is no longer possible in JBoss EAP 6. For information about how to achieve this same functionality in the application code, see EJB2.1 Finder for CMP entities with relations (CMR) returns duplicates in EAP6 in the Support Knowledgebase Solutions section of the Customer Portal .
				

	Container Managed Relationship (CMR) Duplicate Entries for Finders
	
					In previous versions of JBoss EAP, it was possible to select different CMP containers which used different persistence strategies. The cmp2.x jdbc2 pm container in JBoss EAP 5.x used optimized SQL-92 to generate optimized LEFT OUTER JOIN syntax for finders. Because JBoss EAP 6.x only supports the standard container for CMP and CMR, the implementation does not contain thes optimizations. The finder should include the keyword DISTINCT in the SELECT statement to avoid carthesian product in the result set. For more information , see EJB2.1 Finder for CMP entities with relations (CMR) returns duplicates in EAP6 in the Support Knowledgebase Solutions section of the Customer Portal.
				

	Cascade Delete Default Change for CMP Entity Beans
	
					The cascade delete default value has changed to false. This can result in delete failures in JBoss EAP 6. If entity relations are marked as cascade-delete, you must explicitly set the batch-cascade-delete to true in the jbosscmp-jdbc.xml file. For more information , see cascade delete fail for EJB2 CMP Entities after migration to EAP6 in the Support Knowledgebase Solutions section of the Customer Portal.
				

	CMP Customized Mappers for Custom Fields
	
					If you used customer mapper classes such as JDBCParameterSetter, JDBCResultSetReader and Mapper in your JBoss EAP 5.x application, you may see java.lang.ClassNotFoundException when you deploy your application to JBoss EAP 6. This is because the package names for the interfaces were changed from org.jboss.ejb.plugins.cmp.jdbc.Mapper to org.jboss.as.cmp.jdbc.Mapper. For more information , see How to use Field mapping for custom classes in an EJB2 CMP application in EAP6 in the Support Knowledgebase Solutions section of the Customer Portal.
				

	Generation of Primary Keys Using entity-commands
	
					If your JBoss EAP 5 application uses entity-commands to generate primary keys, for example Sequence or Auto-increment, you may see a ClassNotFoundException for the JDBCOracleSequenceCreateCommand class when you migrate your application to JBoss EAP 6. This is because the class package was changed from org.jboss.ejb.plugins.cmp.jdbc to org.jboss.as.cmp.jdbc.keygen. If you use this class in your JBoss EAP 6 application, you must also add a dependency on the EAP_HOME/modules/system/layers/base/org/jboss/as/cmp module.
				

Application Changes

		
	Modify the Code to Use the New JNDI Namespace Rules.
	
					As with EJB 3.0, you must use the full JNDI prefix with EJB 2.x. For more information on the new JNDI namespace rules and code examples, see Section 3.1.8.1, “Update Application JNDI Namespace Names”.
				

					Examples showing how to update JNDI namespaces from previous releases can be found here: Section 3.1.8.5, “Examples of JNDI Namespaces in Previous Releases and How They are Specified in JBoss EAP 6”.
				

	Modify the jboss-web.xml File Descriptor
	
					Modify the <jndi-name> for each <ejb-ref> to use the new JNDI fully qualified lookup format.
				

	Use XDoclet to Map JNDI Name of Internal Local Interfaces
	
					With EJB 2, it was very common to use the Locator pattern to look up Beans. If you used this pattern in your application, rather than modify application code, you can use XDoclet to generate a map for the new JNDI names.
				

					A typical XDoclet annotation looks like this:
@ejb.bean name="UserAttribute" display-name="UserAttribute" local-jndi-name="ejb21/UserAttributeEntity" view-type="local" type="CMP" cmp-version="2.x" primkey-field="id"

					 The JNDI name ejb21/UserAttributeEntity in the above example is no longer valid in JBoss EAP 6. You can map this name to a valid JNDI name using the naming subsystem in the server configuration and a patch for XDoclet.
				

					You can create customized mappers, as noted in the paragraph above entitled CMP Customized Mappers for Custom Fields or you can modify the code as described in the following procedure.
				

 ⁠Procedure 3.24. Change the XDoclet Generated Code and Use the Naming Subsystem
	
							Extract the XDoclet lookup.xdt template located in the ejb-module.jar and modify the lookup() in the lookupHome as follows:
private static Object lookupHome(java.util.Hashtable environment, String jndiName, Class narrowTo) throws javax.naming.NamingException {
 // Obtain initial context
 javax.naming.InitialContext initialContext = new javax.naming.InitialContext(environment);
 try {
 // Replace the existing lookup
 // Object objRef = initialContext.lookup(jndiName);
 // This is the new mapped lookup
 Object objRef;
 try {
 // try JBoss EAP mapping
 objRef = initialContext.lookup("global/"+jndiName);
 } catch(java.lang.Exception e) {
 objRef = initialContext.lookup(jndiName);
 }
 // only narrow if necessary
 if (java.rmi.Remote.class.isAssignableFrom(narrowTo))
 return javax.rmi.PortableRemoteObject.narrow(objRef, narrowTo);
 else
 return objRef;
 } finally {
 initialContext.close();
 }
}

						

	
							Run Ant, setting the template attribute to use the modified lookup.xdt for the ejbdoclet task.
						

	
							Modify the naming subsystem in the server configuration file to map the old JNDI name to the new valid JNDI name.
<subsystem xmlns="urn:jboss:domain:naming:1.2">
 <bindings>
 <lookup name="java:global/ejb21/UserAttributeEntity" lookup="java:global/ejb2CMP/ejb/UserAttribute!de.wfink.ejb21.cmp.cmr.UserAttributeLocalHome"/>
 </bindings>
 <remote-naming/>
</subsystem>

						

Summary of Obsolete Files

			The following files are no longer supported in JBoss EAP 6.
		
	jboss.xml
	
					The jboss.xml deployment descriptor file is no longer supported and ignored if included in the deployed archive.
				

	standardjbosscmp-jdbc.xml
	
					The standardjbosscmp-jdbc.xml configuration file is no longer supported. This configuration information is now included in the org.jboss.as.cmp module and it is no longer customizable.
				

	standardjboss.xml
	
					The standardjboss.xml configuration file is no longer supported. This configuration information is now included in the standalone.xml file when running a standalone server or the domain.xml file when running in a managed domain..
				

	
	

				

	
	

				

		Report a bug
	

 ⁠3.2.12. JBoss AOP Changes

 ⁠3.2.12.1. Update Applications That Use JBoss AOP

		JBoss AOP (Aspect Oriented Programming) is no longer included in JBoss EAP 6. In previous releases, JBoss AOP was used by the EJB container. In JBoss EAP 6, the EJB container uses a new mechanism. If your application uses JBoss AOP, you must modify your application code as follows.
	
Refactor the Application

				
						Standard EJB3 configurations that were previously made in the ejb3-interceptors-aop.xml file are now configured in the server configuration file. For a standalone server, this is the standalone/configuration/standalone-full.xml file. If you are running your server in a managed domain, this is the domain/configuration/domain.xml file.
					

	
						Server side AOP Interceptors should be modified to use the standard Java EE Interceptor. For more information about container interceptors and how to use a client side interceptor in an application, refer to the chapter entitled Container Interceptors in the Development Guide for JBoss EAP 6 located on the Customer Portal at https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
					

		
Use JBoss AOP Libraries

				
						If you are not able to refactor the code, you can obtain a copy of the JBoss AOP libraries and bundle them with the application. The AOP libraries may work in JBoss EAP 6, but are not deployed. You can manually deploy them by using the following command line argument when you start your server: -Djboss.aop.path=PATH_TO_AOP_CONFIG
					
Note

							Although the JBoss AOP libraries may work in JBoss EAP 6, this not a supported configuration.
						

		

		Report a bug
	

 ⁠3.2.13. Migrate Seam 2.2 Applications

 ⁠3.2.13.1. Migrate Seam 2.2 Archives to JBoss EAP 6

Overview

			When you migrate a Seam 2.2 application, you need to configure the datasource and specify any module dependencies. You also need to determine if the application has any dependencies on archives that do not ship with JBoss EAP 6 and copy any dependent JARs into the application lib/ directory.
		
Important

			Applications that use Hibernate directly with Seam 2.2 may use a version of Hibernate 3 packaged inside the application. Hibernate 4, which is provided through the org.hibernate module of JBoss EAP 6, is not supported by Seam 2.2. This example is intended to help you get your application running on JBoss EAP 6 as a first step. Please be aware that packaging Hibernate 3 with a Seam 2.2 application is not a supported configuration.
		

 ⁠Procedure 3.25. Migrate Seam 2.2 Archives
	Update the datasource configuration

				Some Seam 2.2 examples use the default JDBC datasource named java:/ExampleDS. This default datasource has changed in JBoss EAP 6 to java:jboss/datasources/ExampleDS. If your application uses the example database, you can do one of the following:
					
							If you want to use the example database that ships with JBoss EAP 6, modify the META-INF/persistence.xml file to replace the existing jta-data-source element with the example database datasource JNDI name:
<!-- <jta-data-source>java:/ExampleDS</jta-data-source> -->
<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

						

	
							If you prefer to keep your existing database, you can add the datasource definition to the EAP_HOME/standalone/configuration/standalone.xml file.
						
Important

								You must stop the server before editing the server configuration file for your change to be persisted on server restart.
							

							The following definition is a copy of the default HSQL datasource defined in JBoss EAP 6:

<datasource name="ExampleDS" jndi-name="java:/ExampleDS" enabled="true" jta="true" use-java-context="true" use-ccm="true">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>
 <driver>h2</driver>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
</datasource>

						

	
							You can also add the datasource definition using the Management CLI command line interface. The following is an example of the syntax you must use to add a datasource. The "\" at the end of line indicates the continuation of the command on the following line.
							
 ⁠Example 3.3. Example of syntax to add the datasource definition

$ EAP_HOME/bin/jboss-cli --connect
[standalone@localhost:9999 /] data-source add --name=ExampleDS --jndi-name=java:/ExampleDS \
 --connection-url=jdbc:h2:mem:test;DB_CLOSE_DELAY=-1 --driver-name=h2 \
 --user-name=sa --password=sa

						

				 For more information on how to configure a datasource, see Section 3.1.6.2, “Update the DataSource Configuration”.
			

	Add any required dependencies

				Because Seam 2.2 applications use JSF 1.2, you need to add dependencies for the JSF 1.2 modules and exclude the JSF 2.0 modules. To accomplish this, you need to create a jboss-deployment-structure.xml file in the EAR's META-INF/ directory that contains the following data:
<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>
 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 <module name="com.sun.jsf-impl" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 <module name="com.sun.jsf-impl" slot="1.2"/>
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

				 If your application uses any third-party logging frameworks you need to add those dependencies as described here: Section 3.1.4.1, “Modify Logging Dependencies”.
			

	If your application uses Hibernate 3.x, first try to run the application using the Hibernate 4 libraries

				If your application does not use the Seam Managed Persistence Context, Hibernate search, validation, or other features that have changed with Hibernate 4, you may be able to run with the Hibernate 4 libraries. However, if you see ClassNotFoundExceptions or ClassCastExceptions that point to Hibernate classes, or see errors similar to the following, you may have to follow the instructions in the next step and modify the application to use Hibernate 3.3 libraries.
			

 Caused by: java.lang.LinkageError: loader constraint violation in interface itable initialization: when resolving method "org.jboss.seam.persistence.HibernateSessionProxy.getSession(Lorg/hibernate/EntityMode;)Lorg/hibernate/Session;" the class loader (instance of org/jboss/modules/ModuleClassLoader) of the current class, org/jboss/seam/persistence/HibernateSessionProxy, and the class loader (instance of org/jboss/modules/ModuleClassLoader) for interface org/hibernate/Session have different Class objects for the type org/hibernate/Session used in the signature

	Copy dependent archives from outside frameworks or other locations

				If your application uses Hibernate 3.x and you are not able to use Hibernate 4 successfully with your application, you will need to copy the Hibernate 3.x JARs into the /lib directory and exclude the Hibernate module in the deployments section of the META-INF/jboss-deployment-structure.xml as follows:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <exclusions>
 <module name="org.hibernate"/>
 </exclusions>
 <deployment>
</jboss-deployment-structure>

			

				There are additional steps you must take when you bundle Hibernate 3.x with your application. For more information, see Section 3.2.2.2, “Configure Changes for Applications That Use Hibernate and JPA”.
			

