Mastering Enterprise
JavaBeans™

Second Edition

Thanks for downloading this file! This is a non-printable Adobe Acrobat PDF file and represents the complete
Mastering EJB 2nd edition book.

So why did we make the PDF non-printable? For a few reasons:

1) The intention of this PDF file is to give you free access to preview the book before buying it.

2) Any book that you printed wouldn't look nice. It would be ugly, unbound, and would lack a cover.

3) It costs more money in paper and toner to print the book than to buy it!

Some people have told me that it's a bad idea to distribute this PDF, and that | will lose book sales as a result. |
think they're wrong! | think that offering the book online will show people how great the book really is, and then
they'll want to own it for themselves. So if you like this book, you can buy it right now on Amazon.com. Click here:

http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/002-9677343-9350405

Also, if you're just starting to learn about EJB, you may want to check out http://www.TheServerSide.com, which is
a great web site to learn about the latest J2EE news.

You also may want to check out The Middleware Company (http://www.middleware-company.com), which offers
EJB training courses to take your knowledge to the next level. Click on the link above to find out more.

Thanks again, and enjoy.
-Ed Roman

Ed Roman

Ed Roman

Ed Roman
Thanks for downloading this file! This is a non-printable Adobe Acrobat PDF file and represents the complete Mastering EJB 2nd edition book.

So why did we make the PDF non-printable? For a few reasons:

1) The intention of this PDF file is to give you free access to preview the book before buying it.
2) Any book that you printed wouldn't look nice. It would be ugly, unbound, and would lack a cover.
3) It costs more money in paper and toner to print the book than to buy it!

Some people have told me that it's a bad idea to distribute this PDF, and that I will lose book sales as a result. I think they're wrong! I think that offering the book online will show people how great the book really is, and then they'll want to own it for themselves. So if you like this book, you can buy it right now on Amazon.com. Click here:

http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/002-9677343-9350405

Also, if you're just starting to learn about EJB, you may want to check out http://www.TheServerSide.com, which is a great web site to learn about the latest J2EE news.

You also may want to check out The Middleware Company (http://www.middleware-company.com), which offers EJB training courses to take your knowledge to the next level. Click on the link above to find out more.

Thanks again, and enjoy.
-Ed Roman

http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/00
http://www.middleware-company.com
http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/002-9677343-9350405
http://www.TheServerSide.com
http://www.middleware-company.com

John W Atkins

John W Atkins

steri nterprise

avabeans™

Se dition

Ed Roman
Scott Ambler
Tyler Jewell

Wiley Computer Publishing

W

John Wiley & Sons, Inc.
NEW YORK « CHICHESTER + WEINHEIM « BRISBANE + SINGAPORE + TORONTO

Publisher: Robert Ipsen

Editor: Robert M. Elliott

Developmental Editor: Emilie Herman

Managing Editor: John Atkins

Associate New Media Editor: Brian Snapp

Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should con-
tact the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by The Middleware Company. All rights reserved.
Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, E-Mail: permreq@wiley.com.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:
ISBN: 0-471-41711-4
Printed in the United States of America.

10987654321

To my wonderful wife, Younhi.

—Ed Roman

Acknowledgments

Preface
Introduction
About the Author

Part One Overview

Chapter 1 Overview
The Motivation for EJB
Divide and Conquer to the Extreme
Component Architectures
Introducing Enterprise JavaBeans
Why Java?
EJB as a Business Solution
The EJB Ecosystem
The Bean Provider
The Application Assembler
The EJB Deployer
The System Administrator
The Container and Server Provider
The Tool Vendors
Summary of Roles

The Java 2 Platform, Enterprise Edition (J2EE)

The J2EE Technologies
Summary

Chapter 2 EJB Fundamentals

Enterprise Beans
Types of Beans

Distributed Objects: The Foundation for EJB
Distributed Objects and Middleware

Explicit Middleware
Implicit Middleware

What Constitutes an Enterprise Bean?

The Enterprise Bean Class

Xix
xxi

XxXi

12

13
14
14

16
17
17
18
19
19
20
20

22
23

26

29

29
30

32

34
34
35
37
37

vii

viii

Chapter 3

Part Two

Chapter 4

The EJB Object

The Home Object

The Local Interfaces
Deployment Descriptors
Vendor-Specific Files
Ejb-Jar File

Summary of Terms

Summary

Writing Your First Bean

How to Develop an EJB Component
The Remote Interface

The Local Interface

The Home Interface

The Local Home Interface

The Bean Class

The Deployment Descriptor

The Vendor-Specific Files

The Ejb-jar File

Deploying the Bean

The Optional EJB Client JAR file

Understanding How to Call Beans
Looking up a Home Object

Running the System
The Server-Side Output
The Client-Side Output

Implementing Component Interfaces
A Solution

Summary
The Triad of Beans

Introduction to Session Beans
Session Bean Lifetime

Session Bean Subtypes
Stateful Session Beans
Stateless Session Beans

Special Characteristics of Stateful Session Beans
Achieving the Effect of Pooling with Stateful Beans
The Rules Governing Conversational State

Activation and Passivation Callbacks

38
44
46
50
51
51
52

54

55
55
57
58
58
59
62
66
67
67
68
68

69
70

74
75
75

75
76

77

79

81
81

82
82
83

84
85
86
87

. contents NIV

Method Implementation Summary 89
A Simple Stateful Session Bean 89
Life Cycle Diagrams for Session Beans 100
Summary 103
Chapter 5 Introduction to Entity Beans 105
Persistence Concepts 105
Java Object Serialization 106
Object-Relational Mapping 106
Object Databases 109
What Is an Entity Bean? 109
About the Files that Make up an Entity Bean 112
Features of Entity Beans 112
Entity Beans Survive Failures 112
Entity Bean Instances Are a View into a Database 113
Several Entity Bean Instances May Represent the Same
Underlying Data 114
Entity Bean Instances Can Be Pooled 116
There Are Two Ways to Persist Entity Beans 118
Creation and Removal of Entity Beans 119
Entity Beans Can Be Found 121
You Can Modify Entity Bean Data without Using EJB 123
Entity Contexts 124
getEJBLocalObject() / getEJBObject() 124
getPrimaryKey() 125
Summary 126
Chapter 6 Writing Bean-Managed Persistent Entity Beans 127
Entity Bean Coding Basics 127
Finding Existing Entity Beans: ejbFind() 129
Bean-Managed Persistence Example: A Bank Account 136
Account.java 137
AccountLocal.java 138
AccountHome,java 138
AccountLocalHome java 138
AccountPK java 139
AccountBean.java 143
AccountException.java 156
Client.java 156
The Deployment Descriptor 156
The Container-Specific Deployment Descriptor 161
Setting up the Database 161
Running the Client Program 161
Server-Side Output 162

Client-Side Output 163

Chapter 7

Chapter 8

Putting It All Together: Walking through a BMP Entity
Bean’s Life Cycle

Summary

Writing Container-Managed Persistent Entity Beans

Features of CMP Entity Beans
CMP Entity Beans Are Subclassed
CMP Entity Beans Have No Declared Fields
CMP Get/Set Methods Are Defined in the Subclass
CMP Entity Beans Have an Abstract Persistence Schema
CMP Entity Beans Have a Query Language
CMP Entity Beans Can Have ejbSelect() Methods

Implementation Guidelines for Container-Managed
Persistence

Container-Managed Persistence Example: A Product Line
Product.java
ProductLocal.java
ProductHome.java
ProductLocalHome.java
ProductPK.java
ProductBean.java
The Deployment Descriptor
The Container-Specific Deployment Descriptor
Client.java

Running the Client Program
The Life Cycle of a CMP Entity Bean

Summary

Introduction to Message-Driven Beans
Motivation to Use Message-Driven Beans

The Java Message Service (JMS)
Messaging Domains
The JMS API

Integrating JMS with EJB
What Is a Message-Driven Bean?

Developing Message-Driven Beans
The Semantics
A Simple Example

Advanced Concepts

Message-Driven Bean Gotchas
Message Ordering
Missed ejbRemove() Calls
Poison Messages

163
166

167

167
167
168
170
172
173
175

176

180
181
182
182
184
184
187
191
195
196

196
200
200

201
201

203
204
206

211
212

214
214
215

223

225
225
226
228

Chapter 9

How to Return Results Back to Message Producers
The Future: Asynchronous Method Invocations

Summary

Adding Functionality to Your Beans

Calling Beans from Other Beans
Default JNDI Lookups
Understanding EJB References

Resource Factories
Environment Properties

Understanding EJB Security
Security Step 1: Authentication
Security Step 2: Authorization
Security Propagation

Understanding Handles
Home Handles

Summary

Part Three Advanced Enterprise JavaBeans Concepts

Chapter 10 Transactions

Motivation for Transactions
Atomic Operations
Network or Machine Failure
Multiple Users Sharing Data

Benefits of Transactions
The ACID Properties

Transactional Models
Flat Transactions
Nested Transactions
Other Transactional Models

Enlisting in Transactions with Enterprise JavaBeans
Underlying Transaction System Abstraction
Declarative, Programmatic, and Client-Initiated Transactions
Choosing a Transaction Style

Container-Managed Transactions
EJB Transaction Attribute Values

Programmatic Transactions in EJB
CORBA’s Object Transaction Service (OTS)
The Java Transaction Service (JTS)
The Java Transaction API (JTA)
Declarative versus Programmatic Transactions Example

xi

230
235

236

237

237
238
239

241
244

245
246
257
266

268
269

270

271

275

276
276
277
278

279
280

282
282
284
286

286
287
287
290

292
294

300
300
301
301
304

xii

Chapter 11

Chapter 12

Transactions from Client Code

Transactional Isolation
The Need for Concurrency Control
Isolation and EJB
The Dirty Read Problem
The Unrepeatable Read Problem
The Phantom Problem
Transaction Isolation Summary
Isolation and EJB
Pessimistic and Optimistic Concurrency Control

Distributed Transactions
Durability and the Two-Phase Commit Protocol

The Transactional Communications Protocol and Transaction

Contexts
Designing Transactional Conversations in EJB

Summary

BMP and CMP Relationships
The CMP and BMP Difference
Cardinality

1:1 Relationships

1:N Relationships
M:N Relationships

Directionality
Implementing Directionality with BMP
Implementing Directionality with CMP
Directionality May Not Map to Database Schemas
Bidirectional or Unidirectional?

Lazy Loading

Aggregation vs. Composition and Cascading Deletes

Relationships and EJB-QL

Recursive Relationships

Circular Relationships

Referential Integrity
Relationships, Referential Integrity, and Client Code

Summary

Persistence Best Practices

When to Use Entity Beans
Control
Parameter Passing Analogy
Procedural Versus Object-Oriented
Caching

306

307
308
309
311
312
313
314
315
316

316
317

318
320
323

325
326

326
328
332
336

344
344
345
347
349

349
350
352
363
354

365
357

360

361

362
362
362
363
363

Chapter 13

Enforcement of Schema Independence
Ease of Use

Migration

Rapid Application Development

Choosing between CMP and BMP
Code Reduction and Rapid Application Development
Performance
Bugs
Control
Application Server and Database Independence
Relationships
Learning Curve and Cost
Choosing the Right Granularity for Entity Beans
Persistence Tips and Tricks
Beware the Object-Relational Impedance Mismatch
Hard-Coded Versus Soft-Coded SQL
When to Use Stored Procedures
Normalizing and Denormalizing
Use Your EJB Object Model to Drive Your Data Model
Follow a Good Data Design Process
Use Surrogate Keys
Understand the Impacts of Database Updates
Versioning EJB Components
Living with a Legacy Database Design
Handling Large Result Sets

Summary

EJB Best Practices and Performance Optimizations

When to Use Stateful versus Stateless

When to Use Messaging versus RMI-IIOP

How to Guarantee a Response Time with Capacity Planning
How to Achieve Singletons with EJB

Wrap Entity Beans with Session Beans
Performance-Tuning Entity Beans

Choosing between Local Interfaces and Remote Interfaces
How to Debug EJB Issues

Partitioning Your Resources

Assembling Components

Developing Components to Be Reusable

When to Use XML in an EJB System

Legacy Integration with EJB

Summary

xiii

364
364
364
365

365
365
366
366
367
367
368
368

368

370
370
370
371
373
375
375
376
377
377
379
387

390

391
391
393
397
398
398
400
401
402
404
405
406
407
408
410

xiv

Chapter 14

Chapter 15

Chapter 16

Clustering

Overview of Large-Scale Systems
What Is a Large-Scale System?
Basic Terminology
Partitioning Your Clusters

Instrumenting Clustered EJBs
How EJBs Can Be Clustered
The Concept of Idempotence
Stateless Session Bean Clustering
Stateful Session Bean Clustering
Entity Bean Clustering
Message-Driven Bean Clustering

Other EJB Clustering Issues
First Contact
Initial Access Logic

Summary

Starting Your EJB Project on the Right Foot
Get the Business Requirements Down
Decide Whether J2EE is Appropriate
Decide Whether EJB Is Appropriate
Staff Your Project

Design Your Complete Object Model
Implement a Single Vertical Slice
Choose an Application Server

Divide Your Team

Invest in Tools

Invest in a Standard Build Process
Next Steps

Summary

Choosing an EJB Server

J2EE 1.3 Brand

Pluggable JRE

Conversion Tools

Complex Mappings

Third-Party JDBC Driver Support
Lazy-Loading

Deferred Database Writes

411

411
412
413
415

416
419
420
421
423
425
429

430
430
430

431

433
433
434
434
438
439
439
442
443
445
446
446
447

449
450
450
450
451
451
451
451

- contents BBV

Pluggable Persistence Providers 451
In-Memory Data Cache 452
Integrated Tier Support 452
Scalability 452
High Availability 453
Security 453
IDE Integration 454
UML Editor Integration 454
Intelligent Load Balancing 455
Stateless Transparent Fail-over 455
Clustering 455
Java Management Extension (JMX) 456
Administrative Support 456
Hot Deployment 456
Instance Pooling 456
Automatic EJB Generation 457
Clean Shutdown 457
Real-Time Deployment 457
Distributed Transactions 458
Superior Messaging Architecture 458
Provided EJB Components 458
J2EE Connector Architecture (JCA) 459
Web Services 459
Workflow 459
Open Source 460
Specialized Services 460
Nontechnical Criteria 461
Summary 462
Chapter 17 EJB-J2EE Integration: Building a Complete Application 463
The Business Problem 463
A Preview of the Final Web Site 464
Scoping the Technical Requirements 468
Object Model for the Business Logic Tier 469
Object Model for the Presentation Tier 475
Example Code 482

Summary 488

ECONTENTS S

Part Four Appendixes 489
Appendix A RMI-IIOP and JNDI Tutorial 491
Java RMI-IIOP 492
Remote Method Invocations 492
The Remote Interface 493
The Remote Object Implementation 496
Stubs and Skeletons 497
Object Serialization and Parameter Passing 499
Passing By-Value 500
Object Serialization 500
What Should You Make Transient? 502
Object Serialization and RMI-IIOP 503
The Java Naming and Directory Interface (JNDI) 505
Naming and Directory Services 506
Problems with Naming and Directories 507
Enter JNDI 508
Benefits of JNDI 509
JNDI Architecture 509
JNDI Concepts 511
Programming with JNDI 515
Integrating RMI-IIOP and JNDI 517
Binding an RMI-IIOP Server to JNDI 518
Looking up an RMI-IIOP Server with JNDI 519
Summary 520
Appendix B CORBA Interoperability 523
What Is CORBA? 523
CORBA as the Basis for EJB 524
Why Should I Care about CORBA? 524
Drawbacks of CORBA 525
Understanding How CORBA Works 525
Object Request Brokers 525
OMG's Interface Definition Language 526
OMG IDL Maps to Concrete Languages 528
CORBA Static Invocations 529
CORBA’s Many Services 531
The Need for RMI-IIOP 531
The Need for RMI-CORBA Interoperability 532
Combining RMI with CORBA 533
Steps to Take for RMI and CORBA to Work Together:
An Overview 538

RMI-IIOP Client with a CORBA Object Implementation 538

L CONTENTS IRt

CORBA Client with an RMI-IIOP Object Implementation 539
Bootstrapping with RMI-IIOP and CORBA 540
The Big Picture: CORBA and EJB Together 540
Sample Code 541
Summary 543
Appendix C Deployment Descriptor Reference 545
How to Read a DTD 545
The Header and Root Element 546
Defining Session Beans 547
<session> 547
Defining Entity Beans 549
<entity> 549
<cmp-field> 5561
<query> 552
<query-method> 552
<method-params> 553
Defining Message-Driven Beans 553
<message-driven> 553
<message-driven-destination> 555
Defining Environment Properties 555
<env-entry> 556
Defining EJB References 556
<ejb-ref> 557
<ejb-local-ref> 558
Defining Security 558
<security-role-ref> 558
<security-identity> 559
<run-as> 559
Defining Resource Factories 560
<resource-ref> 560
<resource-env-ref> 561
Defining Relationships 561
<relationships> 562
<ejb-relation> 562
<ejb-relationship-role> 563
<relationship-role-source> 563
<cmr-field> 564
Defining the Assembly Descriptor 564
<assembly-descriptor> 565
<security-role> 566
<method-permission> 566

<container-transaction> 567

xviii

<exclude-list>
<method>
<method-params>

Appendix D The EJB Query Language (EJB-QL)

Overview
A Simple Example

The Power of Relationships

EJB-QL Syntax
The FROM Clause
The WHERE Clause
The SELECT Clause
Truth Tables

Final Note

Summary

Appendix E EJB Quick Reference Guide

Session Bean Diagrams
Stateless Session Bean Diagrams
Stateful Session Bean Diagrams

Entity Bean Diagrams

Message-Driven Bean Diagrams

EJB API Reference
EJBContext
EJBHome
EJBLocalHome
EJBLocalObject
EJBMetaData
EJBObject
EnterpriseBean
EntityBean
EntityContext
Handle
HomeHandle
MessageDrivenBean

MessageDrivenContext

SessionBean
SessionContext

SessionSynchronization

Exception Reference

Transaction Reference

567
568
568

569

569
570
571

572
572
574
578
581

583
583

585

586
587
589

592
597

598
599
600
601
601
602
602
603
604
610
610
611
611
611
612
614
614

616
617

621

T

his book has been a project spanning several years. Many have commented
that the first edition was one of the best technical books they ever read. What's
made this book a reality are the many people that aided in its development.

We took a big risk in developing the second edition of this book and decided
to build the book on the Web. We received feedback from around the world
when writing this book, and thus we have an evolving list of contributors and
reviewers. The list is too large to mention here but is available at www.The
ServerSide.com.

As a special thanks, we’d like to acknowledge the great folks over at John
Wiley & Sons. They have been absolutely outstanding throughout this book’s
evolution. In particular, we’d like to thank Bob Elliott, Emilie Herman, and
Bob Ipsen for their incredible efforts.

xix

occurred in my life almost three years ago. I remember sitting in my cubicle
at Trilogy Software, an e-commerce company in Austin, Texas, lost in deep
middleware thoughts. My challenge was to devise an interesting load-bal-
ancing strategy for our in-house application server, which we called the back-
bone.

ﬁ s I write these words, I can’t help but think back to an inflection point that

The backbone was a superb software system. It was cleanly written, easy to
use, and boasted some very high-end features—features such as distributed
object support, object-relational mapping, and extensible domain object mod-
eling. It had almost anything you needed for Internet development. It was a
worthy investment for Trilogy.

I was part of a task force to add enterprise features to this backbone, such as
transaction control, security, and load-balancing. Our goal was to improve the
backbone into a product worthy of large-scale deployment.

So that day, after hours of racking my brain, I finally finished crafting what I
believed to be a highly creative and optimal load-balancing strategy. Looking
for feedback, I walked to my friend Court Demas’ office. Court is one of those
developers who can really pick apart almost any design and expose its flaws—
a unique quality that only a few developers I know have.

Walking into Court’s office, I was expecting a typical developer-level conver-
sation, and that’s what I received. We turned the design inside and out, mark-
ing up my freshly printed hard copy with scribbles and other unintelligible
comments that only we could understand. Finally, satisfied that we had
reached a conclusion, I thanked Court and walked toward the door, prepared
to implement the changes we had agreed upon.

But I didn’t make it that far. Court said something to me that would change my
way of thinking. His comment baffled and confused me at first, but would
eventually result in a complete paradigm shift and career move for me. What
did Court say? Nothing profound, but simply, “You know Ed, this stuff is
really what Enterprise JavaBeans is for.”

xxii

At first, I had no idea what he was talking about. Enterprise JavaBeans?
What's that? Something like regular JavaBeans? Eventually, Court managed to
explain to me what EJB was. And once he explained it, I knew that Trilogy had
to do a 180-degree turn or lose its competitive advantage.

You see, EJB is a specification for a server-side component marketplace. EJB
enables you to purchase off-the-shelf components from one vendor, combine
them with components from another vendor, and run those components in an
application server written by yet a third vendor. This means companies can
collaborate on the server side. EJB enables you to buy, rather than build, ele-
ments of server-side applications.

The EJB value proposition had strong ramifications for Trilogy. EJB repre-
sented a way for Trilogy to get out of the middleware business and concentrate
on its e-commerce strategic efforts. This meant discarding the backbone com-
pletely in favor of a third-party vendor’s architecture. Not only would this
reduce Trilogy’s maintenance costs, but it would also solidify its software
suite, since their middleware would now be written by professionals who had
been in the business for 20 years. This proposition would eventually lead to
Trilogy forming an entirely new business unit.

I decided to start researching EJB and pushing for Trilogy to adopt it. I went to
the Sun Microsystems Web page, downloaded the EJB 1.0 specification in PDF
form, and printed it out. Back then, the specification was about a third of the
size it is today.

Understanding the specification turned out to be much more challenging than
downloading it. The specification was written for system-level vendors and
was not meant to be a tutorial for end developers. The section on entity beans,
for example, took me a good two months to really grasp, as the notion of per-
sistent components was new to me.

This arduous struggle with understanding the E]B specification is what even-
tually led me to write this book for you. This book represents everything I
wish I had when I first started using EJB in 1998. So what is this book about?
Well, it may be more accurate to tell you what this book is not. This is not EJB
propaganda. It is not a book on how to write EJB code on any single applica-
tion server. This is not a nice book that paints a perfect picture of the EJB
world. Nor is it an advertisement for any particular EJB product or a campaign
to rid the world of Microsoft.

The goal of this book is to help you. I want you to be able to craft solid, secure,
and scalable server-side deployments. As you read this book, you'll learn how
to design, implement, and deploy EJB solutions. This book covers both the
vision and the reality of EJB from an independent developer’s perspective. I
hope it will prepare you for the challenges you will face.

L PREFACE R

I wish the grass was greener and that I could write a book on how clean and
portable EJB is; but the truth is that this technology is not perfect, and you
should know exactly what the imperfections are. I will expose you to the grue-
some and incompatible parts of EJB and also explain how the industry is solv-
ing these problems.

Indeed, the newer specifications (especially EJB 2.0) improve portability and
reduce incompatibilities tremendously. I hope that by the time you're done
reading this book, you are convinced that the vision of EJB is solid, and the
future is very bright.

My hope is that I can save you time and energy, and aid you in designing well-
crafted server-side deployments. But this is merely the beginning. The E]JB
marketplace is just getting started, and there’s a whole lot more work ahead. I
encourage you to take an active role in the middleware industry and to work
with me taking EJB to the next level. Feel free to write your experiences, tips,
and design strategies, and post them on TheServerSide.com to share with
others. Our goal is to increase our knowledge of EJB as a community, and
together, we can do it.

Ed Roman

T

his book is a tutorial on Enterprise JavaBeans (E]JB). It's about EJB concepts,
methodology, and development. This book also contains a number of
advanced EJB topics, giving you a practical and real-world understanding of
the subject. By reading this book, you will acquire a deep understanding of EJB.

Make no mistake about it—what you are about to read is not easy. EJB incor-
porates concepts from a wealth of areas, including distributed computing,
databases, security, component-driven software, and more. Combining them
is a magnificent stride forward for the Java community, but with that comes a
myriad of concepts to learn and understand. This book will teach you the con-
cepts and techniques for authoring reusable components in Java, and it will
do so from the ground up. You need only to understand Java to understand
this book.

While you're reading this book, you may want to download the E]B specifica-
tion, available on http:/ /java.sun.com.

Goals for This Edition

The first edition of this book came out in 1999. We had to make some tough
calls when writing the second edition, and we are confident you'll like them.
Here are our goals:

m To update the book for EJB 2.0. EJB 2.0 has many new useful features that
we will detail throughout the book.

m To be broad and also deep. We do not regurgitate the complete EJB speci-
fication in this book, nor do we cover every last detail of EJB in this book.
Rather, we cover the most important parts of EJB, leaving room to discuss
advanced issues. For a complete reference while you are coding, search
through the EJB specification using Adobe Acrobat. Readers who are look-
ing for a well-written book that is interactive, fun to read, and covers the
basics through advanced subjects have come to the right place.

xxvi INTRODUCTION

m To be concise. Your time as a reader is extremely valuable, and you're
likely waiting to read a stack of books besides this one. Given that most
people don’t have time to read 1,000-plus-page books, we actually wanted
to reduce the size of this book as much as possible. So we’ve tightened
things up and eliminated redundant examples. This way, you can get to
actually program with EJB, rather than reading a book for months on end.
The irony of this story is that it was harder for us to write a shorter book
than a long book!

m To be a book for developers. This book is not intended for high-level
businessmen. This is a technical book for a technical audience.

m To write a book the right way. This book’s primary author, Ed Roman,
has taken his skills in training and knowledge transfer and applied them
to this book. Thus, we’ve infused this book with the following attributes:

m A conversational style. When you read this book, sometimes you'll
feel like you're almost having a discussion with us. We think this is far
superior to spending eons trying to re-read a formal writing style over
and over again.

m Use of diagrams and bulleted lists. The adage a picture is worth a
thousand words applies here. These tactics are great for breaking up
blocks of text. They keep things varied and make the book a much
faster read.

m A consistent voice. Even though several coauthors wrote this book,
you’ll hear one voice. This was done to combine best-of-breed knowl-
edge from several expert coauthors, while maintaining a uniform look
and feel throughout the book.

m To be an introductory book, but also to get quickly into advanced top-
ics. We figured that the average developer has had enough of books that
merely skim the surface. We wanted to write a book that pushed beyond
the basics. Our approach when writing this book was to always err on the
side of being advanced. To achieve this, we did an immense amount of
research. We participated in the mailing lists, performed many real-world
projects, attended conferences and seminars, and networked with the top
experts throughout the world.

m To be vendor-neutral. All vendor-specific deployment steps are external-
ized to the book’s accompanying source code. This makes this book useful
for any E]B server.

m To add useful EJB information garnered from our instructor-led training
classes. Having taught EJB/J2EE for years, we have learned significantly

INTRODUCTION xxvii

from our students. We have interlaced this book with many of our own
students’ questions and answers in relevant sections.

m To take all the source code and make it available online. By making the
code available on the Web, you know it’s the latest version. This will
ensure the code you receive works right the first time.

Organization of the Book

The text is organized into the following five parts:

Part 1 is a whirlwind introduction to EJB programming. Part 1 serves as a
great overview for people in a hurry. While Part 1 is essential information
to EJB newcomers, veterans will also find nuggets of useful knowledge as
well. The following chapters are covered:

Chapter 1 is a tour of enterprise computing. We’ll talk about components,
distributed frameworks, and containers. We'll also introduce EJB and J2EE.

Chapter 2 moves onto the fundamentals of building an EJB system, including
the tricky concept of request interception. We'll also look at the files that
makeup an enterprise bean.

Chapter 3 shows you how to put together a simple enterprise bean. We'll also
learn how JNDI is used in EJB, and see how to call that bean from a client.

Part 2 devotes exclusive attention to programming with EJB. We’ll see how to
use the triad of beans: entity beans, session beans, and message-driven
beans. We'll cover the basics of writing each type of bean, including an
example as well as detailed life cycle diagrams.

Chapter 4 covers session beans. We'll look at the difference between stateful
and stateless session beans, how to code a session bean, and what’s going
on behind-the-scenes with session beans.

Chapter 5 is a conceptual introduction to entity beans. We'll look at persis-
tence concepts, what makes entity beans unique, and the files involved
when building entity beans.

Chapter 6 covers bean-managed persistent (BMP) entity beans. We'll see how
to program a BMP entity bean, and also look at what’s happening behind
the scenes with BMP.

Chapter 7 covers container-managed persistent (CMP) entity beans. We'll
focus in on the exciting new advances that EJB 2.0 has introduced, we’ll
learn how to program a CMP entity bean, and also look at what’s happen-
ing behind the scenes with CMP.

xxviii

INTRODUCTION

Chapter 8 covers message-driven beans. We'll first review the Java Message
Service (JMS), which is a pre-requisite for learning message-driven beans.
We'll then dive in and understand how to program with message-driven
beans.

Chapter 9 discusses the E]B environment, along with services provided by
the container. This includes security, environment properties, resource fac-
tories, references between beans, and handles.

Part 3 is the most exciting part of the book, and covers advanced EJB con-
cepts. The following chapters are included:

Chapter 10 tackles transactions. Transactions are a crucial topic for anyone
building an EJB deployment that involves state. We’ll discuss transactions
at a conceptual level, and how to apply them to EJB. We'll also learn about
the Java Transaction API (JTA).

Chapter 11 covers relationships between entity beans. This is a critical con-
cept for anyone performing complex persistence. We'll understand the
concepts of cardinality, directionality, referential integrity, and cascading
deletes. We'll also see how to code relationships for both CMP and BMP
entity beans.

Chapter 12 covers persistence best practices. You'll learn exciting concepts
such as how to choose between session beans and entity beans, how to
choose between BMP and CMP, and survey a collection of persistence best
practices that we’ve assembled from our knowledge and experience.

Chapter 13 covers EJB design strategies to help your projects succeed. You'll
learn about interesting topics such as how to choose between local inter-
faces and remote interfaces, how to choose between stateful and stateless
systems, and how to choose between a 3-tier and 4-tier deployment.

Chapter 14 discusses clustering in large-scale EJB systems. You'll learn about
how clustering works behind-the-scenes, and learn a few strategies for
how containers might achieve clustering. This is a critical topic for anyone
building a system that involves several machines working together.

Chapter 15 covers E]B project management. We'll talk about how to get your
project started on the right foot. This includes how to choose whether EJB
is right for you, how to build a first-pass of your system, and how to
divide up your development team.

Chapter 16 covers how to choose an EJB server. We'll describe our methodol-
ogy for how an organization can compare and contrast different vendors’
offerings. We’ll also list our set of criteria for what we would want in an
EJB server.

Chapter 17 shows how to build a real-world J2EE system using EJB compo-
nents. We’ll see how the EJB components should be used together in an

INTRODUCTION XXix

enterprise, as well as how to connect them with clients such as Java
Servlets and JavaServer Pages (JSPs). We'll also demonstrate how to design
an EJB object model using UML.

The Appendices are a collection of ancillary EJB topics. Some developers
may want to read the appendices, while some may not need to do so.

Appendix A teaches you Java Remote Method Invocation over the Internet
Inter-ORB Protocol (RMI-IIOP) and the Java Naming and Directory Inter-
face (JNDI). These technologies are pre-requisites for using EJB. If you're
just starting down the EJB road, you must read this appendix first.

Appendix B discusses how to integrate E]B and CORBA systems together.
We’ll learn about how EJB and CORBA are interoperable through RMI-
IIOP, and see sample code for calling an EJB component from a CORBA
client.

Appendix C is a deployment descriptor reference guide. This will be useful
for you later, when you're writing a deployment descriptor and need a
guide.

Appendix D covers the new EJB query language (EJB-QL) in detail.

Appendix E is an API and diagram reference guide. This is useful when you
need to look up the purpose of a method or class in EJB.

Throughout the book, this icon will signal a tip, note, or other helpful advice n EJB
ﬂ programming.

tive. We have taken our knowledge of adult learning, and scattered boxes like this
throughout the book. Each box asks you a question to get you thinking. The answers
to the questions are posted on the book’s accompanying Web site. What do you
think the benefits are of this paradigm?

In a similar paradigm to our training courses, the content of this book is very interac-

Hlustrations in the Text

Almost all of the illustrations in this book are written in the Unified Modeling
Language (UML). UML is the de facto standard methodology for illustrating
software engineering concepts in an unambiguous way. If you don’t know
UML, pick up a copy of The Unified Modeling Language User Guide (Addison-
Wesley, ISBN 0201571684), which illustrates how to effectively use UML
in your everyday software. UML is a highly important achievement in
object-oriented methodology. It's a common mechanism for engineers to

XXX INTRODUCTION

communicate and design, and it forces you to abstract your object model prior
to implementation. We cannot stress its use enough.

The Accompanying Web Site

This book would not be complete without a way to keep you in touch after it
was published. A Web site is available for resources related to this book. There
you'll find

m All of the source code you see in this book. The code comes complete with
build scripts, ready to build and run. It should be portable to a variety of
application servers that are EJB 2.0- and J2EE 1.3-compliant.

m Updates to the source code examples.
m Links to EJB resources.

m FError corrections from the text.

The Web site is at www.wiley.com/compbooks/roman.

Feedback

When you begin your EJB programming, we’re sure you'll have many experi-
ences to share with other readers as well. Feel free to email examples, case
studies, horror stories, or tips that you've found helpful in your experiences,
and we’ll post them on the Web site.

Send bug reports to bookbugs@middleware-company.com.

Send general communications to Ed Roman at:
edro@middleware-company.com.

From Here

Now that we’ve gotten the logistics out of the way, let’s begin our exploration
of Enterprise JavaBeans with Part 1, an introduction to EJB concepts and pro-
gramming.

Ed Roman is one of the world’s leading authorities on high-end middleware
technologies. He has been heavily involved with Sun Microsystems” enter-
prise Java solutions from their inception, and has designed, built, and de-
ployed a variety of enterprise applications, including architecting and
developing complete application server products. He devotes a significant
amount of time towards influencing and refining Sun’s enterprise specifica-
tions, contributes regularly to middleware interest mailing lists, and regularly
speaks at middleware-related conferences.

Ed is CEO of The Middleware Company (www.middleware-company.com), a
firm specializing in EJB, J2EE, and XML-based Web Services training and con-
sulting. The mission of The Middleware Company is to educate and aid in the
design, development, and deployment of middleware solutions. Are you or
your company making a purchase decision, performing EJB design work, inte-
grating a legacy system to EJB, performing e-commerce-related deployments,
or working on any other middleware endeavors? If you need some assistance,
The Middleware Company can be a valuable resource.

Ed also is CEO of TheServerSide.com, which is the de facto J2EE community
Web site. Every day, thousands of developers get together on TheServerSide.
com to share E]JB design patterns, hear about the latest E]B news, ask and
answer EJB development questions, and read articles. After you've read this
book, visit TheServerSide.com to catch up on the latest EJB information.
TheServerSide.com is a completely free service and is intended to help the
community.

And last but not least, if you want to get involved in the middleware field, Ed
is always looking for great people who want to work on exciting projects using
the latest technologies. You can reach him at edro@middleware-company.com.

About the Coauthors

Tyler Jewell oversees BEA’s technology evangelism efforts, which are char-
tered to use print and speaking media to deepen developers’ respect for enter-
prise technologies and BEA products. Tyler is an experienced developer,

xxxi

Xxxii

ABOUT THE AUTHOR

lecturer, and author. He has worked on more than 40 e-business development
projects, has delivered over 200 speeches, and has published nearly 6,000
pages of content worldwide.

Tyler is a co-author of Professional Java Server Programming—]J2EE 1.3 (Wrox,
2001). He is a member of O’Reilly’s editorial advisory panel and maintains a
monthly J2EE column at www.onjava.com. He also is a technology adviser to
TheServerSide.com.

In his spare time, Tyler is an avid volleyball and poker enthusiast and a con-
noisseur of fine red wines. He can be reached at tyler@bea.com.

Scott W. Ambler is president and a senior consultant of Ronin International,
www.ronin-intl.com, a software services consulting firm that specializes in soft-
ware process mentoring, Agile Modeling (AM), and object/component-based
software architecture and development. He is also founder and thought leader
of the Agile Modeling (AM) methodology, www.agilemodeling.com.

Scott is the author of the books The Object Primer, 2nd Edition (2001), Building
Object Applications That Work (1997), Process Patterns (1998), and More Process
Patterns (1999), and co-author of The Elements of Java Style (2000), all published
by Cambridge University Press. He is author of the forthcoming Agile Model-
ing (Autumn 2001) from John Wiley & Sons. He is also co-editor with Larry
Constantine of the Unified Process series from R&D books (2000-2001). Scott is
a contributing editor with Software Development magazine (www.sdmagazine.
com), a contributor to IBM DeveloperWorks (www.ibm.com/developer), and a
columnist with Computing Canada.

Scott’s personal Web site, www.ambysoft.com, has a wide variety of white
papers, including the AmbySoft Inc. “Coding Standards for Java,” which are
available for free download. In his spare time, Scott studies T’ai Chi and the
Goju Ryu and Kobudo styles of karate. Scott has spoken at a wide variety of
international conferences including software development, UML world, object
expo, Java expo, and application development.

Platform, Enterprise Edition (J2EE), of which the Enterprise JavaBeans (EJB) com-
ponent architecture is a vital piece. J2EE is a conglomeration of concepts, pro-
gramming standards, and innovations—all written in the Java programming
language. With J2EE, you can rapidly construct distributed, scalable, reliable,
and portable secure server-side deployments.

In Part 1, we introduce the server-side development platform that is the Java 2

Chapter 1 begins by exploring the need for a server-side component architec-
ture such as EJB. You'll see the rich needs of server-side computing, such as
scalability, high availability, resource management, and security. We'll look
at each of the different parties that are involved in an EJB deployment.
We'll also survey the J2EE server-side development platform.

Chapter 2 moves on to the Enterprise JavaBeans fundamentals. We’ll look at
the concept of request interception, which is crucial for understanding how
EJB works. We'll also look at the different files that go into a bean and how
they work together.

Chapter 3 gets down and dirty with EJB programming. Here, we’ll write our
first simple bean. We’ll show how to code each of the files that compose
the bean, and we’ll also look at how to call that bean from clients.

Overview

ties the process of building enterprise-class distributed component applica-
tions in Java. By using EJB, you can write scalable, reliable, and secure
applications without writing your own complex distributed component
framework. EJB is about rapid application development for the server side;
you can quickly and easily construct server-side components in Java by lever-
aging a prewritten distributed infrastructure provided by the industry. EJB is
designed to support application portability and reusability across any ven-
dor’s enterprise middleware services.

E nterprise JavaBeans (E]B) is a server-side component architecture that simpli-

If you are new to enterprise computing, these concepts will be clarified
shortly. E]B is a complicated subject and thus deserves a thorough explanation.
In this chapter, we’ll introduce EJB by answering the following questions:

m What plumbing do you need to build a robust distributed object
deployment?

m What is EJB, and what value does it add?
m Who are the players in the E]B ecosystem?

Let’s kick things off with a brainstorming session.

The

Motivation for EJB

Figure 1.1 shows a typical business application. This application could exist in
any vertical industry and could solve any business problem. Here are some
examples:

m A stock trading system
m A banking application
m A customer call center
m A procurement system

m An insurance risk analysis application

Notice that this application is a distributed system. We broke up what would
normally be a large, monolithic application and divorced each layer of the
application from the others, so that each layer is completely independent and
distinct.

Take a look at this picture, and ask yourself the following question based
purely on your personal experience and intuition: If we take a monolithic appli-
cation and break it up into a distributed system with multiple clients connecting to
multiple servers and databases over a network, what do we need to worry about now
(as shown in Figure 1.1)?

Take a moment to think of as many issues as you can. Then turn the page and
compare your list to ours. Don’t cheat!

Client Client Client

Server Server

Database

Figure 1.1 Standard multitier deployment.

. overview §il]

In the past, most companies built their own middleware. For example, a finan-
cial services firm might build some of the middleware services above to help
them put together a stock trading system.

These days, companies that build their own middleware risk setting them-
selves up for failure. High-end middleware is hideously complicated to build
and maintain, requires expert-level knowledge, and is completely orthogonal
to most companies’ core business. Why not buy instead of build?

The application server was born to let you buy these middleware services, rather
than build them yourself. Application servers provide you with common mid-
dleware services, such as resource pooling, networking, and more. Applica-
tion servers allow you to focus on your application and not worry about the
middleware you need for a robust server-side deployment. You write the code
specific to your vertical industry and deploy that code into the runtime envi-
ronment of an application server. You've just solved your business problem by
dividing and conquering.

Divide and Conquer to the Extreme

We've just discussed how you can gain your middleware from an application
server, empowering you to focus on your business problem. But there’s even bet-
ter news: You may be able to buy a partial solution to the business problem itself.

To achieve this, you need to build your application out of components. A com-
ponent is code that implements a set of well-defined interfaces. It is a manage-
able, discrete chunk of logic. Components are not entire applications—they
cannot run alone. Rather, they can be used as puzzle pieces to solve some
larger problem.

The idea of software components is very powerful. A company can purchase a
well-defined module that solves a problem and combine it with other compo-
nents to solve larger problems. For example, consider a software component
that computes the price of goods. We’ll call this a pricing component. You hand
the pricing component information about a set of products, and it figures out
the total price of the order.

The pricing problem can get quite hairy. For example, let’s assume we're order-
ing computer parts, such as memory and hard drives. The pricing component
figures out the correct price based on a set of pricing rules that may include:

Base prices of a single memory upgrade or a single hard disk

Quantity discounts that a customer receives for ordering more than 10 mem-
ory modules

Things to Consider When Building Large Business Systems

By now you should have a decent list of things you'd have to worry about when
building large business systems. Here's a short list of the big things we came up
with. Don’t worry if you don’t understand all of them yet—you will.

Il Remote method invocations. We need logic that connects a client and server via
a network connection. This includes dispatching method requests, brokering of
parameters, and more.

Il Load balancing. Clients must be directed to the server with the lightest load. If a
server is overloaded, a different server should be chosen.

Il Transparent fail-over. If a server crashes, or if the network crashes, can clients
be rerouted to other servers without interruption of service? If so, how fast
does fail-over happen? Seconds? Minutes? What is acceptable for your business
problem?

Il Back-end integration. Code needs to be written to persist business data into
databases as well as integrate with legacy systems that may already exist.

Il Transactions. What if two clients access the same row of the database simulta-
neously? Or what if the database crashes? Transactions protect you from these
issues.

Il Clustering. What if the server contains state when it crashes? Is that state repli-
cated across all servers, so that clients can use a different server?

Il Dynamic redeployment. How do you perform software upgrades while the site
is running? Do you need to take a machine down, or can you keep it running?

Il clean shutdown. If you need to shut down a server, can you do it in a smooth,
clean manner so that you don't interrupt service to clients who are currently
using the server?

Il Logging and auditing. If something goes wrong, is there a log that we can con-
sult to determine the cause of the problem? A log would help us debug the
problem so it doesn’t happen again.

Il Systems Management. In the event of a catastrophic failure, who is monitoring
our system? We would like monitoring software that paged a system administra-
tor if a catastrophe occurred.

Il Threading. Now that we have many clients connecting to a server, that server is
going to need the capability of processing multiple client requests simultane-
ously. This means the server must be coded to be multi-threaded.

Il Message-oriented middleware. Certain types of requests should be message-
based where the clients and servers are very loosely coupled. We need infra-
structure to accommodate messaging.

Il Object life cycle. The objects that live within the server need to be created or
destroyed when client traffic increases or decreases, respectively.

Il Resource pooling. If a client is not currently using a server, that server’s precious
resources can be returned to a pool to be reused when other clients connect.
This includes sockets (such as database connections) as well as objects that live
within the server.

Il Security. The servers and databases need to be shielded from saboteurs. Known
users must be allowed to perform only operations that they have rights to
perform.

Il Caching. Let’s assume there is some database data that all clients share and
make use of, such as a common product catalog. Why should your servers
retrieve that same catalog data from the database over and over again? You
could keep that data around in the servers’ memory and avoid costly network
roundtrips and database hits.

Bl And much, much, much more.

Each of these issues is a separate service that needs to be addressed for seri-
ous server-side computing. These services are needed in any business problem
and in any vertical industry. And each of these services requires a lot of thought
and a lot of plumbing to resolve. Together, these services are called middleware.

Bundling discounts that the customer receives for ordering both memory and
a hard disk

Preferred customer discounts that you can give to big-name customers
Locale discounts depending on where the customer lives

Overhead costs such as shipping and taxes

These pricing rules are in no way unique to ordering computer parts. Other
industries, such as health care, appliances, airline tickets, and others need the
same pricing functionality. Obviously, it would be a huge waste of resources if
each company that needed complex pricing had to write its own sophisticated
pricing engine. Thus, it makes sense that a vendor provides a generic pricing
component that can be reused for different customers. For example:

1. The U.S. Postal Service can use the pricing component to compute ship-
ping costs for mailing packages. This is shown in Figure 1.2.

2. An automobile manufacturer can use the pricing component to determine
prices for cars. This manufacturer may set up a Web site that allows cus-
tomers to get price quotes for cars over the Internet. Figure 1.3 illustrates
this scenario.

3. An online grocery store can use the pricing component as one discrete
part of a complete workflow solution. When a customer purchases gro-
ceries over the Web, the pricing component first computes the price of the
groceries. Next, a different vendor’s component bills the customer with
the generated price. Finally, a third component fulfills the order, setting
things in motion for the groceries to be delivered to the end user. We
depict this in Figure 1.4.

Post Office worker

Workstation / Dumb Terminal

Pricing
Component

Call into legacy system

| —

0
Legacy System

Figure 1.2 Reusing a pricing component for the U.S. Postal Service.

Reusable components are quite enticing because components promote rapid
application development. An IT shop can quickly assemble an application
from prewritten components rather than writing the entire application from
scratch. This means:

Client Browser

/ Client Browser
\/ —

Client Browser

C———— -

\.I_I_I_|

Web Server
Pricing
Component

Figure 1.3 Reusing a pricing component for quoting car prices over the Internet.

=
=y
—y
—y
—
=
[—

I — -
N~
Web Server

Workflow Logic

— 1: Price Order — L—3: Fulfill Order —

2: Bill Order to Customer

v A v
Pricing Billing Fufillment
Component Component Component

Figure 1.4 Reusing a pricing component as part of an e-commerce workflow solution.

The IT shop needs less in-house expertise. The IT shop can consider the
pricing component to be a black box, and it does not need experts in com-
plex pricing algorithms.

The application is assembled faster. The component vendor has already
written the tough logic, and the IT shop can leverage that work, saving
development time.

11

There is a lower total cost of ownership. The component vendor’s cash cow
is its components, and therefore it must provide top-notch documentation,
support, and maintenance if it is to stay in business. Because the compo-
nent vendor is an expert in its field, the component generally has fewer
bugs and higher performance than an IT shop’s home-grown solution. This
reduces the IT shop’s maintenance costs.

Once the rules of engagement have been laid down for how components
should be written, a component marketplace is born, where vendors can sell
reusable components to companies. The components are deployed within
application servers, which provide the needed middleware.

Component Marketplace a Myth?

There is a very small component marketplace today. For years we’ve been hoping
that the marketplace will explode, but it is behind schedule. There are several
reasons for Independent Software Vendors (ISVs) not shipping components:

Maturity. Because components live inside application servers, the application
servers must be mature before we see components written to those servers.

Politics. Many ISVs have written their own application servers. Some (falsely) view
this as a competitive advantage.

Questionable value. Most ISVs are customer-driven (meaning they prioritize what
their customers are asking for). Since components are new to many customers,
many of them are not asking for their ISVs to support components.

It is our opinion that the marketplace will eventually explode, and it’s just a
matter of time. If you represent an ISV, this could be a fantastic opportunity
for you.

The good news is that the marketplace already beginning to emerge. Most
packaged e-commerce ISVs (Ariba, Broadvision, Vignette, and so on) are shipping
or have announced support for server-side Java technologies.

In the meantime, you’ll have to build your own components from scratch
within your organizations. Some of our customers at The Middleware Company
are attempting this by having departments provide components to other depart-
ments. In effect, that department is acting as an internal ISV.

Bl OvERVIEW

Component Architectures

It has been a number of years since the idea of multitier server-side deploy-
ments surfaced. Since then, well over 50 application servers have appeared on
the market. At first, each application server provided component services in a
nonstandard, proprietary way. This occurred because there was no agreed def-
inition of what a component should be. The result? Once you bet on an appli-
cation server, your code was locked into that vendor’s solution. This greatly
reduced portability and was an especially tough pill to swallow in the Java
world, which promotes openness and portability. It also hampered the com-
merce of components, because a customer could not combine a component
written to one application server with another component written to a differ-
ent application server.

What we need is an agreement, or set of interfaces, between application servers
and components. This agreement will enable any component to run within
any application server. This will allow components to be switched in and out
of various application servers without having to change code or potentially
even recompile the components themselves. Such an agreement is called com-
ponent architecture and is shown in Figure 1.5.

If you're trying to explain components to a nontechie, try these analogies:
ﬂ = Any CD player can play any compact disc because of the CD standard. Think of an
application server as a CD player and components as compact discs.
m In the United States, any TV set can tune into any broadcast because of the NTSC
standard. Think of an application server as a TV set and components as television
broadcasts.

Application Server

agreed-upon
interfaces
Components - specified by ~—=
component
architecture

Figure 1.5 A component architecture.

. overview I}

Introducing Enterprise JavaBeans

The Enterprise JavaBeans (EJB) standard is a component architecture for
deployable server-side components in Java. It is an agreement between com-
ponents and application servers that enable any component to run in any
application server. EJB components (called enterprise beans) are deployable,
and can be imported and loaded into an application server, which hosts those
components.

The top three values of EJB are as follows:

1. Itis agreed upon by the industry. Those who use E]JB will benefit from its
widespread use. Because everyone will be on the same page, in the future
it will be easier to hire employees who understand your systems (since
they may have prior EJB experience), learn best practices to improve your
system (by reading books like this one), partner with businesses (since
technology will be compatible), and sell software (since customers will
accept your solution). The concept of “train once, code anywhere” applies.

2. Portability is easier. The E]B specification is published and available freely
to all. Since E]JB is a standard, you do not need to gamble on a single, pro-
prietary vendor’s architecture. And although portability will never be
free, it is cheaper than without a standard.

3. Rapid application development. Your application can be constructed
faster because you get middleware from the application server. There’s
also less of a mess to maintain.

Note that while E]JB does have these virtues, there are also scenarios where EJB
is inappropriate. See Chapter 15 for a complete discussion of when to (and
when not to) use EJB.

Physically, EJB is actually two things in one:

A specification. This is a 500-plus-page Adobe Acrobat PDF file, freely downloadable
from http://java.sun.com. This specification lays out the rules of engagement
between components and application servers. It constricts how you program so
that you can interoperate.

A set of Java interfaces. Components and application servers must conform to these
interfaces. Since all components are written to the same interfaces, they all look
the same to the application server. The application server therefore can manage
anyone’s components. You can freely download these interfaces from
http://java.sun.com.

14

Why Java?

v
v

EJB components must be written in Java only and require dedication to Java.
This is indeed a serious restriction. The good news, however, is that Java is an
ideal language to build components, for many reasons.

Interface/implementation separation. We need a clean interface/implemen-
tation separation to ship components. After all, customers who purchase com-
ponents shouldn’t be messing with implementation. Upgrades and support
will become horrendous. Java supports this at a syntactic level via the interface
keyword and class keyword.

Safe and secure. The Java architecture is much safer than traditional program-
ming languages. In Java, if a thread dies, the application stays up. Pointers are
no longer an issue. Memory leaks occur much less often. Java also has a rich
library set, so that Java is not just the syntax of a language but a whole set of
prewritten, debugged libraries that enable developers to avoid reinventing the
wheel in a buggy way. This safety is extremely important for mission-critical
applications. Sure, the overhead required to achieve this level of safety might
make your application slower, but 90 percent of all business programs are glo-
rified Graphical User Interfaces (GUIs) to databases. That database is going to
be your number one bottleneck, not Java.

Cross-platform. Java runs on any platform. Since EJB is an application of Java,
this means E]B should also easily run on any platform. This is valuable for cus-
tomers who have invested in a variety of powerful hardware, such as Win32,
UNIX, and mainframes. They do not want to throw away these investments.

If you don’t want to go the EJB route, you have two other choices as well:
m Microsoft’s .NET managed components, part of the Microsoft.NET platform

m The Object Management Group (OMG’s) Common Object Request Broker Archi-
tecture (CORBA)

Note that many EJB servers are based upon and can interoperate with CORBA (see
Appendix B for strategies for achieving this).

EJB as a Business Solution

EJB is specifically used to help solve business problems. EJB components (enter-
prise beans) might perform any of the following tasks.

Perform business logic. Examples include computing the taxes on the shop-
ping cart, ensuring that the manager has authority to approve the purchase
order, or sending an order confirmation email using the JavaMail API.

I e | 15

Access a database. Examples include submitting an order for books, transfer-
ring money between two bank accounts, or calling a stored procedure to
retrieve a trouble ticket in a customer support system. Enterprise beans
achieve database access using the Java Database Connectivity (JDBC) APL

Access another system. Examples include calling a high-performing CICS
legacy system written in COBOL that computes the risk factor for a new
insurance account, calling a legacy VSAM data store, or calling SAP R/3.
Enterprise beans achieve existing application integration via the Java Con-
nector Architecture (JCA).

EJB components are not GUI components; rather, enterprise beans sit behind
the GUIs and do all the hard work. Examples of GUIs that can connect to enter-
prise beans include the following:

Thick clients. Thick clients execute on a user’s desktop. They could connect
via the network with EJB components that live on a server. These EJB com-
ponents may perform any of the tasks listed above (business logic, data-
base logic, or accessing other systems). Thick clients in Java include applets
and applications.

Dynamically generated web pages. Web sites that are complex need their
Web pages generated specifically for each request. For example, the home-
page for Amazon.com is completely different for each user, depending on
the user’s profile. Java servlets and JavaServer Pages (JSPs) are used to
generate such specific pages. Both servlets and JSPs live within a Web
server and can connect to EJB components, generating pages differently
based upon the values returned from the EJB layer.

XML-based Web Service wrappers. Some business applications require no
user interface at all. They exist to interconnect with other business part-
ners’ applications that may provide their own user interface. For example,
Dell Computer Corporation needs to purchase Intel chips to manufacture
desktop computers. Intel could expose a Web Service that enables Dell’s
software to connect and order chips. In this case, Intel’s system does not
have a user interface of its own, but rather acts as a Web Service. Possible
technologies used here include SOAP, UDDI, ebXML, and WSDL. This is
shown in Figure 1.6.

The real difference between GUI components (thick clients, dynamically gener-
ated Web pages, and Web Service wrappers) and enterprise beans is the domain
that each component type is intended to be part of. GUI components are well
suited to handle client-side operations, such as rendering GUIs (although they
don’t necessarily need to have one), performing other presentation-related
logic, and lightweight business logic operations. They deal directly with the
end-user or business partner.

16

Intel
SOAP XML-Based
Dell |_UDDI Web Service EJBs
Web Site ebXML Wrappers
WSDL (Servlets, JSPs)

Figure 1.6 EJBs as the back-end to Web services.

End-User Web Browser

Enterprise beans, on the other hand, are not intended for the client side; they
are server-side components. They are meant to perforrn server-side operations,
such as executing complex algorithms or performing high-volume business
transactions. The server side has different kinds of needs from a rich GUI envi-
ronment. Server-side components need to run in a highly available (24 X 7),
fault-tolerant, transactional, and multiuser secure environment. The applica-
tion server provides this high-end server-side environment for the enterprise
beans, and it provides the runtime containment necessary to manage enter-
prise beans.

The EJB Ecosystem

To get an EJB deployment up and running successfully, you need more than just
an application server and components. In fact, E]B encourages collaboration of
more than six different parties. Each of these parties is an expert in its own field
and is responsible for a key part of a successful EJB deployment. Because each
party is a specialist, the total time required to build an enterprise-class deploy-
ment is significantly reduced. Together, these players form the EJB Ecosystem.

Let’s discuss who the players are in the EJB Ecosystem. As you read on, think
about your company’s business model to determine which role you fill. If
you're not sure, ask yourself what the core competency of your business is.
Also think about what roles you might play in upcoming projects.

of businesses choosing EJB because everyone else is using it, or because it is new
and exciting. Those are the wrong reasons to use EJB and can result in disappointing
results. For a complete discussion of when and when not to use EJB, see Chapter 15.

? The EJB Ecosystem is not for everyone. At my company, we've heard ghastly stories

17

JavaBeans. Enterprise JavaBeans

You may have heard of another standard called JavaBeans. JavaBeans are com-
pletely different from Enterprise JavaBeans.

In a nutshell, JavaBeans are Java classes that have get/set methods on them.
They are reusable Java components with properties, events, and methods (similar
to Microsoft’s ActiveX controls) that can be easily wired together to create (often
visual) Java applications.

JavaBeans are much smaller than Enterprise JavaBeans. You can use JavaBeans
to assemble larger components or to build entire applications. JavaBeans, how-
ever, are development components and are not deployable components. You typ-
ically do not deploy a JavaBean; rather, JavaBeans help you construct larger
software that is deployable. And because they cannot be deployed, JavaBeans do
not need to live in a runtime environment. Since JavaBeans are just Java classes,
they do not need an application server to instantiate them, to destroy them, and
to provide other services to them. The application itself is made up of JavaBeans.

The Bean Provider

The bean provider supplies business components, or enterprise beans. Enter-
prise beans are not complete applications, but rather are deployable compo-
nents that can be assembled into complete solutions. The bean provider could
be an ISV selling components or an internal department providing compo-
nents to other departments.

Many vendors ship reusable components today. You can get the complete list
from www.componentsource.com or www.flashline.com. In the future,
traditional enterprise software vendors (such as sales force automation ven-
dors, enterprise resource planning vendors, financial services vendors, and
e-commerce vendors) will offer their software as enterprise beans or provide
connectors to their current technology.

The Application Assembler

The application assembler is the overall application architect. This party is
responsible for understanding how various components fit together and
writes the applications that combine components. An application assembler
may even author a few components along the way. His or her job is to build an
application from those components that can be deployed in a number of

settings. The application assembler is the consumer of the beans supplied by
the bean provider.

The application assembler could perform any or all of the following tasks:

m From knowledge of the business problem, decide which combination of
existing components and new enterprise beans are needed to provide an
effective solution; in essence, plan the application assembly.

m Supply a user interface (perhaps Swing, servlet/]JSP, application/applet,
or Web Service wrapper).

m Write new enterprise beans to solve some problems specific to your busi-
ness problem.

m Write the code that calls on components supplied by bean providers.

m Write integration code that maps data between components supplied by
different bean providers. After all, components won’t magically work
together to solve a business problem, especially if different vendors write
the components.

An example of an application assembler is a systems integrator, a consulting
firm, or an in-house programmer.

The EJB Deployer

After the application assembler builds the application, the application must be
deployed (and go live) in a running operational environment. Some challenges
faced here include the following:

m Securing the deployment with a firewall and other protective measures

m Integrating with an LDAP server for security lists, such as Lotus Notes or
Microsoft Active Directory

m Choosing hardware that provides the required level of performance

m Providing redundant hardware and other resources for reliability and
fault tolerance

m Performance-tuning the system

Frequently the application assembler (who is usually a developer or systems
analyst) is not familiar with these issues. This is where the EJB deployer comes
into play. EJB deployers are aware of specific operational requirements and
perform the tasks above. They understand how to deploy beans within servers
and how to customize the beans for a specific environment. The EJB deployer

19

has the freedom to adapt the beans, as well as the server, to the environment in
which the beans are to be deployed.

An EJB deployer can be a staff person, an outside consultant, or a vendor.
Examples of EJB deployers include Loudcloud and Host]2EE.com, which both
offer hosting solutions for EJB deployments.

The System Administrator

Once the deployment goes live, the system administrator steps in to oversee
the stability of the operational solution. The system administrator is responsi-
ble for the upkeep and monitoring of the deployed system and may make use
of runtime monitoring and management tools that the EJB server provides.

For example, a sophisticated EJB server might page a system administrator if
a serious error occurs that requires immediate attention. Some E]B servers
achieve this by developing hooks into professional monitoring products, such
as Tivoli and Computer Associates. Others are providing their own systems
management by supporting the Java Management Extension (JMX).

The Container and Server Provider

The container provider supplies an EJB container (the application server). This
is the runtime environment in which beans live. The container supplies mid-
dleware services to the beans and manages them. Examples of E]B containers

Qualities of Service in EJB

Monitoring of EJB deployments is not specified in the EJB specification. It is an
optional service that advanced EJB servers can provide. This means that each EJB
server could provide the service differently.

At first blush you might think this hampers application portability. However, in
reality this service should be provided transparently behind the scenes, and
should not affect your application code. It is a quality of service that lies beneath
the application level and exists at the systems level. Changing application servers
should not affect your EJB code.

Other transparent qualities of service not specified in the EJB specification
include load balancing, transparent fail-over, caching, clustering, and connection
pooling algorithms.

LBl OVERVIEW

are BEA’s WebLogic, iPlanet’s iPlanet Application Server, IBM’s WebSphere,
Oracle’s Oracle 9i, Macromedia’s JRun, Persistence’s PowerTier, Brokat’s
Gemstone/], HP’s Bluestone, IONA’s iPortal, Borland’s AppServer, and the
JBoss open source code application server.

The server provider is the same as the container provider. Sun has not yet dif-
ferentiated these (and they may never do so). We will use the terms EJB con-
tainer and EJB server interchangeably in this book.

The Tool Vendors

To facilitate the component development process, there should be a standard-
ized way to build, manage, and maintain components. In the EJB Ecosystem,
there are several Integrated Development Environments (IDEs) assist you in
rapidly building and debugging components. Examples are Webgain’s Visual
Cafe, IBM’s VisualAge for Java, or Borland’s JBuilder.

Other tools enable you to model components in the Unified Modeling Lan-
guage (UML), which is the diagram style used in this book. You can then auto-
generate EJB code from that UML. Examples of products in this space are
Togethersoft’s Together /] and Rational’s Rational Rose.

There are other tools as well, such as tools to organize components (Flashline,
ComponentSource), testing tools (JUnit, RSW Software), and build tools (Ant).

Summary of Roles

Figure 1.7 summarizes the interaction of the different parties in E]JB.

You may be wondering why so many different participants are needed to pro-
vide an EJB deployment. The answer is that EJB enables companies or indi-
viduals to become experts in certain roles, and division of labor leads to
best-of-breed deployments.

The EJB specification makes each role clear and distinct, enabling experts in
different areas to participate in a deployment without loss of interoperability.
Note that some of these roles could be combined as well. For example, the EJB
server and EJB container today come from the same vendor. Or at a small
startup company, the bean provider, application assembler, and deployer
could all be the same person who is trying to build a business solution using
EJB from scratch. What roles do you see yourself playing?

For some of the parties E]B merely suggests possible duties, such as the system
administrator overseeing the well-being of a deployed system. For other par-
ties, such as the bean provider and container provider, EJB defines a set of

21

1 1 Do) f

Application Deployer System Administrator
Assembler (Maintains Deployment)

Bean Provider i

EJB Container/Server
Provider

Figure 1.7 The parties of EJB.

strict interfaces and guidelines that must be followed or the entire ecosystem
will break down. By clearly defining the roles of each party, EJB lays a founda-
tion for a distributed, scalable component architecture where multiple ven-
dors” products can interoperate.

A future EJB specification will define a new role, called the persistence manager,
which plugs into an application server. Your components harness the persistence
manager to map your business data into storage, such as mapping objects into rela-
tional databases.

The persistence manager may be written to understand how to persist business data
to any storage type. Examples include legacy systems, flat file systems, relational
databases, object databases, or a proprietary system.

The persistence manager provider may be the same as the container/server vendor,
such as the case with IBM’s WebSphere, which includes built-in persistence capabili-
ties. Examples of ISV persistence manager providers include WebGain’s TOPLink and
Thought Inc’s Cocobase.

Unfortunately, the persistence manager provider role is not explicitly defined in the
EJB 2.0 specification. Due to time constraints, a standard for plugging persistence
managers into application servers won't exist until a future version of EJB. The good
news is this won't affect the portability of your code, because your application
doesn’t care whether it’s being persisted by the container or by some persistence
manager that happens to plug into the container. The bad news is that you'll need to
rely on proprietary agreements between persistence manager providers and applica-
tion server vendors, which means that not every persistence manager may work in
every application server — for now.

2Bl OVERVIEW

The Java 2 Platform, Enterprise Edition (J2EE)

EJB is only a portion of a larger offering from Sun Microsystems called the Java
2 Platform, Enterprise Edition (J2EE). The mission of J2EE is to provide a
platform-independent, portable, multiuser, secure, and standard enterprise-
class platform for server-side deployments written in the Java language.

J2EE is a specification, not a product. J2EE specifies the rules of engagement
that people must agree on when writing enterprise software. Vendors then
implement the J2EE specifications with their J2EE-compliant products.

Because J2EE is a specification (meant to address the needs of many compa-
nies), it is inherently not tied to one vendor; it also supports cross-platform
development. This encourages vendors to compete, yielding best-of-breed
products. It also has its downside, which is that incompatibilities between ven-
dor products will arise—some problems due to ambiguities with specifica-
tions, other problems due to the human nature of competition.

J2EE is one of three different Java platforms. Each platform is a conceptual
superset of the next smaller platform.

The Java 2 Platform, Micro Edition (J2ME) is a development platform for
Java-enabled devices, such as Palm Pilots, pagers, watches, and so on. This
is a restricted form of the Java language due to the inherent performance
and capacity limitations of small devices.

The Java 2 Platform, Standard Edition (J2SE) contains standard Java ser-
vices for applets and applications, such as input/output facilities, graphi-
cal user interface facilities, and more. This platform contains what most
people use in standard Java Development Kit (JDK) programming.

The Java 2 Platform, Enterprise Edition (J2EE) takes Java’s Enterprise APlIs
and bundles them together in a complete development platform for
enterprise-class server-side deployments in Java.

The arrival of J2EE is significant because it creates a unified platform for
server-side Java development. J2EE consists of the following deliverables
from Sun Microsystems.

Specifications. Each enterprise API within J2EE has its own specification,
which is a PDF file downloadable from http:/ /java.sun.com. Each time
there is a new version of J2EE, Sun locks-down the versions of each Enter-
prise API specification and bundles them together as the de facto versions
to use when developing with J2EE. This increases code portability across
vendors’ products because each vendor supports exactly the same API
revision. This is analogous to a company such as Microsoft releasing a new

- overview JIF}

version of Windows every few years: Every time a new version of Win-
dows comes out, Microsoft locks-down the versions of the technologies
bundled with Windows and releases them together.

Test suite. Sun provides a test suite for J2EE server vendors to test their
implementations against. If a server passes the tests, Sun issues a compli-
ance brand, alerting customers that the vendor’s product is indeed J2EE-
compliant. There are numerous J2EE-certified vendors, and you can read
reviews of their products for free on TheServerSide.com.

Reference implementation. To enable developers to write code against J2EE
as they have with the JDK, Sun provides its own free reference implemen-
tation of J2EE. Sun is positioning it as a low-end reference platform, as it is
not intended for commercial use.

BluePrints Document. Each of the Enterprise APIs has a clear role in J2EE, as
defined by Sun’s J2EE BluePrints document. This document is a download-
able PDF file that describes how to use the J2EE technologies together.

The J2EE Technologies

The Java 2 Platform, Enterprise Edition is a robust suite of middleware ser-
vices that make life very easy for server-side application developers. J2EE
builds on the existing technologies in the J2SE. J2SE includes the base Java sup-
port and the various libraries (.awt, .net, .io) with support for both applets and
applications. Because J2EE builds on J2SE, a J2EE-compliant product must not
only implement all of J2EE, but must also implement all of J2SE. This means
that building a J2EE product is an absolutely huge undertaking. This barrier to
entry has resulted in significant industry consolidation in the Enterprise Java
space, with a few players emerging from the pack as leaders.

We will discuss version 1.3 of]2EE, which supports EJB 2.0. Some of the major
J2EE technologies are shown working together in Figure 1.8.

To understand more about the real value of J2EE, here is each API that a J2EE
1.3-compliant implementation must provide for you.

Enterprise JavaBeans (E]JB). EJB defines how server-side components are
written and provides a standard contract between components and the
application servers that manage them. E]B is the cornerstone for J2EE and
uses several other J2EE technologies.

Java Remote Method Invocation (RMI) and RMI-IIOP. RMI is the Java lan-
guage’s native way to communicate between distributed objects, such as
two different objects running on different machines. RMI-IIOP is an exten-
sion of RMI that can be used for CORBA integration. RMI-IIOP is the offi-
cial API that we use in J2EE (not RMI). We cover RMI-IIOP in Appendix A.

24

Client Tier

J2EE Server

Back-End
Systems

Web Browser

Figure 1.8 A Java 2 Platform, Enterprise Edition deployment.

Java Naming and Directory Interface (JNDI). JNDI is used to access naming
and directory systems. You use JNDI from your application code for a vari-
ety of purposes, such as connecting to EJB components or other resources
across the network, or accessing user data stored in a naming service such

B o Applets,
usiness Partner Applications, e
or Other System C(;,FF:B A Clients ’
! |
Web services technologies
(SOAP, UDDI, WSDL, ebXML) ioP HTTP HTTP
Firewall
Servlets JSPs
EJBs
Connectors
JMS saL . Web Services Technologies
Proprietary Protocol (SOAP, UDDI, WSDL, ebXML)
Existing System Business
Legacy System Partner
ERP System or Other System
Databases

as Microsoft Exchange or Lotus Notes. JNDI is covered in Appendix A.

Java Database Connectivity (JDBC). JDBC is an API for accessing relational
databases. The value of JDBC is that you can access any relational database

using the same API. JDBC is used in Chapter 6.

Wireless Device

I | 25

Java Transaction API (JTA) Java Transaction Service (JTS). The JTA and JTS
specifications allow for components to be bolstered with reliable transac-
tion support. JTA and JTS are explained in Chapter 10.

Java Messaging Service (JMS). JMS allows for your J2EE deployment to
communicate using messaging. You can use messaging to communicate
within your J2EE system as well as outside your J2EE system. For example,
you can connect to existing message-oriented middleware (MOM) systems
such as IBM MQSeries or Microsoft Message Queue (MSMQ). Messaging is
an alternative paradigm to RMI-IIOP, and has its advantages and disad-
vantages. We explain JMS in Chapter 8.

Java Servlets. Servlets are networked components that you can use to extend
the functionality of a Web server. Servlets are request/response oriented in
that they take requests from some client host (such as a Web browser) and
issue a response back to that host. This makes servlets ideal for performing
Web tasks, such as rendering an HTML interface. Servlets differ from EJB
components in that the breadth of server-side component features that EJB
offers is not readily available to servlets. Servlets are much better suited to
handling simple request/response needs, and they do not require sophisti-
cated management by an application server. We illustrate using Servlets
with EJB in Chapter 17.

Java Pages (JSPs). JSPs are very similar to servlets. In fact, JSP scripts are
compiled into servlets. The largest difference between JSP scripts and
servlets is that JSP scripts are not pure Java code; they are much more cen-
tered around look-and-feel issues. You would use JSP when you want the
look and feel of your deployment to be physically separate and easily
maintainable from the rest of your deployment. JSPs are perfect for this,
and they can be easily written and maintained by non-Java savvy staff
members (JSPs do not require a Java compiler). We illustrate using JSPs
with EJB in Chapter 17.

Java IDL. Java IDL is Sun Microsystems’ Java-based implementation of
CORBA. Java IDL allows for integration with other languages. Java IDL
also allows for distributed objects to leverage CORBA's full range of
services. J2EE is thus fully compatible with CORBA, completing the
Java 2 Platform, Enterprise Edition. We discuss CORBA integration in
Appendix B.

JavaMail. The JavaMail service allows you to send email messages in a
platform-independent, protocol-independent manner from your Java pro-
grams. For example, in a server-side J2EE deployment, you can use Java-
Mail to confirm a purchase made on your Internet e-commerce site by
sending an email to the customer. Note that JavaMail depends on the

LBl OVERVIEW

JavaBeans Activation Framework (JAF), which makes JAF part of J2EE as
well. We do not cover JavaMail in this book.

J2EE Connector Architecture (JCA). Connectors allow you to access existing
enterprise information systems from a J2EE deployment. This could
include any existing system, such as a mainframe systems running high-
end transactions (such as those deployed with IBM’s CICS or BEA’s
TUXEDO), Enterprise Resource Planning (ERP) systems, or your own pro-
prietary systems. Connectors are useful because they automatically man-
age the details of middleware navigation to existing systems, such as
handling transaction and security concerns. Another value of the JCA is
that you can write a driver to access an existing system once, and then
deploy that driver into any J2EE-compliant server. This is important
because you only need to learn how to access any given existing system
once. Furthermore, the driver needs to be developed only once and can be
reused in any J2EE server. This is extremely useful for independent soft-
ware vendors (ISVs) who want their software to be accessible from within
application servers. Rather than write a custom driver for each server, the
ISV can write a single driver. We discuss legacy integration more in Chap-
ters 12 and 13.

The Java API for XML Parsing (JAXP). There are many applications of XML
in a J2EE deployment. For example, you might need to parse XML if you
are performing B2B interactions (such as through Web services), if you are
accessing legacy systems and mapping data to and from XML, or if you are
persisting XML documents to a database. JAXP is the de facto API for pars-
ing XML documents in a J2EE deployment and is an implementation-
neutral interface to XML parsers. You typically use the JAXP API from
within servlets, JSPs, or EJB components. There is a free whitepaper avail-
able on TheServerSide.com that describes how to build Web services
with J2EE.

The Java Authentication and Authorization Service (JAAS). JAAS is a stan-
dard API for performing security-related operations in J2EE. Conceptually,
JAAS also enables you to plug in a security system to a J2EE deployment.
See Chapter 9 for more details on security and E]B.

Summary

We’ve achieved a great deal in this chapter. First, we brainstormed a list of
issues involved in a large, multitier deployment. We then understood that a
server-side component architecture allows us to write complex business appli-
cations without understanding tricky middleware services. We then dove into

. overview NI

the EJB standard and fleshed out its value proposition. We investigated the
different players involved in an E]JB deployment and wrapped up by explor-
ing J2EE.

The good news is that we’re just getting started, and many more interesting
and advanced topics lie ahead. The next chapter delves into the concept of
request interception, which is the mental leap you need to make to understand
EJB. Let’s go!

EJB Fundamentals

C

hapter 1 introduced the motivation behind EJB. In this chapter, we’ll dive into
EJB in detail. After reading this chapter, you will understand the different
types of enterprise beans. You'll also understand what an enterprise bean
component is comprised of, including the enterprise bean class, the remote
interface, the local interface, the E]JB object, the local object, the home interface,
the home object, the deployment descriptor, and the Ejb-jar file.

EJB technology is based on two other technologies: Java RMI-IIOP and JNDI. Under-
standing these technologies is mandatory before continuing.

We have provided tutorials on each of these technologies in the appendices of this
book. If you don’t yet know RMI-1IOP or JNDI, go ahead and read Appendix A now.

Enterprise Beans

An enterprise bean is a server-side software component that can be deployed in
a distributed multitier environment. An enterprise bean can compose one or
more Java objects because a component may be more than just a simple object.
Regardless of an enterprise bean’s composition, the clients of the bean deal
with a single exposed component interface. This interface, as well as the enter-
prise bean itself, must conform to the EJB specification. The specification
requires that your beans expose a few required methods; these required

29

L/ OVERVIEW

methods allow the EJB container to manage beans uniformly, regardless of
which container your bean is running in.

Note that the client of an enterprise bean could be anything—a servlet, an
applet, or even another enterprise bean. In the latter case, a client request to a
bean can result in a whole chain of beans being called. This is a very powerful
idea because you can subdivide a complex bean task, allowing one bean to call
on a variety of prewritten beans to handle the subtasks. This hierarchical con-
cept is quite extensible.

As a real-world example, imagine you go to a music store to purchase a com-
pact disc. The cashier takes your credit card and runs it through a scanner. The
scanner has a small Java Virtual Machine running within it, which acts as a
client of enterprise beans running on a central server. The central server enter-
prise beans perform the following tasks:

1. Contact American Express, a Web service that itself has an EJB-compliant
application server containing a number of beans. The beans are responsi-
ble for conducting the credit card transaction on behalf of that client.

2. Call a product catalog bean, which updates inventory and subtracts the
quantity the customer purchased.

3. Call an order entry bean, which enters the record for the customer and
returns that record locator to the scanner to give to the customer on a
receipt.

As you can see, this is a powerful, flexible model, which can be extended as
needed.

Types of Beans

EJB 2.0 defines three different kinds of enterprise beans:

Session beans. Session beans model business processes. They are like verbs
because they are actions. The action could be anything, such as adding num-
bers, accessing a database, calling a legacy system, or calling other enterprise
beans. Examples include a pricing engine, a workflow engine, a catalog
engine, a credit card authorizer, or a stock-trading engine.

Entity beans. Entity beans model business data. They are like nouns because
they are data objects—that is, Java objects that cache database information.
Examples include a product, an order, an employee, a credit card, or a stock.
Session beans typically harness entity beans to achieve business goals, such as
a stock-trading engine (session bean) that deals with stocks (entity beans). For
more examples of this, see Table 2.1.

EJB Fundamentals 31

Table 2.1 Session Beans Calling Entity Beans

SESSION BEAN ENTITY BEAN

Bank teller Bank account
Credit card authorizer Credit card
DNA sequencer DNA strand
Order entry system Order, Line item
Catalog engine Product
Auction broker Bid, Item
Purchase order Approval router Purchase order

Message-driven beans. Message-driven beans are similar to session beans in
that they are actions. The difference is that you can call message-driven beans
only by sending messages to those beans (fully described in Chapter 8). Exam-
ples of message-driven beans include beans that receive stock trade messages,
credit card authorization messages, or workflow messages. These message-
driven beans might call other enterprise beans as well.

You may be wondering why the E]JB paradigm is so robust in offering the var-
ious kinds of beans. Why couldn’t Sun come up with a simpler model?
Microsoft’s n-tier vision, for example, does not include the equivalent of entity
beans—components that represent data in permanent storage.

The answer is that Sun is not the only company involved in constructing the
EJB standard. Many companies have been involved, each with customers that
have different kinds of distributed systems. To accommodate the needs of dif-
ferent enterprise applications, Sun allowed users the flexibility of each kind of
bean.

Admittedly this increases the ramp-up time to learn EJB. It also adds an ele-
ment of danger because some developers may misuse the intentions of each
bean type. But it pays off in the long run with increased functionality. By
including session beans, Sun provides a mechanism to model business
processes in a distributed multitier environment. By including entity beans in
the EJB specification, Sun has taken the first steps toward persistent, distrib-
uted objects usable by those business processes. And with message-driven
beans, you can use messaging to access your EJB system.

See Figure 2.1 for a diagram showing some of the many possibilities of clients
interacting with an EJB component system.

2Bl OVERVIEW

. Business
Presentation HTML Client Partner System
Tier |
SOAP, | UDDI,
H-I;TP WSDL, | ebXML
Firewall
<& Web Server
A 4
Messaging C++ Java Application
Client Client Java Applet Servlet JSP
Messaging CORBA/IIOP RMI-IIOP RI\/’II-IIOP RMI-1IOP
/— f Application Server
7 v v ¥
Eﬁlgvl\élrt‘esBs:ag:- EJB Session Bean EJB Session Bean
Business
/ / Tier
Y A 4
EJB Session Bean EJB Entity Bean EJBBzgision

Figure 2.1 Clients interacting with an EJB component system.

Distributed Objects: The Foundation for EJB

Now that you've seen the different types of beans, let’s dive into the technol-
ogy behind them. EJB components are based on distributed objects. A distrib-
uted object is an object that is callable from a remote system. It can be called
from an in-process client, an out-of-process client, or a client located elsewhere
on the network.

Figure 2.2 shows how a client can call a distributed object. The following is an
explanation of the diagram:

1. The client calls a stub, which is a client-side proxy object. This stub is respon-
sible for masking network communications from the client. The stub

33

knows how to call over the network using sockets, massaging parameters
as necessary into their network representation.

2. The stub calls over the network to a skeleton, which is a server-side proxy
object. The skeleton masks network communication from the distributed
object. The skeleton understands how to receive calls on a socket. It also
knows how to massage parameters from their network representations to

their Java representations.

3. The skeleton delegates the call to the distributed object. The distributed

object does its work, and then returns control to the skeleton, which

returns to the stub, which then returns control to the client.

Akey point here is that both the stub and the distributed object implement the
same interface (called the remote interface). This means the stub clones the dis-
tributed object’s method signatures. A client who calls a method on the stub
thinks he is calling the distributed object directly; in reality, the client is calling
an empty stub that knows how to go over the network. This is called

local/remote transparency.

You can achieve distributed objects using many technologies, including the
OMG’s CORBA, Microsoft’s DCOM, and Sun’s Java RMI-IIOP.

Client

Remote Interface

T

Stub

Figure 2.2 Distributed objects.

Distributed
Object

Remote Interface (L

Skeleton

L OVERVIEW

Distributed Objects and Middleware

Distributed objects are great because they allow you to break up an application
across a network. However, as a distributed object application gets larger,
you’ll need help from middleware services, such as transactions and security.
There are two ways to get middleware: explicitly and implicitly. Let’s investi-
gate both approaches.

Explicit Middleware

In traditional distributed object programming (such as traditional CORBA),
you can harness middleware by purchasing that middleware off the shelf and
writing code that calls that middleware API. For example, you could gain
transactions by writing to a transaction API. We call this explicit middleware
because you need to write to an API to gain that middleware. This is shown in

Figure 2.3
Transaction API Transaction
=7 O Service
. Security API
. Distributed : .
Client Object [T > 0—— Security Service

Remote Interfacel

Ao— Database Driver
Database API

i Remote Interface
'..>T

Stub Skeleton

Figure 2.3 Explicit middleware (gained through APIs).

EJB Fundamentals 35

Here’s a bank account distributed object that knows how to transfer funds
from one account to another. It is filled with pseudo-code that illustrates
explicit middleware.

transfer (Account accountl, Account account2, long amount) ({
// 1: Call middleware API to perform a security check

// 2: Call middleware API to start a transaction

// 3: Call middleware API to load rows from the database

// 4: Subtract the balance from one account, add to the other
// 5: Call middleware API to store rows in the database

// 6: Call middleware API to end the transaction

}

As you can see, we are gaining middleware, but our business logic is inter-
twined with the logic to call these middleware APIs. The downsides to this
approach are

Difficult to write. The code is bloated. We simply want to perform a transfer,
but it requires a large amount of code.

Difficult to maintain. If you want to change how you do middleware, you
need to rewrite your code.

Difficult to support. If you are an Independent Software Vendor (ISV) selling
an application, or an internal department providing code to another
department, you are unlikely to provide source code to your customers.
This is because the source code is your intellectual property, and also
because upgrading your customers to the next version of your software is
difficult if those customers modify source code. Thus, your customers can-
not change their middleware (such as changing how security works).

Implicit Middleware

The crucial difference between systems of the past (transaction processing
monitors such as TUXEDO or CICS, or traditional distributed object technolo-
gies such as CORBA, DCOM, or RMI) and the newer, component-based tech-
nologies (EJB, CORBA Component Model, and Microsoft.NET) is that in this
new world, you can harness complex middleware in your enterprise applica-
tions without writing to middleware APIs. This is shown in Figure 2.4, and
works as follows:

1. Write your distributed object to contain only business logic. Do not write to
complex middleware APIs. For example, this is the code that would run
inside the distributed object:

transfer (Account accountl, Account account2, long amount) {
// 1: Subtract the balance from one account, add to the other

}

36

Client

Remote Interface

T

Stub

Distributed
Object

Remote Interface l

Transaction API Transaction
=7 0 Service

Request
Interceptor

Security API
------------------ > 0— Security Service

Remote Interface J)

Ao— Database Driver
Database API

Skeleton

The request

interceptor knows

what to do because
you describe your
needs in a special
descriptor file.

Figure 2.4 Implicit middleware (gained through declarations).

2. Declare the middleware services that your distributed object needs in a
separate descriptor file, such as a plain text file. For example, you might
declare that you need transactions, persistence, and a security check.

3. Run a command-line tool provided for you by the middleware vendor.
This tool takes your descriptor file as input and generates an object that
we’ll call the request interceptor.

4. The request interceptor intercepts requests from the client, performs the
middleware that your distributed object needs (such as transactions, secu-
rity, and persistence), and then delegates the call to the distributed object.

The values of implicit middleware (also called declarative middleware) are:

Easy to write. You don’t actually write any code to middleware APIs; rather,
you declare what you need in a simple text file. The request interceptor

EJB Fundamentals 37

provides the middleware logic for you transparently. You focus away from
the middleware and concentrate on your application’s business code. This
is truly divide and conquer!

Easy to maintain. The separation of business logic and middleware logic is
clean and maintainable. It is less code, which makes things simpler.
Furthermore, changing middleware does not require changing
application code.

Easy to support. Customers can change the middleware they need by tweak-
ing the descriptor file. For example, they can change how a security check
is done without modifying source code. This avoids upgrade headaches
and intellectual property issues.

What Constitutes an Enterprise Bean?

Now that we understand request interception, we can dive in and see exactly
what constitutes an enterprise bean. As we will see, an enterprise bean com-
ponent is not a single monolithic file—a number of files work together to make
up an enterprise bean.

The Enterprise Bean Class

The first part of your bean is the implementation itself, which contains the guts
of your logic, called the enterprise bean class. This is simply a Java class that con-
forms to a well-defined interface and obeys certain rules. The rules are neces-
sary for your beans to run in any EJB container.

An enterprise bean class contains implementation details of your component.
Although there are no hard-and-fast rules in EJB, session bean, entity bean,
and message-driven bean implementations are all very different from each
other.

For session beans, an enterprise bean class typically contains business-
process-related logic, such as logic to compute prices, transfer funds between
bank accounts, or perform order entry.

For entity beans, an enterprise bean class typically contains data-related logic,
such as logic to change the name of a customer, reduce the balance of a bank
account, or modify a purchase order.

For message-driven beans, an enterprise bean class typically contains
message-oriented logic, such as logic to receive a stock trade message and call
a session bean that knows how to perform stock trading.

LI OVERVIEW

The E]B specification defines a few standard interfaces that your bean class can
implement. These interfaces force your bean class to expose certain methods
that all beans must provide, as defined by the EJB component model. The EJB
container calls these required methods to manage your bean and alert your
bean to significant events.

The most basic interface that all bean classes (session, entity, and message-
driven) must implement is the javax.ejb.EnterpriseBean interface, shown in
Source 2.1.

This interface serves as a marker interface; implementing this interface indi-
cates that your class is indeed an enterprise bean class. The interesting aspect
of javax.ejb.EnterpriseBean is that it extends java.io.Serializable. This means that
all enterprise beans can be converted to a bit-blob and share all the properties
of serializable objects (described in Appendix A). This will become important
later.

Session beans, entity beans, and message-driven beans each have more spe-
cific interfaces that extend the javax.ejb.EnterpriseBean interface. All session
beans must implement javax.ejb.SessionBean; all entity beans must implement
javax.ejb.EntityBean; and all message-driven beans must implement javax.ejb.
MessageDrivenBean. We'll see the details of these interfaces a bit later. For now,
know that your enterprise bean class never needs to implement the javax.ejb.
EnterpriseBean interface directly; rather, your bean class implements the inter-
face corresponding to its bean type.

The EJB Object

Enterprise beans are not full-fledged remote objects. When a client wants to
use an instance of an enterprise bean class, the client never invokes the method
directly on an actual bean instance. Rather, the invocation is intercepted by the
EJB container and then delegated to the bean instance. This is the concept of
request interception that we touched on earlier. By intercepting requests, the
EJB container can automatically perform implicit middleware. As a compo-
nent developer, this means your life is simplified greatly because you can
rapidly develop components without writing, debugging, or maintaining

public interface javax.ejb.EnterpriseBean extends java.io.Serializable
{
}

Source 2.1 The javax.ejb.EnterpriseBean interface.

EJB Fundamentals 39

code that calls middleware APIs. Some of the services that you get at the point
of interception include

Implicit distributed transaction management. Transactions allow for you to
perform robust, deterministic operations in a distributed environment by
setting attributes on your enterprise beans. We’ll get into the details of
transactions and how you can use them effectively in Chapter 10. For now,
know that the EJB container provides a transaction service—a low-level
implementation of transaction management and coordination. The transac-
tion service must be exposed through the Java Transaction API (JTA). The
JTA is a high-level interface that you can use to control transactions, which
we also cover in Chapter 10.

Implicit security. Security is a major consideration for multitier deployments.
The Java 2 Platform, Standard Edition yields a robust security service that
can authorize and authenticate users, securing deployments from
unwanted visitors. EJB adds to this the notion of transparent security,
allowing components to reap the benefits of a secure deployment without
necessarily coding to a security APL

Implicit resource management and component life cycle. The E]B container
implicitly manages resources for your enterprise beans, such as threads,
sockets, and database connections. The life cycle of the enterprise beans
themselves is also managed, allowing the EJB container to reuse the enter-
prise bean instances as necessary.

Implicit persistence. Persistence is a natural requirement of any deployment
that requires permanent storage. EJB offers assistance here by automati-
cally saving persistent object data to an underlying storage and retrieving
that data at a later time.

Implicit remote accessibility. Your enterprise bean class cannot be called
across the network directly because an enterprise bean class is not network
enabled. Your EJB container handles networking for you by wrapping your
bean in a network-enabled object. The network-enabled object receives
calls from clients and delegates these calls to instances of your bean class.
This saves you from having to worry about networking issues (the con-
tainer provides networking as a service to you). Thus EJB products auto-
matically convert your stand-alone, networkless components into
distributed, network-aware beings.

