

ibm.com/redbooks

Self-Study Guide:
WebSphere Studio Application
Developer and Web Services

Ueli Wahli

Teach yourself WebSphere Studio
Application Developer

Learn about Web Services

Create and use Web
Services by example

Front cover

Self-Study Guide: WebSphere Studio Application
Developer and Web Services

February 2002

International Technical Support Organization

SG24-6407-00

© Copyright International Business Machines Corporation 2001, 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (February 2002)

This edition applies to WebSphere Studio Application Developer Version 4 for use with the
Windows 2000 and Windows NT Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 393.

Contents

Preface . xv
The team that wrote this redbook. xvi
Special notice . xvi
IBM trademarks . xvii
Comments welcome. xvii

Part 1. Presentations . 1

Unit 1. Workshop Introduction . 3
Objectives . 4
Prerequisites . 5
Agenda . 6
ITSO Redbooks. 7
Web Services Redbook. 8
Summary. 9
Sample Application . 10
Automobile Dealership Parts Inventory . 11
Stage 1: Local Dealership Inquiry . 12
Stage 2: Inquiry on Vehicle Manufacturer . 13
Stage 3: Dynamic Inquiry Manufacturers - 1. 14
Stage 3: Dynamic Inquiry Manufacturers - 2. 15
Stage 4: Cross-Dealership Inquiry - 1 . 16
Stage 4: Cross-Dealership Inquiry - 2 . 17
System Diagram . 18
Database Implementation . 19
Lab Exercises . 20
Summary. 21

Unit 2. Application Developer: Overview . 23
Objectives . 24
WebSphere Studio Product Suite . 25
Ultimate Development Environment . 26
Ultimate Development Environment Features . 27
Role-based Development . 28
WebSphere Studio Branding. 29
Product Functions . 30
Product Packaging . 31
What is the Studio Workbench? . 32
© Copyright IBM Corp. 2002 iii

Workbench Architecture . 33
Application Developer Overview . 34
Application Developer Components . 35
Prerequisites and Platforms . 36
Installation . 37
Verification . 38
Window Preferences . 39
Workbench: Projects and Perspectives . 40
Project Import . 41
Project Validation . 42
Perspectives . 43
Java Perspective. 44
Web Perspective . 45
J2EE Perspective . 46
XML Perspective . 47
Data Perspective. 48
Server Perspective . 49
Debug Perspective . 50
Help Perspective . 51
Workbench Key Features . 52
Java IDE . 53
Web Tooling . 54
XML Tooling . 55
J2EE Tooling . 56
Web Services Tooling . 57
RDB Tooling . 58
Performance/Trace Tooling. 59
Team Development. 60
Supported Standards . 61
Summary. 62

Unit 3. Application Developer: Java Development 63
Objectives . 64
Java Project . 65
Create Project . 66
Create Project Resources . 67
Java Perspective. 68
Java Perspective Layout . 69
Java Editor . 70
Search. 71
Edit Refactoring. 72
Edit Refactoring Preview. 73
Code Formatting . 74
iv Self-Study Guide: WebSphere Studio Application Developer and Web Services

Type Hierarchy . 75
Scrapbook . 76
Building Projects . 77
Debugging. 78
Debug Perspective . 79
Project Properties . 80
Java Preferences . 81
Summary. 82
Exercise: Java Development. 83

Unit 4. Application Developer: Relational Schema Center 85
Objectives . 86
Application Developer Database Operations . 87
Files: XMI and DDL . 88
Data Perspective. 89
DB Explorer . 90
Navigator View . 91
Creating Database Objects . 92
SQL Statements . 93
SQL Query Builder . 94
SQL Query Execution . 95
Summary. 96
Exercise: Relational Schema Center . 97

Unit 5. Application Developer: XML Development 99
Objectives . 100
XML Usage Today . 101
XML Terminology . 102
XML Perspective . 103
Authoring Tools . 104
DTD Editor . 105
XSD Editor . 106
XML Editor . 107
XML Utilities . 108
XML-to-XML Mapping . 109
XSL Trace . 110
XML from SQL Query . 111
RDB-to-XML Mapping . 112
JavaBean Generation . 113
Summary. 114
Exercise: XML Development. 115

Unit 6. Application Developer: Web Development 117
Objectives . 118
 Contents v

Web Interaction: Simple . 119
Web Interaction: Refined. 120
J2EE Hierarchy . 121
Web Perspective . 122
Web Perspective Folders and Files . 123
Web Project Icons and Wizards . 124
Editing of Web Resources. 125
Create Servlet . 126
web.xml Editor. 127
Wizards . 128
Database Wizard - Run . 129
Database Wizard - View Bean Model . 130
Database Wizard - JSP Taglib Model . 131
Testing of Web Applications . 132
Local and Remote Servers . 133
Runtime Support: Servers. 134
Server Configurations and Instances . 135
Runtime and Test Configurations . 136
Server Perspective . 137
Create Configuration and Instance . 138
Configuration Properties . 139
Testing of Web Applications . 140
Debugging of Web Applications . 141
Summary. 142
Exercise: Web Development. 143

Unit 7. Application Developer: EJB Development. 145
Objectives . 146
EJB Review. 147
EJBs in J2EE Environment . 148
Typical EJB Application. 149
EJB Tooling. 150
J2EE Hierarchy . 151
J2EE Perspective . 152
EJB Development Roadmap. 153
EJB Project . 154
J2EE and Navigator View . 155
Create EJB . 156
IBM Extensions: Inheritance and Associations . 157
Extension Editor: Associations . 158
IBM Extension: Access Beans . 159
Customer Finder Methods. 160
EJB 1.1 JNDI Names . 161
vi Self-Study Guide: WebSphere Studio Application Developer and Web Services

Entity EJB-to-RDB Mapping . 162
Entity EJB-to-RDB Mapping Details . 163
Entity EJB-to-RDB Mapping File . 164
Generate Deployed Code . 165
Migration from VisualAge for Java . 166
EJB Testing. 167
Universal Test Client . 168
Universal Test Client Run . 169
Universal Test Client Functionality . 170
Summary. 171
Exercise: EJB Development . 172

Unit 8. Application Developer: Deployment to WebSphere 173
Objectives . 174
Testing of Applications and EJBs . 175
Publishing and Testing . 176
Defining a Remote AEs Server . 177
Remote AEs Server . 178
Administrative Console of AEs . 179
Installing an Application into AEs or AE . 180
Deployment Activities . 181
Summary. 182
Exercise: Deployment . 183

Unit 9. Application Developer: Profiling Tools 185
Objectives . 186
Overview . 187
Architecture . 188
Remote Agent Controller. 189
Profiling Perspective . 190
Profiling in WebSphere Test Environment . 191
Viewers: Class - Method - Heap . 192
Viewers: Objects - Execution Flow . 193
Viewers Examples: Class - Method . 194
Viewers Examples: Objects - Execution Flow. 195
Hints and Tips . 196
Summary. 197
Exercise: Profiling . 198

Unit 10. Application Developer: Team Development. 199
Objectives . 200
Team Development Architecture. 201
Workspace . 202
Terminology . 203
 Contents vii

Optimistic Concurrency Model . 204
Comparison of Version Control Systems . 205
Terminology Comparison . 206
Installing and Configuring CVS . 207
Team Perspective . 208
Connecting to the Repository . 209
Add Project to Repository . 210
Add Project from Repository . 211
Team-Specific Actions . 212
Synchronization. 213
Synchronization - Conflicts and Ignoring. 214
Versioning . 215
Parallel Development . 216
Multiple Streams . 217
Summary. 218

Unit 11. Web Services Overview . 219
Objectives . 220
Evolution of the Web . 221
What are Web Services? . 222
Web Services Attributes and Examples . 223
Conceptual Web Services Stack. 224
Web Services Components. 225
Web Services Roles . 226
SOAP Introduction . 227
SOAP Message Example . 228
SOAP Data Model. 229
Apache SOAP Server . 230
Service Implementation and Client Example . 231
WSDL Overview . 232
WSDL Interface Example . 233
WSDL Interface Example Binding. 234
WSDL Implementation Example . 235
UDDI Overview . 236
UDDI Server and Registry. 237
UDDI Registry API . 238
UDDI Registries . 239
Web Services Flow Language . 240
Development of Web Services . 241
Static and Dynamic Web Services . 242
Web Services and Security . 243
Create Web Service from Application . 244
Create Web Service from WSDL . 245
viii Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create Client from WSDL . 246
Web Service Example . 247
More Information . 248
Summary. 249

Unit 12. Creating Web Services . 251
Objectives . 252
Create Web Service from Application . 253
Creating a Web Service . 254
Web Service Example . 255
Web Service Example Generated Code . 256
Web Service Wizard - 1 . 257
Web Service Wizard - 2 . 258
Web Service Wizard - 3 . 259
Generated SOAP Deployment Descriptor. 260
Administrative Application . 261
Generated Client Proxy. 262
Generated Test Client . 263
Testing the new Web Service . 264
Deployment to WebSphere . 265
Summary. 266
Exercise: Create a Web Service . 267
Exercise: Deploy a Web Service . 268

Unit 13. Using Web Services . 269
Objectives . 270
Create Client from WSDL . 271
Web Service Example . 272
Web Service Example Generated Code . 273
Web Service Wizard . 274
Generated Client Proxy. 275
Test Client . 276
Test Client Result JSP Processing . 277
Creating a Client Application. 278
Client Application Run . 279
Servlet Code with Proxy and XSL . 280
XSL to transform XML into HTML . 281
Application with Dynamic Web Services . 282
Dynamic Web Service: Sample Code . 283
Summary. 284
Exercise: Using a Web Service . 285

Unit 14. Web Services and the UDDI Explorer . 287
Objectives . 288
 Contents ix

UDDI Explorer and UDDI Registry . 289
UDDI Explorer . 290
UDDI Explorer Function . 291
Publish Business Entity . 292
Publish Business Service . 293
Importing a WSDL File . 294
Summary. 295
Exercise: UDDI Explorer . 296

Part 2. Exercises . 297
Sample data . 298

Exercise 1. Java development . 299
Exercise instructions . 300

Define a Java project . 300
Create a package and a class. 300
Complete the code . 300
Code assist and hover help. 301
Outline view. 301
Replace from local history . 301
Smart import assist . 302
Extracting a method . 302
Running the application. 302
Setting the build path . 303
Import a Java source file . 303
Search. 304
Run GUI program . 304
Debugging. 305
Type hierarchy (optional) . 305
Rename (optional). 306
Scrapbook page (optional) . 306

What you did in this lab . 307

Exercise 2. Relational Schema Center . 309
Exercise instructions . 310

Define a project for relational database . 310
Create a database connection and import tables 310
Create a database and a table . 311
Generate, import, and run DDL. 311
SQL Query Builder (optional) . 312

What you did in this lab . 313
x Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 3. XML development . 315
Exercise instructions . 316

Define a Java project and import files . 316
Edit DTD and XML schema. 316
Work with XML files. 317
Generate an HTLM form . 318
XML to XML mapping . 318
Translating an XML file . 319
SQL to XML mapping (optional) . 319

What you did in this lab . 320

Exercise 4. Web development . 321
Exercise instructions . 322

Define a Web project. 322
Import a Web application . 322
Complete the code . 323
Preparing a server for testing . 324
Test the Web application. 324
Using the Database wizard . 325
Configure data source and test . 326
Export Web application as WAR file . 326
Using the Database wizard and generate JSPs (optional) 326
Debugging JSPs (optional) . 327

What you did in this lab . 327

Exercise 5. EJB development. 329
Exercise instructions . 330

Define an EJB project . 330
Create an entity bean . 330
Editing the bean . 331
Complete the bean with create and business methods 331
Home and remote interface. 332
Create the mapping to the database table . 332
Generate deployed code. 333
Bind the container to a DataSource . 333
Testing the inventory bean . 333
Creating a session bean (optional) . 334
Test the session bean (optional) . 335
Add a servlet and HTML file . 335
Run the servlet application . 337

What you did in this lab . 337
 Contents xi

Exercise 6. Test and deploy using WebSphere AEs 339
Exercise instructions . 340

Prepare Web application dependency . 340
Configure a server for remote testing in WebSphere AEs 340
Test the applications in the remote AEs server. 341
Prepare WebSphere AEs for deployment of applications 341
Deploying an enterprise application to AEs . 342
Installing the universal test client in AEs (optional) 343
Stop the AEs server . 344

What you did in this lab . 344

Exercise 7. Profiling an application . 345
Exercise instructions . 346

Configure server instance . 346
Agent Controller . 346
Start the server . 346
Configure the host . 346
Trace an application . 347
Trace analysis . 347
Close down . 347

What you did in this lab . 348

Exercise 8. Create a Web Service . 349
Exercise instructions . 350

Import an EJB project . 350
Define a server configuration and instance. 351
Create a Web project for the Web Service . 352
Copy the server JavaBean from the EJB project 352
Create the Web Service from the JavaBean. 352
Generated files . 353
View deployed Web Service . 355
Client proxy . 355
Sample client. 355
Monitoring a Web Service (optional) . 356

What you did in this lab . 356
Addendum: how the EJB JAR file was created . 357

Exercise 9. Deploy and test a Web Service. 361
Exercise instructions . 362

Prepare the Web application. 362
Prepare WebSphere AEs for port 8080 . 362
Install the EAR file with EJBs and Web applications. 363
Testing the deployed Web Service . 363

What you did in this lab . 363
xii Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 10. Using a Web Service in a client application 365
Exercise instructions . 366

Define a Web project for the client . 366
Start the server . 366
Generate the Web Service proxy and sample client 366
Test the sample client . 367
Build the client application. 367
Test the client application . 367
Deploy the client application (optional) . 368

What you did in this lab . 368

Exercise 11. Web Service publishing in the UDDI registry 369
Which UDDI registry to use. 370

Exercise instructions . 371
Register a user ID and password . 371
Connecting to the registry . 371
Creating a business entity in the registry . 371
Publishing a Web Service to the registry . 372
Finding a Web Service in the registry . 372
Importing a Web Service from the test registry . 373

Application with dynamic Web Services (optional) 373
Test the dynamic Web Services (optional) . 374

What you did in this lab . 375

Part 3. Appendixes . 377

Appendix A. Installation and configuration . 379
Windows NT or Windows 2000 . 379

Browser . 379
DB2 Version 7.2 Enterprise Edition (or 7.1 Fixpack 3) 380

Create sample database . 380
Change to JDBC 2.0 . 380

WebSphere Application Server Advanced Version 4 381
WebSphere Studio Application Developer . 382
WebSphere UDDI Registry . 383
ITSO workshop sample code. 384

Create DB2 database for exercise . 384
Cloning of machines . 385
Performing the exercises . 385

Sample code . 385
 Contents xiii

Appendix B. Additional material . 387
Locating the Web material . 387
Using the Web material . 388

System requirements for downloading the Web material 388
How to use the Web material . 388

Related publications . 389
IBM Redbooks . 389
Referenced Web sites . 390
How to get IBM Redbooks . 391

IBM Redbooks collections. 391

Special notices . 393

Abbreviations and acronyms . 395

Index . 397
xiv Self-Study Guide: WebSphere Studio Application Developer and Web Services

Preface

This IBM Redbook is a self-study guide for the new application development tool
WebSphere Studio Application Developer and for Web Services.

WebSphere Studio Application Developer is the new IBM tool for Java
development for client and server applications. It provides a Java integrated
development environment (IDE) that is designed to provide rapid development
for J2EE-based applications. It is well integrated with WebSphere Application
Server Version 4 and provides a built-in single server that can be used for testing
of J2EE applications.

Web Services are a new breed of Web applications. Web Services are
self-contained, self-describing, modular applications that can be published,
located, and invoked across the Web. Web Services perform callable functions
that can be anything from a simple request to complicated business processes.
Once a Web Service is deployed and registered, other applications can discover
and invoke the deployed service. The foundation for Web Services is based on
the simple object access protocol (SOAP), the Web Services description
language (WSDL), and the Universal Description, Discovery, and Integration
(UDDI) registry.

This redbook consists of two parts, a presentation guide and an exercise guide:

� The presentation guide explains the new tool and Web Services.

� The exercise guide provides detailed instructions to perform exercises using
WebSphere Studio Application Developer. The sample code used for the
exercises is available for download at the Redbooks Internet site. The sample
code also includes the solutions that can be loaded and studied.
© Copyright IBM Corp. 2002 xv

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Most of the content of this book is based on the redbook Web Services Wizardry
with WebSphere Studio Application Developer, SG24-6292, written by:

� Mark Tomlinson, IBM Application and Integration Middleware technical sales
team, London, England

� Olaf Zimmermann, Consulting IT Architect at IBM Global Services, BIS
e-business Integration Services, Heidelberg, Germany

� Wouter Deruyck, consultant for the EMEA AIM Partner Technical
Enablement Team, La Hulpe, Belgium

� Denise Hendriks, Managing Director and WebSphere Architect with
Perficient, Inc.

Special notice
This publication is intended to help Java developers create client and server
applications on the WebSphere platform, including the creation and usage of
Web Services. The information in this publication is not intended as the
specification of any programming interfaces that are provided by WebSphere
Studio Application Developer. See the PUBLICATIONS section of the IBM
Programming Announcement for WebSphere Studio Application Developer for
more information about what publications are considered to be product
documentation.

Ueli Wahli is a Consultant IT Specialist at the IBM
International Technical Support Organization in San
Jose, California. Before joining the ITSO 18 years
ago, Ueli worked in technical support at IBM
Switzerland. He writes extensively and teaches IBM
classes worldwide on application development,
object technology, VisualAge for Java, WebSphere
Studio, and WebSphere Application Server products.
Ueli holds a degree in Mathematics from the Swiss
Federal Institute of Technology.
xvi Self-Study Guide: WebSphere Studio Application Developer and Web Services

http://www.ethz.ch
http://www.ethz.ch

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

e (logo)®
Redbooks Logo
CICS
IBM Registry
NetRexx
WebSphere

IBM ®
AIX
DB2
IMS
OS/390
VisualAge

Redbooks
AlphaWorks
IBM Global Network
MQSeries
S/390
z/OS
 Preface xvii

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xviii Self-Study Guide: WebSphere Studio Application Developer and Web Services

Part 1 Presentations

This presentation guide is structured into 14 units:

� A short introduction

� Nine units on WebSphere Studio Application Developer

� Four units on Web Services

Part 1
© Copyright IBM Corp. 2002 1

2 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 1. Workshop Introduction

Visual 1-1 Title

1

International Technical Support Organization

ibm.com

Workshop Introduction

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 3

Visual 1-2 Objectives

The objectives for this class are two-fold:

� Understand and work with the WebSphere Studio Application Developer

� Understand the new technology of Web Services

Most of the learning occurs by doing the practical lab exercises using the
WebSphere Studio Application Developer and WebSphere Application Server
Advanced Edition Single Server.

Objectives

Understand the new IBM application development tool
WebSphere Studio Application Developer

Projects
Perspectives and views
Java, XML, Web, EJB, database development
WebSphere Test Environment
Profiling
Team development

Understand Web Services
Technology
Creating Web Services
Using Web Services
Composing new applications with Web Services
Using the UDDI Registry

Practical experience with new product and Web Services
4 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-3 Prerequisites

Having extensive experience with existing IBM application development products
is not a prerequisite for this class. A number of beginners have successfully gone
through the class, although beginners may not get through the optional parts of
the exercises in the allocated time frame.

Any experience with Java development tools helps, but the most important thing
is that you have a basic understanding of servlets and JavaServer Pages (JSPs),
because these are used in many of the sample applications.

Prerequisites

Prerequisites for this class
Basic understanding of Web Server/Application Server concepts
Practical experience with VisualAge for Java

Understanding of JavaBeans
WebSphere Test Environment

Some experience with WebSphere Application Server
Installing Web applications
Configuring an application server

Some knowledge of HTML, JSP, servlets, EJB
Model-View-Controller pattern
 Unit 1. Workshop Introduction 5

Visual 1-4 Agenda

This is the agenda of the 3-day class, consisting of two days on the Application
Developer tool, and one day on Web Services.

About half the time is spent on lab exercises.

Agenda: Presentations - Lab Exercises

Day 1 Day 2 Day 3

9

10

11

12

1

2

3

4

Introduction

WSAD Overview

Java Development

Relational Center

XML Development

XML Lab

Web Application Lab

Web Development

EJB Development

EJB Lab

Deployment

Profiling

Database lab

Profiling Lab

Web Services
Overview

Create WS lab

Create Web Service

Use WS Lab

UDDI Explorer

UDDI Lab
Deployment Lab

Java Lab

Team Development

Use Web Service

Deploy WS lab
6 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-5 ITSO Redbooks

IBM Redbooks are a great source for technical information on application
development tools. Here is a list of recent redbooks:

SG24-6134 WebSphere Version 4 Application Development Handbook
SG24-6124 Programming J2EE APIs with WebSphere Application Server
SG24-6284 Enterprise JavaBeans for z/OS and OS/390 CICS Transaction

Server
SG24-6144 EJB Development with VisualAge for Java for WebSphere

Application Server
SG24-5264 Programming with VisualAge for Java Version 3.5
SG24-6136 Version 2.5 Self-Study Guide: VisualAge for Java and

WebSphere Studio
SG24-6131 How about Version 3.5: VisualAge for Java and WebSphere

Studio Provide Great New Function
SG24-5754 Design and Implement Servlets, JSPs, and EJBs for IBM

WebSphere Application Server
SG24-5755 Servlet and JSP Programming with IBM WebSphere Studio and

VisualAge for Java

ITSO Redbooks: source for more information

International Technical Support Organization
Homepage: ibm.com/redbooks

PDF files - Redpieces (drafts) - Sample code - Search

ITSO San Jose recent AD Redbooks:
WebSphere V4 Appl. Dev. Handbook
Programming J2EE APIs with WebSphere
EJBs for z/OS and OS/390 CICS Trans. Server
EJB Development with VA Java for WebSphere
Programming with VA Java Version 3.5
Version 3.5 Self-Study Guide: VA Java/Studio
How about Version 3.5 of VA Java/Studio
Servlet/JSP/EJB Design and Implementation
Servlet and JSP Programming
XML Files (2 books)
 Unit 1. Workshop Introduction 7

Visual 1-6 Web Services Redbook

A new IBM Redbook, Web Services Wizardry with WebSphere Studio
Application Developer, SG24-6292, is a companion book to this class.