	Debug and resolve Seam 2.2 JNDI errors

				When you migrate a Seam 2.2 application, you may see javax.naming.NameNotFoundException errors in the log like the following:
javax.naming.NameNotFoundException: Name 'jboss-seam-booking' not found in context ''

				 If you don't want to modify JNDI lookups throughout the code, you can modify the application's components.xml file as follows:
			
	Replace the existing core-init element

						First, you need to replace the existing core-init element as follows:
<!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true" distributable="false"/> -->
<core:init debug="true" distributable="false"/>

					

	Find the JNDI binding INFO messages in the server log

						Next, find the JNDI binding INFO messages that are printed in the server log when the application is deployed. The JNDI binding messages should look similar to this:

INFO org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor (MSC service thread 1-1) JNDI bindings for session bean
named AuthenticatorAction in deployment unit subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:
 java:global/jboss-seam-booking/jboss-seam-booking.jar/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator
 java:app/jboss-seam-booking.jar/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator
 java:module/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator
 java:global/jboss-seam-booking/jboss-seam-booking.jar/AuthenticatorAction
 java:app/jboss-seam-booking.jar/AuthenticatorAction
 java:module/AuthenticatorAction

					

	Add component elements

						For each JNDI binding INFO message in the log, add a matching component element to the components.xml file:
<component class="org.jboss.seam.example.booking.AuthenticatorAction" jndi-name="java:app/jboss-seam-booking.jar/AuthenticatorAction" />

					

				For more information on how to debug and resolve migration issues, see Section 4.2.1, “Debug and Resolve Migration Issues”.
			

				For a list of known migration issues with Seam 2 archives, see Section 3.2.13.2, “Seam 2.2 Archive Migration Issues”.
			

Result

			The Seam 2.2 archive deploys and runs successfully on JBoss EAP 6.
		

		Report a bug
	

 ⁠3.2.13.2. Seam 2.2 Archive Migration Issues

	Seam 2.2 Drools and Java 7 are not compatible
	
					Seam 2.2 Drools and Java 7 are incompatible and fail with an org.drools.RuntimeDroolsException: value '1.7' is not a valid language level error.
				

	Seam 2.2.5 signed cglib.jar prevents the Spring example from working
	
					When the Spring example is run using the signed cglib.jar that shipped with Seam 2.2.5 in JBoss EAP 5, it fails with the following root cause:

java.lang.SecurityException: class "org.jboss.seam.example.spring.UserService$$EnhancerByCGLIB$$7d6c3d12"'s signer information does not match signer information of other classes in the same package

				

					The work around for this issue is to unsign the cglib.jar as follows:
				

					 zip -d $SEAM_DIR/lib/cglib.jar META-INF/JBOSSCOD*
				

	Seambay example fails with NotLoggedInException
	
					The cause of this issue is the SOAP message header being null when processing the message in the SOAPRequestHandler and consequently, the conversation ID not being set.
				

					The work around for this issue is to override org.jboss.seam.webservice.SOAPRequestHandler.handleOutbound, as described in https://issues.jboss.org/browse/JBPAPP-8376.
				

	Seambay example fails with UnsupportedOperationException: no transaction
	
					This bug is caused by changes in the JNDI name of UserTransaction in JBoss EAP 6.
				

					The work around for this issue is to override org.jboss.seam.transaction.Transaction.getUserTransaction, as described in https://issues.jboss.org/browse/JBPAPP-8322.
				

	Tasks example throws org.jboss.resteasy.spi.UnhandledException: Unable to unmarshall request body
	
					This bug is caused by the incompatibility between seam-resteasy-2.2.5 included in JBoss EAP 5.1.2) and RESTEasy 2.3.1.GA included in JBoss EAP 6.
				

					The work around for this issue is to use the jboss-deployment-structure.xml to exclude resteasy-jaxrs, resteasy-jettison-provider, and resteasy-jaxb-provider from the main deployment and resteasy-jaxrs, resteasy-jettison-provider, resteasy-jaxb-provider, and resteasy-yaml-provider from the jboss-seam-tasks.war as described in https://issues.jboss.org/browse/JBPAPP-8315. It is then necessary to include the RESTEasy libraries bundled with Seam 2.2 in the EAR.
				

	Deadlock between org.jboss.seam.core.SynchronizationInterceptor and stateful component instance EJB lock during an AJAX request
	
					An error page with "Caused by javax.servlet.ServletException with message: "javax.el.ELException: /main.xhtml @36,71 value="#{hotelSearch.pageSize}": org.jboss.seam.core.LockTimeoutException: could not acquire lock on @Synchronized component: hotelSearch" or similar error message is displayed.
				

					The problem is that Seam 2 does its own locking outside the stateful session bean (SFSB) lock and with a different scope. This means that if a thread accesses an EJB twice in the same transaction, after the first invocation it will have the SFSB lock, but not the seam lock. A second thread can then acquire the seam lock, which will then hit the EJB lock and wait. When the first thread attempts its second invocation it will block on the seam 2 interceptor and deadlock. In Java EE 5, EJBs would throw an exception immediately on concurrent access. This behavior has changed in Java EE 6.
				

					The work around for this issue is to add @AccessTimeout(0) to the EJB. This will cause it to throw a ConcurrentAccessException immediately when this situation occurs.
				

	Dvdstore example create order fails with a javax.ejb.EJBTransactionRolledbackException
	
					The dvdstore example displays the following error:

JBAS011437: Found extended persistence context in SFSB invocation call stack but that cannot be used because the transaction already has a transactional context associated with it. This can be avoided by changing application code, either eliminate the extended persistence context or the transactional context. See JPA spec 2.0 section 7.6.3.1.

				

					This problem is due to changes in the JPA specification.
				

					The fix for this issue is to change the persistence context to transactional in the CheckoutAction and ShowOrdersAction classes and use the entity manager merge operation in the cancelOrder and detailOrder methods.
				

	JBoss Cache Seam Cache provider cannot be used in JBoss EAP 6
	
					JBoss Cache is not supported in JBoss EAP 6. This causes JBoss Cache Seam Cache provider to fail in a Seam application on the application server with a
java.lang.NoClassDefFoundError: org/jboss/util/xml/JBossEntityResolver

					 .
				

	Hibernate 3.3.x Auto scan for JPA entities issue with JBoss EAP 6
	
					The fix for this issue is to list all the entity classes in the persistence.xml file manually. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
 <persistence-unit name="example_pu">
 <description>Hibernate 3 Persistence Unit.</description>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <properties>
 <property name="jboss.as.jpa.providerModule" value="hibernate3-bundled" />
 </properties>
 <class>com.acme.Foo</class>
 <class>com.acme.Bar</class>
 </persistence-unit>
</persistence>

				

	Calling EJB Seam components from non-EJB Threads results in a javax.naming.NameNotFoundException
	
					This issue is a result of changes in JBoss EAP 6 to implement the new modular class loading system and to adopt the new standardized JNDI namespace conventions. The java:app namespace is designated for names shared by all components in a single application. Non-EE threads, such as Quartz asynchronous threads, must use the java:global namespace, which is shared by all applications deployed in an application server instance.
				

					If you receive a javax.naming.NameNotFoundException when you try to call EJB Seam components from Quartz asynchronous methods, you must modify the components.xml file to use the global JNDI name, for example:

<component class="org.jboss.seam.example.quartz.MyBean" jndi-name="java:global/seam-quartz/quartz-ejb/myBean"/>

				

					For more information on JNDI changes, refer to the following topic: Section 3.1.8.1, “Update Application JNDI Namespace Names” . For more information on this specific issue, refer to BZ#948215 - Seam2.3 javax.naming.NameNotFoundException trying to call EJB Seam components from quartz asynchronous methods in the 2.2.0 Release Notes for Red Hat JBoss Web Framework Kit on the Red Hat Customer Portal.
				

		Report a bug
	

 ⁠3.2.14. Migrate Spring Applications

 ⁠3.2.14.1. Migrate Spring Applications

		Information about migrating Spring applications can be found in the Red Hat JBoss Web Framework Kit documentation located on the Customer Portal at https://access.redhat.com/site/documentation/. Find Red Hat JBoss Middleware, then click the Red Hat JBoss Web Framework Kit link. The Spring Installation Guide and Spring Developer Guide are available in multiple formats.
	

		Report a bug
	

 ⁠3.2.15. Other Changes That Affect Migration

 ⁠3.2.15.1. Become Familiar with Other Changes That May Affect Your Migration

		The following is a list of other changes in JBoss EAP 6 that could impact your migration efforts.
	
	
				 Section 3.2.15.2, “Change the Maven Plug-in Name”
			

	
				 Section 3.2.15.3, “Modify Client Applications”
			

		Report a bug
	

 ⁠3.2.15.2. Change the Maven Plug-in Name

		The jboss-maven-plugin has not been updated and does not work in JBoss EAP 6. You must now use org.jboss.as.plugins:jboss-as-maven-plugin to deploy to the correct directory.
	

		Report a bug
	

 ⁠3.2.15.3. Modify Client Applications

		If you plan to migrate a client application that will connect to JBoss EAP 6, be aware that the name and location of the JAR that bundles the client libraries has changed. This JAR is now named jboss-client.jar and is located in the EAP_HOME/bin/client/ directory. It replaces the EAP_HOME/client/jbossall-client.jar and contains all the dependencies required to connect to JBoss EAP 6 from a remote client.
	

		Report a bug
	

 ⁠Chapter 4. Tools and Tips

 ⁠4.1. Resources to Assist With Migration

 ⁠4.1.1. Resources to Assist in Your Migration

		The following is a list of resources that may be of help when migrating an application to JBoss EAP 6.
	
	Tools
	
					There are several tools that help automate some of the configuration changes. For more information, see: Section 4.1.2, “Become Familiar with Tools That Can Assist with the Migration”.
				

	Debugging Tips
	
					For a list of the most common causes and resolutions of issues and errors you may see when you migrate your application, see: Section 4.2.1, “Debug and Resolve Migration Issues”.
				

	Example migrations
	
					For examples of applications that have been migrated to JBoss EAP 6, see: Section 4.3.1, “Review Migration of Example Applications”.
				

		Report a bug
	

 ⁠4.1.2. Become Familiar with Tools That Can Assist with the Migration

Summary

			There are some tools that can assist you in your migration efforts. The following is a list of these tools along with a description of what they do.
		
	Tattletale
	
					With the change to modular class loading, you need to find and rectify application dependencies. Tattletale can help you identify dependent module names and generate the configuration XML for your application.
				

					 Section 4.1.3, “Use Tattletale to Find Application Dependencies”
				

	IronJacamar Migration Tool
	
					In JBoss EAP 6, datasources and resource adapters are no longer configured in a separate file. They are now defined in the server configuration file and use new schemas. The IronJacamar Migration Tool can help convert the old configuration into the format expected by JBoss EAP 6.
				

					 Section 4.1.6, “Use the IronJacamar Tool to Migrate Datasource and Resource Adapter Configurations”
				

		Report a bug
	

 ⁠4.1.3. Use Tattletale to Find Application Dependencies

Summary

			Due to the modular class loading changes in JBoss EAP 6, you might see ClassNotFoundException or ClassCastException traces in the JBoss log when you migrate your application. To resolve these errors, you need to find the JARs that contain the classes specified by the exceptions.
		

		Tattletale is an excellent 3rd party tool that recursively scans your application and provides detailed reports about its contents. Tattletale 1.2.0.Beta2 or later contains additional support to help with the new JBoss Modules class loading used in JBoss EAP 6. Tattletale's "JBoss AS 7" report can be used to automatically identify and generate dependent module names to include your application's jboss-deployment-structure.xml file.
	

 ⁠Procedure 4.1. Install and run Tattletale to find application dependencies
	
				 Section 4.1.4, “Download and Install Tattletale”
			

	
				 Section 4.1.5, “Create and Review the Tattletale Report”
			

Note

			Tattletale is a 3rd party tool and not supported as part of JBoss EAP 6. For the most current documentation on how to install and use Tattletale, go to the Tattletale web site at http://www.jboss.org/tattletale.
		

		Report a bug
	

 ⁠4.1.4. Download and Install Tattletale

 ⁠Procedure 4.2. Download and Install Tattletale
	
				Download Tattletale version 1.2.0.Beta2 or newer from http://sourceforge.net/projects/jboss/files/JBoss%20Tattletale.
			

	
				Unzip the file into the directory of your choice.
			

	
				Modify the TATTLETALE_HOME/jboss-tattletale.properties file by doing the following:
			
	
						Add ee6 and as7 to the profiles property.
					

						
profiles=java5, java6, ee6, as7

					

	
						Uncomment the scan and reports properties.
					

		Report a bug
	

 ⁠4.1.5. Create and Review the Tattletale Report

	
				Create the Tattletale report by issuing the command: java -jar TATTLETALE_HOME/tattletale.jar APPLICATION_ARCHIVE OUTPUT_DIRECTORY
			

				For example: java -jar tattletale-1.2.0.Beta2/tattletale.jar ~/applications/jboss-seam-booking.ear ~/output-results/
			

	
				In a browser, open the OUTPUT_DIRECTORY/index.html file and click on "JBoss AS 7" under the "Reports" section.
			
	
						The column on the left lists the archives used by the application. Click on the ARCHIVE_NAME link to view details about the archive, such as its location, manifest information, and classes it contains.
					