Implicit support. EJB containers automatically handle concurrent requests
from clients. EJB containers provide built-in thread support, instantiating
multiple copies of your component as necessary by instantiating lots of
instances of your enterprise bean and pushing one thread through each
instance. If multiple clients simultaneously invoke methods on a bean, the
invocations are serialized, or performed lock step. The container will only

40

allow one client to call a bean at once. The other clients are routed to other
bean instances of the same class, or are forced to wait. (Behind the scenes,
the container might use Java thread synchronization to aid with this. The
actual algorithm used is container-specific.) The value of threading is
obvious—who enjoys writing multithreaded code?

Implicit component location transparency. Clients of components are decou-
pled from the specific whereabouts of the component being used.

Implicit monitoring. The EJB container can track which methods are
invoked, display a real-time usage graph on a system administrator’s user
interface, gather data for intelligent load balancing, and more. An EJB con-
tainer is not required to perform these tasks; however, high-end EJB con-
tainers perform these tasks at the point of interception.

Thus, the EJB container acts as a layer of indirection between the client code
and the bean. This layer of indirection manifests itself as a single network-
aware object called the EJB object. The EJB object is the request interceptor we
alluded to earlier. As the old saying goes, a layer of indirection solves every
problem in computer science.

The EJB object is a surrogate object that knows about networking, transactions,
security, and more. It is an intelligent object that knows how to perform inter-
mediate logic that the EJB container requires before a method call is serviced
by a bean class instance. An EJB object is the request interceptor, or the glue,
between the client and the bean. EJB objects replicate and expose every busi-
ness method that the bean itself exposes. EJB objects delegate all client requests
to beans. We depict E]B objects in Figure 2.5.

EJB Container/Server

Client Code, such as
Servlets or Applets

Transaction Service,
Security Service,
Persistence Sevice, etc

5: Return Result

2: Call Middleware APIs

1: Call a Method

\o— EJB Object

Remote
Interface

4: Method Returns

\
3: Call a Bean

Enterprise
Bean

Figure 2.5 EJB objects.

The

1

You should think of EJB objects as physical parts of the container; all EJB
objects have container-specific code inside of them. (Each container handles
middleware differently and provides different qualities of service.) Because
each bean’s EJB object is different, your container vendor generates the class file
for your E]JB objects automatically.

Each EJB container ships with a suite of glue-code tools. These tools are meant to
integrate beans into the EJB container’s environment. The tools generate
helper Java code—stubs, skeletons, data access classes, and other classes that
this specific container requires. Bean providers do not have to think about the
specifics of how each EJB container works because the container’s tools gener-
ate its own proprietary Java code automatically.

The container’s glue-code tools are responsible for transforming an enter-
prise bean into a fully managed, distributed server-side component. This
involves logic to handle resource management, life cycle, state manage-
ment, transactions, security, persistence, remote accessibility, and many

EJB Container: Your Silent Partner

EJB containers are responsible for managing your beans. Containers can interact
with your beans by calling your beans’ required management methods as neces-
sary. These management methods are your beans’ callback methods that the con-
tainer, and only the container, invokes. The management methods allow the
container to alert your beans when middleware events take place, such as when
an entity bean is about to be persisted to storage.

The most important responsibility of an EJB container is to provide an environ-
ment in which enterprise beans can run. EJB containers house the enterprise
beans and make them available for clients to invoke remotely. In essence, EJB
containers act as invisible middlemen between the client and the beans. They are
responsible for connecting clients to beans, performing transaction coordination,
providing persistence, managing a bean’s life cycle, and other tasks.

The key to understanding EJB containers is to realize that they are abstract
entities. Neither the beans nor the clients that call beans ever explicitly code to
the API of an EJB container. Rather, the container implicitly manages the over-
head of a distributed component architecture. The container is analogous to a
behind-the-scenes stage manager in a theater, providing the lighting and back-
drop necessary for a successful stage performance by the actors on stage. Neither
the actors nor the audience interact directly with the stage manager. The same is
true for EJB containers. Clients that call the beans never code directly to an EJB
container API.

42

other services. The generated code handles these services in the container’s
proprietary way.

The Remote Interface

As mentioned previously, bean clients invoke methods on EJB objects, rather
than the beans themselves. Therefore, EJB objects must clone every business
method that your bean classes expose. But how do the tools that autogenerate
EJB objects know which methods to clone? The answer is in a special interface
that a bean provider writes. This interface duplicates all the business logic
methods that the corresponding bean class exposes. This interface is called the
remote interface.

Remote interfaces must comply with special rules that the EJB specification
defines. For example, all remote interfaces must derive from a common inter-
face supplied by Sun Microsystems. This interface is called javax.ejb. E[BObject,
and it is shown in Source 2.2.

javax.ejb.EJBObject lists a number of interesting methods. For now, don’t worry
about fully understanding the meanings—just know that these are required
methods that all EJB objects must implement. And remember that you don’t
implement the methods—the EJB container does when it autogenerates the
EJB objects for you.

public interface javax.ejb.EJBObject
extends java.rmi.Remote
{
public javax.ejb.EJBHome getEJBHome ()
throws java.rmi.RemoteException;

public java.lang.Object getPrimaryKey ()
throws java.rmi.RemoteException;

public void remove ()
throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public javax.ejb.Handle getHandle ()
throws java.rmi.RemoteException;

public boolean isIdentical (javax.ejb.EJBObject)
throws java.rmi.RemoteException;

Source 2.2 A preview of the javax.ejb.EJBObject interface.

43

The client code that wants to work with your beans calls the methods in
javax.ejb.E[BObject. This client code could be stand-alone applications, applets,
servlets, or anything at all—even other enterprise beans.

In addition to the methods listed in Source 2.2, your remote interface dupli-
cates your beans’ business methods. When a bean’s client invokes any of these
business methods, the EJB object delegates the method to its corresponding
implementation, which resides in the bean itself.

The Instance-Pooling Concept

A multitier architecture’s overall scalability is enhanced when an application
server intelligently manages needed resources across a variety of deployed com-
ponents. The resources could be threads, socket connections, database connec-
tions, and more. For example, database connections could be pooled by
application servers and reused across heterogeneous components. In the EJB
realm, the container is responsible for providing all resource management ser-
vices behind the scenes.

In addition to resource management, the EJB container is responsible for con-
trolling the life cycle of the deployed enterprise bean components. As bean client
requests arrive, the EJB container dynamically instantiates, destroys, and reuses
beans as appropriate. For example, if a client requests a certain type of bean that
does not yet exist in memory, the EJB container may instantiate a new in-memory
instance on behalf of the client. On the other hand, if a bean already exists in
memory, it may not be appropriate to instantiate a new bean, especially if the
system is low on memory. It might make more sense to reassign a bean from one
client to another instead. It might also make sense to destroy some beans that
are not being used anymore. This is called instance pooling.

The benefit of bean instance pooling is that the pool of beans can be much
smaller than the actual number of clients connecting. This is due to client think
time, such as network lag or human decision time on the client side. The classic
example of this is an HTML (Web) client interacting with a human being. Web
users often click a button that executes some business logic in a component, but
then read text before initiating another action. While the user is waiting and
reading, the application server could reuse that component to service other
clients. While the client is thinking, the container can use the bean instances to
service other clients, saving previous system resources.

The take-away point here is that the EJB container is responsible for coordinat-
ing the entire effort of resource management as well as managing the deployed
beans’ life cycle. Note that the exact scheme used is EJB container-specific.

LBl OVERVIEW

Java RMI-IIOP and EJB Objects

You may have noticed that javax.ejb.E[BObject extends java.rmi.Remote. The
java.rmi.Remote interface is part of Java Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP). Any object that implements
java.rmi.Remote is a remote object and is callable from a different Java Virtual
Machine. This is how remote method invocations are performed in Java. (We
fully describe this in Appendix A).

Because the EJB object provided by the container implements your remote
interface, it also indirectly implements java.rmi.Remote. Your EJB objects are
fully networked RMI-IIOP objects, able to be called from other Java Virtual
Machines or physical machines located elsewhere on the network. Thus, EJB
remote interfaces are really just RMI-IIOP remote interfaces—except that EJB
remote interfaces must also be built to conform to the EJB specification.

EJB remote interfaces must conform to RMI-IIOP’s remote interface rules. For
example, any method that is part of a remote object callable across virtual
machines must throw a special remote exception. A remote exception is a
java.rmi.RemoteException, or (technically) a subclass of it. A remote exception
indicates that something unexpected happened on the network while you
were invoking across virtual machines, such as a network, process, or machine
failure. Every method shown in Source 2.2 for javax.ejb.EJ[BObject throws a
java.rmi.RemoteException.

Remote interfaces must conform to RMI-IIOP’s parameter-passing conven-
tions as well. Not everything can be passed over the network in a cross-VM
method call. The parameters you pass in methods must be valid types for
RMI-IIOP. This includes primitives, serializable objects, and RMI-IIOP remote
objects. The full details of what you can pass are in Appendix A.

The Home Object

As we’ve seen, client code deals with EJB objects and never with beans directly.
The next logical question is, how do clients acquire references to EJB objects?

The client cannot instantiate an EJB object directly because the EJB object can
exist on a different machine than the one the client is on. Similarly, EJB pro-
motes location transparency, so clients should never be aware of exactly where
an EJB object resides.

To acquire a reference to an EJB object, your client code asks for an EJB object
from an E]B object factory. This factory is responsible for instantiating (and
destroying) E]JB objects. The E]B specification calls such a factory a home object.
The chief responsibilities of home objects are the following;:

45

Location Transparency

EJB inherits a significant benefit from RMI-1IOP. In RMI-1IOP, the physical loca-
tion of the remote object you're invoking on is masked from you. This feature
spills over to EJB. Your client code is unaware of whether the EJB object it is
using is located on a machine next door or a machine across the Internet. It also
means the EJB object could be located on the same Java VM as the client. This is
called location transparency.

Why is location transparency beneficial? For one thing, you aren’t writing your
bean’s client code to take advantage of a particular deployment configuration
because you're not hard-coding machine locations. This is an essential part of
reusable components that can be deployed in a wide variety of multitier
situations.

Location transparency also enables container vendors to provide additional
value-adds, such as the ability to take down a machine on the network temporar-
ily to perform system maintenance, install new software, or upgrade components
on that machine. During maintenance, location transparency allows another
machine on the network to serve up components for a component’s client
because that client is not dependent on the hard locations of any components. If
a machine that has components on it crashes due to hardware or software error,
you may be able to reroute client invocations to other machines without the
client even knowing about the crash, allowing for an enhanced level of fault
tolerance.

m Create EJB objects

m Find existing EJB objects (for entity beans, which we’ll learn about in
Chapter 5)

m Remove E]JB objects

Just like E]JB objects, home objects are proprietary and specific to each EJB con-
tainer. They contain interesting container-specific logic, such as load-balancing
logic, logic to track information on a graphical administrative console, and
more. And just like EJB objects, home objects are physically part of the con-
tainer and are autogenerated by the container vendor’s tools.

The Home Interface

We’ve seen that home objects are factories for EJB objects. But how does a home
object know how you’d like your EJB object to be initialized? For example, one

46

Client Code, Such
as Servlets or
Applets

EJB Container/Server

3: Return EJB Object Reference
1: Create a New EJB Object

o—{ Home Object

Home
Interface

2: Create EJB Object Enterprise
Beans

i

o— EJB Object

Remote
Interface

Figure 2.6 Home interfaces and objects.

EJB object might expose an initialization method that takes an integer as a
parameter, and another E]JB object might take a string instead. The container
needs to know this information to generate home objects. You provide this
information to the container by specifying a home interface. Home interfaces sim-
ply define methods for creating, destroying, and finding EJB objects. The con-
tainer’s home object implements your home interface. We show this in Figure 2.6.

As usual, EJB defines some required methods that all home interfaces must
support. These required methods are defined in the javax.ejb.E[BHome
interface—an interface that your home interfaces must extend. We show
javax.ejb.EJBHome in Source 2.3. We will learn about these methods later.

Notice that the parent javax.ejb.E][BHome derives from java.rmi.Remote. This
means your home interfaces do as well, implying that home objects are also
fully networked Java RMI remote objects, which can be called across VMs. The
types of parameters passed in the home interface’s methods must be valid
types for Java RMI-IIOP.

The Local Interfaces

One problem with the home interface is that creating beans through that inter-
face is very slow. The same is true for calling beans through the remote inter-
face. Just to give you an idea of what happens when you call an EJB object, the
following steps may occur:

EJB Fundamentals 47

The client calls a local stub.

The stub marshals parameters into a form suitable for the network.
The stub goes over a network connection to the skeleton.

The skeleton demarshals parameters into a form suitable for Java.
The skeleton calls the EJB object.

The EJB object performs needed middleware, such as connection pooling,
transactions, security, and lifecycle services.

A N A

7. Once the E]B object calls the enterprise bean instance, and the bean does
its work, each of the preceding steps must be repeated for the return
trip home.

Ouch! That’s a lot of overhead. Figure 2.4 shows this process.

New to EJB 2.0, you can now call enterprise beans in a fast, efficient way by
calling them through their local objects rather than EJB objects. Local objects
implement a local interface rather than a remote interface. The local objects are
speed demons that allow you to make high-performance enterprise beans. The
process works as follows:

1. The client calls a local object.

2. The local object performs needed middleware, such as connection pool-
ing, transactions, security, and lifecycle services.

3. Once the enterprise bean instance does its work, it returns control to the
local object, which then returns control to the client.

As you can see, we avoid the steps of the stub, skeleton, network, and
marshaling/demarshaling of parameters. This empowers us to write smaller
beans that perform more fine-grained tasks, without fear of a performance hit
at each and every cross-bean method call.

You can create beans in a fast way as well. Rather than using the home inter-
face and home object, you can call a special local home interface, which is imple-
mented by the container as the local home object.

These local interfaces are entirely optional; you can use them as a replacement
or as a complement to the remote interfaces. For simplicity, in the remainder of
this book, we will use the word E]JB object to mean the request interceptor, the
remote interface to mean the interface to the request interceptor, the home
object to mean the factory, and the home interface to mean the factory inter-
face. Unless it’s pointed out explicitly, all information that applies to these
remote interfaces and remote objects also apply to their local counterparts.
Also note that the EJB specification has defined the term component interface to

48

public interface javax.ejb.EJBHome extends java.rmi.Remote
{
public EJBMetaData getEJBMetaData ()
throws java.rmi.RemoteException;

public javax.ejb.HomeHandle getHomeHandle ()
throws java.rmi.RemoteException;

public void remove (javax.ejb.Handle handle)
throws java.rmi.RemoteException,
javax.ejb.RemoveException;

public void remove (Object primaryKey)

throws java.rmi.RemoteException,
javax.ejb.RemoveException;

Source 2.3 A preview of the javax.ejb.EJBHome interface.

Relationship between Home Objects,
EJB Objects, and Bean Instances

One question we frequently are asked in our EJB training courses is “How
many home objects are there for each bean?” The answer to this question is
vendor-specific. Most containers will have a 1:N relationship between home
objects and bean instances. This means that all clients use the same home object
instance to create EJB objects. The home object will probably be written to be
thread-safe so that it can service many client requests concurrently. It is perfectly
fine for the container to do this because the container itself is multithreaded
(only your beans are single-threaded).

Another question we typically get is “How many EJB object instances are there
for each bean instance?” Some containers can have a 1:N relationship, where
each EJB object is multithreaded (just like home objects). Other containers might
have an M:N relationship, where M represents the number of EJB objects instan-
tiated (and corresponds exactly to the number of clients currently connected),
and N represents the number of bean instances in the pool. In this case, each EJB
object is single-threaded.

None of this really matters to you as a bean provider because you should think
of the container as a black box. However, it's sometimes fun to know what's
going on behind the scenes in case low-level debugging is required.

EJB Fundamentals 49

mean either the remote interface or local interface. We will occasionally use
this term in this book.

When you write a local interface, you extend javax.ejb.EJBLocalObject, and
when you write a local home interface, you extend javax.ejb.EJBLocalHome.
Those interfaces are previewed in the following code, and are fully explained
in Appendix E.

public interface javax.ejb.EJBLocalObject {
public javax.ejb.EJBLocalHome getEJBLocalHome ()
throws javax.ejb.EJBException;

public Object getPrimaryKey ()
throws javax.ejb.EJBException;

public boolean isIdentical (javax.ejb.EJBLocalObject)
throws javax.ejb.EJBException;

public void remove ()
throws javax.ejb.RemoveException, javax.ejb.EJBException;

}

public interface javax.ejb.EJBLocalHome ({
public void remove(java.lang.Object)
throws javax.ejb.RemoveException, javax.ejb.EJBException;

1. They only work when you're calling beans in the same process—for example, if
you have a bank teller session bean that calls a bank account entity bean in the
same application server. But there lies the rub. You cannot call a bean remotely if
your code relies on the local interface. If you decide to switch between a local or
remote call, you must change your code from using the local interface to using the
remote interface. This is an inherent drawback to local interfaces.

? Local interfaces have two important side effects:

2. They marshal parameters by reference rather than by value. While this may speed
up your application because parameters are not copied, it also changes the
semantics of your application. Be sure that you're aware of this when coding your
clients and beans.

For a while, the primary author of this book (Ed Roman) has been pushing for Sun to
adopt some kind of flag that enables you to switch between local and remote access
to beans without changing code. The idea is that this flag would determine whether
the container-generated interceptor object would behave as a local object or remote
object. We think this is the best approach because (in reality) many developers will
misjudge whether to use remote or local interfaces when designing their object
models, and will have to rewrite parts of their code later in their projects.

UMEOVERVIEWS

The response so far from Sun is that this approach would not work because the se-

mantics of the application change when switching between local interfaces and re-

mote interfaces, due to the differences in pass-by-value versus pass-by-reference. It
would be error-prone to allow developers to “flip a switch” in this respect.

Personally, we don’t agree with Sun. We think developers are smart enough to avoid
these mistakes, and the potential benefits outweigh the drawbacks. Many EJB server
vendors disagree as well. They actually support this local/remote flag idea through
proprietary container tools or vendor-specific files that are separate from your bean.
Thus, if you want to, you may be able to still take advantage of these flags without
sacrificing portability.

Deployment Descriptors

To inform the container about your middleware needs, you as a bean provider
must declare your components” middleware service requirements in a deploy-
ment descriptor file. For example, you can use a deployment descriptor to
declare how the container should perform lifecycle management, persistence,
transaction control, and security services. The container inspects the deploy-
ment descriptor to fulfill the requirements that you lay out. The deployment
descriptor is the key to implicit middleware.

For example, you can use a deployment descriptor to specify the following
requirements of your bean.

Bean management and lifecycle requirements. These deployment descriptor
settings indicate how the container should manage your beans. For exam-
ple, you specify the name of the bean’s class, whether the bean is a session,
entity, or message-driven bean, and the home interface that generates the
beans.

Persistence requirements (entity beans only). Authors of entity beans use
the deployment descriptors to inform the container about whether the
bean handles its persistence on its own or delegates the persistence to the
EJB container in which it’s deployed.

Transaction requirements. You can also specify transaction settings for beans
in deployment descriptors. These settings specify the bean requirements
for running in a transaction, such as a transaction must start whenever
anyone calls this bean, and the transaction must end after my bean com-
pletes the method call.

Security requirements. Deployment descriptors contain access control entries,
which the beans and container use to enforce access to certain operations.
For example, you can specify who is allowed to use which beans, and even
who is allowed to use each method on a particular bean. You can also spec-

EJB Fundamentals 51

ify what security roles the beans themselves should run in, which is useful
if the beans need to perform secure operations. For example only bank
executives can call the method to create new bank accounts.

In EJB 2.0, a deployment descriptor is an XML file. You can write these XML
files by hand, or (if you're lucky) your Integrated Development Environment
(IDE) or EJB container will supply tools to generate the XML deployment
descriptor. In the latter case, you simply might need to step through a wizard
in a Java IDE to generate a deployment descriptor.

As a bean provider, you are responsible for creating a deployment descriptor.
Once your bean is used, other parties can modify its deployment descriptor
settings. For example, an application assembler who is piecing together an
application from beans can tune your deployment descriptor. Similarly, a
deployer who is installing your beans in a container in preparation for a
deployment to go live can tune your deployment descriptor settings as well.
This is all possible because deployment descriptors declare how your beans
should use middleware, rather than you writing code that uses middleware.
Declaring rather than programming enables people without Java knowledge
and without source code access to tweak your components at a later time. This
paradigm becomes an absolute necessity when purchasing EJB components
from a third party because third-party source code is typically not available.
By having a separate, customizable deployment descriptor, you can easily
fine-tune components to a specific deployment environment without chang-
ing source code.

Vendor-Specific Files

Since all EJB server vendors are different, they each have some proprietary
value-added features. The EJB specification does not touch these features, such
as how to configure load-balancing, clustering, monitoring, and so on. There-
fore, each EJB server vendor may require that you include additional files spe-
cific to that vendor, such as XML files, text files, or binary files.

Ejb-Jar File

Once you've generated your bean classes, your home interfaces, your remote
interfaces, and your deployment descriptor, it’s time to package them into an
Ejb-jar file. An Ejb-jar file is a compressed file that contains everything we have
described, and it follows the .ZIP compression format. Jar files are convenient,
compact modules for shipping your Java software. The Ejb-jar file creation
process is shown in Figure 2.7.

52

Home Interfaces Local Interfaces

EJB Jar File

Jar File Creator

Enterprise Bean Remote Interfaces

Classes
Deployment Vendor-specific
Descriptor files

Figure 2.7 Creating an Ejb-jar file.

There are already a number of tools available to autogenerate Ejb-jar files, such
as Java IDEs. You can also generate these files yourself—we’ll show you how
in Chapter 3.

Once you’'ve made your Ejb-jar file, your enterprise bean is complete, and it is
a deployable unit within an application server. When they are deployed (per-
haps after being purchased), the tools that EJB container vendors supply are
responsible for decompressing, reading, and extracting the information con-
tained within the Ejb-jar file. From there, the deployer has to perform vendor-
specific tasks, such as generating EJB objects, generating home objects,
importing your bean into the container, and tuning the bean. Support for Ejb-
jar files is a standard, required feature for all EJB tools.

Note that you can have more than one bean in an Ejb-jar file, allowing you to
ship an entire product set of beans in a single jar file.

Summary of Terms

For your convenience, we now list the definitions of each term we’ve
described so far. As you read future chapters, refer to these definitions when-
ever you need clarification. You may want to bookmark this page.

EJB Fundamentals 53

The enterprise bean instance is a Java object instance of an enterprise bean
class. It contains business method implementations of the methods defined
in the remote and/or local interface. The enterprise bean instance is net-
workless in that it contains no networked logic.

The remote interface is a Java interface that enumerates the business meth-
ods exposed by the enterprise bean class. In EJB, client code always goes
through the remote interface and never interacts with the enterprise bean
instance. The remote interface is network-aware in that the interface obeys
the rules for Java RMI-IIOP.

The local interface is the high-performing version of the remote interface.
Use the local interface when you are calling enterprise beans that live in
the same process. Your calls will not undergo stubs, skeletons, network
calls, or marshaling /demarshaling of parameters.

The EJB object is the container-generated implementation of the remote
interface. The EJB object is a network-aware intermediary between the
client and the bean instance, handling necessary middleware issues. All
client invocations go through the EJB object. The E]JB object delegates calls
to enterprise bean instances and implements the remote interface.

The local object is the high-performing version of the E]JB object. The local
object implements the local interface.

The home interface is a Java interface that serves as a factory for EJB objects.
Client code that wants to work with EJB objects must use the home inter-
face to generate them. The home interface is network-aware because clients
use it across the network.

The local home interface is the high-performing version of the home
interface.

The home object is the container-generated implementation of the home
interface. The home object is also network-aware, and it obeys RMI-IIOP’s
rules.

The local home object is the high-performing version of the home object.
The local home object implements the local home interface.

The deployment descriptor is an XML file that specifies the middleware
requirements of your bean. You use the deployment descriptor to inform
the container about the implicit middleware you want, such as how to
manage your bean, your bean’s lifecycle needs, your transactional needs,
your persistence needs, and your security needs.

The vendor-specific files allow you to take advantage of vendor-specific
features. These files are not portable between application servers.

MY oveRviEW

The Ejb-jar file is the finished, complete .ZIP file that contains the above
files. It is the unit of deployment and is given to the application server. The
application server unpacks the Ejb-jar file and loads the bean.

Summary

In this chapter, we’ve taken a whirlwind tour of EJB. We started by looking at
what a bean is, and then discussed the different kinds of beans, including ses-
sion, entity, and message-driven beans.

We then took a bean apart into its constituent pieces, and examined each part:
the enterprise bean class, remote interface, local interface, EJB object, local
object, home interface, home object, deployment descriptor, and Ejb-jar file.

Congratulations are in order—you’ve made it to the end of Part I! In these
chapters, you've taken the first steps necessary to understanding and master-
ing EJB. Now that you understand the high-level concepts, let’s learn how to
write and use each type of EJB component, starting with a simple Hello World
example.

Writing Your First Bean

nent. Our stateless session bean will be responsible for the mighty task of
returning the string “Hello, World!” to the client. We’ll see how to write each
of the files that make up this bean and how to access it from clients.

In this chapter, we’ll get down-and-dirty and write a real working EJB compo-

This chapter is great for you if you want to discover how to get up and running
with EJB quickly. While this may not be the most functional demonstration of
the power of EJB, it illustrates the basics of EJB programming and is a useful
template for building more complex beans. This will give you the necessary
foundation to understand later chapters on entity beans, session beans, and
message-driven beans.

How to Develop an EJB Component

When building an EJB component, the following is a typical order of
operations:

1. Write the .java files that compose your bean: the component interfaces,
home interfaces, enterprise bean class file, and any helper classes you
might need.

2. Write the deployment descriptor.

3. Compile the .java files from step 1 into .class files.

55

MEOVERVIEWS

4. Using the jar utility, create an Ejb-jar file containing the deployment
descriptor and .class files.

5. Deploy the Ejb-jar file into your container in a vendor-specific manner,
perhaps by running a vendor-specific tool or perhaps by copying your
Ejb-jar file into a folder where your container looks to load Ejb-jar files.

6. Configure your EJB server so that it is properly configured to host your
Ejb-jar file. You might tune things such as database connections, thread
pools, and so on. This step is vendor-specific and might be done through a
Web-based console or by editing a configuration file.

Start your EJB container and confirm that it has loaded your Ejb-jar file.

Optionally, write a standalone test client .java file. Compile that test client
into a .class file. Run the test client from the command line and have it
exercise your bean’s APIs.

We will apply the above process to our Hello World example. The complete
build scripts are available with the book’s accompanying source code.

The object model for our Hello World example is shown in Figure 3.1.

<<interface>> <<interface>>
java.rmi.Remote java.io.Serializable
ﬂ u Comes with Java 2 platform A
<<interface>>
N N . . javax.ejb.EnterpriseBean
<<interface>> <<interface>> <<interface>> <<interface>>
javax.ejb.EJBLocalObject javax.ejb.EJBObject javax.ejb.EJBHome javax.ejb.EJBLocalHome Z%
<<interface>>
javax.ejb.SessionBean
Comes with EJB distribution A
<<interface>> <<interface>> <<interface>> <<interface>> Hello World Bean
Hello World Hello World Hello World Hello World Implementation
Local Interface Remote Interface Home Interface Local Home Interface Class
Supglied by Bean provider (we wijl write)

Hello World Hello World Hello World Hello World
EJB Local Object EJB Object Home Object Local Home Object

Generated for us by container vendor's tools

Figure 3.1 Our Hello World object model.

Writing Your First Bean 57

The Remote Interface

First, let’s code up the remote interface. The remote interface duplicates every
business method that our beans expose. The code is shown in Source 3.1.

Things to notice about our remote interface include the following;:

m We extend javax.ejb.EJBObject. This means the container-generated EJB
object, which implements the remote interface, will contain every method
that the javax.ejb.E[BObject interface defines. This includes a method to
compare two EJB objects, a method to remove an E]B object, and so on.

m We have one business method—hello()—which returns the String “Hello,
World!” back to the client. We need to implement this method in our
enterprise bean class. Because the remote interface is an RMI-IIOP remote
interface (it extends java.rmi.Remote), it must throw a remote exception.
This is the only difference between the remote interface’s hello() signature
and our bean’s hello() signature. The exception indicates a networking or
other critical problem.

package examples;

/**
* This is the HelloBean remote interface.
*
* This interface is what clients operate on when
* they interact with EJB objects. The container
* vendor will implement this interface; the
* implemented object is the EJB object, which
* delegates invocations to the actual bean.
*/
public interface Hello extends javax.ejb.EJBObject
{

/**
* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

Source 3.1 Hellojava.

58

The

Local Interface

The

Local clients will use our local interface, rather than remote interface, to call
our beans” methods. It is shown in Source 3.2.

As you can see, there are trivial differences between the local interface and the
remote interface. We extend a different interface, and we don’t throw remote
exceptions.

Home Interface

Next, let’s put together the home interface. The home interface has methods to
create and destroy E]JB objects. The implementation of the home interface is the
home object, which is generated by the container tools.

The code for our home interface is shown in Source 3.3.
Notice the following about our home interface:

m The single create() is a factory method that clients use to get a reference to
an EJB object. The create() method is also used to initialize a bean.

package examples;

/**

* This is the HelloBean local interface.

* This interface is what local clients operate

* on when they interact with EJB local objects.

* The container vendor will implement this

* interface; the implemented object is the

* EJB local object, which delegates invocations

* to the actual bean.

*/
public interface HelloLocal extends javax.ejb.EJBLocalObject
{

/**
* The one method - hello - returns a greeting to the client.
*/

public String hello();

Source 3.2 HelloLocal.java.

Writing Your First Bean 59

The

package examples;

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server's tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in HelloBean.
*/

public interface HelloHome extends javax.ejb.EJBHome

{

/*
* This method creates the EJB Object.

*

* @return The newly created EJB Object.
*/
Hello create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

Source 3.3 HelloHome java.

m The create() method throws a java.rmi.RemoteException and javax.ejb.Create-
Exception. Remote exceptions are necessary side effects of RMI-IIOP
because the home object is a networked RMI-IIOP remote object. The Cre-
ateException is also required in all create() methods. We explain this further
in the following sidebar.

m Our home interface extends javax.ejb.E[BHome. This is required for all
home interfaces. EJBHome defines a way to destroy an EJB object, so we
don’t need to write that method signature.

Local Home Interface

Our local home interface, the higher-performing home interface used by local
clients, is in Source 3.4

The differences between the remote interface and local interface are as follows:

m The local home interface extends E/BLocalHome rather than E[BHome. The
EJBLocalHome interface does not extend java.rmi.Remote. This means that
the generated implementation will not be a remote object.

m The local home interface does not throw RemoteExceptions.

UMBOVERVIEWS

package examples;

* This is the local home interface for HelloBean.
* This interface is implemented by the EJB Server's
* tools - the implemented object is called the
* local home object, and serves as a factory for
* EJB local objects.
*/
public interface HelloLocalHome extends javax.ejb.EJBLocalHome

{

/*
* This method creates the EJB Object.
*

* @return The newly created EJB Object.
*/
HelloLocal create() throws javax.ejb.CreateException;

Source 3.4 HelloLocalHome.java.

Exceptions and EJB

Every networked object in EJB conforms to the RMI-1IOP standard and must
throw a remote exception. Thus, every method in an EJB object and home object
(such as our hello() method) must throw a remote exception. When such an
exception is thrown, it indicates a special error condition—a network failure,
machine failure, or other catastrophic failure.

But how can your beans throw exceptions that indicate regular, run-of-the-mill
problems, such as bad parameters passed to a business method? EJB comes with
some built-in exceptions to handle this, and it also allows you to define your own
exception types.

More formally, EJB defines the following exception types:

1. A system-level exception is a serious error that involves some critical fail-

ure, such as a database malfunction.

2. An application-level exception is a more routine exception, such as an indi-
cation of bad parameters to a method or a warning of an insufficient bank
account balance to make a withdrawal. For example, in our “Hello, World!”
home interface, we throw a standard javax.ejb.CreateException from home

61

interface’s create() method. This is an example of a required application-
level exception, indicating that some ordinary problem occurred during
bean initialization.

Why must we separate the concepts of system-level and application-level
exceptions? The chief reason is that system-level exceptions are handled quite
differently from application-level exceptions.

For example, system-level exceptions are not necessarily thrown back to the
client. Remember that EJB objects—the container-generated wrappers for beans—
are middlemen between a bean’s client and the bean itself. EJB objects have the
ability to intercept any exceptions that beans may throw. This allows EJB objects
to pick and choose which exceptions the client should see. In some cases, if a
bean fails, it may be possible to salvage the client’s invocation and redirect it to
another bean. This is known as transparent fail-over, a quality of service that
some EJB container/server vendors provide. This is an easy service to provide for
stateless beans because there is no lost state when a bean crashes. Some high-
end EJB products even provide transparent fail-over for stateful beans by rou-
tinely checkpointing the stateful bean’s conversational state (see Chapter 14 for
more). In case of a critical, unrecoverable problem, your EJB container may sup-
port professional monitoring systems, alerting a system administrator if a cata-
strophic error occurs.

By way of comparison, application-level exceptions should always be thrown
back to the client. Application-level exceptions indicate a routine problem, and
the exception itself is valuable data that the client needs. For example, we could
notify a client of insufficient funds in a bank account by throwing an application-
level exception. The client would always want to know about this because it is an
application-level problem, not a system-level problem.

Besides correctly routing system-level and application-level exceptions, the EIB
object is responsible for catching all unchecked exceptions (flavors of
java.lang.RuntimeException) that your bean may throw, such as a NullPointer
exception. These are typically not caught by code. Exceptions that are unchecked
in the bean could leave the bean in an abnormal state because the bean is not
expecting to handle such an exception. In this scenario, the EJB container inter-
cepts the exception and performs some action, such as throwing the exception
back to the client as a remote exception. It also probably stops using that bean
because the bean is in an undefined state.

The following two rules of thumb should help you with exceptions.

1. Application-level exceptions are always thrown back to the client. This
includes any exception the bean defines. It also includes the javax.ejb.
CreateException for creating beans (and the javax.ejb.FindException for
entity beans, which we’ll see in Chapters 5 through 7).

62

2. When system-level exceptions occur, the EJB container can do anything it
wants to: page a system administrator with an alert, send an email to a
third party, or throw the exception back to the client. Your bean can throw a
system-level exception as either an RMI-IIOP remote exception or an
unchecked RuntimeException. If the exception is thrown to the client, it is
always thrown as a remote exception or a subclass of it.

Exceptions also have an impact on transactions. We’ll learn more about this

effect in Chapter 10.

What Happens During create() and remove()

The

As we've learned, the container, rather than a client, creates and destroys your
beans. But if the container is responsible for bean life cycle, then why does the
home interface and local home interface specify create() and remove() methods?
What you must remember is that these methods are for creating and destroying
EJB objects. This may not correspond to the actual creation and destruction of
beans. The client shouldn’t care whether the actual bean is created or destroyed—
all the client code cares about is that the client has an EJB object to invoke. The
fact that beans are pooled and reused behind the EJB object is irrelevant.

So when debugging your EJB applications, don‘t be alarmed if your bean isn’t
being created or destroyed when you call create() or remove() on the home
object or local home object. Depending on your container’s policy, your beans
may be pooled and reused, with the container creating and destroying at will.

Bean Class

Now let’s look at the bean class itself. The code is shown in Source 3.5.
This is just about the most basic bean class possible. Notice the following:

m Our bean implements the javax.ejb.SessionBean interface, which makes it a
session bean. This interface defines a few required methods that you must
fill in. The container uses these management methods to interact with the
bean, calling them periodically to alert the bean to important events. For
example, the container will alert the bean when it is being initialized and
when it is being destroyed. These callbacks are not intended for client use, so
you will never call them directly—only your EJB container will. We’ll learn
about the specifics of these management methods in the pages to come.

Writing Your First Bean 63

package examples;

/**
* Demonstration stateless session bean.
*/
public class HelloBean implements javax.ejb.SessionBean ({

private SessionContext ctx;

//

// EJB-required methods

//

public void ejbCreate() {
System.out.println("ejbCreate()") ;

public void ejbRemove () {
System.out.println("ejbRemove()") ;

public void ejbActivate() {
System.out.println("ejbActivate()");

}

public void ejbPassivate() {
System.out.println("ejbPassivate()");

}

public void setSessionContext (javax.ejb.SessionContext ctx) {
this.ctx = ctx;

//

// Business methods

//

public String hello() {
System.out.println("hello()");
return "Hello, World!";

Source 3.5 HelloBean.java.

64

m The bean has an ejbCreate() method which matches the home object’s cre-
ate() method, and takes no parameters.

m We have one business method, kello(). It returns Hello, World! to the
client.
m The ejbActivate() and ejbPassivate() methods do not apply to stateless ses-

sion beans, and so we leave these methods empty. We'll see what these
methods mean and what to use them for later in this chapter.

m When we destroy the bean, there’s nothing to clean up, so we have a very
simple ejbRemove() method.

We also have a method called setSessionContext(). This method is explained in
the following sidebar.

EJBContexts: Your Gateway to the Container

Since your enterprise beans live in a managed container, the container is free to
call your EJB components’ methods at its leisure. But what if your bean needs to
query the container for information about its current status? For example, inside
your bean, you may want to access the security credentials of the user currently
calling your bean’s method.

The container houses all of this information in one object, called an EJB con-
text object. An EJB context object is your gateway to the container. EJB contexts
are physical parts containers and can be accessed from within your beans. Thus,
a context represents a way for beans to perform callbacks to the container. These
callbacks help beans both ascertain their current status and modify their current
status. This is shown in Figure 3.2.

The motivation behind a context is to encapsulate the bean’s domain in one
compact object. Note that a bean’s status may change over the bean’s life cycle,
and thus this context object can dynamically change over time as well. At run-
time, the container is responsible for changing the context to reflect any status
changes, such as the bean becoming involved in a new transaction.

Here is what the javax.ejb.EJBContext interface looks like (thrown exceptions
omitted):

public interface javax.ejb.EJBContext

{

/%
Call these from within your bean to access
your own home object or local home object.

You can use them to create, destroy, or
find EJB objects and EJB local objects

* * * * *

Writing Your First Bean 65

* of your own bean class type.
*/
public javax.ejb.EJBHome getEJBHome () ;
public javax.ejb.EJBLocalHome getEJBLocalHome () ;
/*
* These are transaction methods - see Chapter 10
*/
public boolean getRollbackOnly () ;
public void setRollbackOnly () ;
public javax.transaction.UserTransaction getUserTransaction();
/*
* These are security methods - see Chapter 9
*/
public boolean isCallerInRole(java.lang.String) ;
public java.security.Principal getCallerPrincipal () ;

}

An EJB context contains callbacks useful for session beans, entity beans, and
message-driven beans. In comparison, a session context, entity context, and
message-driven context are specific EJB contexts used only for session beans,
entity beans, and message-driven beans.

The container associates your bean with a context by calling
setSessionContext, setEntityContext, or setMessageDrivenContext, depending on
your bean type. When you define each of these methods, you should store the
context away in a member variable so the context can be queried later, as shown
in Source 3.5.

EJB Container/Server

2: Store Context
in Private Variable

——1: Give Context to Bean

EJB Object EntBe;‘g::se
—— 3: Business Method

EJB Context 4: Query the Container for
Object Environment Information

Figure 3.2 EJB Contexts.

66

The

Deployment Descriptor

Next, we need to generate a deployment descriptor, which describes our bean’s
middleware requirements to the container. Deployment descriptors are one of
the key features of EJB because they allow you to declaratively specify attributes
on your beans, rather than programming this functionality into the bean itself.

Physically, a deployment descriptor is an XML document. Your E]B container,
IDE environment, or other tool (such as a UML editor that can generate EJB
code) should supply tools to help you generate such a deployment descriptor.

Our deployment descriptor is shown in Source 3.6.

Many different settings make up a deployment descriptor. For a full deploy-
ment descriptor reference, see Appendix C. For now, here is an explanation of
our session bean descriptor:

<ejb-name> The nickname for this particular bean. Can be used later in the
deployment descriptor to refer back to this bean to set additional settings.

<home> The fully qualified name of the home interface.
<remote> The fully qualified name of the remote interface.

<local-home> The fully qualified name of the local home interface.

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" " http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>Hello</ejb-name>
<home>examples.HelloHome</home>
<remote>examples.Hello</remote>
<local-home>examples.HelloLocalHome</local-home>
<local>examples.HelloLocal</local>
<ejb-class>examples.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
</ejb-jar>

Source 3.6 ejb-jar.xml.

Writing Your First Bean 67

<local> The fully qualified name of the local interface.
<ejb-class> The fully qualified name of the enterprise bean class.

<session-type> Whether the session bean is a stateful or stateless session
bean.

<transaction-type> Ignore for now—see Chapter 10 for more details on
transactions.

The Vendor-Specific Files

Next in our stateless session bean are vendor-specific files. These files exist
because the E]JB specification can’t cover everything; vendors differentiate
their products in areas such as instance pooling algorithms, clustering algo-
rithms, and so on. The vendor-specific files are not portable and can use any
tile format, including XML, flat file, or binary. In fact, it may not even exist as
files—the settings could be stored in some database with a GUI on top of it.

The source code that accompanies this book shows an example of a vendor-
specific file.

The Ejb-jar File

Now that we’ve written all the necessary files for our component, we need to
package all the files together in an Ejb-jar file. If you're using a development
environment supporting EJB, the development environment may contain an
automated way to generate the Ejb-jar file for you. We can generate it manu-
ally as follows:

jar cf HelloWorld.jar *

The asterisk indicates the files to include in the jar—the bean class, home inter-
face, local home interface, remote interface, local interface, deployment
descriptor, and possibly vendor-specific files (depending on your container’s

policy).
The following is the folder structure within the Ejb-jar file:

META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
examples/HelloBean.class
examples/HelloLocalHome.class
examples/HelloLocal.class
examples/Hello.class

UMBOVERVIEWE

The files must be in properly named subdirectories of the current directory.
For example, our Hello.class file is located in examples\Hello.class, below the
current directory. You must store your classes in a directory corresponding to
the package that the class belongs to, or the JVM will be unable to locate your
classes when it searches your jar. The ejb-jar.xml file must be placed in the
META-INF subfolder. The container consults that file first when opening the
Ejb-jar file to figure out what beans are inside the jar.

The MANIFEST.MF file is a listing of the files within the Ejb-jar file. It is auto-
generated by the jar utility. You don’t need to worry about this file.

Deploying the Bean

Finally, we're ready to deploy our bean in an E]JB container. This step varies
from container to container. When you reach this point, consult your con-
tainer’s documentation on how to deploy a bean. This could be anything from
running a command-line tool on your Ejb-jar file to copying your Ejb-jar file
into a well-known folder where your application server detects its presence.

For an example of deploying a bean, see the source code accompanying this
book.

When deploying an Ejb-jar file into a container, the following steps are usually
performed:

m The Ejb-jar file is verified. The container checks that the enterprise bean
class, the remote interface, and other items are valid. Any commercial tool
should report intelligent errors back to you, such as, “You need to define
an ejbCreate() method in your bean.”

m The container tool generates an E]JB object and home object for you.

m The container tool generates any necessary RMI-IIOP stubs and skeletons.
(See Appendix A for more information about stubs and skeletons.)

Once you've performed these steps, start up your EJB container (if it isn't
already running). Most products output a server log or have a GUI to view the
beans that are deployed. Make sure that your container is indeed making your
bean available. It should tell you it did so.

The Optional EJB Client JAR file

One common question deployers ask is, “Which classes do I need to deploy
with my client applications that call enterprise beans?” EJB allows you to spec-

Writing Your First Bean 69

ify the exact classes you need with an Ejb-client JAR file. An Ejb-client JAR file
is an archive of classes that must be deployed for any clients of a particular Ejb-
jar file. You specify the name of the Ejb-client jar file in your XML deployment
descriptor, as shown in Source 3.7.

When you build an Ejb-client jar file, you should bundle only the files needed
by the client. This typically includes interfaces, helper classes, and stubs.

You might find Ejb-client jar files useful for saving hard disk space, so you can
avoid copying the entire Ejb-jar file onto the client machine. This might be use-
ful if you're in an applet environment.

However, Ejb-client jar files are completely optional and most deployments
will not make use of them. This is because hard disk space is usually not a
problem, especially if the client of your application server is a Web server.
Laziness will usually prevail.

Understanding How to Call Beans

We now take a look at the other half of the world—the client side. We are now
customers of the beans’ business logic, and we are trying to solve some real-
world problem by using one or more beans together. There are two different
kinds of clients.

<ejb-jar>
<enterprise-beans>
</enterprise-beans>

Lll==

This is an optional instruction to the deployer that
he must make the this jar file accessible to

clients of these beans. If this instruction does not
exist, the deployer must make the entire Ejb-jar file
accessible to clients.

-—>

<ejb-client-jar>HelloClient.jar</ejb-client-jar>

</ejb-jar>

Source 3.7 Declaring an Ejb-client jar file within a deployment descriptor.

L[l OVERVIEW

Java RMI-IIOP based clients. These clients use the Java Naming and Directory
Interface (JINDI) to look up objects over a network, and they use the Java
Transaction API (JTA) to control transactions.

CORBA clients. Clients can also be written to the CORBA standard. This
would primarily be useful if you want to call your EJB components using
another language, such as C++. CORBA clients use the CORBA Naming
Service (COS Naming) to look up objects over the network, and they use
the CORBA’s Object Transaction Service (OTS) to control transactions.

Whether you're using CORBA or RMI-IIOP, your client code typically looks
like this:

1. Look up a home object.

2. Use the home object to create an EJB object.
3. Call business methods on the E]B object.

4. Remove the EJB object.

You're about to see how to call EJB components from RMI-IIOP clients. This is
the paradigm we’ll use throughout this book. If you're interested in CORBA
clients, see Appendix B.

Looking up a Home Object

One of the goals of EJB is that your application code should be “write once, run
anywhere.” If you deploy a bean onto one machine and then switch it for a dif-
ferent machine, your code should not change because it is location transparent.

EJB achieves location transparency by leveraging naming and directory services.
Naming and directory services are products that store and look up resources
across a network. Some examples of directory service products are the iPlanet
Directory Server, Microsoft’s Active Directory, and IBM’s Lotus Notes Domino
Server.

Corporations traditionally have used naming and directory services to store
usernames, passwords, machine locations, printer locations, and so on. EJB
servers exploit naming services to store location information for resources that
your application code uses in an enterprise deployment. These resources
could be EJB home objects, enterprise bean environment properties, database
drivers, message service drivers, and other resources. By using naming ser-
vices, you can write application code that does not depend on specific machine
names or locations. This is all part of EJB’s location transparency, and it keeps
your code portable. If you decide later that resources should be located else-
where, your code does not need to be rebuilt because the naming service can

Writing Your First Bean 71

simply be updated to reflect the new resource locations. This greatly enhances
maintenance of a multitier deployment that may evolve over time. This
becomes absolutely necessary when purchasing prewritten software (such as
enterprise beans), because your purchased components” source code will
likely not be made available to you to change.

While naming and directory servers have typically run standalone, they can also run
in the same process as the application server. Many containers are written in Java,
and so their naming and directory services are just bunches of Java classes that run
inside of the container.

Unless you're using CORBA, the de facto API used to access naming and
directory services is the Java Naming and Directory Interface (JNDI), which
we explain in Appendix A. JNDI adds value to your enterprise deployments
by providing a standard interface for locating users, machines, networks,
objects, and services. For example, you can use the JNDI to locate a printer on
your corporate intranet. You can also use it to locate a Java object or to connect
with a database. In EJB, JNDI is used to lookup home objects. JNDI is also use-
ful for locating resources across an enterprise deployment, including environ-
ment properties, database resources, and more; we’ll show you how to
leverage JNDI for these purposes in Chapter 9.

How to Use JNDI to Locate Home Objects

To achieve location transparency, EJB containers mask the specific locations of
home objects from your enterprise beans’ client code. Clients do not hard-code
the machine names that home objects reside on; rather, they use JNDI to lookup
home objects. Home objects are physically located somewhere on the network
—perhaps in the address space of an EJB container residing on machine #1, or
perhaps on a container residing on machine #2. As a developer who writes
client code to use beans, you don’t care.

For clients to locate a home object, you must provide a nickname for your
bean’s home object. Clients will use this nickname to identify the home object
it wants. For example, our Hello World example might have a nickname Hel-
loHome. You specify this nickname using the proprietary vendor-specific files
that are bundled with your bean.

When you deploy your bean into the container, the container automatically
binds the nickname HelloHome to the home object. Then any client on any
machine across a multitier deployment can use that nickname to find home
objects, without regard to physical machine locations. Clients use the JNDI
API to do this. JNDI goes over the network to some naming service, or JNDI

72

tree, to look for the home object, perhaps contacting one or more naming ser-
vices in the process. Eventually the home object is found, and a reference to it
is returned to the client. This is shown in Figure 3.3.

The complete client source code is shown in Source 3.8.

EJB Container/Server

3: Create a New :—|?rrl1’fe
EJB Object nteriace)
o— Home Object
5: Return
EJB Object
Client Reference 4: Create EJB Object
Remote
Interface
o— EJB Object Enterprise Bean

A 6: Invoke Business Method

. 7: Delegate Request to Bean
1: Retrieve

Home Object
Reference

2: Return
Home Object
Reference

< JNDI

Naming Service
Such as LDAP

Figure 3.3 Acquiring a reference to a home object.

Writing Your First Bean 73

package examples;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;

/**
* This class is an example of client code that invokes
* methods on a simple stateless session bean.
*/

public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Setup properties for JNDI initialization.
*
* These properties will be read-in from
* the command-line.
*/
Properties props = System.getProperties();

/*
* Obtain the JNDI initial context.

* The initial context is a starting point for
* connecting to a JNDI tree. We choose our JNDI
* driver, the network location of the server, etc.
* by passing in the environment properties.
*/
Context ctx = new InitialContext (props) ;

/*

* Get a reference to the home object - the
* factory for Hello EJB Objects

*/

Object obj = ctx.lookup ("HelloHome") ;

/*
* Home objects are RMI-IIOP objects, and so
* they must be cast into RMI-IIOP objects
* using a special RMI-IIOP cast.
*

* See Appendix A for more details on this.
*/

HelloHome home = (HelloHome)

javax.rmi.PortableRemoteObject .narrow (
obj, HelloHome.class) ;

Source 3.8 HelloClient.java.

(Ol OVERVIEW

/*
* Use the factory to create the Hello EJB Object
*/

Hello hello = home.create();

* Call the hello() method on the EJB object. The
* EJB object will delegate the call to the bean,
* receive the result, and return it to us.

* We then print the result to the screen.
*/
System.out.println(hello.hello());
/*
* Done with EJB Object, so remove it.
* The container will destroy the EJB object.
*/
hello.remove() ;

Source 3.8 HelloClient.java. (continued)

The client code is self-explanatory.

Running the System

To try the deployment, you first must bring up the application server. This
step varies depending on your vendor. Again, since we want to keep this
book vendor-neutral, please see the book’s accompanying source code for an
example.

Next, run the client application. When running the client, you need to supply
the client with JNDI environment information. As we explain in Appendix A,
JNDI requires a minimum of two properties to retrieve an initial context:

m The name of the initial context factory. An example is
com.sun.jndi.ldap.LdapCtxFactory.

m The provider URL, indicating the location of the JNDI tree to use. An
example is [dap://louvre:389/0=Airius.com.

Writing Your First Bean 75

The actual parameters you need should be part of your EJB container’s docu-
mentation. See the book’s accompanying source code for examples of this.

files on the right machines. If remote client code uses home interfaces and remote
interfaces, then you must deploy those class files in your client environment. And
because clients never directly access your bean implementation, you should not de-
ploy your bean classes in your client environment.

? For your EJB client code to work, you must take care to distribute the correct class

The Server-Side Output

When we run the client, our container shows the following debug log. (Debug
logs are great for seeing what your enterprise beans are doing.)

setSessionContext ()
ejbCreate ()

hello()

ejbRemove ()

As you can see, the container associated our bean with a session context, called
create(), delegated a business method to the bean, and then called remove().
Note that some containers may give slightly different output than others—it’s
all implementation-specific and part of E]B product differentiation. Keep this
in mind when debugging your beans.

The Client-Side Output

After running the client, you should see the following output:

Hello, World!

Implementing Component Interfaces

We wrap up this chapter with a quick design strategy. As you probably
noticed, our enterprise bean class does not implement its own component
interface (either remote interface or local interface). But why not? Doesn’t the
component interface seem like a natural fit for the interface to your bean? After
all, the component interface defines every business method of the bean. Imple-
menting your component interface would be a nifty way to perform compile-
time checking to make sure your bean’s method signature matches your
component interface’s signature.

(MY overviEW

There are two good reasons not to implement your bean’s component interface:

Reason 1. Component interfaces extend interfaces defined by Sun, such as
javax.ejb.E[BObject or javax.ejb.E[BLocalObject. These superinterfaces define
additional methods intended for client use, and you’d therefore have
provide no-op implementations of those methods in your bean. Those
methods have no place in your bean class.

Reason 2. Let’s assume your enterprise bean wants to call a method on a dif-
ferent enterprise bean, and you want to pass a reference to your bean as a
parameter to the other bean’s method (similar to passing the this parameter
in Java). How can you do this in EJB?

Remember that all clients call methods on EJB objects, not beans. Thus, if your
bean calls another bean, you must pass a reference to your bean’s EJB object,
rather than a reference to your bean. The other bean should operate on your
EJB object, and not your bean, because the other bean is a client, just like any
other client, and all clients must go through EJB objects.

The danger here is if your enterprise bean class implements your EJB object’s
remote interface. You could accidentally pass a reference to the bean itself,
rather than pass a reference to the bean’s EJB object. Because your bean imple-
ments the same interface as the EJB object, the compiler would let you pass the
bean itself as a this parameter, which is an error.

A Solution

There is an alternative way to preserve compile-time checks of your method
signatures. The approach is to contain your bean’s business method signatures
within a common superinterface that your remote interface extends and your
bean implements. You can think of this superinterface as a business interface
that defines your business methods and is independent of E]B. The following
example illustrates this concept:

// Business interface
public interface HelloBusinessMethods {
public String hello() throws java.rmi.RemoteException;
}
// EJB remote interface
public interface HelloRemote extends javax.ejb.EJBObject,
HelloBusinessMethods {
}
// EJB local interface
public interface HelloLocal extends javax.ejb.EJBLocalObject,
HelloBusinessMethods {
}

// Bean implementation

Writing Your First Bean 77

public class HelloBean implements SessionBean, HelloBusinessMethods {
public String hello() {
return "Hello, World!";
}

< . . . define other required callbacks . . . >

}

The only problem with this approach is that the local interface throws remote
exceptions. If you can live with that, then this design strategy works.

Summary

In this chapter, we learned how to write the component interfaces, home inter-
face, enterprise bean class, deployment descriptor, and Ejb-jar file. You also
saw how to call beans using JNDI and RMI-IIOP. Congratulations are in order:
It took awhile, but you've successfully completed your first Enterprise Jav-
aBeans deployment!

80 THE TRIAD OF BEANS

application. We’ll learn about the three types of enterprise beans: session beans
(Chapter 4), entity beans (Chapter 5), and message-driven beans (Chapter 8).
We'll also explore their subtypes: stateless session beans, stateful session
beans, bean-managed persistent entity beans (Chapter 6), and container-
managed persistent entity beans (Chapter 7). Not only will we see each of
these conceptually, but we’ll also write an example for each bean type. We’ll
end Part 2 with a discussion of container-provided services (Chapter 9), such
as security, the environment, and calling beans from other beans.

In Part 2, we’ll focus on the development details for implementing an EJB

Part 2 is essential for those of you who are ready to delve into EJB program-
ming fundamentals. It is essential groundwork to prepare yourself for the
more advanced topics, such as transactions and EJB design strategies, which
are coming in Part 3.

Introduction to Session Beans

Session beans are business process objects. They implement business logic,
business rules, algorithms, and workflow. For example, a session bean can
perform price quoting, order entry, video compression, banking transactions,
stock trades, database operations, complex calculations, and more. They are
reusable components that contain logic for business processes.

ﬁ session bean represents work being performed for client code that is calling it.

Let’s examine the characteristics of session beans in detail and then code up a
stateful session bean.

Session Bean Lifetime

A chief difference between session beans and entity beans is the scope of their
lives. A session bean is a relatively short-lived component. It has roughly the
lifetime equivalent of a session or lifetime of the client code that is calling the
session bean.

For example, if the client code contacted a session bean to perform order entry
logic, the EJB container is responsible for creating an instance of that session
bean component. When the client later disconnects, the application server may
destroy the session bean instance.

A client’s session duration could be as long as a browser window is open, per-
haps connecting to an e-commerce site with deployed session beans. It could

82 THE TRIAD OF BEANS

also be as long as your Java applet is running, as long as a standalone applica-
tion is open, or as long as another bean is using your bean.

The length of the client’s session generally determines how long a session
bean is in use—that is where the term session bean originated. The EJB con-
tainer is empowered to destroy session beans if clients time out. If your client
code is using your beans for 10 minutes, your session beans might live for
minutes or hours, but probably not weeks, months, or years. Typically ses-
sion beans do not survive application server crashes, nor do they survive
machine crashes. They are in-memory objects that live and die with their sur-
rounding environments.

In contrast, entity beans can live for months or even years because entity beans
are persistent objects. Entity beans are part of a durable, permanent storage,
such as a database. Entity beans can be constructed in memory from database
data, and they can survive for long periods of time.

Session beans are nonpersistent. This means that session beans are not saved to
permanent storage, whereas entity beans are. Note that session beans can per-
form database operations, but the session bean itself is not a persistent object.

Session Bean Subtypes

All enterprise beans hold conversations with clients at some level. A conversa-
tion is an interaction between a client and a bean, and it is composed of a
number of method calls between the client and the bean. A conversation
spans a business process for the client, such as configuring a frame-relay
switch, purchasing goods over the Internet, or entering information about a
new customer.

The two subtypes of session beans are stateful session beans and stateless session
beans. Each is used to model different types of these conversations.

Stateful Session Beans

Some business processes are naturally drawn-out conversations over several
requests. An example is an e-commerce Web store. As a user peruses an online
e-commerce Web site, the user can add products to the online shopping cart.
Each time the user adds a product, we perform another request. The conse-
quence of such a business process is that the components must track the user’s
state (such as a shopping cart state) from request to request.

Another example of a drawn-out business process is a banking application.
You may have code representing a bank teller who deals with a particular

Introduction to Session Beans 83

client for a long period of time. That teller may perform a number of banking
transactions on behalf of the client, such as checking the account balance,
depositing funds, and making a withdrawal.

A stateful session bean is a bean that is designed to service business processes
that span multiple method requests or transactions. To accomplish this, state-
ful session beans retain state on behalf of an individual client. If a stateful ses-
sion bean’s state is changed during a method invocation, that same state will
be available to that same client upon the following invocation.

Stateless Session Beans

Some business processes naturally lend themselves to a single request conver-
sation. A single request business process is one that does not require state to be
maintained across method invocations.

A stateless session bean is a bean that holds conversations that span a single
method call. They are stateless because they do not hold multimethod conver-
sations with their clients. After each method call, the container may choose to
destroy a stateless session bean, or recreate it, clearing itself out of all informa-
tion pertaining to past invocations. It also may choose to keep your instance
around, perhaps reusing it for all clients who want to use the same session
bean class. The exact algorithm is container specific. The takeaway point is
this: Expect your bean to forget everything after each method call, and thus
retain no conversational state from method to method. If your bean happens to
hang around longer, then great—but that’s your container’s decision, and you
shouldn’t rely on it.

For a stateless session bean to be useful to a client, the client must pass all
client data that the bean needs as parameters to business logic methods. Alter-
natively, the bean can retrieve the data it needs from an external source, such
as a database.

Stateless really means no conversational state. Stateless session beans can contain
state that is not specific to any one client, such as a database connection factory that
all clients would use. You can keep this around in a private variable. So long as
you're willing to lose the data in your private variable at any time, you’ll be fine.

An example of a stateless session bean is a high-performance engine that
solves complex mathematical operations on a given input, such as compres-
sion of audio or video data. The client could pass in a buffer of uncompressed
data, as well as a compression factor. The bean returns a compressed buffer
and is then available to service a different client. The business process spanned

84 THE TRIAD OF BEANS

one method request. The bean does not retain any state from previous
requests.

Another example of a stateless session bean is a credit card verification com-
ponent. The verifier bean takes a credit card number, expiration date, card-
holder’s name, and dollar amount as input. The verifier then returns a yes or
no answet, depending on whether the card holder’s credit is valid. Once the
bean completes this task, it is available to service a different client and retains
no past knowledge from the original client.

Because stateless session beans hold no conversational state, all instances of
the same stateless session bean class are equivalent and indistinguishable to a
client. It does not matter who has called a stateless session bean in the past,
since a stateless session bean retains no state knowledge about its history. This
means that any stateless session bean can service any client request because
they are all exactly the same. In fact, stateless session beans can be pooled,
reused, and swapped from one client to another client on each method call' We
show this in Figure 4.1.

Special Characteristics of Stateful
Session Beans

So far, we've seen session beans in general. We also coded up a simple stateless
session bean in Chapter 3. Now let’s look at the trickier flavor, stateful session
beans.

Stateless Bean Pool

Client /

N
Invoke()

"N\, | EJBObject

Remote
Interface Invoke()

Figure 4.1 Stateless session bean pooling.

Introduction to Session Beans

Achieving the Effect of Pooling
with Stateful Beans

85

With stateful session beans, pooling is not as simple with stateful session
beans. When a client invokes a method on a bean, the client is starting a con-
versation with the bean, and the conversational state stored in the bean must be
available for that same client’s next method request. Therefore, the container
cannot easily pool beans and dynamically assign them to handle arbitrary
client method requests, since each bean is storing state on behalf of a particu-
lar client. But we still need to achieve the effect of pooling for stateful session
beans so that we can conserve resources and enhance the overall scalability of
the system. After all, we only have a finite amount of resources available, such
as memory, database connections, and socket connections. If the conversa-
tional state that the beans are holding is large, the E]B server could easily run
out of resources. This was not a problem with stateless session beans because
the container could pool only a few beans to service thousands of clients.

This problem should sound quite familiar to operating systems gurus. When-
ever you run an application on a computer, you have only a fixed amount of
physical memory in which to run. The operating system still must provide a
way for many applications to run, even if the applications take up more aggre-
gate memory than is available physically. To provide for this, operating sys-
tems use your hard disk as an extension of physical memory. This effectively
extends your system’s amount of virtual memory. When an application goes
idle, its memory can be swapped out from physical memory and onto the hard
disk. When the application becomes active again, any needed data is swapped
in from the hard disk and into physical memory. This type of swapping hap-
pens often when switching between applications (called context switching).

EJB containers exploit this very paradigm to conserve stateful session bean
resources. To limit the number of stateful session bean instances in memory,
the container can swap out a stateful bean, saving its conversational state to a
hard disk or other storage. This is called passivation. After passivating a state-
ful bean, the conversational state is safely stored away, allowing resources like
memory to be reclaimed. When the original client invokes a method, the pas-
sivated conversational state is swapped in to a bean. This is called activation.
This bean now resumes the conversation with the original client. Note that the
bean that receives the activated state may not be the original bean instance. But
that’s all right because the new instance resumes its conversation from the
point where the original instance was passivated.

Thus, E]B does indeed support the effect of pooling stateful session beans. Only
a few instances can be in memory when there are actually many clients. But
this pooling effect does not come for free—the passivation/activation steps

86 THE TRIAD OF BEANS

could entail an input/output bottleneck. Contrast this to stateless session
beans, which are easily pooled because there is no state to save.

How does the container decide which beans to activate and which beans to
passivate? The answer is specific to each container. Most containers employ a
Least Recently Used (LRU) passivation strategy, which simply means to passi-
vate the bean that has been called the least recently. This is a good algorithm
because remote clients have the habit of disconnecting from the network, leav-
ing beans stranded without a client, ready to be passivated. If a bean hasn’t
been invoked in a while, the container writes it to disk.

Passivation can occur at any time, as long as a bean is not involved in a method
call. It’s up to the container to decide when passivation makes sense. There is
one exception to this rule: Any bean involved in a transaction (see Chapter 10)
cannot be passivated until the transaction completes.

To activate beans, most containers usually use a just-in-time algorithm. Just in
time means that beans should be activated on demand, as client requests come
in. If a client request comes in, but that client’s conversation has been passi-
vated, the container activates the bean on demand, reading the passivated
state back into memory.

In general, passivation and activation are not useful for stateless session beans.
Stateless beans do not have any state to passivate/activate, so the container
can simply destroy stateless beans arbitrarily.

The Rules Governing
Conversational State

More rigorously, the conversational state of a bean follows the rules laid out by
Java object serialization. At passivation time the container uses object serializa-
tion (or an equivalent protocol) to convert the bean’s conversational state to a
bit-blob and write the state out to disk. This safely tucks the state away. The
bean instance (which still exists) can be reassigned to a different client, and can
hold a brand-new conversation with that new client.

Activation reverses the process: A serialized blob that had been written to stor-
age is read back into memory and converted to in-memory bean data. What
makes this whole process work is the javax.ejb.EnterpriseBean interface extends
java.io.Serializable, and every enterprise bean class indirectly implements this
interface.

For every Java object that is part of a bean’s conversational state, the previous
algorithm is reapplied recursively on those objects. Thus, object serialization
constructs an entire graph of data referred to by the main bean. Note that while
your beans must follow the rules for object serialization, the EJB container

Introduction to Session Beans 87

itself does not necessarily need to use the default serialization protocol; it
could use a custom protocol to allow for flexibility and differentiation between
container vendors.

More concretely, every member variable in a bean is considered to be part of
the bean’s conversational state if the following apply:

m The member variable is a nontransient primitive type, or

m The member variable is a nontransient Java object (extends
java.lang.Object)

Your bean might also hold references to container-implemented objects. The
container must preserve each of the following upon passivation/activation:

m EJB object references

m Home object references

m EJB context references (see Chapter 9)
|

JNDI naming contexts

For example, let’s say you have the following stateful session bean code:

public class MySessionBean implements javax.ejb.SessionBean
{
// State variables
private Long myLong;
private MySessionBeanRemoteInterface ejbObject;
private MySessionBeanHomeInterface homeObject;
private javax.ejb.SessionContext mySessionContext;
private javax.naming.Context envContext;
// EJB-required methods (fill in as necessary)
public void setSessionContext (SessionContext ctx) {}
public void ejbCreate() {1}
public void ejbPassivate() {}
public void ejbActivate() {}
public void ejbRemove () {}
// Business methods

}

The container must retain the values of the preceding member variables across
passivation and activation operations.

Activation and Passivation Callbacks

Let’s now look at what actually happens to your bean during passivation and
activation. When an EJB container passivates a bean, the container writes the
bean’s conversational state to secondary storage, such as a file or database. The

THE TRIAD OF BEANS

container informs the bean that it’s about to perform passivation by calling the
bean’s required ejbPassivate() callback method. ejbPassivate() is a warning to the
bean that its held conversational state is about to be swapped out.

It's important that the container inform the bean using ejbPassivate() so that the
bean can relinquish held resources. These held resources include database con-
nections, open sockets, open files, or other resources that do not make sense to
be saved to disk or cannot be transparently saved using object serialization.
The EJB container calls the ejbPassivate() method to give the bean a chance to
release these resources or deal with the resources as the bean sees fit. Once the
container’s ejbPassivate() callback method into your bean is complete, your
bean must be in a state suitable for passivation. For example:

import javax.ejb.*;
public class MyBean implements SessionBean {
public void ejbPassivate() {
<close socket connections, etc . . . >

}

}

The passivation process is shown in Figure 4.2. This is a typical stateful bean
passivation scenario. The client has invoked a method on an EJB object that
does not have a bean tied to it in memory. The container’s pool size of beans
has been reached. Thus, the container needs to passivate a bean before han-
dling this client’s request.

Exactly the opposite process occurs during the activation process. The serial-
ized conversational state is read back into memory, and the container recon-
structs the in-memory state using object serialization or the equivalent. The
container then calls the bean’s required ejbActivate() method. ejbActivate() gives
the bean a chance to restore the open resources it released during ejbPassivate().
For example:

import javax.ejb.*;
public class MyBean implements SessionBean {
public void ejbActivate() {
<open socket connections, etc . . . >

}

}

The activation process is shown in Figure 4.3. This is a typical just-in-time
stateful bean activation scenario. The client has invoked a method on an EJB
object whose stateful bean had been passivated.

You probably don’t need to worry about implementing ejbPassivate() and
ejbActivate() unless you are using open resources, such as socket connections or

Introduction to Session Beans 89

Client

1: Invoke Business Method

2: Pick the Least
Recently Used Bean —=

o—| EJB Object | 3:Call ejpbPassivate() ——=> Enterprise Bean
Remote . il
Interface —4: Serialize the Bean State =

Other Enterprise
Beans

5: Store

Passivated

Bean State A typical stateful bean passivation B
scenario. The client has invoked a
method on an EJB object that does
not have a bean tied to it in memory.
The container's pool size of beans has
been reached. Thus the container
needs to passivate a bean before
handling this client's request.

Storage

Figure 4.2 Passivation of a stateful bean.

database connections, that must be reestablished after activation. In most
cases, you can simply leave these methods empty.

Method Implementation Summary

Table 4.1 summarizes how to develop session bean classes.

A Simple Stateful Session Bean

Let’s put our stateful session bean knowledge to use by programming a sim-
ple stateful bean. Our bean will be a counter bean, and it will be responsible for
simply counting up one by one. The current count will be stored within the
bean and will increment as client requests arrive. Thus, our bean will be state-
ful and will hold a multimethod conversation with a particular client.

90

"pajedo|je
aney Aew noA sadinosal [je 3314
‘uoPNI)Sap 10} ueaq InoA atedsid

‘Aidwa anes| ‘a1e3s |PUONLSISAUOD
ou SI dI3Y} 3snedxaq pasnun

‘fidwia anea| ‘a3e)s [RUOILSIBAUOD
ou sI 319} 9snedraq pasnun

jssa[a1e3Ss SI | ddUIS
‘s||e> yuanbasqns uodn o3 jjasy pazijeniul
} JeYM JSqWISWI JI9ASU P|NOM Uedq

9y} ‘si9)oweled asoy) 03 J|9sy pazijeniul
ueaq ay} pue ‘sia)oweled pey i J|
‘si9)dweled ou yum poyaw ()a3palsdqglo
Adws 3j3uis e Ajuo sulsp ued nox

1910 "ul passed sanjen Juswndie ayj 0}
s9|qeneA Jaquiaw 3uiss se yans ‘spasu
ueaq InoA uonezijeniul Aue wioysd

191e)
pauenb aq ued 1xa1u0d ayj os d|qenea
Jaquiaw e ul Aeme 1xa)u0d 3y} 3101S

(SNv3d NOISS3S 1n431VLS)

"pajedojje
aney Aew NoA sa2Inosal [|e 9314
“uolPNIISap 10} ueaq InoA asedaid

"()21DNISSDAqlo
3uunp paseajal 9soy) se Yyons ‘spasu
ueaq InoA sadinosal Aue asnboy

uipjoy aq
Aew ueaq InoA sa21nosal Aue aseajy

‘ueaq UOISSas
INoA ur poysw (- °) - -apaidqle
9UO 3sed| 1e apinoid 3snw NOA

"S)uawnSie JUSISYIP SYe} Ued Yoea pue

‘spoyiawl () " - 2paI)glo [RIGNSS
SUIjp URD NOA :3)0N "ul passed
sanjen juswngie 3y} 0} S9|qeUBA
Jlaquiaw Sumas se yons ‘spasu
ueaq JnoA uonezijeniur Aue wioydd

19)e|
pauanb aq ued 1xaju0d 3y} OS d|qeueA
Jaquiaw e ul Aeme 3x23U0d dU} 2103S

(SNv3d NOISS3S SSITILVILS)

‘Alowsw woly
panowal si ueaq JnoA
2l0j9q Aj@1eIpawiwl
Jauiejuod sy Aq pajjed

‘(ueaq InoA spasu juaip
B 9SNE9q YSIp Wouy

ul paddems) pajeaipoe
S1 ueaq InoA a10jeq
Ajpreipaww pajjed

*(sueaq pajenueisul
Auew 00} ai1e 219y}
asnedaq ysip 03 IN0
paddems) pajenissed
s1 ueaq InoA al0jeq
Ajprerpawii pajjed

"ueaq
uoIssas INoA sazijeniy

"2I0W pue ‘a)e)s
Aundas Juand sy ‘ayels
|euoneSURI} JUSLIND

SH IN0Qe X330 dY}
Asanb ued ueaq inoj
"JX9)U0D UOISSaS B YU
ueaq InNoA sa3enossy

NOlLdI¥dSs3a

(enowayqled

(O=1endyqfe

()=1enissedqlad

A...v...wwmw._Un_.—v

(X390 IXaUOHUOISSIS)
IX9)UODUOISSISIDS

dOH1IN

NOILLVINIWITdINI TVIIdAL

NOILLVINIWITdINI TVIIdAL

S9SSe|) URAY UOISSAS 10§ SPOYIS|N palinbay

't d]qelL

Introduction to Session Beans 91

Client

1: Invoke Business Method

—— 3: Reconstruct Bean —=|

o— EJBObject | 4:Call ejpActivate() ——=> Enterprise Bean
Remote .
Interface - 5: Invoke Business Method —

Other Enterprise
Beans

i

2: Retrieve

Passivated

Bean State A typical just-in-time stateful
bean activation scenario. The
client has invoked a method on
an EJB object whose stateful
bean had been passivated.

Storage

Figure 4.3 Activation of a stateful bean.

The Count Bean’s Remote Interface

First let’s define our bean’s remote interface. The code is shown in Source 4.1.

Our remote interface defines a single business method, count(), which we will
implement in the enterprise bean class.

The Count Bean

Our bean implementation has one business method, count(), which is respon-
sible for incrementing an integer member variable, called val. The conversa-
tional state is the val member variable. We show the code for our counter bean
in Source 4.2.

92 THE TRIAD OF BEANS

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

/*
*
*
*
*
*
*
*

*

*

These are CountBean’s business logic methods.

This interface is what clients operate on when they
interact with EJB objects. The container vendor will
implement this interface; the implemented object is
the EJB object, which delegates invocations to the
actual bean.
/

public interface Count extends EJBObject {

/**
* Increments the int stored as conversational state
*/

public int count() throws RemoteException;

Source 4.1 Count.java.

package examples;

import javax.ejb.*;

VA

*

*

*

Demonstration Stateful Session Bean. This Bean is initialized
to some integer value, and has a business method which
increments the value.

This example shows the basics of how to write a stateful
session bean, and how passivation/activation works.

*/
public class CountBean implements SessionBean {

// The current counter is our conversational state.
public int val;

//
// Business methods
//

Source 4.2 CountBean.java.

Introduction to Session Beans 93

/**
* Counts up
*/
public int count () {
System.out.println("count()");
return ++val;

//
// EJB-required methods
//

public void ejbCreate(int val) throws CreateException {
this.val = val;
System.out.println("ejbCreate()");

public void ejbRemove () {
System.out.println("ejbRemove()") ;

public void ejbActivate() {
System.out.println ("ejbActivate()") ;

public void ejbPassivate() {
System.out.println("ejbPassivate()");

public void setSessionContext (SessionContext ctx) {

}

Source 4.2 CountBean.java (continued).

Note the following about our bean:

m The bean implements javax.ejb.SessionBean (described fully in Appendix
E). This means the bean must define all methods in the SessionBean inter-
face. By looking at the bean, you can see we’ve defined them but kept
them fairly trivial.

m QOur ¢jbCreate() initialization method takes a parameter, val. This method
customizes our bean to the client’s needs. Our ejbCreate() method is

94

THE TRIAD OF BEANS

responsible for beginning a conversation with the client. It uses val as the
starting state of the counter.

m The val member variable obeys the rules for conversational state because
it is serializable. Thus, it lasts across method calls and is automatically
preserved during passivation/activation.

Notice, too, that our code has a setSessionContext() method. This associates our
bean with a session context, which is a specific EJB context used only for session
beans. Our bean can callback to the container through this object. The session
context interface looks like this:

public interface javax.ejb.SessionContext
extends javax.ejb.EJBContext
{
public javax.ejb.EJBLocalObject getEJBLocalObject () ;
public javax.ejb.EJBObject getEJBObject () ;
}

Notice that the SessionContext interface extends the E[BContext interface, giv-
ing session beans access to all the methods defined in EJBContext (see Chapter
3 or Appendix E).

Specific to session beans, the getE[BObject() and getEJBLocalObject() methods
are useful if your bean needs to call another bean and if you want to pass a ref-
erence to your own bean. In Java, an object can obtain a reference to itself with
the this keyword. In EJB, however, a bean cannot use the this keyword and pass
it to other beans because all clients invoke methods on beans indirectly
through a bean’s E]B object. Thus, a bean can refer to itself by using a reference
to its EJB object, rather than the this keyword.

The Count Bean’s Home Interface

To complete our stateful bean code, we must define a home interface. The
home interface details how to create and destroy our Count EJB object. The
code for our home interface is in Source 4.3.

Because we implement javax.ejb.EJBHome, our home interface gets the remove()
destroy method for free.

The Count Bean’s Deployment Descriptor

Now that we’ve got all our Java files for our bean, we need to define the
deployment descriptor to identify the bean’s settings to the container. The
deployment descriptor settings we use are listed in Source 4.4.

Introduction to Session Beans

package examples;

import javax.ejb.*;
import java.rmi.RemoteException;

/**

* This is the home interface for CountBean. This interface
* is implemented by the EJB Server'’s glue-code tools - the

* implemented object is called the Home Object, and serves

* as a factory for EJB Objects.

* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in the CountBean file.
*/

public interface CountHome extends EJBHome {

/*
* This method creates the EJB Object.

* @param val Value to initialize counter to
*
* @return The newly created EJB Object.
*/
Count create(int val) throws RemoteException, CreateException;

Source 4.3 CountHome.java.

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>Count</ejb-name>
<home>examples.CountHome</home>
<remote>examples.Count</remote>
<ejb-class>examples.CountBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
</ejb-jar>

Source 4.4 ejb-jarxml.

95

96

THE TRIAD OF BEANS

Notice that our bean’s stateful nature is defined declaratively in the deploy-
ment descriptor. We never introduce the notion of a bean being stateful in the
bean code itself. This allows us to easily switch from the stateful to stateless
paradigm and back.

The Count Bean's Proprietary Descriptor
and Ejb-jar File

To complete our component, we need to write any proprietary files that our
application server may require and package those files and our bean together
into an Ejb-jar file. These steps are similar to our Hello, World! example.

One special setting we will make (which is vendor specific) will force the con-
tainer to have a maximum pool of two beans. We will then create three beans
and observe how the container must passivate instances to service requests.

To save space, in future examples we’ll consider that the proprietary descrip-
tors, the Ejb-jar file, and the deployment itself are implied steps. If you're
really curious about how this is achieved, take a look at the source code accom-
panying the book.

The Count Bean'’s Client Code

Now that our bean is deployed, we can write some Java code to test our beans.
Our client code performs the following steps:

1. We acquire a JNDI initial context.

2. We locate the home object using JNDI.

3. We use the home object to create three different Count EJB objects. Thus,
we are creating three different conversations and are simulating three dif-
ferent clients.

4. We limited the bean pool size to two beans, so during the previous step
some of the three beans must have been passivated. We print out a mes-
sage during the ejbPassivate() callback to illustrate this.

5. Next, we call count() on each EJB object. This forces the container to acti-
vate the instances, restoring the conversations to memory once again. We
print out a message during the ejbActivate() callback to illustrate this.

6. Finally, all the E]B objects are removed.

The code appears in Source 4.5.

Introduction to Session Beans

package examples;

import javax.ejb.*;
import javax.naming.*;
import java.util.Properties;

/**
* This class is a simple example of client code.
*
* We create 3 EJB Objects in this example, but we only allow
* the container to have 2 in memory. This illustrates how
* beans are passivated to storage.
*/
public class CountClient {

public static void main(String[] args) {

try {
/*
* Get System properties for JNDI initialization
*/
Properties props = System.getProperties();

/*
* Get a reference to the Home Object - the
* factory for EJB Objects
*/
Context ctx = new InitialContext (props);
CountHome home = (CountHome)
javax.rmi.PortableRemoteObject .narrow (

ctx.lookup ("CountHome"), CountHome.class) ;
/*
* An array to hold 3 Count EJB Objects
*/
Count count[] = new Count[3];
int countVal = 0;
/*
* Create and count () on each member of array
*/

System.out.println("Instantiating beans . . . ");
for (int i=0; 1 < 3; i++) {

/*

* Create an EJB Object and initialize

* it to the current count value.

Source 4.5 CountClient.java.

97

98 THE TRIAD OF BEANS

*/
count[i] = home.create(countVal) ;
/*

* Add 1 and print

*/
countVal = count[i].count () ;

System.out.println(countVal) ;

/*
* Sleep for 1/2 second
*/
Thread.sleep (500) ;
}
/*

* Let’s call count() on each EJB Object to

* make sure the beans were passivated and

* activated properly.

*/
System.out.println("Calling count() on beans . . . ");
for (int i=0; i < 3; i++) {

/*
* Add 1 and print
*/
countVal = count[i].count() ;

System.out.println (countVal) ;

/*
* Sleep for 1/2 second
*/
Thread.sleep (500) ;
}
/*
* Done with EJB Objects, so remove them
*/

for (int i=0; i < 3; i++) {
count [i] .remove() ;
}
} catch (Exception e) {
e.printStackTrace() ;

Source 4.5 CountClient.java (continued).

Introduction to Session Beans 99

Running the Client

To run the client, you need to know the parameters your JNDI service provider
uses. This should also be part of your container’s documentation. See the
book’s accompanying source code for scripts.

Client-Side Output
After running the client, we see the following output:
Instantiating beans .

1
2
3
Calling count () on beans .
2
3
4

We first created three beans and then called count() on each. As expected, the
beans incremented their values by one each during the second pass, so output
is as expected. But were our beans really passivated and activated? Let’s check
the server log.

Server-Side Output
The container log yields the following results:

ejbCreate ()
count ()
ejbCreate ()
count ()
ejbCreate ()
ejbPassivate()
count ()
ejbPassivate ()
ejbActivate()
count ()
ejbPassivate()
ejbActivate()
count ()
ejbPassivate ()
ejbActivate()
count ()
ejbPassivate()
ejbActivate()
ejbRemove ()
ejbActivate()
ejbRemove ()
ejbRemove ()

100 THE TRIAD OF BEANS

As you can see from the passivation/activation messages in the log, the con-
tainer is indeed passivating and activating beans to conserve system resources.
Because the client-side output is correct, each of our beans’ conversational
state was retained properly.

Life Cycle Diagrams for
Session Beans

Now that we’ve written a complete stateless session bean (in Chapter 3) and a
complete stateful session bean (in this chapter), let’s see what’s happening
behind the scenes.

Figure 4.4 shows the life cycle of a stateless session bean inside the container.
Note that in this diagram, the client is not calling methods on the bean, since
the client never accesses a bean directly. (The client always goes through the
container.) In the diagram, the container (that is, the home object and EJB
objects) is calling methods on our bean.

Bean Instance Does Not
Container decided it Exist
needs more instances
in the pool to service

clients. A

%
1: Class.newlnstance(1: gjpRemove() Contailner decided it
2: setSessionContext() Omemmmee doesn't need so
3: ejbCreate() many instances

anymore.

Pool of Equivalent

Business Method Method-Ready Instances

Any client calls a
business method on
any EJB object.

Figure 4.4 The life cycle of a stateless session bean.

Introduction to Session Beans 101

Let’s walk through this diagram.

First, the bean instance does not exist. Perhaps the application server has
just started up.

Next, the container decides it wants to instantiate a new bean. When does
the container decide it wants to instantiate a new bean? It depends on the
container’s policy for pooling beans. The container may decide to instanti-
ate 10 beans all at once when the application server first starts because you
told the container to do so using the vendor-specific files that you ship
with your bean. Each of those beans are equivalent (because they are state-
less) and they can be reused for many different clients.

Then the container instantiates your bean. The container calls Class.newlIn-
stance(“HelloBean.class”) on your session bean class, which is the dynamic
equivalent of calling new HelloBean(). The container does this so that the
container is not hard-coded to any specific bean name; the container is
generic and works with any bean. This action calls your bean’s default con-
structor, which can do any necessary initialization.

Next, the container calls setSessionContext(). This associates you with a
context object, which enables you to make callbacks to the container (see
Chapter 9 for some examples of these callbacks).

Then the container calls ejbCreate(). This initializes your bean. Note that
because stateless session beans’ ejbCreate() methods take no parameters,
clients never supply any critical information that bean instances need to
start up. EJB containers can exploit this and precreate instances of your
stateless session beans. In general when a client creates or destroys a bean
using the home object, that action might not necessarily correspond with
literally creating or destroying in-memory bean objects, because the E]B
container controls their life cycles to allow for pooling between heteroge-
neous clients.

Next, the container can call business methods on your bean. The container
can call as many business methods as it wants to call. Each business
method could originate from a completely different client because all bean
instances are treated exactly the same. All stateless session beans think
they are in the same state after a method call; they are effectively unaware
that previous method calls happened. Therefore the container can dynami-
cally reassign beans to client requests at the per-method level. A different
stateless session bean can service each method call from a client. Of course,
the actual implementation of reassigning beans to clients is container-
specific.

Finally, the container calls ejpRemove(). When the container is about to
remove your session bean instance, it calls your bean’s ejbRemove() callback
method. ejbRemove() is a clean-up method, alerting your bean that it is

102

THE TRIAD OF BEANS

about to be destroyed and allowing it to end its life gracefully. ejbRemove()
is a required method of all beans, and it takes no parameters. Therefore
there is only one ejbRemove() method per bean. This is in stark contrast to
ejbCreate(), which has many forms. This makes perfect sense: Why should a
destructive method be personalized for each client? (This is an analogous
concept to destructors in C+ +.) Your implementation of ejbRemove()
should prepare your bean for destruction. This means you need to free all

resources you may have allocated.

Figure 4.5 shows the life cycle of a stateful session bean. Remember that in the
diagram, the container (not the client) is calling methods on our bean instance.

The life cycle for stateful session beans is very similar to stateless session

beans. The big differences are as follows:

m There is no pool of equivalent instances because each instance contains

state.

m There are transitions for passivating and activating state.

Client called
create(...) on the

) Bean Instance Does
home interface.

Not Exist

o o
1: Class.newinstance() gjbRemove()
2: setSessionContext()
3: ejbCreate(...)

)

Client called remove() on
the EJB object or client
times out.

ejbPassivate()

Container's limit of
instantiated beans is
reached, so it must

swap your bean out.

Client Times Out

Business Method Ready

Passive

Q

Client called a
business method
on the EJB object.

Figure 4.5 Life cycle of a stateful session bean.

ejbActivate()
Q

Client called a method

on a passivated bean,
so container must
swap your bean back
in.

Introduction to Session Beans 103

Don't rely on ejbRemove()

Your container can call ejpRemove() at any time, even if the container decides
that the bean'’s life has expired (perhaps due to a very long timeout). Note that
the container may never call your bean’s ejpRemove() method, such as if the con-
tainer crashes or if a critical exception occurs. You must be prepared for this con-
tingency. For example, if your bean performs shopping cart operations, it might
store temporary shopping cart data in a database. Your application should pro-
vide a utility that runs periodically to remove any abandoned shopping carts from
the database.

Summary

In this chapter, we learned the theoretical concepts behind session beans. We
learned about achieving instance pooling with session beans, activation, and
passivation. We wrote a stateful session bean that counted up and touched on
session beans’ life cycle.

This completes our introduction to session beans. In the next chapters, you'll
learn about the more complex (and also quite interesting) entity bean. Turn the
page and read on!

Introduction to Entity Beans

are persistent objects that can be stored in permanent storage. This means you

O ne of the key benefits of EJB is the power to create entity beans. Entity beans
can model your business’s fundamental, underlying data as entity beans.

In this chapter, we'll cover these topics:

m The basic concepts of persistence

m A definition of entity beans, from a programmer’s perspective
m The features that entity beans have to offer
-

Entity bean programming concepts

This chapter is relatively theoretical, and it is meant to give you a deep founda-
tion in entity bean programming concepts. For those of you with a traditional
procedural programming background, entity beans can be a tough topic to
grasp. You may need to reread this chapter a few times to really understand
how things work. Make sure you've read and understood the previous chapters
in this book; our discussion of entity beans will build on the knowledge you've
acquired so far. We’ll use these concepts with hands-on code in later chapters.

Persistence Concepts

Because entity beans are persistent objects, our discussion begins with a quick
look at popular ways to persist objects.

106 THE TRIAD OF BEANS

Java Object Serialization

When you work with Java objects, in many cases you would like to capture the
state of the object you're currently working with and save it to a permanent
storage. One way to do this, as covered in Appendix A, is to use object serial-
ization. Object serialization is an easy way to marshal an object graph into a
compact representation. When you serialize an object graph, you convert the
graph into a byte stream. You can then do anything you want to with that
stream, such as push the data over the network (which is how Java RMI passes
parameters over the network), or you can save the stream to storage, such as a
file system, database, or JNDI tree. For sophisticated persistence, however,
object serialization falls short in many areas.