This book covers in great detail many of the concepts that are discussed in this
class. The examples in the redbook are more comprehensive than the simple
examples that we cover in the class.

Web Services Redbook

SG24-6292 Web Services Wizardry with
WebSphere Studio Application Developer

Structure similar to workshop
Comprehensive explanations of
Web Services architecture
More complicated examples
Currently a Redpiece

http://www.redbooks.ibm.com
Redbooks Online
Redpieces
8 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-7 Summary

To successfully run the lab exercises of this class, you must have fast machines
with ample memory. The memory is more important than the processor speed,
especially when we run WebSphere Application Server and WebSphere Studio
Application Developer at the same time.

Summary

This is a very technical workshop with many hands-on labs
Learning through practical experience

Hardware:
Fast machines required
Memory at least 384 MB, but 512 MB is better

Software:
DB2 Version 7.2 (or 7.1 Fixpack 3)
WebSphere Application Server Advanced Single Server
WebSphere Studio Application Developer
WebSphere UDDI Registry

Evaluation forms must be turned in!
 Unit 1. Workshop Introduction 9

Visual 1-8 Sample Application

The class is based on a sample application that is explained in detail in the
redbook Web Services Wizardry with WebSphere Studio Application Developer,
SG24-6292.

International Technical Support Organization

Sample Application
10 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-9 Automobile Dealership Parts Inventory

The sample is based on parts inventory applications of an automobile dealership,
the manufacturer of the vehicles, and independent parts manufacturers.

The application grows in four stages:

� Local Web application with servlets and JSPs

� Static Web Service, where the local application interacts with a Web Service
implemented by the vehicle manufacturer

� Dynamic Web Service, where the local application interacts with multiple Web
Services implemented by parts manufacturers

� Composed Web Service, where other dealers invoke the dealership
application, which has been converted into a Web Service, which in turn calls
other Web Services

Automobile Dealership Parts Inventory

Parts inventory application grows in stages:

Local dealership inquiry
simple Web application to browse parts

Inquiry on vehicle manufacturer system
search manufacturer national warehouse (if no local stock)

Web Service with static binding between dealer and manufacturer

Dynamic inquiry
search Internet for 3rd-party parts manufacturers

Web Service with dynamic binding

Cross dealership inquiry enablement
network of local dealerships with integrated parts systems

Composed Web Service (one Web service calling another Web service)
 Unit 1. Workshop Introduction 11

Visual 1-10 Stage 1: Local Dealership Inquiry

In stage 1 we have a simple browser-based Web application, with servlets and
JSPs, that displays parts information from an underlying DB2 database.

A mechanic can look up the database to find out if a certain part is available in
the dealership. If a part is not available, the mechanic has to call the vehicle
manufacturer to have a part shipped from the manufacturer’s warehouse.

Stage 1: Local Dealership Inquiry

JDBCHTTP

Dealership Parts &
Inventory Database

Dealership Web
Application Server

Servlets

JSPs

WebSphere AE 4.0 DB2 UDB 7.2

Mechanic
(Browser)

J2EE Web application
MVC pattern with servlets, JSPs
JDBC access to database
12 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-11 Stage 2: Inquiry on Vehicle Manufacturer

In stage 2, the vehicle manufacturer converts its existing EJB-based Web
application into a Web Service.

The dealership then enhances its own Web application to invoke the Web
Service. If a part is not available locally, the mechanic can now invoke the Web
Services and get immediate feedback as to where the vehicle manufacturer has
the requested part. (This could be extended to having the requested part
shipped.)

Stage 2: Inquiry on Vehicle Manufacturer

Manufacturer defines Web Service for parts application
EJB-based database access
Dealer uses Web Service to inquire for parts

SOAP/HTTP

Dealership Parts
& Inventory DB

Dealership Web
Applicat. Server

Servlets

JSPs
Mechanic
(Browser)

JDBC

Manufacturer Parts
& Inventory DB

Manufacturer
National Depot
App. Server

EJBsSOAP Server

Dealer

 Manufacturer
SOAP Client

JDBC

WebSphere AE 4.0 DB2 UDB 7.2

HTTP
 Unit 1. Workshop Introduction 13

Visual 1-12 Stage 3: Dynamic Inquiry Manufacturers - 1

In stage 3, independent parts manufacturers want to participate in the automated
approach.

The auto parts association (a fictional consortium of manufacturers) implements
a UDDI registry where manufacturers can publish their parts inventory Web
Services (1). The association checks that all Web Services implement the same
interface.

The dealership Web application is now enhanced to dynamically find
implementations of the parts inventory Web Service by querying the UDDI
registry (2), and then invoke the Web Service at the manufacturers’ sites (3).

The mechanic is presented with a list of locations where a requested part is
available.

Parts
Manufacturer

Stage 3: Dynamic Inquiry Manufacturers - 1

JDBCHTTP

Dealership Parts
& Inventory DB

Dealership Web
Applicat. Server

Servlets

JSPs
Mechanic
(Browser)

JDBC

Manufacturer Parts
& Inventory DB

Manufacturer
National Depot
App. Server

EJBs

SOAP Server

Parts
Manufacturer

UDDI Registry

SOAP Server

SOAP
Server

 2

 3 3 1

SOAP Client

 1

UDDI
DB
14 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-13 Stage 3: Dynamic Inquiry Manufacturers - 2

Parts manufacturers (vehicle manufacturer and independent) publish their Web
Services in a UDDI registry.

The UDDI registry could be a public registry where all the entries of parts
inventory Web Services are under control of the auto parts association, or it
could be a private registry run by the association. Each part manufacturer can
then register their Web Service (1).

Web Services can be located by using a browser interface to the registry, or by
using an API directly from the dealership application (2).

Each Web Service implementation can then be invoked by the dealership Web
application (3).

Stage 3: Dynamic Inquiry Manufacturers - 2

Parts manufacturers implement Web Services
Car manufacturer and parts manufacturers register Web Services in
UDDI Registry

Public registry
Auto industry registry

Dealership finds Web Services in UDDI Registry
Browser search
UDDI API enables searches and retrieve of implementer's data

Dynamically invokes Web Services to locate parts
Application may invoke multiple Web Service implementations to locate parts
at any manufacturer

1 - Publish Web Service (manual or SOAP/HTTP)

2 - Find Web Service using SOAP/HTTP

3 - Invoke Web Service at manufacturers
 Unit 1. Workshop Introduction 15

Visual 1-14 Stage 4: Cross-Dealership Inquiry - 1

In stage 4, the dealership Web application is turned into a parts inventory Web
Service as well. Such a service would be available to other dealers that do not
want to implement the dynamic Web Service themselves.

Other dealers can modify their own Web applications to call the primary
dealership Web Service, which in turn invokes the manufacturers’ Web Services
if a part is not available locally.

Stage 4: Cross-Dealership Inquiry - 1

Parts
Manufacturer

 DBDealership Web
Applicat. Server

Servlets

JSPsMechanic
(Browser)

Parts
Manufacturer

UDDI
Registry

SOAP Server

SOAP
Server 1 4

JDBC

Manufacturer
Parts & Inventory
DB

Manufacturer
National Depot
App. Server

EJBs

Other
Dealership

SOAP
Server

SOAP
Client

 2
 3

SOAP Server

SOAP
Client
16 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-15 Stage 4: Cross-Dealership Inquiry - 2

The dealership converts their application into a Web Service, and optionally
publishes the Web Service to the UDDI registry (1).

Other dealerships can query the registry to locate parts inventory Web Services
(2). Then they can invoke the Web Service of the primary dealership (3).

If no parts are available at the primary dealership, the Web Service invokes the
manufacturers’ Web Services (4).

Stage 4: Cross-Dealership Inquiry - 2

Dealers implement and publish own Web Services
Dealer's Web Service uses manufacturers' Web Services
Composed Web Services

1 - Publish Web Service (dealer)

2 - Find Web Service using SOAP/HTTP
Other dealers

3 - Invoke Web Service of dealer

4 - Dealer Web Service invokes manufacturers' Web Services
Composed Web Service
 Unit 1. Workshop Introduction 17

Visual 1-16 System Diagram

This diagram shows all relationships between the parties involved:

� There are two type of manufacturers (vehicle manufacturers and independent
parts manufacturers). They can register their Web Services in a UDDI
Registry.

� The dealership, which employs mechanics, can query the registry, and cam
also publish its own Web Service to the registry.

� The dealership is related to one vehicle manufacturer, who may have many
dealerships.

� The dealership may get parts from many parts manufacturers.

� The dealership and the manufacturer store parts and inventory data in a
relational database. There can be many inventory records for one part.

� In the redbook sample application, we implement a database with part and
inventory tables for a dealer and a manufacturer, and a UDDI registry.

System Diagram

Web Services
Registry

Manufacturer

VehicleManuf.

Dealership
Part

Inventory

MechanicPartsManuf.

1 n

1

n

n

1

1

n

n

n 1

n

register

register

search

implemented
18 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-17 Database Implementation

The relational database contains two sets of two tables:

� AAPARTS and AAINVENTORY for the dealership

� MMPARTS and MMINVENTORY for the manufacturer

In this example, for the sake of simplicity, the two sets of tables are identical, but
in real life the layout of the tables would be different.

A number of different data types are used for the columns. The choices were
made to illustrate how the Application Developer deals with the different types.
These choices do not reflect real life and best performance.

Database Implementation

partNumber name description weight image_URL

M100000001 CR-MIRROR-L-01 Large mirror left... 10.5 mirror01.gif

itemNumber partNumber quantity cost shelf location

21000002 M100000001 10 89.99 2A AA - Almaden

PARTS (Dealer: AAPARTS, Manufacturer: MMPARTS)
char(10) char(30) varchar(100) double varchar(100)

INVENTORY (Dealer: AAINVENTORY, Manufacturer: MMINVENTORY)
bigint char(10) integer dec(10,2) char(2) varchar(100)

FK
 Unit 1. Workshop Introduction 19

Visual 1-18 Lab Exercises

The class consists of lectures and 11 exercises that illustrate many of the
facilities of the Application Developer.

Lab Exercises

Use WebSphere Studio Application Developer to:
Implement local dealership inquiry
Java development, test, debugging
Database development
XML Development
Web development

Implement manufacturer EJB application
EJB development
Deployment to WebSphere AEs
Analyze performance (profiling)

Create and use Web Service
Create Web Service for manufacturer application
Deployment of Web Service to WebSphere AEs
Use Web Service in dealer application

Dynamic Web Services
UDDI registry
20 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 1-19 Summary

The sample application illustrates many application development tasks and
provides hands-on practice with most of the tools built into the Application
Developer.

Summary

The sample application provides
Learning through practical example
Understanding of concepts
Hands-on exercises with actual data
 Unit 1. Workshop Introduction 21

22 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 2. Application Developer:
Overview

Visual 2-1 Title

2

International Technical Support Organization

ibm.com

Application Developer Overview

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 23

Visual 2-2 Objectives

The objectives of this unit are to provide an overview of the new WebSphere
Studio product suite, and a basic understanding of the functionality of the
Application Developer.

Objectives

Understand the new set of tools
WebSphere Studio Workbench
WebSphere Studio Site Developer
WebSphere Studio Application Developer
WebSphere Studio Enterprise Developer

Understand the basic functionality of the
WebSphere Studio Application Developer

Projects
Perspectives
Tooling

Java, Web, J2EE, Web Services, XML, Database, Tracing, Team
24 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-3 WebSphere Studio Product Suite

The WebSphere Studio product suite replaces, over time, the existing Java and
Web application development tools, VisualAge for Java and WebSphere Studio
(classic).

The new tools are built on an open platform and provide leading edge:

� EJB and J2EE tooling, based on J2EE 1.2 specifications

� Enterprise connectivity (not in first release)

� Built-in unit test environment (WebSphere Application Server and Tomcat)

� Incremental compilation

� Rich debugging (including remote debugging)

� Integrated team environment

WebSphere Studio Product Suite

Provide the leading Web/Java development platform
Open tooling and runtime support
Open programming model

Provide leading enterprise connectivity
EJB and J2EE tooling
Enterprise connectivity with Enterprise Access Builders

Provide leading integrated end-to-end development
Built-in unit test environment
Incremental compilation
Rich debugging support

Providing leading team development solution
Integrated version control
 Unit 2. Application Developer: Overview 25

Visual 2-4 Ultimate Development Environment

This ultimate development environment is built on a highly pluggable open
source platform, the WebSphere Studio Workbench.

On top of this platform, IBM implemented the Application Developer, and other
vendors are encouraged to integrate their tools onto the platform.

The development environment is tailored for role-based development, with
appropriate user interface functions for specific roles in the development
process.

All assets are stored in a file-based repository.

Over time, all functions of VisualAge for Java and WebSphere Studio (classic)
will be implemented in the Application Developer.

In addition, Web Services are supported already in the new tool.

Ultimate Development Environment

New development environment
Ultimate tool integration platform

Based on open, highly pluggable platform
WebSphere Studio Workbench

Provide multi-level vendor integration

Provide role-based development model
Focus on assets, not on tool

Common repository for all assets and tools
Provide (over time) many of the functions of
VisualAge for Java Enterprise
WebSphere Studio Advanced

Provide rapid support for new standards and technologies
Web Services
26 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-5 Ultimate Development Environment Features

The new tool combines the major functions of the existing tools, VisualAge for
Java and WebSphere Studio (classic), plus a set of new functions that were not
available in the old set of tools.

Ultimate Development Environment Features

VisualAge for Java
Incremental Compilation
Code Assist
Unit Test Environment
Scrapbook
EJB Development
Enterprise Access
Dynamic Debugging

WebSphere Studio
Page Editing (HTML, JSP)
Link Management
Advanced Publishing
SQL/Database Wizards
Web Application Packaging

New features
Vendor Plug-in
File-based IDE
XML Tooling
Web Services Tooling
Pluggable JDK Support
Flexible Open Team Development Environment
......

+

 Unit 2. Application Developer: Overview 27

Visual 2-6 Role-based Development

The new tool provides functions based on the multiple roles in the development
process of Web-based applications.

Tailored user interfaces and tools are provided for each role through
perspectives. A perspective incorporates a set of views of the underlying
resources, and a set of tools to manipulate those resources.

Role-based Development

One tool, many user perspectivesOne tool, many user perspectives

Enterprise
Integrator

Bean
Provider

Application
Assembler

Page
Producer

Web
Master

JavaBean
EJB

JavaBean
EJB

Servlet, JSP,
JavaBean

HTML, JSP,
MIME type

Config Data
Site Usage

Connection
Data

Business
Logic Data

Application
Flow

Page Layout
and Content

Operational
Environment

WebSphere Studio Tooling
-------- where everything and everyone works together --------

-------------------------------------- role ---
28 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-7 WebSphere Studio Branding

The suite of WebSphere Studio products is composed of:

� Workbench—open source platform with underlying technology for tool
builders

� Site Developer—Web application development with servlets, JSPs, XML, and
Web Services

� Application Developer—adds J2EE with EJBs and full database support to
the Site Developer

� Enterprise Integrator—adds connectors and flow modeling

� Enterprise Developer—adds support for z/OS and eRad (the VisualAge
Generator technology)

Note: Enterprise Integrator and Enterprise Developer are tentative names.

WebSphere Studio Branding

WebSphere Studio is the brand name for the new tooling

WebSphere Studio Workbench
Platform for tool developers (IBM and vendors)

WebSphere Studio Site Developer
HTML, JSP, Servlets, XML, Web Services
WebSphere Application Server and Team support

WebSphere Studio Application Developer
Site Developer +
J2EE, EJB, Database applications

WebSphere Studio Enterprise Integrator
CCF (Common Connector Framework) runtime
J2C (J2EE Connector Architecture)
Flow modeling

WebSphere Studio Enterprise Developer
z/OS and OS/390 tooling (COBOL, PL/I)
eRad (VisualAge Generator technology)
 Unit 2. Application Developer: Overview 29

Visual 2-8 Product Functions

This diagram shows the increase in functionality from the simple Homepage
Builder (which is not based on the Studio Workbench), to the Site Developer,
Application Developer, and the Enterprise Integrator and Developer.

Product Functions

Core Java IDE
Create Web pages
Animate and customize

EJB Development
J2EE Development
J2EE Deployment
Profiling

JSP tags
XML
JavaBean Wizard
Database Wizard
Web Services Wizards
Team Environment

IRAD
COBOL and PL/I
Enterprise Connectors
(CCF and J2C)

Enterprise
Integrator
Developer

Application
Developer

Site
Developer

Homepage
Builder
30 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-9 Product Packaging

In August 2001, the beta code of the Application Developer was made available
together with VisualAge for Java Version 4.

In November 2001, the final Application Developer product was made available,
and a copy of VisualAge for Java is included with the product. At the same time,
the Studio Workbench was made open source for any vendor/developer.

The Site Developer has been available as beta code since November 2001, and
will become available in the first half of 2002.

The Enterprise Integrator and Enterprise Developer will become available during
2002.

Product Packaging

Early 2001 August 2001 November 2001 2002

Studio
Workbench

Beta

Studio
Workbench

V 1.0

Studio
Workbench

Preview

Studio
Ent.Dev.
Version 4

App. Dev.
Beta

VA Java

Version 4

Studio
App.Dev.
Version 4

Studio
Pro/Adv
Version 4

VA Java
Version 4

Site Dev.
Beta

Exclusively from
Partner World

Open Source
(everybody)

In the box
packaging

Studio
Site Dev.

Beta-2
 Unit 2. Application Developer: Overview 31

Visual 2-10 What is the Studio Workbench?

The Studio Workbench contains the underlying technology for the Site and
Application Developer, and for any vendor that wants to integrate to the platform.

The Workbench is open source and available at:

http://www.eclipse.org

Tool builders can use the Workbench to integrate their tools to the platform by
creating plug-ins that can be added to the Site or Application Developer.

What is the Studio Workbench?

Open and portable universal tooling platform and integration
technology

For tool builders, not customers
Base platform for new Studio tools (Site and Application Developer)

Core Workbench technology becomes open source project
http://www.eclipse.org

Framework, services, and tools for tool builders
Focus on tool building, not tool infrastructure

Develop plug-ins to install in products

Early code was on AlphaWorks
WSDE = Web Services Development Environment
32 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-11 Workbench Architecture

The basic architecture is shown in this diagram.

The platform core provides the integration points (called extension points) for
plug-ins. Plug-ins are used to add tools to the platform by implementing some of
the extension points.

One set of extension points is for version and configuration management. This is
currently implemented by Concurrent Version System (CVS) and ClearCase
Light (CCLT), and will be supported by WebDAV in the future.

Frameworks can be used by tools for functionality:

� Graphics Editing Framework (visual builders)

� Meta Object Framework (to store tool data in XMl files)

� Java Development Tooling (compilation)

Workbench Architecture

Only CVS
in beta

Meta
Object

Framework

Graphics
Editing

Framework
 Unit 2. Application Developer: Overview 33

Visual 2-12 Application Developer Overview

In this section we provide an overview of the functions of the Application
Developer.

International Technical Support Organization

Application Developer Overview
34 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-13 Application Developer Components

The features of the Application Developer can be grouped into features that are
also available in the Site Developer, and features that are exclusive to the
Application Developer:

� Full EJB 1.1 support

� J2EE 1.2 support

� Profiling (performance analysis tools)

� EJB deployment

� Migration and interoperation with VisualAge for Java

� Full database support for many platforms and database vendors

Application Developer Components

Site Developer features
Partial Studio Classic features

Migration from Classic

WAS 4.0 Exploitation
WAS 4 AEs built-in

JDK 1.3 JRE is included
Integrated Java IDE
JSP 1.1 and Servlet 2.2
XML Tools
Web Services Tools

SOAP, WSDL, UDDI

Database Tools (limited)
Server Configuration
Deployment to WAS 4 and
Tomcat
Team Support (CVS, CC LT)

Application Developer ++
EJB 1.1 creation, mapping,
testing, assembly, deployment
Creation of J2EE packaging
Profiling support
(Performance Analysis)
Command line gen/deploy
(EJBDeploy)
Migration/interoperation from
VisualAge for Java
Database support (DB2, /400,
/390, Oracle, Sybase,
SQLServer)
 Unit 2. Application Developer: Overview 35

Visual 2-14 Prerequisites and Platforms

The Application Developer requires 384 or 512 MB of memory for decent
operation with use of an application server and a relational database at the same
time.

The development environment is limited to Windows (200, NT, 98, ME) for now,
with Linux coming in 2002.

Deployment of Web applications is supported for all platforms where WebSphere
Application Server is available.