	
						The jboss-deployment-structure.xml link in the column on the right shows how to specify the module dependency for the archive named in the left column. Click on this link to see how to define the deployment dependency module information for this archive.
					

		Report a bug
	

 ⁠4.1.6. Use the IronJacamar Tool to Migrate Datasource and Resource Adapter Configurations

Summary

			In previous versions of the application server, datasources and resource adapters were configured and deployed using a file with a suffix of *-ds.xml. The IronJacamar 1.1 distribution contains a migration tool that can be used to convert these configuration files into the format expected by JBoss EAP 6. The tool parses the source configuration file from the previous release, then creates and writes the XML configuration to an output file in the new format. This XML can then be copied and pasted under the correct subsystem in the JBoss EAP 6 server configuration file. This tool makes a best effort to convert old attributes and elements into the new format, however, it may be necessary to make additional modifications to the generated file.
		

 ⁠Procedure 4.3. Install and run the IronJacamar Migration tool
	
				 Section 4.1.7, “Download and Install the IronJacamar Migration Tool”
			

	
				 Section 4.1.8, “Use the IronJacamar Migration Tool to Convert a Datasource Configuration File”
			

	
				 Section 4.1.9, “Use the IronJacamar Migration Tool to Convert a Resource Adapter Configuration File”
			

Note

			The IronJacamar Migration tool is a 3rd party tool and not supported as part of JBoss EAP 6. For more information about IronJacamar, go to http://www.ironjacamar.org/. For the most current documentation on how to install and use this tool, go to http://www.ironjacamar.org/documentation.html.
		

		Report a bug
	

 ⁠4.1.7. Download and Install the IronJacamar Migration Tool

		Note

				The migration tool is only available in IronJacamar 1.1 version or higher and requires Java 7 or higher.
			

	
	
				Download the latest distribution of IronJacamar from here: http://www.ironjacamar.org/download.html
			

	
				Unzip the downloaded file into a directory of your choice.
			

	
				Find the converter script in the IronJacamar distribution.
					
							The Linux script is located here: IRONJACAMAR_HOME/doc/as/converter.sh
						

	
							The Windows batch file is located here: IRONJACAMAR_HOME/doc/as/converter.bat
						

			

		Report a bug
	

 ⁠4.1.8. Use the IronJacamar Migration Tool to Convert a Datasource Configuration File

		Note

				The IronJacamar converter script requires Java 7 or higher.
			

	

 ⁠Procedure 4.4. Convert a Datasource Configuration File
	
				Open a command line and navigate to the IRONJACAMAR_HOME/doc/as/ directory.
			

	
				Run the converter script by typing the following command:
					
							For Linux: ./converter.sh -ds SOURCE_FILE TARGET_FILE
						

	
							For Microsoft Windows: ./converter.bat -ds SOURCE_FILE TARGET_FILE
						

			

				The SOURCE_FILE is the datasource -ds.xml file from the previous release. The TARGET_FILE contains the new configuration.
			

				For example, to convert the jboss-seam-booking-ds.xml datasource configuration file located in the current directory, you would type:
					
							For Linux: ./converter.sh -ds jboss-seam-booking-ds.xml new-datasource-config.xml
						

	
							For Microsoft Windows: ./converter.bat -ds jboss-seam-booking-ds.xml new-datasource-config.xml
						

			

				Note that the parameter for datasource conversion is -ds.
			

	
				Copy the <datasource> element from the target file and paste it into the server configuration file under the <subsystem xmlns="urn:jboss:domain:datasources:1.1"><datasources> element.
				Important

						You must stop the server before editing the server configuration file for your change to be persisted on server restart.
					

				 	
							If you are running in a managed domain, copy the XML into the EAP_HOME/domain/configuration/domain.xml file.
						

	
							If you are running as a standalone server, copy the XML into the EAP_HOME/standalone/configuration/standalone.xml file.
						

			

	
				Modify the generated XML in the new configuration file.
			

				Here is an example of the jboss-seam-booking-ds.xml datasource configuration file for the Seam 2.2 Booking example that shipped with JBoss EAP 5.x:
<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>bookingDatasource</jndi-name>
 <connection-url>jdbc:hsqldb:.</connection-url>
 <driver-class>org.hsqldb.jdbcDriver</driver-class>
 <user-name>sa</user-name>
 <password></password>
 </local-tx-datasource>
</datasources>

				 The following is the configuration file that was generated by running the converter script. The generated file contains a <driver-class> element. The preferred way to define the driver class in JBoss EAP 6 is to use a <driver> element. Here is the resulting XML in the JBoss EAP 6 configuration file with modifications to comment out the <driver-class> element and add the corresponding <driver> element:
<subsystem xmlns="urn:jboss:domain:datasources:1.1">
 <datasources>
 <datasource enabled="true" jndi-name="java:jboss/datasources/bookingDatasource" jta="true"
 pool-name="bookingDatasource" use-ccm="true" use-java-context="true">
 <connection-url>jdbc:hsqldb:.</connection-url>
 <!-- Comment out the following driver-class element
 since it is not the preferred way to define this.
 <driver-class>org.hsqldb.jdbcDriver</driver-class> -->
 <!-- Specify the driver, which is defined later in the datasource -->
 <driver>h2<driver>
 <transaction-isolation>TRANSACTION_NONE</transaction-isolation>
 <pool>
 <prefill>false</prefill>
 <use-strict-min>false</use-strict-min>
 <flush-strategy>FailingConnectionOnly</flush-strategy>
 </pool>
 <security>
 <user-name>sa</user-name>
 <password/>
 </security>
 <validation>
 <validate-on-match>false</validate-on-match>
 <background-validation>false</background-validation>
 <use-fast-fail>false</use-fast-fail>
 </validation>
 <timeout/>
 <statement>
 <track-statements>false</track-statements>
 </statement>
 </datasource>
 <drivers>
 <!-- The following driver element was not in the
 XML target file. It was created manually. -->
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
</subsystem>

			

		Report a bug
	

 ⁠4.1.9. Use the IronJacamar Migration Tool to Convert a Resource Adapter Configuration File

		Note

				The IronJacamar converter script requires Java 7 or higher.
			

	
	
				Open a command line and navigate to the IRONJACAMAR_HOME/docs/as/ directory.
			

	
				Run the converter script by typing the following command:
					
							For Linux: ./converter.sh -ra SOURCE_FILE TARGET_FILE
						

	
							For Microsoft Windows: ./converter.bat -ra SOURCE_FILE TARGET_FILE
						

			

				The SOURCE_FILE is the resource adapter -ds.xml file from the previous release. The TARGET_FILE contains the new configuration.
			

				For example, to convert the mttestadapter-ds.xml resource adapter configuration file located in the current directory, you would type:
					
							For Linux: ./converter.sh -ra mttestadapter-ds.xml new-adapter-config.xml
						

	
							For Microsoft Windows: ./converter.bat -ra mttestadapter-ds.xml new-adapter-config.xml
						

			

				Note that the parameter for resource adapter conversion is -ra.
			

	
				Copy the entire <resource-adapters> element from the target file and paste it into the server configuration file under the <subsystem xmlns="urn:jboss:domain:resource-adapters:1.1"> element.
				Important

						You must stop the server before editing the server configuration file for your change to be persisted on server restart.
					

				 	
							If you are running in a managed domain, copy the XML into the EAP_HOME/domain/configuration/domain.xml file.
						

	
							If you are running as a standalone server,copy the XML into the EAP_HOME/standalone/configuration/standalone.xml file.
						

			

	
				Modify the generated XML in the new configuration file.
			

				Here is an example of the mttestadapter-ds.xml resource adapter configuration file from the JBoss EAP 5.x TestSuite:
<?xml version="1.0" encoding="UTF-8"?>
 <!-- == -->
 <!-- ConnectionManager setup for jboss test adapter -->
 <!-- Build jmx-api (build/build.sh all) and view for config documentation -->
 <!-- == -->
<connection-factories>
 <tx-connection-factory>
 <jndi-name>JBossTestCF</jndi-name>
 <xa-transaction/>
 <rar-name>jbosstestadapter.rar</rar-name>
 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>
 <config-property name="IntegerProperty" type="java.lang.Integer">2</config-property>
 <config-property name="BooleanProperty" type="java.lang.Boolean">false</config-property>
 <config-property name="DoubleProperty" type="java.lang.Double">5.5</config-property>
 <config-property name="UrlProperty" type="java.net.URL">http://www.jboss.org</config-property>
 <config-property name="sleepInStart" type="long">200</config-property>
 <config-property name="sleepInStop" type="long">200</config-property>
 </tx-connection-factory>
 <tx-connection-factory>
 <jndi-name>JBossTestCF2</jndi-name>
 <xa-transaction/>
 <rar-name>jbosstestadapter.rar</rar-name>
 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>
 <config-property name="IntegerProperty" type="java.lang.Integer">2</config-property>
 <config-property name="BooleanProperty" type="java.lang.Boolean">false</config-property>
 <config-property name="DoubleProperty" type="java.lang.Double">5.5</config-property>
 <config-property name="UrlProperty" type="java.net.URL">http://www.jboss.org</config-property>
 <config-property name="sleepInStart" type="long">200</config-property>
 <config-property name="sleepInStop" type="long">200</config-property>
 </tx-connection-factory>
 <tx-connection-factory>
 <jndi-name>JBossTestCFByTx</jndi-name>
 <xa-transaction/>
 <track-connection-by-tx>true</track-connection-by-tx>
 <rar-name>jbosstestadapter.rar</rar-name>
 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>
 <config-property name="IntegerProperty" type="java.lang.Integer">2</config-property>
 <config-property name="BooleanProperty" type="java.lang.Boolean">false</config-property>
 <config-property name="DoubleProperty" type="java.lang.Double">5.5</config-property>
 <config-property name="UrlProperty" type="java.net.URL">http://www.jboss.org</config-property>
 <config-property name="sleepInStart" type="long">200</config-property>
 <config-property name="sleepInStop" type="long">200</config-property>
 </tx-connection-factory>
</connection-factories>

				 The following is the configuration file that was generated by running the converter script. Replace the class-name attribute value "FIXME_MCF_CLASS_NAME" in the generated XML with the correct class name of the managed connection factory, in this case, "org.jboss.test.jca.adapter.TestManagedConnectionFactory". Here is the resulting XML in the JBoss EAP 6 configuration file with modifications to the <class-name> element value:
<subsystem xmlns="urn:jboss:domain:resource-adapters:1.1">
 <resource-adapters>
 <resource-adapter>
 <archive>jbosstestadapter.rar</archive>
 <transaction-support>XATransaction</transaction-support>
 <connection-definitions>
 <!-- Replace the "FIXME_MCF_CLASS_NAME" class-name value with the correct class name
 <connection-definition class-name="FIXME_MCF_CLASS_NAME" enabled="true"
 jndi-name="java:jboss/JBossTestCF" pool-name="JBossTestCF"
 use-ccm="true" use-java-context="true"> -->
 <connection-definition
 class-name="org.jboss.test.jca.adapter.TestManagedConnectionFactory"
 enabled="true"
 jndi-name="java:jboss/JBossTestCF" pool-name="JBossTestCF"
 use-ccm="true" use-java-context="true">
 <config-property name="IntegerProperty">2</config-property>
 <config-property name="sleepInStart">200</config-property>
 <config-property name="sleepInStop">200</config-property>
 <config-property name="BooleanProperty">false</config-property>
 <config-property name="UrlProperty">http://www.jboss.org</config-property>
 <config-property name="DoubleProperty">5.5</config-property>
 <pool>
 <prefill>false</prefill>
 <use-strict-min>false</use-strict-min>
 <flush-strategy>FailingConnectionOnly</flush-strategy>
 </pool>
 <security>
 <application/>
 </security>
 <timeout/>
 <validation>
 <background-validation>false</background-validation>
 <use-fast-fail>false</use-fast-fail>
 </validation>
 </connection-definition>
 </connection-definitions>
 </resource-adapter>
 <resource-adapter>
 <archive>jbosstestadapter.rar</archive>
 <transaction-support>XATransaction</transaction-support>
 <connection-definitions>
 <!-- Replace the "FIXME_MCF_CLASS_NAME" class-name value with the correct class name
 <connection-definition class-name="FIXME_MCF_CLASS_NAME" enabled="true"
 jndi-name="java:jboss/JBossTestCF2" pool-name="JBossTestCF2"
 use-ccm="true" use-java-context="true"> -->
 <connection-definition
 class-name="org.jboss.test.jca.adapter.TestManagedConnectionFactory"
 enabled="true"
 jndi-name="java:jboss/JBossTestCF2" pool-name="JBossTestCF2"
 use-ccm="true" use-java-context="true">
 <config-property name="IntegerProperty">2</config-property>
 <config-property name="sleepInStart">200</config-property>
 <config-property name="sleepInStop">200</config-property>
 <config-property name="BooleanProperty">false</config-property>
 <config-property name="UrlProperty">http://www.jboss.org</config-property>
 <config-property name="DoubleProperty">5.5</config-property>
 <pool>
 <prefill>false</prefill>
 <use-strict-min>false</use-strict-min>
 <flush-strategy>FailingConnectionOnly</flush-strategy>
 </pool>
 <security>
 <application/>
 </security>
 <timeout/>
 <validation>
 <background-validation>false</background-validation>
 <use-fast-fail>false</use-fast-fail>
 </validation>
 </connection-definition>
 </connection-definitions>
 </resource-adapter>
 <resource-adapter>
 <archive>jbosstestadapter.rar</archive>
 <transaction-support>XATransaction</transaction-support>
 <connection-definitions>
 <!-- Replace the "FIXME_MCF_CLASS_NAME" class-name value with the correct class name
 <connection-definition class-name="FIXME_MCF_CLASS_NAME" enabled="true"
 jndi-name="java:jboss/JBossTestCFByTx" pool-name="JBossTestCFByTx"
 use-ccm="true" use-java-context="true"> -->
 <connection-definition
 class-name="org.jboss.test.jca.adapter.TestManagedConnectionFactory"
 enabled="true"
 jndi-name="java:jboss/JBossTestCFByTx" pool-name="JBossTestCFByTx"
 use-ccm="true" use-java-context="true">
 <config-property name="IntegerProperty">2</config-property>
 <config-property name="sleepInStart">200</config-property>
 <config-property name="sleepInStop">200</config-property>
 <config-property name="BooleanProperty">false</config-property>
 <config-property name="UrlProperty">http://www.jboss.org</config-property>
 <config-property name="DoubleProperty">5.5</config-property>
 <pool>
 <prefill>false</prefill>
 <use-strict-min>false</use-strict-min>
 <flush-strategy>FailingConnectionOnly</flush-strategy>
 </pool>
 <security>
 <application/>
 </security>
 <timeout/>
 <validation>
 <background-validation>false</background-validation>
 <use-fast-fail>false</use-fast-fail>
 </validation>
 </connection-definition>
 </connection-definitions>
 </resource-adapter>
 </resource-adapters>
</subsystem>