For example, let’s say we store a million serializable bank account objects onto
a file system. We do this by converting the objects to their bit-blob representa-
tion and then storing the bytes on disk. Let’s say we then want to retrieve all
bank accounts that have balances over $1,000. To do this with serialization,
we’d have to load each and every bank account serialized bit-blob from the
disk, construct the corresponding object, and then execute a method query on
the object to determine if the balance is over $1,000. We might want to perform
more advanced queries as well, such as retrieving all checking accounts that
have been inactive for six months. There is no efficient way to do this with
object serialization.

In general querying objects stored using object serialization is expensive and
cumbersome. Submitting queries against business data is an absolute neces-
sity for large-scale applications, which makes simple object serialization
unsuitable for persistent storage. Object serialization is best used in restricted
domains—for network communications and simple persistence. For EJB we
need a more robust persistence mechanism to address more complex querying
operations.

Object-Relational Mapping

Another popular way to store Java objects is to use a traditional relational data-
base, such as Oracle or Microsoft SQL Server. Rather than serialize each object,
we could decompose each object into its constituent parts and store each part
separately. For example, for a bank account object, the bank account number
could be stored in one relational database field and the bank account balance
in another field. When you save your Java objects, you would use JDBC or
SQL/]J to map the object data into a relational database. When you want to load
your objects from the database, you would instantiate an object from that class,
read the data in from the database, and then populate that object instance’s
fields with the relational data read in. This is shown in Figure 5.1

Introduction to Entity Beans 107

This mapping of objects to relational databases is a technology called object-
relational mapping. It is the act of converting and unconverting in-memory
objects to relational data. An object-relational (O/R) mapper may map your
objects to any kind of relational database schema. For example, a simple object-
relational mapping engine might map a Java class to a SQL table definition. An
instance of that class would map to a row in that table, while fields in that
instance would map to individual cells in that row. This is shown in Figure 5.2.
You'll see more advanced cases of mapping data with relationships to other data
in Chapter 11.

Bank Account

String accountID
String ownerName
double balance

/" Database API
i SuchasJDBCor !
saLJ

Bank Account
Table

Relational Database

Figure 5.1 Object-relational mapping.

THE TRIAD OF BEANS

Account Class

String accountID
String ownerName
double balance

Account Instance

- = _
accountlD | ownerName balance accountD =1
’ % ownerName = Ray Combs

= / balance = 1000
1 < Ray Combs <€ 1000 <]

2 Bob Barker 1500

3 Monty Haul 2750

Account Table

Relational Database

Figure 5.2 An example of object-relational mapping.

Object-relational mapping is a much more sophisticated mechanism of per-
sisting objects than simple object serialization. By decomposing your Java
objects as relational data, you can issue arbitrary queries for information. For
example, you can search through all the database records that have an account
balance entry greater than $1,000 and load only the objects that fulfill this
query. More advanced queries are also possible. You can also visually inspect
the database data since it is not stored as bit-blobs, which is great for debug-
ging or auditing.

Mapping of objects to relational data can be done in two ways. You can either
hand-craft this mapping in your code or use an object-relational mapping
product like WebGain’s TOPLink or Sun’s JavaBlend to automate or facilitate
this mapping. Today, most users hand-craft the mapping using a database
access API such as JDBC or SQL/J. Because the cost of developing and main-
taining an object-relational mapping layer is significant, the object-relational
mapping products are likely to be adopted as they mature.

Introduction to Entity Beans

Object Databases

109

An object database management system (ODBMS) is a persistent store that holds
entire objects. In an object database, your objects are first-class citizens in the
database. This means there is no O/R mapping layer—your Java objects them-
selves are stored as whole objects. Because of this, you don’t need to program
to a relational database API; rather, you program to the object database’s API.
This means you can sidestep object/relational mapping, resulting in simpli-

fied data access code.

Most object databases (and O/R mapping products) provide facilities to query
persisted objects by using an object query language (OQL). OQL is a nice high-
level interface that allows you to query object properties for arbitrary charac-
teristics. It also adds a layer of abstraction from relational database queries.

In addition to OQL-based queries, object databases support relationships
between objects. You can define a relationship between a Bank Account object
and a Customer object and transparently navigate between them. The trans-
parent navigation makes it easy to navigate the object model and provides
excellent performance compared to SQL-based joins that are needed to per-

form equivalent operations in relational databases.

Object databases also have predictable performance and scalability. They offer
strong integrity and security, and provide an excellent store for complex per-
sistent objects. Certain applications go really well with object databases
(geospatial or CAD/CAM, for example) are complete misfits for relational
databases. Other applications map easily to relational databases, such as most
business applications. For simple high-volume business transactions, rela-

tional databases typically scale better than object databases.

ObjectStore, Versant, and POET are a few of the current vendors who provide
object database technology. Unfortunately, the industry has not yet fully
embraced object database products. Although they are very useful for certain
applications, object databases are currently limited because they do not have
very many associated tools, such as reporting, tuning, and management tools.

Now that we’ve whetted your appetite with persistence mechanisms, let’s take
a look at how entity bean persistent objects are used in an EJB multitier

environment.

What Is an Entity Bean?

In any sophisticated, object-oriented multitier deployment, we can draw a

clear distinction between two different kinds of components deployed.

110 THE TRIAD OF BEANS

Application logic components. These components are method providers that
perform common tasks. Their tasks might include the following;:

m Computing the price of an order
m Billing a customer’s credit card
m Computing the inverse of a matrix

Notice that these components represent actions (they’re verbs). They are
well suited to handle business processes.

Session beans model these application logic components very well. They
often contain interesting algorithms and logic to perform application tasks.
Session beans represent work being performed for a user. They represent
the user session, which includes any workflow logic.

Persistent data components. These are objects (perhaps written in Java) that
know how to render themselves into persistent storage. They use some
persistence mechanism, such as serialization, O/R mapping to a relational
database, or an object database. These kinds of objects represent data—sim-
ple or complex information that you’d like saved. Examples here include:

m Bank account information, such as account number and balance

m Human resources data, such as names, departments, and salaries of
employees

m [ead tracking information, such as names, addresses, and phone num-
bers of prospective customers that you want to keep track of over time

Notice that these components represent people, places, and things (they're
nouns). They are well suited to handle business data.

You might question the need for such persistent data components. Why
should we deal with our business data as objects, rather than dealing with raw
database data, such as relational rows? It is handy to treat data as objects
because they can be easily handled and managed and because they are repre-
sented in a compact manner. We can group related data in a unified object. We
associate some simple methods with that data, such as compression or other
data-related activities. We can also gain implicit middleware services from an
application server, such as relationships, transactions, network accessibility,
and security. We can also cache that data for performance.

Entity beans are these persistent data components. Entity beans are enterprise
beans that know how to persist themselves permanently to a durable storage
like a database or legacy system. They are physical, storable parts of an enter-
prise. Entity beans store data as fields, such as bank account numbers and
bank account balances. They also have methods associated with them, such as
getBankAccountNumber() and getAccountBalance(). For a full discussion of when
to (and when not to) use entity beans, see Chapter 12.

Introduction to Entity Beans 111

In some ways, entity beans are analogous to serializable Java objects. Serializ-
able objects can be rendered into a bit-blob and then saved into a persistent
store; entity beans can persist themselves in many ways, including serializa-
tion, O/R mapping, or object database persistence. Nothing in the E]JB specifi-
cation dictates any particular persistence mechanism.

Entity beans are very different from session beans. Session beans model a
process or workflow (actions that are started by the user and that go away
when the user goes away). Entity beans, on the other hand, contain core busi-
ness data—product information, bank accounts, orders, lead tracking infor-
mation, customer information, and more. An entity bean does not perform
complex tasks or workflow logic, such as billing a customer. Rather, an entity
bean is the customer itself. Entity beans represent persistent state objects
(things that don’t go away when the user goes away).

For example, you might want to read a bank account data into an entity bean
instance, thus loading the stored database information into the in-memory
entity bean instance’s fields. You can then play with the Java object and mod-
ify its representation in memory because you're working with convenient Java
objects, rather than bunches of database records. You can increase the bank
account balance in-memory, thus updating the entity bean’s in-memory bank
account balance field. Then you can save the Java object, pushing the data back
into the underlying store. This would effectively deposit money into the bank
account.

The term entity bean is grossly overused. Sometimes it refers to an in-memory Java
object instance of an entity bean class, and sometimes it refers to database data
that an in-memory Java object instance represents. To make the distinction clear, we
introduce two new terms:

The entity bean instance is the in-memory view into the database. It is an instance
of your entity bean class.

The entity bean data (or data instance) is the physical set of data, such as a bank
account record, stored in the database.

In summary, you should think of an entity bean instance as the following:

m An in-memory Java representation of persistent data

m Smart enough to know how to read itself from a storage and populate its
fields with the stored data

m An object that can then be modified in-memory to change the values of
data

m Persistable, so that it can be saved back into storage again, thus updating
the database data

112 THE TRIAD OF BEANS

About the Files that Make up
an Entity Bean

An entity bean contains the standard set of files that all E]B components have,
including the remote and/or local interface, the home and/or local home
interface, the enterprise bean class, and the deployment descriptor.

There are several noteworthy differences between entity bean files and other
types of EJB components.

The entity bean class maps to an entity definition in a database schema. For
example, an entity bean class could map to a relational table definition. In
this case, an entity bean instance of that class would map to a row in that
table. Your entity bean class can expose simple methods to manipulate or
access that data, such as a method to decrease a bank account balance. Like
a session bean class, E]B also requires that an entity bean class must fill in
some standard callback methods. The EJB container will call these methods
appropriately to manage the entity bean.

The primary key class makes every entity bean different. For example, if you
have 1 million different bank account entity beans, each bank account
needs to have a unique ID (such as a bank account ID string) that can
never be repeated in any other bank account. A primary key is an object
that may contain any number of attributes. This could be whatever data
necessary to uniquely identify an entity bean data instance. In some
advanced cases, when the entity bean represents a complex relationship,
the primary key might be an entire object. EJB gives you the flexibility to
define what your unique identifier is by including a primary key class with
your entity bean. The one rule is that your primary key class must be seri-
alizable and follow the rules for Java object serialization. The rules for
object serialization are in Appendix A.

Features of Entity Beans

Let’s take a look at the features of entity beans.

Entity Beans Survive Failures

Entity beans are long lasting. They survive critical failures, such as application
servers crashing, or even databases crashing. This is because entity beans are
just representations of data in a permanent, fault-tolerant underlying storage.
If a machine crashes, the entity bean can be reconstructed in memory. All we
need to do is read the data back in from the permanent database and instanti-

Introduction to Entity Beans 113

ate an entity bean Java object instance whose fields contain the data read in
from the database.

This is a huge difference between session and entity beans. Entity beans have
a life cycle much longer than a client’s session, perhaps years long, depending
on how long the data sits in the database. In fact, the database records repre-
senting an object could have existed before the company even decided to go
with a Java-based solution, because a database structure can be language-inde-
pendent. This makes sense—you definitely would want your bank account to
last for a few years, regardless of technology changes in your bank.

Entity Bean Instances Are a View
into a Database

When you load entity bean data into an in-memory entity bean instance, you
read in the data stored in a database so that you can manipulate the data
within a Java Virtual Machine. However, you should think of the in-memory object
and the database itself as one and the same. This means if you update the in-mem-
ory entity bean instance, the database should automatically be updated as
well. You should not think of the in-memory entity bean as a separate version
of the data in the database. The in-memory entity bean is simply a view or lens
into the database.

Of course, in reality there are multiple physical copies of the same data: the in-
memory entity bean instance and the entity bean data itself stored in the data-
base. Therefore, there must be a mechanism to transfer information back and
forth between the Java object and the database. This data transfer is accom-
plished with two special methods that your entity bean class must implement,
called ejbLoad() and ejbStore().

ejbLoad() reads the data in from the persistent storage into the entity bean’s
in-memory fields.

ejbStore() saves your bean instance’s current fields to the underlying data
storage. It is the complement of ejbLoad().

So who decides when to transfer data back and forth between the in-memory
bean and the database? That is, who calls ejbLoad() and ejbStore()? The answer
is your EJB container. ejbLoad() and ejbStore() are callback methods that the con-
tainer invokes. They are management methods required by EJB. The container
worries about the proper time to call ejbLoad() and ejbStore()—this is one of the
value-adds of the container. This is shown visually in Figure 5.3.

Your beans should be prepared to accept an ejbLoad() or ejbStore() call at almost
any time (but not during a business method). The container automatically

114 THE TRIAD OF BEANS

This ejbLoad()-business method-ejbStore()
cycle may be repeated many times.

EJB Container/Server

1: ejbLoad()

3: Business
Methods

N

4: ejbStore() Entity Bean Instance

2: Read from 5: Write to
Database Database

| V

Entity Bean Data

Database

Figure 5.3 Loading and storing an entity bean.

figures out when each of your instances needs to be refreshed depending on
the current transactional state (see Chapter 10). This means that you never
explicitly call your own ejbLoad() or ejbStore() methods. This is one of the
advantages of EJB: You don’t have to worry about synchronizing your objects
with the underlying database. The EJB black box handles it for you. That is
why you can think of the entity bean and the database as the same; there
should never be a time when the two are transactionally out of sync.

Several Entity Bean Instances May
Represent the Same Underlying Data

Let’s consider the scenario in which many threads of execution want to access
the same database data simultaneously. In banking, interest might be applied
to a bank account, while at the same time a company directly deposits a check
into that same account. In e-commerce, many different client browsers may be
simultaneously interacting with a catalog of products.

Introduction to Entity Beans 115

To facilitate many clients accessing the same data, we need to design a high-
performance access system to our entity beans. One possibility is to allow
many clients to share the same entity bean instance; that way, an entity bean
could service many client requests simultaneously. While this is an interesting
idea, it is not very appropriate for EJB, for two reasons. First, if we’d like an
entity bean instance to service many concurrent clients, we’d need to make
that instance thread-safe. Writing thread-safe code is difficult and error-prone.
Remember that the EJB value proposition is rapid application development.
Mandating that component vendors produce stable thread-safe code does not
encourage this. Second, having multiple threads of execution makes transac-
tions almost impossible to control by the underlying transaction system. For
these reasons, E]B dictates that only a single thread can ever be running within
a bean instance. With session beans and message-driven beans, as well as
entity beans, all bean instances are single-threaded.

Mandating that each bean can service only one client at a time could result in
performance bottlenecks. Because each instance is single-threaded, clients
need to effectively run in lockstep, each waiting their turn to use a bean. This
could easily grind performance to a halt in any large enterprise deployment.

To boost performance, we could allow containers to instantiate multiple
instances of the same entity bean class. This would allow many clients to con-
currently interact with separate instances, each representing the same under-
lying entity data. Indeed, this is exactly what EJB allows containers to do.
Thus, client requests do not necessarily need to be processed sequentially, but
rather concurrently.

Having multiple bean instances represent the same data now raises a new
problem: data corruption. If many bean instances are representing the same
underlying data via caching (see Chapter 14), we're dealing with multiple in-
memory cached replicas. Some of these replicas could become stale, represent-
ing data that is not current.

To achieve entity bean instance cache consistency, each entity bean instance
needs to be routinely synchronized with the underlying storage. The container
synchronizes the bean with the underlying storage by calling the bean’s
ejbLoad() and ejbStore() callbacks, as described in the previous section.

The frequency with which beans are synchronized with an underlying storage
is dictated by transactions, a topic we cover in Chapter 10. Transactions allow
each client request to be isolated from every other request. They enable clients
to believe they are dealing with a single in-memory bean instance, when in fact
many instances are behind the scenes. Transactions give clients the illusion
that they have exclusive access to data when in fact many clients are touching
the same data.

116 THE TRIAD OF BEANS

Entity Bean Instances Can Be Pooled

Let’s say you've decided to author your own EJB container/server. Your prod-
uct is responsible for instantiating entity beans as necessary, with each bean
representing data in an underlying storage. As clients connect and disconnect,
you could create and destroy beans as necessary to service those clients.

Unfortunately this is not a scalable way to build an application server. Cre-
ation and destruction of objects is expensive, especially if client requests come
frequently. How can we save on this overhead?

One thing to remember is that an entity bean class describes the fields and
rules for your entity bean, but it does not dictate any specific data. For exam-
ple, an entity bean class may specify that all bank accounts have the following
fields:

m The name of the bank account owner
m An account ID

m An available balance

That bean class can then represent any distinct instance of database data, such
as a particular bank account record. The class itself, though, is not specific to
any particular bank account.

To save precious time instantiating objects, entity bean instances are therefore
recyclable objects and may be pooled depending on your container’s policy.
The container may pool and reuse entity bean instances to represent different
instances of the same type of data in an underlying storage. For example, a
container could use a bank account entity bean instance to represent different
bank account records. When you're done using an entity bean instance, that
instance may be assigned to handle a different client’s request and may repre-
sent different data. The container performs this by dynamically assigning the
entity bean instance to different client-specific EJB objects. Not only does this
save the container from unnecessarily instantiating bean instances, but this
scheme also saves on the total amount of resources held by the system. We
show this in Figure 5.4

Instance pooling is an interesting optimization that containers may provide,
and it is not at all unique to entity beans. However, complications arise when
reassigning entity bean instances to different EJB objects. When your entity
bean is assigned to a particular EJB object, it may be holding resources such as
socket connections. But when it’s in the pool, it may not need that socket. Thus,
to allow the bean to release and acquire resources, your entity bean class must
implement two callback methods.

Introduction to Entity Beans 117

EJB Container/Server

Figure 5.4 EJB container pooling of entity beans.

Remote
Client 1 Interface | EJB Object 1
John Smith ——=>0— (John Smith's Bank
Account)
Remote
Client 2 Interface | EJB Object 2
Mary Jane =>0— (Mary Jane's Bank
Account)
Remote
Client 3 Interface EJB Object 3
Bob Hall =>0—{ (Bob Hall's Bank
Account)

Bean Pool

Entity Bean
Instances

The EJB container can
dynamically assign entity
bean instances to
represent different data.

ejbActivate() is the callback that your container will invoke on your bean
instance when transitioning your bean out of a generic instance pool.
This process is called activation, and it indicates that the container is associ-
ating your bean with a specific EJB object and a specific primary key. Your
bean’s ejbActivate() method should acquire resources, such as sockets, that
your bean needs when assigned to a particular E]JB object.

ejbPassivate() is the callback that your container will invoke when transi-
tioning your bean into a generic instance pool. This process is called
passivation, and it indicates that the container is disassociating your bean
from a specific EJB object and a specific primary key. Your bean’s ejbPassi-
vate() method should release resources, such as sockets, that your bean
acquired during ejbActivate().

When an entity bean instance is passivated, it must not only release held
resources but also save its state to the underlying storage; that way, the storage
is updated to the latest entity bean instance state. To save the instance’s fields

118 THE TRIAD OF BEANS

to the database, the container invokes the entity bean’s ejbStore() method prior
to passivation. Similarly, when the entity bean instance is activated, it must not
only acquire any resources it needs but also load the most recent data from the
database. To load data into the bean instance, the container invokes the entity
bean’s ejbLoad() method after activation. This is shown in Figure 5.5.

There Are Two Ways to Persist
Entity Beans

Since entity beans map to a storage, someone needs to actually write the data-
base access code.

A bean-managed persistent entity bean is an entity bean that must be persisted by
hand. In other words, you as the component developer must write code to
translate your in-memory fields into an underlying data store, such as a rela-

Container Bean Instance

1: ejoStore() —— =
Passivation entails
a state save.

2: ejbPassivate() -

1: ejbActivate() —
. Activation entails a
state load.

2: ejbLoad() ——»

Figure 5.5 Passivation of entity beans entails a state save, and activation entails a state
load.

Introduction to Entity Beans

119

tional database or an object database. You handle the persistent operations
yourself—including saving, loading, and finding data—within the entity
bean. Therefore, you must write to a persistence API, such as JDBC or SQL/]J.
For example, with a relational database, your entity bean could perform an
SQL INSERT statement via JDBC to stick some data into a relational database.
You could also perform an SQL DELETE statement via JDBC to remove data

from the underlying store.

EJB offers an alternative to bean-managed persistence: You can have your EJB
container perform your persistence for you. This is called container-managed
persistence. In this case, you would usually strip your bean of any persistence
logic. Then, you inform the container about how you’d like to be persisted by
using the container’s tools. The container then generates the data access code
for you. For example, if you're using a relational database, the container may
automatically perform SQL INSERT statements to create database data. Simi-
larly, it will automatically perform SQL DELETE statements to remove data-
base data, and it will handle any other necessary persistent operations. Even
if you are not working with a relational database, you can have your con-
tainer persist for you. If your container supports a nonrelational persistent
store, such as an object database or a VSAM file, the container will generate
the appropriate logic as necessary. In fact, you can wait until deployment time
before you setup the O/R mapping, which is great because you can write
storage-independent data objects, and reuse them in a variety of enterprise

environments.

Container-managed persistence reduces the size of your beans tremendously
because you don’t need to write JDBC code—the container handles all the persis-
tence for you. This is a huge value-add feature of EJB. Of course, it is still evolv-
ing technology. Once we’ve written a few entity beans, we’ll review the trade-offs

of bean-managed versus container-managed persistence (see Chapter 12).

Creation and Removal of Entity Beans

As we mentioned earlier, entity beans are a view into a database, and you
should think of an entity bean instance and the underlying database as one
and the same (they are routinely synchronized). Because they are one and the
same, the initialization of an entity bean instance should entail initialization of
database data. Thus, when an entity bean is initialized in memory during
ejbCreate(), it makes sense to create some data in an underlying database that
correlates with the in-memory instance. That is exactly what happens with
entity beans. When a bean-managed persistent entity bean’s ejbCreate()
method is called, the ejbCreate() method is responsible for creating database
data. Similarly, when a bean-managed persistent entity bean’s ejbRemove()
method is called, the ejbRemove() method is responsible for removing database

120

THE TRIAD OF BEANS

data. If container-managed persistence is used, the container will modify the
database for you, and you can leave these methods empty of data access logic.

Let’s look at this in more detail.

Understanding How Entity Beans Are
Created and Destroyed

In EJB, remember that clients do not directly invoke on beans—they invoke an
EJB object proxy. The EJB object is generated through the home object. There-
fore, for each ejbCreate() method signature you define in your bean, you must
define a corresponding create() in the home interface. The client calls the home
object’s create(), which delegates to your bean’s ejbCreate().

For example, let’s say you have a bank account entity bean class called
AccountBean, with a remote interface Account, home interface AccountHome,
and primary key class AccountPK. Given the following ejbCreate() method in
AccountBean:

public AccountPK ejbCreate(String accountID, String owner) throws . . .

you must have this create() in your home interface (notice there is no “ejb”
prefix):

public Account create(String accountID, String owner) throws

Notice that there are two different return values here. The bean instance
returns a primary key (AccountPK), while the home object returns an EJB object
(Account). This makes sense—the bean returns a primary key to the container
(that is, to the home object) so that the container can identify the bean. Once
the home object has this primary key, it can generate an EJB object and return
that to the client. We show this process more rigorously with the sequence dia-
gram in Figure 5.6.

To destroy an entity bean’s data in a database, the client must call remove() on
the EJB object or home object. This method causes the container to issue an
ejbRemove() call on the bean. Figure 5.7 shows the relationship between remove()
and ejbRemove(). Note that remove() can be called on either the home object or
the EJB object. The figure happens to assume bean-managed persistence.

Note that ejbRemove() does not mean the in-memory entity bean instance is
going to be destroyed; ejbRemove() destroys only database data. The bean
instance can be recycled to handle a different database data instance, such as a
bank account bean representing different bank accounts.

ejbRemove() is a required method of all entity beans, and it takes no parameters.
There is only one form of ejbRemove(). With entity beans, ejbRemove() is not

Introduction to Entity Beans 121

Relationship between create()
and ejbCreate().

(Diagram leaves out a few minor
steps and happens to assume
bean-managed persistence.)

EJB Container/Server

1: create() |
Client Code Home Object | —2: ejbCreate()

5: Create EJB Object

6: Return EJB Object . Entity Bean
4: Return Prima

Instance

EJB Object

3: Create Database Data

—

T

)

/R

Entity Bean Data

v

Datal

Figure 5.6 Creating an entity bean and EJB object.

base

called if the client times out because the lifetime of an entity bean is longer

than the client’s session.

Entity Beans Can Be Found

Because entity bean data is uniquely identified in an underlying storage, entity
beans can also be found rather than created. Finding an entity bean is analo-
gous to performing a SELECT statement in SQL. With a SELECT statement,
you're searching for data from a relational database store. When you find an

122

THE TRIAD OF BEANS

Relationship between remove()
and ejbRemove().

Note that remove() can be
called on either the home
object or the EJB object.

(Diagram happens to assume
bean-managed persistence.)

EJB Container/Server

1 remove()j Home Object

2: ejpRemove()

Client Code Entity Bean
Instance

1: remove()

2: ejpRemove()
EJB Object

3: Remove Database Data

T
A

Entity Bean Data
v

Database

Figure 5.7 Destroying an entity bean’s data representation.

entity bean, you're searching a persistent store for some entity bean data. This
differs from session beans because session beans cannot be found: They are not
permanent objects, and they live and die with the client’s session.

You can define many ways to find an entity bean. You list these ways as meth-
ods in your entity bean home interface. These are called finder methods. Your
home interface exposes finder methods in addition to methods for creating
and destroying entity beans. This is the one big difference between an entity
bean’s home interface and other types of beans; the other bean types do not
have finder methods.

Introduction to Entity Beans 123

You Can Modify Entity Bean Data
without Using EJB

Usually you will create, destroy, and find entity bean data by using the entity
bean’s home object. But you can interact with entity beans another way, too: by
directly modifying the underlying database where the bean data is stored. For
example, if your entity bean instances are being mapped to a relational data-
base, you can simply delete the rows of the database corresponding to an
entity bean instance (see Figure 5.8). You can also create new entity bean data
and modify existing data by directly touching the database. This may be nec-
essary if you have an investment in an existing system that touches a database
directly.

These external database updates could raise cache consistency issues if you're
choosing to cache your entity beans. See Chapter 14 for more on this.

EJB Container/Server

Entity Beans ; Existing App

O/R Mapping Direct Database Modifications

Entity Bean
Data

_/

Relational Database

Figure 5.8 Modifying an entity bean’s database representation manually.

124 THE TRIAD OF BEANS

Entity Contexts

Asyou learned in Chapter 3, all enterprise beans have a context object that iden-
tifies the environment of the bean. These context objects contain environment
information that the EJB container sets. Your beans can access the context to
retrieve all sorts of information, such as transaction and security information.
For entity beans, the interface is javax.ejb.EntityContext.

We provide a refresher of the javax.ejb.E[BContext methods in Source 5.1.
Appendix E explains the meaning of each method.

Entity contexts add the following methods on top of the generic EJB context,
shown in Source 5.2.

Let’s look at each of these methods in more detail.

getEJBLocalObject() / getEJBObject()

Call this to retrieve the current, client-specific EJB object that is associated with
the entity bean. Remember that clients invoke on EJB objects, not on entity
beans directly. Therefore, you can use the returned EJB object as a way to pass
a reference to yourself, simulating the this argument in Java. getEJBLocalOb-
ject() is the same, except it gets the more optimized E]JB local object.

public interface javax.ejb.EJBContext {
public javax.ejb.EJBHome getEJBHome () ;
public javax.ejb.EJBLocalHome getEJBLocalHome () ;
public java.security.Principal getCallerPrincipal () ;
public boolean isCallerInRole(java.lang.String) ;
public void setRollbackOnly () ;
public boolean getRollbackOnly () ;

Source 5.1 The javax.ejb.EJBContext interface.

public interface javax.ejb.EntityContext
extends javax.ejb.EJBContext {
public javax.ejb.EJBLocalObject getEJBLocalObject() ;
public javax.ejb.EJBObject getEJBObject () ;
public java.lang.Object getPrimaryKey () ;

Source 5.2 The javax.ejb.EntityContext interface.

Introduction to Entity Beans 125

getPrimaryKey()

getPrimaryKey() is new to entity beans. It retrieves the primary key that is cur-
rently associated with this entity bean instance. Primary keys uniquely iden-
tify an entity bean. When an entity bean is persisted in storage, the primary
key can be used to uniquely retrieve the entity bean because no two entity
bean database data instances can ever have the same primary key.

Why would you want to call getPrimaryKey()? You call it whenever you want
to figure out with which database data your instance is associated. Remember
that entity bean instances can be reused and pooled, as we saw in Figure 5.4.
When the container wants to switch an entity bean instance from one data
instance to another, the container needs to passivate and activate that entity
bean instance. When this happens, your bean instance may switch to a differ-
ent data instance and thus a different primary key. But your entity bean
instance is never told this explicitly when it is activated. Rather, your entity
bean must perform a getPrimaryKey() callback to the entity context to figure
out what data it should be dealing with.

Thus, when you have an entity bean that’s performing any persistent work
(with bean-managed persistence), you should be calling getPrimaryKey()
whenever you need to figure out what data you're bean is associated with.
This is very useful, for example, in the following methods:

ejbLoad(). Recall that ejbStore() and ejbLoad() are bean callbacks to synchro-
nize a bean instance with an underlying storage. ejbStore() saves data to
storage, and ejbLoad() reads data from storage. When the container calls ejb-
Store(), your bean knows exactly what data to save because the bean
instance has the data in memory. But when the container calls ejbLoad(),
how does your bean know what data to load? After all, bean instances are
pooled and can be dynamically assigned to different data. The answer is to
use getPrimaryKey(); it will tell you what primary key you should be look-
ing for in the underlying storage when loading database data.

ejbRemove(). Recall that ejbCreate() and ejbRemove() are callbacks for creating
and removing data from an underlying storage, respectively. When the
container calls ejbCreate(), your bean knows exactly what data to create in
the database because your bean has received information in the parameters
of ejbCreate(). But when the container calls ejbRemove(), how does your bean
know what data to remove? Because bean instances are pooled and
dynamically assigned to handle different data instances, you might be
deleting the wrong data. Thus, you must call getPrimaryKey() to figure out
what data, keyed on the primary key, your bean should remove from the
database.

126 THE TRIAD OF BEANS

It is important to consider bean pooling when writing your enterprise beans,
and getPrimaryKey() is the key to knowing what data your bean is representing.

Summary

In this chapter, we’ve taken the first steps toward developing with entity
beans. We started by learning about various persistence mechanisms, includ-
ing object serialization, object/relational mapping, and persistence to pure
object databases. We then looked at exactly what an entity bean is, and we saw
the files included with an entity bean component. After surveying their fea-
tures, we took a look at entity contexts.

But the best is yet to come. In the coming chapters, we'll learn hands-on about
entity bean programming. Chapter 6 explains bean-managed persistent entity
beans and guides you through the steps in developing them using JDBC.
Chapter 7 continues with container-managed persistent entity beans. In Chap-
ter 11 we’ll learn how to program entity beans that require relationships. By
the time you're through, you'll be armed to create your own entity beans in
enterprise deployments.

Writing Bean-Managed Persistent
Entity Beans

beans, the first of two flavors of entity beans. When you code these types of
entity beans, you must provide your own data access logic. You are responsi-
ble for providing the implementation to map your entity bean instances to and
from storage. To do this, you typically use a database API such as JDBC or
SQL/J. This is in stark contrast to container-managed persistent entity beans,
which have their data access handled for them by the EJB container. This chap-
ter will teach you the basics of bean-managed persistence and show you how
to build a simple bean-managed entity bean using JDBC.

In this chapter, we'll demonstrate how to program bean-managed persistent entity

Entity Bean Coding Basics

To write an entity bean class, you write a Java class that implements the
javax.ejb.EntityBean interface. This interface defines a number of required
methods that your entity bean class must implement. Most of these methods
are management methods called by your EJB container. The following code
(Source 6.1 and 6.2) details javax.ejb.EntityBean, as well as its parent,
javax.ejb.EnterpriseBean (exceptions are omitted).

The javax.ejb.EnterpriseBean interface defines no methods—it is simply a
marker interface. The javax.ejb.EntityBean interface defines callback methods
that your bean must implement. The container will call these methods when-
ever it wishes.

127

128 THE TRIAD OF BEANS

public interface javax.ejb.EnterpriseBean implements java.io.
Serializable {

}

Source 6.1 The javax.ejb.EnterpriseBean interface.

public interface javax.ejb.EntityBean
extends javax.ejb.EnterpriseBean {

public void setEntityContext (javax.ejb.EntityContext) ;
public void unsetEntityContext () ;
public void ejbRemove () ;
public void ejbActivate() ;
public void ejbPassivate() ;
public void ejbLoad() ;
public void ejbStore() ;

Source 6.2 The javax.ejb.EntityBean interface.

Java Database Connectivity (JDBC)

This chapter uses Java Database Connectivity (JDBC). JDBC is a standard Java
extension that allows Java programmers to access relational databases. By using
JDBC, Java programmers can represent database connections, issue SQL state-
ments, process database results, and more in a relatively portable way. Clients
program to the unified JDBC API, which is implemented by a JDBC Driver, an
adapter that knows how to talk to a particular database in a proprietary way (see
Figure 6.1). JDBC is similar to the Open Database Connectivity (ODBC) standard,
and the two are quite interoperable through JDBC-ODBC bridges. JDBC contains
built-in support for database connection pooling, further enhancing the database
independence of your application code.

All entity bean classes, both bean-managed persistent and container-managed
persistent, must implement the javax.ejb.EntityBean interface. This interface
defines callback methods that the container invokes on your beans. There are
additional methods you also may define, such as methods to create and find
your entity beans.

Writing Bean-Managed Persistent Entity Beans 129

Client

JDBC API
_________________ >,

JDBC Driver

Relational Database(s)

Figure 6.1 Java Database Connectivity.

Table 6.1 is a preview of what you should implement in each method in your
entity bean, assuming your entity bean’s persistence is bean-managed. For
now, take a quick glance at the chart; you should refer back to it when reading
through the code in this chapter or when programming your own entity bean
classes.

Finding Existing Entity Beans:
ejbFind()

Notice from Table 6.1 that we have methods labeled ejbFind(). Finder methods
are used to find an existing entity bean in storage. Finder methods do not cre-
ate new database data—they simply load old entity bean data.

container-managed persistence, these method implementations are generated for

?> You only define ejbFind() methods when you use bean-managed persistence. With
you.

130

‘spalqo gr3 ipjnonipd 03 punoq aip Asyj pub ‘way)
JO apisul b}pp 8spqpipp d1dads aADY mou Asyi—jood
oy} u1 1sbuoj ou a4p saduD)sUI UDSG AJjud SSOY |

's13[qo g3 3oy} yum saduejsul

ueaq Aus swos deosse Ajqissod pue uo ayoAul
0} JU3I]> Y} Jo} S)I3[q0 g[g 23eaId UBY} |[IM JaUIRIUOD
ay] 'saoueisul a(qo eaer Ay Arewnd siow Jo suo
Sunean Aq Jauieuod sy} 01 peq eiep ey} o) sASY
Atewnd sy uinjas ‘ejep awos punoy aA,NoA usaypp

40 < dduejeq JYIFHM Sunode

INO¥4 P! 1D313S, Sse yons Aianb jeuonejas e
wuoyad 31w noA ‘sjdwexa 104 'f/10S 10 DGdr se

yons |4y a3elols e uisn 2101 ejep e y3noly} Yoieas

‘palqo gr3 ipjnoniod
Aup 03 punoq jou s| pup ‘I o apisul D}pp dSDGDIDP
ayads Aub aAby jou saop ‘jood b ul mou S| Ubaq aYy |

"sjuasaidal ueaq sy} eiep 1eym Jo ssa|piedal pasu [[Im
9oue)sul INoA sa21nosal Aue jsanbai osje pjnoys noj

JaUIRIUOD SU} WO} ‘uonewlojul AIndas se
Yons ‘uonewlIojul JUSWUOIIAUS aiinboe 0} Js3e)
IX2]U0D Y} SSIIJB URD NOA "S|qRUBA JaquIdW B
Ul Se UoNs ‘219YMIWIOS 1X23U0D AJIUS dY3 YIS

NOILVINIWITdINI TVIIdAL

" Aoy AipwiigAgpul{glo—poyiaw 1apuly SUo 3sed)

1B SUNBP ISNW NOA "2103s Jud)sisiad SulApapun
9y} ul sadue)sul eyep ueaq Aypus Sunsixa

9I0W IO SUO 3)Bd0| SPOYISW Japuld "poyiawl
Japuyy e DIAISS 0} UL INOA SN ULd JauleIUod
3y} ‘lood ayj ul [|is sI dueisul ueaq INOA SJIYAN

"JUSWUOJIAUD S} INOGR UoeWIoUl

SS920B URD UBS(3y} ‘paJ|ed SI poylaW Sy}

9d2UQ "JUSWUOIIAUD S,uedq dU} INOGe Uonew.ojul
—UONDUWLIOUI 3X3)U0D YU UBS(B S9]RID0SSe
poylawi siy] *()1x3uo)Au3ies s,9oueisul Ay}
S|[ed Jauiejuod 3y} ‘siy3 Suimoljo4 "ddue)sul uesq
Anus mau e sjeiuelsul [[IM Y ‘SSdUR)SUI URS]

Jo 9z1s [00d SH 9SB3IDUI 0} SJUBM JSUIRIUOD By} J|

NOILLYNVY1dX3

(spoylow
Japuly paj|ed os[e)
(<7 >)< >purdqfe

Ow@uodAmudies
dOHI1IN

sanug Jualsisiad padeue|y-ueag Joj ssuljdpiny uonejuaws|dwi pue suondudsag

19 3jqelL

131

sanunuod

‘spalqo

gr3 4pjn21upd D 03 82uUD}Sul INOA puiq [[IM JoUIDIUOD
oY/ 3 JO SpiIsul DIDP 8SDGDIDP JH1d3ds SDY MoU
—Jood sy ur 1abuoj ou si ad2upjsuI ubaq Aypus Inoy "Junodoe SSuIAeS B pue Junodde
Suppayd e s3ea1d 0} spoyldW se Yons ‘sueaq
Amus 1noA s1ea1 03 Aem JuaiayIp e sjudIP sanI3
auyap noA poylaw ()apasdgle yoe3 ‘uesq InoA
Suizijeniui 1oy pue ejep aseqelep mau 3uiieaid 10§
9|qisuodsai a1e spoyiaw ()a1pa.)qfd “due)sul
ueaq pajood e uo ()arpaiHglo s|ed J1auIrIU0d By}
‘13[qo swoy e uo ()a3pasd S||ed JudiP e UIYAN

"sjuasaidal aduejsul INOA ejep

a1y AJiauspl ued Jaueuod sy Jey} os ‘JIauleuod sy}
03 Aoy Alewnid e uinjas usyy IYASNI 1OS e y3nouauyy
AjjeaidAy ‘r/70s 10 Ddar a1 1dy 28e103s e eIA elep Y}
jo uonejuasaidal aseqeiep sy 23eald Ajdiidx3 pijea
ale si19pweled uonezijeniul S U 3y} NS e

"90B}IS)UI dWOY [BI0]
10 22BJISIUI SWOY Sy} W) SPOYISW Wy [|ed
Sjual[) "eiep d1ads Aue yum pajeosse si ueaq
2y} a1042q ‘jood 2y} ul ueaq e wolj pajjed ale Asyy
asnedaq spoyjaw ssauisnq [eads aie spoyew
awoy ay] 'suonesado asayy wiopad 0} spoyow
SWOy S)IM UBD NOA "9|qe} B Ul SUNOJJE JO
Jaqunu |e30} 8y} Sununod ‘sjdwexs 104 *(moi o)
2ouejsul eyep uanid Aue 03 oiy1dads jou ale ey}
ueaq Ayjua ue UO SpoyBW pasu NOA SaWINBWOS

NOILLVNY1dX3

JuaIP 3} 0}
}NSaJ Y1 UIN}aJ pue ‘DGAr BIA 9SEQRIEp B Ul SMOJ U}
dn 8ununod se yans ‘suonesado [eqo|3 INoA wiopad

NOILVINIWITdINI TVIIdAL

'sajly Y23pq ybnouy

10 S1I95Ul 9SDGDIDP
193.1p DIA SD Yans
‘supaw 1230 ybno.iyp
paipa.d S| DIpp

JID 1DY} 93DpUDW
pIno3 noA ‘ppajsuj
‘D}DP 9SDGDIDP

MU 8}D3Jd 0} 3|gD

9q 0 suald> g3 Jubm
1,uop noA 1 spoyzow
()a1painqle Aup ajm o}
paau Jou op noyj :910N
(< >)s1ea10qle

(< >)
<" >dWOoHqle

AOHI1IN

132

31vadn 10S e y3nosy

YSIP 01 INO SP|3l} d|qeLIeA JoqWIBW JNOA Jo Jaquinu e
apum |1,noA ‘AjjeardAL -Dgar sy 1dv @8e103s e eia ejep
3y} jo uonejuasaidal aseqeiep ayj arepdn Apidijdxg

'[/10S 10 DAdr Se Yons |dy 23e103s e BIA uRaq

InoA ojui eyep aseqejep peas ‘xaN ‘Sulpeo| aq pjnoys
} e1Ep JRYM URSQ INOA |[3] [[IM JRY) X33U0D Ajus
3y} uo poyw ()AeyAipwilidiab ayy ||ed "peo| pjnoys
1 e1ep 1eym Ino aIn31y s ddue)sul uesq JnoA ‘sl

‘()a1pipYqla 19y

1y3u pajied st yoym ‘()ppoiqgle ‘poyiaw ajeiedss e
Aq pajpuey s 1ey] "poyiaw Sy} ul aseqeiep sy} Wolj
elep ueaq Aus sy} peas jou pjnoys NoA ey} 3joN

"9)e)S Apeal sy} ojul panouw s 31 usaym
jua1pd Jejndiued e 921AI9S 0} Spasu ueaq InoA ey
'SUOIPAUUOD 19)0S Se NS ‘sadinosal Aue ainboy

‘ejep Auip aney jysiw

Ssp|a1} 958y} ‘210§9q pasn usaq aney Aew aduelsul
ueaq ayj asnedag "padueyd uaaq sey p|ay e JIayRym
9)edIpul 0} ueaq ayy ui 8ej snieys ejep e deay| pjnod
noA ‘sjdwexa o4 "si9}oweied pajejai-uoipesuen)
UIR}ID 19531 0} POYISW SIY} SN Os|e JySiw NOA

‘sueaq 19y10

0} 2duaIayal Palqo grg s,ueaq inoA uissed se yons
‘p3lqo gr3 1eys sasnbai ey} o3 paau noA Suiyjhue
3uiop Aq uonezijeniui 1noA 9)9|dwod mou ued NoA
"109[qo g[3 ue yyum sduejsul ueaq INoA pajenosse
sey } Jaye ()a1Da1D3504qle S|[ed J1auiejuod ay|

NOILLVINIWITdINI TVIIdAL

*()a1pAISSD4 G5 210399 Apdalip ‘uonenissed Suunp
pajje> os|e sI poyiawi siyj "pajjed si poyiew

SIU} USYM S9)BIp 21L]S [RUOIDBSURI} JUSLIND
ay] -aseqejep sy} SuiziuoydpuAs snyj ‘spjaly
Alowsw-u INOA Jo sanjeA Mau dU} 0} aseqelep
3y} a1epdn 03 siyj s||ed JsulRUO0d g3 Syl

"3}e)S [RUOIPBSURI) JUSLIND BY)} Uo paseq “(1D3713S

70s e AjjeaidAy) souejsur ueaq 1noA ojul ejep
aseqejep peoj 0} SIYj S||ed Jaulejuod g3 ayl

JauIR)U0d
gar3 ay1 Aq pajjea st poyaw ()apoamdqle sy
‘uoeAie uodn "UOHRDAROID p3|[ed SI SIY] “d)e)S
Apeai e ojul 31 uonisuer) pue [ood sy} woiy ueaq
e 9)e) 0} SPasu Jauleluod 3y} ‘Palqo gr3 ay3 0}
punoq si aduejsul ueaq Ayjus ou Inq ‘Palqo grg
ue UO poylaW SSauIsNg B S||ed JuI e USYM\

-Qa1a:1/>
19ye W81 ()23pa.1D1504qld S|jed Jauleyuod
ay] 'siopweied swes sy} 3dadoe jsnw Jied
yoeq *()a1painqgle yoes 10y ()a1pa4D1s0dqle
9UO 3UIBP ISNW SSB[D URS] INOA

NOLLYNVY1dX3

()=1015qgfe

Opeo1qfe

(Oe@1enpyqfle

(<" ">)e1ea1D150dqle
AOHLIN

(panunuod) saniug Judlsisiad padeuepy-ueaq Joy sauldpinn uonejuswsjdwi pue suondudsaq

1'9 3jqelL

133

"pa1a||0d
a8eqie3d aq 0} Apeai 198 pue ‘()1xa)u0DAMUFISS
Suunp pajedojje noA sa2inosal Aue ases|ay

"313134 10S

e y3nouays AjjeardAy “ogar ayij 1dy 23elols e el ejep
3y} Jo uonejuasaidal aseqeiep sy a19j9p Apidxs
uay] ‘xauodhmug ayy uo ()Asyhiewndiad

ein Aonysap pjnoys noA ejep jeym no ainsiy “sii4

*()a1DAISSDAql5 210)9q

W3u pajjea st yoiym ‘()asopsqle ‘poyraw ajeiedas
e Aq pajpuey si 1ey] ‘poyiawi siy} ur aseqeiep
ay) ojul elep ueaq Ajjua sy} SABS J0U P|NOYS NOA

Jualp Jejnonsed

e 10} a3e3s Apeal ay3 Suunp Suipjoy sem ueaq

InoA jeyy pue ()appaipy/qgle ul pajedoje noA ey
'SUOIPAUUOD 19)0S SB NS ‘Sa21nosal Aue ases|oy

NOILVINIWITdWI TVIIdAL

*(3z1s Jood a8y} 9dnpal 03 SJUBM I USYM)
pakonsap si aduejsul ueaq Aus INoA a1ojaq
1Yy3u Sy} S[|ed J2UIRIU0D BY] JUSWUOIIAUD

SH WOl ueaq e SIIRIDOSSEeSIP poyiaw siy|

‘B]Ep JUBIBYIP 10} pasnal pue pajood
9q ued 13[qo sy} ‘13[qo eaer ayy Aossap
0} pasn jou si J| ‘e}ep aseqelep shoiisaq

“IauIeluU0d g3 3y Aq pajjed si poyaw
()21pAISSD4qla 3y} ‘uonenissed uQ “uoneaoe
jo ausoddo ayj si pue vonpAIsspd pajjed si Siyl
‘lood 8y} 03 ueaq Aus INOA uIN}aI 0} SUBM

} USYM poyiau SIy} S|jed Jauleuod gr3 ayl

NOILYNV1dX3

Owa@uonAugiesun

(enowayqled

()@1enissedqle
AOHI1IN

134

THE TRIAD OF BEANS

You can have many different finder methods, all of which perform different
operations. Here are some examples:
/ * *

* Finds the unique bank account indexed by primary key

*/

public AccountPK ejbFindByPrimaryKey (AccountPK key)
throws FinderException { . . . }

/**

* Finds all the product entity beans. Returns a Collection
* of primary keys.

*/
public Collection ejbFindAllProducts ()
throws FinderException { . . . }
/**

* Finds all Bank Accounts that have at least a minimum balance.
* Returns a Collection of primary keys.
*/
public Collection ejbFindBigAccounts (int minimum)
throws FinderException { . . . }

/**

* Finds the most recently placed order

*/
public OrderPK ejbFindMostRecentOrder ()
throws FinderException { . . . }

Here are some of the rules about finder methods.

All finder methods must begin with ejbFind. This is simply a syntactic rule.

You must have at least one finder method, called ejbFindByPrimaryKey.
This method finds one unique entity bean instance in the database based
on its unique primary key. Because every entity bean has an associated pri-
mary key, it makes sense that every entity bean class supports this method.

You can have many different finder methods, each with different names
and different parameters. This allows you to find using different seman-
tics, as illustrated by the examples above.

A finder method must return either the primary key for the entity bean it
finds or a collection of primary keys if it finds more than one. Because
you could find more than one data instance in the database, finder meth-
ods can return collections of primary keys.

As with ejbCreate(), clients do not invoke your finder methods on the bean
instance itself. A finder method is just like any other method on your
entity bean class—clients never directly call any of your bean’s methods.
Rather, clients invoke finder methods on home objects, implemented by

Writing Bean-Managed Persistent Entity Beans 135

the EJB container, that delegate to your bean. Therefore, for each finder
method you define in your bean class, you should define a corresponding
finder in the local home interface. Clients call your local home object’s
finder methods, which delegate to your bean’s finders.

For example, given the following finder method in the local home interface:

public Accountlocal findBigAccounts (int minimum) throws FinderException;

here is the finder implementation in your bean class (notice the ejb prefix):

public AccountPK ejbFindBigAccounts (int minimum)
throws FinderException { . . . }

As with ejbCreate(), the home signature and the bean class signature have a
couple of differences:

m The entity bean instance returns a primary key to the container, whereas
the home object returns an EJB object to the client.

m The bean class signature is the same as the home signature, except for an
extra, mandatory ejb prefix and that the first letter in the word Find is
capitalized.

These signature differences between the home and bean are valid because the
bean does not implement the local home interface. Rather, the local home
object delegates to the bean, so strict signature matching is not needed.

Another interesting aspect of finders is that they can return collections. Your
database search may turn up more than one result and therefore more than one
entity bean. Here is the local home interface signature:

public Collection findAllProducts () throws FinderException;

And here is the bean implementation signature:

public Collection ejbFindAllProducts ()
throws FinderException { . . . }

The finder process works as follows:

m When the client invokes the home object’s finder, the home object asks a
bean to find all primary keys matching the client’s criteria. The bean then
returns a collection of those primary keys to the container.

m When the container receives the collection of keys from the entity bean
instance, it creates a collection of EJB objects, one for each primary key, and
returns those EJB objects in its own collection to the client. The client can
then invoke methods on the EJB objects: Each EJB object represents its
own instance of data within the entity bean’s database storage.

THE TRIAD OF BEANS

Bean-Managed Persistence Example:
A Bank Account

Our first example is a simple bank account entity bean. This bank account
bean can be used to represent and manipulate real bank account data in an
underlying relational database. The object model for our bank account is
detailed in Figure 6.2.

Notice that we're developing both local and remote interfaces. When this bean
is used in production, the local interfaces will be used, because this entity bean
will be accessed by other beans that run in-process. However, for testing pur-
poses, and to help you understand entity beans easily, we don’t want to intro-
duce other beans. Rather, we will connect to this bean from a standalone
application. Since a standalone application is remote, we thus need to use its
remote interface. This is a common issue with EJB programming—to test
beans on an individual basis in this manner, you need to code its remote inter-
face even though you only plan to use the local interface in production. The
good news is that the code is almost identical for the local interface—see the
book’s accompanying source code (the e-commerce example) for examples of

<<interface>>
java.io.serializable

<<interface>>
java.rmi.Remote

ﬂ b Comes with Java 2 Platform A
<<interface>>
<<interface>> <<interface>> <<interface>> <<interface>> Javax.ejb.EnterpriseBean
javax.ejb.EJBLocalObject javax.ejb.EJBObject javax.ejb.EJBHome javax.ejb.EJBLocalHome Z%
<<interface>>
javax.ejb.EntityBean
Comes with EJB Distributign A

<<interface>>
Bank Account
Local Interface

<<interface>> <<interface>> <<interface>> Bank Account Bean
Bank Account Bank Account Bank Account Implementation
Remote Interface Home Interface Local Home Interface Class

Bank Account
Primary Key Class

N N N N

Supplied by Bean Provider (W¢ Will Write)

Bank Account
EJB Local Object

Bank Account
EJB Object

Bank Account
Home Object

Bank Account
Local Home Object

Generated for Us by Container Vendor's Tools

Figure 6.2 The bank account object model.

Writing Bean-Managed Persistent Entity Beans 137

calling entity beans through their local interfaces. Now let’s take a look at each
of the files that we must create for our entity bean component.

Account.java

Account.java is our entity bean’s remote interface—what remote clients use to
call our bean’s methods. It is shown in Source 6.3.

package examples;

import javax.ejb.*;
import java.rmi.RemoteException;

/xx

* This is the remote interface for AccountBean.

* This interface is what clients operate on when they interact with
* beans. The container will implement this interface; the
* implemented object is called the EJB object, which delegates
* invocations to the actual bean.
*/
public interface Account extends EJBObject {

/**
* Deposits amt into account.
*/
public void deposit (double amt) throws AccountException,
RemoteException;

/**
* Withdraws amt from bank account.
* @throw AccountException thrown in amt < available balance
*/
public void withdraw(double amt) throws AccountException,
RemoteException;

// Getter/setter methods on Entity Bean fields
public double getBalance() throws RemoteException;

public String getOwnerName () throws RemoteException;
public void setOwnerName (String name) throws RemoteException;

public String getAccountID() throws RemoteException;
public void setAccountID(String id) throws RemoteException;

}

Source 6.3 Account.java.

138 THE TRIAD OF BEANS

Notice that the account remote interface extends javax.ejb.E[BObject, which all
remote interfaces must do. Our interface exposes a number of methods for
manipulating entity beans, such as for making deposits and withdrawals. All
of our methods throw remote exceptions to facilitate system-level catastrophic
failures. Notice that in our withdrawal method, we also throw our own cus-
tom application-level exception, AccountException. We’ll define that exception
later.

Accountlocal.java

AccountLocal.java is our entity bean’s local interface—what local clients use to
call our bean’s methods. It is shown in Source 6.4.

AccountHome.java
Our home interface is specified by AccountHome.java, shown in Source 6.5.

We provide one create method to create a new account. This will create new
database data representing a bank account. It returns an EJB object to the client
so the client can manipulate that newly created account. Notice that we throw
the application-level javax.ejb.CreateException, which all create() methods must
throw.

We also have two finder methods. findByPrimaryKey() searches the database
for a bank account that already exists; it searches by the account ID, which we
will define in AccountPK.java. We also have a custom finder method, findBy-
OwnerName(), which searches the database for all bank accounts that have the
same owner’s name. Because we're using bean-managed persistence, we need
to implement both of these finder methods in our entity bean implementation.
(If we were using container-managed persistence, the container would search
the database for us). As with our create method, both finders return EJB objects
so the client can manipulate the newly found bank accounts. We throw the
application-level javax.ejb.FinderException, which all finders must throw.

Finally, we have a business method, getTotalBankValue(). This business method
is an operation applied to the entire table rather than to an individual row.
Thus it is a global method that is independent of any particular entity bean
instance. This business method will be implemented in the bean class as an ejb-
Home() method, as previously described in Table 6.1.

AccountLocalHome.java

Our local home interface, the higher performing home interface used by local
clients, is specified by AccountLocalHome.java, shown in Source 6.6.

Writing Bean-Managed Persistent Entity Beans 139

package examples;

import javax.ejb.*;

/xx

*

*

*

*

*

*

*/

This is the local interface for AccountBean.

This interface is what clients operate on when they interact with

beans. The container will implement this interface; the

implemented object is called the local object, which delegates

invocations to the actual bean.

public interface AccountLocal extends EJBLocalObject ({

/**

* Deposits amt into account.

*/
public

/**

void deposit (double amt) throws AccountException;

* Withdraws amt from bank account.

* @throw AccountException thrown in amt < available balance

*/
public

void withdraw(double amt) throws AccountException;

// Getter/setter methods on Entity Bean fields

public

public
public

public
public

double getBalance() ;

String getOwnerName () ;
void setOwnerName (String name) ;

String getAccountID() ;
void setAccountID(String id);

Source 6.4 AccountlLocal.java.

The only differences between the local home interface and the home interface
are that the local home interface does not throw remote exceptions, and the
local home interface extends a different parent interface.

AccountPK.java

Our entity bean’s primary key class is defined by AccountPK.java, detailed in
Source 6.7.

140 THE TRIAD OF BEANS

package examples;

import javax.ejb.*;
import java.util.Collection;
import java.rmi.RemoteException;

/**
* This is the home interface for Account. This
* interface is implemented by the EJB container's tools - the
* implemented object is called the home object, which
* is a factory for EJB objects.
*/
public interface AccountHome extends EJBHome {

/**
* We define a single create() method in this home interface,

* which corresponds to the ejbCreate() method in AccountBean.
* This method creates the local EJB object.

Notice that the local home interface returns a local interface,
* whereas the bean returns a PK.

* @param accountID The number of the account (unique)
* @param ownerName The name of the person who owns the account
* @return The newly created local object.
*/
Account create(String accountID, String ownerName) throws
CreateException, RemoteException;

/**
* Finds a Account by its primary Key (Account ID)
*/
public Account findByPrimaryKey (AccountPK key) throws
FinderException, RemoteException;

/**
* Finds all Accounts under an owner name
*/
public Collection findByOwnerName (String name) throws
FinderException, RemoteException;

/**
* This home business method is independent of any particular
* account. It returns the total of all accounts in the bank.
*/
public double getTotalBankValue() throws AccountException,
RemoteException;

Source 6.5 AccountHome.java.

Writing Bean-Managed Persistent Entity Beans

package examples;

import javax.ejb.*;
import java.util.Collection;

/**
* This is the local home interface for Account. This
* interface is implemented by the EJB container's tools - the
* implemented object is called the local home object, which
* is a factory for local EJB objects.
*/
public interface AccountLocalHome extends EJBLocalHome {

/**
* We define a single create() method in this home interface,

* which corresponds to the ejbCreate() method in AccountBean.
* This method creates the local EJB object.

* Notice that the local home interface returns a
* local interface, whereas the bean returns a PK.

Notice we don't throw RemoteExceptions because we are
* local not remote.

* @param accountID The number of the account (unique)
* @param ownerName The name of the person who owns the account
* @return The newly created local object.
*/
public AccountLocal create(String accountID, String ownerName)
throws CreateException;

/**
* Finds an Account by its primary Key (Account ID)
*/
public AccountLocal findByPrimaryKey (AccountPK key) throws
FinderException;

/**
* Finds all Accounts under an owner's name
*/
public Collection findByOwnerName (String name) throws
FinderException;

/xx

* This home business method is independent of any particular

* account instance. It returns the total of all the bank
* accounts in the bank.
*/

public double getTotalBankValue() throws AccountException;

Source 6.6 AccountLocalHome java.

141

142 THE TRIAD OF BEANS

package examples;
import java.io.Serializable;

/‘k‘k
* Primary Key class for Account.
Y
public class AccountPK implements java.io.Serializable {

public String accountID;

public AccountPK (String id) {
this.accountID = id;

public AccountPK() ({
}

public String toString() {
return accountID;

public int hashCode () {
return accountID.hashCode() ;

public boolean equals (Object account) {
return ((AccountPK)account) .accountID.equals (accountID) ;

Source 6.7 AccountPK java.

Notice the following about Source 6.7:

m QOur primary key contains a simple String—the account ID string. For
example, an account ID string could be “ABC-123-0000.” This string must
be unique to its bank account; we rely on the client code that constructs
our account ID to make sure it is unique. The primary key is used to iden-
tify each bank account uniquely. More advanced entity beans that map to
more than one table may have primary key classes that have several fields
inside of them, each representing the primary key of a table in the
database.

m There is a required toString() method. This container calls this method to
retrieve a String value of this primary key. For simple primary keys, we

Writing Bean-Managed Persistent Entity Beans 143

just return the stored field. For more advanced primary keys, we need to
somehow combine the various fields in the primary key class to form a
String.

m There is a required hashCode() method. By supplying this method, our pri-
mary key class can be stored in a Hashtable. The container needs this
because inside of the container it may use a Hashtable or similar structure
to store a list of all entity beans it has in memory, keyed on their primary
keys.

m There is a required equals() method. The container calls this to compare
this primary key to others when determining internally if two cached
entity beans (which each have a primary key) are representing the same
database data.

AccountBean.java

Next we have our entity bean implementation class, AccountBean.java. Our
bean implementation code is quite lengthy and is divided into several
sections.

Bean-managed state fields. These are the persistable fields of our entity bean
class. Our bean instance will load and store the database data into these
fields.

Business logic methods. These methods perform services for clients, such as
withdrawing or depositing into an account. They are exposed by the
remote interface, Account.

EJB-required methods. These are EJB-required methods that the container
calls to manage our bean. They also include our creator and finder meth-
ods defined in the home interface.

The code is presented in Source 6.8 through Source 6.10. We divide the code
into three parts because the code is extremely cumbersome, even for a simple
bank account. This is an unfortunate drawback of bean-managed persistence
because you must provide all data access code.

The first part of our bean is straightforward. We have our bean’s fields (one of
which is the primary key field), and a default constructor. We keep an Entity-
Context around so that we can query the container from our bean as necessary
(However, the EntityContext is not a persistent field).

The next part of our bean is the business logic methods, shown in Source 6.9.

Our withdraw and deposit methods simply modify the in-memory fields of
the entity bean instance. If the client tries to withdraw from a negative account,
we throw our custom application-level exception, AccountException.

144 THE TRIAD OF BEANS

package examples;

import java.sqgl.*;
import javax.naming.*;
import javax.ejb.*;
import java.util.*;

/**
* Demonstration Bean-Managed Persistent Entity Bean.
* This Entity Bean represents a Bank Account.
*/

public class AccountBean implements EntityBean {

protected EntityContext ctx;

//

// Bean-managed state fields

//

private String accountID; // PK

private String ownerName;
private double balance;

public AccountBean() {
System.out.println("New Bank Account Entity Bean Java Object
created by EJB Container.");
}

methods continue

Source 6.8 AccountBean.java (Part 1 of 3).

continued
//
// Business Logic Methods
//
/**

* Deposits amt into account.
*/
public void deposit (double amt) throws AccountException {
System.out.println("deposit (" + amt + ") called.");

Source 6.9 AccountBean.java (Part 2 of 3).

Writing Bean-Managed Persistent Entity Beans 145

balance += amt;

/**
* Withdraws amt from bank account.
* @throw AccountException thrown in amt < available balance
&l
public void withdraw(double amt) throws AccountException {
System.out.println("withdraw(" + amt + ") called.");

if (amt > balance) {
throw new AccountException ("Your balance is " +

balance + "! You cannot withdraw "
#oame 4 T4T)p

}

balance -= amt;

// Getter/setter methods on Entity Bean fields

public double getBalance() {
System.out.println("getBalance() called.");
return balance;

public void setOwnerName (String name) {
System.out.println("setOwnerName () called.");

ownerName = name;

public String getOwnerName () {
System.out.println("getOwnerName () called.");
return ownerName;

public String getAccountID() {
System.out.println("getAccountID() called.");
return accountID;

public void setAccountID(String id) {
System.out.println("setAccountID() called.");
this.accountID = id;

/xx

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

146 THE TRIAD OF BEANS

* This home business method is independent of any

* particular account instance. It returns the total
* of all the bank accounts in the bank.
*/

public double ejbHomeGetTotalBankValue() throws AccountException

PreparedStatement pstmt = null;
Connection conn = null;

try {
System.out.println ("ejbHomeGetTotalBankValue()") ;

/*
* Acquire DB connection
*/

conn = getConnection() ;

/*
* Get the total of all accounts
*/
pstmt = conn.prepareStatement (
"select sum(balance) as total from accounts");
ResultSet rs = pstmt.executeQuery () ;

/*
* Return the sum
*/
if (rs.next()) {
return rs.getDouble("total") ;
}

}

catch (Exception e) {
e.printStackTrace() ;
throw new AccountException(e);

}
finally {
/*
* Release DB Connection for other beans
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) ({}
try { if (conn != null) conn.close(); 1}
catch (Exception e) {}
}

throw new AccountException("Error!");

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 147

}

/**

* Gets JDBC connection from the connection pool.
*

* @return The JDBC connection
*/
public Connection getConnection() throws Exception {
try {
Context ctx = new InitialContext () ;
javax.sgl.DataSource ds = (javax.sgl.DataSource)
ctx.lookup ("java:comp/env/jdbc/ejbPool") ;
return ds.getConnection() ;
}
catch (Exception e) {
System.err.println("Couldn't get datasource!");
e.printStackTrace() ;
throw e;

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

The ejbHome() business method implementation adds the total of all bank account
balances in the database. It retrieves a JDBC connection via the getConnection()
helper method. In that getConnection() method we lookup the database connec-
tion via JNDI (see Chapter 9 for a full description of this process).

Notice, too, that we close each connection after every method call. This allows
our E]B container to pool JDBC connections. When the connection is not in use,
another bean can use our connection. This is the standard, portable way for
connection pooling. The connection pooling is built-into the JDBC 2.0 specifica-
tion and happens automatically behind the scenes.

The final part of our bean is the various E]JB callback methods, shown in
Source 6.10.

Source 6.10 is quite long because of the enormous amount of J]DBC coding
required to write even a simple bean-managed persistent entity bean. The bulk
of the code occurs in the methods that perform CRUD operations (Create,
Read, Update, Delete). These are namely ejbCreate(), ejbFind() and ejbLoad(),
ejbStore(), and ejbRemove(). The code is self-documenting and you should be
able to understand it if you cross-reference Table 6.1. If you're still stuck, we
will further explain these methods later in this chapter when we discuss the
lifecycle of a bean-managed persistent entity bean.

148 THE TRIAD OF BEANS

continued
//
// EJB-required methods
//
/**

* Called by Container. Implementation can acquire
* needed resources.
*/
public void ejbActivate() {
System.out.println("ejbActivate() called.");

/**
* Removes entity bean data from the database.
* Corresponds to when client calls home.remove() .
*/
public void ejbRemove () throws RemoveException {
System.out.println("ejbRemove () called.");

/*

* Remember that an entity bean class can be used to
* represent different data instances. So how does
* this method know which instance in the database

* to delete?

* The answer is to query the container by calling

* the entity context object. By retrieving the

* primary key from the entity context, we know

* which data instance, keyed by the PK, that we

* should delete from the DB.

*/
AccountPK pk = (AccountPK) ctx.getPrimaryKey () ;
String id = pk.accountID;

PreparedStatement pstmt = null;
Connection conn = null;
try {
/*
* 1) Acquire a new JDBC Connection
*/
conn = getConnection() ;

/*

* 2) Remove account from the DB
*/

Source 6.10 AccountBean.java (Part 3 of 3).

Writing Bean-Managed Persistent Entity Beans 149

pstmt = conn.prepareStatement (
"delete from accounts where id = ?");
pstmt.setString (1, id);

/*
* 3) Throw a system-level exception if something
* bad happened.

*/
if (pstmt.executeUpdate() == 0) {
throw new RemoveException (
"Account " + pk +
" failed to be removed from the database");
}

}
catch (Exception ex) {
throw new EJBException (ex.toString()) ;

}
finally {
/*
* 4) Release the DB Connection
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) {}
try { if (conn != null) conn.close(); 1}
catch (Exception e) {}
}
}
/**

* Called by Container. Releases held resources for
* passivation.

*/
public void ejbPassivate() {
System.out.println("ejbPassivate () called.");
}
/**

* Called by the container. Updates the in-memory entity
bean object to reflect the current value stored in
* the database.
*/
public void ejbLoad() {
System.out.println("ejbLoad() called.");

/*

* Again, query the Entity Context to get the current
* Primary Key, so we know which instance to load.

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

150 THE TRIAD OF BEANS

*/
AccountPK pk = (AccountPK) ctx.getPrimaryKey () ;
String id = pk.accountID;

PreparedStatement pstmt = null;
Connection conn = null;
try {
/*
* 1) Acquire a new DB Connection
*/
conn = getConnection() ;

/*

* 2) Get account from the DB, querying
& by account ID

*/

pstmt = conn.prepareStatement (
"select ownerName, balance from accounts "
+ "where id = ?");
pstmt.setString (1, id);
ResultSet rs = pstmt.executeQuery () ;
rs.next () ;
ownerName = rs.getString("ownerName") ;
balance = rs.getDouble("balance") ;
}
catch (Exception ex) {
throw new EJBException (
"Account " + pk
+ " failed to load from database", ex);

}

finally {
/*
* 3) Release the DB Connection
*/
try { if (pstmt != null) pstmt.close(); }

catch (Exception e) ({}
try { if (conn != null) conn.close(); 1}
catch (Exception e) {}

/**

* Called from the Container. Updates the database
* to reflect the current values of this in-memory
* entity bean instance.

*/

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 151

public void ejbStore() {
System.out.println("ejbStore() called.");

PreparedStatement pstmt = null;
Connection conn = null;
try {
/*
* 1) Acquire a new DB Connection
*/
conn = getConnection() ;

/*
* 2) Store account in DB
*/
pstmt = conn.prepareStatement (
"update accounts set ownerName = ?, balance = ?"
+ " where id = ?");
pstmt.setString (1, ownerName) ;
pstmt.setDouble (2, balance) ;
pstmt.setString (3, accountID) ;
pstmt . executeUpdate () ;

}
catch (Exception ex) {
throw new EJBException (

"Account " + accountID
+ " failed to save to database", ex);
}
finally {
/*
* 3) Release the DB Connection
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) {}
try { if (conn != null) conn.close(); }
catch (Exception e) {}
}
}
/**

* Called by the container. Associates this bean
instance with a particular context. We can query
the bean properties that customize the bean here.
*/
public void setEntityContext (EntityContext ctx) {
System.out.println("setEntityContext called");
this.ctx = ctx;

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

152 THE TRIAD OF BEANS

/**
* Called by Container. Disassociates this bean
* instance with a particular context environment.
*/
public void unsetEntityContext () {
System.out.println("unsetEntityContext called");
this.ctx = null;

/**
* Called after ejbCreate(). Now, the Bean can retrieve
* its EJBObject from its context, and pass it as
* a 'this' argument.
*/
public void ejbPostCreate(String accountID, String ownerName) {

}

/**
* This is the initialization method that corresponds to the
* create() method in the Home Interface.
*
* When the client calls the Home Object's create() method,
* the Home Object then calls this ejbCreate() method.
*
* @return The primary key for this account
*/

public AccountPK ejbCreate(String accountID, String ownerName)
throws CreateException {

PreparedStatement pstmt = null;
Connection conn = null;
try {
System.out.println("ejbCreate() called.");
this.accountID = accountID;
this.ownerName = ownerName;
this.balance = 0;

/*
* Acquire DB connection
*/

conn = getConnection() ;

/*
* Insert the account into the database

*/

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 153

pstmt = conn.prepareStatement (

"insert into accounts (id, ownerName, balance)"
+ " values (?, ?, ?2)");

pstmt.setString(l, accountID) ;
pstmt.setString (2, ownerName) ;
pstmt.setDouble (3, balance) ;
pstmt.executeUpdate () ;

/*
* Generate the Primary Key and return it
*/
return new AccountPK (accountID) ;
}
catch (Exception e) {
throw new CreateException(e.toString());

}
finally {
/*
* Release DB Connection for other beans
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) {}
try { if (conn != null) conn.close(); }
catch (Exception e) {}
}
}
/**

* Finds a Account by its primary Key
*/
public AccountPK ejbFindByPrimaryKey (AccountPK key)
throws FinderException {
PreparedStatement pstmt = null;
Connection conn = null;
try {
System.out.println ("ejbFindByPrimaryKey ("

+ key + ") called");
/*
* Acquire DB connection
*/

conn = getConnection() ;

/*
* Find the Entity in the DB
*/

pstmt = conn.prepareStatement (

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

154 THE TRIAD OF BEANS

"select id from accounts where id = ?");
pstmt.setString(1l, key.toString());
ResultSet rs = pstmt.executeQuery () ;
rs.next () ;

/*
* No errors occurred, so return the Primary Key
*/
return key;
}
catch (Exception e) {
throw new FinderException(e.toString());

}
finally {
/*
* Release DB Connection for other beans
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) {1}
try { if (conn != null) conn.close(); }
catch (Exception e) {}
}
}
/**

* Finds Accounts by name
*/
public Collection ejbFindByOwnerName (String name)
throws FinderException {
PreparedStatement pstmt = null;
Connection conn = null;
Vector v = new Vector();

try {
System.out.println(
"ejbFindByOwnerName (" + name + ") called");

/*
* Acquire DB connection
*/

conn = getConnection() ;

/*
* Find the primary keys in the DB
*/
pstmt = conn.prepareStatement (
"select id from accounts where ownerName = ?");

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

155

pstmt.setString (1, name) ;
ResultSet rs = pstmt.executeQuery() ;

/*
* Insert every primary key found into a vector
*/
while (rs.next()) {
String id = rs.getString("id");
v.addElement (new AccountPK(id)) ;
}
/*
* Return the vector of primary keys
*/

return v;
}
catch (Exception e) {
throw new FinderException(e.toString()) ;

}

finally {
/*
* Release DB Connection for other beans
*/
try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}
try { if (conn != null) conn.close(); }
catch (Exception e) {}

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

When a statement is sent to a database, the container’s installer JDBC driver parses
it, determines the best way to execute the statement based on statistics that it main-
tains, and then executes the statement. Parsing and determining an execution strat-
egy can be computationally expensive. The good news is that JDBC is smart—when
an instance of PreparedStatement is executed on a connection, it first checks its
cache to see if this statement has been executed previously; if so, it reuses the previ-
ously prepared version, thus improving performance. For more information, refer to
Billy Newport's article, “How Prepared Statements Greatly Improve Performance,”
posted at www.ejbinfo.com.

156 THE TRIAD OF BEANS

AccountException.java

Our custom exception class is AccountException.java, displayed in Source 6.11.
It simply delegates to the parent java.lang.Exception class. It is still useful to
define our own custom exception class, however, so that we can distinguish
between a problem with our bank account component and a problem with
another part of a deployed system.

Client.java

Our last Java file is a simple test client to exercise our bean’s methods. It is
shown in Source 6.12.

The client code is fairly self-explanatory. We perform some bank account oper-
ations in the try block. We have a finally clause to make sure our bank account
is properly deleted afterward, regardless of any exceptions that may have been
thrown.

The Deployment Descriptor

Now, let’s take a look at our deployment descriptor, shown in Source 6.13.

package examples;

/**
* Exceptions thrown by Accounts
*/
public class AccountException extends Exception {

public AccountException() {
super () ;

}

public AccountException (Exception e) {
super (e.toString()) ;

}

public AccountException (String s) {
super (s) ;

}

Source 6.11 AccountException.java.

Writing Bean-Managed Persistent Entity Beans 157

package examples;

import javax.ejb.*;
import javax.naming.*;
import java.rmi.*;
import javax.rmi.*;
import java.util.*;

/**
* Sample client code that manipulates a Bank Account Entity Bean.
*/

public class AccountClient {

public static void main(String[] args) throws Exception {

Account account = null;

try {
/*
* Get a reference to the Account Home Object - the
* factory for Account EJB Objects
*/

Context ctx =
new InitialContext (System.getProperties());

Object obj = ctx.lookup ("AccountHome") ;
AccountHome home = (AccountHome)
PortableRemoteObject.narrow (
obj, AccountHome.class) ;

System.err.println(
"Total of all accounts in bank initially = "
+ home.getTotalBankValue()) ;

/*
* Use the factory to create the Account EJB Object
*/

home.create("123-456-7890", "John Smith");

/*

* Find an account

*/
Iterator i = home.findByOwnerName (

"John Smith").iterator();
if (i.hasNext()) {
account = (Account)
javax.rmi.PortableRemoteObject .narrow (

Source 6.12 Clientjava.

158 THE TRIAD OF BEANS

i.next (), Account.class);

}

else {
throw new Exception("Could not find account");

}

/*

* Call the balance() method, and print it

*/
System.out.println(

"Initial Balance = " + account.getBalance()) ;

/*

* Deposit $100 into the account

*/

account .deposit (100) ;

/*
* Retrieve the resulting balance.
*/
System.out.println(
"After depositing 100, account balance = "
+ account.getBalance()) ;

System.out.println(
"Total of all accounts in bank now = "
+ home.getTotalBankValue()) ;

/*

* Retrieve the Primary Key from the EJB Object

*/
AccountPK pk = (AccountPK) account.getPrimaryKey () ;
/*

* Release our old EJB Object reference. Now call
* find() again, this time querying on Account ID
* (i.e. the Primary Key) .
*/

account = null;

account = home.findByPrimaryKey (pk) ;

/*
* Print out current balance
*/
System.out.println(
"Found account with ID " + pk + ". Balance = "
+ account.getBalance()) ;

Source 6.12 Client,java (continued).

Writing Bean-Managed Persistent Entity Beans 159

/*

* Try to withdraw $150

*/
System.out.println(

"Now trying to withdraw $150, which is more "

+ "than is currently available. This should "
+ "generate an exception..");
account .withdraw (150) ;

}

catch (Exception e) {
System.out.println("Caught exception!");
e.printStackTrace() ;

}
finally {
/*
* Destroy the Entity permanently
*/
try {
System.out.println("Destroying account..");
if (account != null) {
account.remove () ;
}
}
catch (Exception e) {
e.printStackTrace() ;
}
}

Source 6.12 Client.java (continued).

<?xml version="1.0"7?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN' 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>Account</ejb-name>
<home>examples.AccountHome</home>

Source 6.13 The Account Bean’s ejb-jar.xml deployment descriptor.

160 THE TRIAD OF BEANS

<remote>examples.Account</remote>
<local-home>examples.AccountLocalHome</local-home>
<local>examples.AccountLocal</local>
<ejb-class>examples.AccountBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>examples.AccountPK</prim-key-class>
<reentrant>False</reentrant>

<resource-ref>
<res-ref-name>jdbc/ejbPool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</entity>
</enterprise-beans>

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>Account</ejb-name>
<method-intf>Local</method-intf>
<method-name>*</method-name>
</method>
<method>
<ejb-name>Account</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Source 6.13 The Account Bean’s ejb-jar.xml deployment descriptor (continued).

Notice the following features of our deployment descriptor that are different
from session beans:

m The persistence-type element indicates whether we are bean-managed
persistent (set it to “Bean”) or container-managed persistent (set it to
“Container”).

m The prim-key-class element specifies our primary key class.

m The reentrant element dictates whether our bean can call itself through
another bean. A given bean A is reentrant if bean A calls bean B, which
calls back on bean A. This is a special case of multithreading because it is
really only one path of execution that happens to loop back on itself. If we

Writing Bean-Managed Persistent Entity Beans 161

would like to support this reentrant behavior, we should set this setting to
True so that the container will allow two threads to run inside of bean A at
once. Since our bean doesn’t call itself through another bean, we set it to
False, which is usually what you'll want to do to avoid unintended multi-
threading issues.

m The resource-ref element sets up our JDBC driver and makes it available at
the proper JNDI location (see Chapter 9 for a full description of this
process).

m The assembly-descriptor associates transactions with our bean. We will
describe transactions fully in Chapter 10.

The Container-Specific Deployment
Descriptor

Finally, we have our container-specific deployment descriptor, which config-
ures our bean in ways specific to a particular E]JB server. We will not show this
tile because we wish the code in this book to remain vendor-neutral. Typically
you would use this proprietary descriptor to associate the home interface,
local home interface, and JDBC driver with JNDI locations. For an example
descriptor, see the book’s accompanying source code.

Setting up the Database

Lastly, you need to create the appropriate database table and columns for our
bank accounts. You can do this through your database’s GUI or command-line
interface. The book’s included source code comes with a preconfigured sample
database that you can use right away. If you're using a different database, you
should enter the following SQL Data Definition Language (DDL) statements in
your database’s SQL interface:

drop table accounts;
create table accounts (id varchar(64), ownername varchar(64), balance
numeric(18)) ;

This creates an empty table of bank accounts. The first column is the bank
account ID (the primary key), the second column is the bank account owner’s
name, and the third column is the bank account balance.

Running the Client Program

To run the client program, type a command similar to the following (depend-
ing on what your EJB container’s Java Naming and Directory Interface (JNDI)
connection parameters are—see your container’s documentation):

162 THE TRIAD OF BEANS

java -Djava.naming.factory.initial=
weblogic.jndi.WLInitialContextFactory
-Djava.naming.provider.url=
t3://localhost:7001
examples.AccountClient

The initialization parameters are required by JNDI to find the home object, as
we learned in Chapter 3.

Server-Side Output

When you run the client, you should see something similar to the following on
the server side. Note that your particular output may vary, due to variances in
EJB container behavior.

New Bank Account Entity Bean Java Object created by EJB Container.
setEntityContext called.
ejbHomeGetTotalBankValue () called.
ejbCreate() called.

ejbStore() called.

New Bank Account Entity Bean Java Object created by EJB Container.
setEntityContext called.
ejbFindByOwnerName (John Smith) called.
ejbLoad () called.

getBalance() called.

ejbStore() called.

ejbLoad() called.

deposit (100.0) called.

ejbStore() called.

ejbLoad () called.

getBalance() called.

ejbStore() called.
ejbHomeGetTotalBankValue () called.
ejbFindByPrimaryKey (123-456-7890) called.
ejbLoad() called.

getBalance() called.

ejbStore() called.

ejbLoad () called.

withdraw(150.0) called.

ejbStore() called.

ejbLoad() called.

ejbRemove () called.

Notice what’s happening here:

m When our client code called create() on the home object, the container cre-
ated an entity bean instance. The container first called newlnstance() and
setEntityContext() to get the entity bean into the available pool of entity
beans. The container then serviced our client’s home business method and
used the bean in the pool. Then the client called create(), which caused the

Writing Bean-Managed Persistent Entity Beans 163

container to take the bean out of the pool and call the bean’s ejbCreate()
method, which created some new database data, and returned control
back to the container. Finally, the container associated the bean instance
with a new EJB object and returned that EJB object to the client.

m To service our finder method, the container instantiated another entity
bean. The container called newlnstance() and then setEntityContext() to get
that new bean instance into the available pool of entity beans. It then used
the bean in the pool to service our finder method. Note that the bean
instance is still in the pool and could service any number of finder
methods.

m In addition to the methods that the client calls, our EJB container inter-
leaved a few ejbStore() and ejbLoad() calls to keep the database in synch.

Client-Side Output

Running the client program yields the following client-side output:

Total of all accounts in bank initially = 1200000.0

Initial Balance = 0.0

After depositing 100, account balance = 100.0

Total of all accounts in bank now = 1200100.0

Found account with ID 123-456-7890. Balance = 100.0

Now trying to withdraw $150, which is more than is currently available.
This should generate an exception..

Caught exception!

examples.AccountException: Your balance is 100.0! You cannot withdraw
150.0!

Destroying account. .

Our table already had $1,200,000 from previous records in the database. We
then created an entity bean, deposited into it, and tried to withdraw more than
we had. The entity bean correctly threw an application-level exception back to
us indicating that our balance had insufficient funds.

Putting It All Together: Walking through
a BMP Entity Bean'’s Life Cycle

Let’s wrap up this chapter by examining the big picture and understanding
exactly how a container interacts with a BMP entity bean. The state machine
diagram in Figure 6.3 illustrates the life cycle of a BMP entity bean.

Here is what’s going on in this diagram.

1. The does not exist state represents entity bean instances that have not been
instantiated yet.

164

THE TRIAD OF BEANS

The lifecycle of a bean-
managed persistent entity Does Not Exist
bean. Each method call
shown is an invocation from
the container to the bean

instance. ?

1: newlnstance() 1: unsetEntityContext()
2: setEntityContext() 2: JVM Will Garbage Collect
and Call finalize()

y

ejbHome() Pooled ejbFind()

A

Activate Your Bean: Passivate Your Bean:
1: ejbActivate() 1: ejbStore() ejbRemove()
2: ejbLoad() 2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

y

ejbLoad() Ready ejbStore()

Business Method

Figure 6.3 The BMP entity bean life cycle.

2. To create a new instance, the container calls the newlnstance() method on
the entity bean class. This calls your entity bean’s default constructor,
bringing a new instance into memory. Next, the container associates your
entity bean with an entity context object via a callback that you imple-
ment, called setEntityContext(EntityContext ctx). Note that this step occurs
only when the container wants to increase the available pool of entity
bean instances, not necessarily when a client connects.

Writing Bean-Managed Persistent Entity Beans 165

3. Next, your entity bean is in a pool of other entity beans. At this point your
entity bean does not have any entity bean database data loaded into it,
and it does not hold any bean-specific resources, such as socket connec-
tions. Your bean instance can be used in this mode to find entity data in
the database, by servicing a finder method on behalf of a client. Your bean
instance can also perform operations not dependent on a particular data
instance by servicing an ejbHome() method on behalf of a client. If the con-
tainer wants to reduce its pool size, it can destroy your bean. The con-
tainer signals your bean instance that it is about to be destroyed by calling
the unsetEntityContext() method on your bean. Once this is done, the con-
tainer releases any references to your bean, and eventually, the Java
garbage collector cleans up the memory your instance had been using.
Therefore your unsetEntityContext() method should prepare your bean to
be cleaned up, perhaps by releasing any resources your bean had claimed
during setEntityContext().

4. When the client wants to create some new database data (say, a new order
for goods placed over the Internet), it calls a create() method on your
entity bean’s home object. The container then grabs an entity bean
instance from the pool, and the instance’s ejbCreate() method is called.
ejbCreate() initializes the entity bean to a specific data set. For example, if a
client calls a create() method to create a bank account, it might pass the
bank account holder’s name and the initial balance as parameters. Your
entity bean’s ejbCreate() method would populate its member variables
with these parameters. It would also create the corresponding database
representation (if you're using bean-managed persistence). Now your
bean is in the “ready” state.

5. While your bean is in the ready state, it is tied to specific data and hence a
specific EJB object. If there are other entity bean instances that are views
into the same database data, the container may occasionally need to syn-
chronize your bean instance with the underlying database, so that you
will always be working with the most recent data. The ejbLoad() and ejb-
Store() methods do this; the container calls them as appropriate, based on
how you define your transactions (see Chapter 10).

6. Your entity beans can be kicked back into the pool in two ways. If a client
calls remove() on the home object, the container will call your instance’s
ejbRemove(). The underlying database data is destroyed and so, of course,
your entity bean instance will become disassociated with the client’s EJB
object to which it was bound.

7. The second way your bean can return to the pool is if the EJB container
decides that your client has timed out, if the container needs to use your
bean to service a different client, or if the container is simply running out

166 THE TRIAD OF BEANS

of resources. At this point, your bean is passivated, and the container calls
your ejbStore() method to ensure the database has the most recent version
of your in-memory data. Next the container calls your ejbPassivate()
method, allowing your bean instance to release held resources. Your bean
instance then enters the pool.

8. When the container wants to assign you to an EJB object again, your bean
instance must be activated. The container calls your bean’s ejbActivate()
method, allowing your bean to acquire resources. The container then calls
your instance’s ejbLoad() method to load the database data into your bean.

Note that there are a few other minor steps in this process, such as transac-
tional synchronization. Overall, these stages are the essence of a BMP entity
bean instance’s life cycle. The next step is for you to look at this diagram again
and make sure you fully grasp it. Do you understand how a single Java object
instance can be pooled and reused, going back and forth through various tran-
sitions between the pooled and ready state, perhaps representing different
database data each time? If so, congratulations. This is a crucial step towards
fully understanding EJB.

Summary

In this chapter, you've seen how to write bean-managed persistent entity
beans. Bean-managed persistent entity beans are useful if you need to control
the underlying database operations yourself. But the real advantage of EJB
comes from container-managed persistent entity beans. Container-managed per-
sistent entity beans can be developed much more rapidly because the con-
tainer handles all data access logic for you. The next chapter covers the new
EJB 2.0 container-managed persistence model, an exciting and interesting new
addition to E]B.

Writing Container-Managed
Persistent Entity Beans

bean-managed persistent entity bean representing a bank account. In this
chapter, we’ll see how things change when we move to a container-managed
persistent (CMP) model. With container-managed persistence, you don’t
implement any persistence logic (such as JDBC or SQL/J) in the entity bean
itself; rather, the EJB container performs storage operations for you. As you
will see, this greatly simplifies bean development.

In the previous chapters, we learned the basics of entity beans and wrote a

Features of CMP Entity Beans

We'll kick things off by looking at the major differences between CMP and
bean-managed persistence (BMP). Before reading this, you should be familiar
with the entity bean concepts we covered in the last two chapters.

CMP Entity Beans Are Subclassed

Imagine that you are a bean provider who writes beans that others will con-
sume, such as an independent software vendor (ISV) or a department that
writes components that other departments reuse. You need to write your
beans to be database-independent because you don’t know what storage the
consumers of your bean will use. You certainly don’t want to allow the
consumers of your beans to access your source code, because it violates your

167

168 THE TRIAD OF BEANS

intellectual property rights. Furthermore, if they modify the code, it makes
future upgrades to new versions of your components difficult.

To answer this need, the authors of the EJB specification have tried to make
CMP have a clean separation between an entity bean and its persistent repre-
sentation—that is, a separation between the data logic methods (such as logic
in your entity bean to add two fields together) and the JDBC. This separation
is valuable because you can modify the persistent representation of an entity
bean (such as changing from a relational database to an object database) with-
out affecting the entity bean logic. This is a crucial feature for bean providers.

To achieve this clean separation, you write your CMP entity bean class to be
devoid of any JDBC or other persistence logic. The container then generates the
JDBC by subclassing your entity bean class. The generated subclass inherits
from your entity bean class. Thus, all CMP entity beans are each broken up
into two classes: the superclass, which you write and which contains the entity
bean data logic; and the subclass, which the container generates and which
contains the persistence logic. These two classes achieve a clean separation of
entity bean logic and persistent representation. The actual entity bean is a com-
bination of the superclass and the subclass. This is shown in Figure 7.1.

not require the use of subclassing. EJB 2.0 containers must support both the old EIB

? Entity beans are very different between EJB 1.1 and EJB 2.0. EJB 1.1 entity beans do
1.1 style and the new EJB 2.0 style of entity beans.