Prerequisites and Platforms

Hardware
Pentium II or better, 256 MB
For realistic work environment 384MB or 512MB

Disk: 400 MB (70 MB TEMP for installation)

Software
Windows NT 4 (SP 6a) or 2000 (SP 1), Windows 98/ME, Linux (beta)
Database support:

DB2 UDB 6.1, 7.1, 7.2, DB2/390 7.1 FP3, DB2/400
Oracle 8i R3 8.1.7, Sybase Adaptive 11.9.2, 12.0
SQL Server 7.0 SP2 and 2000 (Merant driver)
Informix 7.31 and 9.21 (Merant driver)

Deployment platforms
Dependent on Application Server (for example, WebSphere AE)

Windows NT 4 SP6a, Windows 2000 and 2000 Server
AIX 4.3.3, /390, /400, Solaris, HP-UX, Linux
Windows 98/ME
36 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-15 Installation

Installation of the Application Developer is straightforward.

You have to choose the installation directory and a primary user role (which can
be changed later).

The process also installs the IBM Agent Controller, which is required for remote
debugging and performance analysis. The Agent Controller must be manually
installed on other machines and platforms where deployed code is executing for
debugging or performance analysis.

Installation

Standard installation process
Run SETUP.EXE
Select target location
c:\Program Files\IBM\Application Developer
===> d:\WSAD

Select primary user role:
Set default perspective (view)
Can be changed later

Installs
Application Developer
IBM Agent Controller
(for remote debugging)

Reboots in NT if
Windows components
missing during install
Directory structure

configurations
JDK 1.3
tools
limitations
user projects
 Unit 2. Application Developer: Overview 37

Visual 2-16 Verification

When the product is started after installation, a welcome panel is displayed.

Verification

Perspectives Projects

Editors

Tasks/ProblemsTabs/Pages

Views
38 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-17 Window Preferences

Many defaults can be set in the Window Preferences dialog (select Window ->
Preferences in the menu bar).

For example, you can configure additional editors based on the file type, or install
additional Java runtime code (JRE) that can be used for certain projects.

Window -> Preferences

Default perspective

Tailor many
options and
defaults

Pluggable JRE

Editors associated with file types
 Unit 2. Application Developer: Overview 39

Visual 2-18 Workbench: Projects and Perspectives

The Application Developer organizes all resources (data, programs) into
projects. Projects are composed of folders (directories) and files. By default,
projects and their folders are stored in a workspace directory.

Each project has a type: Java projects are for stand-alone applications; Web
projects for Web applications; EJB projects for EJB development; EAR projects
tie together Web and EJB (and Client) projects into a J2EE hierarchy; Server
projects are used to define application servers for testing.

Perspectives are the way a developer sees the projects. Perspectives are
tailored for certain tasks, based on the role of the developer. For example, in the
Java perspective you can compile Java code; in the Web perspective, you can
edit and customize Web applications; in the J2EE perspective, you develop J2EE
hierarchies and EJBs.

A perspective is a set of views, arranged into the Workbench window, and a set
of editors and tools that are used to manipulate the resources.

Workbench: Projects and Perspectives

Projects
Organize resources

Folders (directories)
Files (in folders)

Build, version management
workspace directory (default)

Types of projects
Java project
EAR project (J2EE)

Contains Web/EJB/Client
projects

Web project
EJB project
Application Client project
Server project

Perspectives
Initial set and layout of

Views (presentation/navigation)
Editors (open file)

Types of perspectives
Java (code)
Web (HTML, JSP, servlets)
J2EE (EJB development)
Server (AEs/Tomcat)
XML (DTD, XSD, XSL)
Data (database, tables)
Debug (debugger)
Profiling...................................
Script
Team
Help

Project "look"
40 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-19 Project Import

In most development efforts you have existing resources. These resources can
be imported into Application Developer projects in many ways:

� Files from a directory (Java source, HTML, JSPs...)

� ZIP and JAR files (import as individual files for editing, or leave as ZIP/JAR
file if only used for compilation)

� EJB JAR files with existing EJB definitions (for example, from VisualAge for
Java)

� EAR and WAR files from existing Web applications and J2EE archives

� FTP or HTTP access to existing Web sites for import of HTML and associated
files

Projects can be closed to save memory.

Project Import

Can import existing resources into a project
From directory
ZIP and JAR file

Expand into project
Add as ZIP or JAR file to add to build path

Client JAR file
Create client project

EJB JAR file
Create EJB project
Select EJBs

EAR, WAR file
Creates EAR/Web project

FTP or HTTP from server
Specify location (userid/password for FTP)
Limit depth for subdirectories or links

This enables migration from
VisualAge for Java

and
WebSphere Studio Classic

EAR, EJB, Web
projects can be validated
- manual or automatic -

Projects can be closed and reopened from the Workbench
 Unit 2. Application Developer: Overview 41

Visual 2-20 Project Validation

Comprehensive validation is provided for many types of projects, for example,
the EJB validator checks that EJB 1.1 specifications are followed in the Java
code.

Projects can be validated automatically when a resource is saved (this is the
default), or validation can be performed manually on demand.

Project Validation

Comprehensive support for running validation
EJB project: EJB validator, Map validator
EAR project: EAR validator
Web project: WAR validator
Server project: Configuration files

Manual validation
Project -> Validate Project

Automatic validation (on save)
Project -> Properties -> Validation

Can specify which validators to run
Is somewhat expensive

Validation results are shown in the task list
42 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-21 Perspectives

Perspectives are tailored for a developer role or for a certain task.

A perspective provides a number of views of the underlying project resources.
The layout of the Application Developer window can be tailored by moving views
to the edge, between other views, behind other views (as tabs), or as separate
windows. Views can be added to a perspective, and the new layout can be saved
as a new perspective.

In general you see one perspective in the Application Developer window, but you
can have multiple perspectives open and switch between them. The more
perspectives are open, the more memory is consumed. In each open perspective
you can have multiple files (resources) open.

Certain tasks can only be performed in one perspective and view (for example,
EJB development), while other tasks can be performed in many perspectives (for
example, Java editing).

Good practice: close files before switching perspectives!

Focus on task at hand
Provides "views" into the e-business application

By role (Java, data, EJB)
By task (develop, test, debug, deploy)

Views can be opened, closed, rearranged
Move view to other pane, stack behind other views
Move view outside of Workbench as separate window
Maximize view with double-click

code editing

Multiple perspectives can be opened for same project(s)
Perspectives can be customized

Add views
Make look similar to other Java tools

Certain tasks can only be performed
in one perspective and view

Icon to open new perspectives:

Perspectives

Perspective -> Show view
 Unit 2. Application Developer: Overview 43

Visual 2-22 Java Perspective

The Java Perspective contains four panes by default:

� Left—Packages and Hierarchy view

� Middle—reserved for editors (multiple files can be edited)

� Right—Outline view (shows outline of currently selected file in editor pane)

� Bottom—Tasks (error messages), Search (result of search operations), and
Console (program output) views

Tabs are used to select a view in a pane.

Each perspective has a tailored toolbar with icons for often-used operations.

On the top left is the new icon or wizard. The pull-down arrow displays a
selection of resources that can be created, whereas the icon button displays the
new wizard that can be used to create any of the supported resource types or
tools.

Java Perspective

Fields/Methods
Java Editor

Packages/Classes

Tasks: Errors

Tabs for other views

Can edit multiple files

Filter

New wizard
44 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-23 Web Perspective

The Web Perspective contains four panes:

� Top left—Navigator view (displays the folders and files of the projects)

� Top right—reserved for editors

� Bottom left—Outline view (of current editor) or Gallery (for HTML/JSP files)

� Bottom right—Tasks (errors), Properties (of selected resource), Links (of Web
resources), Thumbnail, Styles, Color, Palette (Web resources)

One of the supported editors is the Page Designer for HTML and JSP files. The
Page Designer itself has three tabs to display the Design (WYSIWYG), Source
(HTML source code), or Preview (browser) view.

Web Perspective

Page Designer

Links

Files

Tabs for other views
 Unit 2. Application Developer: Overview 45

Visual 2-24 J2EE Perspective

The J2EE Perspective is used for management of J2EE deployment descriptors
(EAR, enterprise archives), and for development of EJBs.

The J2EE view is the only view where entity and session EJBs can be
developed. This view displays a logical view of the EJBs with their fields, key,
and main underlying Java files (bean class, home and remote interface, key
class).

The Navigator view displays all the project resources, including the control files
(XMI files) that are used to store the EJB design (meta) information.

An EJB Editor is provided to define and manipulate EJB deployment information,
such as JNDI names, transaction attributes, read-only methods, and security
information.

An EJB Extension Editor is provided to define IBM extensions of the EJB
specification, such as associations and custom finders.

J2EE Perspective

EJB Editor
EJBs
Fields

Tabs for other views
46 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-25 XML Perspective

The XML perspective is provided for developing XML applications, or adding
XML functionality to Web applications.

XML editors for XML files, DTDs, and XML schemas are provided for
manipulation of XML resource files.

XML tools are provided to convert XML descriptors (DTDs and schemas),
generate files, generate XSL style sheets for XML manipulation, or convert
database data into XML data.

XML Perspective

XML Editor

Editors

Errors
 Unit 2. Application Developer: Overview 47

Visual 2-26 Data Perspective

The Data Perspective provides views and tools for definition and maintenance of
descriptors for database, schemas, and table definitions.

The Data view shows database descriptors (XMI files) in a hierarchical format.
Editors are provided to define database, schema, and table descriptors. Tools
are provided to generate SQL DDL files for such descriptors, or to create a
descriptor from an existing DDL file.

The DB Explorer view enables connections to database definitions in real time,
and enables you to import existing descriptors as local resource files (in XMI
format).

SQL statements can be defined graphically, using a wizard. Such statements can
be executed for testing, and can be used by XML tools to convert database data
into XML files. Statements can also be used by Web development tools to create
skeleton Web applications (servlets and JSPs) that access databases.

Data Perspective

Table Editor

Real time
database connections

(import)
48 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-27 Server Perspective

In the Server Perspective we maintain definitions of application servers for
testing of Web applications, EJBs, and Web Services.

Server configurations define the type of server (WebSphere or Tomcat), and are
configured with JDBC drivers and data sources.

Projects are associated with servers. When a server is started, the associated
projects are loaded and their code can be executed.

Servers can be started in normal or debug mode. In debug mode, breakpoints
can be placed into servlets and JSPs for debugging purposes.

Icons are provided to create a server project or server instances and
configurations.

You can use the Server perspective to edit resources and run or debug projects.

Server Perspective

JDBC Drivers and DataSources

Projects
 Unit 2. Application Developer: Overview 49

Visual 2-28 Debug Perspective

The Debug perspective enables debugging of Java code.

Views are provided to display the source code (where breakpoints can be set),
running processes, variables (with their values at the current breakpoint),
evaluated expressions, and an inspector for in-depth analysis of data.

Debug Perspective

Source with breakpoints
50 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-29 Help Perspective

Online help is provided through the Help Perspective.

Documentation can be accessed by type (shown at left), or by feature (shown at
right).

The help facility also covers the underlying Workbench with a platform plug-in
developer guide, a Java Development Tools (JDT) guide, and a PDE guide.

Help Perspective
 Unit 2. Application Developer: Overview 51

Visual 2-30 Workbench Key Features

Key features of the Workbench include:

� Customizable perspectives for role-based development

� Pluggable environment that enables other tool vendors

� Automated build facilities through the built-in Ant support

Workbench Key Features

Performance

Customizable perspectives
Role-based development (Web developer, Java developer, DBA)
Use same project artifacts (files)

Pluggable development environment
Java and ActiveX plug-in support
IBM and ISVs use same architecture to extend the Workbench

Support for automated builds
Ant support
Command line EJB generation
52 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-31 Java IDE

The Java integrated development environment (IDE) is built on top of the IBM
JDK 1.3 that is used for all compilations and as a default runtime JRE.

Facilities include:

� Pluggable JDK—a JDK can be assigned to each project for running its code

� Scrapbook—files with Java snippets that can be executed

� Code assist—entering ctrl-space displays the valid functions

� Tasks view—displays all problems

� Debugger—for local or remote debugging

� Refactoring—rename, move, make new method with update of all references

� Search—by Java construct or text

� Build—smart, incremental

� Test environment—application or server

Java IDE

IBM JDK 1.3 (compile/run)
Pluggable JDK per project (run)
Java snippets (Scrapbook)
Code assist (ctrl-space)
Task sheet (all problems)
JDI-based debugger

Local and remote

Run code with errors
Refactoring

Rename, move method/class/pkg
Fixes all dependencies
Make code into a method

Built-in Java Perspective

Smart compilation
No lengthy compile/build/run

Pluggable framework to launch
tools
Precise reference searching
Integrated unit test environment

Easy debugging
Configure multiple servers

J2EE WAR/EAR deployment

Hot method replace
Have to wait for JVM that
supports this technology
JDK 1.4
 Unit 2. Application Developer: Overview 53

Visual 2-32 Web Tooling

The Web tooling support includes:

� HTML and JSP editing with the Page Designer

� Site import using FTP or HTTP

� WAR import (existing Web applications) and export (to application server)

� Links view and management of links between related files

� Wizards to generate servlets and JSPs for database and JavaBean
applications

� JSP debugging at source code level

Web Tooling

Development environment for Web developer
HTML and JSP editing

WYSIWYG page design and source editing

HTTP and FTP import
WAR import/export
Links view (relations)

References in HTML and JSPs

Parsing/link management
Fix links when resource is moved between folders

Built-in Servlet, JavaBean, Database Wizards
Quick generation of HTML/servlet/JSP

Built-in JSP debugging
Not in beta

Site style and template support

Built-in Web Perspective

Many features from
WebSphere Studio Classic
54 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-33 XML Tooling

The XML tooling support includes:

� Editors for XML files, DTDs, and XML schemas

� Code assist (ctrl-space)

� Utilities to generate XML from DTD, DTD from XML, schema from DTD, DTD
from schema, JavaBeans from DTD or schema

� XSL mapping to convert XML files between two DTDs or schemas, including
a trace editor to display XSL execution

� Generate XML and HTML from database access through a query

� Mapping between XML and relational databases for usage with the DB2 XML
Extender (generate database access definition (DAD) to
compose/decompose XML data into table columns)

XML Tooling

Integrated tools/perspective
for XML-based components

DTD Editor
Visual editor (design and source)
Create DTD from XML files
Generate XML Schema (XSD)
from DTD
Generate JavaBeans to
manipulate XML documents
Generate HTML form

XML Schema Editor
Visual editor (design and source)
Generate DTD from schema
Generate JavaBeans to
manipulate XML documents

XML Source Editor
DTD and Schema validation
Code assist

XML Tools
XML Mapping Editor

Generate XSL to convert XML
between DTDs/schemas

XSL Trace Editor
Trace XSL transformation

XML from relational database
Generate XML/XSL/XSD from an
SQL query

RDB/XML Mapping Editor
Map table columns to elements
and attributes in XML document
Generate Database Access
Definition (DAD) to compose and
decompose XML to/from DB

Used with DB2 XML Extender

Built-in XML Perspective
 Unit 2. Application Developer: Overview 55

Visual 2-34 J2EE Tooling

J2EE tooling enables full J2EE 1.2 support including EJB 1.1 specification.

Full EJB 1.1 support is provided with IBM extensions for associations,
inheritance, custom finders, and access beans. The mapping between entity
EJBs and relational tables can be performed top-down (tables from EJBs),
bottom-up (EJBs from tables), or meet-in-the-middle. EJB deployment
information is kept in XMI files and is not hidden, as in VisualAge for Java.

WebSphere Application Server AEs is built into the Application Developer for
testing, and Tomcat is supported as well (but must be installed). The test
environment supports servlets, JSPs, and EJBs (EJB only on WebSphere).

A new universal test client (UTC) is provided for testing of EJBs (and for Web
Services).

Deployment is made very easy. EAR projects collect Web and EJB projects, and
can easily be exported into an EAR file for deployment into a J2EE-enabled
application server.

J2EE Tooling

J2EE development and
deployment

Full EJB 1.1 support
+ associations, inheritance

RDB mapping
Top-down, bottom-up,
meet-in-the-middle

WAR/EAR deployment
All metadata exposed as XMI

No hidden metadata

Enhanced Unit Test Environment
WebSphere or Tomcat
Create multiple server projects
(server configurations/instances)
Share between developers

Updated EJB Test Client
HTML-based
Built-in JNDI registry browser

Enterprise Connectors
(separate plug-in)

JCA Connectors

Built-in J2EE Perspective

Many features from
VisualAge for Java Enterprise
56 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-35 Web Services Tooling

The Web Services tooling enables creating, testing, and consuming of Web
Services. This includes:

� Interaction with a UDDI registry to browse the registry and retrieve Web
Service specifications, or publish new Web Services

� Create Web Services for existing applications based on a JavaBean or an
EJB

� Test Web Services using the universal test client

� Deploy Web Services to an application server

Web Services Tooling

Easily construct and consume Web Services
Discover

Browse UDDI registry to locate Web Services
Generate JavaBean proxy

Create and transform
Create new Web Service from JavaBeans, EJBs

Test
Built-in test client for immediate testing of local and remote Web Services

Deploy
Deploy Web Service to WebSphere or Tomcat for testing

Publish
Publish Web Service to UDDI registry
 Unit 2. Application Developer: Overview 57

Visual 2-36 RDB Tooling

RDB tooling is based around the relational schema center, which includes:

� Interactively create database, schema, and table descriptors.

� Retrieve existing database, schema, and table descriptors by connecting to a
database.

� Generate the DDL from descriptors.

� Execute DDL to create descriptors.

� Create and execute SQL statements. Together with the XML tooling, SQL
results can be converted into XML and HTML.

Descriptors are kept in XMI files, and editors are provided to maintain the
descriptors.

RDB Tooling

Relational Schema Center for DBAs
Create databases
Create tables, keys (views, indexes, aliases -> future)
Generate DDL
Work online and offline

Meta-data kept as XMI files

SQL Query Builder
Visually construct SQL statements

Select, insert, delete, update
Meta-data kept as XMI files

SQL/XML mapping

Built-in Data Perspective
58 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-37 Performance/Trace Tooling

Performance and trace tooling enables the analysis of Java applications by
measuring the time spent in classes and individual methods of these classes.

Events are captured in a local or remote Java Virtual Machine and forwarded
through an agent to the Application Developer for analysis. Results are displayed
in tables and graphically.

Performance/Trace Tooling

Isolate and fix performance problems in Web applications
Attach to local and remote agents for capturing performance data
JVMPI monitoring

Heap
Stack
Class and method details
Object references

Resource monitors
Execution patterns
CPU usage
Disk usage

Built-in Profiling Perspective
 Unit 2. Application Developer: Overview 59

Visual 2-38 Team Development

The Studio Workbench provides extension points for configuration management
products for team development.

The Application Developer ships with support for two underlying team products,
CVS and ClearCase LT. Full-function ClearCase support is available from
Rational.

Projects can be assigned to streams in a shared repository, and multiple
developers can work on a shared project.

A developer can synchronize a project with the project in the team repository:

� Changes made by the developer can be released to the team stream

� Changes made by other developers can be added to the developer’s project
(catch-up)

Projects can be versioned.

Team Development

Integration through
pluggable adapters

Open framework enables any
SCM provider to integrate their
SCM system with the Workbench
WebDAV-enabled adapter
planned over time

Customer can purchase and
plug-in ClearCase into the
Workbench

CVS is the only SCM in beta
ClearCase LT in GA product

Built-in Team Perspective

Terminology
Team stream

Project being developed by team
Create team stream to load project
into team server
Load stream from team server

Release
Release local changes back into
team stream on server
Other developers have access

Catch-up
Refresh local project from server
with changed/added resources

Project version
Unchangeable team stream
Create team stream from version
60 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 2-39 Supported Standards

This is the list of supported standards and specifications in the Application
Developer.

Supported Standards

EJB 1.1
Servlet 2.2
JSP 1.1
JRE 1.3
Web Services Definition Language (WSDL) 1.1
Apache SOAP 2.1
XML DTD 1.0 (revision 10/2000)
XML Namespaces 1/99 version
XML Schema 5/2001 version
HTML 4.01
CSS2 (Page Designer displays a subset)
 Unit 2. Application Developer: Overview 61

Visual 2-40 Summary

The Application Developer provides the basis for integration of application
development for Java, Web site, Web application, EJB, Web Services, and XML
development.

Summary

Everyone integrates
Integration at industry level enables tools to interoperate

Open standards
Integration in vendor's lab (not on developer workstation)

Entire industry can integrate and interoperate
Modeling: business process/applications
Content: Web pages, graphics
Business logic: Java, JavaBeans, EJBs, servlets
Application assembly: J2EE, scripting, rule-based
Operation: site management

IBM takes application development to a higher level

 WebSphere Studio Application Developer
Leading Web/J2EE Development Environment
and Integration Platform for IBM and Vendors
62 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 3. Application Developer:
Java Development

Visual 3-1 Title

3

International Technical Support Organization

ibm.com

Java Development

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 63

Visual 3-2 Objectives

The objectives for this unit are to understand the development of Java
application with the Application Developer.

A Java project is used to develop stand-alone Java applications, or to develop
base Java code (JavaBeans, utilities) that are shared between multiple
higher-level projects (Web, EJB, XML projects).

A Java developer will use the Java perspective to edit and build (compile) code,
the Debug perspective to test code, and the Script perspective to work with small
scrapbooks.

The tasks involved in Java development are listed on the right side, starting from
creating a Java project as the base for all development activities.

Objectives

Learn about Java developer
tasks

Java project
Java perspective
Debug perspective
Script perspective

Java project
Stand-alone application
Common code for
other projects

 Tasks

Create project
Create and browse resources

Folders and files

Import existing code
Edit Java code
Refactor code
Search code
Build code
Run code
Debug code
64 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-3 Java Project

The resources (files) of a Java project can be kept in one place (simple) or
spread over multiple locations on the hard drive(s):

� In a simple project, all files are kept in one main project folder and subfolders.
Compiled class files are kept together with the Java source files in this
organization.