			

		Report a bug
	

 ⁠4.2. Debug Migration Issues

 ⁠4.2.1. Debug and Resolve Migration Issues

		Due to class loading, JNDI naming rules, and other changes in the application server, you may encounter exceptions or other errors if you try to deploy your application "as-is". The following describes how to resolve some of the more common exceptions and errors you might encounter.
	
	
				 Section 4.2.2, “Debug and Resolve ClassNotFoundExceptions and NoClassDefFoundErrors”
			

	
				 Section 4.2.5, “Debug and Resolve ClassCastExceptions”
			

	
				 Section 4.2.6, “Debug and Resolve DuplicateServiceExceptions”
			

	
				 Section 4.2.7, “Debug and Resolve JBoss Seam Debug Page Errors”
			

		Report a bug
	

 ⁠4.2.2. Debug and Resolve ClassNotFoundExceptions and NoClassDefFoundErrors

Summary

			ClassNotFoundExceptions usually occur due to an unresolved dependency. This means you must explicitly define the dependencies on other modules or copy JARs from external sources.
		
	
				 First, try to find the missing dependency. This is described in more detail here: Section 4.2.3, “Find the JBoss Module Dependency”
			

	
				 If there is not a module for the missing class, find the JAR in the previous install. For more information, see Section 4.2.4, “Find the JAR in the Previous Install”
			

		Report a bug
	

 ⁠4.2.3. Find the JBoss Module Dependency

		To resolve the dependency, first, try to find the module that contains the class specified by the ClassNotFoundException by looking in the EAP_HOME/modules/system/layers/base/ directory. If you find a module for the class, you must add a dependency to the manifest entry.
	

		For example, if you see this ClassNotFoundException trace in the log:
Caused by: java.lang.ClassNotFoundException: org.apache.commons.logging.Log
 from [Module "deployment.TopicIndex.war:main" from Service Module Loader]
 at org.jboss.modules.ModuleClassLoader.findClass(ModuleClassLoader.java:188)

		 Find the JBoss module containing this class by doing the following:
	

 ⁠Procedure 4.5. Find the Dependency
	
				First determine if there is an obvious module for the class.
			
	
						Navigate to the EAP_HOME/modules/system/layers/base/ directory and look for the module path matching class named in the ClassNotFoundException.
					

						You find the module path org/apache/commons/logging/.
					

	
						Open the EAP_HOME/modules/system/layers/base/org/apache/commons/logging/main/module.xml file and find the module name. In this case, it is "org.apache.commons.logging".
					

	
						Add the module name to the Dependencies in the MANIFEST.MF file:
					

						

Manifest-Version: 1.0
Dependencies: org.apache.commons.logging

					

	
				If there is no obvious module path for the class, you may need to find the dependency in another location.
			
	
						Find the class named by the ClassNotFoundException in the Tattletale report.
					

	
						Find the module containing the JAR in the EAP_HOME/modules directory and find the module name as in the previous step.
					

		Report a bug
	

 ⁠4.2.4. Find the JAR in the Previous Install

		If the class is not found in a JAR packaged in a module defined by the server, find the JAR in your EAP5_HOME install or your prior server's lib/ directory.
	

		For example, if you see this ClassNotFoundException trace in the log:
Caused by: java.lang.NoClassDefFoundError: org/hibernate/validator/ClassValidator at java.lang.Class.getDeclaredMethods0(Native Method)

		 Find the JAR containing this class by doing the following:
	
	
				Open a terminal and navigate to the EAP5_HOME/ directory.
			

	
				Issue the command:
			

				grep 'org.hibernate.validator.ClassValidator' `find . \-name '*.jar'`
			

	
				You might see more than one result. In this case, the following result is the JAR we need:
			

				
Binary file ./jboss-eap-5.1/seam/lib/hibernate-validator.jar matches

			

	
				Copy this JAR to the application's lib/ directory.
			

				If you find that you need a large number of JARs, it may be easier to define a module for the classes. For more information, refer to Modules in the chapter entitled Get Started Developing Applications in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
			

	
				Rebuild and redeploy the application.
			

		Report a bug
	

 ⁠4.2.5. Debug and Resolve ClassCastExceptions

		ClassCastExceptions often happen because a class is being loaded by a different class loader than the class it extends. They can also be a result of the same class existing in multiple JARs.
	
	
				Search the application to find all JAR(s) that contain the class named by the ClassCastException. If there is a module defined for the class, find and remove the duplicate JAR(s) from the application's WAR or EAR.
			

	
				Find the JBoss module containing the class and explicitly define the dependency in the MANIFEST.MF file or in the jboss-deployment-structure.xml file. For more information, refer to Class Loading and Subdeployments in the chapter entitled Class Loading and Modules in the Development Guide for JBoss EAP 6 on https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
			

	
				If you are not able to resolve it using the steps above, you can often determine the cause of the problem by printing the class loader information to the log. For example, you see the following ClassCastException in the log:
			

				
java.lang.ClassCastException: com.example1.CustomClass1 cannot be cast to com.example2.CustomClass2

			
	
						In your code, print the class loader information for the classes named by the ClassCastException to the log, for example:
					

						

logger.info("Class loader for CustomClass1: " +
 com.example1.CustomClass1.getClass().getClassLoader().toString());
logger.info("Class loader for CustomClass2: " +
 com.example2.CustomClass2.getClass().getClassLoader().toString());

					

	
						The information in the log shows which modules are loading the classes and, based on your application, you need to remove or move the conflicting JAR(s).
					

		Report a bug
	

 ⁠4.2.6. Debug and Resolve DuplicateServiceExceptions

		If you get a DuplicateServiceException for a subdeployment of a JAR or a message that the WAR application has already been installed when you deploy your EAR in JBoss EAP 6, it may be due to changes in the way JBossWS handles the deployment.
	

		The JBossWS 3.3.0 release introduced a new Context Root Mapping Algorithm for servlet based endpoints to allow it to become seamlessly compatible with TCK6. If the application EAR archive contains a WAR and a JAR with the same name, JBossWS may create a WAR context and web context with the same name. The web context conflicts with the WAR context and this results in deployment errors. Resolve the deployment issues in one of the following ways:
	
	
				Rename the JAR file to a name that is different than the WAR so the generated web and WAR contexts is unique.
			

	
				Provide a <context-root> element in the jboss-web.xml file.
			

	
				Provide a <context-root> element in the jboss-webservices.xml file.
			

	
				Customize the <context-root> element for the WAR in the application.xml file.
			

		Report a bug
	

 ⁠4.2.7. Debug and Resolve JBoss Seam Debug Page Errors

		After you migrate and successfully deploy your application, you may encounter a runtime error that redirects you to the "JBoss Seam Debug" page. The URL for this page is "http://localhost:8080/APPLICATION_CONTEXT/debug.seam". This page allows you to view and inspect the Seam components in any of the Seam contexts associated with your current login session.
	

 ⁠[image: JBoss Seam Debug Page]

Figure 4.1. JBoss Seam Debug Page

		The most likely reason you are redirected to this page is because Seam has caught an Exception that was not handled in the application code. The root cause of the exception can often be found in one of the links on the "JBoss Seam Debug Page".
	
	
				Expand the Component section on the page and look for the org.jboss.seam.caughtException component.
			

	
				The cause and stack trace should point you to the missing dependencies.
			

 ⁠[image: Component org.jboss.seam.caughtException information]

Figure 4.2. Component org.jboss.seam.caughtException information

	
				Use the technique described in Section 4.2.2, “Debug and Resolve ClassNotFoundExceptions and NoClassDefFoundErrors” to resolve module dependencies.
			

				In the example above, the simplest solution is to add org.slf4j to the MANIFEST.MF
			

				

Manifest-Version: 1.0
Dependencies: org.slf4j

			

				Another option is to add a dependency for the module to the jboss-deployment-structure.xml file:
<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.slf4j" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

			

		Report a bug
	

 ⁠4.3. Review Migration of Example Applications

 ⁠4.3.1. Review Migration of Example Applications

Overview

			The following is a list of JBoss EAP 5.x example applications that have been migrated to JBoss EAP 6. To view the details of what was changed in a particular application, click on the link below.
				
						 Section 4.3.2, “Migrate the Seam 2.2 JPA Example to JBoss EAP 6”
					

	
						 Section 4.3.3, “Migrate the Seam 2.2 Booking Example to JBoss EAP 6”
					

	
						 Section 4.3.4, “Migrate the Seam 2.2 Booking Archive to JBoss EAP 6: Step-By-Step Instructions”
					

		

		Report a bug
	

 ⁠4.3.2. Migrate the Seam 2.2 JPA Example to JBoss EAP 6

Summary

			The following task list summarizes the changes needed to successfully migrate the Seam 2.2 JPA example application to JBoss EAP 6. This example application can be found in the latest JBoss EAP 5 distribution under EAP5.x_HOME/jboss-eap-5.x/seam/examples/jpa/
		
Important

			Applications that use Hibernate directly with Seam 2.2 may use a version of Hibernate 3 packaged inside the application. Hibernate 4, which is provided through the org.hibernate module of JBoss EAP 6, is not supported by Seam 2.2. This example is intended to help you get your application running on JBoss EAP 6 as a first step. Please be aware that packaging Hibernate 3 with a Seam 2.2 application is not a supported configuration.
		

 ⁠Procedure 4.6. Migrate the Seam 2.2 JPA Example
	Remove the jboss-web.xml file

				Remove the jboss-web.xml file from the jboss-seam-jpa.war/WEB-INF/ directory. The class loading defined in the jboss-web.xml is now the default behavior.
			

	Modify the jboss-seam-jpa.jar/META-INF/persistence.xml file as follows.
	
						Remove or comment out the hibernate.cache.provider_class property in the jboss-seam-jpa.war/WEB-INF/classes/META-INF/persistence.xml file:
<!-- <property name="hibernate.cache.provider_class" value="org.hibernate.cache.HashtableCacheProvider"/> -->

					

	
						Add the provider module property to the jboss-seam-booking.jar/META-INF/persistence.xml file:
<property name="jboss.as.jpa.providerModule" value="hibernate3-bundled" />

					

	
						Change the jta-data-source property to use the default JDBC datasource JNDI name:
<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

					

	Add Seam 2.2 dependencies

				Copy the following JARs from the Seam 2.2 distribution library, SEAM_HOME/lib/, into the jboss-seam-jpa.war/WEB-INF/lib/ directory:
					
							antlr.jar
						

	
							slf4j-api.jar
						

	
							slf4j-log4j12.jar
						

	
							hibernate-entitymanager.jar
						

	
							hibernate-core.jar
						

	
							hibernate-annotations.jar
						

	
							hibernate-commons-annotations.jar
						

	
							hibernate-validator.jar
						

			

	Create a jboss-deployment-structure file to add remaining dependencies

				Create a jboss-deployment-structure.xml file in the jboss-seam-jpa.war/WEB-INF/ folder containing the following data:
<jboss-deployment-structure>
 <deployment>
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 <module name="com.sun.jsf-impl" slot="main"/>
 <module name="org.hibernate" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="org.apache.log4j" />
 <module name="org.dom4j" />
 <module name="org.apache.commons.logging" />
 <module name="org.apache.commons.collections" />
 <module name="javax.faces.api" slot="1.2"/>
 <module name="com.sun.jsf-impl" slot="1.2"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

			

Result:

			The Seam 2.2 JPA example application deploys and runs successfully on JBoss EAP 6.
		