CMP Entity Beans Have No
Declared Fields

Another issue with CMP is that the container might have additional fields or
logic that are part of your persistent representation but are container-specific.
As a bean developer, you should be oblivious to this information. Here are two
examples:

m A container might keep around a bit vector that tracks which of your
entity bean fields have been modified (that is, are dirty) and need to be
written to storage. Then when your bean is stored, the container persists
only the part of your bean that has changed.

m Your bean might hold references to other beans. The container must
preserve referential integrity of those relationships, as described in
Chapter 11.

Since every container has its own proprietary way of dealing with your per-
sistent representation, your persistent fields are kept in the subclass, not the
superclass. This is another paradigm shift with container-managed persistent

Writing Container-Managed Persistent Entity Beans 169

<<interface>>
java.io.Serializable

Comes with Java 2 Platform

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EntityBean

Comes with EJB Distribution A

CMP Entity Bean Class
(Contains Data Logic)

A

Supplied by Bean Provider (We Will Write)

CMP Entity Bean Subclass
(Contains Persistence Logic)

Generated for Us by Container Vendor's Tools

Figure 7.1 The subclassing concept.

entity beans: You don’t declare any persistent fields in your bean. For example,
take a look at the following is a snippet of code from a BMP bank account
entity bean class that we wrote in Chapter 6:

// BMP

public class AccountBean implements EntityBean {
public String accountID; // PK
public String ownerName;

170 THE TRIAD OF BEANS

public double balance;

. .methods. ..
}

With CMP, the fields are not present. Rather, the container generates your per-
sistent fields in the subclass. For example, the following subclass might be gen-
erated from the container tools:

// CMP Subclass

public class AccountBeanSubClass extends AccountBean {
public String accountID; // PK
public String ownerName;
public double balance;

..methods. ..

CMP Get/Set Methods Are Defined
in the Subclass

One corollary of the subclass paradigm is that the subclass, not the superclass,
implements the get/set methods. For example, here is that BMP bank account
again:
// BMP
public class AccountBean implements EntityBean {
public String accountID; // PK

public String ownerName;
public double balance;

public String getOwnerName () {
return ownerName;

public void setOwnerName (String ownerName) {
this.ownerName = ownerName;

...other methods...
}

With CMP, the get/set methods would appear in the subclass, since that is
where the fields exist and thus the only place they can be accessed. Here is
what the container-generated subclass looks like.

// CMP subclass

public class AccountBeanSubClass extends AccountBean {
public String accountID; // PK
public String ownerName;

Writing Container-Managed Persistent Entity Beans 171

public double balance;

public String getOwnerName () {
return ownerName;

}

public void setOwnerName (String ownerName) {
this.ownerName = ownerName;

}

...other methods...

}

So what does the superclass look like? First, realize that the superclass cannot
possibly implement the get/set methods because it doesn’t have access to the
fields. However, the superclass does need to call those get/set methods. For
example, let’s say you have a shopping cart entity bean that contains a subtotal
field and a taxes field on the contents in the shopping cart. One useful method
you might want to write is a getTotal() method, which returns the subtotal +
taxes. That is more than just a simple get/set method and thus cannot be gen-
erated automatically by the container in the subclass. Therefore you need to
write that method in the superclass yourself. But what would that getTotal()
method look like? With BMP, it could look like this:

// BMP
public class CartBean implements EntityBean {

public float getTotal() {
return this.getSubtotal() + this.getTaxes();
}

}

This code works well with BMP because we can define the getSubtotal() and
getTaxes() methods. But with CMP, the simple get/set methods getSubtotal()
and getTaxes() are defined in the subclass, so how can we access those get/set
methods? The answer is to declare your get/set methods as abstract methods
in the superclass. An abstract method is a method whose implementation is
deferred to a subclass; yet by defining a method as abstract you can call it from
the superclass. For example, a CMP shopping cart bean would look like this:

// CMP superclass
public abstract class CartBean implements EntityBean {
// no fields

// abstract get/set methods
public abstract float getSubTotal();

172 THE TRIAD OF BEANS

public abstract float getTaxes();

// other business methods
public float getTotal() {
return this.getSubtotal() + this.getTaxes();

// EJB required methods follow
}

The subclass for this bean is the subclass we showed earlier. As another exam-
ple, a CMP account bean would look like this:

// CMP superclass
public abstract class AccountBean implements EntityBean {
// no fields

// abstract get/set methods
public abstract String getOwnerName () ;
public abstract void setOwnerName (String ownerName) ;

// EJB required methods follow

CMP Entity Beans Have an Abstract
Persistence Schema

So far, we've discussed how the container generates JDBC code, persistent
fields, and get/set method implementations. One lurking question is how
does the container knows what to generate? The answer is that you declare it in
your bean’s deployment descriptors. The EJB container inspects the deploy-
ment descriptors to figure out what to generate. This definition of how you’d
like to be persisted is called your abstract persistence schema. For example, here
is a snippet from an Account deployment descriptor:

<cmp-version>2.x</cmp-version>
<abstract-schema-name>AccountBean</abstract-schema-name>
<cmp-field>

<field-name>accountID</field-name>
</cmp-field>
<cmp-field>

<field-name>ownerName</field-name>

</cmp-field>

<cmp-field>
<field-name>balance</field-name>

Writing Container-Managed Persistent Entity Beans 173

</cmp-field>

<primkey-field>accountID</primkey-field>

Here is a brief explanation of this deployment descriptor snippet.

m The cmp-version must be 2.x if you want to take advantage of EJB 2.0 CMP.
If you are on the older EJB 1.1 specification, you should define this to be
1.x. For an example of an EJB 1.1 CMP bean, see the book’s accompanying
source code.

m The abstract-schema-name is the nickname you want to give this abstract
persistence schema. It can have any value you want. We recommend nam-
ing it after your bean. Later we will reference this nickname when doing
queries.

m The cmp-field elements are your container-managed persistent fields. Each
field is a persistent field that the container will generate in the subclass.
The names of these fields must match the names of your abstract get/set
methods, except the first letter is not capitalized. For example, if your
abstract get/set methods are getOwnerName() and setOwnerName() then
your cmp-field should be called ownerName. The container derives the
types of these fields from the get/set methods as well.

We will see a complete example of an abstract persistence schema later in this
chapter.

CMP Entity Beans Have
a Query Language

Another piece of our CMP entity bean puzzle is addressing how to query
entity beans. To enable clients of your bean to find you, you must define finder
methods. For example, in BMP you’d define this method in your home
interface:

public Collection findBigAccounts (int minimum) ;

The home object would delegate this call to your bean, whose implementation
would be:

public Collection ejbFindBigAccounts (int minimum) {
// Perform JDBC, and return primary keys for
// all accounts whose balance is greater
// than the minimum passed in

}

With CMP, the container generates this JDBC for us. However, we need a way
to tell the container how to generate that JDBC, because the container can’t

174

THE TRIAD OF BEANS

magically know what find big accounts means. We want to specify how to gen-
erate the persistence code in a portable way so that we don’t have to com-
pletely rewrite the definitions of these finder methods every time we port our
bean to a new container.

The solution to this challenge is the E]B Query Language (EJB-QL). EJB-QL is an
object-oriented SQL-like syntax for querying entity beans. It contains a
SELECT clause, a FROM clause, and an optional WHERE clause. You write the
EJB-QL code in the deployment descriptor, and the container should be able to
generate the corresponding database logic (such as SQL), perhaps with some
help from the container tools. This is a similar concept to the Object Query
Language (OQL) described in Chapter 5.

Here is an example of EJB-QL that finds all accounts:

SELECT OBJECT (a)
FROM Account AS a
WHERE a.accountID IS NOT NULL

If you are using a relational database, at deployment time and with the help of
the container’s tools that you use, the container will inspect this code and gen-
erate the appropriate JDBC code.

Here is another example that satisfies the findBigAccounts() home method:

SELECT OBJECT (a)
FROM Account AS a
WHERE a.balance > ?1

In the above code, ?1 means the first parameter passed in, which in this case is
the variable minimum.

We will see more EJB-QL in the example later in this chapter. There is also a
complete reference in Appendix D.

Not all fields within the bean have to be managed by the container. You might be
pulling data manually from a secondary source, or you might have calculated fields.
The EJB container automatically notifies your bean class during persistent opera-
tions, allowing you to manage these fields.

In general, containers are not responsible for persisting any data in the superclass,
such as entity context references or environment naming contexts used for JNDI
lookups. You never store these persistently as container-managed fields because
they contain runtime EJB-specific information, and they do not represent persistent
business data.

The complete process of developing and deploying a CMP entity bean is
shown in Figure 7.2.

Writing Container-Managed Persistent Entity Beans 175

Build CMP Entity Bean Design Database Mapping
Design Abstract Code with Container Tools
Persistence Schema Generate Subclass and
Write EJB-QL Other Helper Code

Bean Provider
~ and/or Deployer System Administrator
Application Assembler (Maintains Deployment)

EJB Container/Server
Provider

Figure 7.2 The process of developing and deploying a CMP entity bean.

CMP Entity Beans Can Have
ejbSelect() Methods

The final major difference between BMP and CMP entity beans is that CMP
entity beans can have special ejbSelect() methods. An ejbSelect() method is a
query method (like a finder method) but is not directly exposed to the client in
the home interface or component interface. Rather, ejbSelect() is used internally
within an entity bean as a helper method to access a storage. ejbSelect() is use-
ful when you have entity beans in relationships with external data, such as
other entity beans.

For example, in our bank account example from the previous chapter, we
defined a method called ejbHomeGetTotalBankValue(), which added up the total
of all bank accounts in the bank table by performing a SQL SELECT statement
using JDBC. With CMP, you shouldn’t be writing this JDBC code—rather, the
container should generate it for you in an ejbSelect() method, and you should
call that ejbSelect() method from the ejbHomeGetTotalBankValue() method. You
then tell the container how to write the ejbSelect() method just like you do a
finder method—by using the E]B Query Language (EJB QL) described earlier.

For example, you might define the following method in your entity bean:

public abstract double ejbSelectAllAccountBalances ()
throws FinderException;

public double ejbHomeGetTotalBankValue() throws Exception {

176

v

THE TRIAD OF BEANS

// Get a collection of bank account balances
Collection ¢ = this.ejbSelectAllAccountBalances() ;

// Loop through collection and return sum

}

ejbSelect() methods are not exposed to end clients via the remote interface or
local interface. They must be called from within your bean, either from a busi-
ness method or a home business method.

The value of ejbSelect() methods are threefold:

m Select methods can perform fine-grained database operations that your
bean needs, but that you do not want to expose to end clients.

m Select methods can retrieve data from other entity beans that you have
relationships with (see Chapter 11 to learn more about relationships).

m Like finder methods, select methods can return entity beans. But select
methods are more powerful because they can also return container-man-
aged fields, such as our example above—it returns a collection of double
values.

You tell the container about how to implement your select method by defining
an E]JB-QL query string. For more details on how EJB-QL affects ejbSelect()
methods, see Appendix D.

As you may have noticed by now, the major differences between CMP and BMP lie in
the entity bean class and the deployment descriptors. The remote interface, local in-

terface, home interface, local home interface, and primary key class remain basically
the same. This means it is possible to switch between CMP and BMP without chang-

ing the clients who call your beans, which is a nice side effect.

Implementation Guidelines for
Container-Managed Persistence

Now that we’ve explored CMP entity beans in theory, let’s see how to build
CMP entity beans. The method implementations of your BMP entity beans
should be different for CMP. No longer are you controlling the routine persis-
tent operations of your beans, and so many of the methods can be left empty—
the container will do it for you. Table 7.1 summarizes what you should imple-
ment in each method, assuming your entity bean’s persistence is container
managed. Take a quick glance at the table for now. As you can see, many of the
database-intensive operations have been reduced in scope significantly. You

177

sanunuod

‘spoyiaw

ueaq Amus 1syjo sdeysad pue ()psjasqle (B2

01 s1 Aem (Jnyau1ed J0u a1,n0A Ji Suiwiopad-1amo|
1nqQ) Jaues)d Yy "DFdr asn 0} sI Siy} ans1yoe

0} Aem Asea-pue-jse} ay| JuaI[d dY} 0} SYNS3!

3y Suluin}al pue aseqejep e ul smol a3 dn
Sununod se yons ‘suoneisado jeqoj3 1NoA wiopad

‘Aianb ayy
dn 395 03 J03dudsap JuswAholdap ayy ul 1O-4r
S)M UY] PeiISge Se poysw Siy} sulag

‘sueaq Amua diND
1o} spoyiaw asay} uawa|dwi Jou pjnoys NoA

‘palqo gr3 ipjnonipd Aup o} punoq jou si

puD ‘41 Jo apisul b}pp 8spgpIDPp diidads Aub aAby
jou saop ‘jood b ul mou S| Upaq ay] "syuasaidal
ueaq ay} ejep 1eYM JO Ssa|pie8al pasu |[Im
doue)sul INoA sad1nosal Aue 3sanbai osje pjnoys
NOA “JAUIRJUOD SU} WO} ‘Uonewioul AjIndas

91| ‘uonewIOul JUSWUOIIAUS diinboe 03 193e
1XJU0D JY} SSIIE UBD NOA 9|qRUBA J3qUIaW

B Ul SB UONS ‘219YyMawWos 3xa3u0d Aua ayi ypns

NOILLVINIWITdINI TVIIdAL

Sa13Ug JUISISIDd pasdeue|y-Iauleiuo) Joy saulepinn uonejuswajdwi pue suondiudsaq

"90BJI9)UI SWOY [EI0] IO 3JBJISJUI SWIOY S} WOy
SpoylaW 3say} [[ed Sjual|) “elep didads Aue yum
pajenosse sI ueaq ayj 210joq [ood ayj Ul ueaq e
wouy pajjed ale Asy} asnedaq spoyiew ssauisng
[enads a1e spoylsw swopqls ayj ‘suonelrsdo
953y} wioyad 0} Spoylaw SWoHGle S)IM

ued NOA "9[ge} B Ul SJUNOJJE JO Jaquinu |e}0}

ay3 dn Sununoo ‘sjdwexa 10j— (Mol 10) due)Sul
ejep uani8 Aue 0} oipads jou ale jey) uesq
Anus ue uo spoyjew pasu NOA saWwRWOS

"ueaq INoA Jo Sjudi 0} J|qISSe Jou
ale Inqg ueaq InoA Aq Ajjeusajur sauanb wiopad
ey} spoyiaw Jadjay ale spoylaw ()13jasqle

"129[qo awoy sy} uo poyiaw Japuyy e swioyad
JUSI[D SY} USYM 93NI3XD 0} 2180] JeyM JaUIRIUOD
3y} ||} 0} S|00} JaUIRIUOD 3} pue TO-4(3 asn
noA asodind siyj 10} sjoo} yum sdiys Jaureuod
dr3 InoA jeys si Jamsue ay] "aseqeiep e ui

elep pulj 0} Isixa sAem jo AjaLiea spulyul ue ‘e
Iayy¢ueaq InoA ulr Juem noA spoyaw Japuly Jo
SpUD JeyM AMOUY| JSUIRIUOD g[g SY} SS0p Moy
ng 'noA 1oy eyep Suipuly o3 Suneas sanssi J/p
d|puey [|IM Jauleuod grg ay| ‘subaq pabbupw
-I3UID}UOD 10f SPOYIBW JBPULY S}IM JOU OP NOA

“JUSWUOIIAUD

S}l JNOQE UOINBLIOJUI SSIOB URD Uedq

3y} ‘paj|ed sI poyiaw Siy} SdUQ JUSWUOIIAUD
s,ueaq ayj} IN0ge UOIRWIOJUI—UO/DULIOU]
JX23U00 YU uedq e S9JRIDOSSe poyiawl

SIyl "()3xa1u0DA1uF}SS S,90URISUl BY]} S[|ed
Jauleuod ayj ‘siyy Suimnoj|o4 "adue)sul ueaq
Anus mau e sajenue)sul) ‘sadue)sul ueaq Jo
9z1S [00d S} 9sealdul 0] SJURM JUIRIUOD BY} J|

NOILLYNY1dX3

(dD 10§ Mau)
(< >)< " >awoH(qle

(dD 10§ mau)
(< >)< " >psjpEsqle

(dD 10§ mau)
(< >)< " >puiqle

(dwg se swes)
(Ow@uonAmudies

dOH1IN

1L 3jqeL

178

"9]e)S
Apea1 ays ojur panows si 31 usym juaip Jejnonied

B 921/JSS 0] SPasaU Ueaq JNOoA 1ey) 'suoipPsuu0d
19)20s Y| ‘s924n0osai dyads-ueaq Aue asinboy

7 asn
pup aAa1439.1 upd NoA os ‘alqo Aay Aipwirid inoA
pa3Daid 9ADY [[IM J3UIDJUOD g7 3y} mou Ag :910N
‘sueaq I13y1o

03 9douaIaal PaIqo grg s,ueaq 1noA Suissed se yons
‘palqo gr3 1eys sasinbai ey} o3 paau noA Suiyjhue
3ulop Aq uonezijeniul 1noA 9)9jdwod mou ued NoA
‘alqo gr3 ue yum aduejsul ueaq INoA pajedosse
sey } Jaye ()a10a1D3504qle s||ed 1auleuod ay|

'spalqo gr3 JejnonJed

e 0} ddUejsul JNOA puiq [[IM JaUIRIUOD Y]

"}l 9pIsul kyep aseqeiep dyads sey mou y—jood
3y} ul J93uo| ou uay} si dduejsul ueaq Anus

INOA "NOA 10} e1Ep 3SegRIRp 3Y) 91B3ID 0} SSe[PANS
SU} Ul S9N[eA 3SBY} SN USY} |[IM Jaulejuod ayj “ul
passed sia)aweled ay} 0} ssejpgns ueaq pajelauasd
9yj azi[eiIul 0} spoylaw ()39s essqe oA |[ed
‘s19joweled uonezifeiHUL S,JUSIP Y} depljeA Iayiey
‘poyawi Sy} ul DIpp 8SDGDIDP 83D3JD JoU 0(

NOILLVINIWITdINI TVIIdAL

"IaUIR}UOD

dr3 ay3 Aq pajjed st poyrsw ()apaipyqla

3y} ‘UoNeAIR UQ “UORDAIDD Pa|[ed S SIY] "d)e)s
Apeas e ojur 31 uonisuesy pue [ood sy} woiy ueaq
B 9B} 0} SPasU Jaulejuod 3y} ‘Palqo gr3 ayy

0} punoq sl aduejsul ueaq Apua ou Inq ‘Palqo
43 Ue UO PO} SSaUISN(B S|[BD JUI|D B USYAA

(""")apaigle

Suimojjoy poyiaw (" - *)apaId3sodqle s,2oueisul
ueaq InoA sjjea Jaurejuod ay] ‘sisweled

awes ayj sey Jied yoeg *(- -)apalngle

yoea 10} (")a1Da4D1S04qle |uo si sy

‘ueaq InoA Suizijeiyul pue

elep aseqeiep mau Suneald oy s|qisuodsal

ale spoyaw ()a3pa.idqla -dueisul ueaq

pajood e uo ()appangle s|jed usy} Jauieuod Sy}
‘alqo swoy e uo ()a1pald S||ed Ui B USYAN

(dng se swes)
(O=1endyqfle

(dg se swes)
(< " >)eeaidisodqle

‘SuDaW Iayjo
10 s3j1j y230q ybnouyy
SMasUl 8SDGDIDP 19311p DIA
4n220 0} DIDP JO UO/IDA.ID
Moj|p Abw swajsAs swos

‘D)DP 9SDGDIDP MAU d}DB.UD

0} 8/gD 8q 03 SpuUdIP grd
JUDM 3,uop noA J1 spoyPW
()a1painqle Aup ayim o}
paau jou op noyj :910N
(dD 104

mau) (< - >)aeasnqle

(panunuod) sannug Jualsisiad padeue|y-1auieiuo) Joy saulepinn uonejuswsa|dwi pue suondisaq

NOILLYNY1dX3

dOH1IN

1L 3jqeL

179

‘uo133||0d adeqied
lo} Apeai 338 pue ‘()ixapuodApugies
3unnp pajedoje NoA sa21nosal Aue ases|ay

‘pa||ed s ()anowayqlo 1aye

Y31 noA 1o} e1ep 3y} Aonsap ||Im Jauleuod gr3 syl
‘paAolisap Si aseqeiep sy} ul ejep sy} 210j9q suop
9q 1snwi jeyy suonesado Aue wiopad Aidwis ‘1ayiey
‘poyawi siyp ui b}pp asbgpipp Ao.3sap Jou og

uaid JejnonJed

e 1o} 91e3s Apeas ays Suunp 3uipjoy sem ueaq

1noA 1eyy pue ()aipA1pyqle ul pajedojje noA ey
’SUOI}I3UUOD }3H20S SB UdNS ‘s921n0sal Aue ases|ay

‘spoyiaw

()19s pessqe umo 1noA uljed Aq Aiessadau ji

sp[a1} 1noA Jo 1xa} ay3 ssaidwod ued noA ‘sjdwexa
104 "9seqejep sy} 0} UM 9q 0} Sp|lj padeuew
-1auiejuod 1noA asedaid pjnoys noA ‘poyraw

SIU} u| "9seqejep ay} 0} sp|alj padeurw-1auIRILOD
InoA Sunum Aq ssejpgns ayj ul siyj SS0p 3| "poyiaw
()21035gf5 1noA 3uijjed soyp 1y3u Ajjeonnewoine

noA 10} aseqelep ay} a1epdn |jim Jsuleluod g3 sy}
‘Iayiey ‘poyaw Siy} ur aspgoipp ay} appdn jou og

‘p|a1 1x3) e 8uissaidwodap se yons

‘e}ep UI-pEaI Y} YU 340M 0] pasu noA sanijin Aue
wuopad pjnoys noA ‘poyiawi siy} uj ‘aseqelep ayi
WwoJj Speai i elep ay) 0} sp|al paseurw-JaulRlu0d
1noA 3umas Aq siys ssop 11 "poyraw ()ppoigle inok
3uijes asojaq 1y3u Ajjedonnewoine noA 1oy aseqeiep
3y} WoJj BIEP UI PR3 [|IA JSUIRIUOD g(F By} ‘Iauiey
‘poyzaw SIy} Ul 8SDGDIDP By W01} DIDP pDaJ JOU 0F

NOILVINIWITdWI TVIIdAL

*(3z1s |0od 8y} adnpal 0} spURM

} usymn) paAoasap si aduelsul ueaq Ajus JnoA
910494 3y8u Sy S||ED JSUIRIUOD BY] “JUSIUOIIAUD
S} WOJ} UBdq B SIJRIDOSSESIP poyaw Siy|

"BJRP JUSIIP 10} pasnal pue pajood aq
ued 193[qo sy} asnedaq Pa[qO eaef ayy Aosisap
J0U S0P SIY} 1Y) 310N *()anowayqgle 1noA sjjed

uay} ‘()anowa. eyep aseqeiep Aossap 0} poyiaw
()anowsai s129[qo swoy ay} s|jed Jualp 3yl

“IauIRjuU0d grg Y3 Aq paj|ed sI poyiaw
()a1pAIsspdqle sy ‘'uonenissed uQ "uoneanoe jo
ausoddo ayy si pue uvonpaisspd pajjed st siylL
‘lood 8y} 03 ueaq Ajus INOA UIN}DI 0} SUBM

} USYM poyla SIy} S|jed Jauleuod gr3 syl

*()21p7IssDdqle a1039q Apdaiip ‘uonenissed Suunp
pa][e> OS|e SI poyiawi siy] "paj|ed SI poyaw

SIUY} USYM SSIRPIP 9)e)S [RUOIDRSURI) JUSLIND
3y| aseqeiep ay3 SuiziuoiyduAs snyy ‘sp[al
Alowsw-ul INOA Jo sanjeA Mau sU} 0} aseqelep
ay3 a1epdn 01 s1y} S||ed JauIeIU0d grg dYyL

"9)e)S |EUOIPESURL)
JUSLIND 3Y} UO paskeq ‘aduelsul Ueaq INOA ol
e}Ep 9Seqelep peoj 0} SIy} S||ed Jauleuod gfg syl

NOILYNVY1dX3

(dg se swes)
(OmxsuodApuziesun

(dD 10§ mau)
(enowayqle

(dng se swes)
()@1enissedqle

(dnD 10y mau)
()=1015¢gfe

(dWD 10§ mau)
(Opeo1qfe

dOH1IN

THE TRIAD OF BEANS

should refer to the table when reading through the code in this chapter or

when programming your own entity bean classes.

Looking to see how BMP and CMP method implementations compare? Appendix E

has a table comparing them.

Container-Managed Persistence Example:
A Product Line

Let’s see a quick demonstration of CMP in action, applied to the concept of a
product line.

If you work for a product-based company, your company’s product line is the
suite of products that your company offers. For example, if you're an appli-
ance company, you might offer a dishwasher, a stove, and a dryer. If you're a
computer hardware company, you might offer memory, hard disks, and
processors. We're going to model a generic product as an entity bean that
uses CMP.

The object model for our product line is detailed in Figure 7.3.

<<interface>>
java.rmi.Remote

Comes with Java 2 Platform

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean
<<interface>> <<interface>> <<interface>> <<interface>>
javax.ejb.EJBLocalObject javax.ejb.EJBObject javax.ejb.EJBHome javax.ejb.EJBLocalHome Z%
<<interface>>
javax.ejb.EntityBean
Comes with EJB Distribution A
<<interface>> <<interface>> <<interface>> <<interface>>
Product Product
Product Product Product Product ;
Local Interface Remote Interface Home Interface Local Home Interface Bean Abstract Class Primary Key Class
Supplied by Bean Provider (We:Will Write)
Product Product Product Product Product
EJB Local Object EJB Object Home Object Local Home Object Bean Subclass

Generated for Us by Container Vendor's Tools

Figure 7.3 The object model for our product line.

Writing Container-Managed Persistent Entity Beans 181

Let’s take a look at each of the files that we must create for our entity bean
component.

Product.java

Remote clients will call our remote interface. The only case in which a remote
client should call an entity bean is when you are writing small test applications
to exercise your entity bean’s API, as we will do in this example. Otherwise
you should use the local interface for performance reasons, and wrapper your
entity beans with session beans (see Chapter 13). The remote interface is
shown in Source 7.1.

Our remote interface is quite simple. It has methods to modify the entity bean
instance’s fields and throws remote exceptions to indicate system-level errors.

package examples;

import javax.ejb.*;
import java.rmi.RemoteException;

/**
* These are the public business methods of ProductBean.
*
* This remote interface is what remote clients operate
* on when they interact with beans. The EJB container
* will implement this interface; the implemented object
* is called the EJB Object, which delegates invocations
* to instances of the entity bean class.
*/

public interface Product extends EJBObject {

public String getName () throws RemoteException;
public void setName (String name) throws RemoteException;

public String getDescription() throws RemoteException;
public void setDescription(String description) throws

RemoteException;

public double getBasePrice() throws RemoteException;
public void setBasePrice(double price) throws RemoteException;

public String getProductID() throws RemoteException;

Source 7.1 Product.java.

182 THE TRIAD OF BEANS

ProductLocal.java

Our local interface is our business interface called by local clients, such as ses-
sion beans or other entity beans. It is shown in Source 7.2.

The local interface is trivially different than the remote interface. The only dif-
ferences are the lack of thrown RemoteExceptions and the fact that we extend
EJBLocalObject rather than EJBObject.

ProductHome.java

Next, we have the product’s home interface, which is shown in Source 7.3. As
with the remote interface, this home interface should be used only by remote
clients, such as a standalone application.

Our home interface defines a single create() method to create a new product in
the database. It returns a Product EJB object so the client can manipulate the

package examples;
import javax.ejb.*;

/**
* These are the public business methods of ProductBean.
*
* This local interface is what local clients operate
* on when they interact with our bean. The container
* will implement this interface; the implemented object
* is called the EJB local object, which delegates
* invocations to instances of the entity bean class.
*/
public interface ProductLocal extends EJBLocalObject {

public String getName () ;
public void setName (String name) ;

public String getDescription() ;
public void setDescription(String description) ;

public double getBasePrice() ;
public void setBasePrice(double price);

public String getProductID() ;

Source 7.2 ProductlLocal.java.

Writing Container-Managed Persistent Entity Beans 183

package examples;

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util.Collection;

/**

* This is the home interface for Product. This interface
* is implemented by the EJB container. The implemented

* object is called the Home Object, and serves as a

* factory for EJB Objects.

* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in the bean class.
*/

public interface ProductHome extends EJBHome {

/*
* Creates a product

* @param productID The number of the product (unique)

* @param name The name of the product

* @param description Product description

* @param basePrice Base Price of product

*

* @return The newly created EJB Object.

*/

Product create(String productID, String name, String description,

double basePrice) throws CreateException, RemoteException;

// Finder methods. These are implemented by the

// container. You can customize the functionality of
// these methods in the deployment descriptor through
// EJB-QL and container tools.

public Product findByPrimaryKey (ProductPK key) throws
FinderException, RemoteException;

public Collection findByName (String name) throws FinderException,
RemoteException;

public Collection findByDescription (String description) throws
FinderException, RemoteException;

public Collection findByBasePrice (double basePrice) throws
FinderException, RemoteException;

Source 7.3 ProductHome.java.

184 THE TRIAD OF BEANS

public Collection findExpensiveProducts (double minPrice) throws
FinderException, RemoteException;

public Collection findCheapProducts (double maxPrice) throws
FinderException, RemoteException;

public Collection findAllProducts () throws FinderException,
RemoteException;

}

Source 7.3 ProductHome.java (continued).

entity bean data and throws a javax.ejb.CreateException to indicate an
application-level problem.

We also expose all sorts of finder methods to find existing products. One of the
finders returns a single EJB object, while others return a java.util.Collection of
multiple EJB objects. This is needed if the finder methods find more than one
matching object. Note that findByPrimaryKey() should never return a collec-
tion, because primary keys must be unique.

ProductLocalHome.java

Our entity bean’s local home interface is the more optimized (see Chapter 2)
home interface that session beans or other entity beans should use. The code is
in Source 7.4.

ProductPK. java

Our primary key class is defined by ProductPK java, shown in Source 7.5. This
unique identifier uses a productID that could represent the product’s SKU
number.

As with BMP, CMP dictates that your primary key class must be serializable.
Because the EJB container is persisting for you, it may need to query the pri-
mary key class and manipulate or compare its fields with the fields in your
bean. Thus, an important restriction with CMP is that the fields you have in
your primary key class must come from the container-managed fields defined
in your deployment descriptor.

In our example, the ProductPK class is valid because it is serializable and
because its public fields come from our container-managed fields, which we
will define shortly in the deployment descriptor.

Writing Container-Managed Persistent Entity Beans

package examples;

import javax.ejb.*;

import java.util.Collection;

/**

*

*

*

*/

This is the local home interface for Product.

This interface is implemented by the EJB container.

The implemented object is called the local home object,
and serves as a factory for EJB local objects.

One create() method is in this Home Interface, which
corresponds to the ejbCreate() method in the bean class.

public interface ProductlLocalHome extends EJBLocalHome {

/*
* Creates a product

* @param productID The number of the product (unique)
* @param name The name of the product
* @param description Product description
* @param basePrice Base Price of product
*
* @return The newly created EJB local Object.
*/
ProductLocal create(String productID, String name, String

description, double basePrice) throws CreateException;

// Finder methods. These are implemented by the

// container. You can customize the functionality of
// these methods in the deployment descriptor through
// EJB-QL and container tools.

public ProductLocal findByPrimaryKey (ProductPK key) throws

FinderException;

public Collection findByName (String name) throws FinderException;

public Collection findByDescription(String description) throws

FinderException;

public Collection findByBasePrice(double basePrice) throws

FinderException;

public Collection findExpensiveProducts (double minPrice) throws

FinderException;

Source 7.4 ProductLocalHome.java.

186

THE TRIAD OF BEANS

public Collection findCheapProducts (double maxPrice) throws
FinderException;

public Collection findAllProducts () throws FinderException;

Source 7.4 ProductLocalHome.java (continued).

package examples;

import java.io.Serializable;

/**
* Primary Key class for our 'Product' Container-Managed
* Entity Bean
*/

public class ProductPK implements java.ilo.Serializable {

/*
* Note that the primary key fields must be a
* gsubset of the the container-managed fields.
* The fields we are marking as container-managed in
* our Bean are productID, name, desc, and basePrice.
* Therefore our PK fields need to be from that set.
*/
public String productlID;

public ProductPK (String productID) {
this.productID = productID;

public ProductPK() {}

public String toString() {

return productID.toString() ;

public int hashCode() {
return productID.hashCode () ;

public boolean equals (Object prod) {
return ((ProductPK)prod) .productID.equals (productlID) ;

Source 7.5 ProductPK.java.

Writing Container-Managed Persistent Entity Beans 187

ProductBean.java

Next, we have our container-managed entity bean implementation, Product-
Bean.java, shown in Source 7.6.

package examples;
import javax.ejb.*;

/**
* Entity Bean that demonstrates Container-Managed persistence.
*
* This is a product that’s persistent. It has an ID #, a name,
* a description, and a base price.
*/

public abstract class ProductBean implements EntityBean ({

protected EntityContext ctx;

public ProductBean() {

public abstract String getName () ;

public abstract void setName (String name) ;

public abstract String getDescription() ;

public abstract void setDescription(String description) ;
public abstract double getBasePrice() ;

public abstract void setBasePrice(double price);

public abstract String getProductID() ;

public abstract void setProductID(String productID) ;

// Begin EJB-required methods. The methods below
// are called by the Container, and never called
// by client code.

Source 7.6 ProductBean.java.

188 THE TRIAD OF BEANS

* Called by Container.
* Implementation can acquire needed resources.
*/
public void ejbActivate() {
System.out.println("ejbActivate() called.");

/**

* EJB Container calls this method right before it
* removes the Entity Bean from the database.

* Corresponds to when client calls home.remove() .

*/
public void ejbRemove () {
System.out.println("ejbRemove () called.");
}
/‘k‘k

* Called by Container.
* Releases held resources for passivation.

*/
public void ejbPassivate() {
System.out.println("ejbPassivate () called.");
}
/**

* Called from the Container. Updates the entity bean
* instance to reflect the current value stored in
* the database.

* Since we’'re using Container-Managed Persistence, we
* can leave this method blank. The EJB Container will
* automatically load us in the subclass.
*/
public void ejbLoad() {
System.out.println("ejbLoad() called.");

* Called from the Container. Updates the database to
* reflect the current values of this in-memory Entity Bean
* instance representation.

* Since we’re using Container-Managed Persistence, we can
* leave this method blank. The EJB Container will
* automatically save us in the subclass.
*/
public void ejbStore() {

Source 7.6 ProductBean.java (continued).

Writing Container-Managed Persistent Entity Beans 189

System.out.println("ejbStore() called.");

* Called by Container. Associates this Bean instance with
* a particular context. Once done, we can query the
* Context for environment info
*/
public void setEntityContext (EntityContext ctx) {
System.out.println("setEntityContext called") ;
this.ctx = ctx;

/**
* Called by Container. Disassociates this Bean instance
* with a particular context environment.
*/
public void unsetEntityContext () {
System.out.println ("unsetEntityContext called") ;
this.ctx = null;

/**
* Called after ejbCreate(). Now, the Bean can retrieve
* its EJBObject from its context, and pass it as a 'this’
* argument.
*/
public void ejbPostCreate(String productID, String name, String
description, double basePrice) {
System.out.println("ejbPostCreate() called") ;

* This is the initialization method that corresponds to the
* create() method in the Home Interface.

* When the client calls the Home Object’s create() method,
* the Home Object then calls this ejbCreate() method.

* We need to initialize our Bean'’s fields with the
* parameters passed from the client, so that the Container
* can create the corresponding database entries in the
* gubclass after this method completes.
*/
public String ejbCreate (ProductPK productID, String name,
String description, double basePrice)
throws CreateException ({

Source 7.6 ProductBean.java (continued).

190

THE TRIAD OF BEANS

System.out.println("ejbCreate() called");

setProductID (productID) ;
setName (name) ;
setDescription(description) ;
setBasePrice (basePrice) ;

return new ProductPXK (productID) ;

// No finder methods
// (they are implemented by Container)

Source 7.6 ProductBean.java (continued).

This bean is more complex than our bank account example. We’ve defined
many finder methods, and we have more persistent fields. Yet even though
we’ve added this complexity, our bean is less than 40 percent of the size of our
Bank Account bean. This is an amazing reduction in code complexity. And
because our bean has no database code in it, we have reduced the chance for
bugs in our bean due to user error working with JDBC code. This is a huge sav-
ings in development and testing time.

We do not have any fields, since the container declares them in the subclass.
We have a few abstract get/set methods, which the container also implements
in the subclass. The only really interesting method is ejbCreate(), which takes
the parameters passed in from the client and calls the bean’s own abstract set()
methods to populate the bean with the initialization data. The container then
performs a SQL INSERT in the subclass once ejbCreate() concludes.

The rest of our bean is just empty EJB-required methods and comments. In
fact, if we took the comments, whitespace, and println’s out, the bean would
just be this:

package examples;
import javax.ejb.*;

public abstract class ProductBean implements EntityBean {
protected EntityContext ctx;

public abstract String getName () ;

Writing Container-Managed Persistent Entity Beans 191

public abstract void setName (String name) ;

public abstract String getDescription() ;

public abstract void setDescription(String description) ;
public abstract double getBasePrice() ;

public abstract void setBasePrice (double price);

public abstract String getProductID() ;

public abstract void setProductID(String productID) ;

public void ejbActivate() {}

public void ejbRemove () {}

public void ejbPassivate() {}

public void ejbLoad() {}

public void ejbStore() {}

public void setEntityContext (EntityContext ctx) {
this.ctx = ctx;

}

public void unsetEntityContext () { this.ctx = null; }

public void ejbPostCreate(String productID, String name,
String description, double basePrice) {}

public String ejbCreate(String productID, String name,
String description, double basePrice) {
setProductID (productID) ;
setName (name) ;
setDescription(description) ;
setBasePrice (basePrice) ;
return productID;

The Deployment Descriptor

We now need to inform our container about our entity bean, including our
container-managed fields and our EJB-QL. The deployment descriptor is
shown in Source 7.7.

Our deployment descriptor begins by identifying the name of the bean, then
the bean class, and so on, which is the same as BMP. We then define the con-
tainer-managed fields, which must match the abstract get/set methods in the
enterprise bean class.

The bulk of the descriptor following this is the code for our queries. For exam-
ple, the findExpensiveProducts() finder method locates all products that are
more expensive than the double parameter passed in. To instruct the container
on how to implement this finder functionality, we define our EJB-QL as
follows:

<! [CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice > ?1]]>

192 THE TRIAD OF BEANS

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>Product</ejb-name>
<home>examples.ProductHome</home>
<remote>examples.Product</remote>
<local-home>examples.ProductLocalHome</local-home>
<local>examples.ProductLocal</local>
<ejb-class>examples.ProductBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>examples.ProductPK</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>
<abstract-schema-name>ProductBean</abstract-schema-name>

<cmp-field>
<field-name>productID</field-name>

</cmp-field>

<cmp-field>
<field-name>name</field-name>

</cmp-field>

<cmp-field>
<field-name>description</field-name>

</cmp-field>

<cmp-field>
<field-name>basePrice</field-name>

</cmp-field>

<query>
<query-method>

<method-name>findByName</method-name>
<method-params>
<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-qgl>

<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE name =
?21]]1>

</ejb-gl>

Source 7.7 ejb-jarxml.

Writing Container-Managed Persistent Entity Beans 193

</query>

<query>
<query-method>
<method-name>findByDescription</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE description
= ?1]1>
</ejb-qgl>
</query>

<query>
<query-method>
<method-name>findByBasePrice</method-name>
<method-params>
<method-param>double</method-param>
</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE basePrice =
?21]11>
</ejb-gl>
</query>

<query>
<query-method>
<method-name>findExpensiveProducts</method-name>
<method-params>
<method-param>double</method-param>
</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE basePrice >
?111>
</ejb-gl>
</query>

<query>
<query-method>
<method-name>findCheapProducts</method-name>
<method-params>
<method-param>double</method-param>
</method-params>

Source 7.7 ejb-jar.xml (continued).

194

THE TRIAD OF BEANS

</query-method>
<ejb-qgl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE basePrice <
?21]]1>
</ejb-gl>
</query>

<query>
<guery-method>
<method-name>findAllProducts</method-name>
<method-params>
</method-params>
</query-method>
<ejb-qgl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE productID
IS NOT NULL]]>
</ejb-gl>
</query>

</entity>
</enterprise-beans>

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>Product</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

</ejb-jar>

Source 7.7 ejb-jar.xml (continued).

When the container interprets this EJB-QL, it generates database access code
(such as JDBC) to find all of the expensive products whose basePrice column is
greater in value than the double passed in, represented by the ?1. Whenever a
client wants to execute a finder method on the home object, the container auto-
matically runs the database access code.

Notice also the word CDATA. This instructs the container’s XML parser to
ignore the text SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice
> ?1. This is important because the container’s XML parser may think that the

Writing Container-Managed Persistent Entity Beans 195

text inside the CDATA section does not comply with the XML standard; it may
think the > character is actually the closing of an XML tag, rather than a less-
than sign. Thus, all EJB-QL must be enclosed in CDATA sections.

The end of our descriptor associates transactions with our entity bean, which
we’ll learn about in Chapter 10.

The Container-Specific
Deployment Descriptor

In addition to the deployment descriptor, we need to tell the container exactly
how to perform persistent operations. This is one trade-off of CMP—you still
need to declare persistent rules, rather than code them into your bean using
JDBC or SQL/]J.

If you're using a relational data store, you need to define exactly how your
entity bean’s public fields map to that database. Thus, we must define a series
of object-relational mapping entries. These entries map entity bean fields to
relational database column names. The EJB container uses this mapping when
storing or retrieving our container-managed fields from the database. Note

When to Use Custom Primary Key Classes

In our bean we've declared a custom primary key class, ProductPK. We then have
this element in our deployment descriptor:

<prim-key-class>examples.ProductPK</prim-key-class>

This is not strictly necessary, however. You can choose not to invent a custom
primary key class and just use one of your container-managed fields as the pri-
mary key. For example, we could use the productID String field as the primary
key, rather than wrapping it in another primary key wrapper class. Then we would
declare the primary key class to be a java.lang.String, and we would have this
element after we declare the container-managed fields:

<primkey-field>productID</primkey-field>

When should you use a custom primary key class, and when should you use
one of your fields? In our opinion, you should avoid using your own fields as pri-
mary key classes. The reason is because having a primary key class wrapper iso-
lates you from changes to how you'd like to be uniquely represented in an
underlying storage. Having a primary key class wrapper makes it much easier to
change how you’d like to be uniquely identified without breaking code.

that this is very EJB container-specific! Some EJB containers support object
databases and thus do not have a mapping into a two-dimensional relational
database. Consult your E]JB container’s documentation for more information.
Our product line’s persistent entries for a relational database are shown in
Table 7.2. See the book’s accompanying source code for the actual descriptor.

Client.java

Our client code is a simple suite of test cases to try out our bean, as shown
Source 7.8.

Because this standalone application runs in a separate process from the appli-
cation server, for testing purposes this client calls through the bean’s remote
interface rather than a local interface. However, in a real-world scenario, we
would wrap this entity bean with a session bean and calling through its local
interface.

The client performs a JNDI lookup to acquire the home object and create some
entity bean data. We then try out a couple of finder methods. We can loop
through the finders’ returned collection and call business methods on each EJB
object. We then destroy all the EJB objects we created in a finally{} clause.

Running the Client Program

To run the client program, type a command similar to the following (depend-
ing on your EJB container’s JNDI initialization parameters):

java -D java.naming.factory.initial=weblogic.jndi.
WLInitialContextFactory -Djava.naming.provider.url=t3://localhost:7001
examples.ProductClient

The initialization parameters are required by JNDI to find the home object, as
we learned in Chapter 3.

Table 7.2 Sample Persistent Settings for ProductBean
OBJECT/RELATIONAL SETTING

(ENTITY BEAN FIELD = RELATIONAL COLUMN NAME)
productiD=id

name=name
description=description

basePrice=basePrice

Writing Container-Managed Persistent Entity Beans 197

package examples;

import javax.ejb.*;

import javax.naming.*;

import java.rmi.*;

import javax.rmi.PortableRemoteObject;
import java.util.*;

/**
* Client test application on a CMP Entity Bean, Product.
*/

public class ProductClient {

public static void main(String[] args) throws Exception {

ProductHome home = null;

try {

/*

* Get a reference to the Product Home Object - the

* factory for Product EJB Objects

*/
Context ctx = new InitialContext (System.getProperties());
home = (ProductHome) PortableRemoteObject.narrow (

ctx.lookup ("ProductHome"), ProductHome.class) ;
/*

* Use the factory to create the Product EJB Object

*/
home.create("123-456-7890", "P5-350", "350 Mhz Pentium", 200);
home.create("123-456-7891", "P5-400", "400 Mhz Pentium", 300);
home.create("123-456-7892", "P5-450", "450 Mhz Pentium", 400);
home.create("123-456-7893", "SD-64", "64 MB SDRAM", 50);
home.create("123-456-7894", "SD-128", "128 MB SDRAM", 100);
home.create("123-456-7895", "SD-256", "256 MB SDRAM", 200);
/*

* Find a Product, and print out its description

*/

Iterator i1 = home.findByName ("SD-64") .iterator () ;
System.out.println("These products match the name SD-64:");
while (i.hasNext()) {
Product prod = (Product) PortableRemoteObject.narrow (
i.next (), Product.class);
System.out.println(prod.getDescription()) ;

Source 7.8 Client.java.

198 THE TRIAD OF BEANS

/*

* Find all products that cost $200

*/
System.out.println("Finding all products that cost $200");
i = home.findByBasePrice(200) .iterator () ;

while (i.hasNext()) {
Product prod = (Product) PortableRemoteObject.narrow (
i.next (), Product.class);
System.out.println(prod.getDescription()) ;

}
catch (Exception e) {
e.printStackTrace() ;
}
finally {
if (home != null) {
System.out.println ("Destroying products..");

/*

* Find all the products

*/
Iterator i1 = home.findAllProducts () .iterator () ;
while (i.hasNext()) {

try {
Product prod = (Product) PortableRemoteObject.narrow (

i.next (), Product.class);
if (prod.getProductID() .startsWith("123")) {
prod.remove () ;

}

catch (Exception e) {
e.printStackTrace() ;

Source 7.8 Client.java (continued).

Writing Container-Managed Persistent Entity Beans

199

The life cycle of a container-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean

does not exist

instance.

1: newlnstance()
2:setEntityContext()

y

i

1: unsetEntityContext()
2: JVM will garbage collect
and call finalize()

ejbHome()

pooled

ejbFind()
or
ejbSelect()

1: ejbCreate()

2: ejbPostCreate() 1: ejbActivate(

2: ejbLoad()

f]

y

Activate your bean: Passivate your bean:

A

1: ejbStore()
2: ejbPassivate()

ejbRemove()

ejbLoad()

ready

ejbStore()

(

)

business method

ejbSelect()

Figure 7.4 The CMP entity bean life cycle.

200 THE TRIAD OF BEANS

When we run the client, we first create a few products and then perform a find
for all products that cost $200. Indeed, multiple entity beans were returned in
our collection, as shown below:

These products match the name SD-64:
64 MB SDRAM

Finding all products that cost $200
350 Mhz Pentium

256 MB SDRAM

Destroying products..

The Life Cycle of a CMP Entity Bean

Now that we’ve seen a complete CMP entity bean example, let’s fully under-
stand how the container interacts with CMP entity beans. Figure 7.4 shows
this.

The life cycle of a CMP entity bean is exactly the same as that of a BMP entity
bean, which we fully described at the end of the previous chapter (refer back if
you need to refresh your memory). The only differences are that ejbSelect()
methods can be called from the pooled state or ready state.

Summary

In this chapter, you learned how to write CMP entity beans. We saw how the
bean instance callback methods differ between BMP and CMP. We then went
through an example that modeled a product line. Finally, we wrapped up with
a look at the life cycle of a CMP entity bean.

In the next chapter, we’ll look at the new EJB 2.0 bean type, message-driven
beans.

Introduction to
Message-Driven Beans

communications. Messaging is more appropriate than RMI-IIOP in numerous
scenarios. We'll also learn about message-driven beans, special beans that can be
accessed via messaging and a new addition to the EJB 2.0 specification.

In this chapter, we will learn about messaging, which is a lightweight vehicle for

Specifically, you'll learn about the following:
m An introduction to messaging, including an overview of asynchronous
behavior and message-oriented middleware

m A brief tutorial of the Java Message Service (JMS), which message-driven
beans depend on

Features of message-driven beans
How message-driven beans compare with entity and session beans

How to develop message-driven beans

Advanced message-driven bean topics, gotchas, and possible solutions

Motivation to Use Message-Driven Beans

In previous chapters, you learned how to code session and entity beans—dis-
tributed components that are accessed using RMI-IIOP. RMI-IIOP is a tradi-
tional, heavyweight way to call components. While RMI-IIOP may be useful in
many scenarios, several other areas are challenging for RMI-IIOP. Here are just
three examples.

201

202

THE TRIAD OF BEANS

Performance. An RMI-IIOP client must wait (or block) while the server per-
forms its processing. Only when the server completes its work does the
client receive a return result, which allows it to continue processing.

Reliability. When an RMI-IIOP client calls the server, it has to be running. If
the server crashes or the network crashes, the client cannot perform its
intended operation.

Support for multiple senders and receivers. RMI-IIOP limits you to a single
client talking to a single server at any given time. There is no built-in func-
tionality for multiple clients to broadcast events to multiple servers.

Messaging is an alternative to remote method invocations and is shown in Fig-
ure 8.1. The idea behind messaging is that a middleman sits between the client
and the server. (A layer of indirection solves every problem in computer sci-
ence). This middleman receives messages from one or more message producers
and broadcasts those messages to one or more message consumers. Because of
this middleman, the producer can send a message and then continue process-
ing. He can optionally be notified of the response later when the consumer fin-
ishes. This is called asynchronous programming.

Messaging addresses the three previous concerns with RMI-IIOP as follows.

Performance. A messaging client does not need to block when performing a
request. As an example, when you purchase a book using Amazon.com’s
one-click order functionality, you can continue browsing the site without
waiting to see if your credit card authorizes. Unless something goes
wrong, Amazon.com sends you a confirmation email afterwards. This type
of fire-and-forget system could easily be coded using messaging. When the
user clicks to buy the book, a message is sent that results in credit card pro-
cessing later. The user can continue to browse.

Remote Method Invocations:

Application Application
Messaging:
Application M“:I;;IZ?,?; e Application

Figure 8.1 Remote method invocations vs. messaging.

Introduction to Message-Driven Beans 203

Reliability. If your message-oriented middleware supports guaranteed deliv-
ery, you can send a message and know for sure that it will reach its destina-
tion, even if the consumer is not available. You send the message to the
MOM middleman, and that middleman routes the message to the con-
sumer when he comes back alive again. With RMI-IIOP, this is not possible
because there is no middleman: If the server is down, an exception is
thrown.

Support for multiple senders and receivers. Most message-oriented middle-
ware products can accept messages from many senders and broadcast
them to many receivers. This allows you to have n-ary communications.

Note that messaging also has many disadvantages. Performance, for one, can
be slower in many circumstances due to the overhead of having the messaging
middleman. For a complete comparison of when to (and when not to) use mes-
saging, see Chapter 13.

Message-oriented middleware (MOM) is a term used to refer to any infrastructure
that supports messaging. A variety of products are considered to have a MOM-
based architecture. Examples include Tibco Rendezvous, IBM MQSeries, BEA
Tuxedo/Q, Microsoft MSMQ), Talarian SmartSockets, Progress SonicMQ, and
Fiorano FioranoMQ. These products can give you a whole host of value-added
services, such as guaranteed message delivery, fault tolerance, load balancing
of destinations, subscriber throttling of message consumption, inactive sub-
scribers, and much, much more. By allowing the MOM server to address these
infrastructure issues, you can focus on the business task at hand.

The Java Message Service (JMS)

Over the years, MOM systems have evolved in a proprietary way. Each prod-
uct has its own API, which creates vendor lock-in because code is not portable
to other messaging systems. It also hurts developers, because they need to
relearn each messaging product’s proprietary APL

The Java Message Service (JMS) is a messaging standard, designed to eliminate
many of the disadvantages that MOM-based products faced over past years.
JMS has two parts: an API, which you write code to send and receive mes-
sages, and a Service Provider Interface (SPI) where you plug in JMS drivers. A
JMS driver knows how to talk to a specific MOM implementation. The JMS
promise is that you can learn the JMS API once and reuse your messaging code
with different plug-and-play MOM implementations (an idea similar to the
other J2EE APIs, such as JNDI or JDBC).

204 THE TRIAD OF BEANS

How Does Guaranteed Message Delivery Work?

With guaranteed message delivery, the MOM system persists your messages to a
file, database, or other store. Your message resides in the persistent store until
it's sent to a message consumer, and the message consumer acknowledges the
consumption of the message. If the acknowledgement of a message is not
received in a reasonable amount of time, the message remains on the persistent
store and is redelivered.

This feature is beneficial when the message consumer is brought down on a
regular basis for maintenance, and lost messages are unacceptable. This is espe-
cially true in industries such as financial services, where messages represent
securities changing hands.

A variation on the guaranteed message delivery theme is certified message
delivery. Certified message delivery not only ensures the delivery of a message
from a producer to a consumer, but also generates a consumption receipt that is
delivered to the message originator, indicating a successful consumption of the
message. Certified message delivery is used by producers to better manage com-
munication with consumers.

Another variation of guaranteed message delivery is called store and forward.
Store and forward allows a message producer to successfully send a message to
an inactive MOM system. The producer transparently spools the message to a
local store until the MOM system is reactivated, at which point the message is
delivered to the MOM system and forwarded to any available consumers. Guar-
anteed message delivery without the store-and-forward option requires produc-
ers to send messages to active MOM systems, but consumers do not have to be
active. Store and forward with guaranteed message delivery allows messages to
be sent whether MOM systems or consumers are active or inactive.

Let’s explore the JMS API and see how to write a simple JMS program that
publishes messages.

Messaging Domains

When you perform messaging, you need to choose a domain. A domain is a
fancy word for style of messaging. The types of domains are:

Publish/subscribe (pub/sub). Publish/subscribe is analogous to watching
television. Many TV stations broadcast their signals, and many people lis-
ten to those broadcasts. Thus, with publish/subscribe, you can have many

Introduction to Message-Driven Beans 205

message producers talking to many message consumers. In this sense, the
pub/sub domain is an implementation of a distributed event-driven pro-
cessing model. Subscribers (listeners) register their interest in a particular
event fopic. Publishers (event sources) create messages (events) that are dis-
tributed to all of the subscribers (listeners). Producers aren’t hard-coded to
use specific consumers; rather, the MOM system maintains the subscriber
list.

Point-to-point (PTP). Point-to-point is analogous to calling a toll-free number
and leaving a voice mail. Some person will listen to your voice mail and
then delete it. Thus, with point-to-point, you can have only a single con-
sumer for each message. Multiple consumers can grab messages off the
queue, but any given message is consumed exactly once. In this sense,
point-to-point is a degenerate case of publish/subscribe. Multiple produc-
ers can send messages to the queue, but each message is delivered only to
a single consumer. The way this works is that publishers send messages
directly to the consumer or to a centralized queue. Messages are typically
distributed off the queue in a first-in, first-out (FIFO) order, but this isn’t
assured.

The difference between publish/subscribe and point-to-point is shown in Fig-
ure 8.2.

Publish/Subscribe:

Producer 1 Consumer 1

Topic

Producer 2 Consumer 2

Point-to-Point:

Producer 1

Queue Consumer 1

Producer 2

Figure 8.2 Publish/subscribe vs. point-to-point.

206 THE TRIAD OF BEANS

quest/reply domain is analogous to RMI-11OP. It requires any producer that gener-

? Another domain called request/reply is less broadly used than the others. The re-

ates a message to receive a reply message from the consumer at some later point in
time. Typically, most MOM architectures implement a request/reply paradigm using
the technologies supplied in the point-to-point and publish/subscribe domains.

The JMS API

The JMS API is more involved than RMI-IIOP. You need to become familiar
with many different interfaces to get going. Despite the complexities involved
with working with each of these interfaces, low-level topology issues such as
networking protocol, message format and structure, and server location are
mostly abstracted from the developer.

The JMS programming model is shown in Figure 8.3. It is explained as follows:

1.

Locate the JMS driver. You first need to get access to the driver to the partic-
ular JMS product you're using. You do this by looking up the driver using
JNDI, just like with JDBC. The driver is called a ConnectionFactory.

Create a [MS connection. A JMS Connection is an active connection to the
JMS provider, managing the low-level network communications (similar
to a JDBC connection). You use the ConnectionFactory to get a Connection. If
you're in a large deployment, this connection might be load-balanced
across a group of machines.

Create a [MS session. A JMS Session is a helper object that you use when
sending and receiving messages. It serves as a factory for message con-
sumers and producers, and also allows you to encapsulate your messages
in transactions. You use the Connection to get a Session.

. Locate the JMS destination. A JMS Destination is the channel to which you're

sending or from which you're receiving messages. Locating the right des-
tination is analogous to tuning into the right channel when watching tele-
vision or answering the correct phone, so that you get the messages you
desire. Yourdeployer typically sets up the destination in advance by using
your JMS provider’s tools, so that the destination is permanently setup.
Your code looks up that destination using JNDI. This enables your pro-
grams to use the destination over and over again at runtime.

Create a JMS producer or a [MS consumer. If you want to send messages, you
need to call a JMS object to pass it your messages. This object is called the
producer. To receive messages, you call a JMS object and ask it for a mes-
sage. This object is called the Consumer. You use the Session and Destina-
tion to make a Producer or a Consumer.

Introduction to Message-Driven Beans 207

. . . JMS Server
JMS Driver Client Runtime
Queuet
2: Create JMS Connection Dnnn
[Connection Factory
Serialized Queue2

Message
Communication DDDD
& JMS Connection —‘L_<:> Topic1
3: Create
CICIEO
yd

5: Create
Client —Producer —= JMS Session
or Consumer

. . 6: Send or
] MFéetIDrlt?ve Receive JMS Producer
river Message R\ or
(Connection JMS Consumer
Factory)
4: Lookup

JMS Destination

<>

Naming Service
Such as LDAP

Figure 8.3 Client view of a JMS system.

6. Send or receive your message. If you're producing, you first need to put your
message together. There are many different types of messages, such as
text, bytes, streams, objects, and maps. After you instantiate your mes-
sage, you send it using the Producer. If, on the other hand, you're receiving
messages, you first receive a message using the Consumer, and then crack
it open (depending on the message type) and see what it is.

Everything we just learned applies to both publish/subscribe and point-to-
point messaging. The words in itfalics above represent actual JMS interface
names. There are two different flavors of those interfaces, and the flavor you

use depends on if you're using publish/subscribe or point-to-point. See
Table 8.1 for a list.

As you can see from Table 8.1, point-to-point has two types of message consumers:
a receiver and a browser. What do you think these are for? And why does
publish/subscribe have only one type of consumer?

As an example, the code for a client application that publishes a TextMessage to
a topic using publish/subscribe is provided in Source 8.1.

Most of Source 8.1 is self-explanatory. Here are the answers to a few questions
you might have.

m The parameters to InitialContext should be your JNDI driver information.
If your JMS provider is integrated into your EJB server, the JNDI parame-
ters should be the same as those when you lookup an EJB home. You spec-
ify this via the command-line using the -D switch to the java runtime. See
the book’s accompanying source code for example scripts.

m QOur]NDI name for the TopicConnectionFactory is javax.jms.TopicConnec-
tionFactory but it could be anything—it depends on your container’s pol-
icy and also where you choose to place it using your container’s tools.

m When we create a Session, we pass two parameters: false, which indicates
that we don’t want to use transactions (see Chapter 10 for more on trans-
actions), and Session. AUTO_ACKNOWLEDGE, which indicates how we
should acknowledge messages that we receive. Since our code is sending
(not receiving) messages, this parameter doesn’t matter. If you're curious
about how message acknowledgement works, see Table 8.3 later in this
chapter.

Note that this example does not illustrate point-to-point. The point-to-point
code is basically the same, except we use the point-to-point interfaces listed in

Table 8.1 The Two Flavors of JMS Interfaces

PARENT INTERFACE POINT-TO-POINT PUB/SUB
ConnectionFactory QueueConnectionFactory TopicConnectionFactory
Connection QueueConnection TopicConnection
Destination Queue Topic

Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

Introduction to Message-Driven Beans 209

import javax.naming.*;

import javax.jms.*;
import java.util.*;

public class Client {
public static void main (String[] args) throws Exception {

// Initialize JNDI
Context ctx = new InitialContext (System.getProperties()) ;

// 1: Lookup ConnectionFactory via JNDI
TopicConnectionFactory factory =
(TopicConnectionFactory)
ctx.lookup ("javax.jms.TopicConnectionFactory") ;

// 2: Use ConnectionFactory to create JMS connection
TopicConnection connection =
factory.createTopicConnection() ;

// 3: Use Connection to create session
TopicSession session = connection.createTopicSession (
false, Session.AUTO_ACKNOWLEDGE) ;

// 4: Lookup Desintation (topic) via JNDI
Topic topic = (Topic) ctx.lookup("testtopic");

// 5: Create a Message Producer
TopicPublisher publisher = session.createPublisher (topic);

// 6: Create a text message, and publish it
TextMessage msg = session.createTextMessagel() ;
msg.setText ("This is a test message.");
publisher.publish (msg) ;

Source 8.1 TopicClient.java.

Table 8.1. We'll leave the point-to-point example as an exercise for you.

Note, too, that this example does not demonstrate any consumption logic.
Although message consumption is an important concept, it’s not relevant to
our discussion, because message-driven beans effectively act as our message
consumers.

210

You should now know enough about JMS to be productive with message-
driven beans. If you want to learn more about JMS, a free tutorial is available
on http://java.sun.com. Rather than repeating this free information, let’s
cover some more interesting topics—JMS-E]B integration, advanced message-

driven bean topics, and gotchas.

Single-Threaded versus Multithreaded Beans

One great benefit of EJB is you don't need to write thread-safe code. You design
your enterprise beans as single-threaded components and never need to worry
about thread synchronization when concurrent clients access your component.
Your EJB container automatically instantiates multiple instances of your compo-
nent to service concurrent client requests.

The container’s thread services can be both a benefit and a restriction. The
benefit is that you don’t need to worry about race conditions or deadlock in your
application code. The restriction is that some problems lend themselves well to
multithreaded programming, and that class of problems cannot be easily solved
in an EJB environment.

So why doesn’t the EJB specification allow for multithreaded beans? EJB is
intended to relieve component developers’ worry about threads or thread syn-
chronization. The EJB container handles those issues for you by load-balancing
client requests to multiple instances of a single-threaded component. An EJB
server provides a highly scalable environment for single-threaded components.

If the EJB specification allowed for beans to control threads, then a Pandora’s
box of problems would result. For example, an EJB container would have a very
hard time controlling transactions if beans are randomly starting and stopping
threads, especially because transaction information is often associated with a
thread.

One alternative to threading is to use a transactional messaging API, such as
JMS, that allows for asynchronous actions to occur in a distributed object envi-
ronment. JMS enables you to safely and reliably achieve multitasking without the
beans themselves messing around with threads.

The bottom line is that EJB was not meant be a Swiss army knife, solving every
problem in existence. It was designed to assist with server-side business
problems, which are largely single-threaded. For applications that absolutely
must be multithreaded, EJB may not be the correct choice of distributed object
architectures.

Introduction to Message-Driven Beans 211

Integrating JMS with EJB

JMS-EJB integration is a compelling idea. It would allow EJB components to
benefit from the value proposition of messaging, such as nonblocking clients
and n-ary communications.

To help us figure out why Sun needed to make message-driven beans, let’s
imagine for a moment that we worked at Sun Microsystems. We’d have sev-
eral different approaches to integrating JMS with EJB. They include:

Using a Java object that receives JMS messages to call EJB components.
Rather than coming up with a whole new type of bean, Sun could have
promoted the idea of a Java object that knew how to receive messages as a
wrapper for your other types of EJB components, such as session beans
and entity beans. The problems with this approach are:

m You'd need to write special code to register yourself as a listener for
JMS messages. This is a decent amount of code (as we saw previously).

m Your Java object would need some way of starting up, since it
wrapped your other EJB components. If the class ran in-process to the
container, you would need to use an E]B server-specific startup class to
activate your Java object when the E]B server came up. This is not
portable. If the class ran out-of-process, your application would not be
as elegant and you’d need to deal with multiple processes context-
switching.

m Your Java object wouldn’t receive any services from an EJB container,
such as automatic life cycle management, clustering, pooling, and
transactions. You would need to hard-code this yourself, which is diffi-
cult and error-prone.

= You would need to hard-code the JMS destination name in your Java
object. This hurts reusability, because you couldn’t reuse that Java
object with other destinations. If you read the destination from a disk
(such as with property files), this is a bit clunky:.

Reuse an existing type of EJB component somehow to receive JMS mes-
sages. Sun could have tried to shoehorn session beans or entity beans into
receiving JMS messages. Problems with this approach include:

m Threading. If a message arrives for a bean while its processing other
requests, how can it take that message, given that EJB does not allow
components to be multithreaded?

m Life cycle management. If a JMS message arrives and there are no
beans, how does the container know to create a bean?

212 THE TRIAD OF BEANS

m Transactions. If a bean error occurs, what happens? Does the message
get put back on the queue?

What Is a Message-Driven Bean?

A message-driven bean is a special EJB component that can receive JMS mes-
sages. A message-driven bean consumes messages from queues or topics that
are sent by any valid JMS client. Message-driven beans are new to EJB 2.0.

A message-driven bean is decoupled from any clients that send messages to it.
A client cannot access a message-driven bean through a component interface. [MS is
the API you use to send messages to message-driven beans. This is shown in Fig-
ure 8.4.

The following are some major characteristics of message-driven beans.

EJB Server

Message-Driven
Bean Pool

Sends /

. Publishes
Client JMS Destination

Message-Driven
Bean Instances

The EJB container is a
consumer of messages
from JMS Destination as
specified by the deployer
in the deployment
descriptor.

Figure 8.4 A client calling message-driven beans.

Introduction to Message-Driven Beans 213

A message-driven bean does not have a home interface, local home inter-
face, remote interface, or a local interface. You do not call message-driven
beans using an object-oriented remote method invocation interface. The
reason is that message-driven beans process messages, and those messages
can come from any messaging client, such as an MQSeries client, an
MSMQ client, or (most likely) a J2EE client using the JMS APIL. Message-
driven beans can consume any valid JMS message from either a topic or a
queue.

Message-driven beans have a single, weakly typed business method.
Message-driven beans are merely receiving messages from a JMS destina-
tion, and that JMS destination doesn’t know anything about what’s inside
the messages. Therefore a message-driven bean has only one business
method, called onMessage(). This method accepts a JMS Message, which
could represent anything—a BytesMessage, ObjectMessage, TextMessage,
StreamMessage, or MapMessage. You cannot provide lots of different business
methods on your message-driven beans; rather, you need to crack open the
message at runtime and figure out what to do with it, perhaps with a bunch
of if statements. In formal terms, you don’t get compile-time type-checking
of messages that are consumed; rather, you need to use the instanceof opera-
tor to determine the exact type of a consumed message at runtime. This also
means that you need to be careful to make sure the message you receive is
intended for you. In comparison, session or entity beans can support lots of
strongly typed business methods. Type checking can be performed at com-
pile time to ensure that clients are properly using a given interface.

Message-driven beans do not have any return values. This is because
message-driven beans are decoupled from message producers. The mes-
sage producers don’t wait for your message-driven bean to respond
because they continue processing once the message is sent. The good news
is that it is possible to send a response to a message producer using any
number of design patterns. We discuss this later in this chapter.

Message-driven beans cannot send exceptions back to clients. Again, this is
because message producers don’t wait for your message-driven bean to
receive a message so therefore can’t receive any exceptions. In fact, the EJB
specification prohibits application exceptions from being thrown by a
message-driven bean. A message-driven bean, however, is allowed to gen-
erate system exceptions. The container (rather than the client) handles sys-
tem exceptions.

Message-driven beans are stateless. Message-driven beans hold no conver-
sational state. It would be impossible to spread messages across a cluster of
message-driven beans if a message-driven bean held state. In this sense,
they are similar to stateless session beans because the container can simi-
larly treat each message-driven bean instance as equivalent to all other

214 THE TRIAD OF BEANS

instances. All instances are anonymous and do not have an identity that is
visible to a client. Thus, multiple instances of the bean can process multiple
messages from a JMS destination concurrently.

Message-driven beans can be durable or nondurable subscribers. A durable
subscription to a topic means that a JMS subscriber receives all messages,
even if the subscriber is inactive. If a message is sent to a topic that has an
inactive durable subscriber, the message is persisted and delivered when
the durable subscriber is once again active. A nondurable subscription to a
topic means the subscriber receives only messages that are published while
the subscriber is active. Any messages delivered while the subscriber is
inactive are lost. Since message-driven bean containers are JMS consumers,
the container can register itself as a durable or nondurable subscriber to
messages published to a topic. Durability allows persistent messages to be
sent to a topic even though the application server hosting the message-
driven bean consumers has crashed. The messages will persist until the
crashed application server restarts and the durable subscriber message-
driven bean container positively acknowledges consumption all of the
stored messages.

Developing Message-Driven Beans

Let’s now take a look at what’s involved with developing message-driven
beans.

The Semantics

Message-driven beans are classes that implement two interfaces: javax.jms.
MessageListener and javax.ejb.MessageDrivenBean. Additionally, every message-
driven bean implementation class must provide an ejbCreate() method that
returns void and accepts no arguments. Here is what the javax.jms.MessageLis-
tener interface looks like:

public interface javax.jms.MessageListener {

public void onMessage (Message message) ;

}

Here is what the javax.ejb.MessageDrivenBean interface looks like:

public interface javax.ejb.MessageDrivenBean
extends javax.ejb.EnterpriseBean {

public void ejbRemove ()

Introduction to Message-Driven Beans 215

throws EJBException;

public void setMessageDrivenContext (MessageDrivenContext ctx)
throws EJBException;
}

We summarize the methods that must be provided in every message-driven
bean implementation class in Table 8.2.

Given this simple description, you can see that developing message-driven
beans is significantly less complicated than developing session or entity beans.
The number of methods that have to be implemented is less than with session
or entity beans.

The life cycle of a message-driven bean is also very straightforward. See Fig-
ure 8.5 for a diagram of the life cycle of a message-driven bean. A message-
driven bean is either in the does not exist state or in the pooled state. When a
container decides to add another instance to its pool, it creates a new instance,
passes the instance its MessageDrivenContext object describing the domain, and
then calls ejbCreate() allowing the bean to initialize itself. That application
server will likely create an initial pool of beans at boot time and then increase
the size of the pool as the quantity of messages increases. A container will
remove an instance from the pool and destroy it at system shutdown or when
the container decides it needs to decrease the size of the pool to conserve cache
space. If the container decides to take an instance out of the bean pool, it calls
the bean’s ejbRemove() method.

A Simple Example

Now that we’ve learned the theory behind message-driven beans, let’s apply
our knowledge to construct a simple bean that logs text messages to the screen.
In the future, you could generalize this bean and make it into a generic logging
facility, where you have different log levels depending on the urgency of the
log.

This is a trivial example and not demonstrative of real-world systems. It is,
however, a good template to use when writing your own beans. If you want to
see a real-world message-driven bean in action that uses other EJB compo-
nents, see Chapter 17, along with the book’s accompanying source code.

As we will see when writing this bean, the rules for writing message-driven
beans are trivial. Part of the reason is that message-driven beans are brand new
to the EJB 2.0 specification. As the technology matures, we're sure that Sun will
come up with a bunch of special rules and restrictions for message-driven
beans. For now, we get to bask in the simplicity.

216

Table 8.2 Methods to Be Implemented in Message-Driven Beans

METHOD DESCRIPTION

onMessage(Message) This method is invoked for each message that is consumed by
the bean. The input parameter of the method is the incoming
message that is being consumed. The container is responsible
for serializing messages to a single message-driven bean. A
single message-driven bean can process only one message at
a time. It is the container’s responsibility to provide concurrent
message consumption by pooling multiple message-driven
bean instances. A single instance cannot concurrently process
messages, but a container can. This method does not have to
be coded for reentrancy and should not have any thread syn-
chronization code contained within.

ejbCreate() This method is invoked when a message-driven bean is first
created and added to a pool. Application server vendors can
implement an arbitrary algorithm that decides when to add
message-driven bean instances from the pool. Beans are typi-
cally added to the pool when the component is first deployed
or when message throughput increases. Bean developers
should initialize variables and references to resources needed
by the bean, such as other EJBs or database connections. Bean
developers should initialize only references to resources that
are needed for every message that is consumed by the bean,
as opposed to gaining access and releasing the resource every
time a message is consumed.

ejbRemove() This method is invoked when a message-driven bean is being
removed from a pool. Application server vendors can imple-
ment an arbitrary algorithm that decides when to remove
message-driven bean instances from the pool. Beans are typi-
cally removed from the pool when the component is being
undeployed or when message throughput decreases and idle
instances are wasting system resources. Bean developers
should use this method to clean up any dangling resources
that are used by the bean.

setMessageDriven This method is called as part of the event transition that a
Context(Message message-driven bean goes through when it is being added to
DrivenContext) a pool. This method is called before the ejbCreate() method is

invoked. The input parameter for this method is an instance of
the MessageDrivenContext interface. The input parameter
gives the bean access to information about the environment
that it executes within. The only methods on the Mes-
sageDrivenContext that are accessible by the message-driven
bean are transacted-related methods. Other methods, such as
getCallerPrincipal(), cannot be invoked in this method
because message-driven beans do not have home, local
home, remote, or local interface and have no client-visible
security context.

Introduction to Message-Driven Beans 217

Does Not Exist

1: newlnstance()
2: setMessageDrivenContext() ejbRemove()

3: ejbCreate()

The life cycle of a
message-driven bean.
Each method call shown is
an invocation from the
container to the bean
instance.

Pooled

onMessage()

Figure 8.5 Life cycle of a message-driven bean.

The Bean Implementation Class

Since message-driven beans do not have home, component, local home, or
local interfaces associated with them, we can completely skip designing the
public interface to our bean. We can get right to the heart of development of
this bean and write the implementation class. The code for the implementation
class is shown in Source 8.2.

This is the most basic message-driven bean. Notice the following:
m Our bean implements the javax.ejb.MessageDrivenBean interface that makes
it a message-driven bean.

m Our bean implements the javax.jms.MessageListener interface that provides
the methods necessary for message consumption.

m The setMessageDrivenContext(. ..) method associates a bean with an envi-
ronment. We store the context as a member of the implementation class so
that other methods of the bean can make use of it.

218 THE TRIAD OF BEANS

package examples;

import javax.ejb.*;
import javax.jms.*;

/**
* Sample Message-Driven Bean
*/
public class LogBean implements MessageDrivenBean, MessagelListener {

protected MessageDrivenContext ctx;

/**
* Associates this Bean instance with a particular context.
*/

public void setMessageDrivenContext (MessageDrivenContext ctx) {
this.ctx = ctx;

}

/**
* Initializes the bean
*/

public void ejbCreate() {
System.err.println("ejbCreate()");

}

/**
* Our one business method
*/
public void onMessage (Message msg) {

if (msg instanceOf TextMessage) {

TextMessage tm = (TextMessage) msg;
try {
String text = tm.getText () ;
System.err.println("Received new message : " + text);
}

catch (JMSException e) {
e.printStackTrace() ;
}

}

}

/**
* Destroys the bean

Source 8.2 LogBean.java.

Introduction to Message-Driven Beans 219

Y
public void ejbRemove () {
System.err.println("ejbRemove()") ;
}
}

Source 8.2 LogBean.java (continued).

m The bean is stateless and does not contain any client-specific state that
spans messages. Therefore each bean is identical and has an identical ini-
tialization method—a simple ejbCreate() that takes no arguments.

m The onMessage(. . .) method receives a message, checks to make sure that
the passed-in message is of type TextMessage by using the instanceof opera-
tor, and then downcasts appropriately. If the passed in message is not a
TextMessage, the method just returns. TextMessage is a particular type of
JMS message that has methods for getting and setting the text as the body
of the message. After downcasting the input parameter, the method prints
out the content of the message, if any exists.

m When the bean is being destroyed, there is nothing to clean up so we have
a very simple ejbRemove() method.

Notice that you don’t hard-code message-driven beans for a specific queue or
topic. Your message-driven bean code is independent of destination. The
deployment descriptor determines whether a topic or a queue is consumed, as
we will see.

The Deployment Descriptor

Message-driven beans have only a couple of deployment descriptor tags
applicable to them. The portion of the deployment descriptor relevant to our
simple message-driven bean is shown in Source 8.3.

Table 8.3 contains definitions for additional deployment descriptor tags that
are unique to message-driven beans. All of these tags are optional. Just glance
over it now—it’s not important to fully understand them if you're just starting
to learn message-driven beans. See Appendix C for a complete deployment
descriptor reference.

220 THE TRIAD OF BEANS

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>

<l==

For each message-driven bean that is located in an
ejb-jar file, you have to define a <message-driven> entry
in the deployment descriptor.

-——

<message-driven>

<!-- The nickname for the bean could be used later in DD -->
<ejb-name>Log</ejb-name>

<1-- The fully qualified package name of the bean class -->
<ejb-class>examples.LogBean</ejb-class>

<!-- The type of transaction supported (see Chapter 10) -->
<transaction-type>Container</transaction-type>

<!-- Whether I'm listening to a topic or a queue -->
<message-driven-destination>
<destination-type>javax.jms.Topic</destination-type>
</message-driven-destination>
</message-driven>
</enterprise-beans>
</ejb-jar>

Source 8.3 ejb-jar.xml for the simple bean.

As you can see, developing the deployment descriptor for message-driven
beans is simple. In addition to the characteristics that are definable for all
message-driven beans, application server vendors can provide value-add
extensions in an application server-specific deployment descriptor. For exam-
ple, an application server vendor may provide a deployment descriptor
parameter that defines the maximum size of the message-driven bean pool
and/or another parameter that defines its initial size.

A question that you may be wondering now is, “Exactly how does the appli-
cation server bind a message-driven bean container to a specific topic or
queue?” If you look carefully at the deployment descriptor provided in Source
8.3, the <message-driven-destination> tag specifies whether the bean should
consume queue or topic messages; however, it never indicates which topic or

221

sonunuod

<opow-a3pajmouoe/>
98pasjmouspe-oiny
<apouw-a3pajmoupe=>

‘piepue)S 26 10S 2y}

J0 19sqgns e SI YdIYM ‘xejuhs 10113|as
98essaw 10} sa|n1 939|dwod By} 10y
‘wodrunseel//:dpy woiy s|qepeoj
-umop ‘uonediynads S syl 39S
' 191dey) ul paquosap am se ‘uols
-nyuod 3uisied X ploAe 03 ‘uon
-29s y1yad e ul siy} deim 03 pasu
noA uayy sudis (>) ueyy ss9|

10 (<) ueyj 193ea13 3sn NoA Jj
"aiow pue ‘(JON/4O/ANY)
siojesado [ed130] Dnawyiue se
yons ‘[jam se a1y Ayjeuonduny
MI-10S paiedidwod

SI0W 3SN UED NOA 910/

<lopajas-a8essaw/>

,21anss, = [9na780]
anv 80|, = adAISINr
A._Ouum_wmuwwmﬁmwrcv

I1dINVX3

0} J2UIRUOD BY} |[9} O} paau NOA ‘suoipesuel) paSeuew-ueaq

8uisn a1,noA §I ‘a10j213Y] “UoIESURI) U} SPISINO SINJD0 3ZesSal

ay3 jo uondwinsuod ayj sny} ‘ueaq INoA 03 paIaAIBp uaaq
sey a3essawl sy} JoyD SpUd pue suidaq pue ‘ueaq JNoA ulyym
SINJ20 uolpesuel} sy} ‘(suondpsup.t) pabbpubw-ubaq paj[ed)
suoinpesuel} umo JnoA wei8oid noA §| -ananb ayj uo yoeq

ind Ajjeonnewoine si a8essaw sy} “ydeq S||0J UoideSURI} dY} JI

asnedaq ‘uay} JusWaZpajmoudde 8essa 10 pasu ou Si 1Y |
‘uoiesuel} e ul NoA 03 a8esSaLL L) SI9AI[SP JaUIRIUOD BY) pue

‘(oL 191dey) ul paquosap suondDsuD.} pabpubwi-1auipiuod
Pa]|e2) NOA 10} suonpesuel} d|puey JaUIRIUOD 3y} 19| NOA §|

"P2ISAI[Sp BIe 10)I3|9S
93U} Yolew ey} siapeay yum sadessaw AjuQ 101duossp
juawAhojdap sy ul pauyap e} 10123]9s d3essawl Y}
sa1jdde Jauiejuod sy} ‘98essaw 9y} S9AI9RI UONBUISSP SINT
oy} uay/\ -a8essaw ay} Suipuas a10jeq (,84913s, .jar97b0],)
Apadoigburnsiasabpssaw |2 WySiw jualp ST oy} ‘ajdwexa
104 "IdV SINT Y3 Suisn sadessaw S|\[uo sp[aly Japeay dn s}as
JUBI SINIF ANOA 1511} 's10103|9s a8essawl asn 0] "a8essaw ay} ul
1S9191Ul OU dARY JRY} SIUI|D 0} pPaJaAISp S93eSSaW Jo Jaquinu
oy} Supnpai Aq souewioyiad |[eiano aseanul Asyi—|npamod
A1an a1e s10109]9s a8essa|\ ‘ueaq INoA 0} Juas die sadessaw
UYo1ym ‘spui| 1o ‘s1s)1f Jo3oa]es adessawl i

NOlLdI¥dS3a

8e] <uanup-a8essaw> ay} Joj sjuswa[3-gqns |euondo £°8 Ijqel

<opouw-a3pajmouspe=>

<Jopa|as-a3essow>

JOH1IN

222

I1dINVX3

"9/gpinpuou pue a/gp.inp die <Ajjiqeinp

-uondudsqns> 10} san|eA pijeA 8y ‘sedessawl Jo J9quISqNs
o1doy 9|qeinp e g p|noys ueaq UaALp-a8essaW SIY} JDYRYM
91ed1pUI 0} papn)pul 8q Aew juswsaje <Ajjiqeinp-uondudsqns>
a3 ordoy 'swifxpapf si 3e} <adhy-uoneunssp> ayj §i

"21doj ‘swilxpApf pue anan swl-xpApf a1e <adAy-uoneunssp>
10} sanjeA pijeA ay] “<Anjiqeinp-uondudsqns> pue <adA
-UoIjRUIISOP > :SJUBWSIS-qNS OM] SBY JUSLWI|S SIYL "Wy} SPLISAO
Aew 1aAojdap ueaq ay3 y3noys uans s3ey asay} 03 sanjeA [eniul
3uipinoid 10} a|qisuodsai si 1adojansp ueaq ay] ido} e 1o
ananb e Aq uondwnsuod 1o} papusjui si ueaq UaALIp-a3eSSaW
e Jayiaym o} se 1akojdap ay3 o3 adiape sapinoid Sey siyj

‘sodessaw 93ed1jdnp 93e19]0} Ued NOA JI Ajuo SIy} asn pjnoys
noj 98essaw ajed1jdnp e NoA Suipuas uoneunsap SIf 3y

3 Jo ysu Y3 uni noA ‘y3nous jsey a8essaw ay} aSpajmouspe
jou Aew 31 9dulS "awny uissadoid pue s92IN0SAI SABS 0} 0S
Suiop 91| s|934 ¥ usym a8essaw 3y} 93pajMmoudde 0} JaUIRIUOD
3y} smojje abpajmouydp-yo-sdng o3 3ey siyi Suies ‘pauinial
Ajjnyssaoons sey poyisw ()abpssapyuo s,ueaq usanup-a3essaw
3y} uaym adessaw e a3pajmouyde 0} JI9UIRIUOD Y} SIDI0}
abpajmouypp-0jny 0} 3ey siyy Sumss ‘sadessaw abpajmouydp

NOlLdI¥dS3a

(panunuoo) 8e] <uanlp-a8essaw>> ay} 10} sjuswd[3-gns jeuondo €8 djqel

<Ayjiqeinp-uondudsqns>
<adA-uoneunssp>
<uoneunssp
-uanLp-adessaw>

dOH1IN

Introduction to Message-Driven Beans 223

queue the message-driven bean container should bind to. This is done pur-
posely to make message-driven beans portable across application servers.
Since the names of actual topics and queues deployed into a JMS server are
application server-specific, the mapping of a bean’s container to a specific JMS
server destination has to be done in an application server-specific deployment
descriptor. Most EJB vendors are expected to have a custom deployment
descriptor that binds the bean to a specific destination.

The Client Program

The client application for our simple message-driven bean example is the JMS
client we developed earlier in this chapter in Source 8.1. This shows you the
power of message-driven beans—our client is solely a JMS client, and the
application is never the wiser that a message-driven bean is consuming the
messages.

If you'd like to try this example yourself, see the book’s accompanying source
code for compilation and deployment scripts.

Advanced Concepts

So far, we have discussed the mechanics of with developing message-driven
beans. Now let’s take a deeper look at the support containers can give for
message-driven beans. We'll see how they might integrate with transactions,
provide advanced JMS features, and behave in a clustered environment.

Transactions

Message-driven beans do not run in the same transaction as the producer who
sends the message, because there are typically two transactions associated
with every durable JMS message (one transaction for the producer to put the
message on the queue, and another transaction for the message-driven bean to
get the message off the queue). It is theoretically impossible for the message-
driven bean to participate in the same transaction (and hence the same unit of
work) as the producer, because until the producer commits the transaction, the
message wouldn’t even appear on the queue!

For a complete discussion of transactions and how they apply to message-
driven beans, see Chapter 10.

224

THE TRIAD OF BEANS

Security

Message-driven beans do not receive the security identity of the producer who
sends the message, because there is no standard way to stick security informa-
tion into a JMS message. Therefore you cannot perform EJB security opera-
tions (described in Chapter 9) with message-driven beans.

Load-balancing

Clustering message-driven beans is quite different than clustering session or
entity beans (see Chapter 14). With session and entity beans, your requests are
load-balanced across a group of containers. The load-balancing algorithm
guesses which server is the least-burdened server and pushes requests out to
that server. It's guessing because the client’s RMI-IIOP runtime can never
know for sure which server is the least burdened, because all load-balancing
algorithms are approximation algorithms based on imperfect historical data.
This is called a push model because we are pushing requests out to the server,
and the server has no say about what requests it receives.

With message-driven beans, producers put messages onto a destination. The
messages reside in the destination until a consumer takes the messages off of
the destination, or (if the messages are nondurable) the server hosting the des-
tination crashes. This is a pull model, since the message resides on the destina-
tion until a consumer asks for it. The containers contend (fight) to get the next
available message on the destination.

Thus, message-driven beans feature an ideal load-balancing paradigm and dis-
tribute load more smoothly than session or entity beans. The server that is the
least burdened and asks for a message gets the message. The tradeoff for this
optimal load-balancing is that messaging has extra overhead because a desti-
nation “middleman” sits between the client and the server.

Duplicate Consumption in a Cluster

Since JMS topics use the publish/subscribe model, it’s possible that a message
sent to a JMS topic will be delivered to more than one consumer. Many con-
tainers will create a pool of many message-driven beans instances to concur-
rently process multiple messages, so some concern can arise around
message-driven bean containers that subscribe to JMS topics.

In particular, if a message-driven bean container has pooled five instances of
its message-driven bean type and is subscribed to the DogTopic, how many
consumers will consume a message sent to the DogTopic topic? Will the mes-
sage be consumed by each message-driven bean instance in the container or
just once by a single message-driven bean? The answer is simple: A container

Introduction to Message-Driven Beans 225

that subscribes to a topic consumes any given message only once. This means
that for the five instances that the container created to concurrently process
messages, only one of the instances will receive any particular message freeing
up the other instances to process other messages that have been sent to the
DogTopic.

Be careful, though. Each container that binds to a particular topic will consume
a message sent to that topic. The JMS subsystem will treat each message-
driven bean container as a separate subscriber to the message. This means that
if the same message-driven bean is deployed to many containers in a cluster,
then each deployment of the message-driven bean will consume a message
from the topic it subscribes to. If this is not the behavior you want, and you
need to consume messages exactly once, you should consider deploying a
queue instead of a topic.

For message-driven beans that bind to a queue, the JMS server will deliver any
message on the queue to only one consumer. Each container registers as a con-
sumer to the queue, and the JMS server load-balances messages to consumers
based upon availability. Message-driven beans that bind to queues that are
deployed in a cluster are ideal for scalable processing of messages. For exam-
ple, if you have two servers in your cluster and 50 messages on a queue, each
server will consume on average 25 messages—as opposed to a single server
responsible for consuming 50 messages.

Message-driven beans in a cluster are shown in Figure 8.6. Notice that many
message-driven beans process the same message from Topic #1. Also notice
that only a single bean processes any given message from Queue #1.

Message-Driven Bean Gotchas

Although developing message-driven beans is a straightforward process,
many dark corners and caveats can be encountered unknowingly. In this sec-
tion we uncover some of these message-driven demons and suggest solutions
to help speed you on your way to successful implementation.