� In a complex project, Java source files are kept in multiple folders (and
subfolders), but all the compiled class files are kept in one output folder.

One of the main project properties is the setup of the build path used to compile
the Java source files. The build path includes the Java runtime (JRE) and:

� Other projects

� JAR files from other projects or external JAR files (for example from
underlying products, such as JDBC drivers from a relational database,
connectors)

Java Project

Two project organizations are
supported

Simple project
Source code in project directory
Class files built into same
structure

Complex projects
Multiple source directories
Each directory associated with
the project
Separate output directory for
class files

One output directory

 Project properties
Source directories

Project or outside

Output folder
Class files

Projects
Other projects required for build

Libraries
Java JRE rt.jar
JAR files from other projects
External JAR files

Order
Order of projects and JARs for
build
 Unit 3. Application Developer: Java Development 65

Visual 3-4 Create Project

A SmartGuide is provided to create a Java project:

� A name must be provided.

� The default location can be set for a simple project.

� For a complex project, the source folders can be associated with the project.

� The build output location (for class files).

� The build path, consisting of additional projects and libraries (JAR files).

� The order in which the projects and JAR files are to be used.

JAR files can be copied into the project, or they can be referenced (point to an
external location). Variables can be set up for reference JAR files, which makes it
easier for team development where the actual directory may differ between
multiple developers’ work stations.

Create Project

Project Source

Project Build Output

Additional JAR files

Required projects
66 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-5 Create Project Resources

Project resources in a Java project are mainly Java source files, organized by
Java packages. The package view of the Java perspective shows the fully
qualified package names, instead of showing subfolders for each level.

SmartGuidse are provided to create Java classes and interfaces. For a Java
class, you can specify which interfaces are implemented and what method stubs
should be generated.

A Java scrapbook is a file named .jpage. It can contain code fragments that can
be executed.

Existing resources can be imported into a Java project. Individual files, whole
directories, or ZIP and JAR files can be imported.

To migrate existing code from VisualAge for Java, export the code into a directory
or JAR file, then import into the Application Developer.

Create Project Resources

Creating resources
Create package

Creates directories according to
package name
Shows package name in view

Create class
SmartGuide: specify

Superclass
Interfaces to implement
Method stubs:

main, constructors
inherited abstract methods

Create interface
Specify extended interfaces

Create Scrapbook page (.jpage)
Try sample code

 Importing resources
From directory
ZIP file
JAR file

 Migration from
 VisualAge for Java

Export into directory or JAR file
Import into WSAD

 Missing:
Visual Composition Editor
BeanInfo page
 Unit 3. Application Developer: Java Development 67

Visual 3-6 Java Perspective

The Java Perspective contains four panes by default:

� Left—Packages and Hierarchy view

� Middle—reserved for editors (multiple files can be edited)

� Right—Outline view (shows outline of currently selected file in editor pane)

� Bottom—Tasks (error messages), Search (result of search operations), and
Console (program output) views

Notice the icons in the toolbar:

� New icon to create resources or run tools
� Debug icon to run a class in debug mode
� Run icon to execute a class
� Create icons for project, package, class, interface, scrapbook
� Open any type in the editor (enter a name in a dialog)
� Search (open search dialog)
� Icons for editing and for jumping between errors

Java Perspective

Fields/Methods
Java Editor

Packages/Classes

Tasks: Errors

Tabs for other views

Can edit multiple files

Filter
68 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-7 Java Perspective Layout

This diagram shows the default organization of the Java perspective:

� The Packages view shows the resources organized by packages.

� The Navigator view shows the resources organized by folders and subfolders.
(This view is not open by default, but can be added.)

� The Type Hierarchy view can be opened for a selected type to show
sub/super classes.

� The Search view shows the results of search operations.

� The Console view shows the output when executing programs.

� The Tasks view shows compilation errors or self-created tasks lists.
Double-clicking on an error opens the Java source file with the error.

� Editor windows show Java source code.

� The Outline view shows the outline (imports, class, fields, methods) of the
currently selected editor window. Clicking on an item in the outline positions
the editor window.

Java Perspective Layout

Type Hierarchy
Show hierarchy of
a type

Outline
Summary of edited
file (methods,
fields, imports)

Tasks
Compilation errors
Self-created list

Console
Program output

Search
Search results

Java Editor
Source code

Navigator
Project directories and files
(not open by default)

Packages
Packages with files
Library JARs
 Unit 3. Application Developer: Java Development 69

Visual 3-8 Java Editor

The Java editor works in conjunction with the Outline view. Selecting an item in
the outline positions the editor window to that part of the code. You can also
choose to only show the selected item in the editor window, instead of showing
the whole file. Icons allow you to filter out fields, static, or public members.

The Java editor uses colors to highlight keywords, strings, and comments.

When holding the mouse cursor over a variable or method, its definition is
displayed as hover help text.

Ctrl-space invokes the code assist feature, which displays possible method calls
that can be inserted at the selected point.

Bookmarks can be assigned to a line in the file, or to a whole file. From the
Bookmark view (which must be opened), you can select a bookmark to open the
associated file at the associated line of code.

Java Editor

Bound to outline view
Select field/method in outline, positions and highlights source in editor

Syntax highlighting
Keywords, comments, Strings, Javadoc comments

Hover help on fields and methods
Editing icons

Show source of selected element only
Show hover help, goto next/previous problem

Code assist
(ctrl-space)

Bookmarks
Add Bookmark
on line or file
Open
Bookmarks
view
70 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-9 Search

Two types of searches are supported:

� Text search scans the whole file to find any matching given string.

� Java search only searches for Java constructs (type, constructor, method,
field), and you can search for declarations or references or both.

Search results are displayed in the Search view. Double-click on a result file and
it opens in the editor, with yellow arrows showing the lines that match the search.

Search

Text search
Pattern match with wildcards
Find any occurrence of text

Java search
Based on Java language
elements
Faster than text search
Search for type, method, field,
constructor
Limit to declarations,
references, implementers

Results
Search view shows files
Open file and yellow arrows
show matches
 Unit 3. Application Developer: Java Development 71

Visual 3-10 Edit Refactoring

The refactoring function enables a developer to make changes to files and have
all references updated automatically.

Possible refactoring activities include:

� Rename a type, method, or field

� Move a type to another package

� Change parameters in a method

� Extract a part of an existing method as a new method, and insert a call into
the existing method to invoke the new method

A preview window displays all the files that would be changed by the refactoring
activity. Each update can be viewed individually and selected for change, or all
changes can be applied.

Editing Refactoring

Reorganize code but preserve semantics
Rename of type, method, field
Move file to another package (drag/drop or context menu)
Change method parameter name
Extract a method

Select code and make it a method
Method call inserted at original location

All references are automatically changed
Preview of changes
before commit
Optional error page

Window ->
Preferences ->
Java ->
Refactoring
72 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-11 Edit Refactoring Preview

This is an example of the preview window:

� The classes that require change are displayed in a list

� For each class, the individual line changes are displayed as a sublist

� Selecting an item in the list displays the original and changed source code in
the bottom pane

By default, all changes are applied when the Finish action is selected. Individual
changes can be excluded by deselecting the update before the Finish action.

Editing Refactoring Preview

List of
changes

selected change
 Unit 3. Application Developer: Java Development 73

Visual 3-12 Code Formatting

Java source code is formatted according to rules set up in the preferences dialog.

Source code formatting controlled through preferences
Java ->
Code Formatter

Brace on new line

catch/else on new line

else if on same line

Two lines for empty {}

Maximum line length

No space before =

Code Formatting
74 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-13 Type Hierarchy

The Type Hierarchy view can be opened for any type.

Icons are provided to display the hierarchy top-down (type hierarchy and subtype
hierarchy) or bottom-up (supertype hierarchy).

The supertype hierarchy also shows interfaces that are implemented for each
class in the hierarchy.

The lock view icon can be used to show from which classes a selected method is
inherited. In our example, the init method (selected in the GuiListing class) is
inherited from the Applet class.

Other icons can be used to display all methods (including inherited methods), or
filter out fields, static, or public members.

Type Hierarchy

Hierarchy view of any type
Type hierarchy
Supertype hierarchy

Shows implemented interfaces

Subtype hierarchy
Lock view to see overwritten
methods in superclasses

Inherited
methods
 Unit 3. Application Developer: Java Development 75

Visual 3-14 Scrapbook

A scrapbook is a file of type .jpage. You can enter any Java code in a scrapbook,
select some or all of the code, and execute it.

The execution context can be set to any Java package. Execution can be to
display the result in a pop-up window, to open an inspector window, or to just run
with possible output in the Console.

Create file of type Scrapbook Script Perspective
name.jpage

Enter any Java code
Set package for
execute

Select code and
execute

Display
Result in edit view: (java.lang.String) 1 4 9 16 25 36 49 64 81 100

Inspect
Result in
Inspector view

Run ==> Console

Scrapbook
76 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-15 Building Projects

Building a project means to compile the Java source code.

By default, build is automatic every time you save Java code. Automatic build is
set up in the preferences dialog.

With manual build, you can select to build only changed files or you can force a
complete project build.

The most important activity is to set up the build path for the project, consisting of
other projects, JAR files in the Workbench, and external JAR files (from other
products). You can change the build path by opening the project’s properties.

You can also use the built-in Ant feature to create your own XML build files.
However, this task will not be explored in this class.

Building Projects

Full build of all projects
Project -> Rebuild All

Manual build of project
(context menu)

Build project ==> Incremental
Rebuild project ==> Full

Automatic build on save of
resource

Window ->
Preferences ->
Workbench

 Build path defined for project
Other projects
JAR files in Workbench
JAR files outside Workbench

 Ant is built into Workbench
Build files are XML
Run Ant for XML build file

Wizard prompts for target
 Unit 3. Application Developer: Java Development 77

Visual 3-16 Debugging

To debug Java source code, you set breakpoints in the source code. A breakpoint
can be set on a line of code, for when a certain exception occurs.

To start a program in debug mode, use the debug icon, and the Debug
perspective opens (next visual).

In the Debug perspective you use icons to step into a line of code, step over a
line of code, or to run to the end of a method (step return).

The Variables and Inspector view can be used to analyze the values of variables.

Debugging is supported on the local machine (where the Application Developer
runs) or on a remote machine (with the IBM Agent Controller installed).

Debugging

Set breakpoints in code
Double-click
Context in left border of editor
Breakpoint on exception
Breakpoint in inner classes

Click Debug icon

Debug Perspective (next)

Debugger control icons
Step into/over
Run to return
Resume

Variables and Inspector

Evaluate expressions (Display view)

Local and remote debugging
78 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-17 Debug Perspective

The Debug perspective shows:

� The Processes view with running processes

� The source of the Java program with the current line

� The Outline view of the source code

� The Console output

� The Breakpoint view will all the breakpoints

� The Inspector and Variables views with the current values

� The Display view where expressions can be evaluated

For easy debugging, you may want to make the Variables view a separate
window that you can move away from the Application Developer window.

Debug Perspective

Source

Breakpoint

exception
 Unit 3. Application Developer: Java Development 79

Visual 3-18 Project Properties

The project properties dialog can be used to set up:

� The Java build path

� A custom Java runtime library

� The default launcher (launch a Java program or an application server)

� The location of source code, for example for JAR files that are used by the
application

� The location of the team repository

Project Properties

Open project properties (context menu)
Java build path

Source, projects, JAR files, order

Alternate Java runtime (JRE)
Default or custom

Default launcher for Run/Debug
Project references (to other projects)
Debugger source lookup

Build classpath or custom lookup

BeanInfo path (enable introspection)
Team

Location of repository for project
80 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-19 Java Preferences

Many system-wide preferences for Java development are set up in the
preferences dialog (Window -> Preferences). These include:

� Variable to refer to external JAR files instead of specifying directory locations
(many variables that point to JAR files in the Application Developer itself are
predefined)

� Code formatting rules

� Installed Java runtime libraries (to be associated with a project)

� Font used by the Java editor

� The organization (sequence) of import statements that should be used in
Java code

� Refactoring defaults (when to display an error page)

Java Preferences

Window -> Preferences
Java classpath variables

Locate external JAR files without specifying absolute directory

Code formatter
Already discussed

Installed JREs
Can add alternates and
assign to projects

Java editor font
Organize imports

Can specify order of
import statement by
package names
(wildcards)

Refactoring
Already discussed

System-wide properties
 Unit 3. Application Developer: Java Development 81

Visual 3-20 Summary

Java projects are the base for Java code development.

Other project types, such as Web and EJB projects, use these basic facilities as
well, because these projects also deal with Java code and require Java editing
and compilation.

Summary

Java projects and Java development provide
Flexible project arrangement

Source directories entirely inside project
Source directories outside project

Powerful editing
Code formatting and assistance
Refactoring

Debugging
Step through code and inspect variables and expressions

Flexible build
Automatic or manual
Full or incremental

Java and debug perspective provide easy access to all functions
82 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 3-21 Exercise: Java Development

The Java development exercise guides you through many of the tasks discussed
in the presentation.

In this exercise you work with two Java programs:

� Listing, a simple Java program with direct JDBC access to the parts tables in
the ITSOWSAD database

� GuiListing, a Java GUI program that was developed with VisualAge for Java
and that you will import into the Application Developer. This program uses the
data access beans of VisualAge for Java for database access, and you have
to import the JAR file with the underlying support classes as well.

See Exercise 1, “Java development” on page 299 for the instructions for this
exercise.

AAPARTS

Exercise: Java Development

WSAD Java development
Java perspective
Create project

ItsoWsDealerParts

Create package, class
Code assist
Refactor
Build path
Run application
Import code
Search
Debug
Scrap page

JDBC

Dealer application
 to list the parts

 from the database

ITSOWSAD

Parts
DBAccess

Listing GuiListing
 Unit 3. Application Developer: Java Development 83

84 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 4. Application Developer:
Relational Schema Center

Visual 4-1 Title

4

International Technical Support Organization

ibm.com

Relational Schema Center

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 85

Visual 4-2 Objectives

The objectives of this unit are:

� Understand the relational schema center that provides tools for relational
database development tasks

� Understand the Data Perspective with the DB Explorer and Data views

� Understand the SQL Query Builder

� Understand the tasks and editors available for managing database
descriptors

Objectives

Learn about relational
database development tasks

Data Perspective
DB Explorer view
Data view
Navigator view

SQL Query Builder
Create and run SQL statements

To generate XML from SQL
For Web applications

RDB tooling used for EJBs

 Tasks

Create database schema
Create tables with columns

Primary and foreign keys

Create view, index, alias, trigger
Not in product yet

Database connections
Import existing schema

Modify schema
Generate DDL
Execute DDL to create local def.
Create SQL queries
86 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 4-3 Application Developer Database Operations

The Application Developer provides:

� Local storage (XMI files) to store database descriptors (database, schema,
and tables for now)

� Active connections to databases to retrieve existing definitions and to build
and run SQL queries

Connections are used to retrieve existing descriptors into the local storage
format (XMI).

Editors and tools are used to create and manipulate local descriptors, generate
DDL from local descriptors, and run existing DDL to create local descriptors.

All major database systems are supported.

DB2
DB2/390,400
Sybase
MS SQL
MySQL
Oracle
Informix
InstantDB

Application Developer Database Operations

Connections
Create connection and view database
objects on server

Import
Import database objects from server

Create and modify
Develop database, schema, tables
SmartGuide and editor

Generate DDL
Create DDL files for objects

Execute DDL
Execute a DDL file to create a local object DB2

connection

File System
DDL
XMI

Local Storage
DB

Schema
Tables

WSAD RDB Tools
 Unit 4. Application Developer: Relational Schema Center 87

Visual 4-4 Files: XMI and DDL

Local descriptors are kept in XMI files that can be manipulated with tailored
editors in the Data view. These editors provide a graphical view of the data;
editing is not performed on the XMI source file.

Through a connection in the DB Explorer view, you retrieve existing table
definitions and convert the definitions into local XMI files.

XMI files and DDL files are used to store the definitions, and each format can be
converted into the other; that is, you can generate DDL from the XMI file, or
generate the XMI file by executing the DDL file.

You can also generate an XML schema from a table definition.

Table
(Server)

 <RDBSchema:RDBTable ... name="AAPARTS" ...>
 <columns ... name="PARTNUMBER" ...>
 <type ... SQLCharacterStringType ... length="10">
 <originatingType ... /> </type> </columns>
 <columns ... </columns>
 <namedGroup ... ref by inventory ...> </namedGroup>
 <constraints ... name="PARTKEY" ... PRIMARYKEY ... />
 <schema href="ItsoWsDealerDatabase\
 ITSOWSAD_ITSO.schxmi#RDBSchema_1"/>
 <database href="ItsoWsDealerDatabase\
 ITSOWSAD.dbxmi#RDBDatabase_1"/>
</RDBSchema:RDBTable>

Files: XMI and DDL

CREATE TABLE ITSO.AAPARTS
 (PARTNUMBER CHARACTER(10) NOT NULL,
 NAME CHARACTER(30),
 DESCRIPTION VARCHAR(100),
 WEIGHT DOUBLE,
 IMAGE_URL VARCHAR(100) NOT NULL);

ALTER TABLE ITSO.AAPARTS
 ADD CONSTRAINT PARTKEY PRIMARY KEY
 (PARTNUMBER);

view of real tables
DBExplorer

Connection

import

DDL File

XMI File

execute

manual

Editor

Editor

generate

XML Schema

Table
(Local)

Data
view
88 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 4-5 Data Perspective

The Data Perspective provides views and tools for definition and maintenance of
descriptors for database, schema, and table definitions.

The Data view shows database descriptors (XMI files) in a hierarchical format.
Editors are provided to define database, schema, and table descriptors. Tools
are provided to generate SQL DDL files for such descriptors, or to create a
descriptor from an existing DDL file.

The DB Explorer view enables connections to database definitions in real time
and to import existing descriptors as local resource files (in XMI format).

SQL statements can be defined graphically using a wizard. Such statements can
be executed for testing, and can be used by XML tools to convert database data
into XML files. Statements can also be used by Web development tools to create
skeleton Web applications (servlets and JSPs) that access databases.

Data Perspective

Table Editor

not yet Data View
Writable local view of
database objects
Import of existing objects
New objects
Generate DDL (from XMI)
Execute DDL (to XMI)

DB
Schema

DDL files

Tables

SQL Builder

generate/execute
 Unit 4. Application Developer: Relational Schema Center 89

Visual 4-6 DB Explorer

Through the DB Explorer view, you can connect in real time to a database and
retrieve existing descriptors.

A SmartGuide is provided to define the connection information, such as the
JDBC driver. A filter can be set up to only retrieve tables that match a given
naming convention.

The DB Explorer is a read-only view. After viewing real-time information, the
descriptors can be imported into a folder and then manipulated using the Data
view. From the DB Explorer, you can generate DDL files and XML schemas.

DB Explorer

 DB Explorer
Connect to database server
View existing database objects
Import database objects to local
Data view
Read-only view
Generate DDL, XML schema

Tables

DB/Schema

Connection

Subset filter
90 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 4-7 Navigator View

The Data Perspective also provides a Navigator view that can be used for
operations on the underlying XMI files.

Invoking an editor on such an XMI file does, however, open the same graphical
editor as from the Data view.

Navigator View

 Navigator View
Schema descriptions
contained in XMI files
Edit of XMI files is same
as editing from Data view

Editors

File operations
copy, move, rename
compare, replace
edit

XMI files

Database

Schema

Tables

DDL files
 Unit 4. Application Developer: Relational Schema Center 91

Visual 4-8 Creating Database Objects

SmartGuides are provided to create database, schema, and table descriptors.

For a table you can define the columns with their data types, as well as the
primary key and foreign keys.

Creating Database Objects

Create database Create schema

Create table
... with columns

... and a key
92 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 4-9 SQL Statements

There are two ways to create SQL statements:

� SQL wizard—a guided dialog that goes through a number of panels to select
the table(s), select the columns, and to provide join, where clause condition,
grouping and order information. SQL statements built with the wizard can be
edited afterwards with the query builder.

� SQL query builder—a graphical editor to specify the tables, columns, join,
conditions, group, and order. Instead of a guided dialog, a set of panels
accessible through tabs is provided.

SQL statements can be built from an imported database model or through an
active connection. SQL statements can be run against a real database, and you
are prompted for host variables that were defined in where conditions.

SQL statements are stored as .SQX files, which is an XML file.

Note that you can build select, insert, update, and delete statements.

SQL Statements

SQL Wizard
New -> Other -> SQL Statement
Guided or manual entry
From DB model or new
connection
Wizard panels (guided):

Select tables
Select columns
Join tables graphically
Conditions (WHERE)

with host variables
Group
Order

Can run SQL statement
Prompt for host variables

Can use editor afterwards

SQL Query Builder
Statement folder: New -> Select

Opens STL statement editor
Drag/drop tables
Select columns graphically
Join tables graphically
Conditions (WHERE)

same as in wizard
Group
Order in column selection

Can run SQL statement
Prompt for host variables

Save from editor

Statement stored as .SQX file

Data View
 Unit 4. Application Developer: Relational Schema Center 93

Visual 4-10 SQL Query Builder

The SQL query builder is really an editor with three panes:

� The top pane shows the actual SQL statement and you can edit the content.

� The middle pane shows the tables, selected columns, and joins. You can drag
and drop table objects from the Data view into this pane (and also into the top
pane).

A join is performed by dragging a column from one table to the matching
column in another table.

� The bottom pane contains a set of panels that are accessible through tabs
and are used to specify sort information, where clause conditions, and
grouping information.

An icon is provided to run the SQL statement.