		Report a bug
	

 ⁠4.3.3. Migrate the Seam 2.2 Booking Example to JBoss EAP 6

Summary

			The Seam 2.2 Booking EAR migration is more complicated than the Seam 2.2 JPA WAR example. Documentation for the Seam 2.2 JPA WAR example migration can be found here: Section 4.3.2, “Migrate the Seam 2.2 JPA Example to JBoss EAP 6”. To migrate the application, you must do the following:
				
						Initialize JSF 1.2 instead of the default JSF 2.
					

	
						Bundle older versions of the Hibernate JARs rather than use those that ship with JBoss EAP 6.
					

	
						Change the JNDI bindings to use the new Java EE 6 JNDI portable syntax.
					

			 The first 2 steps above were done in the Seam 2.2 JPA WAR example migration. The third step is new and is necessary because the EAR contains EJBs.
		
Important

			Applications that use Hibernate directly with Seam 2.2 may use a version of Hibernate 3 packaged inside the application. Hibernate 4, which is provided through the org.hibernate module of JBoss EAP 6, is not supported by Seam 2.2. This example is intended to help you get your application running on JBoss EAP 6 as a first step. Please be aware that packaging Hibernate 3 with a Seam 2.2 application is not a supported configuration.
		

 ⁠Procedure 4.7. Migrate the Seam 2.2 Booking example
	Create the jboss-deployment-structure.xml file

				Create a new file named jboss-deployment-structure.xml in the jboss-seam-booking.ear/META-INF/ and add the following content:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>
 <module name="org.apache.log4j" export="true"/>
 <module name="org.dom4j" export="true"/>
 <module name="org.apache.commons.logging" export="true"/>
 <module name="org.apache.commons.collections" export="true"/>
 </dependencies>
 <exclusions>
 <module name="org.hibernate" slot="main"/>
 </exclusions>

 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 <module name="com.sun.jsf-impl" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 <module name="com.sun.jsf-impl" slot="1.2"/>
 </dependencies>
 </sub-deployment>
 </jboss-deployment-structure>

			

	Modify the jboss-seam-booking.jar/META-INF/persistence.xml file as follows.
	
						Remove or comment out the hibernate property for the cache provider class:
<!-- <property name="hibernate.cache.provider_class" value="org.hibernate.cache.HashtableCacheProvider"/> -->

					

	
						Add the provider module property to the jboss-seam-booking.jar/META-INF/persistence.xml file:
<property name="jboss.as.jpa.providerModule" value="hibernate3-bundled" />

					

	
						Change the jta-data-source property to use the default JDBC datasource JNDI name:
<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

					

	Copy JARs from the Seam 2.2 distribution

				Copy the following JARs from the Seam 2.2 distribution EAP5.x_HOME/jboss-eap5.x/seam/lib/ into the jboss-seam-booking.ear/lib directory.

antlr.jar
slf4j-api.jar
slf4j-log4j12.jar
hibernate-core.jar
hibernate-entitymanager.jar
hibernate-validator.jar
hibernate-annotations.jar
hibernate-commons-annotations.jar

			

	Change the JNDI lookup names

				Change JNDI lookup strings in the jboss-seam-booking.war/WEB-INF/components.xml file. Because of new JNDI portable rules, JBoss EAP 6 now binds EJBs using JNDI portable syntax rules and you cannot use the single jndiPattern that was used in JBoss EAP 5. This is what the application EJB JNDI lookup strings must be changed to JBoss EAP 6:

java:global/jboss-seam-booking/jboss-seam-booking/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching
java:app/jboss-seam-booking/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching
java:module/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching
java:global/jboss-seam-booking/jboss-seam-booking/HotelSearchingAction
java:app/jboss-seam-booking/HotelSearchingAction
java:module/HotelSearchingAction

				 The JNDI lookup strings for the Seam 2.2 framework EJBs must be changed as follows:

java:global/jboss-seam-booking/jboss-seam/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations
java:app/jboss-seam/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations
java:module/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations
java:global/jboss-seam-booking/jboss-seam/EjbSynchronizations
java:app/jboss-seam/EjbSynchronizations
java:module/EjbSynchronizations

				 You can take either of the following approaches:
			
	Add component elements

						You can add a jndi-name for every EJB to the WEB-INF/components.xml:

 <component class="org.jboss.seam.transaction.EjbSynchronizations" jndi-name="java:app/jboss-seam/EjbSynchronizations"/>
 <component class="org.jboss.seam.async.TimerServiceDispatcher" jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>
 <component class="org.jboss.seam.example.booking.AuthenticatorAction" jndi-name="java:app/jboss-seam-booking/AuthenticatorAction" />
 <component class="org.jboss.seam.example.booking.BookingListAction" jndi-name="java:app/jboss-seam-booking/BookingListAction" />
 <component class="org.jboss.seam.example.booking.RegisterAction" jndi-name="java:app/jboss-seam-booking/RegisterAction" />
 <component class="org.jboss.seam.example.booking.HotelSearchingAction" jndi-name="java:app/jboss-seam-booking/HotelSearchingAction" />
 <component class="org.jboss.seam.example.booking.HotelBookingAction" jndi-name="java:app/jboss-seam-booking/HotelBookingAction" />
 <component class="org.jboss.seam.example.booking.ChangePasswordAction" jndi-name="java:app/jboss-seam-booking/ChangePasswordAction" />

					

	
						You can modify the code by adding the @JNDIName(value="") annotation specifying the JNDI path. An example of the changed stateless session bean code is below. A detailed description of this process can be found in the Seam 2.2 reference documentation.

@Stateless
@Name("authenticator")
@JndiName(value="java:app/jboss-seam-booking/AuthenticatorAction")
public class AuthenticatorAction
 implements Authenticator
{
...
}

					

Result:

			The Seam 2.2 Booking application deploys and runs successfully on JBoss EAP 6.
		

		Report a bug
	

 ⁠4.3.4. Migrate the Seam 2.2 Booking Archive to JBoss EAP 6: Step-By-Step Instructions

		This is a step-by-step guide on how to port the Seam 2.2 Booking application archive from JBoss EAP 5.X to JBoss EAP 6. Although there are better approaches for migrating applications, many developers might be tempted to deploy the application archive as-is to the JBoss EAP 6 server to see what happens. The purpose of this document is to show the types of issues you might encounter when you do that and how you can debug and resolve those issues.
	

		For this example, the application EAR is deployed to the EAP6_HOME/standalone/deployments directory with no changes other than extracting the archives. This allows you to easily modify the XML files contained within the archives as you encounter and resolve issues.
	
Important

			Applications that use Hibernate directly with Seam 2.2 may use a version of Hibernate 3 packaged inside the application. Hibernate 4, which is provided through the org.hibernate module of JBoss EAP 6, is not supported by Seam 2.2. This example is intended to help you get your application running on JBoss EAP 6 as a first step. Please be aware that packaging Hibernate 3 with a Seam 2.2 application is not a supported configuration.
		

 ⁠Procedure 4.8. Migrate the application
	
				 Section 4.3.5, “Build and Deploy the JBoss EAP 5.X Version of the Seam 2.2 Booking Application”
			

	
				 Section 4.3.6, “Debug and Resolve Seam 2.2 Booking Archive Deployment Errors and Exceptions”
			

	
				 Section 4.3.7, “Debug and Resolve Seam 2.2 Booking Archive Runtime Errors and Exceptions”
			

		At this point you are able to successfully access the application in a browser using the URL http://localhost:8080/seam-booking/. Login with demo/demo and you see the Booking welcome page.
	
Review the summary of changes

			 Section 4.3.8, “Review a Summary of the Changes Made When Migrating the Seam 2.2 Booking Application”
		

		Report a bug
	

 ⁠4.3.5. Build and Deploy the JBoss EAP 5.X Version of the Seam 2.2 Booking Application

		Before migrating this application, you need to build the JBoss EAP 5.X Seam 2.2 Booking application, extract the archive, and copy it into the JBoss EAP 6 deployment folder.
	

 ⁠Procedure 4.9. Build and deploy the EAR
	
				Build the EAR:
			

$ cd /EAP5_HOME/jboss-eap5.x/seam/examples/booking
$ ANT_HOME/ant explode

				Replace jboss-eap5.x with the version of JBoss EAP that you are migrating from
			

	
				Copy the EAR to the EAP6_HOME deployments directory:
			

$ cp -r EAP5_HOME/seam/examples/booking/exploded-archives/jboss-seam-booking.ear EAP6_HOME/standalone/deployments/
$ cp -r EAP5_HOME/seam/examples/booking/exploded-archives/jboss-seam-booking.war EAP6_HOME/standalone/deployments/jboss-seam.ear
$ cp -r EAP5_HOME/seam/examples/booking/exploded-archives/jboss-seam-booking.jar EAP6_HOME/standalone/deployments/jboss-seam.ear

	
				Start the JBoss EAP 6 server and check the log. You see:
			

INFO [org.jboss.as.deployment] (DeploymentScanner-threads - 1) Found jboss-seam-booking.ear in deployment directory.
 To trigger deployment create a file called jboss-seam-booking.ear.dodeploy

	
				Create an empty file with the name jboss-seam-booking.ear.dodeploy and copy it into the EAP6_HOME/standalone/deployments directory. You need to copy this file into the deployments directory many times while migrating this application, so keep it in a location where you can easily find it. In the log, you should now see the following messages, indicating that it is deploying:
			

INFO [org.jboss.as.server.deployment] (MSC service thread 1-1) Starting deployment of "jboss-seam-booking.ear"
INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Starting deployment of "jboss-seam-booking.jar"
INFO [org.jboss.as.server.deployment] (MSC service thread 1-6) Starting deployment of "jboss-seam.jar"
INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment of "jboss-seam-booking.war"

				At this point, you encounter your first deployment error. In the next step, you walk through each issue and learn how to debug and resolve it.
			

				To learn how to debug and resolve deployment issues, click here: Section 4.3.6, “Debug and Resolve Seam 2.2 Booking Archive Deployment Errors and Exceptions”
			

				To return to the previous topic, click here: Section 4.3.4, “Migrate the Seam 2.2 Booking Archive to JBoss EAP 6: Step-By-Step Instructions”
			

		Report a bug
	

 ⁠4.3.6. Debug and Resolve Seam 2.2 Booking Archive Deployment Errors and Exceptions

		In the previous step, Section 4.3.5, “Build and Deploy the JBoss EAP 5.X Version of the Seam 2.2 Booking Application”, you built the JBoss EAP 5.X Seam 2.2 Booking application and deployed it to the JBoss EAP 6 deployment folder. In this step, you debug and resolve each deployment error you encounter.
	
Important

			Applications that use Hibernate directly with Seam 2.2 may use a version of Hibernate 3 packaged inside the application. Hibernate 4, which is provided through the org.hibernate module of JBoss EAP 6, is not supported by Seam 2.2. This example is intended to help you get your application running on JBoss EAP 6 as a first step. Please be aware that packaging Hibernate 3 with a Seam 2.2 application is not a supported configuration.
		

 ⁠Procedure 4.10. Debug and resolve deployment errors and exceptions
	
				Issue - java.lang.ClassNotFoundException: javax.faces.FacesException
			

				When you deploy the application, the log contains the following error:

ERROR \[org.jboss.msc.service.fail\] (MSC service thread 1-1) MSC00001: Failed to start service jboss.deployment.subunit."jboss-seam-booking.ear"."jboss-seam-booking.war".POST_MODULE:
org.jboss.msc.service.StartException in service jboss.deployment.subunit."jboss-seam-booking.ear"."jboss-seam-booking.war".POST_MODULE:
Failed to process phase POST_MODULE of subdeployment "jboss-seam-booking.war" of deployment "jboss-seam-booking.ear"
 (.. additional logs removed ...)
Caused by: java.lang.ClassNotFoundException: javax.faces.FacesException from \[Module "deployment.jboss-seam-booking.ear:main" from Service Module Loader\]
 at org.jboss.modules.ModuleClassLoader.findClass(ModuleClassLoader.java:191)

			
What it means:

					The ClassNotFoundException indicates a missing dependency. In this case, it cannot find the class javax.faces.FacesException and you need to explicitly add the dependency.
				