Message Ordering

A JMS server is not guaranteed to deliver messages to a pool of message-
driven beans in any particular order. The container likely attempts to deliver
messages in an order that doesn’t impact the concurrency of message process-
ing, but there is no guarantee as to the order that the beans actually process the
message. Therefore message-driven beans should be prepared to process mes-
sages that are not in sequence. For example, a message adding a second ham-
burger to a fast food order might be processed before the message indicating

226 THE TRIAD OF BEANS

Serveri

Message-Driven
Bean Pool

= 0

Queuel-M1

Since messages from a queue

are delivered only to one =0 Message Driven
consumer, the queue can have Topic1-M1 Bean Instances
multiple messages processed
concurrently by different servers
in a cluster!
Server2
JMS Server
Message-Driven
Queuet — g Bean Pool
Queuel-M2
NNNN . <
Message Driven
. s Bean Instances
Topici Topic1-M1
NNNN . <
Server3

Message-Driven

Since messages from a topic can
9 P Bean Pool

be consumed by more than one = O
client, each message-driven bean Queue1-M3
container that binds to a given
topic will receive each message.

Message Driven
Bean Instances

= O

Topic1-M1

Figure 8.6 Message-driven beans in a cluster.

that a new fast food order with a hamburger should be created. Bean develop-
ers must take these scenarios into account and handle them appropriately.

Missed ejpbRemove() Calls

As with session and entity beans, you are not guaranteed that the container
will call your ejbRemove() method when your bean is destroyed. In particular,

227

Using Queues to Partition Business Processing in a Cluster

Suppose you have two clusters of machines: One cluster is configured for a
development and test environment, and the other cluster is configured for a pro-
duction environment. You need to make sure that traffic coming from test clients
are sent to the development cluster, while traffic coming from real clients is sent
to the production cluster.

As one solution, you could setup your JMS server with two queues: Develop-
mentQueue and ProductionQueue. You could deploy a series of JSPs or front-end
stateless session beans that analyze each incoming request, format it into a JMS
message, and then place requests onto one of the queues. Requests that come
from an internal development machine could be placed onto the Developmen-
tQueue, and all other requests could be placed on the ProductionQueue.

On the back end, you could configure two clusters: One cluster has message-
driven beans bound to the DevelopmentQueue, and the other cluster has
message-driven beans bound to the ProductionQueue. The logic for each of these
beans can vary based upon the needs of the system. For example, the behavior of
the message-driven beans bound to the DevelopmentQueue can mimic those
bound to the ProductionQueue but add on debugging statements. You can also
tune each cluster independently based upon load to the system. Since the Pro-
ductionQueue will likely have more throughput than the DevelopmentQueue, you
could independently grow the size of the cluster servicing the ProductionQueue
without impacting the cluster servicing the DevelopmentQueue.

This illustrates a general paradigm of using queues to partition business logic
processing. Rather than the servers pulling messages off a single queue, you pre-
choose which machines get the messages by splitting the queue into two queues.
This is an artificial way to achieve control load-balancing in a JMS system.

if there is a system crash or a crash from within the EJB container, any active
message-driven bean instances are destroyed without going through the
proper life cycle shutdown. Additionally, for any method that throws a system
exception, such as E[BException, the ejbRemove() method is not invoked. Devel-
opers should be alert to this fact and perform any relevant cleanup before
throwing a system exception.

Developers should also be aware that the ejbRemove() method is invoked by
the container only when the container no longer needs that instance. Many
containers pool the necessary number of message-driven bean instances
needed to concurrently handle multiple messages. The boundaries on the
minimum and maximum size of the message-driven bean pool is typically

228 THE TRIAD OF BEANS

set in an application-server specific deployment descriptor. A container adds
and removes message-driven bean instances to and from the pool as appro-
priate. However, since message-driven beans are extremely lightweight
objects, a container generally destroys a message-driven bean instance only
when the EJB itself is being undeployed (the whole EJB component is being
undeployed). For most systems, the only time container undeployment
occurs is at system shutdown or when an administrator decides to undeploy
the component. The important point here is that message-driven bean con-
tainers are rarely undeployed and therefore message-driven instances are
rarely destroyed. As a general rule of thumb, the ejbRemove() method is
rarely invoked.

Poison Messages

When using container-managed transactions (see Chapter 10) with a message-
driven bean, it is easy to code yourself into a situation that causes the genera-
tion of poison messages. A poison message is a message that is continually
retransmitted by a JMS destination to consumer because the consumer contin-
uously fails to acknowledge the consumption of the message. Any time your
message-driven bean does not acknowledge messages to the JMS destination,
you have a situation with potential to create poison messages. See Figure 8.7 to
see a diagram indicating how poison messages can inadvertently be generated.

For example, suppose you have a stock-quoting message-driven bean that
accepts a text message, which represents the stock ticker symbol to be quoted.
Your bean cracks open that message. If the string contained within the mes-
sage matches a stock symbol, the bean retrieves the value of that symbol and

JMS Server JMS Consumer

Queuet

IIII. e,

1: Mesage Sent to Consumer
4: Message Resent to Consumer at a Later Point

]

2: onMessage()
3: Transaction Rolls Back
5: onMessage()
6: Transaction Rolls Back

Figure 8.7 How message-driven beans can cause poison messages.

Introduction to Message-Driven Beans 229

sends a response message. Otherwise, the bean throws a system exception or
calls MessageDrivenContext.setRollbackOnly(). This causes the transaction to be
rolled back, which means the message acknowledgement never to be sent to
the JMS destination. The JMS destination eventually resends the same mes-
sage to the container, causing this same process to occur.

See Source 8.4 for an example of a message-driven bean implementation class
that will cause a poison message scenario. Note that our abuse of theading is
for illustrative purposes only!

package examples;

import javax.ejb.*;
import javax.jms.*;

public class PoisonBean
implements MessageDrivenBean, MessagelListener ({

private MessageDrivenContext ctx;

public void setMessageDrivenContext (MessageDrivenContext ctx) {
this.ctx = ctx;

}
public void ejbCreate() {1}
public void ejbRemove () {}

public void onMessage (Message msg) {
try {
System.out.println("Received msg " + msg.getJMSMessageID()) ;

// Let’s sleep a little bit so that we don’'t
// see rapid fire re-sends of the message.
Thread.sleep (3000) ;

// We could either throw a system exception here or
// manually force a rollback of the transaction.
ctx.setRollbackOnly () ;
}
catch (Exception e) {
e.printStackTrace() ;
}
}
}

Source 8.4 PoisonBean.java.

230 THE TRIAD OF BEANS

Several strategies can resolve pOiSOI”l messages:

m Make sure to not throw any system exceptions for any business logic-
related error conditions. System exceptions like EJ[BException are intended
to indicate system and/or container failure. If this were a session or entity
bean, the ideal solution would be to generate an application exception
and throw it (especially since application exceptions do not force transac-
tions to be rolled back). However, the EJB specification prohibits applica-
tion exceptions from being thrown from the onMessage() method of a
message-driven bean. The ideal solution to this problem would likely
involve logging the business error message and then quietly returning.

m Consider using bean-managed transactions instead of container-managed
transactions. Message consumption and acknowledgement is not part of
the transaction if bean-managed transactions are used. A bean-managed
transaction can be rolled back and the message is acknowledged anyway.

m Some application servers allow you to configure a poison message queue.
Messages that are redelivered a certain number of times is flagged as poi-
son messages, removed from their primary queue, and placed into a poi-
son message queue. Typically, any message that is redelivered from three
to five times can be considered a poison message. You can then bind spe-
cial consumers or message-driven beans to the poison message queue to
handle any unexpected error conditions.

m Some application servers place a retry count value as a property of any
redelivered messages. Each redelivery of a message incrementally
increases the retry count. Your message-driven bean could check the value
of a retry count (if it exists) to see if it has repeatedly consumed the same
message.

m Some application server vendors provide a redelivery delay feature that
administrators can configure to determine how long the JMS destination
delays the redelivery of a message after it receives a negative acknowl-
edgement. This way, your system doesn’t grind to a halt in case of rapid-
fire poison messages.

How to Return Results Back to
Message Producers

The EJB specification does not outline any mechanism that allows a message-
driven bean to propagate a response back to the client that originally gener-
ated the message. So we need to build those facilities ourselves. Figure 8.8
shows how this could be accomplished.

Here is an explanation of Figure 8.8:

Introduction to Message-Driven Beans 231

JMS Server

Incoming Queue 5. MDB consumes

= 0 T request message.
I— In-Message] .

3. Client creates request message with 0
temporary queue as value of JMSReplyTo field. In-Message
4. Client sends request message. Message-Driven—\

Bean Pool —

JMS Client

1. Client creates temporary queue.
2. Client binds consumer to temporary queue. Outgoing Temporary Queue

8. Client receives response message. I
| \ @

Figure 8.8

Message-Driven
Bean Instances

—

= O

Out-Message

6. MDB creates response message.
7. MDB sends response message to
the destination specified in the
JMSReplyTo field of the request
message.

A simple request/response paradigm solution.

The client that generates a JMS message for consumption creates a tempo-
rary destination associated with its Connection. The JMS server temporarily
creates a Topic or Queue and that object exists for the lifetime of the Con-
nection.

The request message that the client sends contains extra information, so
the receiving message-driven bean knows how to reply correctly. Specifi-
cally, the client sticks the name of the temporary queue in the [MSReplyTo
header field of the request message. The message-driven bean can harness
this field to reply on the correct queue. The client also has a unique identi-
fier of the original message in the JMSCorrelationID header field of the
original message. When the message-driven bean replies, it embeds this
original identifier, so the client knows to which original message he’s
receiving a reply.

The client creates a new Session and registers a MessageListener to consume
messages sent to the temporary destination that was just created.

The client sends the message.

232

THE TRIAD OF BEANS

m After consuming the message, the message-driven bean formats a
response and sends it using the JMSReplyTo and [MSCorrelationID
attribute of the received message.

m The client’s MessageListener class asynchronously consumes the message
that is sent to the temporary destination, recognizes that it is a response to
the original message, and processes it.

Even though this scenario seems like a straightforward solution for respond-
ing to clients from within a message-driven bean, it could potentially lead to
some unexpected results. The problem arises if the client itself is an EJB com-
ponent, such as a stateful session bean. When your stateful session bean cre-
ates the temporary destination, that temporary destination has a lifespan
equal to the lifespan of the JMS connection that your bean currently holds. If
your bean is passivated (meaning swapped out of memory), then you need to
release that connection. The temporary destination then goes away, and
you've lost all messages delivered to that temporary destination while you
were passivated, even if you recreate the destination after you are swapped
into memory again.

We propose two possible solutions to this problem:

1. Don’t use a stateful session bean. Instead the end client, such as a servlet,
application, or JSP tag library (rather than the stateful session bean), cre-
ates a temporary queue that all response messages are sent to. The stateful
session bean is therefore not holding onto a connection, eliminating any
danger of the destination going away because of passivation. See the
book’s accompanying source code for an implementation of this solution.

The advantages of using this architecture include:

Ease of implementation. Creating temporary queues doesn’t require any
extra configuration from an administrator, whereas setting up a dedicated
response topic requires management on the part of the administrator and
your application.

Security. Since temporary queues are bound to a particular connection,
malicious clients cannot bind to a temporary queue and intercept response
messages.

Immediate client notification. Since the remote client creates and manages
the receiving logic for the temporary queue, the client is notified immedi-
ately when a response message is generated, rather than having to wait for
a middleman session bean to respond.

The disadvantages of this architecture include:

Introduction to Message-Driven Beans 233

No persistent messages. Temporary queues cannot have persistent stores
associated with them and therefore cannot support guaranteed message
delivery. If the system fails while a response message is located on the tem-
porary queue, the message will be lost.

Poor abstraction. Since temporary queues are associated with a Connection
object, a stateful session EJB cannot perform middle-tier management of
the request/response process. It might be more natural to abstract away the
JMS request/response logic from the client.

2. A permanent response topic is configured and deployed in the JMS server.
All response messages are delivered to the same response topic for all
clients. Clients filter out the messages that belong to them by registering a
message selector with the JMS server. Any request message that is sent
has a custom application property called ClientName=MyID where MyID
varies for each client. The message-driven bean that consumes the request
message takes the application property from the request message and
inserts the same property in the response message. All response messages
are sent to the same response topic irrespective of the client. Figure 8.9
illustrates this scenario, and the book’s accompanying source code has its
implementation.

The advantages of using this architecture include:

Better fault tolerance. Because this architecture proposes that a permanent
topic be set up for all outgoing messages, the response topic could be asso-
ciated with a persistent store. All outgoing messages could then be sent
persistently with guaranteed message delivery. Temporary topics and
queues cannot have persistent messages delivered to them. This could be
ideal for a data retrieval system. For example, suppose you had a remote
client that randomly connected to the central server requesting a download
of the latest market data as it pertains to that client. The data could be any-
where from 1K to 1IMB. Let’s also suppose that for situations where a large
amount of data needs to be retrieved for the client, you want to break up
the data chunks into 100K messages. If the client needed to retrieve 1MB of
data, you would need to send 10 response messages. All of the response
messages could be sent with guaranteed message delivery. If the remote
client application were to fail during the download process, it could easily
resume from the last response message that it received instead of having to
restart the entire download process.

Better filtering. You can add on additional filtering of response messages
through the message selector that the client registers with the JMS server.
In the example provided with this book, the client registers to receive
messages that have an application property ClientName=MyID. You could

234 THE TRIAD OF BEANS

conceivably add on application properties about the response message that
the client filters on. These properties could be message size, message
importance, and so on.

The main disadvantage of this architecture is lack of security. Since the JMS
specification does not have any security restrictions on which clients can
bind which message selectors, any client can register any message selector.
This presents the opportunity for a malicious client to register for con-
sumption of response messages that are destined for another client. This
malicious behavior is not possible with temporary destinations. Of course,
if you're secured by a firewall, security probably isn't an issue. Also, it
would take a pretty snazzy developer to actually figure out that you're
sending messages and register a message listener.

As a final note, it is important to mention that this approach allows a ses-
sion EJB to act as a mediator between the client and the back-end system, as
mentioned in the actual description of the problem. By using an intermedi-
ary session EJB, security can be improved, because the topic that response
messages are delivered to can be made available only internally by simply
not exposing it to a client or blocking the message server using a firewall or

2. Client creates request message with

application property:ClientName=MyiD. JMS Server
MyID changes for each client. 4. MDB consumes
3. Client sends request message. Incoming Queue request message.

/

=] l
In-Message NN NN

Message-Driven
JMS Client Bean Pool T\

/I

= 0

In-Message

Message-Driven
Bean Instances

—

1. Client binds consumer to permanent OutgoingResponseTopic
response topic. The registration on the 5 Dunu
topic has a message selector that will

filter out only messages that have an
application property: ClientName=MyID.
MyID changes for each client. 5. MDB creates response message. The MDB
7. Client receives response message. sets the response message ClientName

property to be the value of the request message.
6. MDB sends response to response topic.

Out-Message|

/

Figure 8.9 Another request/response paradigm solution.

Introduction to Message-Driven Beans

235

other security measure. The session EJB can be coded to filter out messages

based upon the logged-in user name.

An alternative request/response paradigm.

If you don't feel like writing your own request/response code as we’ve just
described, you can tap into JMS’s facilities to help you. JMS has two special
classes, javax.jms.QueueRequestor and javax.jms.TopicRequestor, that implement
a simple request/response paradigm. You call a method called request() that
takes as input the request message and returns the response message. This is

implemented in the book’s accompanying source code.

The downsides to this approach are:

You need to block when waiting for a response. You can’t continue process-
ing and do other things, which is one of the major advantages of messag-

ing in the first place.

You can’t use transactions. If you did, the outgoing message would be

buffered until the transaction committed. Since the QueueRequestor class
doesn’t commit right away, but instead blocks until it receives a response
message, it will block indefinitely. The outgoing request message will wait

forever to be flushed from the buffer. See Chapter 10 for more on
transactions.

The Future: Asynchronous Method
Invocations

One of the downsides to message-driven beans is that you need to learn a
whole new AP, JMS, to call them. This API is highly procedural in nature,
because you are not invoking lots of different business methods on your mes-
sage-driven bean; rather, you are sending messages using the J]MS API, and the
server has a single method to crack the message open and then call the

intended method using a giant if statement.

An asynchronous method invocation is a real method invocation executed in an
asynchronous fashion. You are actually calling business methods on the server,
such as logMessage() or quoteStock(). You can choose whether you want to
block and wait for an asynchronous response or to immediately return and to
not wait for a response. Furthermore, the server can take on the context infor-

mation of the client.

Asynchronous RMI and Microsoft’s Queued Components are asynchronous
method invocation infrastructures. CORBA also has some support for this,

236

THE TRIAD OF BEANS

with a slightly different definition of deferred synchronous invocations: “A
request where the client does not wait for completion of the request, but does
intend to accept results later.”

We hope a future EJB specification supports asynchronous method invoca-
tions. Until then, you'll have to build such facilities on top of JMS yourself,
perhaps by writing a code generator.

Summary

In this chapter, we’ve learned about developing message-driven beans and the
pitfalls associated with doing asynchronous development with EJBs. We
started by learning about the various benefits of developing asynchronous
components and how message-driven beans compare to their session and
entity bean counterparts. We looked at how to build a message-driven bean
and deploy it. Next we looked at how a message-driven bean behaves in its
environment, including how it interacts with transactions. Finally, we took a
look at the common pitfalls of using message-driven beans and proposed
some solutions.

Adding Functionality to
Your Beans

n previous chapters, you learned the fundamentals of EJB programming. In
this chapter, we’ll build on that knowledge and cover a slew of essential top-
ics, including:

m How to call beans from other beans

= How to use environment properties to customize your beans and access
those environment properties at runtime

m How to access resource factories (such as JDBC or JMS drivers) from your
bean

m How to use the E]JB security model
m How to use EJB object handles and EJB home handles

This knowledge is key for building nontrivial EJB deployments. So let’s get to
it!

Calling Beans from Other Beans

Any nontrivial EJB object model has layers of beans calling other beans. For
example, a bank teller bean might call a bank account bean, or a customer bean
might call a credit card bean. In this chapter, we'll use the example of:

m A pricing engine that computes prices of products, using all sorts of inter-
esting rules, such as discounts, taxes, and shipping costs.

237

238 THE TRIAD OF BEANS

m A catalog engine that is a catalog for products, retrieving products from
the database as necessary.

The pricing engine calls the catalog engine. For simplicity, we'll assume that

both of these beans are stateless session beans, since that’s what you've
learned so far.

Default JNDI Lookups

For your bean to call another bean, you must go through the same process that
any other client would go through. Your bean might:

—_

. Look up the other bean’s home object via JNDI
2. Call create() on the home object

3. Call business methods on the E]JB object

4. Call remove() on the E]JB object

As we learned about earlier, to lookup a home via JNDI, you first need to sup-
ply INDI initialization parameters, such as the JNDI driver you're using, which
differs from container to container. But if you're writing a bean that calls
another bean, how do you know what JNDI service provider to use? After all,
your beans should be container-independent. Hard-coding that JNDI informa-
tion into your bean would destroy portability.

The good news is that if you're looking up a bean from another bean, you
don’t need to supply any JNDI initialization parameters. You simply acquire a
default JNDI initial context. The container sets the default JNDI initial context
before your bean ever runs. For example, the following code snippet is taken
from a bean calling another bean:

// Obtain the DEFAULT JNDI initial context by calling the
// no-argument constructor
Context ctx = new InitialContext();

// Look up the home interface
Object result = ctx.lookup("java:comp/env/ejb/CatalogHome") ;

// Convert the result to the proper type, RMI-IIOP style
CatalogHome home = (CatalogHome)
javax.rmi.PortableRemoteObject.narrow (
result, CatalogHome.class) ;

// Create a bean
Catalog ¢ = home.create(...);

Adding Functionality to Your Beans 239

The preceding code is portable because nobody ever needs to supply
container-specific JNDI initialization parameters.

Understanding EJB References

Notice from the previous section that we looked up a bean in java:comp/env/ejb.
This is the JNDI location that the EJB specification recommends (but does not
require) you put beans that are referenced from other beans.

Unfortunately, you cannot guarantee that the JNDI location you've specified
will be available. This could happen if your bean has a conflict with another
bean or if the deployer has a funky JNDI tree that is spread out across multiple
domain boundaries.

Thus, your code will break if the JNDI location changes at deployment time.
And often, the deployer is unable to modify your code, because it comes to
him as .class files only. This could happen for example, if you are an indepen-
dent software vendor that ships beans, and you want to protect your intellec-
tual property and make future upgrades easier by preventing customers from
seeing source code.

EJB resolves this situation with EJB references. An E]B reference is a nickname for
the JNDI location that you want to lookup a bean. This nickname may not cor-
respond to the actual JNDI location the deployer sticks your bean into. Your
code looks up a home via its nickname, and the deployer then binds that nick-
name to the JNDI location of his choice, perhaps using symbolic links (an
advanced JNDI feature not covered in this book—see the JNDI specification
for more). Once again, a layer of indirection solves every problem in computer
science.

EJB references are declared in the deployment descriptor. Source 9.1 illustrates
references.

Programming with EJB references is straightforward. Our pricer bean is using
a catalog bean, so inside the pricer bean we simply list all the necessary infor-
mation about the catalog bean in an EJB reference. The deployer then knows
that our pricer bean uses exactly one other enterprise bean—catalog—and no
other. This is useful, because the deployer now knows which class files pricer
depends on and what JNDI location needs to be bound. Similarly, the con-
tainer’s tools can easily inspect the deployment descriptor and verify that the
deployer has done his job.

Note that while this example declares the catalog bean within our deployment
descriptor, we didn’t have to do this. The catalog bean could have been in its
own Ejb-jar file with its own deployment descriptor.

240 THE TRIAD OF BEANS

<enterprise-beans>

<l==
Here, we define our Catalog bean. Notice we use the
"Catalog" ejb-name. We will use this below.
==z
<session>
<ejb-name>Catalog</ejb-name>
<home>examples.CatalogHome</home>

</session>
<session>

<ejb-name>Pricer</ejb-name>
<home>examples.PricerHome</home>

<ejb-ref>
<description>
This EJB reference says that the Pricing Engine
session bean (Pricer) uses the Catalog Engine
session bean (Catalog)
</description>

<l==
The nickname that Pricer uses to look
up Catalog. We declare it so the deployer
knows to bind the Catalog home in
java:comp/env/ejb/CatalogHome. This may not
correspond to the actual location to which the
deployer binds the object via the container
tools. The deployer may set up some kind of
symbolic link to have the nickname point to the
real JNDI location.

-—>

<ejb-ref-name>ejb/CatalogHome</ejb-ref-name>

<l-- Catalog is a Session bean -->
<ejb-ref-type>Session</ejb-ref-type>

<!-- The Catalog home interface class -->
<home>examples.CatalogHome</home>

<1-- The Catalog remote interface class -->

Source 9.1 Declaring an EJB reference.

Adding Functionality to Your Beans 241

<remote>examples.Catalog</remote>

<!-- (Optional) the Catalog ejb-name -->
<ejb-link>Catalog</ejb-1link>
</ejb-ref>
</session>

</enterprise-beans>

Source 9.1 Declaring an EJB reference (continued).

You can also access EJB components from other EJB components through their
local interfaces rather than their remote interfaces. To do this, our deployment
descriptor would be almost exactly the same—except instead of calling the ele-
ment <ejb-ref> we would call it <ejb-local-ref>, instead of <home> we
would use <local-home>, and instead of <remote> we would use <local>.
The JNDI code to lookup the bean would change as well; it would lookup the
local home interface rather than the home interface, and call the local interface
rather than the remote interface:

// Obtain the DEFAULT JNDI initial context by calling the
// no-argument constructor
Context ctx = new InitialContext();

// Look up the home interface
Object result = ctx.lookup("java:comp/env/ejb/CatalogLocalHome") ;

// Convert the result to the proper type. No RMI-IIOP cast
// required since local interfaces are being used.
CatalogLocalHome home = (CatalogLocalHome) result;

// Create a bean
CatalogLocal c¢ = home.create(...);

Resource Factories

Our next topic is how to perform callouts to external resources from an EJB
component. A resource factory is a provider of resources. Examples include a
Java Database Connectivity (JDBC) driver, a Java Message Service (JMS) dri-
ver, or a J2EE Connector Architecture (JCA) resource adapter. A resource fac-
tory is the driver that gives you connections, such as a JDBC driver giving you
a database connection.

242

THE TRIAD OF BEANS

Connection Pooling

Connection pooling is the reuse of sockets. If a client isn’t using a socket, a dif-
ferent client can harness the socket. This increases the scalability of a system.
Connection pooling is built into most containers. JDBC specifies standard inter-
faces for connection pooling, further enhancing your code portability. The con-
nection pooling typically happens completely behind the scenes, and your bean
code is oblivious to it.

To begin using a resource factory, you need to locate it. EJB mandates that you
use JNDI to look up a resource factory. This is very nice, because you merely
need to learn a single API—JNDI—and you can lookup JDBC drivers, JMS
drivers, JCA drivers, and so on. In fact, you already know how to perform this
lookup. It’s the same JNDI code as looking up an EJB home object:

// Obtain the initial JNDI context
Context initCtx = new InitialContext();

// Perform JNDI lookup to obtain resource factory
javax.sqgl.DataSource ds = (javax.sqgl.DataSource)
initCtx.lookup ("java:comp/env/jdbc/ejbPool") ;

Notice that we're using java:comp/env/jdbc. While this is the EJB-suggested
location for your JDBC resources, you must specify your resource factory’s
JNDI location in the deployment descriptor. When your bean is deployed, the
deployer binds a real resource factory to that JNDI location. The correspond-
ing deployment descriptor is shown in Source 9.2.

Source 9.2 is fairly self-explanatory, except for the res-auth entry. To understand
it, realize that when you acquire a connection to a database or other resource,
that resource may require authorization. For example, you may need to spec-
ify a username and password when obtaining a JDBC connection. EJB gives
you two choices for authenticating yourself to a resource:

Perform the authentication yourself in the bean code. Call the resource fac-
tory with the appropriate sign-on information, such as a login name and
password. In this case, set the deployment descriptor’s res-auth element to
Application.

Let the deployer handle authentication for you. The deployer specifies all
sign-on information in the deployment descriptor. In this case, set the
deployment descriptor’s res-auth element to Container.

Adding Functionality to Your Beans

<enterprise-

beans>

<session>

<ejb-name>Catalog</ejb-name>

<home>examples.CatalogHome</home>

<1--
This
-—>

element indicates a resource factory reference

<resource-ref>

<description>

This is a reference to a JDBC driver used within
the Catalog bean.

</description>

<l=--

The JNDI location that Catalog uses to look up
the JDBC driver.

We declare it so the deployer knows to bind the
JDBC driver in java:comp/env/jdbc/ejbPool.

-—>

<res-ref-name>jdbc/ejbPool</res-ref-name>

<!--

The resource factory class

-=>
<res-type>javax.sql.DataSource</res-type>

<t--

Security for accessing the resource factory.
Can either be "Container" or "Application".
-=>

<res-auth>Container</res-auth>

<1--

Whether connections should be shared with other
clients in the different transactions

-=>
<res-sharing-scope>Sharable</res-sharing-scope>

</resource-ref>

</session>

</enterprise-beans>

Source 9.2 Declaring a resource factory reference within a deployment descriptor.

243

244

THE TRIAD OF BEANS

The second choice is the most useful, especially when you are writing beans
for resale or reuse by other companies, because only the deployer will know
what sign-on credentials are needed to access a particular resource.

Environment Properties

Our next tidbit of essential EJB knowledge is how to customize our beans at
runtime. What does customization mean? Well, our pricing bean might have
several different pricing algorithms it could apply. We’d like the consumers of
our bean to be able to select their preferred algorithm.

Your bean’s environment properties are application-specific properties that your
beans read in at runtime. These properties can be used to customize your bean
and make your beans data-driven. It's a quick-and-dirty alternative to storing
information in a database.

The first step to using environment properties is to declare them in the deploy-
ment descriptor. The container reads in this deployment descriptor and makes
the environment properties available for your bean to access at runtime. An
example is shown in Source 9.3.

The environment property declared in Source 9.3 tells our pricing engine to
use an algorithm that gives all customers no taxes, due to the Internet tax
moratorium that we all love.

You use JNDI to access the environment from your bean. The following code
illustrates this.

// 1: Acquire the initial context
Context initCtx = new InitialContext();

// 2: Use the initial context to look up

// the environment properties

String taxAlgorithm = (String)
initCtx.lookup("java:comp/env/Pricer/algorithm">) ;

// 3: Do what you want with the properties
if (!taxAlgorithm.equals ("NoTaxes")) {

// add tax
}

Notice that we lookup environment properties under the JNDI name
java:comp/env. All E]B environment properties must be somewhere beneath this
naming context.

Adding Functionality to Your Beans 245

<enterprise-beans>
<session>

<ejb-name>Pricer</ejb-name>
<home>examples.PricerHome</home>

<i--

This element contains a single environment property.
The property is only accessible from the Pricer.

-->

<env-entry>

<description>
The algorithm for this pricing engine.
</description>

<l=--

The JNDI location that Pricer uses to look up
the environment property. We declare it so the
container knows to bind the property in
java:comp/env/PricerProperties/algorithm.

-—>
<env-entry-name>Pricer/algorithm</env-entry-name>

<!-- The type for this environment property -->
<env-entry-type>java.lang.String</env-entry-type>

<!-- The environment property value -->
<env-entry-value>NoTaxes</env-entry-value>
</env-entry>
</session>
</enterprise-beans>

Source 9.3 Declaring environment properties within an EJB deployment descriptor.

Understanding EJB Security

The next topic is adding security to your enterprise beans. So let’s get right
down to the meat: There are two security measures that clients must pass
when you add security to an EJB system.

246 THE TRIAD OF BEANS

First, the client must be authenticated. Authentication verifies that the client
is who he claims to be. For instance, the client may enter a username/pass-
word in an application or Web browser, and those credentials are checked
against a permanent client profile stored in a database or LDAP server.
Once the client is authenticated, he is associated with a security identity for
the remainder of his session.

Then the client must be authorized. Once the client has been authenticated,
he must have permission to perform desired operations. For example, in a
procurement application, you want to ensure that while anyone can submit
purchase orders, only supervisors can approve purchase orders.

There is an important difference here—authentication verifies that the client is
who he claims to be, whereas authorization checks to see if an already authenti-
cated client is allowed to perform a task. Authentication must be performed
sometime before an EJB method is called. If the client has an identity, then it
has been authenticated. Authorization, on the other hand, occurs during an
EJB method call.

Security Step 1: Authentication

In earlier versions of EJB (1.0 and 1.1), there was no portable way to achieve
authentication. The specific way your client code became associated with a
security identity was left to the discretion of your application and your EJB con-
tainer. This meant each EJB container may handle authentication differently.

The good news is that in EJB 2.0, authentication is now portable and robust.
You perform authentication through the Java Authentication and Authorization
Service (JAAS), a separate J2EE APIL. Let’s now take a minitutorial of JAAS and
see how it can be used in an EJB environment.

JAAS Overview

JAAS is a portable interface that enables you to authenticate and authorize
users in Java. In a nutshell, it allows you to log into a system without knowing
about the underlying security system being used. Behind the scenes in JAAS,
the implementation (such as an application server) then determines if your
credentials are authentic.

The power of JAAS lies in its ability to use almost any underlying security sys-
tem. Some application servers allow you to set up usernames and passwords
in the application server’s properties, which the application server reads in at
runtime. More advanced servers support complex integration with existing
security systems, such as a list of usernames and passwords stored in an LDAP

Adding Functionality to Your Beans 247

server, database, or custom security system. Other systems support certificate-
based authentication. Regardless, the integration should be performed behind
the scenes by your container and should not affect your application code.

There are two likely candidate scenarios when you may want to use JAAS
from your code, shown in Figure 9.1.

Web Browser (if Web-based application) User (if standalone app)

/

1: provide credentials 1: provide credentials
Client Machine

N\ y

Servlet/JSP (if web-based)
Java class (if standalone app)

2:login

Portable JAAS
API

5: call business logic
with authenticated
security identity

Vendor-specific
logic

3: call J2EE server
using proprietary protocol
J2EE Server

Proprietary
J2EE Server
Security
Provider

EJB Component

4: authenticate

LDAP, RDBMS, home
grown, or other
existing security
system

Figure 9.1 JAAS overview.

248 THE TRIAD OF BEANS

1. When you have a standalone application connecting to a remote E]B sys-
tem, the user would supply credentials to the application (or perhaps the
application would retrieve the credentials from a file or other system). The
standalone application would then use the JAAS API to authenticate the
user prior to calling the EJB components residing within the application
server. The application server would verify the user’s credentials. Once
the user has been authenticated via JAAS, the client can call E]B methods
securely, and the user’s security identity will be propagated to the server
upon method invocations.

2. When you have a Web browser client connecting to a servlet/JSP layer,
the web browser user supplies credentials to a servlet/JSP layer, and the
servlet/JSP layer could use JAAS to authenticate the user. The Web
browser could supply the credentials in one of four ways:

Basic authentication. The Web client supplies a username and password
to the Web server. The server checks these credentials against a perma-
nent storage of usernames and passwords. Note that while this is a sim-
ple approach, this is not a secure form of authentication because the
password is sent in clear-text to the server. Some J2EE servers allow you
to use secure socket layer (SSL) to encrypt this data.

Form-based authentication. This is just like basic authentication, except
the application uses a customizable form, such as a special login screen.

Digest authentication. The Web client supplies a special message digest
to the Web server. This message digest is a mathematical transformation
on both the user’s password and the HTTP message itself. The pass-
word itself is not sent to the Web server. The Web server then tries to
reproduce the message digest by performing the same mathematical
transformation, except this time the Web server uses a secure copy of
the user’s password kept in permanent storage. If the digests match, the
user is authenticated.

Certificate authentication. The client can establish an identity with X.509
certificates. The client can also (optionally) ensure that a third party is
not impersonating the server by receiving X.509 certificates that authen-
ticate the server.

As with standalone applications, once the user has been authenticated via
JAAS, the client can call EJB methods securely, and the user’s security identity
will be propagated to the server upon method invocations.

(servlets and JSPs) as well as standalone clients. However, if you're developing a

? The JAAS ideas and JAAS code we're about to present are useful for both Web clients
Web-based system, it behooves you to learn more about the four methods of Web

Adding Functionality to Your Beans 249

authentication. We recommend that you take a look at the J2EE BluePrints docu-
ment, as well as the J2EE Platform Specification, both freely downloadable from
http://java.sun.com. Note that, unfortunately, J2EE does not require that all servers
support security interoperability between the Web layer and the EJB layer. Check
your J2EE server's documentation before embarking down this path.

The JAAS Architecture

Sun has built JAAS to be a very robust. It has a powerful design, and is sur-
prisingly complicated for what you think would be a simple subject. We have
distilled JAAS down into a simple procedure to make it easier for you to
understand.

Figure 9.2 shows the basics of a JAAS authentication procedure.

The JAAS authentication procedure breaks down as follows. Follow along
with the picture as we review each step:

1. The client instantiates a new login context. This is a container-provided
class (you don’t write it). It’s responsible for coordinating the authentica-
tion process.

Client - e.g. servlet, ‘JSP, lor applicaiton 13: doAs(subject, action) Sub'ect
(you write this) 7 (provided for you)
A 14: run()
1:new() . . \V
7: login() 9: getSubject()
Acti
11: return 12: new() w hi
subject (you write this)
2:new()
3: getAppConfigurationEntry()
LoginContext Configuration
(provided for you) (you write this) Network
4: return list of LoginModules
6.?;”?;\";;%0 15: perform secure operation
s: login() (such as calling an EJB)
10: commit() or abort()

One or more /\/\\
LoginModules Network J2EE Server
(you write them) I \/\/J

9: authenticate using proprietary API

Figure 9.2 JAAS authentication in detail.

250

THE TRIAD OF BEANS

The login context instantiates a new configuration object, which you must
have written beforehand. This configuration object knows about the type
of authentication you want to achieve. For example, your configuration
object might know that you want to perform both password-based
authentication and certificate-based authentication.

The login context asks the configuration object for the list of authentica-
tion mechanisms that we’re going to use (such as password-based and
certificate-based).

. The configuration object returns a list of authentication mechanisms. Each

one is called a login module. A login module knows how to contact a spe-
cific security provider and authenticate in some proprietary way.

The login context instantiates your login modules. You can have many
login modules if you want to authenticate across several different security
providers. In the example we’re about to show, we will use only one login
module, and it will know how to authenticate using a username/pass-
word to a J2EE server.

6. The login context initializes the login modules.

7. The client code tries to log in by calling the login() method on the login

10.

11.

12.

13.

14.

context.

The login context delegates the login() call to the login modules, since only
the login modules know how to perform the actual authentication.

The login modules (written by you) authenticate you using a proprietary
means. In the example we’re about to show, our username/password
login module will try to contact a J2EE server and tell the J2EE server our
username and password. That J2EE server will verify the credentials
against a permanent record of usernames and passwords, such as ones
stored in a flat file, database, or LDAP server.

If the logins succeed, then the login modules are told to commit(). They
can also abort() if the login process fails. This is not a very critical step to
understand—read the JAAS docs if you're curious to understand more.

A new subject is returned to the client code. This subject represents some-
one (or something) that has been authenticated. You can use this subject to
perform secure operations.

Your client code instantiates a new action. An action is an object that you
write. It knows how to perform an operation you want to perform
securely, such as calling an EJB component, using a database, and so on.

You tell the subject to do the action as the subject—hence the doAs()
method name.

The subject calls the action’s run() method.

v

Adding Functionality to Your Beans 251

15. The action performs its operation (such as calling an EJB component) and
the logged-in security context is automatically propagated along with the
method call. This completes authentication. Since the security context is
sent to the server, the server can now perform authorization.

That’s it—a mere 15 steps. You've got to hand it to Sun for being elegant.

What's neat about JAAS is that the login modules are separate from the configura-
tion, which means you can chain together different login modules in interesting
combinations by using different configuration objects. You can choose the config-
uration class that you want typically via system properties, although this may vary
from container to container. You can also theoretically make an entry called
login.configuration.provider=<class name of your configuration object> in the
java.security file located within your J2SE SDK install folder, but this did not work in
testing at the time of this writing.

JAAS Sample Code

Let’s show a simple JAAS example. The code will authenticate and then call a
“Hello, World” method on a bean. If the password is right, then the invocation
succeeds. If not, then an exception is thrown while trying to log in.

The code is in Source 9.4 through 9.7, and is fairly self-documenting. By
reviewing Figure 9.2, this sample code, and the process we laid our earlier, you
should be able to get a feeling for what this code is doing.

package examples;

import javax.naming.*;

import javax.security.auth.*;

import javax.security.auth.callback.*;
import javax.security.auth.login.?*;
import javax.rmi.PortableRemoteObject;

public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Authenticate via JAAS

*/

Source 9.4 HelloClientjava.

252

THE TRIAD OF BEANS

LoginContext loginContext = new LoginContext ("Hello Client") ;
loginContext.login() ;

/*
* Retrieve the logged-in subject
*/
Subject subject = loginContext.getSubject() ;

/*
* Perform business logic while impersonating the
* authenticated subject

*/
CallHelloWorld action = new CallHelloWorld() ;
String result = (String) Subject.doAs (subject, action);
/*
* Print the return result from the business logic
*/
System.out.println (result) ;

}
}

Source 9.4 HelloClient.java (continued).

package examples;

import java.util.Hashtable;
import javax.security.auth.login.*;

/**

* Sample configuration class for JAAS user authentication.
* This class is useful because it can be rewritten to use
* different login modules without affecting client code.

* For example, we could have a login module that did
* username/password authentication, and another that did
* public/private key certificate authentication.
*/
public class PasswordConfig extends Configuration {

/x*

* A configuration class must have a no-argument constructor
*/

Source 9.5 PasswordConfig.java.

Adding Functionality to Your Beans 253

public PasswordConfig() {}

/**
* This method chooses the proper login module.
*/

public AppConfigurationEntryl[]
getAppConfigurationEntry (String applicationName)

{
/*
* Return the one login module we’ve written, which uses
* username/password authentication.

*

* - The "REQUIRED" flag says that we require that this

* login module succeed for authentication.
* - The new hashtable is a hashtable of options that
& our login module will receive. For example, we might

* define an option that turns debugging on. Our login
* module would inspect this hashtable and start logging
£ output.
*/
AppConfigurationEntry[] loginModules
= new AppConfigurationEntry[1];
loginModules[0] = new AppConfigurationEntry (
"examples.PasswordLoginModule",
AppConfigurationEntry.LoginModuleControlFlag.REQUIRED,
new Hashtable());
return loginModules;

}

/**
* Refresh and reload the Configuration object by reading
* all of the login configurations again.
*/

public void refresh() {}

}

Source 9.5 PasswordConfig.java (continued).

package examples;

import java.util.*;

import javax.naming.Context;

import javax.security.auth.*;

import javax.security.auth.callback.*;

Source 9.6 PasswordLoginModule.java.

254 THE TRIAD OF BEANS

import javax.security.auth.login.*;
import javax.security.auth.spi.*;

/**
* Sample login module that performs password authentication.
*
* The purpose of this class is to actually go out and perform
* the authentication.
*/
public class PasswordLoginModule implements LoginModule {
private Subject subject = null;

/**
* Initializes us. We set ourselves to the particular
* subject which we will later authenticate.
*/
public void initialize(Subject subject,
CallbackHandler callbackHandler,
Map sharedState,
Map options)
{
this.subject = subject;

}

/**
* This method authenticates the user. It is called when
* the client tries to login in.

* Our method implementation contains the vendor-specific way
* to access our permanent storage of usernames and passwords.

* Note that while this code is not portable, it is 100%

* hidden from your application code behind the LoginModule.
* The intention is that you develop a different LoginModule
* for each J2EE server.

* In this case, BEA has provided us with a helper class that
* talks JNDI to the Weblogic server, and the server then goes
* to whatever the currently configured security realm is,
* such as a file, RDBMS, or LDAP server.
*/
public boolean login() throws LoginException
{
try {
/*
* Authenticate the user’s credentials, populating Subject
*

Source 9.6 PasswordLoginModule.java (continued).

Adding Functionality to Your Beans 255

* Note: In a real application, we would not hardcode the
* username and password. Rather, we would write a reusable
* LoginModule that would work with any username and password.
* We would then write a special callback handler that knows
* how to interact with the user, such as prompting the user
* for a password. We would then call that callback handler
* here.
*/
weblogic.jndi.Environment env =
new weblogic.jndi.Environment (System.getProperties()) ;
env.setSecurityPrincipal ("guest") ;
env.setSecurityCredentials ("guest") ;

weblogic.security.auth.Authenticate.authenticate (
env, subject);

/*
* Return that we have successfully authenticated
* the subject
*/
return true;
}
catch (Exception e) {
throw new LoginException (e.toString()) ;
}
}

/**

* This method is called if the overall authentication
* gsucceeded (even if this particular login module

* failed). This could happen if there are other login
* modules involved with the authentication process.

* This is our chance to perform additional operations,
* but since we are so simple, we don’t do anything.
*
* @return true if this method executes properly
*/
public boolean commit () throws LoginException {
return true;

}

/**

* This method is called if the overall authentication
* failed (even if this particular login module

* gucceeded). This could happen if there are other

* login modules involved with the authentication

Source 9.6 PasswordLoginModule.java (continued).

256 THE TRIAD OF BEANS

* process.

This is our chance to perform additional operations,

* but since we are so simple, we don’t do anything.
*

*
Y
public boolean abort() throws LoginException {

@return true if this method executes properly

return true;

}

/**
* Logout the user.
*
* @return true if this method executes properly
*/

public boolean logout () throws LoginException {
return true;

}

}

Source 9.6 PasswordLoginModule.java (continued).

package examples;

import java.security.*;

import javax.naming.*;

import java.util.Hashtable;

import javax.rmi.PortableRemoteObject;

/**

* This is a helper class that knows how to call a

* "Hello, World!" bean. It does so in a secure manner,
* automatically propagating the logged in security context
* to the J2EE server.

*/
public class CallHelloWorld implements PrivilegedAction {

/*
* This is our one business method. It performs an action
* securely, and returns application-specific results.
&t/

public Object run() {

Source 9.7 CallHelloWorld java.

Adding Functionality to Your Beans 257

String result = "Error";
try {
/*
* Make a bean
*/
Context ctx = new InitialContext (System.getProperties()) ;
Object obj = ctx.lookup("HelloHome") ;
HelloHome home = (HelloHome)
PortableRemoteObject.narrow(obj, HelloHome.class) ;
Hello hello = home.create();

/*

* Call a business method, propagating the security context
*/

result = hello.hello();

}

catch (Exception e) {
e.printStackTrace() ;

}

/*
* Return the result to the client
*/
return result;
}
}

Source 9.7 CallHelloWorld.java (continued).

Security Step 2: Authorization

Once the client has been authenticated, it must pass an authorization test to
call methods on your beans. You enforce authorization by defining security
policies for your beans. There are two ways to perform authorization with EJB:

With programmatic authorization, you hard-code security checks into your
bean code. Your business logic is interlaced with security checks.

With declarative authorization, the container performs all authorization
checks for you. You declare how you’d like authorization to be achieved
through the deployment descriptor, and the container generates all neces-
sary security checks. You are effectively delegating authorization to the EJB
container.

258

THE TRIAD OF BEANS

Security Roles

Regardless of whether you're performing programmatic or declarative autho-
rization, you need to understand the concept of security roles. A security role is
a collection of client identities. For a client to be authorized to perform an oper-
ation, its security identity must be in the correct security role for that opera-
tion. The EJB deployer is responsible for associating the identities with the
correct security roles after you write your beans.

The advantage to using security roles is you do not hard-code specific identi-
ties into your beans. This is necessary when you are developing beans for
deployment in a wide variety of security environments, because each environ-
ment will have its own list of identities. This also allows you to modify access
control without recompiling your bean code.

Specifying security roles in EJB is application server-specific but should not
affect portability of your code. Table 9.1 shows some sample mappings.

Performing Programmatic Authorization

Let’s see how to authorize programmatically. Then we’ll see how to authorize
declaratively and compare the two approaches.

Step 1: Write the Programmatic Security Logic

To perform explicit security authorization checks in your enterprise beans, you
must first get information about who is calling your bean’s method. You can
get this information by querying the container through the EJB context object.
We first learned about the EJB context in Chapter 3; feel free to refer back if you
need to.

The EJB context object has the following relevant security methods:
public interface javax.ejb.EJBContext

{

public java.security.Principal getCallerPrincipal () ;
public boolean isCallerInRole(String roleName) ;

Table 9.1 Sample Security Roles

SECURITY ROLE VALID IDENTITIES
employees EmployeeA, EmployeeB
managers ManagerA

administrators AdminA

Adding Functionality to Your Beans 259

isCallerInRole(String role) checks whether the current caller is in a particular
security role. When you call this method, you pass the security role that you
want the caller compared against. For example:

public class EmployeeManagementBean implements SessionBean {

private SessionContext ctx;

public void modifyEmployee (String employeelID)
throws SecurityException {
/*
* If the caller is not in the ‘administrators’
* gecurity role, throw an exception.
*/
if (!ctx.isCallerInRole("administrators")) {
throw new SecurityException(. . .);

// else, allow the administrator to modify the
// employee records
//

}

The preceding code demonstrates how to perform different actions based on
the security role of the client. Only if the caller is in the administrators role
(defined in Table 9.1, and setup using your container’s tools) does the caller
have administrator access.

The other programmatic security method, getCallerPrincipal(), retrieves the
current caller’s security principal. You can use that principal for many pur-
poses, such as using the caller’s distinguished name in a database query. This
might be handy if you're storing your security information in a database. Here
is sample code that uses getCallerPrincipal():

import java.security.Principal;

public class EmployeeManagementBean implements SessionBean {

private SessionContext ctx;

public void modifyEmployee() {
Principal id = ctx.getCallerIdentity();
String name = id.getName() ;
// Query a database based on the name

260

THE TRIAD OF BEANS

// to determine if the user is authorized

Step 2: Declare the Abstract Security Roles
Your Bean Uses

Next you must declare all the security roles that your bean code uses, such as
an administrators role, in your deployment descriptor. This signals to others
(like application assemblers and deployers) that your bean makes the security
check isCallerInRole (administrators). That is important information for the
deployer, because the deployer needs to fulfill that role, just like the deployer
fulfills EJB references, as mentioned earlier. Source 9.8 demonstrates this.

<enterprise-beans>
<session>

<ejb-name>EmployeeManagement</ejb-name>
<home>examples.EmployeeManagementHome</home>

<l=-=

This declares that our bean code relies on

the administrators role; we must declare it here
to inform the application assembler and deployer.
-—>

<security-role-ref>

<description>

This security role should be assigned to the
administrators who are responsible for
modifying employees.

</description>

<role-name>administrators</role-name>

</security-role-ref>

</session>

</enterprise-beans>

Source 9.8 Declaring a Bean's required security roles.

Adding Functionality to Your Beans 261

Step 3: Map Abstract Roles to Actual Roles

Once you've written your bean, you can ship it for resale, build it into an
application, or make it part of your company’s internal library of beans. The
consumer of your bean might be combining beans from all sorts of sources,
and each source may have declared security roles a bit differently. For exam-
ple, we used the string administrators in our bean above, but another bean

<enterprise-beans>
<session>

<ejb-name>EmployeeManagement</ejb-name>
<home>examples.EmployeeManagementHome</home>

<security-role-ref>

<description>

This security role should be assigned to the
administrators who are responsible for
modifying employees.

</description>

<role-name>administrators</role-name>

<i--

Here we link what we call "administrators" above, to
a real security-role, called "admins", defined below
-=>

<role-link>admins</role-1link>

</security-role-ref>

</session>

<assembly-descriptor>

<t--
This is an example of a real security role.
-—>

<security-role>

Source 9.9 Mapping abstract roles to actual roles.

262

THE TRIAD OF BEANS

<description>

This role is for personnel authorized to perform
employee administration.

</description>

<role-name>admins</role-name>
</security-role>

</assembly-descriptor>

</enterprise-beans>

Source 9.9 Mapping abstract roles to actual roles (continued).

provider might use the string sysadmins or have completely different security
roles. This might be especially true if another developer wrote that bean.

The deployer of your bean is responsible for generating the real security roles
that the final application will use. Source 9.9 shows this.

Once you've completed your application, you can deploy it in a wide variety
of scenarios. For example, if you write a banking application, you could
deploy that same application at different branches of that bank, because you
haven’t hard-coded any specific principals into your application. The deployer
of your application is responsible for mapping principals to the roles you've
declared. This mapping is called a security policy descriptor, a fancy term for the
statement, “Every container handles mapping roles to principals differently.”
The bottom line: Your deployer looks at your security roles and assigns princi-
pals to them using proprietary container APIs and tools.

Performing Declarative Authorization

Now that we’ve seen programmatic authorization, let's move on to declarative
authorization. The primary difference between the two models is that with
declarative authorization, you declare your bean’s authorization requirements in
your deployment descriptor. The container fulfills these requirements at runtime.

Step 1: Declare Method Permissions

You first need to declare permissions on the bean methods that you want to
secure. The container takes these instructions and generates security checks in
your EJB objects and EJB home objects. Source 9.10 demonstrates this.

Adding Functionality to Your Beans 263

<assembly-descriptor>

<1--
You can set permissions on the entire bean.

Example: Allow role "administrators"

to call every method on the bean class.

-=>

<method-permission>
<role-name>administrators</role-name>

<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name> *</method-name>
</method>
</method-permission>

<!--
You can set permissions on a method level.

Example: Allow role "managers" to call method
"modifySubordinate()" and "modifySelf()".
-—>
<method-permission>
<role-name>managers</role-name>

<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name>modifySubordinate</method-name>
</method>

<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name>modifySelf</method-name>
</method>
</method-permission>

<1--
If you have multiple methods with the same name
but that take different parameters, you can even set

permissions that distinguish between the two.

Example: allow role "employees" to call method

Source 9.10 Declaring a bean'’s security policies.

264 THE TRIAD OF BEANS

"modifySelf (String)" but not "modifySelf (Int)"
-—>
<method-permission>
<role-name>employees</role-name>

<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name>modifySelf</method-name>
<method-params>String</method-params>
</method>
</method-permission>

<l==
This is the list of methods that we don’t want
ANYONE to call. Useful if you receive a bean
from someone with methods that you don’t need.
-—>
<exclude-list>
<description>
We don’t have a 401k plan, so we don’t
support this method.
</description>
<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name>modify401kPlan</method-name>
<method-params>String</method-params>
</method>
</exclude-list>

</assembly-descriptor>

Source 9.10 Declaring a bean’s security policies (continued).

Once defined, the EJB container automatically performs these security checks
on your bean’s methods at runtime and throws a java.lang.SecurityException
back to the client code if the client identity is not authenticated or authorized.

Step 2: Declare Security Roles

Declaring security roles is a process similar to programmatic security. We need
to define our security roles, and (optionally) describe each so the deployer can
understand them. See Source 9.11.

Adding Functionality to Your Beans 265

<assembly-descriptor>

<security-role>
<description>
System administrators
</description>
<role-name>administrators</role-name>
</security-role>

<security-role>
<description>
Employees that manage a group
</description>
<role-name>managers</role-name>
</security-role>

<security-role>
<description>
Employees that don’t manage anyone
</description>
<role-name>employees</role-name>
</security-role>

</assembly-descriptor>

Source 9.11 Declaring security roles for the deployer.

The deployer reads in Source 9.11 and, using the container’s tools, maps these
roles to principals, as shown in Table 9.1.

Declarative or Programmatic?

As with persistence and transactions, security is a middleware service that you
should strive to externalize from your beans. By using declarative security, you
decouple your beans’ business purpose from specific security policies, enabling
others to modify security rules without modifying bean code. No security role
strings are hard-coded in your bean logic, keeping your code simple.

In the ideal world, we’d code all our beans with declarative security. But
unfortunately, the EJB specification does not provide adequate facilities for

266 THE TRIAD OF BEANS

this; specifically, there is no portable way to declaratively perform instance-
level authorization. This is best illustrated with an example.

Let’s say you have an enterprise bean that models a bank account. The caller
of the enterprise bean is a bank account manager who wants to withdraw or
deposit into that bank account. But this bank account manager is responsible
only for bank accounts with balances below $1,000, and we don’t want him
modifying bank accounts with larger balances. Declarative authorization has
no way to declare in your deployment descriptor that bank account managers
can modify only certain bean instances. You can specify security roles only on
the enterprise bean class, and those security rules apply for all instances of that
class. Thus, you would need to create separate methods for each security role,
as we did in Source 9.11. This gets hairy and makes your bean’s interface
dependent on security roles. For these situations, you should resort to pro-
grammatic security.

Security Propagation

Behind the scenes, all security checks are made possible due to security con-
texts. Security contexts encapsulate the current caller’s security state. You
never see security contexts in your application code, because the container
uses them behind the scenes. When you call a method in E]B, the container can
propagate your security information by implicitly passing your security con-
text within the stubs and skeletons.

For example, let’s say a client is authenticated and has associated security cre-
dentials. That client calls bean A, which calls bean B. Should the client’s secu-
rity credentials be sent to bean B, or should bean B receive a different
principal? By controlling security context propagation, you can specify the
exact semantics of credentials streaming from method to method in a distrib-
uted system.

You can control how security information is propagated in your deployment
descriptor. The following code takes the client’s credentials and propagates
them to all other beans you call:

<enterprise-beans>

<session>
<ejb-name>EmployeeManagement</ejb-name>
<home>examples.EmployeeManagementHome</home>

<security-identity>
<use-caller-identity/>
</security-identity>

Adding Functionality to Your Beans 267

</session>

</enterprise-beans>

In comparison, the following code ignores the client’s credentials and propa-
gates the role admins to all other beans you call:

<enterprise-beans>

<session>
<ejb-name>EmployeeManagement</ejb-name>
<home>examples.EmployeeManagementHome</home>

<security-identity>
<run-as>
<role-name>admins</role-name>
</run-as>
</security-identity>

</session>
<assembly-descriptor>

<security-role>
<description>
This role is for personnel authorized
to perform employee administration.
</description>

<role-name>admins</role-name>

</security-role>

</assembly-descriptor>
</enterprise-beans>

Your EJB container is responsible for intercepting all method calls and ensur-
ing that your bean is running in the propagation settings you specify. It does
this by generating code that executes at the point of interception (inside the
EJB objects and EJB home objects).

Since message-driven beans receive JMS messages rather than RMI-110P calls, they
do not receive any credentials when they are called. It is therefore illegal for
message-driven beans to perform any programmatic or declarative security. As far as
propagation, it is also illegal for message-driven beans to propagate the nonexistent
client’s credentials. A message-driven bean can, however, run as a specified identity
when calling other beans.

268 THE TRIAD OF BEANS

Security Context Propagation Portability

Unfortunately, the EJB specification does not specify how containers should
propagate security contexts behind the scenes. What this means to you is that
any two EJB containers are likely to be incompatible in how they deal with
security. If you call a method from container A into container B, container B
will not understand how to receive the security context sent by container A. As
the RMI-IIOP interoperability is enhanced, we may see better security context
propagation, but that is not likely to emerge until well into the future.

The good news: Most organizations are having enough challenges with a sin-
gle EJB server! By the time most organizations need security context propaga-
tion between different vendors’ E]JB servers, we should have it.

Understanding Handles

Our final topic in this chapter is the subject of handles. Many EJB applications
require that clients are able to disconnect from beans and reconnect later to
resume using that bean. For example, if you have a shopping cart that you'd
like to save for a later time, and a stateful session bean manifests that shopping
cart, you'd want your shopping cart state maintained when you reconnect later.

EJB provides for this need with EJB object handles. An E]JB object handle is a
long-lived proxy for an EJB object. If for some reason you disconnect from the
EJB container/server, you can use the EJB object handle to reconnect to your
EJB object, so that you don’t lose your conversational state with that bean.
An EJB object handle is an essentially persistent reference to an EJB object. The
following code demonstrates using EJB object handles:

// First, get the EJB object handle from the EJB object.
javax.ejb.Handle myHandle = myEJBObject.getHandle() ;

// Next, serialize myHandle, and then save it in
// permanent storage.

ObjectOutputStream stream = ...;
stream.writeObject (myHandle) ;

// time passes...

// When we want to use the EJB object again,
// deserialize the EJB object handle
ObjectInputStream stream = . ;

Handle myHandle = (Handle) stream.readObject() ;

// Convert the EJB object handle into an EJB object

Adding Functionality to Your Beans 269

MyRemoteInterface myEJBObject = (MyRemoteInterface)
javax.rmi.PortableRemoteObject.narrow (
myHandle.getEJBObject (), MyRemoteInterface.class);

// Resume calling methods again
myEJBObject.callMethod() ;

The EJB specification does not require that handles have the ability to be saved
in one environment and then restored in a different environment. This means
handles are not guaranteed to be portable across EJB containers, nor across
machines.

Home Handles

A variant on E]JB object handles are the EJB home handles. These are simply
persistent references to home objects, rather than persistent references to EJB
objects. The following code shows how to use home handles.

// First, get the EJB home handle from the home object.
javax.ejb.HomeHandle homeHandle = myHomeObject.getHomeHandle() ;

// Next, serialize the home handle, and then save it in
// permanent storage.

ObjectOutputStream stream = ...;

stream.writeObject (homeHandle) ;

// time passes...

// When we want to use the home object again,
// deserialize the home handle
ObjectInputStream stream = ...;
javax.ejb.HomeHandle homeHandle =
(HomeHandle) stream.readObject () ;

// Convert the home object handle into a home object
MyHomeInterface myHomeObject = (MyHomeInterface)
javax.rmi.PortableRemoteObject.narrow (
homeHandle.getHomeObject (), MyHomeInterface.class);

// Resume using the home object
myHomeObject.create () ;

Home handles may be useful because you can acquire a reference to a home
object, persist it, and then use it again later without knowledge of the home
object’s JNDI location. But in our opinion, home handles are not going to ben-
efit most applications a tremendous amount. We have never seen any organi-
zation make use of them (email us and be the first!).

270 THE TRIAD OF BEANS

Summary

In this chapter, we learned a great deal about how to make our beans more
robust. We learned how to call beans from other beans, how to use resource
factories, how to access environment properties, how to use E]JB security, and
how to use handles. Most nontrivial EJB deployment will make use of some of
these concepts.

This completes Part 2. You've now covered the fundamentals, and should have
a strong foundation for learning about advanced concepts. Let’s now move on
to Part 3, which begins with transactions.

272 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Enterprise JavaBeans development. In Part Three, we raise the bar by moving

If you've read to this point, you should be quite familiar with the basics of
on to more advanced concepts. These include the following:

Transactions. Chapter 10 shows you how to harness transactions to make
your EJB deployments reliable. We'll discuss transactions at a conceptual
level and how to apply them to EJB. We’ll also learn about the Java Trans-
action API (JTA).

BMP and CMP relationships. Chapter 11 covers how to build relationships
between entity beans, both BMP and CMP. This is an essential EJB 2.0 topic
for anyone performing persistent operations with entity beans.

Persistence Best Practices. In Chapter 12, you’ll learn about some of the criti-
cal tradeoffs when building a persistence layer—how to choose between
session beans and entity beans, how to choose between BMP and CMP—
and survey a collection of persistence best practices that we’ve assembled
from our knowledge and experience.

EJB Design Strategies. Chapter 13 is one of the most important chapters in
this book. You'll learn about best practices when designing an EJB system.
These are not low-level design patterns (those are covered in the compan-
ion book, EJB Design Patterns by Floyd Marinescu). We’ll discuss tradeoffs
you can make when designing an EJB systems such as how to choose
between local interfaces and remote interfaces, how to choose between
stateful and stateless systems, and much more.

Clustering. Chapter 14 shows you how EJBs are clustered in large-scale sys-
tems. You'll learn how clustering works behind the scenes, and a few
strategies for how containers might achieve clustering. This is a critical
topic for anyone building a system that involves several machines working
together.

EJB project management. Chapter 15 shows you how to get your project off
on the right foot. This includes how to choose whether EJB is right for you,
how to build a first-pass of your system, and how to divide your develop-
ment team.

How to choose an EJB server. In Chapter 16, we'll describe our methodology
for how an organization can compare and contrast different vendors’ offer-
ings. We'll also list our criteria for what we would want in an EJB server.

Building a real-world EJB-J2EE system. Chapter 17 shows how each of the
EJB components can work together to solve a business problem, as well as
how EJB and J2EE can be integrated, as through Java Servlets and
JavaServer Pages (JSPs).

ADVANCED ENTERPRISE JAVABEANS CONCEPTS 273

These are extremely interesting middleware topics; indeed, many books could
be written on each subject alone. To understand these concepts, we highly rec-
ommend you read Part One and Part Two first. If, however, you're already
well-versed in EJB, please join us to explore these advanced issues.

Transactions

any middleware services are needed for secure, scalable, and reliable
server-side development. This includes resource pooling services, security
services, remotability services, persistence services, and more.

A key service required for robust server-side development is transactions.
Transactions, when used properly, can make your mission-critical opera-
tions run predictably in an enterprise environment. Transactions are an
advanced programming paradigm that allows you to write robust code.
Transactions are also very useful constructs to use when performing persis-
tent operations like updates to a database.

In the past, transactions have been difficult to use because developers
needed to code directly to a transaction API. With EJB, you can gain the
benefits of transactions without performing any transaction programming.

In this chapter, we’ll see some of the problems that transactions solve. We’ll
also see how transactions work and show how they’re used in EJB. Because
transactions are at the very core of EJB and are somewhat difficult to under-
stand, we’ll provide extensive background on the subject. To explain trans-
actions properly, we’ll occasionally get a bit theoretical. If the theory
presented in this chapter piques your interest, many tomes written on trans-
actions are available for further reading. See the book’s accompanying Web
site, www.wiley.com/compbooks/roman, for links to more information.

275

276 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Motivation for Transactions

We begin our discussion with a few motivational problems that transactions
address.

Atomic Operations

Imagine that you would like to perform multiple discrete operations yet have
them execute as one contiguous, large, atomic operation. Take the classic bank
account example. When you transfer money from one bank account to
another, you want to withdraw funds from one account and deposit those
funds into the other account. Ideally, both operations will succeed. But if an
error occurs, you would like both operations to always fail; otherwise, you'll
have incorrect funds in one of the accounts. You never want one operation to
succeed and the other to fail, because both operations are part of a single
atomic transaction.

One simplistic way to handle this is to perform exception handling. You could
use exceptions to write a banking module to transfer funds from one account
to another, as in the following pseudo-code:

try {
// Withdraw funds from account 1
}
catch (Exception e) {
// If an error occurred, do not proceed.
return;
}
try {
// Otherwise, deposit funds into account 2
}
catch (Exception e) {
// If an error occurred, do not proceed,
// and redeposit the funds back into account 1.
return;

}

This code tries to withdraw funds from account 1. If a problem occurs, the
application exits and no permanent operations occur. Otherwise, we try to
deposit the funds into account 2. If a problem occurs here, we redeposit the
money back into account 1 and exit the application.

There are many problems with this approach:

m The code is bulky and unwieldy.

2717

m We need to consider every possible problem that might occur at every
step and code error-handling routines to consider how to roll back our
changes.

m Error-handling gets out of control if we perform more complex processes
than a simple withdrawal and deposit. It is easy to imagine, for example,
a 10-step process that updates several financial records. We’d need to code
error-handling routines for each step. In the case of a problem, we need to
code facilities to undo each operation. This gets tricky and error-prone to
write.

m Testing this code is yet another challenge. You would have to simulate
logical problems as well as failures at many different levels.

Ideally, we would like a way to perform both operations in a single, large,
atomic operation, with a guarantee that both operations either always succeed,
or both always fail.

Network or Machine Failure

Let’s extend our classic bank account example and assume our bank account
logic is distributed across a multitier deployment. This may be necessary for
security, scalability, and modularization reasons. In a multitier deployment, any
client code that wants to use our bank account application must do so across the
network via a remote method invocation. We show this in Figure 10.1.

Distributing our application across the network introduces failure and reli-
ability concerns. For example, what happens if the network crashes during a

Bank
Application
(with GUI)

Tier Boundary

Bank Logic
Implementation

Figure 10.1 A distributed banking application.

278 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

banking operation? Typically, an exception (such as a Java RMI RemoteExcep-
tion) is generated and thrown back to the client code—but this exception is
quite ambiguous. The network may have failed before money was withdrawn
from an account. It’s also possible that the network failed after we withdrew
the money. There’s no way to distinguish between these two cases—all the
client code sees is a network failure exception. Thus, we can never know for
sure how much money is in the bank account.

The network may not be the only source of problems. In dealing with bank
account data, we're dealing with persistent information residing in a database.
It’s entirely feasible that the database itself could crash. The machine that the
database is deployed on could also crash. If a crash occurs during a database
write, the database could be in an inconsistent, corrupted state.

None of these situations is acceptable for a mission-critical enterprise applica-
tion. Mainframe systems and other highly available systems offer preventive
measures to avoid system crashes. But in reality, nothing is perfect. Machines,
processes, or networks will always fail. There needs to be a recovery process to
handle these crashes. Simple exception handling such as Java RMI's Remote-
Exception is not sufficient for enterprise-class deployments.

Multiple Users Sharing Data

In any enterprise-level distributed system, you will see the familiar pattern of
multiple clients connecting to multiple application servers, with those appli-
cation servers maintaining some persistent data in a database. Let’s assume
these application servers all share the same database, as in Figure 10.2. Because
each server is tied to the same database image, servers could potentially be
modifying the same set of data records within that database.

For example, you might have written a tool to maintain your company’s cata-
log of products in a database. Your catalog may contain product information
that spans more than one database record. Information about a single product
could span several database records or even tables.

Several people in your organization may need to use your tool simultaneously.
But if two users modify the same product data simultaneously, their opera-
tions may become interleaved. Therefore, your database may contain product
data that’s been partially supplied by one tool and partially supplied by
another tool. This is essentially corrupted data, and it is not acceptable in any
serious deployment. The wrong data in a bank account could result in loss of
millions of dollars to a bank or the bank’s customers.

Thus, there needs to be a mechanism to deal with multiple users concurrently
modifying data. We must guarantee data integrity even when many users con-
currently update the data.

Transactions 279
Client Code Client Code Client Code Client Code
Application Application Application
Server Server Server
Table
Database

Figure 10.2 Application servers tied to a single database.

Benefits of Transactions

The problems raised in the previous sections can lead to catastrophic errors.
You can avoid these problems by properly using transactions.

A transaction is a series of operations that appear to execute as one large,
atomic operation. Transactions guarantee an all-or-nothing value proposition:
Either all of your operations will succeed, or none of them will. Transactions
account for network or machine failure in a graceful, reliable way. Transactions
allow multiple users to share the same data and guarantee that any set of data
they update will be completely and wholly written, with no interleaving of

updates from other clients.

280 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

By using transactions properly, you can enforce that multiuser interactions
with databases (or other storages) occur independently. For example, two
clients reading and writing from the same database will be mutually exclusive
if transactions are properly used. The database system automatically performs
the necessary concurrency control (that is, locking) on the database to keep
client threads from affecting each other.

Transactions offer far more than simply letting simultaneous users use the
same persistent stores. By having your operations run within a transaction,
you are effectively performing an advanced form of concurrency control and
exception handling.

The ACID Properties

When you properly use transactions, your operations will always execute with
a suite of four guarantees. These four guarantees are well known as the ACID

Transaction Vocabulary

Before we get into the specifics of transactions, let’s establish a vocabulary. There
are several types of participants in a transaction: transactional objects, transac-
tion managers, resources, and resource managers. Let’s take a look at each of
these parties in more detail.

A transactional object (or transactional component) is an application compo-
nent, such as a banking component, that is involved in a transaction. This could
be an enterprise bean, a Microsoft.NET-managed component, a CORBA compo-
nent, and so on. These components perform operations that need to execute in a
robust fashion, like database interactions.

A transaction manager is responsible for managing the transactional opera-
tions of the transactional components. It manages the entire overhead of a trans-
action, running behind the scenes to coordinate things (similar to how a
conductor coordinates a symphony).

A resource is a persistent storage from which you read or write. A resource
could be a database, a message queue, or other storage.

A resource manager manages a resource. An example of a resource manager
is a driver for a relational database, object database, message queue, or other
store. Resource managers are responsible for managing all state that is perma-
nent. The most popular interface for resource managers is the X/Open XA
resource manager interface. Most database drivers support this interface.
Because X/Open XA is the de facto standard for resource managers, a deploy-
ment with heterogeneous resource managers from different vendors can
interoperate.

281

properties of transactions. The word ACID stands for atomicity, consistency, iso-
lation, and durability. Here’s the breakdown of each property.

Atomicity guarantees that many operations are bundled together and appear
as one contiguous unit of work. In our banking example, when you transfer
money from one bank account to another, you want to add funds to one
account and remove funds from the other account, and you want both
operations to occur or neither operation to occur. Atomicity guarantees
that operations performed within a transaction undergo an all-or-nothing
paradigm—either all the database updates are performed, or nothing hap-
pens if an error occurs at any time. Many different parties can participate
in a transaction, such as an enterprise bean, a CORBA object, a servlet, and
a database driver. These transaction participants can force the transaction
to result in nothing happening for any reason. This is similar to a voting
scheme: Each transaction participant votes on whether the transaction
should be successful, and if any vote no, the transaction fails. If a transac-
tion fails, all the partial database updates are automatically undone. In this
way, you can think of transactions as a robust way of performing error
handling.

Consistency guarantees that a transaction leaves the system’s state to be con-
sistent after a transaction completes. What is a consistent system state? A
bank system state could be consistent if the rule bank account balances must
always be positive is always followed. This is an example of an invariant set
of rules that define a consistent system state. During the course of a trans-
action, these rules may be violated, resulting in a temporarily inconsistent
state. For example, your enterprise bean component may temporarily
make your account balance negative during a withdrawal. When the trans-
action completes, the state is consistent once again; that is, your bean never
leaves your account at a negative balance. And even though your state can
be made inconsistent temporarily, this is not a problem. Remember that
transactions execute atomically as one, contiguous unit of work (from the
atomicity property above). Thus, to a third party, it appears that the sys-
tem’s state is always consistent. Atomicity helps enforce that the system
always appears to be consistent.

Isolation protects concurrently executing transactions from seeing each
other’s incomplete results. Isolation allows multiple transactions to read or
write to a database without knowing about each other because each trans-
action is isolated from the others. This is useful for multiple clients modify-
ing a database at once. It appears to each client that he or she is the only
client modifying the database at that time. The transaction system achieves
isolation by using low-level synchronization protocols on the underlying
database data. This synchronization isolates the work of one transaction
from that of another. During a transaction, locks on data are automatically

282

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

assigned as necessary. If one transaction holds a lock on data, the lock pre-
vents other concurrent transactions from interacting with that data until
the lock is released. For example, if you write bank account data to a data-
base, the transaction may obtain locks on the bank account record or table.
The locks guarantee that, while the transaction is occurring, no other con-
current updates can interfere. This allows many users to modify the same
set of database records simultaneously without concern for interleaving of
database operations.

Durability guarantees that updates to managed resources, such as database
records, survive failures. Some examples of failures are machines crashing,
networks crashing, hard disks crashing, or power failures. Recoverable
resources keep a transactional log for exactly this purpose. If the resource
crashes, the permanent data can be reconstructed by reapplying the steps
in the log.

Transactional Models

v

Now that you've seen the transaction value proposition, let’s dive a bit deeper
and explore how transactions work. We begin by taking a look at transactional
models, which are the different ways you can perform transactions.

There are many different models for performing transactions. Each model
adds its own complexity and features to your transactions. The two most pop-
ular models are flat transactions and nested transactions.

To use a particular transaction model, your underlying transaction service must sup-
port it. And unfortunately, not all of the vendors who crafted the EJB specification
currently implement nested transactions in their products. Hence, Enterprise Jav-
aBeans mandates flat transactions but does not support nested transactions. Note
that this may change in the future based on industry demands.

Flat Transactions

A flat transaction is the simplest transactional model to understand. A flat
transaction is a series of operations that are performed atomically as a single
unit of work. After a flat transaction begins, your application can perform any
number of operations. Some may be persistent operations, and some may not.
When you decide to end the transaction, there is always a binary result: either
success or failure. A successful transaction is committed, while a failed
transaction is aborted. When a transaction is committed, all of the persistent
operations become permanent changes; that is, all of the updates to resources,
such as databases, are made durable into permanent storage only if the trans-

283

action ends with a commit. If the transaction is aborted, none of the resource
updates are made durable, and thus all changes are rolled back. When a trans-
action aborts, all persistent operations that your application may have per-
formed are automatically undone by the underlying system. Your application
can also be notified in case of an abort, so that your application can undo in-
memory changes that occurred during the transaction.

This is the all-or-nothing proposition we described above. The flat transaction
process is outlined in Figure 10.3.

A transaction might abort for many reasons. Many components can be
involved in a transaction, and any one component could suffer a problem that
would cause an abort. These problems include the following:

Invalid parameters passed to one of the components. For instance, a bank-
ing component may be called with a null argument, when it was expecting
a bank account ID string.

An invariant system state was violated. For example, if a bank account has a
negative balance, your banking component can force the transaction to
abort, undoing all associated bank account operations.

Hardware or software failure. If the database that your component is using
crashes, the transaction is rolled back and all permanent changes are
undone. Similarly, if there is a software failure (such as a distributed sys-
tem where a JVM crashes) the transaction is rolled back.

Final State
(Transaction Succeeded)

/7

If All Goes Well, Commit Transaction

Begin Transaction Transaction

Occurring

Initial State
(No Transaction Occurring)

If Problem Occurs, Abort Transaction

Final State
(Transaction Rolled Back)

Figure 10.3 The flat transaction.

284 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Any of these problems can cause a transaction to abort. But when an abort
occurs, how is the transactional state rolled back? That is the topic of the next
section.

How Transactional State Is Rolled Back

Let’s assume you're performing a flat transaction that includes operations on
physical, permanent resources, such as databases. After the transaction begins,
one of your business components requests a connection to a database. This
database connection is automatically enlisted in the transaction in which your
component is involved. Next, your component performs some persistent oper-
ations, such as database updates. But when this happens, your database’s
resource manager does not permanently apply the updates to the database—
your persistent operations are not yet durable and permanent. The resource
manager waits until a commit statement has been issued. A commit is issued
only when all your business components have finished performing all of the
operations under that transaction—when the transaction is complete. If the
resource is told to commit, it persists the data permanently. If the transaction
aborts, the data is not persisted at all.

The take-away point from this discussion is that your business components
typically do not perform any rollback of permanent state; if there’s an abort, the
resource (such as a database) does not make your database updates perma-
nent. Your components don’t have any undo logic for permanent data inside of
them; rather, the underlying system does it for you behind the scenes. Your
components control the transaction and tell the transaction to abort, but the
persistent state rollback is performed for you automatically. Thus, when your
business components perform operations under a transaction, each compo-
nent should perform all persistent operations assuming that the transaction
will complete properly.

Now that you've seen flat transactions, let’s take a quick look at nested trans-
actions.

Nested Transactions

We begin our nested transactions discussion with a motivational example.
Let’s say you need to write an application that can plan trips for a travel
agency. You need to code your application to plan trips around the world, and
your application must purchase the necessary travel tickets for the trip. Con-
sider that your application performs the following operations:

285

1. Your application purchases a train ticket from Boston, USA, to New York,
USA.

2. Your application purchases a plane ticket from New York, USA, to Lon-
don, England.

3. Your application purchases a balloon ride ticket from London, England, to
Paris, France.

4. Your application finds out that there are no outgoing flights from France.

This is the famous trip-planning problem. If this sequence of bookings were per-
formed under a flat transaction, your application would have only one option:
to roll back the transaction. Thus, because there are no outgoing flights from
France, your application has lost all of its bookings! But it may be possible to
use another means of transportation out of France, allowing you to salvage the
train ticket, plane ticket, and balloon ride. Thus, a flat transaction is insuffi-
cient. The all-or-nothing proposition is shooting us in the foot, and we need a
more robust transactional model.

A nested transaction solves this problem. A nested transaction allows you to
embed atomic units of work within other units of work. The unit of work that
is nested within another unit of work can roll back without forcing the entire
transaction to roll back. Therefore the larger unit can attempt to retry the
embedded unit of work. If the embedded unit can be made to succeed, the
larger unit can succeed. If the embedded unit of work cannot be made to work,
it will ultimately force the entire unit to fail.

You can think of a nested transaction as a tree of transactions, all spawning off
one root- or top-level transaction. The root transaction is the main transaction: In
our trip-planning example, the root transaction is the overall process of book-
ing tickets around the world. Every other transaction in the tree is called a sub-
transaction. The subtransactions can be flat or nested transactions. Figure 10.4
illustrates this concept.

What'’s special about nested transactions is that subtransactions can indepen-
dently roll back without affecting higher transactions in the tree. That’s a very
powerful idea, and it solves our trip-planning problem: If each individual
booking is a nested transaction, we can roll back any one booking without can-
celing all our other reservations. But in the end, if the nested transaction can-
not be committed, the entire transaction will fail.

286 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

The smaller-grained

transactions can be retried

without affecting the main Final State

transaction. (Transaction Succeeded)

If All Goes Well, Commit Transaction

Begin Transaction Transaction

Occurring

Initial State
(No Transaction Occurring)
If Problem Occurs, Abort Transaction

N

Perform One or More Final State
Smaller-Grained Transactions (Transaction Rolled Back)

Figure 10.4 The nested transaction.

Other Transactional Models

This concludes our discussion of transactional models. There are other models
as well, such as chained transactions and sagas, but we will not address these
subjects here because the EJB specification does not support them. And
because the EJB specification does not currently mandate support for nested

transactions, for the rest of this chapter we’ll assume that our transactions are
flat.

Enlisting in Transactions with
Enterprise JavaBeans

Let’s apply what we’ve learned so far about transactions to the EJB world.

Enterprise beans can be transactional in nature. This means they can fully
leverage the ACID properties to perform reliable, robust server-side opera-
tions. Thus, enterprise beans are ideal modules for performing mission-critical
tasks.

287

Underlying Transaction
System Abstraction

In EJB, your code never gets directly involved with the low-level transaction
system. Your enterprise beans never interact with a transaction manager or a
resource manager. You write your application logic at a much higher level,
without regard for the specific underlying transaction system. The low-level
transaction system is totally abstracted out by the EJB container, which runs
behind the scenes. Your bean components are responsible for simply voting on
whether a transaction should commit or abort. If things run smoothly, you
should commit; otherwise, abort.

Declarative, Programmatic, and
Client-Initiated Transactions

Throughout this chapter, we’ve said that once a transaction begins, it ends
with either commit or abort. The key piece of information we’re lacking is who
begins a transaction, who issues either a commit or abort, and when each of
these steps occurs. This is called demarcating transactional boundaries. There are
three ways to demarcate transactions: programmatically, declaratively, or client-
initiated.

Programmatic Transactions

Most existing systems demarcate transactional boundaries programmatically.
When using programmatic transactions, you are responsible for programming
transaction logic into your application code. That is, you are responsible for
issuing a begin statement and either a commit or an abort statement.

For example, an EJB banking application might have an enterprise bean that
acts as a bank teller. A teller bean would expose a method to transfer funds
from one bank account to another. With programmatic transactions, the teller
bean is responsible for issuing a begin statement to start the transaction,
performing the transfer of funds, and issuing either a commit or abort state-
ment. This is the traditional way to perform transactions, and it is shown in
Figure 10.5.

Declarative Transactions

Declarative transactions allow for components to automatically be enlisted in
transactions. That is, your enterprise beans never explicitly issue a begin, com-
mit, or abort statement. The EJB container performs it for you.

288

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Client Code
EJB Container/Server
1: Call Method
\ Teller EJB
Object
2: Delegate
3: Call begin()
Transaction
Teller Bean 5: Call commit() or abort() Service

4: Perform Business Operations

Figure 10.5 Beans with programmatic transactions.

Let’s take our bank teller example again, and assume some client code has
called our teller bean to transfer funds from one account to another. With
declarative transactions, the EJB container intercepts the request and starts up a
transaction automatically on behalf of your bean. That is, the container issues
the begin statement to the underlying transaction system to start the transac-
tion. The container then delegates the invocation to your enterprise bean,
which performs operations in the scope of that transaction. Your bean can do
anything it wants to, such as perform logic, write to a database, send an asyn-
chronous message, or call other enterprise beans. If a problem occurs, the bean
can signal to the container that the transaction must abort. When the bean is
done, it returns control back to the container. The container then issues either
a commit or abort statement to the underlying transaction system, depending
on whether a problem occurred. This is a very simple model, and it is shown
in Figure 10.6.

EJB declarative transactions add huge value to your deployments because
your beans may not need to interact with any transaction API. In essence, your
bean code and your client are not even really aware of transactions happening
around them.

289

EJB Container/Server
Client Code

1: Call Method

2: Call begin()
\ Teller EJB Transaction

Object 5: Call commit() or abort() Service

3: Delegate

Teller Bean

4: Perform Business Operations

Figure 10.6 Beans with declarative transactions.

So how do you instruct the container about whether your bean is using declar-
ative or programmatic transactions? EJB allows you to specify how your enter-

prise bean is enrolled in a transaction through the deployment descriptor, as
follows:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise Jav-
aBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>Hello</ejb-name>
<home>examples.HelloHome</home>
<remote>examples.Hello</remote>
<ejb-class>examples.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
</ejb-jar>

290 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

The above deployment descriptor chooses container-managed (declarative)
transactions. If instead of Container we chose Bean, then we would use bean-
managed (programmatic) transactions.

Client-Initiated Transactions

The final way to perform transactions is to write code to start and end the
transaction from the client code outside of your bean. For example, if you have
a servlet, JSP tag library, application, applet, CORBA client, or other enterprise
bean as a client of your beans, you can begin and end the transaction in that
client. This is shown in Figure 10.7.

Note that the enterprise bean the client calls would still need to be written to
use either programmatic or declarative transactions.

Choosing a Transaction Style

One question that students often ask in our EJB training classes is, “Should I
use declarative, programmatic, or client-controlled transactions?”

EJB Container/Server

1: Call begin()}———=>
Client Code Transaf:tion
Service

5: Call commit() or abort()———=

2: Call Method

Teller EJB 3: Delegate

Object

Teller Bean

4: Perform Business Operations

Figure 10.7 Beans with client-initiated transactions.

291

Transactions and Entity Beans

Perhaps one of the most misunderstood concepts in EJB is how transactions
relate to entity beans. Let’s explore this concept.

When you call an entity bean in a transaction, the first action that happens is
the entity bean needs to load database data through the ejbLoad() method,
which acquires locks in the database and ensures the entity bean cache is consis-
tent. Then one or more business methods are called. When the transaction is
committed, the entity bean’s ejbStore() method is called, which writes all updates
to the database and releases the locks. A transaction should thus span both
ejbLoad(), business methods, and the final ejbStore(), so that if any one of those
operations fail, they all fail.

If we were to use bean-managed transactions, we would write code to perform
begin() and commit() methods inside our bean (perhaps around the JDBC code).
Perhaps we would start the transaction in ejbLoad(), and then commit the trans-
action in ejbStore(). The problem, though, is that you do not call your own
ejbLoad() or ejbStore() methods—the container does. The bean cannot enforce
that these methods happen in this order, if at all. Therefore if you started a trans-
action in ejbLoad(), the transaction may never complete.

Because of this, bean-managed transactions are illegal for entity beans. Entity
beans must use declarative transactions. Session beans or message-driven beans
can use bean-managed transactions because a session bean can load database
data, perform operations on that data, and then store that data, all in a single
method call, and thus is in direct control over the transaction.

A corollary of this discussion is that entity beans do not load and store their
data on every method call; rather, they load and store their data on every transac-
tion. If your entity beans are not performing well, it could be because a transac-
tion is happening on each method call, and thus a database read/write is
happening on every get/set method. The solution is to make sure your transac-
tions begin earlier and end later, perhaps encompassing many entity bean
method calls. By properly controlling the duration of your transactions with trans-
action attributes (as we will see later in this chapter), you can control when data-
base reads and writes happen with entity beans. For more on this design strategy,
see Chapter 13.

The benefit of programmatic transactions is that your bean has full control
over transactional boundaries. For instance, you can use programmatic trans-
actions to run a series of minitransactions within a bean method. In compari-
son, with declarative or client-initiated transactions, your entire bean method
must either run under a transaction or not run under a transaction.

292 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

The benefit of declarative transactions is that they are simpler. You don’t need
to write transactional logic into your bean class, which saves coding time and
allows you to tune transactions without having access to source code. Also, by
having transactions automatically start up and end, you keep client code from
misusing your beans. If you're a bean vendor, this will reduce a great number
of headaches down the line.

To understand the benefit of client-controlled transactions, consider the fol-
lowing scenario in which we don’t use client-controlled transactions. Imagine
that a nontransactional remote client calls an enterprise bean that performs its
own transactions (either programmatically or declaratively). The bean suc-
ceeds in the transaction, but the network or application server crashes before
the result is returned to a remote client. The remote client would receive a Java
RMI RemoteException indicating a network error, but would not know whether
the transaction that took place in the enterprise bean was a success or a failure.
The remote client would then have to write code to check the state of the server
if a RemoteException was ever thrown. This code can get very messy and is
error-prone because it may never be able to contact the server.

With client-controlled transactions, you do not need to worry about this sce-
nario, because the transaction is defined in the client code. If anything goes
wrong, the client will know about it. The downside to client-controlled trans-
actions is that if the client is located far from the server, the transactions are
likely to roll back due to conflicts. Because of this, use client-transactions spar-
ingly—especially if the client is far away.

Container-Managed Transactions

Let’s now assume that we are using container-managed transactions and
understand how to implement them. Although we’re not writing any code
that starts and stops transactions, we still need to provide instructions to the
container for how we’d like our transactions to operate. For example, how can
we choose whether a bean always runs in a transaction, or whether a bean
never runs in a transaction?

A transaction attribute is a setting that you give to a bean to control how your
bean is enlisted in container-managed transactions. You can specify a different
transaction attribute on each bean in your system, regardless of how many
beans are working together.

The transactional attribute is a required part of each bean’s deployment
descriptor. The container knows how transactions should be handled with a
bean by reading that bean’s transaction attribute from its deployment descrip-
tor. Note that you can specify transaction attributes for entire beans or for indi-

293

Transactions and Message-Driven Beans

When using message-driven beans, your choice of transaction style has a big
impact on your bean.

If you use container-managed transactions, your message-driven bean will
read a message off the destination in the same transaction as it performs its
business logic. If something goes wrong, the transaction will roll back and the
message acknowledgement will occur.

If you use bean-managed transactions, the transaction begins and ends after
your message-driven bean receives the message. You can then use deployment
descriptor acknowledgement modes to instruct the container about when to
acknowledge messages (see Chapter 8).

If you don’t support transactions at all, the container will acknowledge the
message at some later time, perhaps when your bean’s method completes. The
timing is not guaranteed, however.

So which style do you use? If you don’t use container-managed transactions,
you can’t cause the messages to remain on the original destination if something
goes wrong, because your bean has no way to indicate a problem.

In general, we recommend using container-managed transactions with
message-driven beans. If you want to perform many smaller transactions, con-
sider breaking up your message-driven bean into several other beans, with each
bean having a granularity of a single transaction.

Note that there is a huge caveat with container-managed transactions. Let’s
say you have got an EJB component (any type of component) that sends and then
receives a message all within one big container-managed transaction. It is possi-
ble for the send to never get its message on the queue, because the transaction
doesn’t commit until after the receive ends. Thus, you'll be waiting for the receive
to complete forever. This is called the infinite block problem, also known as the
halting problem in computer science.

Many developers overlook an easy solution to this problem: After sending the
request message, you can call commit() on the JMS Session, which is your JMS
transaction helper object. This causes the outgoing message buffer to be flushed.

vidual bean methods. If both are specified, then method-level attributes take
precedence. See Source 10.1 transaction.