SQL Query Builder

Join:
drag column

Join

Shows
statement

Select
columns

Where
clause

Sort order

Run SQL
statement
94 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 4-11 SQL Query Execution

When an SQL query is executed, you are prompted for the values of any host
variables used in where clauses.

Results are displayed in table format for select statements.

SQL Query Execution

Database
must have
connectionExecute from

editor only

SQL Statements:
SELECT
INSERT
UPDATE
DELETE
 Unit 4. Application Developer: Relational Schema Center 95

Visual 4-12 Summary

The relational schema center with the Data perspective and its DB Explorer and
Data views can be used to perform database descriptor maintenance tasks that
are required when developing Java applications that access such databases.

Maintaining database schemas is a requirement when developing entity EJBs
that require a mapping between the EJB and an underlying table.

The SQL statement builder is used for SQL statements that are used in Web
applications. In a Web project, we can generate servlets and JSPs based on
such SQL statements.

SQL statements can also be run to generate result data in XML format.

Summary

Relational Schema Center and Data Perspective provide
Management of database objects

View of real server tables
Versions supported in team environment

DDL generation
Implement database objects in target environment

Schema design for EJBs
Container-managed entity beans with associations/inheritance
Schema is required for EJB development

Base for SQL statements
Run SQL statements to generate XML files
Use SQL statements for Web applications
96 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 4-13 Exercise: Relational Schema Center

The relational database exercise guides you through many of the tasks
discussed in the presentation.

In this exercise you work with the ITSOWSAD database to:

� Retrieve existing descriptors using a connection

� Create and manipulate descriptors using the SmartGuides and editors

� Work with DDL files

� Use the SQL query builder to create an SQL statement

See Exercise 2, “Relational Schema Center” on page 309 for the instructions for
this exercise.

MMPARTS
MMINVENTORY

Exercise: Relational Schema Center

Relational databases
Project ItsoWsDealerDatabase
Database connection
Import tables
Create database and tables
Generate, import, run DDL
SQL query builder

WSAD

Work with
databases
from WSAD

connect

ITSOWSAD

local storage

import

sql
statements

create
generate

run
 Unit 4. Application Developer: Relational Schema Center 97

98 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 5. Application Developer:
XML Development

Visual 5-1 Title

5

International Technical Support Organization

ibm.com

XML Development

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 99

Visual 5-2 Objectives

The objectives of this unit are to:

� Understand the tools (editors and utilities) provided to work with XML files,
DTD files, and XML schemas

� Understand the XSL transformation tools

� Understand the integration between SQL and XML

Objectives

Learn about XML development
tasks

XML overview
Authoring
Transformations
XML Perspective

Navigator
Outline
Editors

Design and Source view
Tasks

Manipulation through JavaBeans
Support for DB2 XML Extender

 Tasks

Authoring XML files
XML, DTD, Schema editors

Utilities
Schema conversion
HTML form
JavaBean generation

Transformations
XML-to-XML mapping
XSL trace

SQL and XML integration
XML/HTML from SQL query
RDB-to-XML mapping
100 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 5-3 XML Usage Today

XML is already used in many applications on the Internet and on the intranet to
send data from one application or database server to another.

XML and XSL are also used to translate such data into formats supported by
Web browsers.

WebSphere WebSphere
Application Application

ServerServer

AirLineAirLine

XMLXML

XSLXSL

XMLXML

HotelHotel

XMLXML

XMLXML

Mapping

Mapping

DB

DB

Mapping

Mapping

XML Usage Today

Internet
Intranet

XMLXML
 Unit 5. Application Developer: XML Development 101

Visual 5-4 XML Terminology

The different types of files used with XML are:

� DTD—describes the structure of an XML file (old style descriptor)

� XSD (XML schema)—describes the structure and the data types of an XML
file (new style descriptor, is itself an XML file)

� XML—a well-structured file that follows XML conventions:

– Every tag must have an end tag
– Tags must be properly nested

An XML file may point to a DTD or XSD for validation of the structure and the
data types.

� XSL—used by an XSL translator program to convert an XML file into another
format (XML, HTML, other)

XML Terminology

DTD (Document Type Definition)
Describes structure of XML files (old)

XSD (XML Schema)
Describes structure of XML files and
data types (new)

XML file
Well structured

Every tag has an end tag
Properly nested

May point to DTD or XSD
Validation

XSL (XML Stylesheet Language)
Transformation of XML files

XML

DTD

XSD

XSL

XML

Conversion

Validation

Transformation
102 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 5-5 XML Perspective

The XML Perspective is provided for developing XML applications or adding XML
functionality to Web applications.

XML editors for XML files, DTDs, and XML schemas are provided for
manipulation of XML resource files.

XML tools are provided to convert XML descriptors (DTDs and schemas),
generate files, generate XSL style sheets for XML manipulation or for converting
database data into XML data.

XML Perspective

Editors

Errors

List of
Files

Outline
of
edited
file

Design and Source view
 Unit 5. Application Developer: XML Development 103

Visual 5-6 Authoring Tools

Graphical editors are provided to create and manipulate XML, DTD, and XML
schema files.

These editors provide a Design view for structural editing and a Source view for
direct editing of the source code (including code assist). Coupled with the editor
is an Outline view with structured content for adding and removing elements.

Conversion utilities can generate an XSD from a DTD, or a DTD from an XSD.

All file formats can be validated; note that XML files can be validated against the
DTD or XSD that they refer to.

Authoring Tools

Integrated set of visual editing tools
DTD editor
XML editor
XML Schema (XSD) editor

Views
Outline view with structured content (add, remove)
Design view for structural editing with choice list
Source view with intelligent assist

Supports W3C standard

Validation of files
DTD, XSD
XML against DTD/XSD

Conversions
DTD to XSD
XSD to DTD
104 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 5-7 DTD Editor

The DTD editor enables you to create a new DTD or edit existing DTDs.

A Design view and a Source view is provided, and an Outline view is coupled to
the editor.

Elements are added, removed, and selected in the outline, and edited in the
Design or Source view.

Icons are provided to invoke the utilities to validate a file, generate an XML
schema, generate JavaBeans, or generate an HTML form.

DTD Editor

One element

Create DTD
Create DTD
from XML file(s)
Define/modify

Elements,
attributes

Edit in Design
or Source view

Icons to:
Validate
Generate
schema,
beans,
HTML form
Add elements
 Unit 5. Application Developer: XML Development 105

Visual 5-8 XSD Editor

The XSD editor enables you to create and edit an XML schema.

A Design view and a Source view is provided, and an Outline view is coupled to
the editor.

Elements are added, removed, and selected in the outline, and edited in the
Design or Source view.

Icons are provided to validate a file, generate JavaBeans, or generate a DTD.

XSD Editor

Create new
Define/modify

Complex,
simple
types
Elements,
attributes

Icons
Validate
Generate
beans
Generate
DTD

Design and
Source view
update

Constraints

Datatypes
106 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 5-9 XML Editor

The XML editor enables you to create or edit XML files.

Skeleton XML files can be generated from a DTD or schema.

Code assist (ctrl-space) is available in the Source view.

Icons are provided for validation and grammar checking.

XML Editor

Create new,
from DTD,
from XSD
Source edit

Code assist
(ctrl-space)
Smart
double-click

Icons
Validate, Dependencies,
Grammar checking
 Unit 5. Application Developer: XML Development 107

Visual 5-10 XML Utilities

This diagram shows the conversion and generation possibilities:

� Conversion between DTD and XSD files.

� Create new skeleton XML files from DTD or XSD.

� Generate a DTD from one or multiple XML files.

� Generate a skeleton HTML form from a DTD (the form includes a field for
every element in the DTD, and you can specify the name of a servlet to be
invoked by the Submit action).

� Generate JavaBeans from DTD or XSD (one bean for each element, a factory
bean, and a sample program). This API can be used instead of the more
complicated DOM API provided by XML parsers.

� Generate DDL for tables from an XSD.

� Generate a mapping with an associated XSL file to convert an XML file to
another format.

XML Utilities

JavaBeans
bean for each element
factory bean for creation of XML
sample program
code to instance instead of DOM API

DTD

HTML JavaBeans

convert

new new

HTML form
fields from DTD
specify servlet for submit action

XML
mapping
XMX/XSL

DDL
tables for root
and repeating
elements

DDL

XML

XSD

generate generate
108 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 5-11 XML-to-XML Mapping

The XML-to-XML mapping function enables to you specify a mapping between
two DTDs (or two XSDs or two XML files).

The mapping is performed by drag and drop between the elements of the two
files. Simple mapping from one element to another, and mapping by function
(concatenation, substring...) between one and multiple elements is supported.

From the mapping, an XSL file is generated. This file can be used by the XALAN
XSLT processor.

XML-to-XML Mapping

Convert XML file from one
definition to another

Define mapping between
DTDs, XSDs, or XML files

By name, manual (XMX file)

Generates transformation XSL
XSLT processor Xalan

Can define functions for
conversions

One element into multiple
Multiple elements into one

XML XMLXalan

XSL

function
 Unit 5. Application Developer: XML Development 109

Visual 5-12 XSL Trace

After a mapping has been created and the XSL file has been generated, the
XSLT processor can be invoked for an XML file.

The XSL trace facility shows the original XML file, the translated XML file, and
the XSL file that was used:

� Icons can be used to step through the execution to analyze the XSL rules that
were used to convert the XML elements.

The trace is shown after the conversion has been done; it is not executed in real
time.

XSL Trace

Apply XSL to XML
Select both XML
and XSL file
Apply to generate
XML or HTML
Step through code
using icons

forward, back,
restart

Save trace as
result file
110 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 5-13 XML from SQL Query

An SQL query created with the SQL query builder of the relational toolset can be
executed and the result converted into XML and HTML files.

The mapping of key and other columns can be specified so that either attributes
of a super element or individual sub-elements are created in the XML file.

A XSL file is generated to create the HTML output in table format.

XML from SQL Query

Convert SQL query result into XML and HTML
Start with SQL statement
defined with RDB tool
Generate files for
conversion

XST - DB connection
 and SQL statement
XSD - (or DTD) schema for
 result XML
XSL - stylesheet for
 conversion
 to HTML

Simple mapping
key -> element or
 attribute
column -> element or attribute
foreign key -> link

XML result

HTML result
 Unit 5. Application Developer: XML Development 111

Visual 5-14 RDB-to-XML Mapping

For DB2 with the DB2 XML Extender product, XML data may be stored in DB2
tables, either as a BLOB column, or as individual columns for the XML elements.

The mapping is specified in a document access definition (DAD) file.

This feature will not be discussed in detail in this class.

RDB-to-XML Mapping

Map database persistent data to XML
Define mapping between table columns and XML element/attribute
Generates document access definition (DAD) file

Used by DB2 XML Extender
Compose XML documents from DB2
Decompose XML document into DB2
Hides the complexity of creating DADs

Test harness for deploying the generated DAD to DB2 XML Extender
112 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 5-15 JavaBean Generation

From a DTD or XSD file, JavaBeans can be generated to provide a simple API to
programmatically access XML files:

� For each element, a JavaBean is generated. The JavaBean contains sample
test data, which should be modified before running the sample program.

� A sample program is generated as well. This program creates a sample XML
file by using the generated JavaBeans.

These JavaBeans could be used in own programs to manipulate XML files. This
would be an alternative to the DOM and SAX APIs provided by IBM Java XML
tools.

JavaBean Generation

Can generate JavaBeans for each element of DTD or XSD
Create a package (under source) for the JavaBeans
Select a DTD (or XSD) and the target package
Generate the beans

JAR files are added to the build path
XSDBEANS variable
XERCES variable

Also generates a sample program that uses the JavaBeans to
create an XML file

Sample data is very simple
Best to update with real data before running
Result in project folder by default (location is set in sample code)
 Unit 5. Application Developer: XML Development 113

Visual 5-16 Summary

The XML tooling of the Application Developer provides a rich set of tools for
manipulating XML files and the associated DTD and XSD descriptors.

Summary

XML Tooling provides
Management of XML files
Management of descriptors (DTD, XML schema)
Utilities for creation and conversion
Transformation of files using XSL

XML ==> XML
SQL query ==> XML and HTML
114 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 5-17 Exercise: XML Development

The XML development exercise guides you through many of the tasks discussed
in the presentation.

In this exercise you work with XML files, DTDs, and XSDs that describe the parts
data stored in the ITSOWSAD database:

� Use DTD and XSD editors and convert between the formats.

� Work with XML files.

� Create an XML-to-XML mapping between two DTDs that describe the same
XML part files. Use the XSLT processor to convert an XML file.

� Use the SQL-to-XML mapping to execute an SQL statement and convert the
result into XML and HTML files.

See Exercise 3, “XML development” on page 315 for the instructions for this
exercise.

Exercise: XML Development

XLM development
Project: ItsoWsDealerXml
XML Perspective
Work with DTD and XML schema
Work with XML files
XML-to-XML mapping

XSL translation

SQL-to-XML mapping

MMPARTS

ITSOWSAD

WSAD

Part.xml
Part.dtd
Part.xsd

Work with
XML files

DTDs and schemas
 Unit 5. Application Developer: XML Development 115

116 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 6. Application Developer:
Web Development

Figure 6-1 Title

6

International Technical Support Organization

ibm.com

Web Development

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 117

Visual 6-2 Objectives

The objectives of this unit are to:

� Understand Web projects and their fit in the J2EE hierarchy

� Understand the Application Developer tools provided for Web development

� Understand the SmartGuides and wizards that are provided to create servlets
and simple Web applications based on SQL statements or JavaBeans

� Understand the built-in test environment for running and debugging Web
applications

� Understand deployment of Web applications to WebSphere Application
Server

Objectives

Learn about Web development
Web project, in J2EE hierarchy

HTML, JSP
WAR file management
(import, export)
web.xml editor

Web Perspective
source (servlets)
webApplication (HTML, JSP)

WEB-INF, web.xml

Servlet wizard
Database and JavaBean wizards

Input HTML, result JSP
DB access in JavaBean or JSP

Test environment
JSP debugging (not in beta)

 Tasks

Import
Site (HTTP, FTP)
WAR file

Authoring
Create, edit HTML, JSP, ...
Java development
Wizards

Publishing (export) - copy, FTP
Link parsing and management
web.xml maintenance
WAR file

Deployment
J2EE deployment descriptor
118 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-3 Web Interaction: Simple

Let us review how a simple Web interaction works:

� An HTML page is displayed in a browser. The HTML page contains a form
where the user can enter data and submit the form for processing.

� The Web server passes the request to an application server that schedules a
servlet to process the form.

� In the model-view-controller (MVC) design pattern, the servlet is the
controller. The servlet uses a JavaBean (the model) for the business logic.
The JavaBean performs the requested tasks, for example, by accessing a
relational database.

� The servlet then invokes a JSP (the view) to format the HTML result page.
The JSP accesses the JavaBean to retrieve the result data of the processing
task.

Web Interaction: Simple

Servlet

compiled

JSP

Browser Server

relational
data

DB2

HTML
page
(form)

HTML
page
(result)

prepare bean

call

access bean

request
bean
 Unit 6. Application Developer: Web Development 119

Visual 6-4 Web Interaction: Refined

In many real Web applications, processing is more complex:

1. A servlet is invoked from an HTML form.

2. The servlet uses command beans to process the request.

3. Command beans perform the business logic by accessing databases and/or
back-end transaction systems.

4. The result of commands are data beans (JavaBeans); for example, the result
of a CICS transaction is a COMMAREA represented in a Java record.

5. The servlet allocates view beans that are used to process and format the data
stored in the data beans into formats suitable for HTML output. (This is
optional, but sometimes required data beans may be predefined.)

6. The servlet invokes a JSP to generate the HTML output. Depending on return
codes from the command beans, one of multiple JSPs may be invoked.

7. The JSP uses the view beans to retrieve formatted results.

8. The view beans use the data beans to process and format the results.

9. The JSP generates the HTML result page.

Web Interaction: Refined

Browser

HTML
page
with
Form

Servlet

 Data
Beans

 View
Beans

 Result
JSPs

Application
Server

DB2

CICS

MQ

other

 Command
Beans

HTTP Server

1

2

3

456

7

8

one Web interactionone Web interaction
with dynamic contentwith dynamic content

9

120 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-5 J2EE Hierarchy

This diagram shows the J2EE hierarchy and the matching support in the
Application Developer:

� A J2EE application is stored in an enterprise archive (EAR) file which
contains EJB modules (stored in an EJB JAR file), Web modules (stored in
Web archives (WAR) files), and client modules (stored in a JAR file).

� Each of the modules contains a deployment descriptor; for example, a WAR
file contains a web.xml file.

� A WAR file contains all the components of a Web application, that is, servlets,
JSPs, HTML files, images, and so forth.

� The J2EE hierarchy is matched by projects in the Application Developer. An
EAR project contains references to EJB, Web, and client projects. A Web
project contains all the resources (servlet, JSP, HTML, images) and the
deployment file (web.xml).

This setup makes deployment to a J2EE-based application server very easy.

EAR
Project

EJB
Project

Web
Project

Client
Project

EJB
DD

Client
DD

Web
DD

Application
DD

J2EE Hierarchy

HTML,
GIF, etc.

Enterprise
Bean

Client
ClassServlet JSP

EJB
Module
JAR file

Web
Module

WAR file

Client
Module
JAR file

DD = Deployment Descriptor

J2EE
Application

EAR file

WSAD
 Unit 6. Application Developer: Web Development 121

Visual 6-6 Web Perspective

The Web Perspective contains four panes:

� Top left—Navigator view (displays the folders and files of the projects)

� Top right—reserved for editors

� Bottom left—Outline view (of current editor) or Gallery (for HTML/JSP files)

� Bottom right—Tasks (errors), Properties (of selected resource), Links (of Web
resources), Thumbnail, Styles, Color, Palette (Web resources)

One of the supported editors is the Page Designer for HTML and JSP files. The
Page Designer itself has three tabs to display the Design (WYSIWYG), Source
(HTML source code) or Preview (browser) view.

Web Perspective

Page Designer

Links

Files

Tabs for other views
122 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-7 Web Perspective Folders and Files

The Navigator view of the Web Perspective shows the setup of a Web project:

� The source folder contains the Java source code of servlets, organized in
subfolders that form the package structure.

� The webApplication folder contains all the other Web resources:

– The theme folder is HTML style sheets.
– The WEB-INF folder with the compiled servlet classes, the lib folder with

additional JAR files, the deployment descriptor (web.xml) and IBM
extension files.

– The HTML, JSP, and image files (these files are usually organized into
many subfolders).

Notice our naming standard:

� EAR project names carry the suffix EAR
� Web project names carry the suffix Web
� EJB project names carry the suffix EJB

Web Perspective Folders and Files

EAR project

Web project

source: package structure

Servlets

Web application

Meta files

HTML, JSP

Class files

that contains Web project

Editors

Outline

Style sheet

invisible in Web
Perspective
 Unit 6. Application Developer: Web Development 123

Visual 6-8 Web Project Icons and Wizards

When creating a Web project, you must also supply an existing or define a new
owning EAR project:

� In this class we always name Web projects with a Web suffix and EAR
projects with an EAR suffix.

You specify the location of the source (Java servlets), the compiled class files,
and the build path (this is the same as for a Java project).

The Web Perspective provides a number of icons to quickly access some of the
tasks:

� Open a Web browser (for testing)

� Run on Server (open the welcome page of the Web application)

� Create icons for a Web project and the different type of files

� Icons to invoke the JavaBean wizard and the Database wizard

Web Project Icons and Wizards

Create project
Name and owning EAR project
Context root: alias name used in HTML requests
Location for source (project or source folder or other)
Output folder (webApplication\WEB-INF\classes

Project - Servlet - HTML - JSP - CSS - ImageCREATE

JavaBean
Wizard

Database
Wizard

creates servlet,
HTML, JSP,
DB-bean

creates servlet,
HTML, JSP

XML

Open Web Browser - Run on Server
124 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-9 Editing of Web Resources

The Page Designer (that was available in WebSphere Studio classic) is the
editor for HTML and JSP files:

� The Design view is for WYSIWYG construction.
� The Source view shows the HTML source.
� The Preview view shows the page as it appears in a browser.

Additional tools are the Animated GIF Designer, the Web Art Designer, and the
Stylesheet editor. We will not discuss these tools in this class.

The Web application deployment descriptor is the web.xml file, where servlets
and JSPs are defined together with additional deployment information.

Editing of Web Resources

Page Designer
HTML and JSP files, same
as in Studio Classic

Animated GIF Designer,
WebArt Designer

GIF files

Stylesheet Editor
CSS files

Web Application
Deployment Data

web.xml
Define servlets and JSPs

HTML

JSP
 Unit 6. Application Developer: Web Development 125

Visual 6-10 Create Servlet

A SmartGuide is provided to define a servlet:

� You specify the folder, the package name, the name of the servlet, its
superclass, modifiers, interfaces that must be implemented, and the method
skeletons that should be generated.

� On the second page, you can add the servlet to the web.xml file and specify
its alias name (for invocation) and initialization parameters and their values.

Create Servlet

Create a skeleton servlet
Package and name
Superclass
Methods

Add to web.xml
URL
init parameters
126 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-11 web.xml Editor

The web.xml editor is provided to maintain the deployment descriptor.

A number of panels (accessible by tabs) are provided. For example:

� On the General page, you can provide a description and mime type
mappings.

� On the Servlets page, servlet and JSP information is maintained.

� On the References page, you can define references to EJBs that are used in
the Web application.

� On the Pages page, you can define the default welcome page.