How to resolve it:

					Find the module name for that class in the EAP6_HOME/modules/system/layers/base/ directory by looking for a path that matches the missing class. In this case, you find 2 modules that match:

javax/faces/api/main
javax/faces/api/1.2

					 Both modules have the same module name: javax.faces.api but one in the main directory is for JSF 2.0 and the one located in the 1.2 directory is for JSF 1.2. If there was only one module available, you could simply create a MANIFEST.MF file and added the module dependency. But in this case, you want to use the JSF 1.2 version and not the 2.0 version in main, so you need to specify one and exclude the other. To do this, you create a jboss-deployment-structure.xml file in the EAR's META-INF/ directory that contains the following data:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

					 In the deployment section, you add the dependency for the javax.faces.api for the JSF 1.2 module. You also add the dependency for the JSF 1.2 module in the subdeployment section for the WAR and exclude the module for JSF 2.0.
				

				Redeploy the application by deleting the EAP6_HOME/standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Issue - java.lang.ClassNotFoundException: org.apache.commons.logging.Log
			

				When you deploy the application, the log contains the following error:

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-8) MSC00001: Failed to start service jboss.deployment.unit."jboss-seam-booking.ear".INSTALL:
org.jboss.msc.service.StartException in service jboss.deployment.unit."jboss-seam-booking.ear".INSTALL:
Failed to process phase INSTALL of deployment "jboss-seam-booking.ear"
 (.. additional logs removed ...)
Caused by: java.lang.ClassNotFoundException: org.apache.commons.logging.Log from [Module "deployment.jboss-seam-booking.ear.jboss-seam-booking.war:main" from Service Module Loader]

			
What it means:

					The ClassNotFoundException indicates a missing dependency. In this case, it cannot find the class org.apache.commons.logging.Log and you need to explicitly add the dependency.
				
How to resolve it:

					Find the module name for that class in the EAP6_HOME/modules/system/layers/base/ directory by looking for a path that matches the missing class. In this case, you find one module that matches the path org/apache/commons/logging/. The module name is “org.apache.commons.logging”.
				

				Modify the jboss-deployment-structure.xml file to add the module dependency to the deployment section of the file.

<module name="org.apache.commons.logging" export="true"/>

				 The jboss-deployment-structure.xml should now look like this:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 <module name="org.apache.commons.logging" export="true"/>
 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

			

				Redeploy the application by deleting the EAP6_HOME/standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Issue - java.lang.ClassNotFoundException: org.dom4j.DocumentException
			

				When you deploy the application, the log contains the following error:

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC service thread 1-3) Exception sending context initialized event to listener instance of class org.jboss.seam.servlet.SeamListener: java.lang.NoClassDefFoundError: org/dom4j/DocumentException
 (... additional logs removed ...)
Caused by: java.lang.ClassNotFoundException: org.dom4j.DocumentException from [Module "deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader]

			
What it means:

					The ClassNotFoundException indicates a missing dependency. In this case, it cannot find the class org.dom4j.DocumentException.
				
How to resolve it:

					Find the module name in the EAP6_HOME/modules/system/layers/base/directory by looking for the org/dom4j/DocumentException. The module name is “org.dom4j”. Modify the jboss-deployment-structure.xml file to add the module dependency to the deployment section of the file.

<module name="org.dom4j" export="true"/>

					 The jboss-deployment-structure.xml file should now look like this:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 <module name="org.apache.commons.logging" export="true"/>
 <module name="org.dom4j" export="true"/>
 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

				

				Redeploy the application by deleting the EAP6_HOME/standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Issue - java.lang.ClassNotFoundException: org.hibernate.validator.InvalidValue
			

				When you deploy the application, the log contains the following error:

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC service thread 1-6) Exception sending context initialized event to listener instance of class org.jboss.seam.servlet.SeamListener: java.lang.RuntimeException: Could not create Component: org.jboss.seam.international.statusMessages
 (... additional logs removed ...)
Caused by: java.lang.ClassNotFoundException: org.hibernate.validator.InvalidValue from [Module "deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader]

			
What it means:

					The ClassNotFoundException indicates a missing dependency. In this case, it cannot find the class org.hibernate.validator.InvalidValue.
				
How to resolve it:

					There is a module “org.hibernate.validator”, but the JAR does not contain the org.hibernate.validator.InvalidValue class, so adding the module dependency does not resolve this issue. In this case, the JAR containing the class was part of the JBoss EAP 5.X deployment. Look for the JAR that contains the missing class in the EAP5_HOME/seam/lib/ directory. To do this, open a console and type the following:

$ cd EAP5_HOME/seam/lib
$ grep 'org.hibernate.validator.InvalidValue' `find . -name '*.jar'`

					 The result shows:

$ Binary file ./hibernate-validator.jar matches
$ Binary file ./test/hibernate-all.jar matches

					 In this case, copy the hibernate-validator.jar to the jboss-seam-booking.ear/lib/ directory:

$ cp EAP5_HOME/seam/lib/hibernate-validator.jar jboss-seam-booking.ear/lib

				

				Redeploy the application by deleting the EAP6_HOME/standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Issue - java.lang.InstantiationException: org.jboss.seam.jsf.SeamApplicationFactory
			

				When you deploy the application, the log contains the following error:

INFO [javax.enterprise.resource.webcontainer.jsf.config] (MSC service thread 1-7) Unsanitized stacktrace from failed start...: com.sun.faces.config.ConfigurationException: Factory 'javax.faces.application.ApplicationFactory' was not configured properly.
 at com.sun.faces.config.processor.FactoryConfigProcessor.verifyFactoriesExist(FactoryConfigProcessor.java:296) [jsf-impl-2.0.4-b09-jbossorg-4.jar:2.0.4-b09-jbossorg-4]
 (... additional logs removed ...)
Caused by: javax.faces.FacesException: org.jboss.seam.jsf.SeamApplicationFactory
 at javax.faces.FactoryFinder.getImplGivenPreviousImpl(FactoryFinder.java:606) [jsf-api-1.2_13.jar:1.2_13-b01-FCS]
 (... additional logs removed ...)
 at com.sun.faces.config.processor.FactoryConfigProcessor.verifyFactoriesExist(FactoryConfigProcessor.java:294) [jsf-impl-2.0.4-b09-jbossorg-4.jar:2.0.4-b09-jbossorg-4]
 ... 11 more
Caused by: java.lang.InstantiationException: org.jboss.seam.jsf.SeamApplicationFactory
 at java.lang.Class.newInstance0(Class.java:340) [:1.6.0_25]
 at java.lang.Class.newInstance(Class.java:308) [:1.6.0_25]
 at javax.faces.FactoryFinder.getImplGivenPreviousImpl(FactoryFinder.java:604) [jsf-api-1.2_13.jar:1.2_13-b01-FCS]
 ... 16 more

			
What it means:

					The com.sun.faces.config.ConfigurationException and java.lang.InstantiationException indicate a dependency issue. In this case, the cause is not as obvious.
				
How to resolve it:

					You need to find the module that contains the com.sun.faces classes. While there is no com.sun.faces module, there are two com.sun.jsf-impl modules. A quick check of the jsf-impl-1.2_13.jar in the 1.2 directory shows it contains the com.sun.faces classes. As you did with the javax.faces.FacesException ClassNotFoundException, you want to use the JSF 1.2 version and not the JSF 2.0 version in main, so you need to specify one and exclude the other. You need to modify the jboss-deployment-structure.xml to add the module dependency to the deployment section of the file. You also need to add it to the WAR subdeployment and exclude the JSF 2.0 module. The file should now look like this:
<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>
 <module name="org.apache.commons.logging" export="true"/>
 <module name="org.dom4j" export="true"/>
 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 <module name="com.sun.jsf-impl" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 <module name="com.sun.jsf-impl" slot="1.2"/>
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

				

				Redeploy the application by deleting the EAP6_HOME/standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Issue - java.lang.ClassNotFoundException: org.apache.commons.collections.ArrayStack
			

				When you deploy the application, the log contains the following error:

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC service thread 1-1) Exception sending context initialized event to listener instance of class com.sun.faces.config.ConfigureListener: java.lang.RuntimeException: com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED! org.apache.commons.collections.ArrayStack from [Module "deployment.jboss-seam-booking.ear:main" from Service Module Loader]
 (... additional logs removed ...)
Caused by: java.lang.ClassNotFoundException: org.apache.commons.collections.ArrayStack from [Module "deployment.jboss-seam-booking.ear:main" from Service Module Loader]

			
What it means:

					The ClassNotFoundException indicates a missing dependency. In this case, it cannot find the class org.apache.commons.collections.ArrayStack.
				
How to resolve it:

					Find the module name in the EAP6_HOME/modules/system/layers/base/ directory by looking for the org/apache/commons/collections path. The module name is “org.apache.commons.collections”. Modify the jboss-deployment-structure.xml to add the module dependency to the deployment section of the file.
<module name="org.apache.commons.collections" export="true"/>

					 The jboss-deployment-structure.xml file should now look like this:
<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 <dependencies>
 <module name="javax.faces.api" slot="1.2" export="true"/>
 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>
 <module name="org.apache.commons.logging" export="true"/>
 <module name="org.dom4j" export="true"/>
 <module name="org.apache.commons.collections" export="true"/>
 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 <exclusions>
 <module name="javax.faces.api" slot="main"/>
 <module name="com.sun.jsf-impl" slot="main"/>
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="1.2"/>
 <module name="com.sun.jsf-impl" slot="1.2"/>
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

				

				Redeploy the application by deleting the EAP6_HOME/standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Issue - Services with missing/unavailable dependencies
			

				When you deploy the application, the log contains the following error:

ERROR [org.jboss.as.deployment] (DeploymentScanner-threads - 2) {"Composite operation failed and was rolled back. Steps that failed:" => {"Operation step-2" => {"Services with missing/unavailable dependencies" => ["jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.AuthenticatorAction.START missing [jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".AuthenticatorAction.\"env/org.jboss.seam.example.booking.AuthenticatorAction/em\"]","jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.HotelSearchingAction.START missing [jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".HotelSearchingAction.\"env/org.jboss.seam.example.booking.HotelSearchingAction/em\"]","
 (... additional logs removed ...)
"jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.BookingListAction.START missing [jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".BookingListAction.\"env/org.jboss.seam.example.booking.BookingListAction/em\"]","jboss.persistenceunit.\"jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase\" missing [jboss.naming.context.java.bookingDatasource]"]}}}

			
What it means:

					When you get a “Services with missing/unavailable dependencies” error, look at the text within the brackets after “missing”. In this case you see:

missing [jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".AuthenticatorAction.\"env/org.jboss.seam.example.booking.AuthenticatorAction/em\"]

					 The “/em” indicates an Entity Manager and datasource issue.
				
How to resolve it:

					In JBoss EAP 6, datasource configuration has changed and needs to be defined in the EAP6_HOME/standalone/configuration/standalone.xml file. Because JBoss EAP 6 ships with an example database that is already defined in the standalone.xml file, modify the persistence.xml file to use that example database in this application. Looking in the standalone.xml file, you can see that the jndi-name for the example database is java:jboss/datasources/ExampleDS. Modify the jboss-seam-booking.jar/META-INF/persistence.xml file to comment the existing jta-data-source element and replace it as follows:
<!-- <jta-data-source>java:/bookingDatasource</jta-data-source> -->
<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

				

				Redeploy the application by deleting the EAP6_HOME/standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				At this point, the application deploys without errors, but when you access the URL http://localhost:8080/seam-booking/ in a browser and attempt "Account Login", you get a runtime error “The page isn't redirecting properly”. In the next step, you learn how to debug and resolve runtime errors.
			

				To learn how to debug and resolve runtime issues, click here: Section 4.3.7, “Debug and Resolve Seam 2.2 Booking Archive Runtime Errors and Exceptions”
			

				To return to the previous topic, click here: Section 4.3.4, “Migrate the Seam 2.2 Booking Archive to JBoss EAP 6: Step-By-Step Instructions”
			

		Report a bug
	

 ⁠4.3.7. Debug and Resolve Seam 2.2 Booking Archive Runtime Errors and Exceptions

		In the previous step, Section 4.3.6, “Debug and Resolve Seam 2.2 Booking Archive Deployment Errors and Exceptions”, you learned how to debug deployment errors. In this step, you debug and resolve each runtime error you encounter.
	
Important

			Applications that use Hibernate directly with Seam 2.2 may use a version of Hibernate 3 packaged inside the application. Hibernate 4, which is provided through the org.hibernate module of JBoss EAP 6, is not supported by Seam 2.2. This example is intended to help you get your application running on JBoss EAP 6 as a first step. Please be aware that packaging Hibernate 3 with a Seam 2.2 application is not a supported configuration.
		

 ⁠Procedure 4.11. Debug and resolve runtime errors and exceptions

			At this point, when you deploy the application you do not see any errors in the log. However, when you access the application URL, errors appear in the log.
		