You must specify transaction attributes on all business methods for your
beans. Furthermore, with entity beans you must specify transaction attributes
that cover home interface methods, because the home interface creation meth-
ods insert database data and thus need to be transactional.

294 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

EJB Transaction Attribute Values

Every enterprise bean must have a transaction attribute setting. The following
are the possible values for the transaction attribute in the deployment descriptor.

Required

You should use the Required mode if you want your bean to always run in a
transaction. If a transaction is already running, your bean joins in on that
transaction. If no transaction is running, the EJB container starts one for you.

For example, say you write a credit card component that performs operations
on credit cards, such as charging a credit card or refunding money on a credit
card. Let’s assume you ship the component with the Required transaction
attribute. You then sell that component to two customers.

<assembly-descriptor>

<l=--

This demonstrates setting a transaction attribute
on every method on the bean class.

-—>

<container-transaction>

<method>
<ejb-name>Employee</ejb-name>
<method-name>*</method-name>
</method>

<l==

Transaction attribute. Can be "NotSupported",
"Supports", "Required", "RequiresNew",
"Mandatory", or "Never".

-—>

<trans-attribute>Required</trans-attribute>
</container-transaction>
<i--
You can also set transaction attributes on individual methods.
-—>

<container-transaction>

<method>

Source 10.1 Declaring transaction attributes in the deployment descriptor.

295

<ejb-name>Employee</ejb-name>
<method-name>setName</method-name>
</method>

<trans-attribute>Required</trans-attribute>
</container-transaction>

<i--
You can even set different transaction attributes on

methods with the same name that take different parameters.
-=>

<container-transaction>

<method>
<ejb-name>Employee</ejb-name>
<method-name>setName</method-name>
<method-param>String</method-param>
</method>

<trans-attribute>Required</trans-attribute>
</container-transaction>

</assembly-descriptor>

Source 10.1 Declaring transaction attributes in the deployment descriptor (continued).

Customer 1 deploys our component in its customer service center, using the
component to refund money when an angry customer calls. The customer
writes some proprietary code to call your bean as necessary. When the
client code calls your bean, the container automatically starts a transaction
by calling begin and then delegating the call to your bean. When your
method completes, the container issues either a commit or abort statement,
depending on whether a problem occurred.

Customer 2 uses our billing component as part of a complete workflow solu-
tion. The customer wants to use the credit card component to charge a
user’s credit card when a user purchases a product from a Web site. The
customer then wants to submit an order to manufacture that product,
which is handled by a separate component. Thus, the customer has two
separate components running but both of them to run under the same
transaction. If the credit card cannot be charged, the customer doesn’t want
the order to be submitted. If the order cannot be submitted, the customer

296

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

doesn’t want the credit card charged. Therefore the customer produces his
or her own workflow bean, which first calls our credit card charging bean
and then calls the bean to generate a manufacturing order. The workflow
bean is deployed with Required, so a transaction automatically starts up.
Because your credit card bean is also deployed with Required, you join that
transaction, rather than starting your own transaction. If the order submis-
sion component is also deployed with Required, it joins the transaction as
well. The container commits or aborts the transaction when the workflow
bean is done.

Thus, Required is a flexible transaction attribute that allows you to start your
own transaction or join existing ones, depending on the scenario.

RequiresNew

You should use the RequiresNew attribute if you always want a new transaction
to begin when your bean is called. If a transaction is already underway when
your bean is called, that transaction is suspended during the bean invocation.
The container then launches a new transaction and delegates the call to the
bean. The bean performs its operations and eventually completes. The con-
tainer then commits or aborts the transaction and finally resumes the old
transaction. Of course, if no transaction is running when your bean is called,
there is nothing to suspend or resume.

RequiresNew is useful if your bean needs the ACID properties of transactions
but wants to run as a single unit of work without allowing other external logic
to also run in the transaction.

Supports

When a bean is called with Supports, it runs only in a transaction if the client
had one running already—it joins that transaction. If the client does not have a
transaction, the bean runs with no transaction at all.

Supports is similar in nature to Required, with the one exception: Required
enforces that a new transaction is started if one is not running already. Because
Supports will sometimes not run within a transaction, you should be careful
when using this attribute. Mission-critical operations should be encapsulated
with a stricter transaction attribute (like Required).

Mandatory

Mandatory mandates that a transaction must be already running when your bean
method is called. If a transaction isn’t running, the javax.ejb.TransactionRe-

297

quiredException exception is thrown back to the caller (or javax.ejb.Tranasction-
RequiredLocalException exception if the client is local).

Mandatory is a safe transaction attribute to use. It guarantees that your bean
should run in a transaction. There is no way your bean can be called if a trans-
action isn’t already running. However, Mandatory relies on a third party to
start the transaction before your bean is called. The container will not auto-
matically start a transaction; rather, an exception is thrown back to the caller.
This is the chief difference between Mandatory and Supports. Mandatory is use-
ful if your component is designed to run within a larger system, such as a
workflow system, where your bean is only part of a larger suite of operations,
and you want to mandate that the larger operations start a transaction before
calling your bean.

NotSupported

If you set your bean to use NotSupported, then your bean cannot be involved in
a transaction at all. For example, assume we have two enterprise beans, A and
B. Let’s assume bean A begins a transaction and then calls bean B. If bean B is
using the NotSupported attribute, the transaction that A started is suspended.
None of B’s operations are transactional, such as reads/writes to databases.
When B completes, A’s transaction is resumed.

You should use NotSupported if you are certain that your bean operations do
not need the ACID properties. This should be used only if your beans are per-
forming nonmission-critical operations, where you are not worried about iso-
lating your bean’s operations from other concurrent operations. An example
here is an enterprise bean that performs rough reporting. If you have an
e-commerce Web site, you might write a bean that routinely reports a rough
average number of e-commerce purchases per hour by scanning a database.
Because this is a low-priority operation and you don’t need exact figures, Not-
Supported is an ideal, low-overhead mode to use.

Never

The Never transaction attribute means that your bean cannot be involved in a
transaction. Furthermore, if the client calls your bean in a transaction, the con-
tainer throws an exception back to the client (java.rmi.RemoteException if
remote, javax.ejb.E]BException if local).

This transaction attribute is useful when you want to make sure all clients that
call your bean do not use transactions. This can help reduce errors in client
code, because a client will not be able to erroneously call your bean in a trans-
action and expect your bean to participate in the ACID properties with other

298

transaction participants. If you are developing a system that is not transac-
tional in nature and would like to enforce that behavior, consider using the
Never attribute.

Transaction Attribute Summary

Table 10.1 is a summary of the effects of each transaction attribute. In the chart,
T1 and T2 are two different transactions. T1 is a transaction passed with the
client request, and T2 is a secondary transaction initiated by the container.

Table 10.1 is important because you can use this information to control the
length of your transaction. For example, let’s say you want to perform a trans-
fer between two bank accounts. To achieve this, you might have a bank teller
session bean that calls into two bank account entity beans. If you deploy all
three of these beans with the Required transaction attribute, they will all be
involved in a single transaction, as shown in Figure 10.8. In this example,
assume all three beans are deployed with the Required attribute. Notice that

m Transactions always begin and end in the same place. In this case, the
Teller EJB object.

m Both Account beans automatically enlist in the Teller’s transaction. Thus,
we have created a transaction spanning three beans by merely using
transaction attributes.

Table 10.1 The Effects of Transaction Attributes

TRANSACTION CLIENT'S BEAN’S
ATTRIBUTE TRANSACTION TRANSACTION
Required none T2

T1 T1
RequiresNew none T2

Ti T2
Supports none none

T1 T1
Mandatory none error

T1 T1
NotSupported none none

Ti none
Never none none

T1 error

299

EJB Container/Server

Client Code

1: Call 2: Call begin()

Method™ | Teller EJB Transaction
Object 8: Call commit() or Service
— abort() —

In this example, AN
assume all three beans 3: Delegate
are deployed with the
Required attribute.

Account #1
Bean

Notice: Account #1
« Transactions always _~7| EJB Object

begin and end in the 4: withdraw()
same place, in this .

case, the Teller EJB Teller
object. Bean
Both Acgount begns 6: deposit()
automatically enlist . /Account #2 Account #2
in the Teller's EJB Object [/- Delegate=> " geap
transaction spanning
three beans by merely
using transaction
attributes.

—5: Delegate>

Figure 10.8 Using transaction attributes to control a transaction’s length.

Finally, you should note that not all transaction attributes are available for use
on all beans. Table 10.2 shows which are permissible.

Here is a brief explanation of why certain transaction attributes are disal-
lowed.

m Entity beans and stateful session beans with SessionSynchronization must
use transactions. The reason is that both these types of beans are inher-
ently transactional in nature. Entity beans perform database updates, and
stateful session beans with SessionSynchronization (which we describe later
in this chapter) are also transactional. Therefore you normally can’t use
the following attributes: Never, NotSupported, Supports. Note that the EJB
specification does allow for containers to optionally support these attrib-
utes—but only if you're using non-transactional data stores—and with the
warning that if you use this, your beans will not be portable, and you may
find that you receive inconsistent results.

300

Table 10.2 Permissible Transaction Attributes for Each Bean Type

STATEFUL SESSION

STATELESS BEAN IMPLEMENTING MESSAGE-

TRANSACTION SESSION SESSION ENTITY DRIVEN
ATTRIBUTE BEAN SYNCHRONIZATION BEAN BEAN
Required Yes Yes Yes Yes
RequiresNew Yes Yes Yes No
Mandatory Yes Yes Yes No
Supports Yes No No No
NotSupported Yes No No Yes

Never Yes No No No

A client does not call a message-driven bean directly; rather, message-driven
beans read messages off a message queue in transactions separate from the
client’s transaction. There is no client, and therefore transaction attributes that
deal with the notion of a client’s transaction make no sense for message-driven
beans—namely Never, Supports, RequiresNew, and Mandatory.

Programmatic Transactions in EJB

Next let’s discuss how you can control transactions programmatically in EJB.
Programmatic transactions allow for more advanced transaction control than
declarative transactions, but they are trickier to use. To control transaction
boundaries yourself, you must use the Java Transaction API (JTA). We begin
by taking a look at how the JTA was established.

CORBA's Object Transaction
Service (OTS)

When we described the ACID properties earlier in this chapter, we mentioned
that many parties, such as an enterprise bean and a database driver, can par-
ticipate in a transaction. This is really an extension to the basic ACID proper-
ties, and it’s the primary reason that Object Management Group (OMG)
developed a standardized Object Transaction Service (OTS) as an optional
CORBA service. OTS improved on earlier transaction systems that didn’t sup-
port multiple parties participating in a transaction.

OTS is a suite of well-defined interfaces that specify how transactions can run
behind the scenes—interfaces that the transaction manager, resource manager,

301

and transactional objects use to collaborate. OTS is decomposed into two
parts: CosTransactions and CosTSPortability.

The CosTransactions interfaces are the basic interfaces that transactional
objects/components, resources, resource managers, and transaction man-
agers use to interoperate. These interfaces ensure that any combination of
these parties is possible.

The CosTSPortability interface offers a portable way to perform transac-
tions with many participants.

The inner workings of OTS are not relevant to the development of enterprise
beans. As an EJB programmer, you should need to think only about writing
your application, not about low-level transaction services. This is how E]JB
achieves rapid application development; you can write a distributed server-
side application without understanding complex middleware APIs. EJB
shields you from transaction services such as OTS.

The Java Transaction Service (JTS)

Sun realized that you, as an application developer, should not care about most
of OTS. Only system-level vendors need to be concerned with the inner work-
ings of OTS. Part of OTS is very applicable to you, however, because it allows
you to demarcate transaction boundaries programmatically. Hence, Sun has
split up OTS into two sub-APIs: the Java Transaction Service (JTS) and the Java
Transaction API (JTA).

The Java Transaction Service (JTS) is a Java mapping of CORBA OTS for system-
level vendors. JTS defines the interfaces used by transaction managers and
resource managers behind the scenes. It is used to have various vendors’ prod-
ucts interoperate. It also defines various objects passed around and used by
transaction managers and resource managers. As an application programmer,
you should not care about most of OTS, and you should not care about JTS at
all. What you should care about is the Java Transaction API (JTA).

The Java Transaction API (JTA)

The Java Transaction API (JTA) is a transaction API used by component and
application developers. You can use the JTA in your client and bean code to
programmatically control transactional boundaries. The JTA package is a stan-
dard Java extension, so the package is automatically downloaded if needed.

You can do very useful things with the JTA, such as start a transaction inside
your bean, call other beans that also are involved in a transaction, and control
whether things commit or abort. Nonbeans can use the JTA as well—the client

302

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

code that calls your beans can use the JTA to control transaction boundaries in
a workflow scenario, where the client code is calling multiple beans and wants
each bean to participate in one transaction.

JTA consists of two sets of interfaces: one for X/Open XA resource managers
(which we don’t need to worry about) and one that we will use to support pro-
grammatic transaction control. The interface you use to programmatically con-
trol transactions is javax.transaction.UserTransaction.

javax.transaction.UserTransaction

The javax.transaction.UserTransaction interface allows you to programmatically
control transactions. Here is what the javax.transaction.UserTransaction inter-
face looks like:

public interface javax.transaction.UserTransaction {
public void begin() ;
public void commit () ;
public int getStatus() ;
public void rollback() ;
public void setRollbackOnly () ;
public void setTransactionTimeout (int) ;

}

As you can see, six methods are exposed by the UserTransaction interface.
Three of them—begin, commit, and rollback—are used to begin a new transac-
tion, commit a transaction permanently, and roll back a transaction in case
some problem occurred, respectively. The JTA methods are in Table 10.3.

JTA also defines a number of constants that indicate the current status of a
transaction. You might see these constants when you call the UserTransac-
tion.getStatus() method:

public interface javax.transaction.Status {
public static final int STATUS_ACTIVE;
public static final int STATUS_NO_TRANSACTION;
public static final int STATUS_MARKED_ROLLBACK;
public static final int STATUS_PREPARING;
public static final int STATUS_PREPARED;
public static final int STATUS_COMMITTING;
public static final int STATUS_COMMITTED;
public static final int STATUS_ROLLING_BACK;
public static final int STATUS_ROLLEDBACK;
public static final int STATUS_UNKNOWN;

}

Table 10.4 explains the values of those constants.

303

Table 10.3 The javax.transaction.UserTransaction Methods for Transactional Boundary

Interaction

METHOD DESCRIPTION

begin() Begins a new transaction. This transaction becomes
associated with the current thread.

commit() Runs the two-phase commit protocol on an existing
transaction associated with the current thread. Each
resource manager will make its updates durable.

getStatus() Retrieves the status of the transaction associated with
this thread.

rollback() Forces a rollback of the transaction associated with the
current thread.

setRollbackOnly() Calls this to force the current transaction to roll back.

This will eventually force the transaction to abort.

setTransactionTimeout(int) The transaction timeout is the maximum amount of
time that a transaction can run before it's aborted. This
is useful to avoid deadlock situations, when precious
resources are being held by a transaction that is cur-
rently running.

Table 10.4 The javax.transaction.Status Constants for Transactional Status

CONSTANT MEANING

STATUS_ACTIVE A transaction is currently happening and is active.
STATUS_NO_TRANSACTION No transaction is currently happening.

STATUS_MARKED_ROLLBACK The current transaction will eventually abort because
it's been marked for rollback. This could be because
some party called UserTransaction.setRollbackOnly().

STATUS_PREPARING The current transaction is preparing to be committed
(during Phase One of the two-phase commit protocol).
STATUS_PREPARED The current transaction has been prepared to be com-
mitted (Phase One is complete).
STATUS_COMMITTING The current transaction is in the process of being com-
mitted right now (during Phase Two).
STATUS_COMMITTED The current transaction has been committed (Phase
Two is complete).
STATUS_ROLLING_BACK The current transaction is in the process of rolling back.
STATUS_ROLLEDBACK The current transaction has been rolled back.
STATUS_UNKNOWN The status of the current transaction cannot be

determined.

304 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Declarative versus Programmatic
Transactions Example

We now show you how to write an enterprise bean in two equivalent ways:
using programmatic (or bean-managed) transactions and using declarative (or
container-managed) transactions. To illustrate this, we’ll use a bank account
example. This example has a method called deposit() that deposits funds into
an account. We’ll make this method transactional.

The following code illustrates a deposit method using declarative trans-
actions:

/**
* Deposits amt into account.
*/
public void deposit (double amt) throws AccountException {
System.out.println("deposit (" + amt + ") called.");

balance += amt;

A bean using the preceding method relies on the E]JB container to demarcate
transactional boundaries. Therefore, the bean’s deployment descriptor should
use a transaction attribute that provides this (such as Required, Mandatory, or
RequiresNew). We showed the code for such a deployment descriptor earlier in
this chapter.

The following code illustrates the same method using programmatic trans-
actions:

/**
* Deposits amt into account.
*/
public void deposit (double amt) throws AccountException {

javax.transaction.UserTransaction userTran = null;

try {
System.out.println("deposit (" + amt + ") called.");

userTran = ctx.getUserTransaction() ;

userTran.begin() ;
balance += amt;
userTran.commit () ;
}

catch (Exception e) {

305

Doomed Transactions

Dooming a transaction means to force a transaction to abort. You may need to
doom a transaction if something goes wrong, such as a database being unavail-
able or the client sending you bad parameters.

If you're performing programmatic or client-initiated transactions, you are call-
ing the begin() and commit() methods. You can easily doom a transaction by call-
ing rollback() on the JTA, rather than commit(). But how can you doom a
transaction if you are participating in a transaction that someone else started?
This can occur in one of two cases:

1) Your transaction participant is an EJB component using declarative transac-
tions. The container then starts and ends transactions on your behalf. To instruct
the container to abort the transaction, your first instinct might be to throw an
exception and expect the container to abort the transaction. But this approach
will not work in all cases, because if you are throwing your own custom excep-
tion classes, the container has no way of knowing whether the exception is criti-
cal enough to indicate a failed transaction and will not abort the transaction. The
best way to doom a transaction from a bean with container-managed transac-
tions is to call setRollbackOnly() on your EJB context object, which we introduced
in Chapter 3.

2) Your transaction participant is not an EJB component, such as a Java object.
You can doom a transaction by looking up the JTA and calling the JTA's setRoll-
backOnly() method, shown in Table 10.3.

Dooming transactions brings up an interesting side discussion. Imagine you
have 10 beans in a chain executing in the same transaction, and bean 2 decides to
doom the transaction by calling setRollbackOnly(). Why should beans 3 through
10 perform their work if the transaction is doomed to failure anyway? After all,
those beans might be performing CPU- or database-intensive operations, and this
work will all be wasted when the transaction aborts. The solution is that your
beans can detect doomed transactions and avoid performing work when a
doomed transaction exists. You can detect doomed transactions as follows:

Container-managed transactional beans can detect doomed transactions by calling
the getRollbackOnly() method on the EJB context object. If this method returns
true, the transaction is doomed.

Other participants, such as bean-managed transactional beans, can call the JTA's
getStatus() method, as described in Table 10.3.

You should write code to detect doomed transactions if you expect a good
number of transactions to roll back and are performing intensive operations.

306

v

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

if (userTran != null) userTran.rollback();
throw new AccountException("Deposit failed because of " +
e.toString());

}

}

Here, we are controlling the transactional boundaries explicitly in code. We
first retrieve the JTA from our bean’s E]B context object. Then, rather than rely-
ing on the EJB container to begin and commit transactions, we perform these
steps ourselves. A bean using the preceding method should be deployed with
the deployment descriptor <transaction-type> of Bean, because the bean is
performing its own transaction boundary demarcation.

Take a look at the size difference between the two sets of source code. Bean-
managed transactions clutter your source code because you need to write to a
transaction API. Container-managed transactions allow you to elegantly write
application code and externalize all transaction logic to the container. This is
analogous to how we saw entity beans with container-managed persistence as
much smaller than those with bean-managed persistence in Chapter 7.

When using programmatic transactions, always try to complete your transactions in
the same method that you began them. Doing otherwise results in spaghetti code
where it is difficult to track the transactions; the performance decreases because the
transaction is held open longer, and the behavior of your system may be odd. See
the EJB specification for more details about what the container will do if your trans-
action is left open.

Transactions from Client Code

The last way you can control transactions is from client code (with the word
client here meaning anything that calls into your beans, even other enterprise
beans). You use the Java Transaction API (JTA) to control transactions from
client code.

To control transactions from client code, you must lookup the JTA UserTransac-
tion interface with the Java Naming and Directory Interface (JNDI). JNDI is a
generic lookup facility to lookup resources across a network, and it is fully
described in Appendix A. The following code illustrates looking up the JTA
UserTransaction interface from client code using JNDI:

try {
/*
* 1: Set environment up. You must set the JNDI Initial
* Context factory, the Provider URL, and any login
* names or passwords necessary to access JNDI. See

307

* your application server product’s documentation for
* details on their particular JNDI settings.
*/

java.util.Properties env =

/*
* 2: Get the JNDI initial context
*/
Context ctx = new InitialContext (env) ;

/*
* 3: Look up the JTA UserTransaction interface
* via JNDI. The container is required to
* make the JTA available at the location
* java:comp/UserTranasction.
*/
userTran = (javax.transaction.UserTransaction)

ctx.lookup ("java:comp/UserTransaction") ;

/*
* 4: Execute the transaction
*/

userTran.begin() ;

// perform business operations

userTran.commit () ;

}

catch (Exception e) {
// deal with any exceptions, including ones
// indicating an abort.

}

When you demarcate transactional boundaries in client code, you should be
very careful. Always strive to keep your transactions as short in duration as
possible. Longer-lived transactions result in multiuser performance grinding
to a halt. If you need a long transaction (that lasts for minutes, hours, or days)
use a distributed locking mechanism, such as the CORBA locking service.
Unfortunately, no distributed locking service equivalent currently exists in the
Java 2 Platform, Enterprise Edition.

Transactional Isolation

Now that you've seen how to enlist enterprise beans in transactions, let’s dis-
cuss the I in ACID: isolation. Isolation is the guarantee that concurrent users
are isolated from one another, even if they are touching the same database
data. Isolation is important to understand because it does not come for free. As

308 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

we’ll see, you can control how isolated your transactions are from one another.
Choosing the right level of isolation is critical for the robustness and scalabil-
ity of your deployment.

The underlying transaction system achieves isolation by performing concur-
rency control behind the scenes. We elaborate on this concept in the following
section.

The Need for Concurrency Control

Let’s begin our isolation discussion with a motivational example. Imagine
there are two instances of the same component executing concurrently, per-
haps in two different processes or two different threads. Let’s assume that the
component wants to update a shared database using a database API such as
JDBC or SQL/]J. Each of the instances of the component performs the follow-
ing steps:

1. Read an integer X from a database.
2. Add 10 to X.
3. Write the new value of X to the database.

If each these three steps executes together in an atomic operation, everything
is fine. Neither instance can interfere with the other instance’s operations.
Remember, though, that the thread-scheduling algorithm being used in the
background does not guarantee this. If two instances are executing these three
operations, the operations could be interleaved. The following order of opera-
tions is possible:

1. Instance A reads integer X from the database. The database now contains

X =0.
2. Instance B reads integer X from the database. The database now contains
X =0.

3. Instance A adds 10 to its copy of X and persists it to the database. The
database now contains X = 10.

4. Instance B adds 10 to its copy of X and persists it to the database. The
database now contains X = 10.

What happened here? Due to the interleaving of database operations, instance
B is working with a stale copy of X: The copy before instance A performed a
write. Thus, instance A’s operations have been lost! This famous problem is
known as a lost update. It is a very serious situation—instance B has been work-
ing with stale data and has overwritten instance A’s write. How can transac-
tions avoid this scenario?

309

The solution to this problem is to use locking on the database to prevent the two
components from reading data. By locking the data your transaction is using,
you guarantee that your transaction and only your transaction has access to
that data until you release that lock. This prevents interleaving of sensitive
data operations.

In our scenario, if our component acquired an exclusive lock before the trans-
action began and released that lock after the transaction, then no interleaving
would be possible.

1. Request a lock on X.

Read an integer X from a database.

Add 10 to X.

Write the new value of X to the database.
Release the lock on X.

AR S

If another component ran concurrently with ours, that component would have
to wait until we relinquished our lock, which would give that component our
fresh copy of X. We explore locking further in the Isolation and Locking
sidebar.

Isolation and EJB

As an E]JB component developer, you can control how isolated your transac-
tions are from one another. You can enforce strict isolation or allow relaxed iso-
lation. If you have very strict isolation, you can rest assured that each
concurrent transaction will be isolated from all other transactions. But some-
times enforcing strict isolation is a hindrance rather than a benefit. Because iso-
lation is achieved by acquiring locks on an underlying data storage, the locks
can result in unacceptable performance degradation.

Thus, you need to be smart about how much isolation you really need. Isolation
levels give you a choice over how much isolation you want and allow you to
specify concurrency control at a very high level. If you specify a very strict iso-
lation level, then your transactions will be perfectly isolated from one another,
at the expense of performance. If you specify a very loose isolation level, your
transactions will not be isolated, but you will achieve higher concurrent trans-
action performance.

There are four transaction isolation levels:

The READ UNCOMMITTED mode does not offer any isolation guarantees
but offers the highest performance.

The READ COMMITTED mode solves the dirty read problem.

310

Isolation and Locking

During a transaction, a number of locks are acquired on the resource being
updated. These locks are used to ensure isolation: Multiple clients all updating
the same data set cannot interfere with each other. The locks are implicitly
retrieved when you interact with resource managers—you do not have to worry
about obtaining them yourself.

By intelligently acquiring locks on the resource being used, transactions guar-
antee a special property: serializability. Serializability means that a suite of con-
currently executing transactions behaves as if the transactions were executing
one after another (nonconcurrently). This is guaranteed no matter how schedul-
ing of the transactions is performed.

The problem with locking is that it physically locks out other concurrent trans-
actions from performing their database updates until you release your locks. This
can lead to major performance problems. In addition, a deadlock scenario (not
specific to databases, by the way) can arise. Deadlock causes the entire system to
screech to a dead stop. An example of deadlock occurs when two concurrent
transactions are both waiting for each other to release a lock.

To improve performance, transactions distinguish between two main types of
locks: read locks and write locks. Read locks are nonexclusive, in that any num-
ber of concurrent transactions can acquire a read lock. In comparison, write locks
are exclusive—only one transaction can hold a write lock at any time.

Locking exists in many circles: databases, Version Control Systems, and the
Java language itself (through the synchronized keyword). The problems experi-
enced in locking are common to all arenas. EJB abstracts concurrency control
away from application developers via isolation levels.

If you would like more details about locking and transactions, check out Prin-
ciples of Databases Systems by Jeffrey D. Ullman (Computer Science Press, 1980).
This is a classic, theoretical book on databases that forms the basis for many
database systems today.

The REPEATABLE READ mode solves the previous problem as well as the
unrepeatable read problem.

The SERIALIZABLE mode solves the previous problems as well as the phan-
tom problem.

It's important to understand why dirty reads, unrepeatable reads, and phantoms
occur, or you won't be able to use transactions properly in EJB. This section
gives you the information you need to make an intelligent isolation level
choice when programming with transactions.

311

The Dirty Read Problem

A dirty read occurs when your application reads data from a database that has
not been committed to permanent storage yet. Consider two instances of the
same component performing the following;:

1. You read integer X from the database. The database now contains X = 0.

2. You add 10 to X and save it to the database. The database now contains
X = 10. You have not issued a commit statement yet, however, so your
database update has not been made permanent.

3. Another application reads integer X from the database. The value it reads
inis X = 10.

4. You abort your transaction, which restores the database to X = 0.

5. The other application adds 10 to X and saves it to the database. The data-
base now contains X = 20.

The problem here is the other application read your update before you com-
mitted. Because you aborted, the database data has erroneously been set to 20;
your database update has been added in despite the abort! This problem of
reading uncommitted data is a dirty read. (The word dirty occurs in many areas
of computer science, such as caching algorithms. A dirty cache is a cache that
is out of sync with the main source.)

READ UNCOMMITTED

Dirty reads can occur if you use the weakest isolation level, called READ
UNCOMMITTED. With this isolation level, if your transaction is executing
concurrently with another transaction, and the other transaction writes some
data to the database without committing, your transaction will read that data
in. This occurs regardless of the isolation level being used by the other
transaction.

READ UNCOMMITTED experiences the other transactional problems as well:
unrepeatable reads and phantoms. We’ll describe those problems in the pages
to come.

When to Use READ UNCOMMITTED

This isolation level is dangerous to use in mission-critical systems with shared
data being updated by concurrent transactions. It is inappropriate to use this
mode in sensitive calculations, such as in a debit/credit banking transaction.
For those scenarios, it’s better to go with one of the stricter isolation levels we
detail later.

312 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

This level is most appropriate if you know beforehand that an instance of your
component will be running only when there are no other concurrent transac-
tions. Because there are no other transactions to be isolated from, this isolation
level is adequate. But for most applications that use transactions, this isolation
level is insufficient.

The advantage of this isolation level is performance. The underlying transac-
tion system doesn’t have to acquire any locks on shared data in this mode. This
reduces the amount of time that you need to wait before executing, and it also
reduces the time concurrent transactions waste waiting for you to finish.

READ COMMITTED

The READ COMMITTED isolation level is very similar to READ UNCOM-
MITTED. The chief difference is that your code will read committed data only
when running in READ COMMITTED mode. When you execute with this iso-
lation level, you will not read data that has been written but is uncommitted.
This isolation level thus solves the dirty read problem.

Note that this isolation level does not protect against the more advanced trans-
actional problems, such as unrepeatable reads and phantoms.

When to Use READ COMMITTED

This isolation level offers a step up in robustness from the READ UNCOM-
MITTED mode. You aren’t going to be reading in data that has just been writ-
ten but is uncommitted, which means that any data you read is going to be
consistent data.

One great use for this mode is for programs that read data from a database to
report values of the data. Because reporting tools aren’t in general mission-
critical, taking a snapshot of committed data in a database makes sense.

When you run in READ COMMITTED mode, the underlying concurrency
control system needs to acquire additional locking. This makes performance
slower than with READ UNCOMMITTED. READ COMMITTED is the default
isolation level for most databases, such as Oracle or Microsoft SQL Server.

The Unrepeatable Read Problem

Our next concurrency control problem is an Unrepeatable Read. Unrepeatable
reads occur when a component reads some data from a database, but upon
rereading the data, the data has been changed. This can arise when another
concurrently executing transaction modifies the data being read. For example:

1. You read a data set X from the database.

2. Another application overwrites data set X with new values.

313

3. You reread the data set X from the database. The values have magically

changed.

Again, by using transactional locks to lock out those other transactions from
modifying the data, we can guarantee that unrepeatable reads will never

occur.

REPEATABLE READ

REPEATABLE READ guarantees yet another property on top of READ COM-
MITTED: Whenever you read committed data from a database, you will be
able to reread the same data again at a later time, and the data will have the
same values as the first time. Hence, your database reads are repeatable. In con-
trast, if you are using the READ COMMITTED mode or a weaker mode,

another concurrent transaction may commit data between your reads.

When to Use REPEATABLE READ

Use REPEATABLE READ when you need to update one or more data elements
in a resource, such as one or more records in a relational database. You want to
read each of the rows that you're modifying and then be able to update each
row, knowing that none of the rows are being modified by other concurrent
transactions. If you choose to reread any of the rows at any time later in the
transaction, you’'d be guaranteed that the rows still have the same data that

they did at the beginning of the transaction.

The Phantom Problem

Finally, we have the phantom problem. A phantom is a new set of data that
magically appears in a database between two database read operations. For

example:

1. Your application queries the database using some criteria and retrieves a

data set.
2. Another application inserts new data that would satisfy your query.

3. You perform the query again, and new sets of data have magically
appeared.

The difference between the unrepeatable read problem and the phantom prob-
lem is that unrepeatable reads occur when existing data is changed, whereas

314

phantoms occur when new data that didn’t exist before is inserted. For exam-
ple, if your transaction reads a relational record, and a concurrent transaction
commits a new record to the database, a new phantom record appears that
wasn’t there before.

SERIALIZABLE

You can easily avoid phantoms (as well as the other problems described ear-
lier) by utilizing the strictest isolation level: SERIALIZABLE. SERIALIZABLE
guarantees that transactions execute serially with respect to each other, and it
enforces the isolation ACID property to its fullest. This means that each trans-
action truly appears to be independent of the others.

When to Use SERIALIZABLE

Use SERIALIZABLE for mission-critical systems that absolutely must have
perfect transactional isolation. You are guaranteed that no data will be read
that has been uncommitted. You'll be able to reread the same data again and
again. And mysterious committed data will not show up in your database
while you're operating due to concurrent transactions.

Use this isolation level with care because serializability does have its cost. If all
of your operations execute in SERIALIZABLE mode, you will quickly see how
fast your database performance grinds to a halt. (A personal note: Because
transactional errors can be very difficult to detect, due to scheduling of
processes, variable throughput, and other issues, we subscribe to the view that
it’s better to be safe than sorry.)

Transaction Isolation Summary

The various isolation levels and their effects are summarized in Table 10.5.

Table 10.5 The Isolation Levels

ISOLATION DIRTY UNREPEATABLE PHANTOM
LEVEL READS? READS? READS?
READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes

SERIALIZABLE No No No

315

Isolation and EJB

Now that you understand isolation in theory, let’s see how to set up isolation
in an EJB environment.

If your bean is managing transactions, you specify isolation levels with your
resource manager API (such as JDBC). For example, you could call
java.sql.Connection.SetTransactionlsolation(. . .).

If your container is managing transactions, there is no way to specify isola-
tion levels in the deployment descriptor. You need to either use resource
manager APIs (such as JDBC), or rely on your container’s tools or data-
base’s tools to specify isolation.

If you're using different resource managers within a single transaction, each
resource manager can have a different isolation level, yet all run together
under a single transaction. Note that any particular resource manager running
under a transaction usually requires a single isolation level for the duration of
that transaction. This new model has some drawbacks as well, as described in
the following sidebar.

Isolation Portability Issues

Unfortunately, there is no way to specify isolation for container-managed transac-
tional beans in a portable way—you are reliant on container and database tools.
This means if you have written an application, you cannot ship that application
with built-in isolation. The deployer now needs to know about transaction isola-
tion when he uses the container’s tools, and the deployer might not know a
whole lot about your application’s transactional behavior. This approach is also
somewhat error-prone, because the bean provider and application assembler
need to informally communicate isolation requirements to the deployer, rather
than specifying it declaratively in the deployment descriptor.

When we queried Sun on this matter, Mark Hapner, coauthor of the EJB specifi-
cation, provided this response: “Isolation was removed because the vendor com-
munity found that implementing isolation at the component level was too
difficult. Some felt that isolation at the transaction level was the proper solution;
however, no consensus was reached on a specific replacement semantics.

“This is a difficult problem that unfortunately has no clear solution at this time
... The best strategy is to develop EJBs that are as tolerant of isolation differ-
ences as possible. This is the typical technique used by many optimistic concur-
rency libraries that have been layered over JDBC and ODBC.’

316

Pessimistic and Optimistic
Concurrency Control

The two basic object concurrency control strategies that your EJBs may follow,
pessimistic and optimistic, are summarized in Table 10.6. Pessimistic concur-
rency control is the algorithm we’ve been assuming throughout this chapter—
you acquire a lock the data for the duration of the transaction, ensuring that

nobody messes with your data.

With optimistic concurrency control, your EJB component does not hold the
lock for the duration of the transaction. Instead, you hope everything will be
OK. Then if the database detects a collision, the transaction rolls back. The
basic assumption behind optimistic concurrency is that because it is unlikely
that separate users will access the same object simultaneously, it is better to

handle the occasional collision than to limit the size of your system.

Distributed Transactions

Now that we’ve concluded our discussion of isolation levels, we’ll shift gears
and talk about distributed transactions, which are transactions over a multitier

deployment with several transaction participants.

Table 10.6 Comparing Pessimistic and Optimistic Concurrency Control Strategies.

STRATEGY ADVANTAGES DISADVANTAGES
Pessimistic—Your EJB locks the m Brute force approach = Does not scale well
source data for the entire time m Provides reliable because it blocks
it needs the data, not allowing access to data simultaneous access
anything else (at least anything = Suitable for small- to common
greater than read/view access) scale systems resources
to potentially update the data m Suitable for systems
until it completes its transaction. where concurrent

access is rare
Optimistic—Your EJB implements mm Suitable for large m Requires complex
a strategy to detect whether a system code to be written
change has occurred to the m Suitable for systems ro support collision
source data between the time it requiring significant detection and
was read and the time it now concurrent access handling

needs to be updated. Locks are
placed on the data only for the
small periods of time the EJB
interacts with the database.

317

The most basic flat transaction occurs with a single application server tied to a
single database. Depending on the functionality of your application server’s
transaction service, you may be able to perform distributed flat transactions as
well. Distributed flat transactions obey the same rules as simple flat transac-
tions: If one component on one machine aborts the transaction, the entire
transaction is aborted. But with distributed flat transactions, you can have
many different types of resources coordinating in a single transaction across
the network. Here are some possible use-cases for which you may need dis-
tributed flat transactions.

m You have multiple application servers coordinating in the same transaction.
m You have updates to different databases in the same transaction.

m You are trying to perform a database update and send or receive a mes-
sage from a message queue in the same transaction.

m You are connecting to a legacy system as well as one or more other types
of storage (such as databases, message queues, or other legacy systems) in
the same transaction.

Each of these scenarios requires multiple processes or machines to collaborate,
potentially across a network, to solve a business problem. Distributed flat
transactions allow multiple transaction participants, written by different ven-
dors, to collaborate under one transactional hood.

Durability and the Two-Phase Commit
Protocol

One important ACID property is durability. Durability guarantees that all
resource updates that are committed are made permanent. Durability is easy
to implement if you have one storage into which you are persisting. But what
if multiple resource managers are involved? If one of your resources under-
goes a catastrophic failure, such as a database crash, you need to have a recov-
ery mechanism. How do transactions accomplish this?

One way would be to log all database operations before they actually happen,
allowing you to recover from a crash by consulting the log and reapplying the
updates. This is exactly how transactions guarantee durability. To accomplish
this, transactions complete in two phases.

Phase One begins by sending a before commit message to all resources
involved in the transaction. At this time, the resources involved in a trans-
action have a final chance to abort the transaction. If any resource involved
decides to abort, the entire transaction is cancelled and no resource
updates are performed. Otherwise, the transaction proceeds on course and

318 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

cannot be stopped, unless a catastrophic failure occurs. To prevent cata-
strophic failures, all resource updates are written to a transactional log or
journal. This journal is persistent, so it survives crashes and can be con-
sulted after a crash to reapply all resource updates.

Phase Two occurs only if Phase One completed without an abort. At this
time, all of the resource managers, which can all be located and controlled
separately, perform the actual data updates.

The separation of transaction completion into two phases is called the two-
phase commit protocol or 2PC. The two-phase commit protocol is useful because
it allows for many transaction managers and resource managers to participate
in a transaction across a deployment. If any participant votes that the transac-
tion should abort, all participants must roll back.

In the distributed two-phase commit, there is one master transaction manager
called the distributed transaction coordinator. The transaction coordinator runs
the show and coordinates operations among the other transaction managers
across the network. The following steps occur in a distributed two-phase com-
mit transaction:

1. The transaction coordinator sends a prepare to commit message to each
transaction manager involved.

2. Each transaction manager may propagate this message to the resource
managers that are tied to that transaction manager.

3. Each transaction manager reports back to the transaction coordinator. If
everyone agrees to commit, the commit operation that’s about to happen
is logged in case of a crash.

4. Finally, the transaction coordinator tells each transaction manager to com-
mit. Each transaction manager in turn calls each resource manager, which
makes all resource updates permanent and durable. If anything goes
wrong, the log entry can be used to reapply this last step.

This process is shown in Figure 10.9.

The Transactional Communications
Protocol and Transaction Contexts

A distributed two-phase commit transaction complicates matters, because the
transaction managers must all agree on a standard mechanism of communi-
cating. Remember that each of the participants in a distributed transaction
may have been written by a different vendor, such as a deployment with het-
erogeneous application servers. The communication mechanism used is called

Transactions 319

Transaction Participants

1: Prepare to
—— Commit

Transaction ||
Manager || T---X

2: Return

Transaction

Coordinator 4: Commit Resource Manager
5: Return

Transaction
Manager

Transaction
Manager

3: Log Result

Resource Manager

Figure 10.9 A distributed flat transaction using a two-phase commit protocol.

the transactional communications protocol. An example of such a protocol is the
Internet Inter-ORB Protocol (IIOP), which we describe in Appendix B.

The most important piece of information sent over the transactional commu-
nications protocol is the transaction context. A transaction context is an object
that holds information about the system’s current transactional state. It is
passed around among parties involved in transactions. By querying the trans-
action context, you can gain insight into whether you're in a transaction, what
stage of a transaction you are at, and other useful data. For any component to
be involved in a transaction, the current thread in which the component is exe-
cuting must have a transaction context associated with it.

The EJB specification suggests, but does not require, that application server vendors
support on-the-wire transaction context interoperability. If an application server
does support interoperable transactions, EJB requires that it leverage the transaction
context propagation facilities built in to CORBA's Object Transaction Service (OTS)
and the Internet Inter-ORB Protocol (110P). Application servers that use these tech-
nologies should be interoperable and run in a distributed 2PC transaction.

320 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Since the E]JB specification does not require this level of interoperability, appli-
cation servers from different vendors cannot be guaranteed to work together
and participate in a distributed two-phase commit transaction, because they
may not be able to communicate in a standard way.

For most users, this is acceptable because distributed 2PC has poor perfor-
mance. And more to the point, most organizations struggle enough as it is with
a single application server vendor.

It's important to understand which communications protocol your application
server uses. If you want to perform a distributed two-phase commit transac-
tion, the transaction participants must agree on a standard protocol.

Designing Transactional Conversations in EJB

In this chapter we’ve seen that a transactional abort entails an automatic roll-
back of database updates that were performed during the transaction. But
database updates are only half of the picture. Your application code needs to
consider the impacts of a failed transaction as well.

When a transaction aborts, your application code has several choices. You can
abort your business process and throw an exception back to the client, or you
can attempt to retry the transaction several times. But unfortunately, your
application cannot sit in a loop retrying transactions forever, as that would
yield horrible performance for concurrent threads of execution. If the transac-
tion cannot eventually be made to succeed, you should consider aborting your
business process.

For a stateless session bean, aborting a business process is a simple task—sim-
ply throw an exception back to the client. But for a stateful session bean, things
are a bit trickier. Stateful session beans represent business processes that span
multiple method calls and hence have in-memory conversational state. Tossing
away that conversation and throwing an exception to the client could entail a
significant amount of lost work.

Fortunately, a well-designed stateful session bean can salvage its conversa-
tions in the case of failed transactions. The key is to design your beans to be
aware of changes to conversational state and to be smart enough to undo any
of those changes if a transactional abort occurs.

Because this process is highly application-specific, your application server
cannot automate this task for you. Your application server can aid you in deter-
mining when a transaction failed, enabling you to take application-specific
steps. If your session bean needs to be alerted to transaction status (like failed

321

transactions), your enterprise bean class can implement an optional interface
called javax.ejb.SessionSynchronization, shown in the following code:

public interface javax.ejb.SessionSynchronization
{

public void afterBegin() ;

public void beforeCompletion() ;

public void afterCompletion (boolean) ;

You should implement this interface in your enterprise bean class and define
your own implementations of each of these methods. The container will call
your methods automatically at the appropriate times during transactions,
alerting you to important transactional events. This adds to the existing arse-
nal of alerts that your session beans receive already—life-cycle alerts via
ejbCreate() and ejbRemove(), passivation alerts via ejbActivate() and ejbPassi-
vate(), and now transactional alerts via afterBegin(), beforeCompletion(), and
afterCompletion().

Here’s what each of the SessionSynchronization methods do:

afterBegin() is called by the container directly after a transaction begins.

beforeCompletion() is called by the container right before a transaction
completes.

afterCompletion() is called by the container directly after a transaction
completes.

The key method that is most important for rolling back conversations is after-
Completion(). The container calls your afterCompletion() method when a trans-
action completes either in a commit or an abort. You can figure out whether a
commit or an abort happened by the Boolean parameter that gets passed to
you in afterCompletion(): True indicates a successful commit, false indicates an
abort. If an abort happened, you should roll back your conversational state to
preserve your session bean’s conversation.

Here’s an example of afterCompletion() in action:

public class CountBean implements SessionBean, SessionSynchronization {

public int wval;
public int oldval;

public void ejbCreate(int val) {
this.val=val;

this.oldval=val;

}

322

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

public void afterBegin() { oldval = val;}
public void beforeCompletion() {}
public void afterCompletion(boolean b) { if (b == false) val = oldval; }

public int count() { return ++val; }

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void setSessionContext (SessionContext ctx) {}

This is a new version of our count bean from Chapter 4. The conversational
state is val, an integer that increases incrementally whenever count() is called.
We also keep a backup copy of val, called oldVal, which we revert back to in
case of transactional rollback. Here is what’s going on:

1. When our bean is first initialized in ejbCreate(), or when a transaction first
begins in afterBegin(), val and oldVal are set to the same value.

2. One or more count() business methods are called, incrementing val.

3. If the transaction fails, the afterCompletion() method is called when the
transaction completes. If the transaction failed (that is, if a false value was
passed into afterCompletion()), we roll back our conversational state by
reverting back to oldVal.

Note that for this to work, we must make count() transactional in the deploy-
ment descriptor using transaction attributes that we described earlier in this
chapter.

SessionSynchronization is also useful when your stateful session bean caches
database data in memory during a transaction. You can use SessionSynchro-
nization to track when to cache and when not to cache data as follows.

When the container calls afterBegin(), the transaction has just started. You
should read in any database data you want to cache in your stateful ses-
sion bean.

When the container calls beforeCompletion(), the transaction has ended.
Write out any database data you’'ve cached.

You can implement SessionSynchronization only if you're using a stateful session
bean with declarative (container-managed) transactions. If your bean is using pro-
grammatic (bean-managed) transactions, you are already in control of the transac-
tion because you issue the begin(), commit(), and abort() statements. Stateless
session beans do not hold conversations and hence do not need these callbacks.

Summary

323

Whew! That’s a lot of data to digest. You may want to reread this chapter later
to make sure you've grasped all the concepts.

In this chapter, we learned about transactions and how they can make a server-
side deployment robust. We saw the virtues of transactions, which are called
the ACID properties. We looked at different transactional models, including
flat and nested transactions.

We then applied this transactional knowledge to EJB. We saw how declarative,
programmatic, and client-initiated transactions are useful in EJB and learned
how to code with each model. We looked at transaction isolation levels and
understood the problems that each level solves. Finally, we learned about dis-
tributed transactions and the two-phase commit protocol, and ended with a
look at writing transactional conversations.

Reading this chapter will prove well worth the effort, because now you have a
wealth of knowledge about the importance and usefulness of transactions in
EJB. You should definitely return to this chapter frequently when you're creat-
ing transactional beans.

BMP and CMP Relationships

|

n previous chapters, we looked at how to build entity beans using BMP and
CMP. In this chapter, we’ll heat things up and learn about relationships between
data. Examples of relationships include an order having one or more line
items, a student registering for a course, and a person having an address.
These relationships need to be defined and maintained for advanced data
models.

In this chapter, we'll learn about the following relationship topics:

Cardinality

Directionality

Aggregation vs. composition and cascading deletes
Recursive, circular, and lazily-loaded relationships
Referential integrity

Accessing relationships from client code via collections

How to implement each of the above topics using both CMP and BMP

If these concepts are new to you, don’t worry—you’ll be an expert on them
shortly.

To help you understand the concepts and to keep things brief, we'll use a bit of
pseudo-code in this chapter. If you would like a complete example of code that you
can copy and paste into your deployment illustrating relationships, download the
book’s source code from the accompanying Web site.

325

326 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

The CMP and BMP Difference

Relationships in EJB are implemented quite differently for CMP and for BMP.
BMP entity beans manage relationships explicitly in the bean itself. You need
to write a good deal of scaffolding code to maintain the relationship. At the
high level, your BMP entity bean looks like this:

public class OrderBean implements EntityBean {
// private fields
// get/set methods
// code to manage relationships in ejbXXX methods

}

With CMP, you declare how you would like your relationships to work in your
deployment descriptor. The container then generates all the relationship code
you need when the container subclasses your entity bean. At the high level,
your deployment descriptor looks like this:

<ejb-jar>
<enterprise-beans>

. define enterprise beans ...

</enterprise-beans>
<relationships>

. define EJB relationships ...
</relationships>

</ejb-jar>

Let’s explore what goes into the comments above by tackling each relationship
topic in detail.

Cardinality

Our first relationship topic is cardinality. Cardinality specifies how many
instances of data can participate in a relationship. There are three flavors of
cardinality:

One-to-one (1:1) relationships, such as the relationship between an
employee and his home address. Each employee has exactly one home
address, and each home address has exactly one employee.

One-to-many (1:N) relationships, such as the relationship between a man-
ager and his employees. Each manager can have many employees working
for him, but each employee can have only one manager.

BMP and CMP Relationships 327

Implementing Relationships in Session Beans

Session beans can perform persistence that involves relationships, just like CMP
and BMP entity beans can. If you are familiar with traditional procedural pro-
gramming, Microsoft programming, or programming involving servlets or JSPs
talking straight to a database via JDBC, the session bean approach is quite
analogous.

You can use a stateful session bean just like an entity bean; the only differ-
ence is that with a stateful session bean, you expose methods to a client for
loading and storing data, and the client controls when the bean is loaded and
stored by calling those methods. In this case, all of the best practices for relation-
ship persistence that apply to BMP entity beans apply to stateful session beans
that use JDBC.

You can also use a stateless session bean to perform persistence that involves
relationships. Stateless session beans do not hold state and therefore do not
have an identity, so you can't treat a stateless session bean like an entity bean.
You need to use the stateless session bean as a service to read and write rows to
and from the database, marshaling the state back to the client on each method
call. In essence, the stateless session bean serves as a stateless persistence
engine, and the relationship code needs to be custom coded.

In general, if you have complex relationships, we do not recommend the ses-
sion bean approach, due to all the manual coding. The entity bean value proposi-
tion really shines through when it comes to relationships.

Many-to-many (M:N) relationships such as the relationship between an
employee and an e-mail list. Each employee can be subscribed to many
email lists, and each email list can have many employees subscribed.

Just to get you thinking:
Why don't we talk about many-to-one relationships?

Figure 11.1 depicts the three flavors of cardinality visually. Let’s look at how to
code each type of relationship, for both BMP and CMP.

328 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

1 1 _
Order Shipment
1 *
Manager Employee
* *
Student Course

Figure 11.1 The three flavors of cardinality.

1:1 Relationships

In a one-to-one relationship, each constituent can have at most one relation-
ship with the other constituent. Examples of one-to-one relationships include:
m Person:Address
m Car:Windshield
m Order:Shipment

1:1 relationships are typically set up by a foreign key relationship in the data-
base. Figure 11.2 shows a possible database setup.

In Figure 11.2, the order has a relationship with a shipment. The order table
has a foreign key, which is the shipment table’s primary key. This foreign key
is the link between the two tables. Note that this isn’t the only way to setup a
one-to-one relationship. You could also have the shipment point to the order.

Implementing 1:1 Relationships
Using BMP

The following code shows how to implement a 1:1 relationship using BMP:

public class OrderBean implements EntityBean {
private String orderPK;

private String orderName;

private Shipment shipment; // EJB local object stub

public Shipment getShipment () { return shipment; }

BMP and CMP Relationships

329

OrderPK OrderName Ship.ment
ForeignPK
12345 Software Order 10101

R

//,,/V

ShipmentPK City ZipCode
10101 Austin 78727
Figure 11.2 A possible one-to-one cardinality database schema.
public void setShipment (Shipment s) { this.shipment = s;}

public void ejbLoad() {
// 1: SQL SELECT Order. This also retrieves the
// shipment foreign key.
//
// 2: JNDI lookup of ShipmentHome
//
// 3: Call ShipmentHome.findByPrimaryKey(), passing
// in the shipment foreign key
}
public void ejbStore() {
// 1: Call shipment.getPrimaryKey() to retrieve
// the Shipment foreign key
/7
// 2: SQL UPDATE Order. This also stores the
// Shipment foreign key.

}
}

As with all BMP entity beans, we must define our SQL statements in our bean.
See Chapter 5 for more on this. The special relationship management code is in

bold.

The relationship management code is only necessary at the instant we trans-
form our bean to-and-from relational data. It is necessary because we can’t just
persist a stub, like we can with our other fields (such as a String). If we did per-
sist a stub, and (by some miracle) that worked, it would look like a bit-blob in
the foreign key column. That bit-blob foreign key would not match up to the

primary key in the shipment table.

330

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Here is an explanation for what’s happening in our bean:

Our ejbLoad() method loads the database data of the order, and part of that
data is a foreign key to the shipment. We need to transform that foreign
key into a stub to a shipment bean. Therefore we need to perform a JNDI
lookup of the shipment home and then call a finder method, passing in the
foreign key. This gives us a stub, and we can then call business methods on
the shipment.

Our ejbStore() method stores the database data for the order, and part of that
data is a foreign key to the shipment. We need to transform the shipment
stub into a foreign key. Therefore we need to call getPrimaryKey() on the
shipment stub. This gives us our foreign key, and we can then perform the
SQL.

Implementing 1:1 Relationships Using CMP

The following code shows how to implement that same 1:1 relationship using
CMP:

public abstract class OrderBean implements EntityBean {
// no fields

public abstract Shipment getShipment () ;
public abstract void setShipment (Shipment s) ;

public void ejbLoad() {} // Empty
public void ejbStore() {} // Empty
}

As with all CMP entity beans, we define our get/set methods as abstract meth-
ods and have no fields. The container implements these methods (and defines
the fields) when the container subclasses our bean (see Chapter 6).

What's exciting is that our ejbLoad() and ejbStore() methods are free of any scaf-
folding code because the container generates all that scaffolding code for us.
We do need to specify the relationship in the deployment descriptor, and we
do so as follows:

<ejb-jar>
<enterprise-beans>
</enterprise-beans>

<relationships>

BMP and CMP Relationships 331

<!-- This declares a relationship -->
<ejb-relation>

<!-- The nickname we’re giving this relationship -->
<ejb-relation-name>Order-Shipment</ejb-relation-name>

<t--

This declares the 1lst half of the relationship
(the Order side)
—-—>

<ejb-relationship-role>

<!-- The nickname we’re giving this half of the relationship -->
<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<!-- The Cardinality of this half of the relationship -->
<multiplicity>One</multiplicity>

<!--

The name of the bean corresponding to this
half of the relationship

—-—>

<relationship-role-source>
<ejb-name>Order</ejb-name>
</relationship-role-source>

<l=-=

Recall that a CMP entity bean has an abstract get/set

method for the relationship. We need to tell the

container which get/set method corresponds to this

relationship, so that the container can generate the

appropriate scaffolding code when subclassing our bean.

That is the purpose of this element, which is called the

container-managed relationship (CMR) field. The value

of the CMR field should be the name of your get/set

method, but without the get/set, and with a slight

change in capitalization. getShipment() becomes shipment.
—-—>
<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>
</ejb-relationship-role>

<!=--

This declares the 2nd half of the relationship
(the Shipment side)
-=>
<ejb-relationship-role>
<ejb-relationship-role-name>

332 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

shipment-fulfills-order
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>Shipment</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>
</relationships>

</ejb-jar>

The deployment descriptor should be self-explanatory. Once we write the pro-
prietary descriptor that maps CMP fields to columns, we will have supplied
enough information to the container that its tools should be able to generate
any necessary relationship code, such as the code we saw in the BMP example.

1:N Relationships

A one-to-many relationship is one of the more common relationships you’ll
see in your object model. This is because one-to-one relationships will often be
combined into a single data object, rather than having a relationship between
two separate data objects. Examples of one-to-many relationships include:

m QOrder:Lineltems
m Customer:Orders

m Company:Employees

1:N relationships are also typically set up by a foreign key relationship in the
database. Figure 11.3 shows a possible database setup.

In Figure 11.3, the company has a relationship with many employees. The
company has a vector of line-item foreign keys, stored as a bit-blob in the data-
base. We need a vector because we have a relationship with many employees,
not just one employee.

The approach shown in Figure 11.3 is not ideal, because it’s very nasty to deal
with bit-blobs in the database. Queries and reporting become challenging, as
databases were not meant to handle relationships in this way. Figure 11.4
shows an alternative.

In Figure 11.4, each employee has a foreign key, which is the company table’s
primary key. Thus, the employees are pointing back to their company. This
may seem backwards if we want to get from the company to the employees. It
works, however, because the database doesn’t care—it is a flat structure with-
out a sense of direction. You can still construct queries that get from the com-
pany to employees.

BMP and CMP Relationships 333

CompanyPK Name Employee FKs
12345 The Middleware Company <Vector BLOB>
EmployeePK Name Sex
20202 Ed M
20203 Floyd M

Figure 11.3 A possible one-to-many cardinality database schema.

CompanyPK Name
12345 The Middleware Company
I ———
EmployeePK Name Sex Company
20202 Ed M 12345
20203 Floyd M 12345

Figure 11.4 Another one-to-many cardinality database schema.

Implementing 1:N Relationships
Using BMP

The following code shows how to implement a 1:N relationship using BMP:

public class CompanyBean implements EntityBean {
private String companyPK;
private String companyName;

334 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

private Vector employees; // EJB object stubs

public Collection getEmployees() { return employees; }
public void setEmployees(Collection e) {
this.employees = (Vector) e;

}

public void ejbLoad() {
// 1l: SQL SELECT Company
// 2: JNDI lookup of EmployeeHome
// 3: Call EmployeeHome.findByCompany (companyPK)
}
public void ejbStore() {
// 2: SQL UPDATE Company
}

The code is explained as follows:

m A 1:N relationship has a Vector of stubs, rather than a single stub. Our
get/set method gets and sets this Vector (a Vector is a Collection).

m QOur ¢jbLoad() method is responsible for loading the company state, as well
as loading the relationships to employees. How can we achieve this?
Remember that the employee table contains the foreign key relationships
to the company, not the reverse. Therefore it is natural for the employee
bean to access that relationship data, not the company bean. Thus, we do
not deal with foreign keys in our bean—we let the employee bean deal
with them. We do so by calling a finder method on the employee local
home object. That finder method locates each employee that is a member
of this company and returns a collection of stubs to us. Note that this
causes a second SQL statement to be executed.

m QOur ¢jbStore() method is extremely straightforward. Since our ejbLoad()
method is not responsible for dealing with foreign keys, neither is our ejb-
Store() method. It doesn’t even know about the relationship. The
employee (not the company) has an ejbStore() that persists foreign keys to
the company.

If you're good at SQL, you might have noticed that in our example, if we really
ﬂ wanted to do so, we could load both the company and the foreign keys for our

employee in one SQL statement. But this would not help us, because we would

still need to transform those foreign keys into stubs. We’'d need to call Employee-

Home.findByPrimaryKey() for each found key, which would generate even more SQL.

BMP and CMP Relationships 335

Implementing 1:N Relationships
Using CMP

The following code shows how to implement a 1:N relationship using CMP:

public abstract class CompanyBean implements EntityBean {
// no fields

public abstract Collection getEmployees() ;
public abstract void setEmployees(Collection employees) ;

public void ejbLoad() {} // Empty
public void ejbStore() {} // Empty
}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The rela-
tionships are specified in the deployment descriptor as follows:

<ejb-jar>

<enterprise-beans>
</enterprise-beans>

<relationships>
<ejb-relation>
<ejb-relation-name>Company-Employees</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
Company-Employs-Employees
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>Company</ejb-name>
</relationship-role-source>
<!=--
When you have a relationship with more than one object, you
can use either a java.util.Collection or a java.util.Set.
We need to identify which one we’re using. How do you choose
between a Collection and a Set? A Collection can contain
duplicates, whereas a Set cannot. This needs to match up to
your bean’s get/set methods.
-—>
<cmr-field>
<cmr-field-name>employees</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>

336 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

<ejb-relationship-role>
<ejb-relationship-role-name>
Employees-WorkAt-Company
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>Employee</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>
</relationships>
</ejb-jar>

As you can see, this is much simpler than BMP. If you understood the deploy-

ment descriptor for a 1:1 relationship described earlier in this chapter, then you
should be able to grasp this one fairly easily.

To load a 1:N relationship with BMP, we need to perform two SQL statements: We
need to ejbLoad() the “1” side of the relationship and then find() the “N” side of the
relationship.

? Relationships with CMP can be much higher performing than their BMP equivalents.

This is an inherent downside to BMP—you are limited to performing SQL operations
at the granularity of an entity bean. With CMP, if your container is good, you can op-
timize and tell the container to perform one gigantic SQL statement to load yourself
and your relationships.

M:N Relationships

A many-to-many relationship is not as common as a one-to-many relationship
but is still important. Examples of one-to-many relationships include:

m Student:Course
m [nvestor:MutualFund

m Stock:Portfolio

M:N relationships are typically set up by an association table in the database.
An association table contains foreign keys to two other tables. Figure 11.5
shows a possible database setup.

What's interesting about Figure 11.5 is that we’ve created a third table, called
an Enrollment table, which models the relationship between a student and a
course. The alternative to an association table is for each half of the relation-
ship to have a vector of foreign keys to the other half, persisted as bit-blobs,
which is nasty to deal with.

BMP and CMP Relationships 337

StudentPK StudentName
Joe
10101 Student
EnrolimentPK StudentPK CoursePK
12345 10101 20202
—
U
CoursePK CourseName
20202 EJB for Architects

Figure 11.5 A possible many-to-many cardinality database schema.

Two Choices when Implementing
M:N Relationships

When you model an M:N relationship using entity beans, you have two
choices.

Fake the M:N relationship by introducing a third entity bean. Our enroll-
ment table could theoretically include other information as well, such as the
date when the enrollment was made. It then makes sense to model the M:N
relationship itself as an entity bean—an enrollment bean. The enrollment bean
would map to the association table. This demonstrates a great modeling prin-
ciple: When you have a many-to-many relationship, consider making the rela-
tionship itself into a first-class citizen. When you do this, you are introducing
an intermediary. That intermediary has two 1:N relationships. Thus, we have
effectively reduced the M:N relationship problem into two 1:N relationship
problems!

Model the M:N relationship as a true M:N relationship. If all you're doing is
storing relationship information, you might not need to introduce a third
entity bean. In this case, you have only two entity beans, each representing half
the relationship. Each entity beans would contain a Collection of the other

338

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

entity bean. Each entity bean would be persisted to its own table, and each
entity bean’s Collection would be persisted to the relationships table. With
BMP, you are in control of the JDBC, so you can map an entity bean to two
tables very easily. With CMP, you're dependent on your container’s persister.

We prefer the fake approach, because it keeps your entity beans pure and
clean. The fewer relationships that you code into your entity beans, the more
reusable your entity beans are in a variety of circumstances, and the less bloat
your entity beans incur. This approach also has the advantage that your entity
bean and database are similar to one another, making mapping more straight-
forward.

What's cool, however, is that your EJB components can map to the database
however you’d like. That is, both approaches can map to association tables.
This is because the database is completely unaware of how it’s being repre-
sented in the middle tier. You can even switch back and forth between the fake
and real approach if you'd like. And even if you're not using an association
table but some other approach, you can still map your beans however you’'d
like, assuming you're good with JDBC (in the BMP case) or assuming your
container vendor has a good persistence engine (in the CMP case).

Let’s see how to model both fake and real M:N relationships with both BMP
and CMP.

Implementing Fake M:N Relationships
Using BMP

The following code shows how to implement an M:N relationship as two 1:N
relationships using BMP:

public class StudentBean implements EntityBean {
private String studentPK;
private String studentName;

public void ejbLoad() { // SQL SELECT Student }
public void ejbStore() { // SQL UPDATE Student }
}

public class CourseBean implements EntityBean {
private String coursePK;
private String courseName;

public void ejbLoad() { // SQL SELECT Course }
public void ejbStore() { // SQL UPDATE Course }

}

public class EnrollmentBean implements EntityBean {

BMP and CMP Relationships 339

private String enrollmentPK;

private Student student; // EJB local object stub
private Course course; // EJB local object stub
public Course getCourse() { return course; }

public

public
public

public
// 1:
//
//
//

//
// 3:
//

public
// 1:
//
//
/1 2:
}
}

void setCourse(Course c) { this.course = c;}

Student getStudent() { return student; }
void setStudent (Student s) { this.student = s; }

void ejbLoad() {

SQL SELECT Enrollment. This loads both the
Enrollment plus the foreign keys to Student
and Course.

JNDI lookup of StudentHome, CourseHome

Call findByPrimaryKey() on both the Student
and Course homes, passing the foreign keys

void ejbstore() {
Call getPrimaryKey() on Student,Course. This

gives us our foreign keys.

SQL UPDATE Enrollment

As usual, the relationship code is in bold. A brand-new entity bean, enroll-
ment, models the relationship between student and course. The enrollment
bean keeps a stub for a course and a stub for a student, and has get/set meth-
ods for clients to access those stubs. At the point in which object/relational
mapping occurs, we transform those stubs to and from their foreign key data-
base representation.

Implementing Fake M:N Relationships
Using CMP

The following code shows how to implement a fake M:N relationship using

CMP:

public abstract class StudentBean implements EntityBean {
// no fields

public
public
}

void ejbLoad() {} // Empty
void ejbStore() {} // Empty

340 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

public abstract class CourseBean implements EntityBean {
// no fields

public void ejbLoad() {} // Empty
public void ejbStore() {} // Empty
}

public abstract class EnrollmentBean implements EntityBean {
// no fields

public abstract Course getCourse();
public abstract void setCourse(Course c);

public abstract Student getStudent();
public abstract void setStudent (Student s);

public void ejbLoad() {} // Empty
public void ejbStore() {} // Empty
}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The rela-
tionships are specified in the deployment descriptor as follows:

<ejb-jar>
<enterprise-beans>

</enterprise-beans>

<relationships>
<ejb-relation>
<ejb-relation-name>Enrollment-Student</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
Enrollments-AreRegisteredBy-Student
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>Enrollment</ejb-name>
</relationship-role-source>
<cmr-field><cmr-field-name>student</cmr-field-name></cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
Student-Has-Enrollments
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

BMP and CMP Relationships k7] |

<ejb-name>Student</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>

<ejb-relation>
<ejb-relation-name>Enrollment-Course</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
Enrollments-AreRegistrationsFor-Course
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>Enrollment</ejb-name>
</relationship-role-source>
<cmr-field><cmr-field-name>course</cmr-field-name></cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
Course-Has-Enrollments
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>Course</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>
</relationships>
</ejb-jar>

As you can see from the preceding deployment descriptor, we model our fake
M:N relationship as two N:1 relationships (one for each bean in the relation-
ship). An N:1 relationship is conceptually the same as a 1:N relationship, and
we learned how to model a 1:N relationship with CMP earlier.

Implementing True M:N Relationships
Using BMP

The following code shows how to implement a true M:N relationship using
BMP:

public class StudentBean implements EntityBean {
private String studentPK;

private String name;

private Vector courses; // EJB object stubs

public Collection getCourses() { return courses; }
public void setCourses(Collection c¢) { this.courses = c;}

342

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

public void ejbLoad() {

// 1: SQL SELECT Student

// 2: JINDI lookup of CourseHome

// 3: Call CourseHome.findByStudent (studentPK)
}
public void ejbStore() {

// SQL UPDATE Student

public class Course implements EntityBean {
private String coursePK;

private String name;

private Vector students; // EJB object stubs

public Collection getStudents() { return students; }
public void setStudents(Collection s) { this.students = s;}

public void ejbLoad() {
// 1: SQL SELECT Course
// 2: JNDI lookup of StudentHome
// 3: Call StudentHome.findByCourse (coursePK)
}
public void ejbStore() {
// SQL UPDATE Course
}

The relationship code is in bold. As you can see, all we’ve done to model a true
M:N relationship is to code a 1:N relationship for each bean in the relationship.
This is similar code to the code presented when we learned about 1:N
relationships.

Implementing True M:N Relationships
Using CMP

The following code shows how to implement a true M:N relationship using
CMP:

public abstract class StudentBean implements EntityBean {
// no fields

public abstract Collection getCourses() ;
public abstract void setCourses(Collection courses) ;

public void ejbLoad() {} // Empty

BMP and CMP Relationships 343

public void ejbStore() {} // Empty
}

public abstract class CourseBean implements EntityBean {
// no fields

public abstract Collection getStudents();
public abstract void setStudents(Collection students) ;

public void ejbLoad() {} // Empty
public void ejbStore() {} // Empty
}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The rela-
tionships are specified in the deployment descriptor as follows:

<ejb-jar>
<enterprise-beans>

</enterprise-beans>

<relationships>
<ejb-relation>
<ejb-relation-name>Student-Course</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
Students-EnrollIn-Courses
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>Student</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>courses</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>
Courses-HaveEnrolled-Students

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>
<ejb-name>Course</ejb-name>

</relationship-role-source>

<cmr-field>
<cmr-field-name>students</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

344 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

</cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>
</ejb-jar>

As you can see, modeling a true M:N relationship using CMP is extremely
straightforward. We just use the word Many on each half of the relationship,
and state that each half of the relationship has a collection of the other half.

If you've made it this far, congratulations—this concludes our cardinality dis-
cussion! Let’s move on to directionality.

Directionality

The directionality of a relationship specifies the direction in which you can nav-
igate a relationship. There are two flavors of directionality.

Bidirectional. You can get from entity A to entity B, and can also get from
entity B to entity A.

Unidirectional. You can get from entity A to entity B, but cannot get from
entity B to entity A.

Directionality applies to all cardinalities (1:1, 1:N, and M:N). Directionality
and cardinality are orthogonal and complementary concepts. You can mix and
match them however you would like.

Let’s use our 1:1 relationship example of an order and a shipment to help us
figure out directionality.

Implementing Directionality
with BMP

The following code is a bidirectional relationship, with the key information in
bold:

public class OrderBean implements EntityBean {
private String orderPK;
private String orderName;

// EJB local object stub, must be stored/loaded
private Shipment shipment;

public Shipment getShipment() { return shipment; }
public void setShipment (Shipment s) { this.shipment = s; }

BMP and CMP Relationships 345

public class ShipmentBean implements EntityBean ({
private String shipmentPK;
private String shipmentName;

// EJB local object stub, must be stored/loaded
private Order order;

public Order getOrder() { return order; }
public void setOrder (Order o) { this.order = o; }

}

As you can see, in a bidirectional relationship, each bean in the relationship
has a field pointing to the other bean, along with a get/set method.

In comparison, with a unidirectional relationship, we don’t allow the user to

get from the second bean to the first bean.
public class OrderBean implements EntityBean {
private String orderPK;
private String orderName;

// EJB local object stub, must be stored/loaded
private Shipment shipment;

public Shipment getShipment() { return shipment; }
public void setShipment (Shipment s) { this.shipment = s; }

public class ShipmentBean implements EntityBean {
private String shipmentPK;
private String shipmentName;

// No Order stub, no Order get/set method

Implementing Directionality
with CMP

The following is a bidirectional CMP relationship:

public abstract class OrderBean implements EntityBean {
// no fields

346 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

public abstract Shipment getShipment();
public abstract void setShipment (Shipment s);

public void ejbLoad() {} // Empty
public void ejbStore() {} // Empty
}

public abstract class ShipmentBean implements EntityBean {
// no fields

public abstract Order getOrder();
public abstract void setOrder (Order o);

public void ejbLoad() {} // Empty
public void ejbStore() {} // Empty
}

As you can see, in a bidirectional CMP relationship, each bean in the relation-
ship has a pair of abstract get/set methods pointing to the other bean. We need
to tell the container that these get/set methods are special relationship meth-
ods so that the container can generate relationship code. Here is the deploy-
ment descriptor that achieves this.

<ejb-jar>
<enterprise-beans>
</enterprise-beans>

<relationships>
<ejb-relation>
<ejb-relation-name>Order-Shipment</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
order-spawns-shipment
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>0Order</ejb-name>
</relationship-role-source>
<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>

347

shipment-fulfills-order
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>Shipment</ejb-name>
</relationship-role-source>
<cmr-field><cmr-field-name>order</cmr-field-name></cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>

</ejb-jar>

In the deployment descriptor, we set up two container-managed relationship
(CMR) fields: one for each bean’s abstract get/set method pair that points to
the other bean.

To make this into a unidirectional relationship, we would simply get rid of an
abstract get/set method pair, along with its corresponding CMR field.

Directionality May Not Map
to Database Schemas

Note that directionality in entity beans may not correspond to the inherent
directionality of the database schema. An entity bean can provide for direc-
tionality even though the database does not do so easily, and vice versa. For
example, Figure 11.6 is a normalized database schema for a Person:Address
relationship. Figure 11.7 is a denormalized schema.

Relationships and Local Interfaces

A common theme throughout this book has been to always use local interfaces
when possible. This is especially true for entity beans, and has a big impact on
relationships.
Specifically, if you decide for some bizarre reason to use remote interfaces
with entity beans, then
= You must not expose get/set methods for relationship fields to remote
clients. Doing so creates problems because, for example, the client does
not have access to the container-implemented collection interface.
= Your entity bean can only have unidirectional relationships with other
entity beans. The lack of a local interface prevents other entity beans from
having a relationship with you.

348 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

StudentPK StudentName
Joe
10101 Student
EnrolimentPK StudentPK CoursePK
12345 10101 20202
—
U
CoursePK CourseName
20202 EJB for Architects

Figure 11.6 A normalized schema.

PersonPK PersonName Address
12345 Ed Roman 10101
—
A ><
AddressPK City ZipCode PersonForeignPK
10101 Austin 78727 12345

Figure 11.7 A denormalized schema.

Both of these schemas give us enough information to derive relationship infor-
mation. You can, if you choose to do so, map entity beans to both these
schemas and use bidirectional relationships. The difference is that the denor-
malized schema allows for more efficient SQL. That is the classic computer sci-
ence space-time tradeoff. If you denormalize the database, you waste space
and increase maintenance problems, but you gain speed.

BMP and CMP Relationships 349

Bidirectional or Unidirectional?

How do you choose between bidirectional and unidirectional relationships?
Here are some questions to ask:

m Should each bean know about the other bean? Would that hamper reuse?

m From the client’s perspective, does it make intuitive sense to navigate the
relationship from the direction in question?

m s the database mapping of stubs to foreign keys straightforward, or does
adding directionality result in mapping to multiple tables, resulting in
inadequate performance?

Lazy Loading

All the relationship code we’ve seen so far makes a big assumption: Whenever
an entity bean is loaded, all of the other entity beans that it has a relationship
with are also loaded. This is called aggressive loading. We saw this, for example,
with our Order:Shipment relationship at the beginning of this chapter. The
order bean looked up the shipment bean in the order bean’s ejbLoad() method.

Aggressive loading is nice because you can load all database data in a single
transaction. However, it does have its downside. Aggressive loading could
lead to loading a very large entity bean graph, and you may not need that
entire graph.

Lazy loading means to load only related beans when you need to access those
beans. For example, with the Order:Shipment relationship using BMP that we
presented at the beginning of this chapter, we would rewrite the code to lazy-
load as follows:

public class OrderBean implements EntityBean {
private String orderPK;
private String orderName;

private String shipmentFK; // Foreign key to shipment
private Shipment shipment; // EJB local object stub

public void ejbLoad() {
// 1: SQL SELECT Order, loading the shipment foreign key
// 2: Set shipmentFK field to the loaded key

}

public Shipment getShipment () {
// 1: INDI lookup of ShipmentHome
// 2: Call ShipmentHome.findByPrimaryKey (shipmentFK)

return shipment;

350

}

In the preceding code, we are looking up the shipment just in time when the
client calls getShipment(), rather than in ejbLoad(). ejbLoad() merely locates the
appropriate foreign key, which getShipment() uses.

With CMP, lazy-loading happens automatically behind the scenes. You are,
however, reliant on container-specific flags to enable lazy-loading. Most major
containers support this, so check your container documentation.

Aggregation vs. Composition
and Cascading Deletes

When you have a relationship between two entity beans, you need to think
about whether that relationship is an aggregation or a composition relationship.

An aggregation relationship is a uses relationship. For example, students use
courses. If you delete a student, you don’t delete the courses the student is reg-
istered in, because other students are using that course. Similarly, if you delete
a course, you don’t murder a student!

Design Tip: Aggressively Load in One Direction
Only for Many-to-Many Relationships

With many-to-many relationships, you need to be careful with how aggressively
you load your entity bean graph. For example assume that Larry lives at
addresses A, B, and C; Curly at C and D; Moe at C and E; and E is a commune with
37 people living in it. Larry, Curly, Moe, and everyone in the commune is a cus-
tomer of ours. If we cascade the load across the relationship in both directions
when we read in Larry, we would retrieve at least five address objects and 40
customer objects, not to mention any other addresses that the commune people
also live in and any customers and their addresses that those retrievals would
then cascade to. The same problem arises if we also cascade the deletion in both
directions. We need to cascade the retrieval and deletion in one direction, or be
incredibly smart about how we cascade in both directions. Unless your entity
bean graph is small, we recommend you use lazy-loading for at least one direc-
tion of the relationship.

BMP and CMP Relationships 351

A composition relationship is an is-assembled-of relationship. For example,
orders are assembled of line items. Deleting an order deletes all line items.
Line items shouldn’t be around if their parent order is gone.

Once you've figured out whether your relationship is an aggregation or com-
position, you need to write your entity beans so they model the semantics you
desire. This all boils down to a concept called a cascading delete. An aggregation
relationship does not cause a cascading delete, whereas a composition rela-
tionship does.

With BMP, you implement a cascading delete manually in your ejbRemove()
method. For example, an order bean’s ejbRemove() method would not only per-
form a SQL DELETE of the order, but would also call the shipment bean’s
ejbRemove() method:

public class OrderBean implements EntityBean {
private String orderPK;

private String orderName;

private Shipment shipment; // EJB local object stub

public Shipment getShipment () { return shipment; }
public void setShipment (Shipment s) { this.shipment = s;}

public void ejbRemove () {
// 1: SQL DELETE Order
// 2: shipment.remove();
}

}

With CMP, the container generates cascading delete code for you. If you have
a composition relationship, you just need to set up a <cascade-delete/> tag in
the deployment descriptor, as follows:

<ejb-jar>
<enterprise-beans>
</enterprise-beans>

<relationships>
<ejb-relation>
<ejb-relation-name>Order-Shipment</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
order-spawns-shipment
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

352

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

<ejb-name>Order</ejb-name>
</relationship-role-source>
<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
shipment-fulfills-order
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<cascade-delete/>
<relationship-role-source>
<ejb-name>Shipment</ejb-name>
</relationship-role-source>
<cmr-field><cmr-field-name>order</cmr-field-name></cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>

</ejb-jar>

If you have an aggregation relationship, you just leave the <cascade-delete/>
tag out.

Relationships and EJB-QL

When setting up CMP relationships, you can also set up special queries using
the EJB Query Language (EJB-QL), which we briefly described in Chapter 6
and fully explain in Appendix C. The following is relevant to our discussion
and is excerpted from Appendix C.

The big difference between EJB-QL and SQL is that EJB-QL allows you to tra-
verse relationships between entity beans using a dot notation. For example:

SELECT o.customer
FROM Order o

In this EJB-QL, we are returning all customers that have placed orders. We are
navigating from the order entity bean to the customer entity bean easily using
a dot notation. This is quite seamless.

What's exciting about this notation is that bean providers don’t need to know
about tables or columns; they merely need to understand the relationships
between the entity beans that they’ve authored. The container will handle the
traversal of relationships for us because we declare our entity beans in the

BMP and CMP Relationships 353

same deployment descriptor and Ejb-jar file, empowering the container to
manage all of our beans and thus understand their relationships.

In fact, you can traverse more than one relationship. That relationship can
involve container-managed relationship fields and container-managed persis-
tent fields. For example:

SELECT o.customer.address.homePhoneNumber
FROM Order o

The restriction on this type of recursive relationship traversal is that you are
limited by the navigatability of the relationships that you define in the deploy-
ment descriptor. For example, let’s say that in the deployment descriptor, you
declare that orders have a one-to-many relationship with line items, but you
do not define the reverse many-to-one relationship that line items have with
orders. When performing EJB-QL, you can get from orders to line items, but
not from line items to orders.

Recursive Relationships

A recursive relationship is one in which an entity bean instance has a relation-
ship with another instance of the same entity bean class, such as what’s shown
in Figure 11.8.

Figure 11.8 shows an Employee:Manager relationship. All that this means is
that our employee entity bean has a relationship with another employee entity
bean.

As you would expect, recursive relationships are implemented exactly as non-
recursive relationships. All the principles we learned earlier apply, and
nothing is new. We just happen to have a relationship with an instance of an
entity bean that uses the same class.

Employee

Figure 11.8 A recursive relationship.

354 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Circular Relationships

A circular relationship is similar to a recursive relationship except that instead
of involving a single entity bean, it involves several. Figure 11.9 depicts a cir-
cular relationship.

The following relationships exist:

m Employees work in a division.
m A division owns one or more workstations.

m An employee has a workstation.

The problem with circular relationships is that if your beans automatically find
each other, you will get into an endless circle of finding. The same problem
exists for cascading deletes.

So how do you implement circular relationships between EJBs appropriately?
You have several implementation strategies.

1. Some containers allow you optimize performance and load an entity bean
at the same time that it’s found. This is where the circularity issue stems
from, because the ejbLoad() method performs the cascading find. Not load-
ing an entity bean when it’s found means no cascading find operation
occurs.

2. Break the circular relationship by removing one of the relationships alto-
gether. This is a harsh approach to resolving the problem.

3. Break the circular relationships within your model by making one or more
relationships unidirectional, effectively breaking the circle in both direc-

Employee

Workstation Division

Figure 11.9 A circular relationship.

BMP and CMP Relationships 355

tions. This isn’t always an option because your requirements may not per-
mit it.

Use lazy-loading rather than aggressive loading, and do not use cascading
deletes.

Choose a persister that detects circular relationships. Many persistence
administration tools automatically detect and warn you of circular rela-
tionships when you define them. This allows you to prevent the problem
before it occurs.

Referential Integrity

Referential integrity is the assurance that a reference from one entity to
another entity is valid. For example:

m [et’s say a company, department, and position each have relationships

with an employee. If the employee is removed, all references to it must
also be removed, or your system must not allow the removal.

Let’s say an order has a 1:N relationship with a line item. Someone adding
a second order to an order line item is trying to change a 1:N relationship
to an M:N relationship. We must therefore break the line item’s relation-
ship with the original order so that we maintain our intended 1:N
semantics.

Referential integrity issues arise in both the database (keeping foreign keys
correct) and in the application server (keeping stubs correct). So how do you
ensure referential integrity within your E]JB applications?. You have three fun-
damental options:

1.

3.

Enforce referential integrity within your database with triggers. For exam-
ple, you could write a trigger that fires off when an employee is deleted.
This trigger would delete the relationships the employee had with other
database tables to preserve referential integrity.

Enforce referential integrity within your database with stored procedures.
Your EJB component would call these stored procedures to perform data-
base operations, and the stored procedures would be responsible for pre-

serving referential integrity.

Enforce referential integrity within EJB components.

Implementing referential integrity in your database has the advantage that
other nonE]B applications can take advantage of it, your database being the
lowest common denominator within your organization. Relational databases

356

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

implement triggers for exactly this purpose, and most data modeling tools
support the generation of trigger code to simplify this effort for you. The
drawback of implementing logic in your database is that it increases the pro-
cessing burden on your database server(s), running the risk that your database
becomes a bottleneck to your application. You can also take a hybrid approach
to implementing referential integrity—your EJBs handle the referential
integrity for some entities and your database for others.

Of these options, we believe that the EJB approach is the cleanest and easiest to
maintain over the long term, because your EJB layer encapsulates all relation-
ships. Here is how you do it with E]B:

With BMP you need to take care of referential integrity on your own. You do
so by manually breaking old relationships. If someone tries to assign a sec-
ond order to your line item, your line item bean should call the order bean
and tell the order bean to remove you from its list of line items.

With CMP the container will automatically handle referential integrity for
you. You never have to worry about these issues. This is one neat feature
the container provides that makes CMP a compelling value proposition.

Note that it’s not quite this simple. To complicate matters, you might have a
farm of EJB application servers, and your component might exist simultane-
ously on several machines. Furthermore, if you have other applications access-
ing your database then it is possible that they too have representations of your
data in their memory as well. The good news is that transactions (see Chapter
10) solve this problem. For example, when you delete an employee and also
delete the relationships it has with other entities within a transaction, either all
or none of the deletions occur, preserving referential integrity.

Writing code to enforce referential integrity in your EJB components instead of your
database works only when all of your applications are written this way (and hope-
fully they share a common code base). However, this is rarely the case. In many or-
ganizations, some or often most applications are written assuming that the
database(s) will handle referential integrity. This is clearly an inappropriate layering
of these applications because business logic is now implemented on several dis-
parate architectural tiers, making the applications less robust. However, it is a reality
that many EJB developers must accept—some of their business logic will be imple-
mented in the database, perhaps through triggers or through Java objects imple-
mented within the database.

BMP and CMP Relationships 357

Relationships, Referential Integrity,
and Client Code

Throughout this chapter, we’ve seen lots of fascinating relationships. Many of
those relationships involved collections. For example, here is our Company:
Employee 1:N CMP relationship again.

public abstract class CompanyBean implements EntityBean ({
// no fields

public abstract Collection getEmployees|() ;
public abstract void setEmployees (Collection employees) ;

public void ejbLoad() {} // Empty
public void ejbStore() {} // Empty
}

This code has methods to get/set entire Collections of employees. But what’s
interesting is that there is no API for clients to perform operations on individ-
ual employees.

This is where the Collection comes into play. By using the Collection from
client code, you can modify the contents of a 1:N relationship. For example:

// Lookup local home objects

Context ctx = new InitialContext(...);

CompanyHome companyHome = (CompanyHome) ctx.lookup ("CompanyHome") ;
EmployeeHome employeeHome = (EmployeeHome) ctx.lookup ("EmployeeHome") ;

// Make a new employee
Employee employeeA = employeeHome.create("Ed Roman") ;

// Find a company

Company company =

companyHome. findByPrimaryKey ("The Middleware Company") ;
Collection employees = company.getEmployees() ;

// Add the employee to the company.
// This demonstrates the add() Collection API method
employees.add (employeed) ;

// Look at each employee in the company.
// This demonstrates using iterators to loop through collections

358

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Iterator i1 = employees.iterator();
while (i.hasNext()) {
Employee emp = (Employee) i.next();
System.out.println(emp.getName()) ;
}

// Remove the employee from the company.
// This demonstrates the remove() Collection API
employees.remove (employeed) ;

Since we're using local interfaces, the collection that the client modifies is the
same as the collection inside the bean. This is because the get/set methods
pass the collection by reference rather than by value. Thus, when the client
modifies the contents of the collection, he is actually changing the bean’s rela-
tionships. If remote interfaces were used, the relationships would not be acces-
sible through the remote interface to begin with, due to the remote interface
restrictions discussed earlier in this chapter.

The container is responsible for providing an implementation of the Collection
interface. This needs to be a smart collection that understands how to preserve
referential integrity behind the scenes.

Be careful when using iterators and relationships. If you want to modify a relation-
ship while an iterator is at work, use only the java.util.lterator.remove() method.
Adding or removing elements from a collection while the iterator is in progress will
throw off the iterator.

Table 11.1 lists the effects that client operations have on referential integrity.
Note that for the 1:N and M:N rows on the table, we are performing operations
on collections and using the collections API for operations such as add() and
remove().

Try to only look at the first three columns of Table 11.1, and see if you can guess
what the fourth column should be.

359

D9SIN0d-gluapnis

D9sIN0d-gjuapnis
'g9sIN0d-gjuapnis
‘)3SIN0d-y3UapNIS

!(()sesino)31ad-giuapnis)

D9sIN02-gjuapnjis
‘gasInod-guapnis

D9sIN02-gluapnjis
'g9sIN0d-gluapnjis
'g9sIN0d-\3uapnis

‘gasinod-gjuapnis !(gosinod)anowal ‘g9sinod-yjuspnis 9sino):juapms

'\f9SIN0d-y3uspnis ‘()ses1n0D398 y1uspnis ‘\f9SIN0d-yuspnis diysuone@y N:I
D9SIN02-gluapnis ‘gasinod-giuapnis D9SIN02-gluapnis

'79SIN02-y3usapnis 'g9sIn0d-gjusapnis

‘g9sIN0d-yluspnis !(Ddsinod)ppe '99sIN02-yjuspnis 95IN0):1uUapN)S

'\f9SIN02-yuspnis ‘()ses1n0D398 yauspnis '\f9SIN0d-yuspnis diysuone|ay N:\

9SIN0):juapnis

‘gasINod-y3uapnIs S9SIN0D13S YIUAPpNIS \/9SIN0d-y3uapn3s diysuone@y N:W
geahojdwa-gAuedwod @gsaiojdwa-gAuedwod
‘y99ho|dwa-gAuedwiod !(voaho|dwd) ‘99A0|dwa-gAuedwod
‘goaio|dwa-yAuedwod anowsar()saakojdwzy ‘goaho|dwa-yAuedwod 99hojdwz:Auedwor
vaahojdwa-T1NN 198'yAuedwo) ‘voahojdws-yAuedwod diysuone|ay N:l
gsahojdwa-gAuedwod gsahojdwa-gAuedwod
‘y99Aojdwa-gAuedwod !(voohojdwa)ppe 'y99hojdwas-gAuedwod
‘goahojdws-yAuedwod ‘()seahojdwiz ‘goaho|dwa-yAuedwod 29hojdw3:Auedwor
‘y2aho|dwa-gAuedwod 198'gAuedwo) ‘vaaho|dwa-yAuedwod diysuone[ay N:l
geahojdwa-gAuedwod gs9hojdwa-gAuedwod
‘y99h0jdws-gAuedwiod !(QOAuedwo) 'J99A0|dws-gAuedwod

‘goahojdwa-yAuedwod
‘v29ho|dwa-gAuedwod

uoa|j0) Adw3-gAuedwod

198D99A0|dwd)
Auedwonjiesyeaiojdwg

'goahkojdws-yAuedwod
‘vo9ho|dwa-yAuedwod

ga9hojdwa-gAuedwod

9aAojdwz:Auedwo)
diysuone|ay N:l1

‘geahojdwa-yAuedwod !(()seahojdwiz108 ‘y99hojdws-gAuedwod
‘y99h0jdws-yAuedwod ‘ghuedw o)) 'goaho|dws-yAuedwod 99hojdwz:Auedwo)
‘goakojdwa-TINN ‘voahojdwa-TINN seahojdwiziesyAuedwo) “yoahko|dws-yAuedwod diysuoneay N:1
!(OQwswdiysied-giapio) guswdiys-giapio juswdiys:19pI0

wawdiysiesyiapio
NOILYd3dO SdIHSNOILY13Y¥ TYNIDOIIO

‘yiuswdiys-yiapio diysuoneay L:1

NOLLYNLIS

TINN-949p10 ‘giuswidiys-y1apio
SAIHSNOILYT13d M3IN

Audaju| [enualsay pue suonelsado udl) 1711 djqeL

360 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Summary

Still with us? Fantastic! Pat yourself on the back, because you've achieved a
great deal in this chapter. You learned about cardinality, directionality, referen-
tial integrity, cascading deletes, recursive relationships, circular relationships,
lazily loaded relationships, and how to control relationships from client code.
You also saw how to implement each of the above topics using both CMP and
BMP.