� On the Source page, you can edit the actual XML source (but this is not
suggested).

web.xml Editor

Edit Web application deployment information
General

Name, MIME

Servlets and JSPs
URL, Init-parms

Security
Roles,
constraints

Environment
Variables

References
EJBs
JSP tag-libs

Pages
Welcome, error

Source
XML file

Web deployment
descriptor file in
WAR file

EJB references
later in EJB
 Unit 6. Application Developer: Web Development 127

Visual 6-12 Wizards

Two wizards are provided to generate skeleton Web applications:

� Database wizard—generates a Web application based on an SQL statement

� JavaBean wizard—generates a Web application based on a JavaBean

For both wizards, two models are supported:

� View bean model—generates a controller servlet, a JavaBean for processing,
and JSPs for output

� JSP taglib model—generates a controller servlet and JSPs for processing
and output

Each wizard guides the user through a series of panels where you specify the
output folder, if a session should be used, the model, the SQL statement and
data source (or JavaBean and method to invoke), the forms (input HTML, output
JSPs). Then you generate the code.

Wizards

Database wizard
Create DB application from an
SQL statement
View bean or JSP taglib model
Wizard sequence

Folder and prefix
Session or request
View bean or JSP taglib
SQL statement
(manual or guided)
DataSource or driver
Tailor forms
(input, result table, detail)
Generate code

JavaBean wizard
Create application using a
JavaBean
View bean or JSP taglib model
Wizard sequence

Folder and prefix
Session or request
View bean or JSP taglib
Select JavaBean
Method to execute
Tailor forms
(input, result table, detail)
Generate code

Function very similar to Database and JavaBean wizards in WebSphere Studio classic
128 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-13 Database Wizard - Run

Here we see a sample execution of a Web application generated with the
database wizard:

� The HTML input form is displayed and the user enters values for the input
field(s).

� The list of matching database records is displayed in a table, usually with a
subset of the columns retrieved by the SQL statement.

� One record can be selected and its details are displayed in a detail form that
usually shows all the columns retrieved by the SQL statement.

Database Wizard - Run
 Unit 6. Application Developer: Web Development 129

Visual 6-14 Database Wizard - View Bean Model

When using the view bean model of the database wizard, the generated
components include:

� HTML input form.

� Controller servlet, which invokes the master view or the details view JSP.

� Master view and details view JSPs, which invoke the master view or details
view JavaBean for database access.

� The SQL statement is used to generate the database access code into the
master and details view JavaBeans, using the data access bean technology
from VisualAge for Java.

� The database is accessed using a data source that provides connection
pooling.

DB access

DataSource
Connection

DB access

Database Wizard - View Bean Model

Database

SQL
Statement

HTML
Form

Control
Servlet

MasterView
Bean

DetailsView
Bean

MasterView
JSP

DetailsView
JSP
130 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-15 Database Wizard - JSP Taglib Model

When using the JSP taglib model of the database wizard, the generated
components include:

� HTML input form.

� Controller servlet, which invokes the master view or the details view JSP.

� Master view and details view JSPs, which invoke the master view or details
view JavaBean for database access.

� The SQL statement is used to generate the database access code into the
JSPs using special JSP tags to define the data source, run the SQL
statement, repeat through the result set, and retrieve the column values.

Database Wizard - JSP Taglib Model

DataSource
Connection

dab:tagsdab:tags

Database
SQL

StatementHTML
Form

MasterView
JSP

DetailsView
JSP

<%@ taglib uri="/WEB-INF/lib/jspsql.jar" prefix="dab" %>
<dab:dataSourceSpec id = "PConn" scope="page"
 dataSource = "<%=datasourcename%>" userid=... password=... />
<dab:select id="select1" scope="request" connectionSpecRef="PConn">
 <dab:sql>SELECT ... FROM ... WHERE ... ORDER BY ... </dab:sql>
 <dab:parameter position="1" type="CHAR" value="<%=inputxxx1%>"/>
</dab:select>
<dab:repeat name = "select1" index = "rowNum" over = "rows" >
 <dab:getColumn index="1"/>

Control
Servlet
 Unit 6. Application Developer: Web Development 131

Visual 6-16 Testing of Web Applications

The Application Developer provides a local and remote test environment for
testing of Web applications:

� WebSphere Application Server AEd (developer edition, same code as AEs,
but free) is built into the Application Developer.

� WebSphere Application Server AEs (single server edition) can be installed on
the same machine, or on a remote machine. A remote server is started
through the IBM Agent Controller, which must be installed on the machine
where the server runs.

For testing, a Web application is published to the selected server by installing the
owning EAR project file into the application server. Then the server is started and
the Web application can be tested in a Web browser.

Testing of Web Applications

Developer
Machine

Deployment
MachineWSAD

WebSphere
AEd

built-in

Agent Controller Agent Controller

WebSphere
AEs

WebSphere AE
(future)

App

start

WebSphere
AEs

App App

publish - run

start

must be installed
132 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-17 Local and Remote Servers

WebSphere AEs and Tomcat are supported for testing of Web applications.

If the server runs inside the Application Developer, we call it a local server. If the
server runs outside, on the same or another machine, we call it a remote serer. A
remote server is started through the Agent Controller.

Only WebSphere AEs can be used as a remote server on another machine.

Tomcat must be installed separately in all cases.

WebSphere AEs must be installed separately when used as a remote server on
the same or another machine.

Local and Remote Servers

Unit test
Run projects from WSAD folders
Built-in server is used inside WSAD (separate process)

WebSphere AEd, Tomcat

Local unit test
Install separate server on same machine

WebSphere AEs, Tomcat

Project published to local server and run

Remote unit test
Install server on separate machine

WebSphere AEs (AE maybe in future)

Install IBM Remote Agent Controller on server machine
Comes with WSAD

Project published to remote server and run

Tomcat must be
installed separately

Remote
Server

Local
Server

WebSphere exclusive
 Unit 6. Application Developer: Web Development 133

Visual 6-18 Runtime Support: Servers

Servers are defined in the Application Developer. To run a server you must have
an instance of the server, and a server configuration.

Server instances and configurations are defined in Server projects, which can be
shared between developers.

Multiple instances can point to the same configuration.

EAR projects (with contained EJB and Web projects) are associated with server
configurations. A configuration can be associated with multiple projects, and a
project can be associated with multiple configurations, one of which will be the
preferred configuration.

When a server is started, all associated projects are loaded. When a project is
run on a server, the preferred server is used (or started).

The TCP/IP Monitoring Server can be used to intercept and display the actual
messages between browser and server.

Runtime Support: Servers

Generic server support
Could plug in any server
Limited for now

Project

Instance

Project

m:1

EAR (EJB, Web)

m:m

Server
Project

Instance

Config Config

WebSphere AEd
Runs EJB, servlet, JSP, HTML

Web, EJB, EAR projects

Picks up changes made to files
(except EJB interfaces)
Default server type

Apache Tomcat
Must be installed separately
Web projects only (no EJBs)

TCP/IP Monitoring Server
Simple server intercepts HTTP,
FTP and forwards to real server

Web projects only

Displays request/response
134 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-19 Server Configurations and Instances

A server configuration specifies:

� Information about the server facilities, such as ports that are used, JDBC
drivers to be loaded, data sources to be defined, mime types, if sessions or
cookies are used, and if the universal test client should be loaded.

A server instance specifies:

� The runtime environment (WebSphere AEs or Tomcat), PATH and
CLASSPATH information, system properties (for example, JIT compiler), and
how projects are deployed to a remote server.

� A remote server requires information about the host address, the installation
and deployment directories, and how files are transferred (either through LAN
copy or through FTP).

Server Configurations and Instances

Configuration
Information that is required to set
up and deploy to a server
Port
JDBC drivers
DataSources
MIME types
Session/Cookie information
EJB Client enablement
Deployed project information

Instance
Points to a specific run-time
environment

AEs local or remote
Tomcat

Reference to a server
configuration
PATH and CLASSPATH
information
System properties
Remote server information

Host Address
Installation directory
Deployment directory
File transfer information

Created automatically if no
server assigned to the project
 Unit 6. Application Developer: Web Development 135

Visual 6-20 Runtime and Test Configurations

A Server project is used to keep server definitions. Such a project can be shared
and versioned in a team environment.

Servers can be defined automatically for simple projects, but in most cases
tailored servers are defined for a set of projects that run on the same server.

A server definition can be stored as a template for easy definition of additional
servers with the same, or similar, characteristics.

Runtime and Test Configurations

Server project
For team sharing of configurations

Server consists of configuration and instance
Automatic for simple scenarios
Manual in most real scenarios

Can define and reuse templates

Templates
Save a configuration as a template

Window -> Preferences ->
Server -> Templates

Saves time to create
multiple similar configurations

Server preferences
Window -> Preferences -> Servers
136 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-21 Server Perspective

In the Server Perspective we maintain definitions of application servers for
testing of Web applications, EJBs, and Web Services.

Server configurations define the type of server (WebSphere or Tomcat), and are
configured with JDBC drivers and data sources.

Projects are associated with servers. When a server is started, the associated
projects are loaded and their code can be executed.

Servers can be started in normal or debug mode. In debug mode, breakpoints
can be placed into servlets and JSPs for debugging purposes.

Icons are provided to create a server project or server instances and
configurations.

You can use the Server Perspective to edit resources and run or debug projects.

Server Perspective

Web Browser

Servers
Server
Configurations
with assigned
projects

create project, config+inst, config, instance

normal or
debug mode

Console Messages
 Unit 6. Application Developer: Web Development 137

Visual 6-22 Create Configuration and Instance

A SmartGuide is provided to define a server instance and configuration. You
have to specify:

� Name of the server

� Server project

� Instance type (WebSphere AEs or Tomcat)

� Port (on the next panel)

For a remote server, additional panels are required. (This will be discussed later
in the class).

After defining a server you can associate EAR projects with the server
configuration, and you can assign a preferred (default) server for each project.

Create Configuration and Instance

Create both
configuration and
instance together

Create separately
Set configuration
for instance before
starting instance

Can use predefined
templates

Set port (Next)
Default 8080

Choose
instance
type

Assign projects to
configuration afterwards

Set default config for project

Separate WebSphere
same or other machine
138 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-23 Configuration Properties

The server configuration properties are maintained in a special editor:

� Mime types

� Enable session management

� Enable URL rewrite

� Enable cookies

� Define JDBC drivers to be loaded (click Add and specify the class and
location of the ZIP/JAR file)

� Define data sources for JDBC drivers (click Add and define the JNDI name,
database name, and connection pooling information)

Configuration Properties

Project -> Run on Server
Assigned server is started

Server Perspective
Configure server properties
Start server

Server Project
Server configuration/instance
For team sharing of definition

Configure DataSources

JDBC Drivers
 Unit 6. Application Developer: Web Development 139

Visual 6-24 Testing of Web Applications

Testing a Web application involves these steps:

� Define a server and associate the EAR project that contains the Web project
with the server

� Start the server in normal or debug mode. You can simply select the project
and Run on Server to start the preferred server in debug mode, or you can
start the server manually.

� Start a Web browser by selecting an HTML file and Run on Server, or start a
Web browser manually (inside the Application Server or outside) and enter a
URL.

Testing of Web Applications

Preparation
Server project with server
configuration/instance defined
Project attached to server configuration

Start server instance
Explicit or automatic
(run project or file on server)
Debug mode or normal mode

Start browser
Explicit or automatic
Can use external browser
http://localhost:8080/.......

Run application
Web browser

Proxy configurations can
disturb the browser
140 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-25 Debugging of Web Applications

To debug a Web application, you start the server in debug mode.

In debug mode you can set breakpoints in servlets and JSPs, step through the
code using the standard debug icons (step into, step over, step return), and
monitor variables.

Debugging Java code is the same as for a Java project.

Debugging a JSP is performed at the source code level. You can set breakpoints
only at JSP tag lines, not in HTML code. The variables of the JSP servlet are
visible in the Variables view.

Debugging of Web Applications

Start server in Debug mode

Set breakpoint in
servlet or JSP

JSP breakpoints
at JSP tags only

Run Web app

Debug servlet
Same as Java

Debug JSP
JSP source code
Java source is
hidden
Variables visible
 Unit 6. Application Developer: Web Development 141

Visual 6-26 Summary

The Application Developer provides very good tooling for Web application
development and testing.

The setup is very effective for J2EE-enabled application servers because the
project setup in the Application Developer mirrors the deployment information
required for J2EE.

The built-in test environment makes testing and debugging of Web applications
very easy.

Summary

Web projects and Perspective provide
Web development environment
J2EE-conforming deployment
Page Designer for HTML and JSP
Wizards for code generation

Server project and Server Perspective provide
Test environment for Web applications
Server configurations and instances

JDBC drivers and DataSource
142 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 6-27 Exercise: Web Development

The Web development exercise guides you through many of the tasks discussed
in the presentation.

In this exercise you work with two applications:

� PartList—Web application with a servlet and a JSP with JDBC access to the
ITSOWSAD database

� Inventory—Web application generated with the database wizard

See Exercise 6, “Application Developer: Web Development” on page 117 for
the instructions for this exercise.

Exercise: Web Development

Web applications
Project: ItsoWsDealerWeb
Import Web application
Prepare server with
WebSphere Test Environment
Test application
Create Web application with
Database wizard
Configure data source
Export WAR file for
deployment

MMPARTS
MMINVENTORY

ITSOWSAD

Inventory HTML

Inventory servlets

Inventory JSPs

PartList.html

PartList.java

PartList.jsp

WebSphere Test Environment

Web applications
with database access
 Unit 6. Application Developer: Web Development 143

144 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 7. Application Developer:
EJB Development

Visual 7-1 Title

7

International Technical Support Organization

ibm.com

EJB Development

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 145

Visual 7-2 Objectives

The objectives of this unit are to:

� Understand the EJB development environment provided by the Application
Developer

� Understand the EJB project and J2EE Perspective

� Understand the test environment, including the EJB test client

Objectives

Learn about EJB development
EJB project, in J2EE hierarchy

EJBs, schema, mapping
IBM extensions

J2EE Perspective
bin (output classes)
ejbModule (EJBs)
META-INF with schema, mapping,
deployment descriptor
J2EE view

EJB activities
Navigator view

Code, meta-data

Test environment
Server Perspective
EJB Test Client

 Tasks

Import
EJB 1.1 JAR file

Authoring
Create and edit EJBs
Inheritance, Relationships
Access Beans
Custom queries

EJB testing
Configure server
Run EJB Test Client

Deployment
J2EE deployment descriptor
146 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-3 EJB Review

The EJB specification provides for entity and session EJBs.

In this class we only deal with container-managed persistence entity EJBs that
are mapped to relational tables, and stateless session EJBs that are used for
business logic and transaction management.

EJB Review

EJB specification (server-side Java)
Defined by Sun Microsystems
Compatible with CORBA

There are 2 types of EJB
Entity Bean

This EJB represents persistent business data, such as customer, account, ...

There are 2 types of Entity EJBs
CMP (Container-Managed Persistence)entity bean

EJB developer specifies mapping to relational database
An EJB container, such as WebSphere, provides persistence

BMP (Bean-Managed Persistence)entity bean
EJB developer must develop persistence layer

Session Bean
This EJB executes business logic on behalf of a single client in a server
For example, you can implement a set of transactions in a session bean
stateless (shared) or stateful (for one user)

EJB

Entity

CMP StatelessBMP Stateful

Session
 Unit 7. Application Developer: EJB Development 147

Visual 7-4 EJBs in J2EE Environment

The EJB specification dictates that EJBs run in an EJB container, which is
usually provided by an application server.

Clients connect to EJBs through the RMI-IIOP protocol using two interfaces:

� The home interface that gives access to EJB instances through create (for
new beans) and find (for existing beans) methods.

� The remote interface that is used to access the entity instances created or
found through the home interface.

Each EJB has a JNDI (Java Naming and Directory Interface) name, which is
used to acquire the home interface.

Notice that session EJBs access entity EJBs through the home and remote
interfaces as well.

Web/Client
Container

EJBs in J2EE Environment

WebSphere

EJB Container

EJB

Instances of
EJB classes

Home Interface

A deployment tool of
the EJB container

generates this code

Remote Interface

RMI-IIOP

EJB

Session

Entity

DB2

Access
Bean

EJB Home

EJB Object

EJB Home

EJB Object

EJB
Client

(Servlet)
148 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-5 Typical EJB Application

This diagram shows the structure of a typical (simplified) EJB-based Web
application:

� A servlet is invoked from an HTML form.

� The servlet invokes a method in a session EJB (first the home of the session
EJB is acquired and a session bean instance is created). This starts a
transaction.

� The session EJB accesses multiple entity EJBs for database retrieval and
update. All business logic is in the session bean.

� When the session bean method ends, the transaction is committed and the
database updates are made permanent (this may require two-phase commit if
multiple database managers are involved).

� The servlet invokes a JSP to produce HTML output (not shown are additional
beans need to pass the data to the JSP.

Typical EJB Application

Database

Browser Application Server

HTML

HTML Entity EJBs

Servlet

JSP

Session EJB

Web Container EJB Container

Transaction
 Unit 7. Application Developer: EJB Development 149

Visual 7-6 EJB Tooling

The EJB tooling support provided by the Application Developer includes full
support of the EJB 1.1 specification. In addition IBM extensions for associations,
inheritance, access beans, and custom finders are supported.

All the control information is kept in EJB deployment descriptors: the ejb-jar.xml
file, and IBM extension files (ibm-ejb-jar-ext.xmi, for example). Editors are
provided to maintain the deployment descriptors.

EJB Tooling

Development Environment
Full EJB 1.1 support
Creation, edit
import/export
Meta-data exposed as XMI
Mapping to RDB

top-down/bottom-up/middle

WebSphere extensions and
bindings

Associations, Inheritance
Access beans, custom finders
DataSource

Unit test environment
WebSphere

J2EE Perspective

 Components
EAR and EJB projects
Web and Client projects
EJB editor

Deployment descriptor
ejb-jar.xml

EJB Extension editor
ibm-ejb-jar-ext.xmi
ibm-ejb-jar-bnd.xmi

EJB RDB mapping editor
Map.mapxmi

Enterprise application editor
application.xml

J2EE and Navigator views
150 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-7 J2EE Hierarchy

This diagram shows the J2EE hierarchy and the matching support in the
Application Developer:

� A J2EE application is stored in an enterprise archive (EAR) file that contains
EJB modules (stored in an EJB JAR file), Web modules (stored in Web
archives (WAR) files), and client modules (stored in a JAR file).

� Each of the modules contains a deployment descriptor; for example, an EJB
JAR file contains the ejb-jar.xml file.

� The EJB JAR file contains all the interfaces and deployed code that make up
entity and session EJBs.

� The J2EE hierarchy is matched by projects in the Application Developer. An
EAR project contains references to EJB, Web, and client projects. An EJB
project contains all definitions of the EJBs, including the mapping to relational
tables.

This setup makes deployment to a J2EE-based application server very easy.

J2EE Hierarchy

EAR
Project

EJB
Project

Web
Project

Client
Project

EJB
DD

Client
DD

Web
DD

Application
DD

HTML,
GIF, etc.

Enterprise
Bean

Client
ClassServlet JSP

EJB
Module
JAR file

Web
Module

WAR file

Client
Module
JAR file

DD = Deployment Descriptor

J2EE
Application

EAR file
 Unit 7. Application Developer: EJB Development 151

Visual 7-8 J2EE Perspective

The J2EE Perspective is used for management of J2EE deployment descriptors
(EAR, enterprise archives), and for development of EJBs.

The J2EE view is the only view where entity and session EJBs can be
developed. This view displays a logical view of the EJBs with their fields, key,
and main underlying Java files (bean class, home and remote interface, key
class).

The Navigator view displays all the project resources, including the control files
(XMI files) that are used to store the EJB design (meta) information.

An EJB Editor is provided to define and manipulate EJB deployment information,
such as JNDI names, transaction attributes, read-only methods, and security
information.

An EJB Extension Editor is provided to define IBM extension of the EJB
specification, such as associations and custom finders.

J2EE Perspective

Beans

Attributes

EJB editor

Beans
152 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-9 EJB Development Roadmap

The steps involved to create the EJB-based application are:

� Create an EJB project to hold all the definitions and deployed code.

� Create entity and session EJBs with attributes, business methods, home and
remote interface.

� Define IBM-supported EJB extensions.

� Define the JNDI names used to acquires EJB home interfaces. In EJB 1.1,
applications should use local JNDI names that are then mapped to global
(unique) names in an application server.

� Map entity EJBs to relational tables.

� Generate the deployed code from the definitions and the mapping.

� Define a server for testing, and configure data sources for EJB access in the
database. Add the project to the server, start the server, and use the test
client to instantiate EJBs and run methods.

� Deploy EJB applications to an application server.

EJB Development Roadmap

Create EJB project (and EAR project)

Create EJB
Attributes, business methods, remote/home interface

EJB extensions
Inheritance, associations, custom finders, access beans

JNDI names
Local and global JNDI names, binding local to global

Entity EJB-to-RDB mapping

Generate deployed code

EJB testing
Server configuration/instance and data source JNDI
EJB test client

Deployment to WebSphere
 Unit 7. Application Developer: EJB Development 153

Visual 7-10 EJB Project

An EJB project must be attached to an EAR project.

As for a Java project, you have to define the source and output folders and the
build path that is used to compile the Java source code.