	
				Issue - javax.naming.NameNotFoundException: Name 'jboss-seam-booking' not found in context ''
			

				When you access the URL http://localhost:8080/seam-booking/ in a browser, you get "The page isn't redirecting properly" and the log contains the following error:

SEVERE [org.jboss.seam.jsf.SeamPhaseListener] (http--127.0.0.1-8080-1) swallowing exception: java.lang.IllegalStateException: Could not start transaction
 at org.jboss.seam.jsf.SeamPhaseListener.begin(SeamPhaseListener.java:598) [jboss-seam.jar:]
 (... log messages removed ...)
Caused by: org.jboss.seam.InstantiationException: Could not instantiate Seam component: org.jboss.seam.transaction.synchronizations
 at org.jboss.seam.Component.newInstance(Component.java:2170) [jboss-seam.jar:]
 (... log messages removed ...)
Caused by: javax.naming.NameNotFoundException: Name 'jboss-seam-booking' not found in context ''
 at org.jboss.as.naming.util.NamingUtils.nameNotFoundException(NamingUtils.java:109)
 (... log messages removed ...)

			
What it means:

					A NameNotFoundException indicates a JNDI naming issue. JNDI naming rules have changed in JBoss EAP 6, so you need to modify the lookup names to follow the new rules.
				
How to resolve it:

					To debug this, look earlier in the server log trace to what JNDI binding were used. Looking at the server log you see this:

15:01:16,138 INFO [org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service thread 1-1) JNDI bindings for session bean named RegisterAction in deployment unit subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:
 java:global/jboss-seam-booking/jboss-seam-booking.jar/RegisterAction!org.jboss.seam.example.booking.Register
 java:app/jboss-seam-booking.jar/RegisterAction!org.jboss.seam.example.booking.Register
 java:module/RegisterAction!org.jboss.seam.example.booking.Register
 java:global/jboss-seam-booking/jboss-seam-booking.jar/RegisterAction
 java:app/jboss-seam-booking.jar/RegisterAction
 java:module/RegisterAction
 [JNDI bindings continue ...]

					 There are a total of eight INFO JNDI bindings listed in the log, one for each session bean: RegisterAction, BookingListAction, HotelBookingAction, AuthenticatorAction, ChangePasswordAction, HotelSearchingAction, EjbSynchronizations, and TimerServiceDispatcher. You need to modify the WAR's lib/components.xml file to use the new JNDI bindings. In the log, note the EJB JNDI bindings all start with "java:app/jboss-seam-booking.jar" Replace the core:init element as follows:

<!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true" distributable="false"/> -->
<core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true" distributable="false"/>

					 Next, you need to add the EjbSynchronizations and TimerServiceDispatcher JNDI bindings. Add the following component elements to the file:

<component class="org.jboss.seam.transaction.EjbSynchronizations" jndi-name="java:app/jboss-seam/EjbSynchronizations"/>
<component class="org.jboss.seam.async.TimerServiceDispatcher" jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>

					 The components.xml file should now look like this:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:security="http://jboss.com/products/seam/security"
 xmlns:transaction="http://jboss.com/products/seam/transaction"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.2.xsd
 http://jboss.com/products/seam/transaction http://jboss.com/products/seam/transaction-2.2.xsd
 http://jboss.com/products/seam/security http://jboss.com/products/seam/security-2.2.xsd
 http://jboss.com/products/seam/components http://jboss.com/products/seam/components-2.2.xsd">

 <!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true" distributable="false"/> -->
 <core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true" distributable="false"/>
 <core:manager conversation-timeout="120000"
 concurrent-request-timeout="500"
 conversation-id-parameter="cid"/>
 <transaction:ejb-transaction/>
 <security:identity authenticate-method="#{authenticator.authenticate}"/>
 <component class="org.jboss.seam.transaction.EjbSynchronizations"
 jndi-name="java:app/jboss-seam/EjbSynchronizations"/>
 <component class="org.jboss.seam.async.TimerServiceDispatcher"
 jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>
</components>

				

				Redeploy the application by deleting the standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Issue - The application deploys and runs without error. When you access the URL http://localhost:8080/seam-booking/ in a browser and attempt to login, it fails with the message "Login failed. Transaction failed." You should see an exception trace in the server log:

13:36:04,631 WARN [org.jboss.modules] (http-/127.0.0.1:8080-1) Failed to define class org.jboss.seam.persistence.HibernateSessionProxy in Module "deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader: java.lang.LinkageError: Failed to link org/jboss/seam/persistence/HibernateSessionProxy (Module "deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader)
....
Caused by: java.lang.LinkageError: Failed to link org/jboss/seam/persistence/HibernateSessionProxy (Module "deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader)
...
Caused by: java.lang.NoClassDefFoundError: org/hibernate/engine/SessionImplementor
	at java.lang.ClassLoader.defineClass1(Native Method) [rt.jar:1.7.0_45]
...
Caused by: java.lang.ClassNotFoundException: org.hibernate.engine.SessionImplementor from [Module "deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader]
...

			
What it means:

					The ClassNotFoundException indicates a missing Hibernate library. In this case it's the hibernate-core.jar.
				
How to resolve it:

					Copy the hibernate-core.jar JAR from the EAP5_HOME/seam/lib/ directory to the jboss-seam-booking.ear/lib directory.
				

				Redeploy the application by deleting the standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Issue - The application deploys and runs without error. When you access the URL http://localhost:8080/seam-booking/ in a browser, you are able to login successfully. However, when you attempt to book a hotel, you will see an exception trace.
			

				To debug this, you must first remove the jboss-seam-booking.ear/jboss-seam-booking.war/WEB-INF/lib/jboss-seam-debug.jar as it masks the true error. At this point, you should see the following error:
java.lang.NoClassDefFoundError: org/hibernate/annotations/common/reflection/ReflectionManager

			
What it means:

					The NoClassDefFoundError indicates a missing Hibernate library.
				
How to resolve it:

					Copy the hibernate-annotations.jar and hibernate-commons-annotations.jar JARs from the EAP5_HOME/seam/lib/ directory to the jboss-seam-booking.ear/lib directory.
				

				Redeploy the application by deleting the standalone/deployments/jboss-seam-booking.ear.failed file and creating a blank jboss-seam-booking.ear.dodeploy file in the same directory.
			

	
				Runtime and application errors should be resolved
			

				At this point, the application deploys and runs without error.
			

				To return to the previous topic, click here: Section 4.3.4, “Migrate the Seam 2.2 Booking Archive to JBoss EAP 6: Step-By-Step Instructions”
			

		Report a bug
	

 ⁠4.3.8. Review a Summary of the Changes Made When Migrating the Seam 2.2 Booking Application

		Although it would be much more efficient to determine dependencies in advance and add the implicit dependencies in one step, this exercise shows how problems appear in the log and provides some information on how to debug and resolve them. The following is a summary of changes made to the application when migrating it to JBoss EAP 6.
	
Important

			Applications that use Hibernate directly with Seam 2.2 may use a version of Hibernate 3 packaged inside the application. Hibernate 4, which is provided through the org.hibernate module of JBoss EAP 6, is not supported by Seam 2.2. This example is intended to help you get your application running on JBoss EAP 6 as a first step. Please be aware that packaging Hibernate 3 with a Seam 2.2 application is not a supported configuration.
		

			
					You created a jboss-deployment-structure.xml file in the EAR's META-INF/ directory. You added <dependencies> and <exclusions> to resolve ClassNotFoundExceptions. This file contains the following data:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">
 <deployment>
 	 <dependencies>
	 <module name="javax.faces.api" slot="1.2" export="true"/>
	 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>
	 <module name="org.apache.commons.logging" export="true"/>
 	 <module name="org.dom4j" export="true"/>
	 <module name="org.apache.commons.collections" export="true"/>
	 </dependencies>
 </deployment>
 <sub-deployment name="jboss-seam-booking.war">
 	<exclusions>
	 <module name="javax.faces.api" slot="main"/>
	 <module name="com.sun.jsf-impl" slot="main"/>
	 </exclusions>
	 <dependencies>
	 <module name="javax.faces.api" slot="1.2"/>
	 <module name="com.sun.jsf-impl" slot="1.2"/>
	 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

				

	
					You copied the following JARs from the EAP5_HOME/jboss-eap-5.X/seam/lib/ directory (replace 5.X with the version of EAP 5 that you are migrating from) to the jboss-seam-booking.ear/lib/ directory to resolve ClassNotFoundExceptions:
						
								hibernate-core.jar
							

	
								hibernate-validator.jar
							

				

	
					You modified the jboss-seam-booking.jar/META-INF/persistence.xml file as follows.
						
								You changed the jta-data-source element to use the Example database that ships with JBoss EAP 6:

<!-- <jta-data-source>java:/bookingDatasource</jta-data-source> -->
<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

							

	
								You commented out the hibernate.cache.provider_class property:

<!-- <property name="hibernate.cache.provider_class" value="org.hibernate.cache.HashtableCacheProvider"/> -->

							

				

	
					You modified the WAR's lib/components.xml file to use the new JNDI bindings
						
								You replaced the core:init existing element as follows:

<!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true" distributable="false"/> -->
<core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true" distributable="false"/>

							

	
								You added component elements for the "EjbSynchronizations" and "TimerServiceDispatcher" JNDI bindings

<component class="org.jboss.seam.transaction.EjbSynchronizations" jndi-name="java:app/jboss-seam/EjbSynchronizations"/>
 <component class="org.jboss.seam.async.TimerServiceDispatcher" jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>

							

				

	

		Report a bug
	

 ⁠Appendix A. Revision History

			Revision History
	Revision 6.3.0-24	Wednesday July 30 2014	Sande Gilda
	
						 Red Hat JBoss Enterprise Application Platform 6.3.0.GA

				

	

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/images/h1-bg.png

OEBPS/Common_Content/images/26.png

OEBPS/content.opf
 6.3_idm70676080 Migration Guide This book is a guide to migrating your application from previous versions of Red Hat JBoss Enterprise Application Platform. Red Hat Customer Content Services JBoss EAP Team en

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/rhlogo.png
E) redhat.

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/scripts/css_conflicts.js
function fixCSSConflicts() {}

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/image_left.png
E) redhat.

OEBPS/Common_Content/images/16.png

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/Enterprise_title_logo.png
E) redhat.

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/title_logo.png
E) redhat.

OEBPS/Common_Content/images/37.png

OEBPS/Common_Content/images/Online_title_logo.png
E) redhat.

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/scripts/menu.js
var work = 1;
var name_c = window.location.hostname + '-publican';
var num_days = 7;
var name_cp = window.location.hostname + '-publican-current_page';
var name_menu = window.location.hostname + '-publican-menu';
var style = 1;
var toc_path = '';
site_title = 'Documentation';

function setCookie(name, value, expires, path, domain, secure) {
	var curCookie = name + "=" + value +
		((expires) ? ";expires=" + expires.toGMTString() : "") +
		((path) ? ";path=" + path : "");
// +
//		((domain) ? ";domain=" + domain : "") +
//		((secure) ? ";secure" : "");

	document.cookie = curCookie;
}

function expand_menu(id) {
	if(work) {
		work = 0;
		var entity = document.getElementById(id);
		if(entity) {
			var my_class = entity.className;
			var my_parent = entity.parentNode;
			if(my_class.indexOf("hidden") != -1) {
				entity.className = my_class.replace(/hidden/,"visible");
				my_parent.className = my_parent.className.replace(/collapsed/,"expanded");
			}
		}
	}
}

function retract_menu(id) {
	if(work) {
		work = 0;
		var entity = document.getElementById(id);
		if(entity) {
			var my_class = entity.className;
			var my_parent = entity.parentNode;
			if(my_class.indexOf("visible") != -1) {
				entity.className = my_class.replace(/visible/,"hidden");
				my_parent.className = my_parent.className.replace(/expanded/,"collapsed");
			}
		}
	}
}

function loadToc() {
	var my_select = document.getElementById('langselect');
	if (my_select.selectedIndex > 0) {
		var expDate = new Date();
		expDate.setDate(expDate.getDate() + num_days);
		setCookie(name_c + '-lang', my_select.options[my_select.selectedIndex].value, expDate, '/', false, false);	
		location.href="../" + my_select.options[my_select.selectedIndex].value + "/toc.html";
//		parent.frames.main.location.replace("../" + my_select.options[my_select.selectedIndex].value + "/index.html");
	}
}

function loadDocNav(ajq) {
 var topDocNav = getTopDocNav(ajq);
 var bottomDocNav = getBottomDocNav(ajq);

 updateDocNavItems(getCurrentPageName(), topDocNav, bottomDocNav);

 var onChange = function() {
 var currentPage = getCurrentPageName();
 var newSelection = ajq(this).val();
 window.location = newSelection;
 if (newSelection.indexOf(currentPage) === 0) {
 updateDocNavItems(newSelection, getTopDocNav(ajq), getBottomDocNav(ajq));
 }
 };
 topDocNav.change(onChange);
 bottomDocNav.change(onChange);
}

function getCurrentPageName() {
 return window.location.href.substr(window.location.href.lastIndexOf("/") + 1);
}

function updateDocNavItems(filename, topDocNav, bottomDocNav) {
 topDocNav.val(filename);
 bottomDocNav.val(filename);
}

function getTopDocNav(ajq) {
 return ajq(".docnav.top").find(".pageSelect");
}

function getBottomDocNav(ajq) {
 return ajq(".docnav.bottom").find("select");
}

function scrollToTarget(ajq) {
 if(ajq(window.location.hash).length > 0){
 ajq('html, body').animate({ scrollTop: ajq(window.location.hash).offset().top}, 1000);
 }
}

function checkMenu() {
	if(document.cookie) {
		var cookies = document.cookie.split(/ *; */);
		for(var i=0; i < cookies.length; i++) {
			var current_c = cookies[i].split("=");
			if(current_c[0] == name_menu) {
				var menu_status = current_c[1];
				if(menu_status == "closed") {
					hideMenu();				}
				break;
			}
		}