You should be prepared now to go ahead and implement relationships in your
own deployments. For concrete examples without pseudo-code that you can
use as a basis for your own deployments, see the book’s accompanying source
code (www.wiley.com/compbooks/roman).

Persistence Best Practices

ost modern business applications require that you persist data—create,
retrieve, update, and delete. Persisting data from EJB components can be as
simple as defining a few simple class-to-table mappings using an EJB con-
tainer’s persistence administration tool, or as difficult as writing sophisti-
cated Java source code.

In this chapter we explore the issues surrounding EJB persistence and
explore the various approaches to persistence that you may employ within
your EJB applications. We'll cover the following topics:

m When to use entity beans, and when not to use them

m How to choose between container managed persistence (CMP) and
bean managed persistence (BMP)

m A collection of persistence best practices, such as versioning EJB com-
ponents, and dealing with a legacy data design

This chapter is written with the assumption that you will use one or more

relational databases to store your business objects. We are considering only
relational databases because that’s what most organizations use.

361

362 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

When to Use Entity Beans

A fundamental issue that you need to address is how to persist the information
encapsulated by your EJBs. The approaches are

m Session beans plus JDBC. A session bean persists data manually, typically
via JDBC.

m Persisting through entity beans, either BMP or CMP.

Let’s first figure out when entity beans (either CMP or BMP) are a good idea
compared to session beans plus JDBC. This discussion will highlight the
advantages and disadvantages of using entity beans and will help you make
that decision in your projects. Then we’ll be able to compare and contrast
different approaches for persisting using session beans. We’ll also compare
BMP and CMP.

Control

There are significant control differences between performing persistence via
session beans and entity beans. Session beans are more of a service-based
architecture because you call methods explicitly to load and store data. Thus,
you are in command of when to use JDBC explicitly. This is very similar to the
Microsoft approach to business components. In comparison, with entity beans,
the container automatically loads and stores data on your behalf.

This loss of control that entity beans give you can be somewhat disturbing. If
you're not careful to tune your container properly using its flags, and to start
and end transactions at the right times, operations that require a single SQL
statement can take several statements. Proper education of your developers
will help solve these problems.

Parameter Passing Analogy

Another way to compare session and entity persistence differences is through
an analogy to parameter passing conventions.

When you do a query via a session bean, the session bean typically returns a
result set to the client. This is similar to pass-by-value because the data is being
returned from the session bean to the client. When you do a query via an entity
bean home, you get stubs to server-side objects, rather than a result set. This is
analogous to pass-by-reference. The first thing that should come to mind is
how does the performance compare between these two models?

Persistence Best Practices 363

In a typical deployment, the session beans are colocated with the entity beans
in the same process, and they communicate with each other via local inter-
faces. The fact that entity beans are a pass-by-reference model does not affect
performance because there is no need to traverse the network.

If, on the other hand, you're building a GUI client (such as Java servlets, JSPs,
applets, or applications communicating remotely to EJB components), you'll
typically need to get database data into the GUI client. In this case, a pass-by-
reference model will hurt you because the GUI client needs to traverse the net-
work to get data from the entity beans. You can work around this by wrapping
your entity beans with colocated session beans. The session beans copy the
entity bean data into serializable Java objects, sending them to the GUI client.
The GUI client then does not need to traverse the network to access the data.

The point to take away is that there are few performance implications when
comparing session beans and entity beans from the pass-by-value versus pass-
by-reference paradigm. This should probably not factor into your decision cri-
teria.

Procedural Versus Object-Oriented

Most EJB deployments work with data that is either procedural (tabular) or
object-oriented in nature. Session beans that return result sets are naturally
suited for tabular, business data. Entity beans, on the other hand, are Java
objects. Thus, they benefit from encapsulation and relationships, and represent
data in an object-oriented fashion, such as data that requires encapsulation or
relationships with other data.

Caching

Middle-tier data caching is extremely important because it empowers you to
reduce database traffic, and your database will most likely be your bottleneck.

Session beans do not represent database data and therefore cannot be cached
at all. The rows they read in are cache-consistent for the duration of a single
transaction only. Entity beans can be cached across multiple transactions if the
application server has exclusive access to that part of the database. You set this
up using container-specific flags.

If data is shared, entity bean caching benefits are more prominent because that
data is likely to be viewed many times. An example of shared data is a product
catalog, such as the hottest 100 books on Amazon.com.

If your data is exclusive (not shared), caching offers almost no benefits. An
example of exclusive data is a personal account, such as your personal account

364 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

settings on Amazon.com. In the exclusive data case, the extra SQL statements
that sometimes occur through entity beans may offset the caching benefits,
making entity beans a lower-performing solution. However, in most deploy-
ments, most data is shared and read-only, and hence caching is an important
performance boost that entity beans provide.

Enforcement of Schema
Independence

Schema independence is an extremely important feature of your persistence
layer. As a nightmare motivational story, a project for one of our clients took
three developers four months to change two columns in a database because of
spaghetti SQL all over the place. Encapsulating that data with a layer would
have avoided those headaches.

Entity beans force developers to go through an entity bean layer, yielding a
single entry point to the database. Developers are isolated from the schema,
allowing ease of schema evolution and data encapsulation.

In comparison, session beans can also isolate you from the schema, if you take
great care when crafting your session bean layer. It takes good internal best
practices to enforce that this remains constant throughout your organization.

In the end, if your developers are on top of things, either session beans or
entity beans will give you schema independence.

Ease of Use

For most people, session beans are much easier conceptually than entity beans.
Session beans represent a more procedural style of programming, where
result-sets are returned. People understand how to use a service-based archi-
tecture because they are in explicit control of everything.

Entity beans, on the other hand, are a new concept to many people. Thus, it is
much easier to screw up performance when using entity beans. We urge you to
consider the quality of your developers when making the call about whether
to use entity beans.

Migration

Most EJB deployments are based on existing databases. These databases
are likely to be tabular in nature, and many have SQL code that has been
tuned over the years to be high-performing. It is a known commodity that
works well.

Persistence Best Practices 365

Session bean persistence is somewhat procedural in nature and is a natural
evolution of those legacy procedural systems. For some deployments, applica-
tion developers can simply copy SQL code from existing solutions into the
new EJB system. This eliminates a risk factor in a new EJB architecture.

In comparison, entity beans represent data in an object-oriented manner and
may require some SQL rewrites for an intuitive object-oriented interface. This
is a good long-term solution, but may slow you down and introduce short-
term risk.

Rapid Application Development

When building a new E]JB system, entity beans provide a rapid application
development advantage over session beans. Most popular UML editors
(Rational Rose, Together/J) allow you to autogenerate entity beans from UML
diagrams. Furthermore, tools (such as IDEs or a popular command-line tool
called EJBGen) allow you to generate complete entity bean Ejb-jar files from a
few bits of information about the data you’re modeling.

Note, however, that using EJB at all can sometimes increase the time it takes to
build a system. This is because of all the overhead you need to go through to
write all the files that comprise a bean. If you're not using tools, or at least
copying and pasting template code, then you may find yourself bogged down.

Choosing between CMP and BMP

Now that we’ve compared session beans and entity beans, let’s assume we’re
using entity beans. In Chapter 5, you discovered two approaches for persisting
entity beans: With BMP, you are responsible for coding all database logic,
while with CMP, the container handles the persistence for you.

The choice between CMP and BMP is not necessarily clear cut. Both bean man-
aged and container managed beans have virtues and drawbacks.

Code Reduction and Rapid
Application Development

The promise of CMP is quite compelling. If you tell the EJB container a couple
of things about your bean, container managed persistence can perform all data
access logic for you. This reduces the size of your bean tremendously—no
more JDBC code in your beans—which reduces overall development time.
It also makes code easier to understand and maintain. CMP beans are also

366

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

fantastic for prototyping. If you need to get something working right away, go
with CMP, knowing that you can take a BMP approach later if required.

Know that in reality you still may need to write persistent code with container
managed beans. This could be going through a series of wizards to specify
how your entity beans map to an underlying store. You also need to specify the
logic behind your finder methods. The difference is that with CMP, your data
access logic is now specified declaratively, whereas with BMP, you're writing
the logic in Java. To CMP’s credit, the amount of programming you're doing is
much less.

Performance

v

Bugs

CMP entity beans, if tuned properly, are much higher performing than BMP
entity beans.

For example, with BMP, it takes two SQL statements to load an entity bean: the
first to call a finder method (loading only the primary key) and the second
during ejbLoad() to load the actual bean data. A collection of n bean-managed
persistent entity beans requires n+1 database calls to load that data (one finder
to find a collection of primary keys, and then 7 loads).

With CMP, the container can reduce the n+1 database calls problem to a single
call, by performing one giant SELECT statement. You typically set this up
using container-specific flags (which do not affect bean portability). Check
your container’s documentation to see if this feature is supported.

There is a hack work-around to increase BMP performance. It's called the fat key
pattern and is explained on the companion Web site, www.wiley.com/
compbooks/roman.

CMP systems tend to be harder to debug than BMP systems. The reason is that
with BMP, you are in total control of the JDBC code; if something goes wrong,
you can debug that code.

With CMP, you are generating code based on deployment descriptor values.
While it may be true that user error is reduced at the database level, serious
ramifications occur if there is some kind of bug. Because the container is per-
forming your persistence for you, it is tough to figure out what database oper-
ations the container is really doing. You may need to trace through
container-generated code if it’s available, decompile the container, or possibly
wait on technical support lines, delaying a project.

Persistence Best Practices 367

Furthermore, since we’re all human, we make mistakes writing CMP deploy-
ment descriptors, such as having values that are incorrect or that do not match
up perfectly to our bean files. Often the container’s JDBC code generator is too
dumb to point out your error and simply generates bad code. Other times,
your container’s generator tool might even crash, making it even harder to fig-
ure out what the problem is. (This is really annoying!)

See Chapter 13 for strategies for debugging misbehaving EJB applications.

Control

BMP gives you ultimate control over JDBC, and thus you have unlimited flex-
ibility for how you map your objects to the database. For CMP, many contain-
ers support complex mappings, but some containers don’t. For example, if
your container-managed persistent entity bean class has a vector of Java
objects as a container-managed field, you may need to convert that vector
into a bit-blob or other form that the container can handle when mapping to
storage.

Application Server and Database
Independence

One nice thing about container managed persistence is that you aren’t hard-
coding a particular database storage API into your beans, such as JDBC.
Because you aren’t issuing explicit relational database calls in your persistence
layer, you can easily move into a different database, such as Oracle instead of
SQL Server. Theoretically, you might even port your beans to use object data-
bases without changing code.

Database independence is important for those who are providing beans to
others. Often those beans must be able to work with whatever target database
the customer has. Given that enterprise beans represent intellectual property,
they most likely will not ship with their source code. This means that if an
entity bean uses BMP, the customer cannot easily tweak the data access logic.
For these vendors, CMP is the only alternative to shipping multiple versions of
the same bean code.

Unfortunately, there is no standard way to specify the actual O/R mapping
with CMP. Each container has its own tools, wizards, and/or mapping files
that specify which fields correspond to which database columns. But what if
you want to install your bean in a different container? You'll need to respecify
your persistent operations using the new container’s tools. If you have a com-
plex object model, this could become a hefty task. Furthermore, since not all

368

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

application servers support your complex persistence needs, your beans may
not be portable to other containers.

Because of this, sometimes using BMP and allowing your SQL to be hand-
tuned via EJB environment properties (see Chapter 9) is the way to go if you
want to be application server- and database-neutral.

Relationships

The EJB 2.0 CMP model offers many useful relationship features to bean
providers. These include referential integrity, cardinality, relationship man-
agement, and cascading deletes. The container can take care of all these issues
for you.

With BMP, you must write the scaffolding code to manage and persist the
relationships between entity beans. This can get very hairy. You'll notice that a
big chunk of your BMP code is dedicated to managing these relationships,
which decreases time-to-market and makes your beans more difficult to
understand.

Learning Curve and Cost

v

Most developers already understand how to perform relational database
access from Java, and thus BMP does not require much of a learning curve. In
comparison, some advanced EJB servers ship with complex O/R mappers for
CMP. These mappers provide useful functionality, but do require training and
ramp-up time. They also might cost some money, depending on your vendor’s

policy.

Most people would love to go with CMP, but are afraid to risk its not being flexible
enough. If you're in this category, you have a path to try out CMP before you buy.
You can make all your entity beans use CMP, and then subclass those beans as
necessary if you want to use BMP. This works because CMP entity beans are
abstract classes.

Choosing the Right Granularity
for Entity Beans

If you do decide to go with entity beans (instead of session beans plus JDBC,
or session beans plus Java classes), then you need to decide on the granularity
of your entity beans. The granularity refers to how big (or small) your entity
beans are.

Persistence Best Practices 369

In the past, entity beans were restricted to only represent large chunks of data,
involving complex joins across multiple tables. Now with the advent of local
interfaces and the new CMP model, the container can make many more opti-
mizations. This means the idea of small-grained entity beans is much more
viable—if you tune your entity beans properly (see Chapter 13 for tips here).

Another choice you have is to make some of your entity beans be Java classes.
These Java classes would hang off other entity beans. For example, you could
have an order entity bean that has a vector of line-item Java classes. If you're
using CMP, the EJB specification refers to these Java classes as dependent value
classes. Don’t be confused by the terminology—this is just Sun’s way of giving
a fancy name to Java classes that hang off a CMP entity bean.

For example, here is a dependent value class:

package examples;
public class Lineltem implements java.io.Serializable {

private String product;
private int quantity;

public void setProduct (String product) { this.product = product; }
public String getProduct() { return product; 1}

public void setQuantity(int quantity) { this.quantity = quantity; }
public int getQuantity() { return quantity; }

}

If you're going to use them, then you should know that there are a few rules
for dependent value classes:

m Dependent value classes are defined as CMP fields, and they work just
like CMP fields. For example, rather than having a java.util.String CMP
field, you might have a custom class like examples.Lineltem instead. Every-
thing we learned about how to use CMP fields in Chapter 7 applies to
these custom Java classes too.

m Dependent value classes may not be container-managed relationship
(CMR) fields, which we learned about in Chapter 11. Relationships only
exist between entity beans, not Java classes.

m Dependent value classes cannot contain references to other entity beans.
For example, this sequence of references would be illegal: order (entity
bean) points to line item (dependent value class) points to address (entity
bean).

m Dependent value classes must be serializable. Getting and setting
them are performed by-value rather than by-reference. This hampers
performance, but does allow you to access it via the remote interface.

370 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

The real value of dependent value classes over entity beans is that they
are quick to develop. The downside is that you lose many of the entity bean
benefits described earlier in this chapter.

Persistence Tips and Tricks

In this section, we’ll present a number of best practices when performing
object-to-relational mapping.

Beware the Object-Relational
Impedance Mismatch

The object-oriented paradigm, which EJB follows, is based on proven software
engineering principles for building applications out of objects that have both
data and behavior. The relational paradigm, however, is based on proven
mathematical principles for efficiently storing data. Difficulties arise when
you attempt to use object and relational technologies together, such as EJBs
and relational databases, because of the impedance mismatch between the two
paradigms. The impedance mismatch becomes apparent when you look at the
preferred approach to access: With the object paradigm you traverse objects
via their relationships, whereas with the relational paradigm you join the data
rows of tables. This fundamental difference results in a nonideal combination
of object and relational technologies. Of course, when have you ever used two
different things together without a few hitches? To be successful using E]B and
relational databases together is to understand both paradigms and their dif-
ferences, and then make intelligent tradeoffs based on that knowledge.

Hard-Coded Versus Soft-Coded SQL

Most developers hard-code SQL into their BMP entity beans. We showed an
example of this in Chapter 6. The problem with this approach is that when
your data schema changes, you need to update your source code, retest it,
compile it, and redeploy it.

Another possibility is to take a soft-coded approach to SQL, where the map-
ping of your E]B object schema to your database schema is maintained outside
your E]Bs. You can keep a list of database mappings in a file or a database, or
internally as a data collection, or you can use EJB environment properties
accessed via JNDI (see Chapter 9 for more on this). The advantage of the soft-
coded approach is that you need to update only the meta data representing
your mappings, not the EJB code itself, along the same lines that CMP works
for entity beans.

Persistence Best Practices 371

To implement soft-coded SQL within your session beans, you could either
build a mapping facility yourself or adopt one of several Java persistence
layers/frameworks. The high-level design of a persistence layer, as well as
links to several vendors of commercial and open source products, is provided
at www.ambysoft.com/persistenceLayer.html.

When to Use Stored Procedures

Stored procedures are operations that run within a database. A stored proce-
dure typically runs some SQL code, massages the data, and then hands back a
response in the form of zero or more records, or a response code, or as a data-
base error message. In the past, stored procedures were written in a propri-
etary language, such as Oracle’s PL/SQL, although Java is quickly becoming
the language of choice for database programming. You can invoke stored pro-
cedures from a J2EE deployment via JDBC.

The following code invokes a stored procedure (thrown exceptions omitted):

// Define the code to invoke a stored function
CallableStatement orderCounter = connection.prepareCall (
"{call ? = COUNT_CUSTOMER_ORDERSI[(?)]1}");

// Invoke the stored function
orderCounter.registerOutParameter (1, java.sqgl.Types.FLOAT) ;
orderCounter.setInt (2, customer.getCustomerID());
orderCounter.execute() ;

// Get the return value
numberOfOrders = orderCounter.getFloat(2);

// End the transaction and close the connection
connection.commit () ;
orderCounter.close() ;

So now that you’ve seen how to call stored procedures, when should we use
them in an EJB environment? Here are some good use cases.

1. Performance. Often you're performing data intensive operations with
small result sets, and stored procedures then become very appetizing. For
example, a good candidate for a stored procedure would be to produce
counts listing the number of critical orders (criticality defined by a busi-
ness rule involving a list of preferred customers, preferred products, and
order total) that have been outstanding for more than 30, 60, or 90 days.
This operation is data intensive; it would need to take a pass at every
order record that has been outstanding for more than 30 days and run it
through the defined business rule to determine if it is critical or not. This

372

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

involves an amount of data that you wouldn’t want to bring across the
network to an EJB application server, convert to objects, and then process
accordingly. The stored procedure could do all the work on the database
server and simply send back the three resulting numbers. Stored proce-
dures are also precompiled, resulting in performance wins.

. Shared business rules. We encourage organizations to first and foremost

strive towards centralizing on an E]JB layer for all their applications. How-
ever, due to political reasons, the reality is that this may not be feasible for
all organizations. When your application must share a relational database
with other non-EJB applications, such as a legacy system or Microsoft-
based system, the database becomes an option for implementing your
business rules. This is especially true when legacy applications are unable
to access better approaches to implementing business rules, such as an
EJB application server or a business rules server. As a result, your rela-
tional database becomes the most viable option to implement shared busi-
ness rules because it is the lowest common denominator that your suite of
applications can interact with.

. Data security access control logic. If you have external systems touching

your database without going through your E]JB layer, you can secure your
data through stored procedures. For example, you may want to give
another department access to view salary data, but not update it.

. Legacy database encapsulation. You often find that you need to write

stored procedures to present a clean view of a legacy database to your
EJBs. Most legacy designs are completely inappropriate for access by
object-oriented code, or non-object code for that matter, yet cannot easily
be reworked due to the large number of legacy applications coupled to
them. You can create stored procedures to read and write records that look
like the objects that you want. Dealing with legacy databases is discussed
later in this chapter.

. Centralized SQL. The SQL is kept in the stored procedures and is written

by database experts who excel at writing optimized SQL and do not need
to know Java.

. Easier migration for fast-changing schemas. If your database schema

changes, then compiling a stored procedure will result in a compile-time
error. This makes it easy to find out the ripple effect on schema changes,
which is very useful if your schema is being enhanced at a high velocity.
SQL code from Java can only be debugged at runtime or by combing
through your code.

Persistence Best Practices 373

Note that there are also many reasons to avoid the use of stored procedures:

1. The server can quickly become a bottleneck using this approach. You
really need to be careful when moving functionality onto your server: A
stored procedure can bring the server to its knees if it is invoked often
enough.

2. Stored procedures that are written in a proprietary language can be prob-
lematic if you want to be able to port your application to another database
vendor in the future. It is quite common to find that you need to port your
database to scale it to meet new transaction volumes—don’t underesti-
mate the importance of portability. These proprietary languages also
increase your learning time before you're productive.

3. You dramatically increase the coupling within your database because
stored procedures directly access tables, coupling the tables to the stored
procedures. This increased coupling reduces the flexibility of your data-
base administrators. When they want to refactor the database schema,
they need to rewrite stored procedures.

4. You increase the maintenance burden for your application because those
who maintain your system need to deal with application logic in two
places: your E]Bs and stored procedures. Your system will become messy
over time and difficult to deal with.

The following statement sums up our thoughts on stored procedures: Use
them only when necessary.

Normalizing and Denormalizing

When building your data model, you'll often be confronted with a space ver-
sus time tradeoff. For example, if you have an order that uses a customer, you
can keep the two separate and unique in the database, or you can copy the cus-
tomer data into the order table. By duplicating the customer information, you
may make queries for orders faster, since you don’t have to JOIN across sev-
eral tables. Data normalization is the process of eliminating data redundancy in
a database, while denormalization is the process of increasing redundancy for
performance.

The advantage of having a highly normalized data schema is that information
is stored in one place and one place only, reducing the possibility of inconsis-
tent data. Furthermore, highly normalized data schemas in general are closer
conceptually to object-oriented schemas, such as those you would create for

374

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

your EJB design because the object-oriented goals of promoting high cohesion
and loose coupling between classes results in similar solutions (at least from a
data point of view). This generally makes it easier to map your EJBs to your
data schema.

The disadvantage of normalized data schemas is that when put into produc-
tion, they often suffer from performance problems. An important part of data
modeling is to denormalize portions of your data schema to improve database
access times.

For example, often by analyzing the relationships between data, you will see
many opportunities for denormalization. One-to-one relationships, such as
those between customer and address, are often prime candidates for denormal-
ization. Their data may be stored in a single customer table to improve perfor-
mance (the address data would be stored as one or more columns within the
customer table). This is particularly true of leaf tables, tables that are related to
only one other table, a trait that the address table also exhibited.

Note that if your initial, normalized data design meets the performance needs of
your EJBs, it is fine as is. Denormalization should be resorted to only when per-
formance testing shows that you have a problem with your beans and subse-
quent profiling reveals that you need to improve database access time.
Enterprise-ready databases such as Oracle, Sybase, and DB2 include data access
monitoring tools that allow you to do exactly this. But if it ain’t broke, don’t fix it.

Table 12.1 summarizes the three most common normalization rules describing
how to put data entities into a series of increasing levels of normalization.
Strategies for achieving normalization are classic database challenges that are
beyond the scope of this book. An Introduction to Database Systems, 7th Edition
by C.J. Date (Addison-Wesley, 2000) goes into greater detail.

Table 12.1 Data Normalization Rules

First normal form A data entity is in TNF when it contains no repeating
groups of data.

Second normal form A data entity is in 2NF when it is in 1NF and when all of its
non-key attributes are fully dependent on its primary key.

Third normal form A data entity is in 3NF when it is in 2NF and when all of its
attributes are directly dependent on the primary key.

Persistence Best Practices 375

often discover that database access is the source of the problem. This is why it is
important for your data design to be driven by your EJB design, and for you to be
prepared to move away from a pure/normalized database design to one that is
denormalized to reflect the actual performance needs of your EJBs.

? When you are trying to track down the source of an EJB performance problem, you'll

Use Your EJB Object Model to
Drive Your Data Model

For EJB components to map well to a relational database, your EJB schema and
relational database schema must reflect one another. This evokes the question
should your E]JB object model drive your data model or the other way around?
Whenever you are given the choice, your E]JB object model should drive the
development of your data model. Data models take into account only half of
the picture (data), whereas object-oriented EJB models take into account the
entire picture (data and behavior). By using your EJB models to drive the
development of your data models, you ensure that your database schema
actually supports the needs of your EJB components.

Note that for this to work, you need to have the freedom to define your data
schema, which you will not have if you have to work with a legacy data
schema. You also may find that you're not allowed to define the data model;
rather, another group at your organization handles that. This approach often
proves to be a disaster, resulting in poor performance and significant rework
later in the project. In reality, data modeling is an iterative approach. You will
likely need to make several iterations of your object model based on feedback
from your data modeling efforts, and vice versa.

Follow a Good Data Design Process

Your life as an EJB programmer accessing a relational database will be much
more sane if you apply a process to object/relational mapping. We recom-
mend the following steps:

1. Develop a data schema based on your object schema. Strip away the oper-
ations from each class, declare the classes to be tables, and remove any
tables that have no attributes. Associations between classes, including
inheritance, simple associations, aggregation, and composition are trans-
lated into relationships between tables. It is important to understand that
this provides you with a starting point, not a final solution.

376 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

2. Apply data naming conventions. Your organization may have naming
conventions for the names of tables and columns; if so, apply them as
appropriate. For example, the customer table may be called TCustomer
and the first name column of that table FIRST NAME_C.

3. Identify keys for each data entity. Each table should have a primary key,
one or more columns that uniquely identify an individual row in the
table. Foreign keys need to be introduced to implement relationships
between tables, and many-to-many relationships between tables need to
be resolved via the introduction of an associative table.

4. Normalize and/or denormalize your data schema as required. You nor-
malize your data schema to improve the robustness of your design,
although you may find that you need to denormalize occasionally.

5. Refactor your object schema and your data schema as required. Perfor-
mance problems require that your team tune the container, change the EJB
object model, or change the relational database schema to improve the
data access times of your EJBs.

Use Surrogate Keys

A common challenge in EJB deployments is to generate unique primary keys.
You can generate two basic types of keys

A natural key is one or more existing data attributes that are unique to the
business concept. For example, a customer table might have two candidate
natural keys, CustomerNumber and SocialSecurityNumber.

A surrogate key is a key that has no business meaning, such as an AddressID
column of an address table. Addresses don’t have an easy natural key
because you would need to use all of the columns of the address table to
form a key for it. Introducing a surrogate key is therefore a much better
option in this case.

The foremost advantage of natural keys is that they already exist; you don’t
need to introduce a new, unnatural value to your data schema. However, the
primary disadvantage of natural keys is that because they have business
meaning, they may need to change if your business requirements change.
For example, if your users decide to make CustomerNumber alphanumeric
instead of numeric, in addition to updating the schema for the customer table
(which is unavoidable), you would have to change every single table where
CustomerNumber is used as a foreign key. If the customer table instead used a
surrogate key, the change would have been localized to just the customer table

Persistence Best Practices 377

v

itself (CustomerNumber in this case would just be a non-key column of the
table). Naturally, if you needed to make a similar change to your surrogate key
strategy, perhaps adding a couple of extra digits to your key values because
you’ve run out of values, you would have the exact same problem. This points
out the need to set a workable surrogate key strategy.

For a key to remain a surrogate, you must never display its value, never allow
anyone to edit it, and never allow anyone to use it for anything other than
identification. As soon as you display or edit a value you give it business
meaning, which effectively makes it a natural key. For example, a Customer-
Number could have been originally intended to serve as a surrogate key, but if
one day a customer number is printed on an invoice, the customer number has
effectively evolved into a natural key. Ideally nobody should know that the
persistent object identifier even exists, except perhaps the person(s) debug-
ging your data schema during initial development of your application.

It's important that your primary keys are unique. There are dozens of ways to gener-
ate unique keys, such as using a database’s built-in counter, an entity bean, an RMI-
110OP object, the current System time, and so forth. Each approach has its advantages
and disadvantages. This discussion is fully presented in Floyd Marinescu’s book, EJB
Design Patterns.

Understand the Impacts of
Database Updates

It is important to recognize that changes to database data affect the state of the
EJB components that represent that data in your application server. A database
should not be updated, either by an EJB or a non-E]B application, if the impact
of those changes is not fully understood. You can prevent that from happening
by setting an internal policy that all database access should go through a com-
mon persistence layer (of either session beans, entity beans, or both) and
championing that policy to all developers who access that database.

Versioning EJB Components

Sometimes you might need to track versions of an EJB component, which
means to access old information that no longer exists in your bean. For exam-
ple, if a customer suddenly got married, her last name might change. You
might want to access her maiden name when trying to get information about
her that may be stored in a different system. As another example, the historical
titles that an employee has held at your organization might be important data
for you to determine the next title in her career path.

378

To develop a versionable EJB component, you have several strategies at your
disposal:

1.

As your object changes, record those changes in an audit log. You can
store entire objects in the log, or you can just store the deltas (changes) to
your objects. You might write to this log by using an XML structure or
serialized string. To restore an object from the log, either read the object of
the appropriate version in, or (if you're using deltas) perform a manual
merge.

Add versioning columns to your tables. Tables representing versionable
objects require several columns to be added, as described in Table 12.2.
Whenever an object is updated, a new record is inserted into the appropri-
ate table(s) and made the current version. The previously current version
is closed, the CurrentVersion column is set to false, and the EffectiveEnd col-
umn is set to the current datetime. Note that both of those columns are
optional: You can determine which row represents the current version of
the object by taking the one with the most recent value for EffectiveStart,
and a previous version can be restored for a specific point in time by tak-
ing the row with the effective start date just previous to the requested
point in time. This approach is called the immutable object design pattern.

Add historical tables. With this strategy you have one set of operational
tables for your system that you use as you normally would, and a corre-
sponding set of historical tables that have the same schemas with the
addition of the EffectiveEnd column described in Table 12.2. When an

Table 12.2 Potential Table Columns to Support Versioning

COLUMN TYPE PURPOSE

CurrentVersion (Optional) Boolean Indicates whether the row represents the
current version of the object, simplifying
retrieval for most business transactions.

EffectiveStart Datetime Indicates the beginning of the period
when the values contained in the row
were valid. Must be set to the current
datetime when the row is first inserted.

EffectiveEnd (Optional) Datetime Indicates the end of the period when the
values contained in the row were valid.
The value is set to the current datetime
when the replacement version of an
object is first inserted.

Persistence Best Practices 379

object is updated or deleted, the operational tables are changed in the
normal way. In addition, the values that had been initially retrieved into
memory are written to the corresponding historical table(s), with the
EffectiveEnd value set to the current datetime.

A few quick observations about making your EJB components versionable:

m The addition of versioning columns is not an option if you are mapping to
a legacy database schema.

m For any of these approaches to work, all systems/objects accessing your
database must follow them consistently.

m Versioning is performance intensive, requiring additional writes to sup-
port updates and deletions as well as more complex retrievals.

m There is no explicit support for versioning with CMP entity beans. If
you're using CMP, check your EJB container’s documentation to see if it
supports versioning.

m [f your EJB object model and database schemas vary wildly, the audit log
approach is likely your best bet.

m These approaches focus on the versioning of data only, not behavior. To
version behavior, you need to support different versions of the same
classes and/or apply the strategy or command design patterns.

m Avoid versioning if you can because it is complex, error-prone, and nega-
tively affects performance.

Living with a Legacy Database Design

For the sake of simplicity we have assumed throughout this chapter that you
are in a position to define your data schema. If this is actually your situation,
consider yourself among the lucky few. The vast majority of EJB developers
are often forced to tolerate an existing legacy design, one that is often difficult,
if not impossible, to change because of corresponding changes that would be
required to the legacy applications that currently access it. The problem pre-
sented by your legacy database is often too difficult to fix immediately; you
therefore have to learn to work around it.

as an SAP R/3 system or a CICS/COBOL system. For strategies on integration with

? This section is not about general integration with non-RDBMS legacy systems, such
legacy systems, see Chapter 13.

380

How do you learn to live with a legacy data design? The first step is to under-
stand the scope of the challenge. Start by identifying and understanding the
impact of typical data-related problems that you will encounter with legacy
data. Table 12.3 lists the most common data problems and summarizes their
potential impact on your application. You will likely experience several of
these problems in any given database, and any given table or even column
within the database will exhibit these problems.

Table 12.3 is lengthy and intended for reference purposes only—you don’t
need to read or understand the entire table right now. When you encounter a
legacy database and want to migrate that into an EJB environment, return to
this table.

Both data and database design problems have a common impact on your EJB com-
ponents: They make it harder to take advantage of CMP because your EJB container
needs the ability to overcome the problems appropriately. For those living with a
hairy legacy design, we recommend BMP or session beans plus JDBC.

The good news is that your project team isn’t the only one facing these sorts of
challenges—almost every organization has these problems. As a result, a large
market exists for tools to help deal with legacy databases. A sampling is listed
in Table 12.4. The basic features are extraction of legacy data, transformation of
the legacy data to cleanse it, and the loading of that data into a new data
schema that is more robust. Products that support all of these features are
referred to as ETL (extract, transform, load) tools.

Patterns for Things That Change with Time

Martin Fowler has developed a pattern language for the development of version-
able objects. Posted online at www.martinfowler.com, the language consists of
the following patterns:

1. Audit log—A simple log of changes, intended to be easily written and

nonintrusive.

2. Effectivity—Add a time period to an object to show when it is effective.

3. Snapshot—A view of an object at a point in time.

4. Temporal object—An object that changes over time.

5. Temporal property—A property that changes over time.

6. Time point—Represents a point in time to some granularity.

381

sonunuod

"san|en
e3ep J3.1100uUl Yy Suljesp 104 sa18a3el)s 995

-ajeuidoidde se ejep ayj 2103s pue
andM3a1 Yyjoq 03 palinbal aq [jim apod Buisied

"p9199.102 SI wiajqoid

9y} nun Suissadoid woyy eyep ayy Suiddoup 1o
‘10119 3y} x1j 03 Sunndwane ‘1oud 3y} jo Suid3o|
apnpui Aew siy] ‘ejep peq yum [esp o} pado
-|onSp 9q 0} spaau ASajeis Suljpuey-lous uy
‘pajuswa|dwi pue paulsp aq 0} pasu

Aew sanjen 1oa1100ul dde|dal 0} Sa18a)enS
")291102 dle SaN|eA elep

aseq 119y} 1Ry} SINSUS 0} SPOD UOIepI|RA
uswa|dwi 0} paau spusuodwiod gr3 INoA

"uWN|od 3y} Ul Pai0)s aN[eA S} UM HIOM

03 paiinbai s1 Suiddew xsjdwod Ajjenuajod y
‘paquasap Ajjeuiduo

uisap INoA se saynqupe |esanss Supuawajduwl
Jo peajsul 9Inquie Jejiwis e Juswajdwi

0} padJo} 8q Aew (s)usuodwiod g3 INOA m

‘uwinjod 3y} jo adesn Jadoid sy} suiwIABPp 0}
wyo8je Suisied xajdwod e Suuinbai ‘pjay
siy} 0} paddew aq 03 paau Aew spusauodwod
43 4noA Jo senqupe alow 1o duQ

L1DVdINI TVILN3LOd

"Sp10231 WIOS Ul pap103l U33q
j0u sey uosiad e Jo ypiq Jo d3ep ayj

"dweu)sily ‘sweulns ‘s|qe} Jayjoue
ul 194 ‘sweulns sweulsii Jewio) sy} ul
9]qe) auo uj paloss si uosiad e jo sweu ay|

*L00Z ‘0L 12901 SI dep JUdLNd Y} pue
£961 ‘1 1sN3ny sI a3p@ypiIg 3y3 ydnoyye
’/ SUIRJUOD UWIN|OD SIDBLU[RDY By} 1o ¢—

SI Mol uosiad e 1oy UWN[0d SID3AUIBbY ay|

‘looyds

y3iy passyua uosiad ayj s1ep aui si U

‘81 pue G¢ USaMIRQ SI dN[BA U} §| |ooYdS
y3iy wouy uonenpeid jo ajep s,uosiad
9y} SI 8]DqUOSIad '#8 S! an[eA au |
‘uosiad ay} jJo yuiq Jo a1ep sy} syussaidal
2]pquOSIad ‘L1 S1 8dA191DQ JO anjeA ay3 J|

‘W)l 3y} Suijpuey usym spuawaiinbal
Aajes 10 ‘syuswaiinbai a8eiols

‘wayl sy} jo uondudsap Aydus) e jo alow
10 3UO 3q [|IM UOIIRWIOUI [PUOIIPPY
"UWN|0d S3}0N Sy} Ul pa1ojs SI Wayl
A1ojuanur ue 1oy uonewliojul [euoRIppy

I1dINVX3

swia|qold eleq Adeda |eoidAl €Tl 3jqel

e1ep Suissip

Sumewloy
eJEP 1231100U1/3Ud)SISUOdU|

SaNn|eA ejep]J39.110dUuj

"SUWN|0D JaY}0 dIow 10
9UO JO anjeA 8y} Aq paulwR)ep
s1 uwn|od e jo asodind ay|

‘sasodind |esanas
1oj pasn sI uwnjod aj3uls y

IN3T890¥d

382

‘uoljewwioul ay} INOYUM o m ‘suonedl|qnd sp|aly 1xa3 ut Suneoyy
‘Sp|al 3y} 1Bue|d Ajleq 4uay| sio7 pue yie|D pue uapply sdiysuonejal pue
woJj uoneuwoyul 3y asied o} apod dojansg m uoIeWLIOJUI 3Y} SUIRIUOD P|al} 1X3) SBION Y ‘salnquye ‘sannua juepoduw)

'saoe|d |eJonsS Ul palols
SI UOIBLLLIOJUI SWES 3y} JI9A0ISIP NOA uaym
921nos pauajaid e Suisooyd 10§ sajni Ajiausap| m
“uoijewWwIojul dWes
3y} Jo} Sa21n0os 3jdnjnw ssadde 0} paledaid og m
"Jey} Ajuo ssn pue ‘saseqejep Aoe8o| sjeledas e)ep Swes
uolewloyul INoA 1oy 931nos aj3uis e Ajuap| m 991y} Ul pa103s SI UOHRWIOJUI JSWO0)SND) 3y} Jo} sa21nos a|dnjny

‘uteSe N0) UM UBY} pue ‘anjen [euidLo
3y} peal 0} paau Aew noA ‘sajepdn aseqejep 104 m
"p1odal
M3U e 3u1asul usym aseqelep sy} 0} anjea
jjnejyap a1endoidde sy s3m 03 pasu Aew NOA m
‘sajesauad uonedidde
INoA ejep ay} asn ued suonedijdde 1ay3o sy}
ey} a1nsus 03 syjusuodwiod g3 InoA ur way

jusws|dwi 0} painbai aq Aew noA ‘suonedijdde "}l p99U },uop NOA pue aseqejep 8y} ul palo}s
J13y10 1o} pasinbai aie Jey) SUWN|OD 104 mm s1 uosiad e Joj Jaquinu AjuNdas [eDOS BYL Suwn|od [eUORIPPY
‘punoy

9 0} paau Aew elep aY} 10} 92INOS SjeUIS) e UY mm

"3|qe[IeAR SI BIRp Sy} [3UN 3N|BA }NRJSp B AJusp| m
"B}Ep Y} INOYHM Op 0} paau JSiw NOA mm
‘ewdyds Aoeds| Sunsixa JSIX® J0U S0P) 10} UWIN|OD
Sy} 0} UWN|0D 3} PPE 0} pa3u AeW NOA mm e }Nq ‘SWeu 3|ppiw s,uosiad e pasu NoA suwn|od uissipy

LDVdINI TVILN3LOd 11dINVX3 IN3780dd

(panunuod) swajqoid eyeq Aoe8aq |edidAL €°Z1 ?)qeL

383

sonunuod

‘elep
9y} 9AeS UBY) pue ‘Sns13Rl 0) palinbal
9q Aew apod Suisied xajdwod Ajjenuajod

‘paisinbai aq osje |jim swajqoid ayy 3ulp

-uey 10} $aINpad0.d ‘swajqoid [enuajod 1ds19p
0} padojansp aq 0} paau Aew 9pod [euonIppyY
*S)SIX®

Apeaije auo y3noy} uans swoy Jawwns

9y} Joy (pauyap mou diysuone|a1 3y} pue)
pajeald AjjuspaApeul SI p10dal SSaIppe Mau e
Ajlemuang -paiedijdai Apuspsapeul aq Aew ejeg

‘ueaq Anus

InoA 10y ssepp Ay Arewnnd ay3 jo ped aq jou
p|noM sainquye asay} 1y} S10N "dseqeiep |euoi
-eja1 1noA ui A3y e jo ped juasaidai ASyy asnedaq
—pa8ueyd aq j0uued SNjeA JI9Y)}—a|qenwiwi

99 Aew ueaq Aus ue jo saINLL SWOS
"S9sse|d awos ul suonelado Japuly Jejiwis

Jo} paau ay} SulAldwi ‘sa183e13s [RISASS BIA

e)ep Jejiis ssadde 0} pasedald aq 01 pasu NoA

'sasodind jJualaip 104 p|aly ay3 Suisn
aue suonedijdde juaiayip ased ul a8esn 1exs auy}
aulwRlep 0} pawioyad aq pjnoys sisAjeue eleq

"9p0od 113y} d1epdn 03 pasau Aew anjea ade}

}B UONRIUBWINDOP BY} Y00} 1By} siapiroid ueag
-a8esn |enpe ayj Pa3|Jo!

0} UuoleUAWNOOP 3Y} d1epdn O} paau NOA

LDVdINI TVILN3LOd

"aseqejep INoA ul swpuins pue
SWD}SII{ SUWN|OD Y} Ul palo)s si Inq ‘pIaY
aweu d[3uls e saiinbai ssep uosiad ayj

ey sy

3uipie8al aseqelep ayy ui paios diysuoneja.
ou sl 219y} Inq ‘aseqelep INOA ul papi0dal
ale sawoy sIy Jo yjog "swoy Jswuwns

e pue aouapisal Arewnd e sey Jowoisnd y

‘Asy @1e8o1ins
e sasn Jayjoue pue A3y sy} se pualpD
2y} sasn Jayjoue ‘Asy ayy se NSS Suisn
UoNeLWIOUI JSWO)SND S3103)S d|qe} dUQ

‘3uiyop
1o} duasajeud duqey s,uosiad e ai0)s
0} pasn 3ulaq Sl UWN[OD SWeU Usplew ay|

11dINVX3

'Sp|ol} [RI9ARS
ul pa10}s SI 3InquUpe AuQ

Spi10da1 elep
uaamyaq sdiysuone|al pazijeaiun

Amus jo adAy swes
3y} Joj sa18a3ens A9y snouep

S9N ssauisnq
pue suondusap pjRy 11y}
wouy Aens ey} sanjea eyeq

IN37190dd

384

‘uo paseq ale Asyj Jey} uonewoyul
9y} Jo ssauljaw} 3y} ‘syusi J1ay} 0} Jodal
Ajlenusjod pue “psja1 1SNW 3pod grg INOA =

‘W |19[9p

1o 91epdn jouued ‘a10ja13Y} ‘e1ep AjUO-pEal

uo paseq sgrg ‘03 paddew aie Asyj ejep ayj jo
ainjeu ayj 1ajyal 1snw sgr3 InoA jo uSisep syl m

Je1sp
JO S|9A3] SNOLIEA BY} 9A|0SBI 0} palinbai
9q Aew apod Suiddew xajdwod Ajjenusjod m

YNdIYIp d10W SW023q
‘sgq[3 InoA ul pappaqus TOS Aue aduay pue
‘suiof a|qey uayy uasaidal Asyy eyep [euidlio
uey adA; Jualayip e aney spialy Ay uSiai04 §| mm
-9jenidoidde se
(s)921n0s elep INOA Woly/0})1 Wiojsuel}
uay) pue sgr3 1noA Aq pajpuey aq o3 elep
9y} JueM NoA moy apap 0} pasu Aew NOA m

"93esn Jayeleyd a1ed1pul
0} paiinbai si1 uonejuswnNdop |euonIppY m
"saseanul apod Suisied jo Ajixajdwo) m

1DVdINI TVILN3LlOd

"32IN0S [RUISIXS Ue WOl

uonewuJojul jey} aseydind noA asnedaq
Japenb snoinaid ayj Jo pus sy} 03 d)eIndde
sI sa)e)s pue saLunod o} Suluiepad

eI1Ep 9y} pUe ‘a1ep Jo 10 Aep SUO SI

BJEP SSIPPE ‘JUSLIND SI B1Ep ISWOISND JY|

"9)1IM-peal SI Pep JSY10 Ing ‘uonewlojul
jo Joysdeus Ajuo-peal e si elep aWwos

ySiom

910821388 ay3 Ajuo spiodas aseqejep 1noA
Inq ‘1ed e jo auiBua pue SI00p 3y} Se ydns
‘Wa)l ue jo syusuodwod [enpIAIpul Jo JYSiam
3y} salinbai ueaq e 10 ‘19p10 Yoes 10} S|e}0}
[enpIAIpuUl S210)S 9seqeiep 1noA Inq ‘Yuow
3y} 10} S3eS [R}0} SU} Salinbal ueaq v

“1Iayjoue ui 3uis e pue d|qe} suo
ul JIaquinu e se palo)s sl @] JIoWolsnd

‘slaquinu aAnedsu

21e21pul 03 suaydAy sasn 8ulis e se palols
3N|eA [E2LBWINU B SBAIBYM ‘Aep pue ‘Yuow
‘1eaA sy} ajeledass 0} susydAy sasn aiep y

I1dINVX3

(panunuod) swajqoid eyeq Aoedaq eoidAl €1 djqeL

elep Jo ssauijpwi} Sulhiep

uonesado Jo sapowl UK

|IeISP JO S[AS] JUBIAYIA

suwn|od
lejiwis Joy sadAy ejep ualapig

sie)peleyd
_m_uwn_m JO 9sn Juajsisuodu|

IN3T80¥d

385

sonunuod

‘aseqelep
InoA uiyum ainpadold palols pue ‘uwnjod ‘s|qe}
yoes jo adesn Jadoid sy suiwRlep 03 palinbai

9q 1M 1oYs sishjeue ejep Ade8a| Juedyiudis v m

*sg[3 INOA YM 3SN 10§ SUOIUSAUOD

Suiweu ejep ajeiodiod sjerdoiddeur mojjoy 03
wea} JnoA uo ind aq Aew ainssaid |eonijod
"SUOIJUSAUOD SulWeu JueA3[aI [|B

puejsiapun 03 paau |jim (s)iahojdap ueaq ay] m

‘uorpesues} e ui days
e se papnjpul 3q 0} 3|qe 3q jou Aew awaYds

uonejnsdeous ay} jo syusuodwod [enpiAlpul 9y mm

"SS900. dseqejep Jo swi} asuodsal ay}

aseanul ARy [jim awayds uonejnsdesus ay] m

‘9oudj3sisiad 03 yoeoidde 4i\g 10 Ddar

sn|d sueag UOISSIS B dYe} 0} pa210} 3q ||IM NOA
9SINIBYIQ 's9zIu0D3l J3UlRIU0D SdUd)Sisiad
INOA 1By} 921N0S elep B 3Yj1] 300| 0} dpeW 3q

Isnw swayds uonejnsdesus ayy diND d]qeus o] m

‘padojanap aq 0}
paau |j1m asn (s)dr3 INoA jey) anjea uowwod

B U99/N)3(U}10§ pue ydeq apod uoije|suel] m

‘(eseqgejep
ay3 ul anjea [e8a||1 ue si usa18) anjea

'9]ep JO N0 1O ‘Jus)sixauou ‘asieds
S1 aseqejep INOA 10§ UOIIRIUSWINIOP dY |

‘suonusAuod Sujweu

BAR[UOWIWOD MOJ|0} Jou op Aoy pue

Iayjoue sUo Woij SUOIIUSAUOD Suleu
JuaIayIp Mojjo} Aews (S)aseqeiep INOA

‘spalqo/sasse|d

elep paulapaid ein passadde aq

1snw aseqejep ay] ‘Ajpdalip aseqelep sy}
$95S9208 Win} ui Jeys saddeim 7090 10 D
e Aq pajuswsjdwi |4y Ue BIA passadde aq
1sNw aseqejep sy "palusp sl ss920e 9|qe)
12.1p ‘paniwiiad s aseqelep sy} UO SMIIA
0} SS922Y "a1npadoid paiols paynads e
9)0AUI }SNW NOA J3WO0)SND MBU B 3)1ea1d 0}
‘3|dwexs Joy ‘sainpadoid paiols y3noiyy
Ajuo papinoid si aseqejep ayj 0} SS90y

"suwnjod ajeiedas inoy ul Aepsan] pue ‘g
‘san| ‘| se palo]s sI Jaam ay} jo Aep ayj

‘aseqejep
3y} Ul pa10]s sanjeA Mo||aA jo (s1asn
InoA jo uoluido ay3 ur) dueispuodaid

uoneUaWN0p 33enbapeu|

suouaAuod Juiwen

" S)SIXD SWAYDS
uonejnsdedus aseqeieq

mCO_“_.mucwmwhn_w._ sSnoliep

}neyap INoA 210}s 0} pamojje 89 jJou Aew NOA m
"SI9SN INOA Yum
SN|eA }NEJOP MBU B 31e)0SaU 0} paau Aew NOA m

e u1 3un|nsas ‘mojjaA Suisn usaq
sey uonedijdde Jayjoue 394 ‘anjen uanid
e 10} U313 JO }Neyap e Sasn gr3 INOA

11dINVX3

sanjea }nejop Suikiep

IN37190dd

LDVdINI TVILN3LOd

‘yoeoidde aj3uis e asnai
usy} pue ‘spod 1,ued NoA asnedaq Auxajdwod
ul sasealnul apod Juswadeuew diysuoineoy m
‘paiinbai aq |jim anbiun “oey ul ‘a1e sAsy
[eANjeU JBY] 9)EPI|EA 0} SPOJ 92JN0S |[eUOHIPPY =
‘sa18a3e)3s snouen ay} poddns
01 Ajixajdwod ui saseadul apod uoneiauasd Ay m
'sg(3 119y} 1oy sa18a1ens
A3y snouea ayy 10} 11oddns spod Apiendoidde
Uy} pue ‘puejsiapun jsnwi siapinoid ueag m

"}l P33 ||,NOA 2N| POOD mm

LDVdINI TVILN3LOd

386

‘pasn ai1e Asy} usym

shay 21e80.11NS 10} sa1391R1)S JUBIBYIP

pue ‘s1ayjo ul sAsy| s1e8o1Ins ‘sa|qe} Swos
10} sASY [eIN}RU SBSN dSeqRIRp INOA A3a1e1s A9y Jus)SIsuodU|

"JouIalu| 3y} Jano pakojdap aq o3 uonedidde

Anus 1apio /xpz e Sulpjing ale noA

Sealaym ‘apow Ydjeq ui SI9pI0 19Wolsnd
ainided 03 syusp Anus ejep Aq asn "spasu Pafoid Jusund yum
[euajul Joj }ing sem aseqelep Aoeds| syl sppo e aie sjeod udisap |euiduQ

11dINVX3 IN37803dd

(panunuod) swajqoid eyeq Aoe8aq |edidAL €°Z1 ?)qeL

Persistence Best Practices 387

Table 12.4 Sample Legacy Data Integration Tools

Informatica PowerCenter wwuwy.informatica.com
ETI*Extract www.evtech.com
Information Logistics Network www.d2k.com

Ascential Software's DataSage www.ascentialsoftware.com

INTEGRITY Data Re-Engineering Environment www.vality.com

Trillium Control Center www.trilliumsoft.com

Once you've identified the challenges in your legacy integration efforts, the
second step is to determine how you will address the problems that you have
found with your legacy data and the legacy database design. Table 12.5 com-
pares and contrasts several strategies at your disposal.

Although descriptions of how to implement these three strategies is clearly
beyond the scope of this book, we can provide some advice:

1. Do not underestimate the effort required to address this problem. If it can
be done at all, data migration/improvement efforts often prove to be a
project, or a series of projects, that span several years. This is easily on the
order of magnitude of your organization’s Year 2000 (Y2K) efforts.

2. Think small. A series of small changes, or refactorings, is often preferable
to a single big-bang approach in which you need to re-release all of your
organization’s applications at once. Martin Fowler’s book Refactoring:
Improving the Design of Existing Code (Addison Wesley, 1999) describes the
principles and practices of refactoring. It should provide some insight into
how to make incremental changes to your legacy data design (many of his
refactorings are geared to changing object-oriented designs, but the fun-
damentals still apply).

3. Did we mention not to underestimate the effort required?

Handling Large Result Sets

A serious problem when writing finder methods of entity beans (or any rela-
tional database code for that matter) is handling larger-than-expected result
sets. If you locate too much data, you are causing undue performance issues,
because you may not need the entire result set. To handle this situation, you
have several strategies at your disposal:

388

‘suonedijdde
[|e 10} sy10M Jey) A8s3eils auo puly 0} 9|qe
9q jou Aew noA ‘uoneziue8io INOA ulyum
sai3ojouyoa} jo auel sy} uo Suipuadaq m
“29us[10q [RINPYDIR UR SW0I3]
Aew yoeoidde uonejnsdedus INoA m
‘Hoya juedyiudis annbai Aew
A8a31ens uonejnsdeous 1noA Sunuawa|dw| m

"aseqejep oy} uiyum Api8sjul ainsus ‘ldY ue 10 ‘spalqo/sassepd eyep

03 Yoeoidde ssadde mau ay3 asn 0} ‘s1adojanap uonedijdde oy pajuasaid 'SAaIA ‘sainpadoid palols yim

usanuMaI 99 pjnoys suonedijdde A>e857 m 9q ued uonejnsdeous o} Yoeoidde ssedoe uesp v m SS9JOE Sseqejep dlejnsdeou]
‘MOU WO}

siea |esanas uoiusod swes ay3 ur dn pus

|1 NOA 3SIMIBL}O {uea)d sulewal udisap

aseqejep InoA jey} ainsua o3 sainpadold
‘A0j|0} USY} pue ‘dojonsp 0} pasu NOA m

“Hoys juedyiudis

Suuinbai ‘swiajqoid pajejai-elep INoA

JO ||e X1} pue Ajjuspi 0} pasu ||IM NOA mm ‘g3 se yons ‘saidojouyyda) paseq-jusuodwod pue
"BWSYDS BIRp M3U 3y} 123}§a1 0} pajepdn pa1uaLI0-123(qo ‘uIspouw Jo Spasu ay} 13|43l
9q 03 paau [jim suonedijdde AoeSo7 m 0} pausisapal 9q Ued BWAYDS SSEQRIEp INOA m
"9N31Yde 0] JN2IYIp AIaA sI SIYy] mm "YIIM YJoM 0] u3isap aseqelep ues|d e 9AeY NOA mm "ewaYDs ejep InoA Jopejoy

's1ahejd wes) Suraq jou
se panlaiad aq Aew noA asnedaq swig|
-qouid |eonjod ueoiiusis sysu 13(oid INOA m
*9s1}Jadxa aseqelep aney jsnW Wed} INOA mm

'S]003} 119
1o ‘sqof yojeq pawweidoid ‘s193311)
eI (s)aseqelep a1eiodiod Aoeda| sy

yum ajeidsjul 0} paiinbai aq (s Aepy mm ‘Juawdojansp dn
‘ejep Aoeda| ajeiodiod Sunsixa Suipaads ‘uoneziue8io 1noA ulyum sainpadoid
3y} jo a3ejuepe aye) Ajisea 03} 9|qeun m Aoe8s| 03 Suiwiojuod pioae 0} 3|qe 9q Aew NOA m "S9}INqL11Ie MU 10} dseqeiep
"Aj|1] SI B3Ep UOWIWIOD JO UonedI|doy m "9seqejep INoA Jano |o1u0d 939|dwod aAey NOA mm a1eAld umo 1noA ajear)

SIDVINVAQVSIa SIDVINVAQY ADILVYLS

swia|qoid eeq Adeda1 Sunednyy 1oy saiSsiens Tl djqeL

389

18318 00} SI Yd3ewsiw Y}
i uondo ue jou ARy SI Yromawiely/1ake)
doudjsisiad e jo asn 3y pue 4D Se
yons ‘aaudjsisiad 0} saydeoidde uowwo) m
‘s3uiddew asoy} poddns
0} palinbai suonew.ojsuel} 3y} pue aseq
-ejep ayj 01 sgr3 1noA Suiddew jo peay
-1an0 8unjnsal sy} Jo asnedxaq papeduwl
Apueoyiudis aq o3 Aj@yjI| S1 9duRWIONS] =
‘uonedijdde inoA 1o} syusw
-a1inbai ay} pue udisap aseqejep Ae8s|
93U} USSMID Yd3ewSiW 3y} O JUIXd dY}
uo Suipuadap ‘s|qisea} aq j0u Aews SIYy] mm
"spafoid a1nny paye 0}
SNUIUOD [[IM pUB PasSaIppe jou si ‘udisap
aseqejep Jood e ‘wa|qoid [enpe sy m
“}iom 0} Siy} 1o} paiinbai aq 0}
Ap|1| st 8uipod pue ugisapai JuediiudiS m

SIDVINVAAQVSIa

‘sl se ugisap 3unsixa ay}
‘(s)aseqejep A>e8a] oy} Yym y10Mm sgrg INOA = Y djlom 0} sgrg InoA udisag

SIDVINVAQY ADILVYLS

(panupuod) swa|qoid eyeq Aoeda7 Sunedmipy 10y saidaiens € Tl dqel

390 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

m Add code to estimate the size of the result set, a feature most relational
databases support, and throw an exception if it’s too big. This works for
Session Beans plus JDBC.

m Learn to live with the large result set. If it doesn’t happen very often, it
might not be worth your while to write code to deal with this. This works
for Session Beans plus JDBC, BMP, and CMP.

m Write tighter SELECT statements by introducing additional parameters to
narrow the results. This works for Session Beans plus JDBC, BMP, and
CMP.

m Limit the results of the finder via the SQL bound to the method (a feature
of most databases).

m Use a scrollable result set. JDBC 2.0 introduced the ability to access the
results of SELECT clauses as database cursors, enabling bean providers to
write code that brings portions of the result set across the network at a
time. This works for Session Beans plus JDBC.

m Use session beans to control how the result set is handled. For example,
you can use a stateful session bean that caches a collection of primary
keys. When the client requests data, return only a block (say 20 pieces) of
data at a time based on the primary keys.

m Let your persistence container handle it. Some persistence containers,
such as WebGain’s TOPLink, implement strategies for dealing with large
result sets. This works for entity beans.

Summary

In this chapter, we touched on a variety of best practices and strategies when
performing persistence in an EJB environment. We learned when (and when
not to) use entity beans, and how to choose between BMP and CMP, and we
surveyed a large collection of persistence best practices.

In the next chapter, we’ll take a look at an advanced EJB topic—design
strategies.

EJB Best Practices and
Performance Optimizations

designing, building, and working with EJB. By being aware of these best prac-
tices, you will avoid common pitfalls that others have experienced when
building EJB systems. We’ll also discuss performance issues when building
E]JB systems.

In this chapter, we will discuss EJB best practices—tried-and-true approaches to

Let’s begin now with our collection of development strategies.

together but realized that those patterns deserved a book of their own. That's what
gave birth to Floyd Marinescu’s book, EJB Design Patterns, published by John Wiley
& Sons and a companion to this book.

? This chapter does not cover low-level EJB design patterns. We started to put those

When to Use Stateful versus Stateless

Lately there’s been a lot of fuss over statelessness. The limitations of stateless-
ness are often exaggerated, as are its benefits. Many statelessness proponents
blindly declare that statelessness leads to increased scalability, while stateful
backers argue about having to rearchitect entire systems to accommodate
statelessness. What's the real story?

Designed right, statelessness has two virtues:
m With stateless beans, the EJB container is able to easily pool and reuse

beans, allowing a few beans to service many clients. While the same

391

392

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

paradigm applies to stateful beans, if the server is out of memory or has
reached its bean instance limit, then the bean state may be passivated and
activated between method calls, possibly resulting in I/O bottlenecks. So
one practical virtue of statelessness is the ability to easily pool and reuse
components at little or no overhead.

m Because a stateful session bean caches a client conversation in memory, a
bean failure may entail losing your conversation. This can have severe
repercussions if you don’t write your beans with this in mind or if you
don’t use an EJB product that provides stateful recovery. In a stateless
model, the request could be transparently rerouted to a different compo-
nent because any component can service the client’s needs.

The largest drawback to statelessness is that you need to push client-specific
data into the stateless bean for each method invocation. Most stateless session
beans need to receive some information that is specific to a certain client, such
as a bank account number for a banking bean. This information must be resup-
plied to stateless beans each time a client request arrives because the bean can-
not hold any state on behalf of a particular client.

One way to supply the bean with client-specific data is to pass the data as
parameters into the bean’s methods. This can lead to performance degrada-
tion, however, especially if the data being passed is large. This also clogs the
network, reducing available bandwidth for other processes.

Another way to get client-specific data to a stateless bean is for the bean to
store data persistently on behalf of a client. The client then does not need to
pass the entire state in a method invocation but simply needs to supply an
identifier to retrieve the data from persistent storage. The trade-off here is,
again, performance—storing conversations persistently could lead to storage
I/0 bottlenecks, rather than network I/O bottlenecks.

Yet another way to work around the limitations of statelessness is for a bean to
store client-specific data in a directory structure using JNDI. The client could
later pass the bean an identifier for locating the data in the directory structure.
This is quite similar to storing data in a database. The big difference is that a
JNDI implementation could be an in-memory implementation (an effect simi-
lar to a shared property manager, familiar to COM+ readers). If client data is
stored in memory, there is no database hit.

When choosing between stateful and stateless, you should ask if the business
process spans multiple invocations, requiring a conversation. If so, the stateful
model fits nicely because client-specific conversations can be part of the bean
state. On the other hand, if your business process lasts for a single method call,
the stateless paradigm better suits your needs.

EJB Best Practices and Performance Optimizations

393

Note that if you are going to use state, and if you're building a Web-based sys-
tem, you may be able to achieve what you need with a servlet’s HttpSession
object, which is the Web server equivalent to a stateful session bean and is eas-
ier to work with because it does not require custom coding. We have found

that a stateful session bean should be used over an HttpSession when:

m You need a stateful object that’s transactionally aware. Your session bean

can achieve this by implementing SessionSynchronization, described in

Chapter 10.

m You have both Web-based and non-Web-based clients accessing your EJB

layer, and both need state.

m You are using a stateful session bean to temporarily store temporary state

for a business process that occurs within a single HTTP request and

involves multiple beans. To understand this point, consider that you are
going through a big chain of beans, and a bean deep in the chain needs to
access state. You could marshal the state in the parameter list of each bean
method (ugly and could be a performance problem if you're using remote
interfaces). The better solution is to use a stateful session bean and just

pass the object reference through the stack of bean calls.

In summary, most sophisticated deployments are likely to have a complex and
interesting combination of the stateless and stateful paradigm. Use the para-
digm that’s most appropriate for your business problem. The one exception is
if there is an obvious bottleneck, such as keeping megabytes of state in mem-
ory. But if you are on the fence about stateful versus stateless, you may find
that statefulness may not be your primary issue—until you test your code,
you're just shooting in the dark. If it turns out that your statefulness is your

bottleneck, you could refactor your code if necessary.

When to Use Messaging versus RMI-IIOP

Another hot topic when designing an EJB object model is choosing when (and

when not) to use messaging, rather than RMI-IIOP.

The following advantages of messaging provide reasons why you might want

to use it:

Database performance. If you are going to perform relational database work,
such as persisting an order to a database, it may be advantageous to use

messaging. Sending a message to a secondary message queue to be
processed later relieves stress on your primary database during peak

hours. In the wee hours of the morning, when site traffic is low, you can

394

What If My Stateful Bean Dies?

Bean failure is an important factor to consider. Because a stateful session bean
caches a client conversation in memory, a bean failure may entail losing your
conversation. This was not a problem with statelessness—there was no conversa-
tion to be lost. Unless you are using an EJB product that routinely checkpoints
(that is, persists) your conversations, your conversations will be lost if an applica-
tion server fails.

Losing a conversation has devastating impacts. If you have large conversations
that span time, you've lost important work. And the more stateful session beans
that you use in tandem, the larger the existing network of interconnected objects
that each rely on the other’s stability. This means that if your code is not pre-
pared for a failure, you may have a grim situation. Not an exciting prospect for
mission-critical computing, is it?

When designing your stateful beans, use the following guidelines:

= Make sure your problem lends itself to a stateful conversation.
m Keep your conversations short.

m |If the performance is feasible, consider checkpointing stateful conversations
yourself, to minimize the impacts of bean failure.

m Write smart client code that anticipates a bean failure and reestablishes the
conversational state with a fresh stateful session bean.

process messages off the message queue and insert the orders into the
database. Note that this only works if the user doesn’t need an immediate
answer to whether his operation was a success; it would not work, for
example, when checking the validity of a credit card.

Quick responses. A client may not want to block and wait for a response that
it knows does not exist. For methods that return void, the only possible
return values are nothing or an exception. If a client never expects to
receive an exception, why should it block for a response? Messaging
allows clients to process other items when they would otherwise be block-
ing for the method to return.

Smooth load balancing. In Chapter 8, we discussed how message-driven
beans distribute load more smoothly than session or entity beans. With ses-
sion and entity beans, a load-balancing algorithm makes an educated guess
about which server is the least burdened. With messaging, the server that
is the least burdened and asks for a message, gets the message. This also
aids upgrading your system, since you merely need to detect when your

EJB Best Practices and Performance Optimizations 395

queue size reaches a threshold. This indicates that the number of con-
sumers is not great enough, which means you need to add new machines.

Request prioritization. Asynchronous servers can queue, prioritize, and
process messages in a different order than they arrive into the system.
Some messaging systems allow message queues to be prioritized to order
messages based upon business rules. For example, in a military battle tank,
if all requests for the system sent to a centralized dispatch queue are made
asynchronously, disaster could result if a fire control message was queued
up behind 100 communication messages that had to be processed first. In a
military system, it would be advantageous to process any fire control and
safety messages before communication messages. A prioritized queue
would allow for the reordering of messages on the queue to account for the
urgency of fire control in a battle tank.

Rapidly assembling disparate systems. Many legacy systems are based on
message-oriented middleware and can easily interact with your J2EE sys-
tem through messaging. Messaging provides a rapid development envi-
ronment for systems that have distributed nodes that perform business
processing and must communicate with one another.

Loosely coupled systems. Messaging enables loose coupling between appli-
cations. Applications do not need to know about each other at compile
time. This empowers you to have dynamic discovery of applications, which
may be useful in a rapidly changing, service-oriented business environ-
ment.

Geographically disperse systems. Messaging is very useful when you have
applications communicating over the Internet or a wide-area network. The
network is slow and unreliable, and RMI-IIOP is not intended for such
broad-range communications. Messaging along with guaranteed message
delivery adds an element of safety to your transactions. Another choice
you have is Web services technologies (XML/HTTP).

Parallel processing. Messaging is a way to perform pseudo-threading in an
EJB deployment. You can launch a series of messages and continue pro-
cessing, which is the distributed equivalent of launching threads.

Reliability. Messaging can be used even if a server is down. System-level
problems (such as a database crashing) typically do not affect the success
of the operation, because when you're using guaranteed message delivery the
message remains on the queue until the system-level problem is resolved.
Even if the message queue fails, message producers can spool messages
and send them when the queue comes back up (called store and forward). By
combining guaranteed message delivery with store-and-forward, the sys-
tem will not lose any requests unless there is a complete system failure at
all tiers (extremely unlikely).

396

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Many-to-many communications. If you have several parties communicating
together, messaging is appropriate since it enables many producers and
many consumers to collaborate, whereas RMI-IIOP is a single-source,
single-sink request model.

The following are scenarios for which you might not want to use messaging;:

When you're not sure if the operation will succeed. RMI-IIOP systems can
throw exceptions, whereas message-driven beans cannot.

When you need a return result. RMI-IIOP systems can return a result imme-
diately because the request is executed immediately. Not so for messaging.
You can return results eventually with messaging, but it's clunky—you
need to send a separate return message and have the original client listen
for it.

When you need an operation to be part of a larger transaction. When you
put a message onto a destination, the receiving message-driven bean does
not act upon that message until a future transaction. This is inappropriate
when you need the operation to be part of a single, atomic transaction that
involves other operations. For example, if you're performing a bank
account transfer, it would be a bad idea to deposit money into one bank
account using RMI-IIOP and then withdraw money using messaging,
because the withdrawal might fail.

When you need to propagate the client’s security identity to the server.
Since messaging does not propagate the client’s security identity to the
receiving message-driven bean, you cannot easily secure your business
operations.

When you are concerned about request performance. Messaging is inher-
ently slower than RMI-IIOP because there’s a middleman (the JMS destina-
tion) sitting between the sender and the receiver.

When you want a strongly-typed, OO system. You send messages using a
messaging API such as JMS. This is a flat API and is not object-oriented. If
you want to perform different operations, the server needs to crack open
the message or filter it somehow. In comparison, RMI-IIOP allows you to
call different business methods depending on the business operation you
want to perform. This is much more intuitive. It’s also easier to perform
compile-time semantic checking.

When you want a tighter, more straightforward system. Synchronous devel-
opment tends to be more straightforward than messaging. You have great
freedom when sending data types, and the amount of code you need to
write is minimal compared to messaging. Debugging is also much more
straightforward. When using services that are completely synchronous,

EJB Best Practices and Performance Optimizations 397

each client thread of control has a single execution path that can be traced
from the client to the server and vice versa. The effort to trace any bugs in
the system is thus minimal.

How to Guarantee a Response Time
with Capacity Planning

Many types of business problems are trivial, such as basic Web sites or non-
mission critical applications. But then there are those that must not fail and
must guarantee a certain response time. For example, a trading application
needs to guarantee a response time because stock market conditions might
change if the trade is delayed. For those serious deployments, capacity plan-
ning is essential for your deployment.

The specific amount of hardware that you'll need for your deployment varies
greatly depending on the profile of your application, your anticipated user
load, and the EJB server you choose. The major EJB server vendors each have
strategies for capacity planning that they can share with you.

One strategy, however, works with all E]B server vendors. The idea is to throt-
tle, or limit, the amount of work any given E]B server instance can process at
any one time. Why would you ever want to limit the amount of work a
machine can handle? A machine can only guarantee a response time for the
clients it serves and be reliable if it isn’t using up every last bit of hardware
resources it has at its disposal. For example, if your EJB server runs out of
memory, it either starts swapping your beans out to disk because of passiva-
tion/activation, or it uses virtual memory and uses the hard disk as swap
space. Either way, the response time and reliability of your box is jeopardized.
You want to prevent this from happening at all costs by limiting the amount of
traffic your server can handle at once.

You can throttle (limit) how much traffic your machine can handle using a
variety of means. One is by limiting the thread pool of your E]B server. By set-
ting an upper bound on the number of threads that can execute concurrently,
you effectively limit the number of users that can be processed at any given
time. Another possibility is to limit the bean instance pool. This lets you control
how many EJB components can be instantiated at once, which is great for
allowing more requests to execute with lightweight beans and fewer requests
to execute with heavyweight beans.

Once you've throttled your machine and tested it to make sure it’s throttled
correctly, you need to devise a strategy to add more machines to the deploy-
ment in case your cluster-wide capacity limit is reached. An easy way to do

398 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

this is to have a standby machine that is unused under normal circumstances.
When you detect that the limit is breached (such as by observing message
queue growth, indicating that your servers cannot take consume off the queue
fast enough), the standby machine kicks in and takes over the excess load. A
system administrator can then be paged to purchase a new standby machine.

This algorithm guarantees a response time because each individual server can-
not exceed its limit, and there’s always an extra box waiting if traffic increases.

How to Achieve Singletons with EJB

A singleton is a very useful design pattern in software engineering. In a nut-
shell, a singleton is a single instantiation of a class with one global point of
access. You would normally create a singleton in Java by using the static key-
word when defining a class. However, one restriction of EJB is that you cannot
use static fields in your beans. This precludes the use of the singleton design
pattern. But we’d still like to use singletons—how?

The answer is JNDI. You can use JNDI to store arbitrary objects to simulate the
singleton pattern. If all your objects know of a single, well-known place in a
JNDI tree where a particular object is stored, they can effectively treat the
object as a single instance. You can perform this by binding an RMI-IIOP stub
to a JNDI tree. Any client code that accessed the JNDI tree would get a copy of
that remote stub, and each copy would point back to the same RMI-IIOP
server object.

The downside to this pattern is you are leaving the EJB sandbox and down-
grading to vanilla RMI-IIOP, and thus you lose all the services provided by EJB.

Wrap Entity Beans with Session Beans

Consider the following scenarios:

m A bank teller component performs the business process of banking opera-
tions, but the data used by the teller is the bank account data.

m An order-entry component performs the business process of submitting
new orders for products, such as submitting an order for a new computer
to be delivered to a customer. But the data generated by the order-entry
component is the order itself, which contains a number of order line-items
describing each part ordered.

m A stock portfolio manager component performs the business process of
updating a stock portfolio, such as buying and selling shares of stock. But

EJB Best Practices and Performance Optimizations 399

the data manipulated by the portfolio manager is the portfolio itself,
which might contain other data such as account and stock information.

In each of these scenarios, business process components are manipulating data
in some underlying data storage, such as a relational database. The business
process components map very well to session beans, and the data components
map very well to entity beans. The session beans use entity beans to represent
their data, similar to how a bank teller uses a bank account. Thus, a great EJB
design strategy is to wrap entity beans with session beans.

Another benefit of this approach is performance. Accessing an entity bean
directly over the network is expensive, due to:

The stub
The skeleton

The network call

-

|

m Marshaling/demarshaling
-

m The EJB object interceptor

You can minimize these expensive calls to entity beans by wrapping them with
session beans. The session beans perform bulk create, read, update, delete
(CRUD) operations on behalf of remote clients. The session bean also serves as a
transactional facade, enforcing that transactions occur on the server, rather than
involving a remote client. This makes entity beans into an implementation detail of
session beans. The entity beans are never seen to the external client; rather, entity
beans just happen to be the way that the session bean performs persistence.

A final benefit of this approach is that your entity beans typically achieve a
high level of reuse. For instance, consider an order entry system, where you
have an order submission session bean that performs operations on an order
entity bean. In the next generation of your application, you may want an order
fulfillment session bean, an order reporting session bean, and so on. That same
order entity bean can be reused for each of these session beans. This approach
allows you to fine-tune and change your session bean business processes over
time as user requirements change.

Thus, in practice you can expect the reuse of entity beans to be high. Session
beans model a current business process, which can be tweaked and tuned with
different algorithms and approaches. Entity beans, on the other hand, define
your core business. Data such as purchase orders, customers, and bank
accounts do not change very much over time.

There are also a few of caveats about this approach:

m You can also wrap entity beans with other entity beans, if you have a com-
plex object model with relationships.

400 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

m The value of session beans as a network performance optimization goes
away if you do not have remote clients. This could occur, for example, if
you deploy an entire J2EE application into a single process, with servlets
and JSPs calling EJB components in-process. However, the session fagade
could still be used for proper design considerations and to isolate your
deployment from any particular multitier configuration. If you're lazy, an
alternative is to use an entity bean’s home business methods, which are
instance-independent business methods that act effectively as stateless
session bean methods, except they are located on the entity bean.

m Note that what we’ve presented here are merely guidelines, not hard-and-
fast rules. Indeed, a session bean can contain data-related logic as well,
such as a session bean performing a bulk database read via JDBC. The key
is that session beans never embody permanent data, but merely provide
access to data.

Performance-Tuning Entity Beans

There is a great deal of fear, uncertainty, and doubt (FUD) in the industry
about entity beans. Many organizations are using them improperly, creating
performance issues. Here are some tips and tricks to make your entity beans
high performing:

m Entity beans should not be called directly from remote clients, but rather
from session or entity beans located in the same process. Because of this,
you should always call entity beans through their local interfaces, not
their remote interfaces.

m Use your container’s caching options as much as possible. If your beans
are read-only, instruct your container to keep them cached permanently. If
they are read-mostly or read-write, many containers have algorithms to
deal with this. Remember: Memory is cheap.

m Be sure your transactions run on the server, are as short as possible, and
encapsulate all of the entity bean operations you’d like to participate in
that transaction. This is important because the JDBC occurs at the begin-
ning and end of transactions. If you have a transaction occurring for each
entity bean get/set operation, you are performing SQL hits on each
method call. The best way to perform transactions with entity beans is to
wrap all your entity bean calls within a session bean method. Deploy both
the session and entity beans with the container-managed transaction
attribute of Required. This creates a transaction in the session bean that
encapsulates all entity beans in the same transaction.

EJB Best Practices and Performance Optimizations 401

m Consider having your container batch JDBC updates all at once at the end
of the transaction. That way;, if you perform many JDBC operations in a
single transaction, you only need one network call to the database.

m For performance, use container managed persistence, if possible. As con-
voluted as it may sound, container managed persistence can actually be
higher-performing than bean managed persistence, for reasons outlined in
Chapter 12. Just make sure that you're using a good persister that gives
you great flexibility when performing O/R mapping.

m [f you are not going to access your entire entity bean’s data on each trans-
action, lazy-load some of your fields rather than loading it all when the
entity bean is first accessed. You can lazy-load your fields programmati-
cally using BMP by fine-tuning your JDBC code, or you can lazy-load
your fields declaratively using CMP if your container tools support it.

m [f you're using CMP, instruct your container to persist fields in bulk. For
example, BEA Weblogic has the notion of field groups. This empowers
you to define groups of fields (even across relationships) that persist
together, reducing the amount of SQL required.

m [f you're using CMP, use your container tools to force the container to
have your finder methods automatically load your bean, rather than hav-
ing finders and loading happen separately, resulting in two SQL state-
ments. The only time you should not do this is if you're not going to read
data from your entity bean (for example, setting fields, but not getting
fields).

m Send output to a good logging/tracing system, such as a logging
message-driven bean. This allows you to understand the methods that
are causing bottlenecks, such as repeated loads or stores.

m Use a performance-profiling tool to identify bottlenecks, such as Opti-
mizelt or JProbe. If your program is hanging on the JDBC driver, chances
are the database is your bottleneck.

Performance-tuning your entity beans opens up the possibility to create fine-
grained entity beans that model a single row in the database, as well as coarse-
grained entity beans that model a complex set of data spanning multiple tables.

Choosing between Local Interfaces
and Remote Interfaces

Local interfaces, a new feature in EJB 2.0, allow you to access your EJB com-
ponents without incurring network traffic. They also allow you to pass

402 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

nonserializable parameters around, which is handy. So what is the value of a
remote interface? Well, there really isn’t a value, unless:

m You need to access your system remotely (say from a remote Web tier).

= You are trying to test EJB components individually and need to access
them from a standalone client to perform the testing.

= You need to allow your containers more choices for workload distribution
and failover in a clustered-server environment.

For optimal performance, we recommend that you build your system using all
local interfaces, and then have one or more session bean wrappers with remote
interfaces, exposing the system to remote clients.

Note that the problem with local and remote interfaces is that the code is
slightly different for each paradigm. Local interfaces have a different interface
name and do not use PortableRemoteObject.narrow(), and there are no Remote-
Exceptions thrown. Because of this, you need to recode your clients when
switching between the two paradigms. This is an unfortunate consequence of
having a programmatic approach to performance-tuning.

To limit the amount of recoding you’ll need to do, decide whether the clients
of your beans are going to be local or remote before you start coding. For exam-
ple, if you're building a Web-based system, decide whether your system will
be a complete J2EE application in a single process, or whether your Web tier
will be split off from your E]JB tier into a separate process. We discuss the trade-
offs of these approaches in Chapter 14.

As a final note, if you are connecting to your E]JB deployment from a very dis-
tant client (such as an applet or application that gets downloaded by remote
users), consider exposing your EJB system as an XML-based Web service,
rather than a remote interface. This will be slower than a straight RMI/IIOP
call, but is more appropriate for WAN clients.

How to Debug EJB Issues

As EJB is evolving quickly, the containers are evolving as well. The containers
or their tools often have small oddities. In addition, users may introduce bugs
that are difficult to debug. How do you debug with EJB?

Unfortunately, true debugging is a problem with EJB. Because your beans run
under the hood of a container, you’d have to load the container itself into a
debugger. But for some containers, this is impossible because you don’t have
access to the container’s source code, or the source code has been obfuscated.
For these situations, you may need to use the tried-and-true debugging
method of logging.

EJB Best Practices and Performance Optimizations 403

An even more serious debugging problem occurs if exceptions are being
thrown from the EJB container, rather than from your beans. This can happen
for a number of reasons:

Your EJB container’s generated classes are incorrect because your inter-
faces, classes, or deployment descriptor haven’t fully complied with the
EJB specification. Your EJB container’s tools should ship with compliance
checkers to help resolve this. But know that not everything can be checked.
Often because of user error, your deployment descriptor will not match
your interfaces. This type of problem is extremely difficult to target, espe-
cially if your container tools crash!

Your EJB container has a real bug. This is a definite possibility that you must
be prepared to encounter. In the future, however, this should not happen
very often because EJB containers that comply with J2EE must test their
implementations against Sun Microsystems’ robust test suite.

A user error occurs within the EJB container. Probably the most frustrating
part of an application is doing the database work. Punctuation errors or
misspellings are tough to debug when performing JDBC. This is because
your JDBC queries are not compiled—they are interpreted at runtime, so
you don’t get the nifty things like type checking that the Java language
gives you. You are basically at the mercy of the JDBC driver. It may or may
not give you useful feedback. For example, let’s say that you're modeling a
product, and you use the word desc rather than description to describe your
products. Unfortunately, the keyword desc is an SQL reserved keyword.
This means that your JDBC driver would throw an exception when trying
to execute any database updates that involved the word desc. These excep-
tions might be cryptic at best, depending on your JDBC driver. And when
you try to figure out what JDBC code is acting up, you will run into a road-
block: With container managed persistence, the JDBC code won't be avail-
able because your bean does not perform its own data access! What do you
do in this situation?

When you're faced with grim situations like this, contacting your E]JB vendor
is probably not going to be very helpful. If you are operating with a deadline,
it may be too late by the time your vendor comes up with a solution. If you
could only somehow get access to the JDBC code, you could try the query
yourself using the database’s tools.

You can try several options here:

m Some E]B containers support IDE debugging environments, allowing you
to step through your code in real time to pinpoint problems. This is some-
thing you should look for when choosing a container.

m Check your database’s logfile to view a snapshot of what is really happening.

404

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

m Use a JDBC driver wrapper that logs all SQL statements (one is available

from Provision6, Inc).

Your E]B container tools may have an option to keep generated Java files,
rather than to delete them when compiling them into classes. For exam-
ple, you can do this with BEA’s WebLogic with the keepgenerated option to
its EJB compiler tool. This is analogous to how you can use the keepgener-
ated option to keep generated proxies with Java RMI’s rmic compiler.

As a last resort, you may have to decompile the offending classes to see
what’s going on. A good decompiler is Jad by Pavel Kouznetsov (see the
book’s accompanying Web site for a link). Of course, decompiling may be
illegal, depending on your container’s license agreement.

Partitioning Your Resources

When programming with EJB, we’ve found it very handy to separate the kinds
of resources your beans use into two categories: bean-specific resources and bean-
independent resources.

Bean-specific resources are resources your bean uses that are tied to a spe-

cific data instance in an underlying storage. For example, a socket connec-
tion is a bean-specific resource if that socket is used only when particular
bank account data is loaded. That is, the socket is used only when your
bean instance is bound to a particular EJB object. Such a resource should be
acquired when a bean instance is created in ejbCreate() or when activated in
ejbActivate() and released when the instance is removed in ejbRemove() or
passivated in ejbPassivate().

Bean-independent resources are resources that can be used over and over

again, no matter what underlying data your instance represents. For exam-
ple, a socket connection is a bean-independent resource if your bean can
reuse that socket no matter what bank account your bean represents (that
is, no matter what EJB object your bean instance is assigned to). Global
resources like these should be acquired when your bean is first created,
and they can be used across the board as your bean is assigned to different
EJB objects. When the container first instantiates your bean, it associates
you with a context object (such as the setEntityContext() method); then you
should acquire your bean-independent resources. Similarly, when you are
disassociated with a context object (such as the unsetEntityContext()
method), you should release bean-independent resources.

Because acquiring and releasing resources may be costly operations, catego-
rizing your resources as outlined is a vital step. Of course, the most stingy way

EJB Best Practices and Performance Optimizations 405

to handle resources is to acquire them on a just-in-time basis and release them
directly after use. For example, you could acquire a database connection only
when you're about to use it and release it when you're done. Then there would
be no resources to acquire/release during activation/passivation. In this case,
you’d let the container pool your resources and thus manage the resources for
you. The disadvantage is you need to code resource requests/releases over
and over again in your bean code.

Assembling Components

The E]B paradigm enables corporations to assemble applications from existing
prewritten components that solve most of the business problem already. As
good as this sounds, assembling applications from disparate components is
not all roses. The problem with assembling heterogeneous components is get-
ting them all to work together. For example, let’s say you purchase a bean that
computes prices, and you combine it with some home-grown entity beans,
such as an order bean and a product bean. Let’s assume we also use a billing
component from a different vendor. How do you get these components to
work together? None were created with the knowledge of the others.

There is no easy answer to this problem. EJB defines standard interfaces for
components to be deployable in any container, but EJB cannot specify how
domain-specific components interact. For example, EJB cannot specify the de
facto bean to represent a product or an order because each corporation models
these differently in its existing information systems.

Unfortunately, you're always going to need to write some workflow compo-
nent that maps to each vendor’s proprietary API and object model. The only
way you can get around mapping to APIs is if a standards committee decides
on an official object model for a problem domain, such as standardizing what
a purchase order looks like. Problem domains such as pricing are open and
customizable, which makes this a large challenge.

A second problem with having these components work together is data map-
ping. How does the billing component understand the data computed by the
pricing component? Sure, you might be able to call the billing component’s
API, but it won’t magically know how to deal with the data passed to it. The
data was formatted by another vendor’s component. You're going to need to
write an adapter object that bridges the gap between the two formats. If you
purchase components from n vendors, you're going to spend all your time
writing adapter code. This is quite mindless and boring, although it is often
better than writing your own business logic that you'll have to create, main-
tain, and test.

406 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

The final issue that must be overcome to get components to work together is
that every participant component must agree on a standard representation, or
schema, for exchanged data. This is a trivial problem when a single vendor
writes the components, because that vendor can simply invent a data schema
and include it with its components. This becomes a monstrous problem,
though, when integrating heterogeneous vendors” components.

We therefore recommend that organizations purchase either small, fine-
grained horizontal components that will work anywhere (like a logging ser-
vice), or large, coarse-grained components that all come from a single vendor
(like a sales force automation suite of components). We do not recommend try-
ing to mix and match medium-to-large-sized component groups that make
different data schema assumptions.

Developing Components to Be Reusable

Our next best-practice addresses the challenge of developing reusable compo-
nents. This may be important, for example, if you're developing beans to be
reused by other departments within your organization.

First, let’s do a reality check. Don’t believe anyone who tells you that enter-
prise beans are reusable by definition—because that is false. You need to design
your beans correctly if you want them to be reusable. You need to consider the
different applications, domains, and users of your enterprise beans, and you
need to develop your beans with as much flexibility as possible. Developing a
truly reusable set of beans will likely require many iterations of feedback from
customers using your beans in real-world situations.

Roughly speaking, bean reusability can fall into three different levels:

Reuse as given. The application assembler uses the acquired bean as it is to
build an application. The bean functionality cannot be tailored to fit the
application. Most projects will have a difficult time reusing these compo-
nents because of their inflexibility.

Reuse by customization. The application assembler configures the acquired
bean by modifying the bean properties to fit the specific needs of the appli-
cation. Bean customization typically occurs during development time. To
allow for a more flexible maintenance environment, some bean providers
allow runtime bean customization.

Reuse by extension (subclass). The application assembler creates custom
application-specific beans by subclassing the prebuilt acquired beans. The
behavior of the resulting bean is tailored for the application. This level of

v

EJB Best Practices and Performance Optimizations 407

reusability is generally more powerful but difficult to achieve. Reuse by
extension is made available by only a few bean providers.

The more reusability levels that a bean provides, the more useful a bean is. By
leveraging prebuilt beans, organizations can potentially lower the develop-
ment time of building enterprise applications.