The EJB project contains a META-INF folder for the control information:

� Schema (tables) used in the mapping

� EJB deployment descriptor

� IBM extension deployment information (XMI files)

� Mapping file for entity-to-table mapping

EJB Project

Create project
Name and owning EAR project
Location for source (project or ejbModule folder or other)
Output folder (bin), build path

Result
Project contains META-INF folder with:
Schema (folder)

Database and tables
ejb-jar.xml

Deployment descriptor
ibm-ejb-jar-ext.xmi

Extensions (associations, inheritance, read-only methods, ...)
ibm-ejb-jar-bnd.xmi

Bindings (JNDI names, DataSource)
Map.mapxmi

Mapping from bean to tables

EJB editor

EJB
Extension
Editor

Mapping
Editor
154 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-11 J2EE and Navigator View

The J2EE Perspective comes with two main views:

� The J2EE view for design and specification of EJBs. This view shows the
logical structure of the EJB modules and only the main files:

– The home interface
– The remote interface
– The bean itself
– The key class that holds the key attribute of an entity EJB

� The Navigator view that shows all the folders and files:

– The bin folder with the class files
– The ejbModule folder with the Java source code
– The META-INF folder with the schema, deployment descriptors, and

mapping

J2EE and Navigator Views

Beans and
Attributes

Deployed
code

Tables

Mapping
Bindings

Deployment

create projects

Editor

DDLcreate
 Unit 7. Application Developer: EJB Development 155

Visual 7-12 Create EJB

A SmartGuide is provided to define an EJB. This visual shows the definition of an
entity bean (container-managed). The user specifies:

� The name and type

� The project and package

� The bean name

� The superclass for beans with inheritance

� The home and remote interface names are derived automatically

� Persistence fields (click Add to define fields)

� The key field can be embedded in a key class, or used directly

At the end of the SmartGuide, the Java code for bean, home interface, remote
interface, and key are generated.

Typical follow-on tasks include defining business methods (for the remote
interface) and adding tailored create methods (for the home interface).

SmartGuide to specify
Type
Name
Package
Attributes

Create EJB

Dialog

Use EJB Editor
for modifications

Add business methods
Promote to remote
interface

Change ejbCreate
method

Promote to home
interface
156 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-13 IBM Extensions: Inheritance and Associations

The EJB 1.1 specification does not support inheritance and associations.

IBM extensions are provided in the Application Developer for these functions.

Inheritance:

� An EJB can inherit attributes and methods from another EJB. Note that the
home interface is separate and does not use inheritance.

Associations:

� 1:m and 1:1 associations are supported directly. For m:m, an intermediate
EJB with two 1:m associations must be defined.

� Associations are implemented by foreign keys in the underlying tables.

IBM Extensions: Inheritance & Associations

Inheritance

Standard inheritance
Properties/methods from
non-EJB classes/interface

EJB inheritance
Properties/methods from other
EJB in same project
Home interface does not inherit
Remote interface does
Key class is common

Associations

Supported are
1:1 or 1:m
m:m ==> two 1:m with int.EJB

Manual specification

Specify roles
finder methods generated for
traversing

Implementation
Foreign keys between tables

EJB Extension Editor
 Unit 7. Application Developer: EJB Development 157

Visual 7-14 Extension Editor: Associations

An association is defined in the Extension editor.

The association is defined between two entity beans, MmPart and MmInventory.
The cardinality (1:m) is defined through the two multiplicity values; 1..1 specifies
one and only one part (for an inventory item), while 0..m specifies multiple but
optional inventory items (for a part).

A role name is defined for each direction; for example, the role of the
MmInventory bean as seen from the MmParts bean is stocks.

� This specification generates a method named getStocks into the part bean.

� Because the association is 1:m, a method named addStocks is generated to
add an inventory item to the part (removeStocks is not generated because
1..1 forces an inventory item to be associated with a part).

The role name of the part is defined as thePart (there is only one part for an
inventory item):

� The generated methods are getThePart and setThePart.

Extension Editor: Associations

1 : m

getThePart
setThePart

getStocks
addStocks
(removeStocks)
158 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-15 IBM Extension: Access Beans

Another IBM extension is access beans.

Access beans make client access to EJBs easier. The access bean contains the
code to look up a home by its JNDI name and provide direct access to the
remote interface.

Access beans can cache the attributes of entity beans for faster access, and then
synchronize (commit) values at the end of business logic methods.

JavaBean wrapper and copy helper access beans were used in VisualAge for
Java, but are now deprecated (they can still be used). The copy helper has been
replaced by the data class access bean that provides the caching function.
Rowset access beans, which were collections of copy helpers, are not supported
any more.

IBM Extensions: Access Beans

Easier access to EJBs from client programs
Lookup of home, create or findByPrimaryKey

Optimized access through caching of attributes

Access bean types
JavaBean wrapper
Copy helper
Data class

Replaces copy helper
Caches and synchronizes attributes

Factory
Generated with any other
Provides access to home

Rowset
Not supported

deprecated

for new
applications
 Unit 7. Application Developer: EJB Development 159

Visual 7-16 Customer Finder Methods

By default, entity EJBs are accessed by their primary key.

For many applications, access by other attributes or partial values is required.
This can be implemented through custom finder methods that can return multiple
EJBs that qualify the search criteria.

In VisualAge for Java, custom finders were defined in the finder helper interface.
This is still supported, but the Application Developer provides better function:

� First define the custom finder methods in the home interface. Note that with
EJB 1.1, the return value can be an Enumeration (as before) or a Collection
(new in EJB 1.1).

� Use the extension editor to specify the underlying SQL statement where
clause that is used to retrieve the matching EJBs. In addition to the SQL
language, a new EJB query language (Ejbql) can also be used.

Custom Finder Methods

Compatibility with previous
You can continue to define SQL query strings or method declarations in
the finder helper interface

New development
Define methods in home interface
public Enumeration findByQuantity(int quantx) throws ...;
public Collection findByCost(BigDecimal costx) throws ...;

Extension editor
EJB query language and SQL language

ibm-ejb-jar-ext.xmi
160 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-17 EJB 1.1 JNDI Names

In the EJB 1.1 specification, it is suggested that applications use local JNDI
names to access EJBs. A local JNDI name is specified as ejb/Beanname (in the
Java code, the home is found using java:comp/env/ejb/Beanname). In an
application server, global JNDI names are used and they must be unique.

Local JNDI names are used in the generated code for associations. They should
also be used in hand-written code of session beans (that access entity beans)
and in Web applications (servlets).

Local names and their mapping to EJBs are defined in the EJB editor. The
mapping of local names to global names (called the binding) can be done in the
extension editor, or it can be done as a deployment activity in the Application
Assembly Tool (AAT) of WebSphere.

EJB 1.1 JNDI Names

EJB Editor
Local name

Generated for
associations
Should be used
in session bean

EJB Extension Editor
Binding local name
to global name

Can also be done
at deployment
using AAT or
Admin Console

Local JNDI name: java:comp/env/ejb/MmPart

Global JNDI name: itso/wsad/manu/MmPart

EJB references (local JNDI names) can also be defined in Web module (web.xml) for servlets
Binding specification to global name (was not available in the beta code)
Binding can be done using AAT (Application Assembly Tool) or Admin Console
 Unit 7. Application Developer: EJB Development 161

Visual 7-18 Entity EJB-to-RDB Mapping

Entity beans (container-managed) must be mapped to relational tables. This can
be done in three ways:

� Top-down—Define the entity bean and have the matching tables generated
(one column for each property).

� Bottom-up—Import existing tables using the relational schema center and
have matching entity beans generated (one property per column).

� Meet-in-the-middle—Define the entity bean and import an existing table.
Perform the mapping by hand (using the mapping editor). The entity bean
should correspond to the table from the beginning, but this approach gives
more freedom in regard to data type conversions.

The disadvantages of top-down and bottom-up are that the user has little control
over the names and data types that are generated.

SchemaEJB Mapping DB TableEJB Definition

Rel. Schema CenterMapping EditorEJB Project

Top-down

Bottom-up

Meet-in-the-Middle

generated generated

generatedgenerated imported

importedmanual

define

existing

create

existing

Entity EJB-to-RDB Mapping

define
162 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-19 Entity EJB-to-RDB Mapping Details

Associations and inheritance are supported by the mapping tool as well.

An inheritance structure can be mapped into a single table or into multiple tables
(one per entity bean).

Associations map to foreign keys implemented in the tables.

Special mapping function called converters and composers enable more
complex transformations of data types, or to compose entity attribute types from
multiple table columns.

Entity EJB-to-RDB Mapping Details

Top-down
Define EJBs with attributes
Generate schema (database tables) and mapping
Can generate DDL and run into DBMS

Bottom-up
Import schema from database
Generate EJBs (and mapping) based on tables

Meet-in-the-middle
Define EJBs
Import schema from database
Create mapping by hand

Associations and
inheritance are
supported

Converters and
composers for
transformations

Converter:
one attribute to
one column

Composer:
multiple attributes
to one column

Inheritance:
single table
root/leaf

Attribute <==> Column Association <==> Foreign Key
 Unit 7. Application Developer: EJB Development 163

Visual 7-20 Entity EJB-to-RDB Mapping File

The mapping tool provides the support for the mapping of entity beans to
relational tables:

� In the top pane, you drag entities to tables, entity attributes to columns,
associations to foreign keys (also in the opposite direction).

� The bottom pane shows the mapping that has been completed.

The mapping information is stored in the Map.mapxmi file of the EJB project.

Entity EJB-to-RDB Mapping File

entity bean

table

drag/drop

entity bean table

completed
mapping

mapping file

database
164 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-21 Generate Deployed Code

When all the specifications are complete, you generate the deployed code.

One class named EJSJDBCPersisterCMPxxxxx contains all the SQL statements
used to create, retrieve, update, and delete the entity bean.

Generate Deployed Code

Business methods specified and promoted to interface
Mapping completed
Custom finder methods specified

InventoryHome.java
Inventory.java
InventoryBean.java

InventoryData.java
InventoryFactory.java

EJSCMPInventoryHomeBean.java
EJSRemoteCMPInventoryHome.java
EJSRemoteCMPInventory.java
EJSFinderInventoryBean.java
EJSJDBCPersisterCMPInventoryBean.java
_EJSRemoteCMPInventory_Tie.java
_Inventory_Stub.java
_EJSRemoteCMPInventoryHome_Tie.java
_InventoryHome_Stub.java

container
implementation
generated code

access bean

business methods

home interface
remote interface
the bean

JDBC access

RMI tie and stub
 Unit 7. Application Developer: EJB Development 165

Visual 7-22 Migration from VisualAge for Java

Migration of EJB definitions from VisualAge for Java is easy when an EJB 1.1
compliant JAR file can be generated. This is only supported in VisualAge for
Java Version 4. Such a JAR file contains all the deployment information including
the mapping to the tables.

From earlier versions of VisualAge for Java you can export the Java source files
into an EJB project, but manual effort is required to complete the definitions and
to redo the mapping to tables.

The Application Developer provides an EJB validator that checks if the EJB 1.1
specifications have been followed.

Migration from VisualAge for Java

Export VA Java 3.5.3/4.0 project to file system
Import into Application Developer
Manually complete the EJB definition

Export EJB 1.1 compliant JAR from VA Java 4.0
This is the migration path for EJB metadata
Produces an EJB 1.1 JAR file containing new map and schema
metadata
This EJB 1.1 JAR file can be imported directly into Application
Developer

EJB Validator in Application Developer
Verifies compatibility with EJB 1.1 spec
Incompatibilities flagged as warnings/errors
166 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-23 EJB Testing

EJBs can be tested right in the Application Developer in the embedded
WebSphere AEs server. The steps are:

� Define the data source JNDI name in the EJB editor.

� Set up a WebSphere AEs server with JDBC driver and data source
information that matches the JNDI name and access the correct database.

� Assign the project to the server.

� Start the server (manually or by selecting Run on Server for the project).

� Start a browser with the EJB test client.

EJB Testing

Specify DataSource JNDI name for
EJB project (or for individual EJBs)

Server configuration and instance
Set up JDBC driver
and data source
for configuration
Assign project to configuration

Run project on server
Project -> Run on Server

Starts server instance
Starts browser

Or start server manually
Then start browser

Use Univeral Test Client
 Unit 7. Application Developer: EJB Development 167

Visual 7-24 Universal Test Client

The universal test client (UTC) can be used to test EJBs very effectively.

This test client provides functions similar to the EJB test client of VisualAge for
Java, but it is browser-based and also provides functions to test Web Services.

The starting point to test EJBs is the JNDI Explorer, where we can find the
homes of the EJBs that run in the EJB container in the server.

Universal Test Client

New test client
Browser-based

Similar
function as
VA Java EJB
Test Client
Can test EJBs
and Web
Services

start here
168 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-25 Universal Test Client Run

A typical test run progresses as follows:

� Select an EJB in the JNDI Explorer.

� The home interface is displayed in the References pane.

� Select a method of the home interface (create or findByPrimaryKey).

� Enter parameter values in the right pane. For simple types, you can just enter
the value, while for objects you can reuse an existing object or invoke a
constructor.

� Click Invoke to run the method. The result EJB is shown in the bottom pane.
Click Work with Object to add the remote object to the References pane.

� Expand the remote object and select a method to be tested.

� Enter parameter values (as above) and Invoke the method. Result values or
objects are displayed and can be added as references (EJB references or
object references).

� This cycle can be repeated with any method selected in the References pane.

Universal Test Client Run

(1) Select EJB home in JNDI Explorer

(2) Select method

(4) Result object
(5) Add object to references

(6) Invoke
methods
on EJB

reuse and constructor

(3) Set parameters, Invoke
 Unit 7. Application Developer: EJB Development 169

Visual 7-26 Universal Test Client Functionality

The universal test client can be run in the internal browser or in an external
browser.

The object clipboard can be used to save any result object and reuse it as
parameter for further method calls.

The test client is a Web application and is available as an EAR project that can
be installed into a stand-alone WebSphere Application Server for testing.

Universal Test Client Functionality

Universal Test Client
can be installed in

stand-alone
WebSphere

Application Server

Can use built-in browser or external browser

JNDI explorer
Search name space, find any EJB

Dynamic method invocation
Creation and passing of complex objects as parameters

Object clipboard
Save returned objects

Constructors when building parameters
BigDecimal values for example

Reuse in other method calls
Stored under Object References

Class loader
Load a JavaBean, instantiate, run methods (Web Services)

170 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 7-27 Summary

The EJB tooling support of the Application Developer provides full support for
J2EE application development, including support for the EJB 1.1 specification.

The universal test client provides support for dynamic testing of EJBs (as well as
for Web Services).

Summary

EJB project and J2EE Perspective provide
EJB development environment
J2EE-conforming deployment
EJB Editor and EJB Extension Editor
Wizard for creation
Three mapping approaches

Server project and Perspective provide
Full EJB test environment
JNDI lookup
Universal Test Client
 Unit 7. Application Developer: EJB Development 171

Visual 7-28 Exercise: EJB Development

The EJB development exercise guides you through many of the tasks discussed
in the presentation.

In this exercise you work with two EJBs:

� Inventory—an entity bean that maps to the inventory table in the ITSOWSAD
database

� StockUpdate—a session bean with business methods to manipulate stock
values in the entity EJB

You also create a Web application that uses the EJBs to update the database.

See Exercise 5, “EJB development” on page 329 for the instructions for this
exercise.

WebSphere Test Environment

Exercise:

EJB development
Project: ItsoWsDealerEJB
Create entity EJB (Inventory)

Business methods
Create mapping to DB
Deployed code
Container DataSource
Test in server
EJB test client

Create session EJB
(StockUpdate)

Test in server

Create Web application
HTML, servlet
Test Web application

MMINVENTORY

ITSOWSAD

Inventory

Inventory
Control

StockUpdate

EJB Development

Container-managed
entity bean

and session bean
172 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 8. Application Developer:
Deployment to WebSphere

Figure 8-1 Title

8

International Technical Support Organization

ibm.com

Deployment to WebSphere

Web Services
Studio Application Developer

AEs AE
© Copyright IBM Corp. 2002 173

Visual 8-2 Objectives

The objectives of this unit are to:

� Understand local and remote testing of Web applications and EJBs

� Understand how to set up a remote test configuration

� Understand deployment of Web applications and EJBs to WebSphere
Application Server AEs and AE

� Understand installation of an application archive (EAR) files

Objectives

Learn about remote testing
and deployment

Local and remote unit test
configuration
Remote testing of applications
Configuring AEs
Deployment of EAR files into AEs

Learn about application
installation

EAR files

 Tasks

Remote server
Define and configure
Configure file transport

Configure remote AEs
JDBC driver/DataSource

Start remote server
Publish application
Test

Deployment
Export application as EAR
Configure AEs
Install application EAR fileWebSphere Application Server

Advanced Edition Single Server
AEs (AEd)
174 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 8-3 Testing of Applications and EJBs

The Application Developer provides a local and remote test environment for
testing of Web applications:

� WebSphere Application Server AEd (developer edition, same code as AEs,
but free) is built into the Application Developer.

� WebSphere Application Server AEs (single server edition) can be installed on
the same or on a remote machine. A remote server is started through the IBM
Agent Controller, which must be installed on the machine where the server
runs.

For testing, a Web application is published to the selected server by installing the
owning EAR project file into the application server. Then the server is started and
the Web application can be tested in a Web browser.

Testing of Applications and EJBs

Developer
Machine

Deployment
MachineWSAD

WebSphere
AEd

built-in

Agent Controller Agent Controller

WebSphere
AEs

WebSphere AE
(future)

App

start

WebSphere
AEs

App App

publish - run

start

must be installed
 Unit 8. Application Developer: Deployment to WebSphere 175

Visual 8-4 Publishing and Testing

The built-in server (WebSphere AEd) has to be configured with JDBC drivers and
data sources, and the EAR project has to be assigned to the server.

The EAR file is installed into the test server before the server is started; this is
called publishing the code to the server.

If WebSphere AEs is installed separately from the Application Developer, on the
same or another machine, we can test applications remotely. In a remote test
environment, the application code has to be transferred to the application server.
This can be done by file copy (LAN drive) or by FTP.

The remote server is started from the Application Developer through the IBM
Agent Controller that must be installed on the machine where AEs is installed.

Publishing and Testing

Built-in server
Define server configuration/instance with JDBC driver/data source
Assign project to server configuration
Start server and browser or Run on Server

WebSphere AEs on same or other machine
Define server configuration/instance with JDBC driver/data source
Remote server instance: WebSphere v4.0 Remote Test Environment

hostname, AE installation and deployment directory

Remote file transfer instance
Copy files or FTP files
Remote target directory

Assign project to server configuration
Start server and browser or Run on Server

IBM Agent Controller must be installed on remote server to start remote AEs
serviceconfig.xml must point to AEs home directory

EAR file
Web modules
EJB modules
176 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 8-5 Defining a Remote AEs Server

To define a remote AEs server, you have to specify:

� The host name or address

� The WebSphere installation directory

� The mechanism of file transfer (copy of FTP)

� The remote target directory

The remote file transfer mechanism is stored as an object (XMI file) in the server
project.

Defining a Remote AEs Server

remote

AEs

how

where

Define
configuration
instance

Define
file transfer
 Unit 8. Application Developer: Deployment to WebSphere 177

Visual 8-6 Remote AEs Server

For a remote AEs server, you can:

� Activate the administrative client of AEs so you can do configuration tasks
right from the Application Developer

� Enable the universal test client so that EJBs can be tested

� Configure JDBC drivers and data sources

� Set up port numbers for the different servers

Note that AEs has a built-in HTTP server, so you do not require a separate HTTP
server (such as the IBM HTTP server).

Remote AEs Server

Properties of remote configuration
Can enable administrative client

Note that a temporary server-cfg.xml file is used

Can enable the test client and the IBMUTC.ear is installed
Must configure JDBC driver and define data sources
Can set port

Default AEs port is 9080
Default Admin port is 9090

 http://hostname:9090/admin

AEs does contain an HTTP server
IBM HTTP Server installation not required

Properties of remote instance
AEs installation directory and target directory
File transfer mechanism

Appears as separate object that can be shared

Administrative
Console

browser-based
178 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 8-7 Administrative Console of AEs

The administrative console of AEs shows the installed applications, such as the
universal test client and the application that you want to test.

Administrative Console of AEs
 Unit 8. Application Developer: Deployment to WebSphere 179

Visual 8-8 Installing an Application into AEs or AE

To deploy applications into a real WebSphere AEs or AE server, you have to:

� Configure JDBC drivers and data sources used in the real environment.

� Export the EAR file of the containing EAR project.

� Install the EAR file in the application server. This can be performed in two
ways:

– Using the administrative console. This allows to perform additional
configuration tasks, such as JNDI names and EJB references.

– Using a batch command (seappinstall). In this case you should have done
all configuration work in the Application Developer.

� Stop and start the server to enable the application.

The universal test client can also be installed manually on any WebSphere
application server by copying the UTC EAR directory and installing it. This
enables testing of EJBs from a browser in the real environment.

Installing an Application into AEs (or AE)

Configure AEs with Admin Console
JDBC drivers and data sources

Export application as EAR file
Contains Web and EJB modules

Install EAR file
Using Admin Console

Configure JNDI names
Configure EJB references
Do not re-deploy

Batch (all EJB ref must be OK)
seappinstall -install e:\..\itsowsdealer.ear
-expandDir d:\was..\installedApps\itsowsdealer.ear
-ejbDeploy false -interactive false

Stop/start server and test
Can install EJB test client

EAR directory provided

WSAD

EAR File

AEs

Test

export

install

stop start

AE is similar
Administrative
Console is GUI
Panels are
different
180 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 8-9 Deployment Activities

Deployment activities in WebSphere Application Server include:

� Configure global JNDI names

� Bind the local JNDI names to global JNDI names (EJB references, such as
associations and session to entity references, and servlet to EJB references)

� Regenerate the deployed code

These activities can be performed in the administrative console or by using the
Application Assembly Tool (AAT).

The fastest way to deploy is by performing all deployment specifications in the
Application Developer and by using the batch command to deploy the EAR file.