	}
}

function hideMenu() {
	parent.document.body.className = parent.document.body.className = "toc_embeded notoc";
	var entity = parent.document.getElementById('tocframe');
	if(entity) {
		entity.className = "notoc";
	}

	document.body.className = "toc_embeded notocnav";

	entity = document.getElementById('closemenu');
	if(entity) {
		entity.className = entity.className.replace(/visible/,"hidden");
	}
	entity = document.getElementById('outer');
	if(entity) {
		entity.className = entity.className.replace(/visible/,"hidden");
	}
	entity = document.getElementById('openmenu');
	if(entity) {
		entity.className = entity.className.replace(/hidden/,"visible");
	}

	var expDate = new Date();
	expDate.setDate(expDate.getDate() + num_days);
	setCookie(name_menu, 'closed', expDate, '/', false, false);
}

function showMenu() {
	parent.document.body.className = parent.document.body.className = "toc_embeded";
	var entity = parent.document.getElementById('tocframe');
	if(entity) {
		entity.className = "toc";
	}

	document.body.className = "tocnav";

	entity = document.getElementById('closemenu');
	if(entity) {
		entity.className = entity.className.replace(/hidden/,"visible");
	}
	entity = document.getElementById('outer');
	if(entity) {
		entity.className = entity.className.replace(/hidden/,"visible");
	}
	entity = document.getElementById('openmenu');
	if(entity) {
		entity.className = entity.className.replace(/visible/,"hidden");
	}
	var expDate = new Date();
	expDate.setDate(expDate.getDate() + num_days);
	setCookie(name_menu, 'open', expDate, '/', false, false);
}

function placeBcrumbs(ajq) {
 ajq('#doc_menu').remove().prependTo('#main-top').wrap('<div class="wrapi"></div>');
}

function runAnalytics(ajq) {
 /*
 var pkBaseUrl = (('https:' == document.location.protocol) ? 'https://engstats.redhat.com/piwik/' : 'http://engstats.redhat.com/piwik/');
 var pkUrl = pkBaseUrl + 'piwik.js';
 ajq('body').append('<noscript><p></p></noscript>');
 require([pkUrl], function() {
 try {
 var piwikTracker = Piwik.getTracker(pkBaseUrl + 'piwik.php', 3);
 if (document.location.hostname == 'access.redhat.com') {
 piwikTracker.trackPageView();
 piwikTracker.enableLinkTracking();
 }
 } catch(err) {}
 });
 */
}

function initializeBreadcrumbs(toc_path, current_product, current_version, current_book) {

 jQuery("#navigation").load('index.html div > div.toc:eq(0)', function(responseData){
 jQuery('#navigation').append('<button onclick="toggleToc();" class="menu-toggle"></button>');
 });

 // Set the siteMapState variable so that the support tab is active when the breadcrumbs are created.
 window.siteMapState = "support";

 var support_label = labels["trans_strings"]["Support"];
 var knowledge_label = labels["trans_strings"]["Knowledge"];
 var doc_label = labels["trans_strings"]["Product_Documentation"];

 // Create the very basic breadcrumb array
 var doc_array = [doc_label];
 var breadcrumbs = [
 [support_label, "/support/"],
 doc_array
];

 // Create the base breadcrumb, which will later be replaced with the extended version
 if(typeof current_product != "undefined" && current_product != '') {
 var prod_label;
 if(current_product != 'Products') {
 prod_label = labels[current_product]["label"];
 } else {
 prod_label = labels["trans_strings"]["Products"];
 }

 var prod_array = [prod_label];
 breadcrumbs.push(prod_array);

 doc_array[1] = "../";

 if (typeof current_version != "undefined" && current_version != '') {
 var version_array = [current_version];
 breadcrumbs.push(version_array);

 doc_array[1] = "../../";
 prod_array[1] = "../";

 if(typeof current_book != "undefined" && current_book != '') {
 doc_array[1] = "../../../../";
 prod_array[1] = "../../../";
 version_array[1] = "../../";
 if(current_book != "Books") {
 breadcrumbs.push(labels[current_product][current_version][current_book]["label"]);
 	} else {
 		breadcrumbs.push(labels["trans_strings"]["Books"]);
 	}
 }
 }
 }

 window.breadcrumbs = breadcrumbs;

 chrometwo_require(['chrome_lib'], function (lib) {
 lib.whenBreadcrumbsReady(function(ajq) {
 loadMenu2(ajq, toc_path, current_product, current_version, current_book);
 styleToc();
 });
 });

 jQuery(window).scroll(function(e){
 styleToc();
 });

 jQuery(window).resize(function(e){
 styleToc();
 });
}

function styleToc() {

 var el = document.getElementById('main-top');
 var my_top = 104;

 if(el) {
 my_top = el.getBoundingClientRect().bottom;
 }

 if(my_top <= 0) { my_top = 0;}

 var main = document.getElementById('main');
 var main_height = main.getBoundingClientRect().height;
 var main_bottom = main.getBoundingClientRect().bottom;
 var main_top = main.getBoundingClientRect().top;

 var height = main_height;
 if(height > ((window.innerHeight || document.documentElement.clientHeight) - my_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - my_top;
 }

 if(height > main_bottom) {
 height = main_bottom;
 }

 if(jQuery("#navigation").hasClass('fixed')) { height = 20; }

 if(jQuery('#navigation').is(':visible')) {
 jQuery('#navigation').css({'top': my_top + 'px', 'height': height });
 jQuery('#navigation > .toc').css({'top': my_top + 'px', 'height':'calc(' + height +'px - 1.8em)' });
 }
}

function loadMenu2(ajq, toc_path, current_product, current_version, current_book) {
 var breadcrumbs = ajq("#breadcrumbs");

 // We only care about fixing up the default breadcrumbs if we have a current product
 if(typeof current_product != "undefined" && current_product != '') {

 // Remove the dummy Product Documentation text node
 var breadcrumbsDiv = breadcrumbs.get(0);
 while (breadcrumbsDiv.childNodes.length > 1) {
 breadcrumbsDiv.removeChild(breadcrumbsDiv.lastChild);
 }

 // Calculate the product label
 var prod_label;
 if(current_product != 'Products') {
 prod_label = labels[current_product]["label"];
 } else {
 prod_label = labels["trans_strings"]["Products"];
 }

 var book_label = labels["trans_strings"]["Books"];

 if(current_book != 'Books') {
 book_label = labels[current_product]["label"];
 }

 // Convert the default menu into something we can use
 var html = '' + labels["trans_strings"]["Product_Documentation"] + '';
 if(typeof current_version != "undefined" && current_version != '') {
 html += '<div id="product_menu" onmouseover="work=1; expand_menu(\'product_menu_list\');" onmouseout="work=1; retract_menu(\'product_menu_list\');">' + prod_label + '</div>';
 if(typeof current_book != "undefined" && current_book != '') {
 html += '<div id="version_menu" onmouseover="work=1; expand_menu(\'version_menu_list\');" onmouseout="work=1; retract_menu(\'version_menu_list\');">' + current_version + '</div>';

 html += '<div id="book_menu" onmouseover="work=1; expand_menu(\'book_menu_list\');" onmouseout="work=1; retract_menu(\'book_menu_list\');">' + book_label + '</div>';

 if(current_book != 'Books') {
 html += '<div id="left-menu"><div id="book_format_menu" onmouseover="work=1; expand_menu(\'book_format_menu_list\');" onmouseout="work=1; retract_menu(\'book_format_menu_list\');"></div>';
 html += '<div id="book_lang_menu" onmouseover="work=1; expand_menu(\'book_lang_menu_list\');" onmouseout="work=1; retract_menu(\'book_lang_menu_list\');"></div>';
 html += '<div id="lang_menu_label">' + '</div></div>';
 }
 } else {
 html += '<div id="version_menu" onmouseover="work=1; expand_menu(\'version_menu_list\');" onmouseout="work=1; retract_menu(\'version_menu_list\');">' + current_version + '</div>';
 }
 } else {
 html += '<div id="product_menu" onmouseover="work=1; expand_menu(\'product_menu_list\');" onmouseout="work=1; retract_menu(\'product_menu_list\');">' + prod_label + '</div>';
 }
 breadcrumbs.append(html);

 // Load and add the hover menus
 ajq("#product_menu").load(toc_path + "/products_menu.html");
 ajq("#version_menu").load(toc_path + '/' + current_product + "/versions_menu.html");
 if(typeof current_version != "undefined" && current_version != '') {
 ajq("#book_menu").load(toc_path + '/' + current_product + '/' + current_version + '/' + "/books_menu.html");
 if(typeof current_book != "undefined" && current_book != '') {
 ajq("#book_lang_menu").load(toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/lang_menu.html");
 ajq("#book_format_menu").load(toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/format_menu.html");
 }
 }
 }

 // For splash pages the language menu is loaded in a global javascript variable
 if (typeof lang_menu_2_div != "undefined" && lang_menu_2_div != '') {
 breadcrumbs.append(lang_menu_2_div);
 }

 ajq(document).ready(function(ajq) {
 checkToc();
 ajq(".doctoc").load('index.html .toc:eq(0)', function() {
 loadDocNav(ajq);
 });
 scrollToTarget(ajq);
 });
}

function checkToc() {
	if(document.cookie) {
		var cookies = document.cookie.split(/ *; */);
		for(var i=0; i < cookies.length; i++) {
			var current_c = cookies[i].split("=");
			if(current_c[0] == name_menu) {
				var menu_status = current_c[1];
				if(menu_status == "closed") {
					hideToc();				}
				break;
			}
		}

	}
}

function toggleToc() {
	if(jQuery("#navigation").hasClass('fixed')) {
		showToc();
 } else {
		hideToc();
 }
}

function hideToc() {
	jQuery("#navigation button").addClass('fixed');
	jQuery("#navigation").addClass('fixed');
	jQuery("#content").addClass('noLtoc');
 styleToc();

	var expDate = new Date();
	expDate.setDate(expDate.getDate() + num_days);
	setCookie(name_menu, 'closed', expDate, '/', false, false);
}

function showToc() {
	jQuery("#navigation button").removeClass('fixed');
	jQuery("#navigation").removeClass('fixed');
	jQuery("#content").removeClass('noLtoc');
 styleToc();

	var expDate = new Date();
	expDate.setDate(expDate.getDate() + num_days);
	setCookie(name_menu, 'open', expDate, '/', false, false);
}

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/images/39.png
JBoss Seam Debug Page

“This page allows you to browse and inspect components in any of the Seam contexts associated with the current session. ltalso shows a
listof active, long-running conversations. You can select a conversation o view its contents or destroy it.

Conversations

ConversationD Nested? Activity Description ViewD Action

15 e 122650PM-122701PM Bookhotl ifon Disgonsi Mar |mookxhiml | Select Destoy
+ Component

+ Conversation Context (None selected)

+

Business Process Context

+

Session Context

+

Application Context

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/images/41.png
JBoss Seam Debug Page

“This page allows you to browse and inspect components in any of the Seam contexts associated with the current session. ltalso shows
alistof active, long-running conversations. You can select a conversafion o view its contents or destroy it.

Conversations

Comversationid Nested? Activity Description ViewD Action
15 e 122658PM-122701FM | ooknhotel: Miton Disgonal Mar fookxim | Selec Destroy
- Component

Selecta component from one of the contexts below
‘Component (or boss seam caughtException)

casse Jovalang NoClassDelFoundErnor. orgliLogserFacory
s las v s SeetEsception
locazedMessage | Senet xccuton hrew an cxcepion
nessage Sonetexccuton trew an exepton
tootCause Jovatang oCiassDetFoundErnor st ogseFacory

forg.apache.catalina.core ApplicationFilterChain intemal DoFiller(ApplicationFilterChain java:346),
org.apache catalina.core ApplicationFilterChain doFilter(ApplicationFilierChain java:245),
stackTrace org jboss.seam serviet SeamFilterSFilterChainimpl.doFiler(SeamFier java:83),
org jboss.seam.web.idenityFilter doFilter(IdentityFiler java:40),
[rest of stackirace omitted for display purposes]

tostiing0 Javax servet ServieException: Serviet execution threw an exception

+ Conversation Context (None selected)

+

Business Process Context

+

Session Context

+

Application Context

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/images/8.png