Many organizations have tried—and failed—at truly reusing components. Because of
this, it is a perfectly valid strategy to not attempt true reuse at all. Rather, you can
shoot for a copy-and-paste reuse strategy, which means to make the source code for
components available in a registry to other team members or other teams. They can
take your components and change them as necessary to fit their business problem.
While this may not be true reuse, it still offers many benefits. Another approach to
reuse is to divide up your applications into Web services that call one another. The
Middleware Company offers a service to help organizations rearchitect their applica-
tions in this manner.

When to Use XML in an EJB System

XML is a popular buzzword these days, and so we should discuss the appro-
priateness of XML in an EJB deployment.

XML is useful in the following scenarios:

m As an interface to legacy systems. If you have a large number of legacy
systems, or even if you have one big hairy legacy system, you'll need a
way to view the data that you send and receive from the legacy system.
XML can help you. Rather than sending and receiving data in proprietary
structures that the legacy system might understand, you can invent an
XML fagade to the legacy systems. The facade takes XML input from your
EJB components and maps that XML to the proprietary structures that the
legacy system supports. When the legacy system returns data to your EJB
application, the XML facade transforms the legacy data into XML data
that your EJB application can understand. This is also useful for business
analysts involved with a J2EE application. They can help perform the data
mapping by working with XML, a technology that’s fairly simple to
understand.

m As a document persistence mechanism. If you are persisting large docu-

ments (news reports, articles, books, and so on), representing those docu-
ments using XML may be appropriate.

m As a Web service interface. As described in Chapter 1, EJB components
can also be wrapped as a Web service. XML then becomes the on-the-wire

408 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

data format sent between Web services. We have a free whitepaper on
how to build a J2EE-based Web service, as well as how to call another Web
service from a J2EE system, available on www.TheServerSide.com.

The one important scenario that XML is not useful for is as an on-the-wire for-
mat for communication between EJB components.

The idea is that rather than application components sending proprietary data
to each other, components could interoperate by passing XML documents as
parameters. Because the data is formatted in XML, each component could
inspect the XML document to determine what data it received.

Although several J2EE-based workflow solutions use this approach, XML is
often inappropriate for EJB-EJB communications because of performance.
Parsing XML documents takes time, and sending XML documents over the
wire takes even longer. For high-performance enterprise applications, using
XML at runtime for routine operations is costly. The performance barrier is
slowly becoming less important, however, as XML parsers become higher per-
forming and as people begin to use text compression to send XML documents
over the wire. However, it is still the bottleneck in many systems.

Another important reason not to use XML is because it’s often simply not
needed. Assuming that a single organization writes all your EJB components,
there is less need for data mapping between disparate systems, since you con-
trol the object model.

Legacy Integration with EJB

Most large-scale EJB/J2EE deployments involve one or more existing systems.
Devising a strategy for dealing with these legacy systems is critical. You have
two basic choices:

Rewrite that existing system using EJBs. This option is the cleanest solution
but requires the most effort. It may, however, be infeasible. Legacy systems
tend to be complex. Developers who understand the legacy system may be
difficult to find, and the time-to-market needs of the organization may not
permit a rewrite. Finally, the performance of existing systems that use
native code may not be acceptable in the Java world.

Bridge into that existing system. The if it ain’t broke, don't fix it rule dictates
that this is the most straightforward solution. However, you will need to
maintain the bridged solution, which uses two different technologies.

If you decide to bridge into existing systems, we recommend wrapping your
legacy system with an EJB layer rather than accessing it directly (from a servlet

EJB Best Practices and Performance Optimizations 409

or JSP), because this abstraction layer will enable you to replace the legacy sys-
tem in the future, if you so desire. The E]B layer could be session beans, entity
beans, message-driven beans, or all three. The choice of which EJB compo-
nents to use depends on the nature of your existing system.

If your existing system is highly data-oriented, entity beans are a good
choice. The entity beans would represent the legacy system data as Java
objects. Note, however, that the data must be able to be represented in an
object-oriented way for this to work; otherwise you should consider using
session beans.

If your existing system is highly process-oriented, session beans are a good
choice. The session beans then serve as a fagade to your existing business
process engines.

If your existing system uses message-oriented middleware as its interface,
message-driven beans are a good choice. You can send messages to the
existing system using a session bean or message-driven bean. Then a mes-
sage-driven bean can receive messages from the existing system.

The next challenge is how to actually achieve the bridge to the existing system.
That is, what is happening inside the EJB layer that talks to the existing sys-
tem? Again, you have several choices.

Proprietary bridges. You can buy an off-the-shelf bridge that connects to a
specific legacy system, perhaps an EJB-COM bridge or a container-
provided API. The disadvantage of these proprietary bridges is a loss of
portability, since there is no guarantee this code will run in other J2EE-
compliant servers.

The Java Native Interface (JNI). JNI enables you to bridge into native code,
such as C++ code. The advantage of the JNI is that it’s faster than the
other approaches. The disadvantages are that it can’t connect to any sys-
tem (just native code), the existing system needs to run-in process, and JNI
is platform-specific—so if your code needs to run on multiple platforms
you're multiplying the testing and maintenance effort.

The Common Object Request Broker Architecture (CORBA). CORBA is an
older middleware technology that competes with E]B (since it has its own
component architecture) and also underlies EJB (since some J2EE servers
are old CORBA products wearing a new hat). The big difference between
CORBA and E]JB/]J2EE is that CORBA is language-neutral, while EJB/J2EE
is specialized to Java. While CORBA has this advantage over EJB/J2EE, it
has very little industry momentum behind it and is more appropriate as a
technology for performing integration with existing systems. You can
bridge into code written in almost any language by calling that legacy

410 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

system via CORBA APIs from within your EJB layer. This is highly appro-
priate for existing systems that are already CORBA-based. The disadvan-
tages of CORBA integration is that it requires an out-of-process remote call
which slows performance, and it also requires that you learn a whole new
technology if you don’t know CORBA already:.

Java Message Service (JMS). JMS (along with message-driven beans) enables
you to bridge to existing systems using message-oriented middleware. You
send messages to existing systems rather than invoking them directly
through API calls. This is a bit slower, but also is a loosely coupled para-
digm that enables you to build complex messaging workflows. JMS is
highly appropriate if your existing system already uses messaging.

Web services. Web services (essentially XML /HTTP) is an attractive
approach to integrating to existing systems. You'd use XML to represent
the data sent to existing systems, and HTTP is your transport, which
allows you to navigate firewalls easily. This is a nonintrusive approach
because any system that is Internet-enabled can use Web services without
need of a whole separate communications infrastructure such as CORBA
or JMS. The disadvantage of Web services is that the XML parsing over-
head may slow you down. See www.TheServerSide.com for a J2EE Web
services whitepaper.

The J2EE Connector Architecture (JCA). The JCA is a specification that
enables you to acquire drivers that connect with existing systems and plug
them into your J2EE server to connect to a legacy system. You can connect
to any existing system for which drivers exist, and if no driver exists (such
as a proprietary internal system you’ve built in-house), you can write your
own driver. A marketplace of JCA-compliant resource adapters is evolving,
which is analogous to JDBC drivers connecting to relational databases.
Examples include CICS, TUXEDO, MVS/VSAM, SAP R/3, PeopleSoft, and
more. This makes the JCA one of the most exciting specifications in J2EE.
See http:/ /java.sun.com/j2ee/connector for more on the JCA.

Each of these approaches has benefits and drawbacks. You need to decide

which approach is right for your business problem. For more help on legacy
integration, see Chapter 12.

Summary

In this chapter, we reviewed a series of best practices when working on an EJB
project. We hope that you refer back to these design strategies when you begin
to work with EJB—after all, an ounce of prevention is worth a pound of cure.

Clustering

many of the challenges faced by large, high-capacity systems. This chapter
also explores many issues relating to EJB and large systems. It is designed to
provide you with the broadest possible understanding of the issues as well as
solutions that exist to address these issues.

In this chapter, we’ll talk about clustering technology, which exists to address

Specifically, we'll cover the following topics:

m Approaches and characteristics of large-scale systems with J2EE applica-
tion servers

m Approaches that can be employed to instrument clustered E]Bs
m Jssues related to designing clustered EJB systems

m [ssues that impact EJB performance in a clustered system

Overview of Large-Scale Systems

The number of systems being developed is rapidly increasing year after year.
Some of these systems are small, targeted at a specific, well-defined user group
that is understood when development of the system begins. Other systems are
large, targeted at a diverse, massive user group that evolves over time. Given
the variety of systems that can be designed, what makes a system large scale?
And, more importantly, how can EJB technology operate in a large-scale
system?

411

412 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

This section discusses some of the principles behind large systems and defines
terminology that will be used throughout the chapter. This section also pro-
vides some background and history of theories applicable to large-scale sys-
tems in the past.

What Is a Large-Scale System?

Unfortunately, there is no complete computer science definition of a large-
scale system. Since requirements for systems vary wildly, what may be con-
sidered large for one project is insignificant for another project.

For the purposes of this book, we will define an application server large-scale
system as one that requires the use of more than one application server that
typically operates in a cluster. A cluster is a loosely coupled group of servers
that provide unified services to their clients. Clients that use services deployed
into a cluster typically are not aware that their requests are being serviced by a
cluster and typically do not have any control over deciding which servers in
the cluster process their requests. Servers that operate in a cluster may operate
on one or more computers, each of which may have one or more processors.

In comparison, a system that employs multiple databases, firewalls, or Web
servers but uses only a single application server would not be considered a
large-scale system by this definition. This narrowness of the definition is key.

design their system with only small-scale characteristics in mind. For example, we
have seen organizations take advantage of threading (which is restricted in EJB), not
considering the long-term impact of such a decision when building it out to be large
scale.

? Many organizations fail to estimate the load that their systems will require and so

Because of this, we recommend you always assume the worst: that you will need a
large-scale system eventually. This way, you always have a path to follow if your user
load increases, due to future business forces that are out of your control.

Large-scale systems can be characterized by the following three properties
(collectively called RAS):

Reliability gauges whether the system performs at a constant level as the
stresses on that system change. Reliability is not the same as performance.
For example, if the simplest request takes 10 ms to complete with one user,
the system is reliable if the same request takes 10 ms with 1,000,000 concur-
rent users. The measure of reliability can take many different forms: It can
be as broad as supporting a certain number of registered users, or as spe-
cific as requiring the round trip time for a single method invocation to be
within a discrete range. The most reliable system is one in which a request

. Clustering BV

can be entirely handled in a single process. Every time a request has to
make an interprocess hop, as when a proxy forwards a request to a node in
a cluster, the reliability of the system is reduced. For every component
added to a system, the number of scenarios that can cause a disruption in
reliable service increases and thus decreases the reliability of the overall
system. Depending upon the type of architecture employed, a cluster may
improve or reduce reliability.

Availability measures the percentage of time that your system is available
for use by its clients. A measurement of availability is not related to the
effectiveness of servicing those requests; rather, it focuses on whether or
not the services are accessible. A system may be unavailable for a variety of
reasons, such as network blockage, network latency, or total system failure.
The principle of availability states that if the probability of a single applica-
tion server being available is 1/m, the probability an application server
will be unavailable is 1-1/m. If there are n application servers in a cluster,
the probability of the system being unavailable is (1-1/m)". The value of
(1-1/m)" decreases as n increases, implying that a cluster will always be
more available than a single server.

Serviceability measures how manageable your system is. System manage-
ment occurs at a variety of levels, including runtime monitoring, configu-
ration, maintenance, upgrades, etc. The principle of serviceability states
that two application servers are more complex to service than a single
application server. This implies that a cluster is inherently more difficult to
service than a nonclustered system.

The takeaway point is that increasing the reliability of a system impacts its avail-
ability and serviceability. A similar arqument can be made for attempting to improve
the availability or serviceability of a system. It is important to appreciate that there
is no such thing as a perfect system. Any system that has a high level of avail-
ability will likely not have a high level of reliability and serviceability.

Basic Terminology

When working on large-scale projects, engineers and developers tend to freely
use a variety of terms in relation to clusters and large-scale system without
fully understanding the meaning of those terms. Here are definitions for terms
used in this chapter:

A cluster is a loosely coupled group of servers that provide a unified, simple
view of the services that they offer individually. Servers in a cluster may or
may not communicate with one another. Generally, the overall goal of
employing a cluster is to increase the availability or reliability of the
system.

414

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

A node is a single server in the cluster.

Load balancing distributes the requests among cluster nodes to optimize the
performance of the whole system. A load-balancing algorithm can be sys-
tematic or random.

A highly available system can process requests even if the initial node desig-
nated to handle the request is unavailable.

Fail-over redirects a single request to another node in the cluster because the
original node could not process the request.

Request-level fail-over occurs when a packet that is directed to a node for
servicing cannot be serviced by that node and is subsequently redirected to
another node.

Transparent or automatic session fail-over occurs at the invocation level
when a current executing invocation fails and is transparently rerouted to
another server to complete execution.

Single access point simplicity is the idea that clients generate requests to the
cluster rather than individual nodes of the cluster. The requests are trans-
parently directed to a node in the cluster that can handle the request. The
client’s view of the cluster is a single, simple system, not a group of collab-
orating servers.

Transactions per second (TPS) measures the number of transactions exe-
cuted by a system in a second. A single request can cause zero, one, or
more transactions to occur. TPS is a measure of how well the system’s
transaction management performs and is commonly used to compare the
performance of different systems or algorithms.

Requests per second (RPS) measures how many requests can be processed
and responded to in a second. In a typical system, a number of threads are
responsible for processing messages arriving into the system and placing
those messages into a processing queue. A separate pool of threads is respon-
sible for taking messages off of the processing queue and actually execut-
ing the appropriate service. RPS is a measure of how many messages can
be serviced off of the processing queue in a second.

Arrivals per second (APS) measures how many incoming messages from
clients can be taken from a connection and placed onto a processing queue
in a second.

Throughput measures how many requests can be fully serviced in a given
time period. This measure includes the processing of arrivals and the han-
dling of requests. If the throughput of a system is high, the system is capa-
ble of processing many requests in a given amount of time.

. clustering §ii

Invocations per second (IPS) measures how many component invocations
can be made in a second. IPS usually applies to the number of EJB invoca-
tions that can be made in a second.

Partitioning Your Clusters

Now that we’ve gotten the definitions out of the way, let’s look at the different
choices you have for how to cluster a J2EE system.

Most modern J2EE servers contain both a Web server and application server.
This means that in a Web-based system, the following cluster configurations
are possible:

A 3-tier architecture runs the Web server components (servlets and JSPs) and
application server components (EJBs) in the same process.

A 4-tier architecture separates the Web server components and application
server components into separate processes.

The differences between the two architectures are shown visually in Fig-
ure 14.1.

browser. This doesn’t matter for our discussion. All that matters is that you under-

? Some may not consider the browser to be a separate tier, since no logic runs in the
stand the difference between the top picture and the bottom picture.

3-tier
Web Server and Application Server
Browser
Web Server and Application Server
Database
Application
Browser Web Server Server
4-tier Database

Figure 14.1 3-tier versus 4-tier.

416

v

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

The 3-tier versus 4-tier debate is important because you typically have a fixed
budget for your deployment. For example, let’s say that we have enough
money to buy two machines. We can run a cluster of combined]J2EE servers, or
we can have a dedicated Web server box and a dedicated application server
box. Either way, our budget is fixed, and we can buy two machines.

This debate is scalable to any size project. If you have a larger budget, you can
expand and have either n combined J2EE servers, or you can have n/2 Web
servers and n/2 application servers.

The pros and cons of 3-tier versus 4-tier are listed in Table 14.1.

Our favorite is the 3-tier approach. The arguments for 4-tier tend to be weaker
in most circumstances. For example:

Static data. The fact that static data can be served faster in 4-tier is not impor-
tant in many scenarios. Most companies will actually have a separate Web
server box just for static data. This can be harnessed in both 3-tier and
4-tier. That static Web page server could also make use of a Storage Area
Network (SAN), a network of hard drives to increase throughput.

Security. The fact that you can have a firewall in 4-tier systems (between the
Web servers and application servers) doesn’t buy you a whole lot. After all,
if you expose your EJB components, how many hackers are going to know
how to perform a JNDI lookup of your EJB components and call them?
Furthermore, you can still secure your 3-tier system by putting a firewall in
front of your entire J2EE server cluster.

A common argument in favor of 4-tier is that the presentation and business logic
tiers can be scaled separately. Additional nodes can be added to the presentation
cluster without adding additional nodes to the back-end cluster and vice versa. This
is a flawed argument, because there is no value in being able to scale each tier sepa-
rately. Remember, we have a fixed budget and can buy only so many machines.
We're going to have X machines whether we choose 3-tier or 4-tier. Those machines’
hardware resources will be used more efficiently in 3-tier than 4-tier, for reasons
listed in Table 14.1.

Instrumenting Clustered EJBs

Although the exact algorithm that your J2EE server uses is proprietary, most
application servers have similar approaches to clustering. Let’s look at the pos-
sible options that application server vendors have for clustering EJBs of all
types. We’ll then look at the specifics of clustering stateless session, stateful
session, entity, and message-driven beans.

417

sanunuod

‘aw J1an0 a3ueyd Aew sdnsuapeIRYD

peoj 1noA pue ‘jewndo Apoexa aq jou Aews siy|
‘sysey Jan19s uonedijdde 0} 910Asp 03 saulydew Auew
AOY pUB ‘s)Se] I9AI9S q3j\\ 0} SJ0ASP 0} Saulydew

JETINS Auew moy suiwialapaid o} pasu nNoA asnedxaq ‘Mo

‘Apuediiusis
umop s3uly} smojs sianes uonedijdde pue

JETIN S SI9NISS oA\ U93MIDQ UONEIIUNWWOD SS320idIaju|

‘peayiano Suljeysiew alow
sueaw YdIYyM ‘sadeyiajul sjowal g Suiwioyiad

BRI-¢ -MoO| 3Y} [|ed Isnw sjusuodwiod IS GIAN dYL

‘s191} Y}
U99/MJ9Q UOIIIBUUOD YIOMIBU B OS|e SI 19y] "11sn|d
1anas uonediidde ayy ueyy Apualayip paulejuiew

1°N-¢ 94 jsnui 1ajsn|d 1aAISS ga/\\ 8y} asnedsq ‘Mo

1913-¢ 0}

paiedwod 1213 uanI3 e ul Jano-|ie} 1o} apinoid ued jey)
saulyoew Auew se Jjey aie 219y} asnedsq Jen-¢

BRI-¢ uey} Jamo| Inq ‘||e 3e 1isnp ou ueyy 1BY3IH
"Jsanbai aj3uis e uo yeaiq

ued s3uly} a1ow suesw Yaiym ‘ysanbai oj3uis

2 U)M PSAJOAUI SSUILDBL 910W pUB SUOIP|UU0d
>H0M]SU S10W ik dJ3Y] "SI9AISs uofedldde

pue SI9AI3S I/ USSMIDG UOIRIIUNWIWOD
ssad01d19ul SI 919y} 9snedaq ‘Mo

181-g
(UANNIM

‘(sysey Janas

uonedijdde Jo syse} 19nI9S gaN)
Q] JUSLIND 3y} B JOj papasu

s) asodind 1ans1eyM 10} pasn

3q ||Im JBAISS J3Z[B 9snedaq ‘YSIH

's1anI9s uofedijdde

pue SIaMISS gaj\\ 3y} UdaMIq
9SI9ARI} 0} S}9HP0S OU Ssueaw
uopedIUNWWOod ssadoidiajul oN

"saoeIUI
[e20] gr3 Suiwiopad-ySiy [jed
ued spusuodwiod JaAISs gapn YL

"YHA J3Y10q 0} SI9AISS gaj\\ BY}
U99/MI9Q UOIPPBUUOD YI0MIBU
ou si 219y} pue ‘(A1 dwis

jo 9a13ap 19y8iy) [ed13uapI

s1 xoq Yoea asnedaq ‘YSiH

"suiyoew Jsyjo Aue o0y Jano-jiey
ued auiyoew Aue asnesaq ‘Y3iH

'ssad0.d a[3uis e ui si Suiyyhiang
"uonedIUNWWOD ssadoidiajul
ou si a1y} asnesaq ‘yYSiH

131]-f SNSIa)\ I91]-¢

alempiey jo
asn juanIy3

Aouaniyye
10BN

pasn sadej=qu|

Ajiqesdinies

Aunqereny

Ajiqerjey
EEICET]

L'v1 3jqelL

418

“10)2311p [BD0| B 3)|I| Jadue|eq-peo| aiempley
e 1o ‘xoq xnur] deayd e uo Suiuuni 19duejeq-peo|

21eMmyjos e apnpul sajdwex *s4a2.4as gap) dY3 O Juol}

|enb3 u1 xoq Supuejeqg-peo| djeledss e dn }9S 0} paau NOA

“JuswuolIAud [eaiijod e ul a1,noA Ji Jeaid si
YaIym ‘Yyonul se JSY3o Yoea Yy a1apaul 3, uop Ayl
JETIE "S9X0q JURIAYIp dSh wea) g3 pue wea} gajA Yl

‘Aepoy dn si ays

3y} pue syiom a8edawoy sy} ey} 2INS 10} MOUY|

Asy3 aouo ‘a31s g9\ InoA ui sysanbai Jusnbasqgns 10y

133uo| yem o3 Suljjim ase ajdoad 3soyy ‘JusUOD dije)S
Ajuewnd s1e sa8edswoy 3sow asnedaq juepoduwl

SI SIY] "P1eDIPap I SISAISS g3/ Y} 9snedaq

Appinb dn panias aq ued (sa8ew pue N LH Se yons)

SETIE e)EPp d13R)S ‘papeo|Iano ale s1dAs uonedijdde ays

‘||e 3e asuodsal ou uey} Ja119q st Ydiym ‘98ed umop

ays e Aejdsip uay) ued noA “dn aq [|is |[IM SI9AISS

ga/\ 3y3 ‘s1anias uonedijdde ayy ul (Jous sswweidoird

JETI R 03 anp sdeyiad) ainjiej SpIM-191sN|d e SI 1B} §|

‘pliom
2y} o} pasodxa aie sjusuodwod gr3 InoA ‘a10je18y]
"ssa001d-ul a1e A3y} asnedaq ‘1anias uonedidde pue

B I9AISS gaAN INOA USR] [|leMally B 9oe]d Jouued NOA

R ELLT

*I0}231Ip |BD0| B 3YI| J19dUR|R]-PRO|
alempiey e 1o ‘xoq xnur] deayd e
uo uiuuni Jaduejeq-peo| 21eAM}Y0S
e apnpui sajdwex] 'ssa19s

332 943 jo juoly ul xoq Supueleq
-peoj ajeiedss e dn 39S 0} pasu NOA

‘JuswuolIAuR |ednjod

e ul 31,n0A §i spIjuod diysisumo
ueaw p|nod YdIYMm ‘saxoq swes ay}
asn wea} g3 pue wea) g9\ YL

‘s1a/as uonedijdde ay; yum
$921n0sa1 diempiey 10} Sunadwod
2le SI9NI9S g3\ Sy} 9snedaq Ajwmols
dn panas ase (sadew pue TN1H
Se |dns) ejep d13e)s ‘papeojisno
ale s1anI1Rs uonedijdde ay3 §i

"UMOP SI SIS BIIIUS dY} ‘SIDNIDS
ga 1o s1anes uonedijdde ay3 ui
(1ou13 sowwei8oid o3 anp sdeyiad)
ain|ie) SpIM-19]SN| SI 3IBY} J|

"SI9NISS RN\
9y} :19uld1u| 3y} 0} asodxa 0} pasu
noA yeym Ajuo Suisodxs ‘sianias
uonedidde pue sion13s gan By
usaM)aq |[emaily e doe|d ued noj

(panunuod) 1811-1 snsiaA 1B11-¢

Supuejeqg-peor

diysisumQ
[eanijod

syusuodwod
43 SAJ0AUl JoU
op 1eys sisanbai
gamn ajdwis

10 ‘ejep oneis
yoInb Buinies

98ed

umop ays

Aunoas
ANLYI

L'v1 3jqel

. clustering QT

How EJBs Can Be Clustered

There are many locations that vendors can provide clustering logic (such as
load-balancing or fail-over logic):

JNDI driver. A vendor could perform load-balancing logic in the JNDI driver
(the InitialContext) that is used to locate home objects. The JNDI driver
could spread traffic across numerous machines.

Container. A vendor could provide clustering logic directly within the con-
tainer. The containers would communicate with one another behind the
scenes using an interserver communication protocol. This protocol could
be used to perform clustering operations. For example, if a ShoppingCart
stateful session bean container has filled up its cache and is constantly acti-
vating and passivating E]JBs to and from secondary storage, it might be
advantageous for the container to send all create(. . .) invocations to
another container in a different server that hasn’t reached its cache limit.
When the container’s burden has been reduced, it can continue servicing
new requests.

Home stub. This object is the first object accessed by remote clients and runs
locally on a client’s virtual machine. Since stub code is autogenerated by a
vendor, the underlying logic in a stub can be vendor-specific. Vendors can
instrument method-level load balancing and fail-over schemes directly in a
stub. Every create(. . .), find(. . .), and home method invocation can have its
request load balanced to a different server in the cluster; it doesn’t matter
which machine handles each request.

Remote Stub. This object is the client’s proxy representing a specific enter-
prise bean instance. It can perform the same types of load balancing and
fail-over as a home stub, but vendors have to be careful about when they
choose to do so. Remote stubs must load balance and fail-over requests to
instances that can properly handle the request without disrupting the system.

through a utility, such as a vendor-specific EJB compiler. This isn’t the only option,
however. Some application servers can use interception technology such as the JDK
1.3 Proxy class to automatically generate remote home and remote stub logic dy-
namically at runtime. The JBoss application server is an example of a server that has
an EJB container using this approach.

? The most common scenario is for stubs to be generated at development time

Whether or not an application server uses interception technology or creates custom
classes for the stubs and skeletons does not alter the places where cluster-based
logic can be inserted. In the following discussions, we continue to reference home
stubs, remote stubs, or containers irrespective of how or when these pieces are
generated.

420 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

The different options that are available to developers and vendors provide a
vast array of configurations with which clusterable EJB may be instrumented.
By now, you must be thinking, “How do I know what to use, when and
where?” The answer lies within the capabilities of any single application
server. The rest of this chapter discusses the various issues that application-
server vendors face when attempting to provide a clusterable infrastructure
for stateless session, stateful session, entity, and message-driven EJBs.

local interfaces do not spread traffic across the network. Parameters must be mar-
shaled by-reference rather than by-value (serialization). If there is no network be-
tween the local client and the bean, it does not make sense for a vendor to
implement clustering logic for local interfaces. Thus, our discussion applies only to
remote clients.

? Load-balancing and fail-over logic doesn’t exist for local interfaces. Remember that

The Concept of Idempotence

An idempotent (pronounced i-dim-po-tent, not i-dimp-uh-tent) method is one
that can be called repeatedly with the same arguments and achieve the same
results.

An idempotent method in a distributed system doesn’t impact the state of the
system. It can be called repeatedly without worry of altering the system so that
it becomes unusable or provides errant results. Generally any methods that
alter a persistent store are not idempotent since two invocations of the same
method will alter the persistent store twice. For example, if a sequencer is
stored in a database and m1() increments the sequencer, two calls to m1() will
leave the sequencer at a different value than if m1() was invoked a single time.
An idempotent method leaves the value in the persistent store the same no
matter how many invocations of m1() occur.

Remote clients that witness a failure situation of a server-side service are faced
with a perplexing problem: Exactly how far did the request make it before the
system failed? A failed request could have occurred at one of three points:

m After the request has been initiated, but before the method invocation on
the server has begun to execute. Fail-over of the request to another server
should always occur in this scenario.

m After the method invocation on the server has begun to execute, but
before the method has completed. Fail-over of the request to another
server should only occur if the method is idempotent.

m After the method invocation on the server has completed, but before the
response has been successfully transmitted to the remote client. Fail-over

. Clustering Q7

v

of the request to another server should only occur if the method is
idempotent.

Why is this important? A remote stub that witnesses a server failure never
knows which of the three points of execution the request was in when the fail-
ure occurred. Even though failures of requests that haven’t even begun
method execution should always fail-over, a client can never determine when
a failed request is in this category.

Thus, remote stubs can only automatically fail-over requests that were sent to
methods flagged as idempotent. In comparison, fail-over of nonidempotent
methods must occur programmatically by the client that originated the
request. If your EJB server vendor is a major player, it will likely give you the
ability to mark an EJB component’s method as idempotent or nonidempotent
using proprietary container descriptors.

You might think that all methods that are marked to require a new transaction are
idempotent. After all, if failure happens, the transaction will roll back, and all trans-
actional state changes (such as transactional JDBC operations) will be undone. So
why can’t the stub fail-over to another bean to retry the operation?

The answer is that container-managed transactions have an inherent flaw, which we
first discussed in Chapter 10. What if the transaction commits on the server, and the
network crashes on the return trip to the stub? The stub would then not know
whether the server’s transaction succeeded or not and would not be able to fail-over.

Stateless Session Bean Clustering

Now, let’s take a look at how we can cluster each type of EJB component. We
begin with stateless session beans.

Load Balancing

All Java object instances of a stateless session bean class are considered identi-
cal. There is no way to tell them apart, since they do not hold state. Therefore
all method invocations on the remote home stub and remote stub can be load
balanced. Some EJB servers also give you flexibility here, and allow you to pin
stubs so that they direct requests to a single server only. Some vendors even
allow you to configure subsets of methods on a single stub to be pinned or
load balanced. This flexibility in load balancing stateless session bean
instances is what drives the perception that stateless session EJBs are the most
scalable types of synchronous EJB components.

422

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Fail-Over

For stateless session beans, automatic fail-over on remote home stubs can always
occur. Recall that stateless session bean home stubs have only one method,
which is an empty create() method. This corresponds to the bean’s ejbCreate()
method. But your container does not call ejbCreate() when the client calls
home.create()—the container can call ejbCreate() whenever it feels like kicking
beans into the pool, as we saw in Chapter 4. Therefore, your ejbCreate() meth-
ods should not modify your system’s state and should be coded as idempotent.

Automatic fail-over on remote stubs can only occur if the called method is idem-
potent. If your method is nonidempotent, or if your vendor does not support
automatic fail-over, you might be able to manually fail-over by writing code to
retry the method. You need to be careful, however, and factor business rules
and other logic into the decision as to whether a fail-over request should be
made.

For example, the following pseudo-code manually fails-over any method
invocation that is not automatically done so by the remote home or remote
stub.

InitialContext ctx = null;
SomeHomeStub home = null;
SomeRemoteStub remote = null;

try {
ctx = ...;

home = ctx.lookup(...);

// Loop until create() completes successfully

boolean createSuccessful = false;
while (createSuccessful == false) {
try {

remote = home.create() ;

} catch (CreateException ce) {
// Handle create exception here.
// If fail over should occur, call continue;
continue;

} catch (RemoteException re) {
// Handle system exception here.
// If fail over should occur, call continue;

} catch (Exception e) {
// Home stub failure condition detected.
// If fail over should occur, call continue;

. Clustering JiF¥

continue;

// I1f processing gets here, then no failure condition detected.
createSuccessful = true;

boolean answerIsFound = false;
while (answerIsFound == false) ({

try {
remote.method(...);

} catch (ApplicationException ae) {
// Handle application exception here.
// If fail over should occur, call continue.

} catch (RemoteException re) {
// Handle server-side exception here.
// If fail over should occur, call continue.

} catch (Exception e) {
// Failure condition detected.
// If fail over should occur, call continue.

continue;

// If processing gets here, then no failure condition detected.
answerIsFound = true;

} // while
} catch (Exception e) {}

If we wanted it to do so, our EJB component could also assist with this fail-
over decision by checking the system state before continuing.

Stateful Session Bean Clustering

Stateful session beans are clustered a bit differently than their stateless cousins.
The major EJB server vendors support replication of state. It works like this.
When a stateful session bean is created, the state must be copied to another
machine. The backup copy isn’t used unless the primary fails. The bean is rou-
tinely synchronized with its backup to ensure that both locations are current.
If the container ever has a system failure and loses the primary bean instance,
the remote stub of the bean fails-over invocations to another machine. That

424

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

other machine can use the backup state and continue processing. A new
backup is then nominated, and the state begins to replicate to that new backup.
This all occurs magically behind the scenes once you configure your EJB server
to replicate state, using your E]B server’s proprietary descriptors or adminis-
trative console.

Stateful replication should be used with caution. It will limit your performance. In-
stead, you may want to consider placing critical, transactional, and persistent data in
a database via session beans + JDBC or entity beans. Stateful session beans should
be used for session-oriented (conversational) data that would not adversely impact
the system if the data were lost.

Replication of stateful data typically occurs at one of two points:

At the end of every method. This is not ideal since unnecessary replication of
nonaltered data can frequently occur.

After the commit of a transaction. For reasons touched upon in Chapter 10,
this is ideal. Transactions give you an all-or-nothing fail-over paradigm. By
replicating on transactional boundaries, your stateful session bean state is
consistent in time with other changes to your system state (such as per-
forming JDBC work).

Most E]B servers perform stateful fail-over in one of two ways:

In-memory replication. The state could be replicated in-memory across the
cluster. In-memory replication is fast. The downside is that most EJB
servers limit the replication to only two machines, since memory then
becomes a scarce resource.

Persistent storage to a shared hard drive or database. This approach is
slower than in-memory replication, but every server in the cluster has
access to the persistent state of the replicated bean.

Load Balancing

With stateful session beans, remote home stubs can freely load balance create(. . .)
requests to different servers in the cluster. These factory methods do not apply
to an individual instance in a container but can be serviced by any container in
the cluster.

However, remote stubs cannot load balance as easily. Your client requests can be
sent only to the server that has your state. Note that if your stateful session
bean is replicated across multiple servers, a remote stub could conceivably load
balance different requests to different servers. This wouldn’t be ideal, how-
ever, since most vendors have a designated primary object that requests are

425

sent to first. The effort involved with load balancing requests in this scenario

outweighs any benefits.

Fail-Over

You might think that fail-over can always occur with stateful session beans if
the state is replicated across a cluster. After all, if something goes wrong, we

can always fail-over to the replica.

However, this is not the case. If your bean is in the middle of a method call, we
still need to worry about idempotency. Your bean might be modifying state
elsewhere, such as calling a database using JDBC or a legacy system using the
J2EE Connector Architecture. Your stub can fail-over to a backup only if the
method is idempotent. The only time your EJB server can disregard idempo-
tency is if your container crashed when nobody was calling it, either between
method calls or between transactions, depending on how often you replicate.

For stateful session beans, automatic fail-over on a remote stub or remote home
stub can occur only if your methods are idempotent. Most methods are not
idempotent, such as a create(. ..) method, which performs JDBC work, or a
set() method. However, a stateful session beans can have some idempotent
methods! Any method that does not alter the state of the system or alters the
value of the state stored in the stateful session EJB is an idempotent method.
For example, if a stateful session EJB has a series of get() accessor methods to
retrieve the values of state stored in the server, these get() accessor methods

would be idempotent.

If your method is not idempotent, or if your container does not support repli-
cation, you can manually fail-over, similar to our approach to stateless session

beans.

Entity Bean Clustering

Now that we’ve seen session beans, let’s see how entity beans are clustered.

Load Balancing

If you're coding your EJB deployments correctly, you will wrap entity beans
with a session bean fagade. Therefore, most access to entity EJBs should occur
over local interfaces by in-process session beans, rather than remote clients.
Thus, the need for load balancing goes away. Note that most containers do
support load-balancing for entity beans through stubs, similarly to how it

works for session beans. But you'll probably never take advantage of it.

426

Fail-Over

Since you should always access entity beans using local interfaces, fail-over
makes little sense. Consider this: If you called an entity bean using a local
interface and that failed-over to another machine, you’d suddenly be using its
remote interface, changing the client API and entailing pass-by-value rather
than pass-by-reference.

If you are accessing entity beans remotely, then as with all other bean types, you can
automatically fail-over entity beans only if the methods are idempotent. This usually
means gei(), finder(), and possibly some ejpHome() business methods.

Entity beans don't have the same replication needs as stateful session beans. This is
because entity beans are routinely synchronized with a database via its store/load
operations. Thus, an entity bean is backed up on a regular basis by design. From this
perspective, you can think of an entity bean as a stateful session bean that is always
replicated by the container on transactional boundaries through store/load opera-
tions. Those automatic load/store operations are the most important differences be-
tween stateful session beans and entity beans.

Since entity beans are backed up on transactional boundaries, transparent fail-over
can only occur in-between transactions (and not between methods that are part of a
larger transaction). If you have a transaction committing on every method call (for
example, through the Requires New transaction attribute), fail-over can occur at the
method granularity. However, this is not a recommended approach, since your ses-
sion beans should initiate the transaction and serve as a transactional facade.

Caching

Because entity beans are basically Java objects that represent database data,
they are in themselves a middle tier cache for that database. It is a tricky and
technically complicated task for an application server to support this cache
well. It is also a common misperception that caching always improves the per-
formance of a system. Caching makes a system perform better only when the
average overhead associated with updating the cache is less than the overhead
that would be needed to access individual instances repeatedly between cache
updates. Since the amount of synchronization needed to manage a cache in a
cluster is high, a cache generally needs to be accessed three or four times
between updates for the benefits of having the cache to outweigh not having it.

Containers provide many different types of caching algorithms. Each of these
algorithms has the same principle behind it: to reduce the frequency of
ejbLoad() and ejbStore() methods, which are normally called on transactional
boundaries.

. Clustering Q7Y

You set up these caches using proprietary container tools or descriptors. No
Java coding should be required.

Read-Only Caches

A read-only cache contains a bunch of read-only entity beans. This is a very use-
ful cache because most enterprise data is read-only. This type of caching has
enormous benefits.

Since read-only entity beans never change, their ejbStore() methods are never
called, and they are never called with a transactional context. If your entity
bean methods are participating in a read-only cache, they need to have Never
or Not Supported as their transactional attribute.

Read-only caches implement an invalidation strategy that determines when the
data in the read-only instance is no longer valid and should be reloaded from
the persistent store. Common algorithms include:

Timeout. Every X seconds, the cache is invalidated and the read-only entity
bean is reloaded immediately or upon the next method invocation. You set
the time-out interval based on your tolerance for witnessing stale data.

Programmatic. Your vendor provides a home stub or remote stub with invali-
date(. . .) or similar methods that allow a client to programmatically invali-
date entity beans.

System-wide notification. When someone changes entity beans in a
read /write cache, the container invalidates those entity beans that also
reside in a read-only cache elsewhere.

It doesn’t take long for you to perform operations on a read-only entity bean.
The lock on the entity bean only needs to be held just long enough to perform
the method call that gets you the data you need. Thus, each server’s read-only
cache typically keeps a single entity bean instance in memory for each primary
key. This saves overhead involved with creating multiple instances and man-
aging the concurrent access.

Distributed Shared Object Caches

A distributed shared-object cache is an advanced E]B server feature that few ven-
dors provide today. It is a cluster-wide cache for read /write data. This imme-
diately introduces an obvious problem: cache consistency. How does the
container stay in sync with the database? What if someone updates the data-
base behind your back? You'll need to refresh your cache.

A distributed shared object cache could theoretically detect collisions at the
database level. This might be detected through database triggers, although

428

ADVANCED ENTERPRISE JAVABEANS CONCEPTS

this gets very hairy. The idea is that when someone updates the database
behind your back, a trigger is fired. The cache is notified by this trigger and
updates its contents so that read-only clients can access the latest data. Because
each of the servers receives the notification, updating of the data can occur
concurrently across the cluster.

A distributed shared object cache also needs stay in sync with other caches in
the cluster. It needs to replicate itself to other nodes on regular intervals, simi-
lar to the idea of stateful session bean replication. It also needs to implement a
distributed lock manager that locks objects in memory, similar to how a data-
base locks database rows. Additionally, if a nonreliable messaging infrastruc-
ture such as IP multicast is used to send notification messages between
servers, a system runs the risk of having two caches trying to lock the same
data concurrently—their notification messages might cross in mid-air! An
algorithm that allows the pausing of other systems during the period where
critical events and notification messages are generated needs to be imple-
mented. As you can see, this convergence of state across multiple nodes is very
difficult to implement.

Because of these issues, we do not recommend usage of a distributed shared object
cache for most systems. However, if you'd like to give it a shot, we recommend
strongly testing your system for a variety of failure conditions before going live.

Read-Mostly Caches

Some application servers provide an exciting read-mostly algorithm. This pow-
erful idea allows you to have read-only entity beans that are also updated
every now and then, without having the burden of a true distributed shared
object cache. The idea is that for any given entity bean class, some instances
will be read-only, and some will not be cached at all (read /write).

When you perform a read operation, you use a cached, read-only entity bean
for performance.

When you perform a write operation, you use a regular, noncached entity
bean. When you modify a regular entity bean and a transaction completes,
all of the read-only entity bean caches become invalidated. When the read-
only entity beans are next used, they need to reload from the database.

This read-mostly pattern has some interesting characteristics:

m Fach cache uses a different JNDI name. For example, a read-only cache
might have RO appended to the JNDI name, while a read /write cache
might have RW appended to the JNDI name. This is somewhat annoying.

. Clustering Q7T

m This pattern only requires the use of a read-only cache, which almost all
application servers have. You don’t need to deal with the complexity of a
true distributed shared object cache.

When using a read-mostly algorithm, be sure that your container uses a reli-
able communications protocol when invalidating the read-only cache. If a
message is accidentally lost, you could be working with stale data.

Message-Driven Bean Clustering

Message-driven beans behave differently than session and entity beans and
thus have different implications in a cluster. Since message-driven beans do
not have home or remote interfaces, they don’t have any stubs or skeletons
remotely that can perform load balancing and fail-over logic on their behalf.

Message-driven beans are consumers of messages; they behave in a pull sce-
nario grasping for messages to consume, rather than a push scenario in which
a remote client sends invocations directly to the consumer. See Chapter 8 for a
full discussion of this behavior.

Message-driven bean clustering is really about JMS clustering. A message-
driven bean is dependent upon the clusterable features of the JMS server and
destinations that it binds itself to. Message-driven beans achieve load balanc-
ing by having multiple EJB servers of the same type bound to a single JMS
queue for message consumption. If four messages arrive concurrently at the
queue and four containers of the same message-driven bean type are bound to
the destination, each container is delivered one of the messages for consump-
tion. Each container consumes its message concurrently, achieving a pseudo-
load-balancing effect.

We've just discussed how load balancing of messages works for a point-to-point JMS
queue. Why don’t we worry about load balancing for publish/subscribe messages
that are put on a topic?

Fail-over of message-driven beans is integrated into the very nature of the
beans themselves. Fail-over occurs any time a message that is being processed
is acknowledged as unsuccessful to the JMS server. An unacknowledged mes-
sage is placed back on the destination for reconsumption. The message-driven
bean that consumes the message a second (or third, fourth, and so on) time
need not be the one that consumed it the first time.

In some advanced JMS server implementations, JMS destination replication
allows nonpersistent messages to be replicated across servers in a cluster.
Message-driven beans that bind to a replicated destination detect any server

430 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

failures and automatically rebind themselves as a consumer to the server host-
ing the replicated destination.

Other EJB Clustering Issues

This final section discusses some miscellaneous issues about J2EE clustering
that can impact the behavior of a system.

First Contact

When a client wants to use an EJB component, whether it is a session, entity, or
message-driven bean, the client must always first connect to the JNDI tree:

m (Clients that want to use a session or entity bean lookup their home stub.

m Clients that want to send a JMS message to be consumed by a message-
driven bean must lookup a JMS ConnectionFactory and Destination object.

Since all EJB clients use JNDI, naming server clustering ultimately has an
impact on the behavior of EJB components in a cluster, too. What kind of clus-
tering enhancements can be made to naming servers, and how does this
impact EJBs? There are two types of clustered naming servers:

Centralized. The naming server is hosted on a single server. All EJB servers
register their same EJB components on the single naming server, and all
clients lookup EJB components on the single naming server. The naming
server can even distribute clients to the identical servers in the cluster.

Shared, replicated. Each node in a cluster hosts its own JNDI naming server
that contains replicated objects hosted on other servers in the cluster. The
naming servers replicate their contents (including home stubs, JDBC Data-
Source objects, JMS ConnectionFactory object, JMS Destination objects) to the
other naming servers in the cluster. Thus, every naming server has a copy
of every other naming server’s objects in the tree. In a scenario in which
the same EJB component is deployed on every server in the cluster, each
naming server has a copy of the home stub representing each server. If a
server in the cluster crashes, all of the other naming servers that are still
active merely have to remove from their naming server the objects hosted
on the other machine.

Initial Access Logic

When an application server provides a centralized naming server, the logic that
clients use to get access to the cluster is simple: They hard-code the DNS name

. Clustering Ji}]]

or IP address of the centralized naming server into all of their InitialContext
creation calls.

But what about J2EE vendors that support a shared, replicated naming server?
Clients can connect to any server in the cluster and make a request for a service
hosted anywhere else in the cluster. Architects have a variety of options avail-
able to them.

DNS round robining. This allows multiple IP addresses to be bound to a sin-
gle DNS name. Clients that ask for an InitialContext pass in the DNS round-
robin name as the URL of the naming server. Every translation of the DNS
round-robin name results in the generation of a different IP address that is
part of the round-robin list. Using this technique, every client InitialContext
request is directed to a different server. Networks support this feature or
do not—it is not dependent upon the capabilities of your application
server.

Software proxies. Software proxies maintain open connections to a list of
servers that are preconfigured in a descriptor file. Software proxies can
maintain keep-alive TCP/IP connections with each of the servers to pro-
vide better performance instead of attempting to reconnect every request.
These software proxies immediately detect any server crash or unrespon-
siveness because its link is immediately lost. Software proxies can also sup-
port a wider range of load balancing algorithms including round robin,
random, and weight-based algorithms.

Hardware proxies. Hardware proxies have capabilities similar to software
proxies but often can outperform their software counterparts. Hardware
proxies can also double as firewalls and gateways.

Summary

In this chapter, we discussed the major challenges and solutions for working
with EJB in a clustered system. We discussed what makes a system large and
the major characteristics that large systems exhibit. We then compared the 3-
tier and 4-tier approaches to clustering. We analyzed the type-specific behav-
ior that can be exhibited by stateless session, stateful session, entity, and
message-driven beans in a cluster. And finally, we discussed cluster deploy-
ments of EJB, clustered naming servers, and initial access logic to naming
servers. So pat yourself on the back! You've just learned a great deal about
clustering. Stay with us now and we’ll learn all about how to get your EJB proj-
ect started the right way.

Starting Your EJB Project
on the Right Foot

great deal beyond the technologies themselves. You must overcome a wealth
of project management challenges, including designing the object model,
dividing up your team, and educating your team.

To be successful with an EJB/J2EE project, you must plan and understand a

This chapter is a guide for how to get started on your EJB project, with links to
external resources that you should consider in your project. They are taken
from real-world experiences and intended to help you build enterprise Java
systems. As you read the chapter, you may find project management issues
that you may not have considered. If this happens, consider weaving these
issues into your project plan, or highlight the issues for future reference when
you begin an enterprise Java project. While we may not answer every question
for each issue, we will point you towards external resources to help you find
your own answers.

Get the Business Requirements Down

Before embarking on a J2EE project, try to lock down as many of the business
requirements as possible. A suggested process is as follows:

1. Build a complete list of requested features. This is the phase in which you
ask questions about user interface requirements, legacy integration
requirements, use-case analysis, and so on. If your feature list is incom-
plete, you should consult with any subject matter experts you can access.

433

434

2. Weight each feature based upon corporate and business goals, as well as
the time anticipated to implement it. Prioritize the list by feature weight.

3. Gain stakeholder support for the feature list to avoid future bickering.

4. Secure a committed project budget from stakeholders.

You should now have a fairly complete basis for designing an object model.

Decide Whether J2EE is Appropriate

Once you have the business requirements, you need to settle on an architec-
ture. J2EE may be appropriate, but then again, it may not. Spend the time for
the appropriate research on the various alternatives up front. Table 15.1 lists
external resources to help you make a sound decision.

Decide Whether EJB Is Appropriate

A recent Gartner Group report cited that companies overspent by $1 billion on
EJB in 2000, when they could have gotten by with servlets/JSPs. This moti-
vates our next discussion. Once you've decided whether server-side Java is the
way to go, you need to make the all-important decision: Are you actually
going to use EJB on this project? Or is EJB overkill?

As an example, consider an e-commerce site that has involved business
processes. When you buy something on an e-commerce site, the site needs to:

Table 15.1 Resources to Help You Decide If J2EE Is Appropriate

RESOURCE DESCRIPTION

TheServerSide.com Keeps you up-to-date with various news

(www.TheServerSide.com) bulletins and articles about the J2EE space.

EJB vs. COM+ Live Debate Transcript Live debate transcript from Austin TX.

featuring Ed Roman and Roger Ed Roman and Roger Sessions duke it out.

Sessions (www.TheServerSide.com) A bit outdated, since COM+ has been
replaced by .NET.

"J2EE vs. Microsoft.NET" whitepaper Whitepaper that compares comparing J2EE

by Chad Vawter and Ed Roman and Microsoft.NET. J2EE wins.

(www.TheServerSide.com)

“J2EE vs. Microsoft.NET" whitepaper Whitepaper comparing J2EE and

by Roger Sessions Microsoft.NET. Microsoft.NET wins.

(www.objectwatch.com)

Starting Your EJB Project on the Right Foot 435

m Validate your credit card.

Debit your credit card.

Perhaps run some antifraud checking algorithms.
Check inventory.

Send a confirmation e-mail.

Submit the order.

Fulfill the order.

Track the order after it is fulfilled.

Handle returns.

You can achieve all of this by using vanilla servlets and JSPs. For example, you
could have the servlets and JSPs call Java classes. Those Java classes perform
your business logic. In fact, we can consider three scenarios in which it is pos-
sible to use Java classes rather than EJB components:

m |n a browser client Web-based system with servlets and JSPs.

m [n a Web services system where business partners call your servlets and
JSPs using XML/HTTP. (See www.TheServerSide.com for a whitepaper
on how to build Web services using J2EE.)

m |n a 2-tier client/server system such as a Java applet or Java application
connecting to a server, you could use servlets and JSPs on the server. The
thick client could communicate with the server via HTTP, which easily
navigates through firewalls (compared to IIOP, which does not). Behind
the servlets and JSPs could be Java classes instead of E]JB components.

behind firewalls, such as anonymous Internet clients, business partners, or other de-
partments within your organization. It is also important if your thick client is located
across the Internet, because HTTP is a lightweight protocol that travels across the In-
ternet easily. If there is no firewall issue, or if your users are not located across the
Internet (but are on your local area network), you could get rid of your HTTP layer
and connect the client to EJB components directly. In this case, the EJB value propo-
sition is strong, because EJB allows the client to call the server using intuitive
method names, removes the need to perform XML marshaling, and gives you auto-
matic remotability and load balancing.

? A servlet/JSP HTTP layer is important only if the users of your system are going to be

So how do you decide which is the right paradigm? Let’s start with the reasons
that most people think are important for deciding between EJB and Java
classes, but which are actually not important at all:

EJB server cost. The major J2EE server vendors—IBM, BEA, and Oracle—do
not sell their EJB layer separately from their servlet/JSP layer. They sell a

436 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

single J2EE server that bundles both layers. So if you go with a market
leader, you're probably going to buy an EJB server whether you like it or
not. The only way to avoid this cost is to purchase an open-source or inex-
pensive servlet/JSP implementation. Although this is a viable option, it is
not recommended for major deployments because the cost of the J2EE
server is often a drop in the bucket compared to the total cost of the proj-
ect. If the server doesn’t work out, consider the retraining you'll need to
pay for and the code you may need to rewrite if the servers use different
versions of the J2EE specifications. Consider the difficulty in hiring skilled
professionals if you don’t go with a market leader, the cost of relearning
how to tune your new server, and the cost of learning to administer that
new server. The cost of the application server should not be an issue for
most serious deployments. Most major vendors are charging very reason-
able fees, far less than the $50,000 per processor that was charged in days
gone by. Rather, you should consider whether an E]B layer or a Java class
layer is appropriate for your project. The professional services fees—we call
it geek time—tends to dwarf the application server cost.

Resource pooling. Nearly all the major J2EE server vendors allow you to get
connection pooling and thread pooling whether you use servlets/JSPs or
EJB components.

Clean separation of business logic and presentation logic. E]JB is nice
because it enforces a separation of presentation logic (servlets and JSPs)
from business logic (EJB components). We like this because in the future
we can support different types of presentation logic, such as a WAP-
enabled phone or an XML data stream client from a business partner. But
you can achieve the same results with Java classes. You just need to enforce
some coding best practices in your organization for the proper usage of
Java classes as a business layer fagade.

Now that we’ve blown away the fear, uncertainty, and doubt (FUD), here are
the real reasons not to use E]JB:

You can’t deal with the limitations of EJB. Examples include threading, sta-
tic variables, and native code. Most companies can deal with these,
because the restrictions exist for good reasons. But for example, if you need
to have a multithreaded engine, and you can’t deal with the EJB paradigm
of load balancing across single-threaded instances, EJB is not a good fit for
you. EJB is a square peg—don’t try to fit it into a round hole.

Your have existing skillsets or investments in a working technology. If your
developers are proficient in CORBA, why not stick with it? The Middle-
ware Company once consulted with a client who wrote a CORBA applica-
tion that assisted with mapping the human genome. It worked well with

Starting Your EJB Project on the Right Foot 437

CORBA, and our client had no major complaints; and so we recommended
they stick with CORBA and avoid the EJB hype.

Your application is a big GUI to a database. If you are just a big GUI to a
database—heavy on data logic but no business logic—you could achieve a
deployment easily using JSPs with tag libraries connecting to a database
via JDBC.

Your application is simple. If you are prototyping, building a simple system,
or developing a one-off application that will not evolve over time, EJB may
be overkill.

You need an initial system built extremely fast. Using Java classes means
you don’t need to worry about building all the little files that comprise an
Ejb-jar file.

And here are the real reasons to use EJB over Java classes:

In the long term, your system is built faster and more reliably. E]B compo-
nents benefit from declarative middleware, such as instance pooling, trans-
actions, security, container-managed persistence, container-managed
relationships, and data caching. If you used regular Java classes, you'd
need to write this middleware yourself over time. Eventually you might
find that you have your own middleware framework. Framework is a fancy
word for building your own home-grown application server. The frame-
work needs to be tested and debugged, and features need to be added.
This is a nontrivial task indeed. Can you honestly say your staff is capable
of building a better application server than the market leaders who special-
ize in middleware?

It is easier to hire new employees. If you build your own custom framework
using Java classes, new hires need to be trained on this framework. You
can no longer look for EJB on a resume when hiring developers and expect
them to be productive on your system.

You benefit from the best practices the world is building around EJB. You
can figure out how to optimize your system by reading articles on the
Internet or picking up a book on E]JB best practices. This global knowledge
base is not at your disposal with a proprietary Java class framework.

You can have different user interfaces. You can reuse the same EJB compo-
nent layer for a thick client as well as a servlet/JSP client. You cannot
achieve this with Java classes because they are not remotely accessible. If
you wrapped those Java classes in RMI objects, you’d need to invent your
own load balancing, instance pooling, and fail-over.

You can work with industry-standard tools to rapidly develop your system.
While in the short run it may seem that Java classes will develop your

438 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

system faster than writing all those files that comprise an EJB component,
in reality many tools help streamline the EJB development process.
Command-line tools generate the files you need, IDEs help you build EJB
components, and UML editors help you generate EJB components from
UML diagrams. See www.TheServerSide.com for more.

You can separate your Web tier and application server. If you require your
business logic to be protected by a firewall, you can deploy the Web server
and application server on separate machines and stick a firewall in the
middle.

Staff Your Project

When you are building a J2EE project team, you will often find an insufficient
number of people in house, if any at all, with experience developing with J2EE
technology. Don’t despair; many organizations are in the same position. You
have several options:

Hire full-time experienced J2EE employees. Full-time experienced employ-
ees are the most cost-effective way to staff a development team. However,
candidates for full-time employment, particularly those with significant
J2EE skills, are often difficult to find. You must have a solid recruiting
process.

Educate existing developers on J2EE. For organizations with existing devel-
opment teams, a much easier alternative to hiring full-time J2EE experts is
to educate your existing staff on Java and J2EE through training provided
by firms. You can fill in holes in your staff by hiring Java developers or
computer science graduates who are both eager to learn J2EE.

Hire short-term consultants. Consultants hired for several days or weeks can
help you with specific issues such as choosing a J2EE application server;
selecting tools, standards, and guidelines; resolving internal debates; pro-
viding an unbiased architectural review of your project; aiding project ini-
tiation and planning; and mentoring in a specific technology. Short-term
consultants are a bit pricey but provide significant benefit to your project
when used effectively for that expertise. Because of their cost, engage these
experts for short-term use only. All project teams can benefit from bringing
in one or more consultants at the onset of a project.

Hire long-term contractors. Long-term contractors are a happy medium
between full-time employees and consultants. They’re paid more than
employees but often significantly less than consultants. They are often eas-
ier to hire because most developers perceive contracting as high paying yet
low risk, therefore more people choose this career path and typically have

439

the experience that you require. (Today’s J2EE contractor was yesterday’s
full-time J2EE employee somewhere else.) Contractors are an effective way
to fill out your project team when you don’t have enough full-time
employees with J2EE experience and don’t want to pay consulting rates for
a significant portion of your staff. Skills that you should demand of your
contractors include expertise in the specific application server that you are
using, experience on one or more projects of similar scope, and ideally,
experience on one or more projects of a similar nature.

If you decide to go the training or contracting route, the authors of this book
may be able to help you. See Table 15.2.

Design Your Complete Object Model

Once your team is assembled and has a good level of J2EE understanding, you
are empowered to flesh out your object model. Ideally you should minimize
risk by working hand-in-hand with an external J2EE expert who has built such
systems in the past.

Whenever you inject a new object into this object model, all layers should be
considered. Ignoring the user interface, the business layer, or the data layer
could lead to false assumptions that bite you down the line.

See Table 15.3 for suggested resources when building a J2EE object model.

Implement a Single Vertical Slice

Once you have defined an initial architecture, you need to start building to that
architecture. We recommend implementing an initial vertical slice of the system.
A vertical slice is a subset of the use-cases in your system. For example, if

Table 15.2 J2EE-Related Service Vendors

VENDOR SERVICE FOCUS

The Middleware Company Provides training, consultants, and

(www.middleware-company.com) contractors for Java, EJB, J2EE, and XML
projects.

Ronin International Provides consultants and contractors for

(www.ronin-intl.com) object-oriented and component-based

architecture and software process
development.

440

Table 15.3 Resources for Building Your J2EE Object Model

RESOURCE DESCRIPTION

TheServerSide.com Design Patterns section is invaluable
(www.TheServerSide.com) resource for building J2EE systems.
Chapters 13 and 17 of this book Chapter 13 is a group of EJB design

strategies. Chapter 17 is a sample design
for a complete EJB/J2EE system.

“EJB Design Patterns” by Floyd Patterns for building EJB object models.
Marinescu, published by John

Wiley & Sons

“Core J2EE Patterns” by John Crupi, Patterns for building J2EE systems (includes
et al. published by Addison-Wesley Web tier and EJB tier patterns).

J2EE Blueprints Best practices guide for J2EE systems.

(http://java.sun.com/j2ee)

Reuse of J2EE Components

In our experience, it is a myth that J2EE components achieve high reuse across
projects. Components are often copied-and-pasted, but not reused in the true
0-0 sense.

For large organizations building complex J2EE systems, we recommend invest-
ing in a J2EE best practices task force. This task force enforces coding standards
across all projects, that all teams speak the same vocabulary for objects in their
system, and that correct design patterns are applied in projects. The benefits of
this task force include easing communication between projects and enabling
developers to easily transition between projects with minimal ramp-up time.

If you are going to go down the path of reuse, we recommend using a reusable
component manager, which helps you organize components within your enter-
prise. ComponentSource and Flashline.com each provide these products.

you're putting together an e-Commerce site, you might have the vertical slice
be the search engine or the product catalog. A vertical slice should demonstrate
usage of all the J2EE technologies in tandem—you would want to show that a
browser can connect to a Web server running servlets, which in turn interacts
both with EJBs that access your back-end database and with JSPs to generate
HTML to return to the browser. A vertical slice is not just E]Bs. Developing an
initial vertical slice offers several benefits:

Starting Your EJB Project on the Right Foot 441

Provides experience developing J2EE software. By developing an end-to-
end vertical slice, you learn how to work with all of the technologies, tools,
and techniques that you are going to apply on your project. You have to
start somewhere, and it’s better to discover and address any problems as
early in your project as possible.

Provides experience deploying J2EE software. The first time you deploy a
J2EE application can be confusing. You have several types of nodes to
potentially install and configure—Web servers, application servers, data-
base servers, security servers, and so on. You can safely gain this experi-
ence by internally deploying your initial vertical slice into your staging
area.

Reduces unsoundness risk. By developing an initial vertical slice, you show
that the technologies you have chosen all work together, thereby eliminat-
ing nasty integration surprises later in your project. Remember the old say-
ing: Everything works well in management presentations, but not
necessarily in reality.

Proves to your project stakeholders that your approach works. At the begin-
ning of a project, your stakeholders may support you because they have
faith that your team can deliver what you have promised; but their sup-
port will be even stronger if you show that you can actually deliver. Fur-
thermore, developing and then deploying (at least internally) an initial
vertical slice can be incredibly important to your project politically because
your detractors can no longer claim that it isn’t going to work.

Answers the question: Will it scale? The vertical slice is a real working piece
of your system and should demonstrate how well your design scales
under load. You can stress test this slice before building the rest of your
system. This reduces risk, especially in situations where you may have
questions about whether your object model will work (for example, will
EJB entity beans scale?).

Gets the design patterns right early on. Building the vertical slice gives you
experience with what works and what doesn’t work with J2EE. For exam-
ple, you'll have an opportunity to compare and contrast different model-
view-controller (MVC) paradigms. This leads to discovery of a common
technical vision. Once you’ve locked down that framework, you can apply
those best practices to other vertical slices and enable developers with
lesser skills to implement them.

Do You Start Fresh or Evolve Your Initial Slice?

Once you have developed your initial vertical slice, you need to make an impor-
tant decision: Do you throw it away to start fresh on future vertical slices, or do
you continue to evolve it into your system? The answer depends on the quality of
your work. If it is poor quality, either because you rushed or simply because you
were new to the technologies or techniques and made some fundamental mis-
takes, you should consider starting fresh. There’s absolutely nothing wrong with
starting fresh—you still gain all the benefits. On the other hand, if the quality of
your initial vertical slice is good enough, you can and should consider keeping
the code (or at least applicable portions of it) and use it as a base from which to
develop your system. This is something that the rational unified process refers to

as building the skeleton first.

Choose an Application Server

The choice of an application server is important to your project. Although your
J2EE applications may be portable between vendors, the differences make it
painful to switch vendors.

Companies that are eager to get started with their EJB development should go
with one of the current market leaders. But companies who want to reduce
risk before jumping into purchasing a J2EE server should spend the time to
research whether the vendor they’re thinking about using is right for them.
This is applicable for both large and small projects. Our recommended process
is as follows:

1.

List the features you want in an application server. A consultant can help
you build this list.

2. Weight and prioritize the feature list.

3. Eliminate all vendors that don’t meet the majority of your criteria.

4. With the two or three vendors left, download and deploy your initial verti-

cal slice into those application servers. You can then measure how well
these application servers handle your specific business problem, as well
as their general usability.

In all cases, we recommend you do not purchase your application server until
you've deployed your vertical slice into the application server. You may find
the application server does not behave as the vendor’s marketing propaganda

Starting Your EJB Project on the Right Foot 443

promised. Download that free evaluation copy and deploy that real, working
slice of your system into the server to see for yourself.

The following are suggested resources for choosing an application server:

m Chapter 16 of this book, a guide to choosing an E]B server

m TheServerSide.com application server “Reviews” section (www.
TheServerSide.com)

m “Selecting a J2EE Vendor” by Simon Blake (www.TheServerSide.com)

EJB Portal —Product & Vendors Directory (www.ejbportal.com)

m Enterprise JavaBeans Supporters (Sun Microsystems)
(java.sun.com/products/ejb)

m Flashline.com—Application Server Comparison Matrix
(www.flashline.com)

m App-Serv Central Contenders List (www.app-serv.com)

Divide Your Team

Dividing your J2EE team is one of your most critical decisions. When assem-
bling a J2EE project team, you have two basic choices:

Horizontal approach. Have folks specialize in different technologies. For
example, you’d have a JSP team, a servlets team, an E]B session beans
team, and an EJB entity beans team. Members of your team become special-
ists in specific technologies.

Vertical approach. Have folks specialize in vertical business use cases. For
example, you’'d have a search engine team, a product catalog team, and a
payment processing team. Team members become generalists and gain
experience with all the J2EE technologies involved in that domain, such as
servlets, JSPs, and E]Bs.

You can also use a hybrid approach, which is a combination of the two. Table
15.4 describes the horizontal, vertical, and hybrid approaches to team organi-
zation with their advantages and disadvantages. Table 15.5 lists several rec-
ommended resources for building project teams.

So which approach is better? The answer depends on the goals for your
project:

m If your goal is to get your project completed quickly and in a consistent
manner, our experience has shown us that the horizontal or hybrid
approach is superior. Design patterns, paradigms, and frameworks are

444

- Apuassisuod pajuswajduw
9B S9SP2-9sN 3sn [ENPIAIPU| mm
‘Juswdojansp

‘Iojjesed ui dojansp 03 sisijenads 1oy siahe) uonedidde pides Suip[aiA ‘|dy 119y}
U22/aq S92BHIRIUI INO0 J3ds |[13s ISN|\ mm yym juanyold awodaq sysijedads m '|dY Jejndipied e ulypm sased-asn
"S9SE2-3SN 119y} UIypm Ajuioyine ‘pasn Auew uo y1om oym sysijenads |dy
aAeY s)sijesauas ayj 1oyl wes) sy} woly sytomawelj pue ‘swidipesed ‘suiaped Hoddns Asy] -sased-asn aiow 10 suo
ul-Anq pue Suipuelsiapun ue sa1inbay m uisap ui Aoua)sisuod saINsud 1ano Ajioyine aney sisijeisuald sy
‘pafoid ay3 ul SIY] 'S9SBI-3SN |BDIMAA [|B SS0Joe 'sisijeads pue sysijeiauas yjoq
uo Ajiea ainpnujs pue Suiuue|d sainbay m IdY dWwes ay} Sasn Wea)} SWes Y| m jo dn apeuw si wea} JNOA—puUgAH

"wea} ay} uoiypied o3 3nd
-1 SI 31 ‘Juspuadapialul a1e SISLI-3SN §| mm

"S9seI-3sn
usamiaq asueyd Aew pasn sylomawely -21npid J1apeoiq e way) ani3 0} widlsAs
pue ‘swdipeied ‘suianed udiseaq m InoA ul pasn sa13ojouyda} JusIayIp
‘uaping 119y} uo s1adojensp Sunesnps 10} pooD m
8uiseanul ‘sdnoid 1adojansp [e1anas "uofuUa}al 10} poon S[|jS JO

YHM 10m ishw spadxe Jepew 109(qns m a8uei Jopim e uied Asy] -ased-asn e jo
‘swa|qoid pajie3ap anjos Appinb o} diysisumo jo 1dsduod e aney siadojprsg m

paainbai asiiadxs [ed1uyda) oynads "9SBJ-9SN UMO SIY U0 sylom Jadojanap "95e2-9sN 40 ulewop wojqo.d
3y} aney jou op AjjeaidA; sisijesausn m yoeg ‘jjom pajeiedss ale sased oiads e uo sndoy Asy) ‘A3ojouyoa)
‘puiy 03 yndiyp pue pied -9sn J1 Ases si Juswdo|ansp |9]jeled m 332r Aons yum sousuadxs

Ajy8iy AjjeoidAy ase pue sai8ojouyosy ‘SISeq 9SeJ-asn [BNpIAIpUI uied oym siadojanap jsipiousb
Auew mouw| 01 paau sjsijeJausD m Ue uo Juswdojansp pus-0)-pus Yjoows m Jo pasodwiod Si Wea) INOA— eI

"Ajmols a1ow Moi8 s|[iys JIaY} os pue ‘JIZ[
jo yied aj8uis e Ajuo pueisiapun Ajuo Asyjy
"9se2-9sn e Jo diysisumo Jo 1dsouod e aney

jou Op s)sijeads aslie SaNSSI UOIIUDIDY m Juawdojanap
"s19Ae| usaMaq SJBISIUI PIJOS-)001 uonedijdde pides uip|aiA ‘|dy
aulop 03 pasN uswdojansp |9jjeled 11941 yum juspiold awodaq sisijernsds m
anaiyoe 03 Suluue|d 8uons saiinbay m ‘pasn sylomauwlelj pue ‘swsipesed ‘|dY 3ey3 uisn sased-asn
‘s1ahe| ‘susoned udisap ul Aoua)sisuod saINSud 3sn [eIaAds Uo syliom Jadojanap yoeg
U99MIaq SPRUUOISIP Ul Sunjnsal 's|dy SIU| "S9SED-3SN [EDI}AA [|B SSOIR ‘s|dy 33z Jejnoned ui ssybpads
1ay1o 0} ainsodxa uied jou op sisijeads m IdV SWes sy} sasn Wes) Swes 3Y] mm Jo pasodwod S| Wea) INOA—|eJUOZIIOH

SIDVINVAQYSIA SIDVINVAQY ADILVYLS

sa18ajens uoneziuedlQ wea] Sl djqel

445

Table 15.5 Recommended Resources for Building a Project Team

RESOURCE DESCRIPTION

Peopleware: Productive Projects
and Teams, 2™ Edition, Tom
Demarco and Timothy Lister,
1999, Dorset House Publishing

Constantine on Peopleware,
Larry L. Constantine, 1995,
Yourdon Press

Organizational Patterns for Teams,
Neil B. Harrison, 1996, Pattern
Languages of Program Design 2,
pages 345-352, Addison-Wesley
Publishing Company

The Unified Process Inception
Phase, Scott W. Ambler & and
Larry L. Constantine, 2001,

CMP Books, www.ambysoft.com

This book is the de facto classic within the
information technology industry for how to
build and manage a software project team.

This book presents is a collection of writings
about the software aspects of software
development, including developer productiv-
ity, teamwork, group dynamics, and devel-
oper personalities. This is a good book to
read for anyone trying to understand how to
organize and then manage a bunch of soft-
ware “geeks.”

The paper describes a collection of patterns
for building a software development team,
including Unity of Purpose, Diversity of
Membership, and Lock ‘Em Up Together.

This book describes a collection of activities
and best practices for the Rational Unified
Process (RUP) Inception phase, including
advice for building your project team.

kept consistent across the board. Specialists build a core competency in
their AP], yielding rapid application development.

m If your goal is to invest in the education of your developers to reduce
retention issues or to give them a broader long-term skill set, the vertical
approach works well. Developers gain experience with every technology
in J2EE. The downside is consistency of design patterns across use cases.
In a day and age when good software professionals are hard to find, let
alone keep, this is an important consideration.

Invest in Tools

Anumber of tools are worth a look when building your EJB/J2EE deployment.
These include testing tools (JUnit), profiling tools (JProbe or Optimizelt), UML
modeling tools (Together /] or Rational Rose), IDEs (JBuilder or WebGain Stu-

dio), and more.

446 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Rather than describe each and every tool that’s out there, we are providing a
free up-to-date EJB/J2EE product matrix where users can describe and submit
reviews for products and tools in the EJB/J2EE industry. This is located on
www.TheServerSide.com.

Invest in a Standard Build Process

An easy choice when picking tools is a tool to help you with a standard build
process. If you decide to use a standard build process, you must use some sort
of build scripts, written in some scripting language. The build tool does not
take place of your build process—it only acts as a tool to support it. What char-
acteristics would you like to have in this scripting language?

Widely understood. It would be nice if your developers (who are more often
than not doing the builds) already understood the technology behind the
language.

Functional. The scripting language needs to support a wide array of func-
tionality out of the box, especially for Java features.

Extensible. Since no two projects are the same, and projects use all sorts of
different technology, it would be useful if you could add functionality to
the scripting language to handle you particular needs.

Cross platform. In an enterprise environment, you usually are developing on
a Windows machine and doing testing and quality assurance on a non
Windows box. You want your build scripts to be as cross-platform as your
code.

The Apache group’s Ant build tool (http:/ /jakarta.apache.org) combines ideas

from Java and XML to achieve these goals. Many of our clients are using Ant
successfully, and we highly recommend it.

Next Steps

With your initial vertical slice in place, you are in a position to continue your
construction efforts by developing additional slices of your system. For each
vertical slice, you effectively run through a miniature project lifecycle—flesh-
ing out its requirements, modeling it in sufficient detail, coding it, testing it,
and internally deploying it. This approach reduces your project risk because
you deliver functionality early in the project; if you can deploy your system
internally, you can easily make it available to a subset of your users to gain
their feedback. Furthermore, your development team gains significant lifecy-

Starting Your EJB Project on the Right Foot 447

cle experience early in the project, giving developers a significantly better
understanding of how everything fits together.

Summary

In this chapter, we gained greater insight into how to start our EJB projects on
the right foot. We learned about a time-tested process that has worked for
other organizations to reduce risk and lead to a win-win situation for all par-
ties involved. Armed with this knowledge, you should be able to confidently
begin work on your EJB project.

Choosing an EJB Server

hroughout this book, we’ve explained the concepts behind EJB programming
and put the concepts to practice in concrete examples. But perhaps an even
more daunting task than learning about EJB is choosing from the legion of
container/server product vendors out there—currently more than 30 such
products. For the uninformed, this is a harrowing task. What should you be
looking for when choosing an EJB product? That is the focus of this chapter.

To best make use of this chapter, first ask which application server features are
most important to you in your deployment, including specific features that
you need (such as support for a particular database). Once you've listed your
requirements, assign a weight to each feature. For example, if transparent fail-
over is important in your deployment, you might rank it a 7 of 10. Once you've
weighted each feature, you can begin evaluating application server products
and create a scorecard for each product.

Once you've reduced your list of servers to two or three, we recommend that
you deploy code into those servers and test them out for yourself. You should
measure both quantitative data (how many transactions per second can the
server support?) as well as qualitative data (how easy is the server to use?). See
Chapter 15 for more details on how choosing an E]JB server fits into a larger EJB
development process.

The remainder of this chapter discusses our criteria for choosing an E]B server.

449

450 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

the time this book fell into your hands, the information would already be out of
date. Instead, we are hosting a free section on www.wiley.com/compbooks/roman
that contains application server reviews.

? This chapter does not recommend a particular EJB server. Why not? Because by

J2EE 1.3 Brand

Perhaps the most important issue to think about when choosing an EJB
container/server product is compatibility. When you make your purchase
decision, you need to write code and purchase beans that are compatible with
your container/server product. If in the future you decide to switch to a dif-
ferent vendor’s product, the transition will surely not be free and it will always
involve some migration headaches. While the E]JB standard defines the inter-
faces that should make products compatible, realistically, every vendor’s
product will differ from the next in some semantic ways, which will impact
your deployment. Ideally, you want to make the right choice on your first
purchase.

J2EE v1.3 ships with a compatibility test suite, which verifies that a particular
vendor’s product is indeed compatible with the J2EE 1.3 specifications, includ-
ing EJB 2.0. You can verify compatibility by looking for a J2EE seal of approval,
which Sun Microsystems stamps on J2EE-compliant products.

Pluggable JRE

Some containers are hard-coded to a specific version of the Java Runtime Envi-
ronment (JRE). Other vendors are more flexible, supporting many different
JREs. This may be important to you if you have existing applications that
depend on specific JRE versions.

Conversion Tools

Does the EJB server ship with tools to migrate old J2EE code into the latest ver-
sion? Consider that even though J2EE 1.3 sounds new today, it won’t be new
tomorrow. You may need to upgrade your application in the future to a new
version of J2EE, and your vendor’s historical support of migration tools is
most indicative of whether it will support such migration in the future.

Choosing an EJB Server 451

Complex Mappings

Be sure your E]B server allows you to perform any complex database map-
pings that you may need, such as mapping to stored procedures and mapping
to complex JOINs across a relational database, as well as the ability to write
custom SQL if necessary.

Third-Party JDBC Driver Support

Some servers do not allow the substitution of JDBC drivers—or if they do, they
may disable features such as connection pooling. Be sure your vendor sup-
ports your database connection needs.

Lazy-Loading

Lazy-loading means to load entity bean data on demand. This is important for
large object graphs where the user may only need access to a small portion of
the graph. Note, however, that your EJB server should allow you to tune lazy-
loading on a per-bean basis, so that you can load an entire object graph if you
know you need that entire graph.

Deferred Database Writes

A deferred database write means to defer JDBC write operations until transac-
tion commit time. This is important, because if you have a transaction involving
many EJB components and thus many database writes, it is counterproductive
to perform many network roundtrips to the database. The superior approach is
to perform one large write at transaction commit time.

Pluggable Persistence Providers

Some EJB containers provide proprietary APIs for plugging in third-party per-
sistence modules, such as a module that persists your entity beans to an object
database rather than a relational database. Other possibilities include persist-
ing to a file, persisting to a relational database using a simple object-relational

452 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

mapping, persisting to a relational database using a complex object-relational
mapping, or persisting using user-defined persistence routine (which may
implement persistence through a legacy application).

If you're planning on plugging in a third-party persister into your container,
be sure that you can gain transactions and connection pooling.

In-Memory Data Cache

If you are using entity beans (and many deployments will, now that they can
be accessed in a high-performance way through local interfaces), be aware that
entity bean performance is not equal between application servers.

Some application servers work in a pass-through mode, which means that any
entity bean operations are passed through to the database, resulting in a low-
level database transaction. Other vendors implement smart caching of entity
beans, allowing some operations to occur in memory rather than at the data-
base level. For example, if you're merely reading the same data over and over
again from an underlying storage, you should not need to hit the database on
every method call. The difference between pass-through and caching applica-
tion servers is tremendous. Some vendors have reported a 30-fold or more per-
formance increase over the pass-through application server.

There is even a third-party marketplace for such caching providers. For exam-
ple, Javlin is a product that plugs into an EJB server to add caching support.

Integrated Tier Support

Throughout this book, we’ve concentrated on EJB as a server-side component
model. But for many deployments, Web components written with servlets and
JSPs need to access the EJB layer. Some E]B servers offer the ability to run
servlets and JSPs in the same JVM as your enterprise beans. If you want this
style of deployment, look for this feature.

Scalability

Your EJB server should scale linearly with the amount of resources thrown at
it. If you add extra machines with equal power (memory, processor power,
disk space, and network bandwidth), the number of concurrent users your
server-side deployment can support and the number of transactions your sys-
tem can execute per second, should increase linearly. Be sure to ask your EJB

Choosing an EJB Server 453

server vendor for case studies and customer references to back up its scalabil-
ity story.

Other questions to ask include:

m How long does it take for the EJB server to start up or restart? This is
important for development as well as for production deployment. If the
restart cycle is long it makes it inconvenient to develop and debug with
the EJB server. In production, a slow startup cycle affects the availability
of the application to the clients.

m Can the EJB server recover from backend database loss and restart? For
example, if the EJB server temporarily loses connectivity to the database,
does it need to be restarted to reestablish connectivity to the database, or
can it do so automatically?

High Availability

High availability is critical for server-side deployments. You want the highest
level of confidence that your EJB server won’t come down, and you can look
for a number of things to increase your confidence. Your EJB server vendor
should have compelling numbers indicating the availability of its product,
backed up by existing customers. Realize, too, that your E]B server is only as
available as the operating system and hardware that it's deployed on. Be sure
to ask your E]JB server vendor what operating systems and hardware configu-
rations they support.

Security

A typical EJB deployment leverages predefined security lists that are already
available in existing systems. For example, an IT shop may store access control
lists of users in a Lotus Notes LDAP server; you may need to use these lists in
your EJB deployments. Many EJB products offer assistance with importing
and exporting ACLs from existing deployments, so that you won’t have to cre-
ate your own solutions from scratch, saving you time when deploying EJB
products. Some systems can even tap into existing security systems—they get
the user and authorization information from the existing security service.

Standardized support for the Java Authentication and Authorization Service
(JAAS) will enable you to plug in different security providers.

454 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Other questions include:

m Can the server integrate with LDAP in real-time for authentication and
authorization?

m Does the security system support SSL?

m Can a firewall be placed between the servlet container and the EJB con-
tainer? Between a third-party Web server and the servlet container? Can it
be an application proxy-type firewall or only a packet filtering firewall?

IDE Integration

An essential component of any development is an easy-to-use Integrated Devel-
opment Environment (IDE), such as Webgain’s VisualCafe, Inprise’s JBuilder,
iPlanet’s Forte, or IBM’s VisualAge for Java. IDEs can assist in code manage-
ment, automate programming tasks, and aid in debugging.

Some EJB container/server vendors are IDE vendors as well (IBM, Inprise,
and iPlanet). This duality allows them to seamlessly integrate their EJB server
product with their IDE. The end result is compelling: The IDE can aid in cod-
ing, debugging, and deploying your beans by working together with the
application server. Other EJB server vendors who do not have their own IDE
are forming strategic alliances with IDE vendors to gain a competitive edge in
the marketplace.

Some useful features to look for include:

m Automatic creation of home and remote interfaces from bean
m Automatic identification of business methods

m Creation and editing of deployment descriptors
|

Construction of Ejb-jars, Web archives (.wars), and enterprise archives
(.ears) from within the IDE

Direct deployment from the IDE to the J2EE server

m Debugging into the container via a Java remote debug protocol

UML Editor Integration

The diagrams in this book were drawn using the Unified Modeling Language
(UML), the de facto standard for communicating development architectures
between programmers. A number of visual UML editors are on the market,
such as Rational Software’s Rational Rose and Togethersoft’s Together/]. Many
of these UML editors enable you to visually design EJB components, and then

Choosing an EJB Server 455

automatically generate and deploy those components into the EJB server of
your choice, yielding rapid application development. Be sure to ask your EJB
server vendor about which UML editors support their servers.

Intelligent Load Balancing

A common deployment scenario involves a set of machines, all working
together to provide an n-tier solution.

The variety of ways to load balance requests across a set of machines include
random, round-robin, active load-balancing, weighted load-balancing, and
custom algorithms (see Chapter 14 for more on this).

In the long run, if you have many requests hitting your servers, the particular
load-balancing algorithm that you choose will likely not matter, as long as
your server supports some algorithm. Load-balancing algorithms become par-
ticularly important in two cases: if you have a heterogeneous hardware situa-
tion and need to skew the load to one machine; or if you only have a few,
heavy-duty requests coming into your system. If you're among these cases, be
sure that your E]B server supports the load-balancing algorithms you require.

Stateless Transparent Fail-over

When your application server crashes, there should be a transparent rerouting
of all requests to a different application server. The natural place to put this
process is in intelligent client-side proxies, which intercept all network-related
problems and retry methods on alternative application servers or in the object
request broker runtime. Transparent fail-over is fairly easy to implement if you
restrict the client to invoke only on a stateless server, and assume that all trans-
actional resource updates can be rolled back.

Clustering

A more advanced level of transparent fail-over is stateful transparent fail-over
or clustering. With clustering, your application server is replicating conversa-
tional state across servers. If an application server crashes, another server can
pick up the pieces since it has replicated state. If your application server sup-
ports clustering both for Web components (servlets, JSP scripts) as well as clus-
tering for enterprise beans, you can completely eliminate single points of
failure from your deployment, ensuring uninterrupted business processes.

456 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

An extension of clustering is application partitioning—configuring compo-
nents to run only particular nodes within a cluster. High-end servers provide
tools for managing this complexity.

Java Management Extension (JMX)

JMX is a J2EE API for monitoring a deployment. If your EJB server supports
JMX, you can write an application that monitors your EJB server. Your appli-
cation could set properties in your E]B server as well, such as modifying the
current thread pool, redeploying an EJB component, and so on. If you wish to
write an application that performs advanced monitoring or control over your
EJB deployment, JMX is the way to go.

Administrative Support

A Web-based administrative console allows system administrators to monitor
your deployment from afar. Web-based consoles are superior to thick client
administrative consoles because you can easily access your system from any
machine, and firewalls don’t get in the way:.

Command-line based administration is also important. It is necessary to allow
the automation of deployment and management. After all, your automated
testing process will need to quickly deploy beans into a server. It is inappro-
priate to require a human to click on a Web-based console to achieve this.
Common tasks that need to be automated from the command line include:

m Start, stop, and restart the EJB server

m Deploy, redeploy, and undeploy an application

Hot Deployment

Hot deployment means redeploying EJB components into a running EJB
server without shutting down the EJB server. This feature may be necessary if
you are in a 24x7 environment where even a small amount of downtime dur-
ing scheduled maintenance is unacceptable.

Instance Pooling

Instance pooling is the pooling and reuse of EJB components. Advanced EJB
servers can pool and reuse any type of component, be it a stateful/stateless

Choosing an EJB Server 457

session bean, CMP/BMP entity bean, or message-driven bean. Look for flexi-
bility in configuring this pool size, including configurable rules for dynami-
cally increasing and decreasing its size under various load conditions.

Automatic EJB Generation

Some EJB servers ship with wizard-like or command-line tools to automati-
cally generate EJB components for you. For example, you could supply the
name of an entity bean, along with the names and types of its persistent fields.
From this, the tool should be able to generate your bean class, component
interfaces, home interfaces, deployment descriptor, and Ejb-jar file.

Clean Shutdown

What happens when you want to take down an application server for mainte-
nance? Perhaps you want to reboot the machine the application server is
installed on, upgrade the application server, or install software on the
machine. But if you simply kill the process, any connected clients” work would
be lost, potentially resulting in financial errors or other catastrophes.

This leads to another area of value that EJB products can provide: a clean way
to shut the application server down without having a gross impact on clients.
For example, the EJB application server may simply have a routine that refuses
connections from new clients and allows for all existing clients to gracefully
disconnect.

Real-Time Deployment

Starting up and shutting down an EJB application server is usually a fairly
heavyweight operation. If you're debugging an EJB application, having to
restart the EJB application server each time you regenerate your beans is a has-
sle. Having to shut down an application server to deploy new beans has an
even greater impact, because that application server cannot service clients
when it is down.

An enhanced value that some E]JB products can provide above and beyond the
EJB specification is a mechanism for deploying enterprise beans in real time.
This means the ability to deploy and redeploy beans without shutting down a
running application server.

458 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Distributed Transactions

In Chapter 10, we examined transactions in depth and noted how multiple
processes on different physical machines could participate in one large trans-
action. This is known as a distributed transaction, and it is a fairly heavyweight
operation. It necessitates the use of the distributed two-phase commit protocol, a
reliable but cumbersome dance that transaction participants must take part in
for a distributed transaction to succeed.

If you require distributed transactions, make sure your EJB server supports
them, and also supports a clean recovery in case of transactional failure. For a
two-phase commit transaction to work, you also need to have the same trans-
action service deployed on all participant machines or to have interoperable
transaction services. Note that very few deployed EJB systems actually
employ distributed transactions today.

Superior Messaging Architecture

If you are using messaging in your system, realize that not all messaging archi-
tectures were created equal. Some messaging architectures do not allow you to
cluster your JMS destinations, which creates single points of failure. Other
messaging architectures cannot support as many messages per second as
others. Be sure to get these statistics from your E]B server vendor.

You also might want to look for additional quality of services (if you need
them) such as synchronous and asynchronous delivery, publish/subscribe
and point-to-point, acknowledgement (ACK) and negative acknowledgement
(NACK) guaranteed message delivery, certified delivery, and transactional
delivery.

Provided EJB Components

Some E]B servers ship EJB components as optional packages with their
servers. This can include personalization components, marketing components,
e-commerce components, vertical industry specific components, and many
more. Making use of any of these components may help to shorten your devel-
opment cycle.

If, on the other hand, you plan to use a third-party bean provider’s compo-
nents, you should ask if the components are certified on the EJB servers you
are choosing between. If not, you run the risk of incompatibility.

Choosing an EJB Server 459

J2EE Connector Architecture (JCA)

The JCA is an extremely important architecture for integrating with existing
systems. If you have existing systems, be sure to ask if your container supports
the JCA, and if so, which JCA adapters are certified on that application server.

Web Services

Web services technologies (XML /HTTP) enable you to integrate with existing
systems seamlessly and are also useful for B2B integration. The major EJB
servers will support the following up-and-coming J2EE Web services APIs:

The Java API for XML Registries (JAXR) enables you to access registries,
such as UDDI servers.

The Java API for XML Binding (JAXB) transforms Java objects to and from
XML documents.

The Java API for XML Parsing (JAXP) enables you to parse XML in a parser-
independent manner.

The Java API for XML-based RPC (JAX/RPC) enables you to send and
receive XML documents using XML-based protocols such as SOAP and
XMLP.

The Java API for XML Messaging (JAXM) is for performing messaging in
XML, such as ebXML.

The Java API for WSDL (jWSDL) enables you to manipulate WSDL
documents.

To learn more about these acronyms and how to build Web services, see the
free whitepaper by The Middleware Company on how to build J2EE Web ser-
vices, located on www.TheServerSide.com.

Workflow

Advanced EJB servers, as well as third-party independent software develop-
ers, are shipping J2EE-based workflow engines. A workflow engine enables
you to model business processes. A business process could span EJB compo-
nents, existing systems, B2B partners, and more. A workflow engine typically
has a flow of control that can change depending upon the state of the current
system. These flows are designed visually using a graphical workflow design
GUI. This is extremely useful for involving business analysts in the develop-
ment of business proce