Deployment Activities

Deployment activities
Configure JNDI names
Bind EJB references (local names) to global JNDI names
Can be done in WSAD

EJB-to-EJB references, servlet-to-EJB references

Deploy EJBs (generate code)
Can be done in WSAD

Application Assembly Tool (AAT)
Can perform all deployment activities

Install EAR file after that is easy

Batch installation (SEAppInstall)
All mapping should have been done before

Fully deployed EAR file

Interactive mode possible
 Unit 8. Application Developer: Deployment to WebSphere 181

Visual 8-10 Summary

The support for WebSphere Application Server in the Application Developer is
outstanding. This enables easy testing inside the Application Developer, outside
in an AEs server, and deployment to AEs or AE full function.

Summary

Server perspective provides
Remote server for unit testing
Remote server and file transfer configuration
Remote start/stop of server through the
IBM Agent Controller

EAR file
Deployable application

Contains Web and EJB modules

Can be installed in WebSphere Application Server AE and AEs
182 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 8-11 Exercise: Deployment

The deployment exercise guides you through many of the tasks discussed in the
presentation.

In this exercise you work with the EAR project that contains the Web and EJB
projects developed in the previous exercises:

� Set up a server for remote testing and test the applications

� Configure AEs for deployment

� Export the EAR file and install it in the application server

� Optionally, install the universal test client

See Exercise 6, “Test and deploy using WebSphere AEs” on page 339 for the
instructions for this exercise.

Exercise: Deployment

Deploy Web and EJB
applications to WebSphere
Application Server AEs

Configure WSAD for remote
testing in AEs
Test applications with remote
AEs server
Configure AEs
Deploy applications using
EAR file: ItsoWsDealerEAR
Install EJB test client in AEs

WebSphere
AEs

WSAD

tables

ITSOWSAD

EAR filepublish

Deployment of
J2EE applications
with Web and EJB
 Unit 8. Application Developer: Deployment to WebSphere 183

184 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 9. Application Developer:
Profiling Tools

Figure 9-1 Title

9

International Technical Support Organization

ibm.com

Profiling Tools

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 185

Visual 9-2 Objectives

The objectives of this unit are to:

� Understand the profiling tools of the Application Developer

� Understand how to set up performance measurement

� Understand the reports that are produced

Objectives

Learn about performance
analysis tools included with
Application Developer

Architecture
Class and method path length
Object leaks
Performance bottlenecks

Learn about the different
views provided for
performance analysis

 Tasks

Install IBM Agent Controller on
remote systems
Configure WebSphere Test
Environment

Enable agent
Disable JIT compiler

Start trace
Run application
Use viewers to analyze trace
data
186 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 9-3 Overview

Performance analysis should be done early in the project cycle to identify
bottlenecks and correct them before going into production with Web applications.

The profiling tools can measure performance inside the Application Developer or
outside, for example in WebSphere Application Servers.

WSAD Performance Analyzer can gather application
information on

Applications running in WebSphere Application Server
Stand-alone applications
Same or remote machine from Application Developer

Performance analysis early in the development cycle
Within WSAD WebSphere Test Environment
When testing on WebSphere AEs and AE
Early detection leads to architectural changes before it is too late

Reduced risk

IBM Agent Controller to route trace information from
execution JVS to WSAD for analysis

Overview
 Unit 9. Application Developer: Profiling Tools 187

Visual 9-4 Architecture

The architecture of the profiling tools involves:

� The Java Virtual Machine (JVM) where the application is running

� An agent inside the JVM that captures the events (entering methods, memory
management)

� The IBM Agent Controller that is used between the Application Developer and
the remote machine to control the agent and to retrieve the performance
measurement data

� The performance analyzer inside the Application Developer that controls the
agent and that invokes the formatters and viewers

Architecture

Agent Controller

Java Virtual Machine

User
App

Performance Analyzer

Control Interface

Viewer

Formatter

Deployment Host(s) Development Host

Application Developer

control

data

control

data

Agent
188 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 9-5 Remote Agent Controller

The IBM Agent Controller runs on many platforms, where it must be installed.

The agents that run in the JVM and capture events use the official Java Virtual
Machine Profiler Interface (JVMPI) to gather the performance data.

WebSphere AEs (and AE) provide facilities to enable the profiling agent inside
their JVM.

� WebSphere AE:

– Open the Admin Console
– Stop the server to be used for profiling, for example, the Default Server
– On the right-hand side, select JVM Settings
– Click Advanced JVM Settings
– Add this line as the command line arguments:

-XrunPIAgent:server=enabled
– Click Apply
– Start the server

Remote Agent Controller

Stand-alone daemon or service on the deployment host
Platforms: Windows, z/OS, 400, AIX, Solaris, HP
Must be installed (provided with Application Developer)
Can attach to running agent or launch a new process
Agents are based on Java Virtual Machine Profiler Interface (JVMPI)

Profile agent receives notification of events (heap alloc, thread start,...)
Agent can request additional information from JVM

WebSphere Test Environment can enable agent (-XrunPIAgent flag)
Set for a server instance

User
App

JVMPI
events

controls

Java Virtual Machine process Profile process

Agent
ControllerAgent

JVM
 Unit 9. Application Developer: Profiling Tools 189

Visual 9-6 Profiling Perspective

The Profiling Perspective is used to activate an agent by launching an application
or by attaching to a running process.

The control interface is then used to start and stop monitoring, retrieve
performance measurement data, and display that data in a number of textual and
graphical views.

Profiling Perspective

Class statistics

Method statistics

Heap

Object Reference

Execution Flow

Views
190 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 9-7 Profiling in WebSphere Test Environment

The tasks involved in profiling an application inside WebSphere AEs are:

� Configure the WebSphere AEs server for profiling. For example, the
just-in-time compiler (JIT) must be disabled so that all code runs through the
JVM.

� Attach to the WebSphere AEs server process.

� Set filters (that is, which classes should not be trace).

� Start monitoring.

� Run the Web application.

� Retrieve and performance data and display results in the viewers.

� Stop monitoring.

Profiling in WebSphere Test Environment

Configure server instance
Set flag
Disable JIT compiler

Profiling Perspective
Select Trace icon down arrow

Attach -> Java Process

Select the javaw process
with the Profiling object
Set filters for Profiling object

Which packages not to trace

Start monitoring
Run application
Use viewers to display results
 Unit 9. Application Developer: Profiling Tools 191

Visual 9-8 Viewers: Class - Method - Heap

A number of viewers are provided to display the performance data:

� Class statistics—the time spent in each class

� Method statistics—the time spent in each method of each class

� Heap—class instances

� Object references—all objects with their references to other objects

� Execution flow—a graphical view of the execution through the methods of the
involved classes

Viewer: Class - Method - Heap

Class statistics - tabular
Number of instances, garbage collected
Base time
Cumulative time (includes called)
Memory consumption of class object
Number of calls

Method statistics - tabular
Number of calls
Base time
Cumulative time

Heap - graphical
Instances of class

Class statistics
Identify time-consuming
classes
Identify memory-intensive
classes
Gauge garbage collection

Method statistics
Identify time-consuming
methods

Heap
Identify time-/memory-
consuming classes/methods
Locate memory leaks
Method execution as function
of time
192 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 9-9 Viewers: Objects - Execution Flow

Performance analysis identifies:

� Time-consuming classes and methods

� Garbage collection and memory leaks (references not freed for garbage
collection)

� Long-lived and frequently called methods

Viewers: Objects - Execution Flow

Object reference - graphical
Base set of objects
References between instances
Node repetition
Old/new objects against specific time

Execution flow - graphical
Objects and time scale
Time when method is called
Time spent executing a method
Time when method returns

Object reference
Determine cause of memory
leak
Determine why object is not
garbage-collected

Execution flow
Identify which threads are
active when
Identify long-lived or
frequently called methods
Gauge the amount of garbage
collection
Identify phases of program
execution
 Unit 9. Application Developer: Profiling Tools 193

Visual 9-10 Viewers Examples: Class - Method

These views show the class and method statistics of a Web application.

Viewers Example: Class - Method
194 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 9-11 Viewers Examples: Objects - Execution Flow

This views shows the object references and execution flow of an application.

Viewers Examples: Objects - Execution Flow
...
 Unit 9. Application Developer: Profiling Tools 195

Visual 9-12 Hints and Tips

This visual lists a number of hints and tips to make performance measurement
effective.

Hints and Tips

IBM Agent Controller service must be started
External JVM requires agent controller BIN directory in PATH
Disable the JIT compiler
-Djava.compiler=NONE

System property in WSAD WebSphere Test Environment
Disable JIT check box in WebSphere Application Server Version 4

Limitation in JDK:
Cannot use profiling and debugging at the same time

Communication to/from RAC uses TCP/IP socket 10002 (beta)
Configurable at GA
Firewall may block

Currently no authentication for RAC
Choose good filters
Refresh views to ensure consistent and current data
Execution flow view has no correlation when using multiple processes
196 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 9-13 Summary

The profiling tools provide sufficient function to analyze application performance
early in the life cycle, during development time, instead of measuring deployed
applications in a test or production environment.

Summary

Performance analysis tools can be used to identify
performance problems early in the development cycle

Architecture allows for profiling of distributed applications
running in multiple JVMs

Multiple views provide ability to identify large number of
performance problems
 Unit 9. Application Developer: Profiling Tools 197

Visual 9-14 Exercise: Profiling

The profiling exercise guides you through many of the tasks discussed in the
presentation.

In this exercise you work with a Web application developed in a previous
exercise:

� Configure a server for profiling

� Attach an agent to the server

� Start the server and enable monitoring

� Collect results and display in viewers

See Exercise 7, “Profiling an application” on page 345 for the instructions for this
exercise.

Exercise: Profiling

Profiling tools
Configure server for profiling
Agent Controller
Start an agent

Attach to the server

Start server
Start monitoring
Measure an application
Analyze results

Performance analysis

WSAD

Agent
Controller

Agent

Application

Analysis

JVM
198 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 10. Application Developer:
Team Development

Visual 10-1 Title

10

International Technical Support Organization

ibm.com

Team Development

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 199

Visual 10-2 Objectives

The objectives of this unit are to:

� Understand the team development environment provided by the Application
Developer

� Understand the optimistic concurrency model

� Understand the versioning systems supported, Concurrent Versions System
(CVS) and ClearCase Light (CC LT)

� Understand the team member actions

Objectives

Learn about team
development

Architecture
Terminology
Optimistic concurrency model
Versioning systems

Concurrent Versions Systems

Team Perspective
Management of projects
Team actions
Synchronization with repository

Release
Catch up

Parallel development
Merge
Multiple streams

 Tasks

Install CVS (or CC LT)
Define repository
Add project to repository
Import from repository
Examine code differences
Release code to repository
Pick up changes from repository
Fix conflicts (merge code)
Version projects
200 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-3 Team Development Architecture

The version and configuration management architecture enables vendor tools to
enable to the Workbench platform.

Version and Configuration Management

Workspace

Tools

Repositories

Team Development Architecture

CVS
ClearCase LT
ClearCase
Merant PVCS
..others..
 Unit 10. Application Developer: Team Development 201

Visual 10-4 Workspace

The Application Developer maintains a workspace where the project data is
stored. By default it is the directory:

d:\<WSADROOT>\workspace

The workspace directory can be specified when the Application Developer is
started (-data workspacedirectory).

The interactive development environment has these facilities:

� Deletes are permanent (no recycle bin)

� A history of all changes is maintained locally, and files can be reset to a
previous state

To enable versioning of project data, it is suggested that a versioning system
(such as CVS) be used even for a single workstation environment.

Workspace

Maintained by the IDE
Snapshot of all code
WSAD/workspace/...projectDirectory

If editing by external editor
Refresh from local

Deletes are permanent
Local history of changes
WSAD/workspace/.metadata/.plugins/
 org.eclipse.core.resources/.history

Compare with or Replace with -> Local History

Can configure multiple workspaces
wsappdev.exe -data myworkspacedir

Can open multiple IDEs with different workspaces

Recommendation:
Use versioning system even on single workstation
202 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-5 Terminology

The team development environment uses this terminology:

� Stream—a shared workspace on a team server where project data is stored.
Developers share a stream and can work on the same projects.

� Synchronize—the action of a developer to synchronize their own (local)
project data with the shared repository. There are two actions a developer
performs:

– Release—making their own changes available to the team, that is, copying
changed files to the team stream

– Catch-up—retrieve changes other developers have made to the local
workspace

� Branch—a project may be developed in multiple parallel streams, for example
developing version 1.3 and version 2 of a product

� Version—a baseline (frozen code) of a project

Terminology

Stream
Shared workspace that resides in a repository

Configuration of one or more related projects and their folders and files
Developers share a stream that reflects all their changes integrated to date

Synchronize workspace with stream
Release: team member releases changes to stream
Catch-up: team member retrieves changes from stream

Selectively on resource subtree, preview of changes

Branch
Project may be in multiple streams

Product releases, developer personal test stuff

Version
Baseline of a project

WSAD only versions projects explicitly
 Unit 10. Application Developer: Team Development 203

Visual 10-6 Optimistic Concurrency Model

In the optimistic concurrency model, any developer can change any code. This
assumes that conflicts are rare because developers usually work on different
files.

The same file may be updated by multiple developers, but only after changes
have been released.

However, conflicts where multiple developers change the same file at the same
time do occur and must be dealt with. This will be discussed later in this unit.

Optimistic Concurrency Model

Any team member can change any resource
Assumption is that conflicts are rare
System detects conflicts and they must be dealt with

Developer 1

Developer 2

Stream

time

release

release

release

catch-up

catch-up

catch-up

initial
development

change #1

change #2

Highly collaborative
developers

frequently share code
204 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-7 Comparison of Version Control Systems

This diagram shows the functionality of the three systems that are supported
when the Application Developer became available.

ClearCase
Version control
Parallel development
Life cycle integration
UCM out of the box
Web Browser interface
Promotion Model
Baseline Comparison
Snapshot views
Dynamic views
Binary Sharing
Auto build dependency
Distributed builds
Distributed servers
Support for MultiSite

Comparison of Version Control Systems

Freeware
Open source community

Included in IBM package
Low cost of adoption

Sold exclusively by Rational
Upgrade for CC LT

CVS
Version control
Parallel development
Life cycle integration

ClearCase LT
Version control
Parallel development
Life cycle integration
UCM out of the box
Web Browser interface
Promotion Model
Baseline Comparison
Snapshot views

CVS
(Concurrent Versions System)

is the only system in the
beta code
 Unit 10. Application Developer: Team Development 205

Visual 10-8 Terminology Comparison

When working with the Application Developer, you use the terminology provided
by the team development environment.

When you use facilities of the versioning systems outside of the Application
Developer, you use the terminology provided by those products.

Terminology Comparison

Workspace File system Work area

Repository Repository VOB

Stream Branch (tag) Stream and project

Project Folder View

Resource File Element

Release Revision Check-in

Catch-up Update Compare with

Version Commit (tag) Version

 WSAD CVS ClearCase
206 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-9 Installing and Configuring CVS

Setting up an environment with CVS on Windows is very easy:

� Get the freely available code from the CVS Web site.

� Unzip the code into a product directory.

� Create the repository directory and initialize the repository.

� Create service that can be started and stopped.

� Start the service.

Installing and Configuring CVS

Get code from
http://www.cvshome.org - source and binaries
http://www.cvsnt.com - Windows binaries for NT service

Install on Windows NT/2000
Unzip code into directory
d:\CVSNT

Create repository
cd d:\CVSNT
cvs -d :local:x:/CVSRepo init (x=target drive)

Create NT service
ntservice -i x:/CVSRepo

Start NT service
 Unit 10. Application Developer: Team Development 207

Visual 10-10 Team Perspective

The Team Perspective is used to manage projects in conjunction with a shared
repository:

� The Repositories view displays the repository connections, the project
versions, and the active project streams with the projects.

� The Synchronize view displays the changes between files in the local
workspace and the team stream.

� The Resource History view shows the sequence of changes performed on
one file.

Team Perspective

project versions

project streams

Repository

history of changes
208 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-11 Connecting to the Repository

The first task in a CVS environment is to connect to the shared repository.

Connecting to the Repository

Define repository location
New CVS Repository
Connection
pserver

password server protocol
ssh

Prompt for password
Connected!
 Unit 10. Application Developer: Team Development 209

Visual 10-12 Add Project to Repository

The next task is to add projects to the team stream by invoking the release
action. This makes projects available in the shared environment.

An initial version of the project can be established, as well.

Add Project to Repository

Open project properties
Select Team -> Change

Release project to
repository

Team -> Synchronize
All changes are shown
All files are new

Select project -> Release
Files are copied to
repository stream

Refresh repository view

Version project
From stream or from
workspace

after version
210 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-13 Add Project from Repository

Team members can add projects from the repository by selecting the project from
the team stream and adding it to the workspace.

Add Project from Repository

Select project in Repository view
Select a project version or from a stream

Add to workspace
Creates the project
in the workspace

Manage the workspace
Version project
Delete from workspace
Load again when needed
 Unit 10. Application Developer: Team Development 211

Visual 10-14 Team-Specific Actions

The actions of a team member are:

� Compare the project in the workspace with the project in the team stream.

� Replace the workspace project with the version in the repository.

� Show the history of a file, that is, the changes of all developers that touched
the file.

� Synchronize the project in the workspace with the team stream. A dialog
showing all the differences is displayed. From this list, the team member can
decide to:

– Release their own changes to the team stream.

– Catch-up changes of other developers into the workspace.

� A conflict is displayed if the same file has been changed by the team member
and other developers. Conflicts must be resolved by merging the changes.
This is covered later in this unit under Parallel Development.

� Version the project (from the workspace or from the team stream.

Team-Specific Actions

Compare with stream or version
Compare workspace file with repository stream
Opens the compare dialog

Replace with stream or version
Back out changes

Show in Resource History
Displays changes by users in history view

Synchronize with stream
Compares workspace with stream ==> display changes
Release

From workspace to stream

Catch-up
From stream to workspace

Version (for project only)
212 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-15 Synchronization

The Synchronize view displays the list of changes in the top pane, and the details
of a selected change in the bottom pane.

Icons allow to display only catch-up changes (made by other developers),
release changes (made by the developer), both together, or conflicts only (same
file changed by both).

After viewing changes, a release or catch-up action can be executed.

Synchronization

release
mode

catch-up
mode

conflicts
only

new folder

changed file

differences in file

Release
individual files
folders
whole project

both
 Unit 10. Application Developer: Team Development 213

Visual 10-16 Synchronization - Conflicts and Ignoring

Conflicts are always displayed and must be resolved.

Certain files are not managed by the team environment:

� Class files

� Temporary files

� Files with extensions set in team preferences

� CVS ignore files, identified by .cvsignore files in directories

Synchronization - Conflicts and Ignoring

Conflicts
User's change conflicts with the change of another user
Conflicts always shown in synchronized view regardless of mode
Conflicts must be fixed manually

Parallel development

Ignoring files from team development
*.class, *.tmp examples of workspace files to be ignored
Workbench global ignore

Specify file extension pattern in Team Preferences
*.class set as default

CVS ignore
.cvsignore file in each directory that should be ignored
214 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-17 Versioning

Project versions can be created from the workspace or from the team stream.

When versioning from the workspace, a synchronize action is performed first to
update the team stream with the workspace data.

Version names can be assigned automatically, or by specification.

Versioning

Version from stream
Attach version name to current state of stream
Local workspace contents not involved
Version name is arbitrary string
Version name retrieves same state of files in the future

Version from workspace
Releases workspace changes to team stream
Attaches version name

Version names:
Automatic naming
Apply one name to
selected stream
Prompt for different name
for each project
 Unit 10. Application Developer: Team Development 215

Visual 10-18 Parallel Development

In parallel development, the same file (or files) are updated by multiple team
members at the same time.

The first member to synchronize with the stream has no conflicts and can release
the changes.

The second member to synchronize gets a conflict and must resolve it by:

� Studying the changes made by the developers

� Optionally, opening the common ancestor from which the changes were made

� Acting on individual changed lines and copying from either of the two
developers

� Acting on the whole file and copying one of the two files

� Releasing the merged copy

Icons are provided for these operations.

Parallel Development

Developer 1

Developer 2

Stream

time

release v1.4

 merge v1.4 and
release v1.5

catch-up v1.3

catch-up v1.3

change #4

change #3

Merging changes:
Synchronize view shows conflicts
Can open common ancestor
Use icons to decide on each change

ancestor

copy whole
document

copy current
change

next
change
216 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 10-19 Multiple Streams

A project can be developed in multiple streams, for example to perform
maintenance on one version of a product, while developing a new version at the
same time.

It is possible to merge the two stream later in the process.

A new stream must be created from a version of the project.

Multiple Streams

Developer 1

Developer 2

Stream 1

time

merge and
release v1.7

release v1.6catch-up v1.5

copy
project v1

new feature

bug fix

Stream 2

catch-up v1.5

version
project v1

delete
stream

create
stream

release v1.5.2.1

version
project v1_1
 Unit 10. Application Developer: Team Development 217

Visual 10-20 Summary

The team development environment provides the necessary function for multiple
developers to work on the same project.

Even for a single workstation, a team repository provides the much-needed
function of versioning the projects.

Summary

Team development provides for
Shared repository

Manage projects in repository
Add project: workspace to repository, repository to workspace

Synchronize workspace with repository
Release changes to repository
Catch-up up changes from other developers

Conflict management
Optimistic concurrency allows conflicts
Conflicts must be resolved

Merge of code

CVS or CCLT
Suggested even for single developer
Workspace management ===> versions of own projects
218 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 11. Web Services Overview

Visual 11-1 Title

11

International Technical Support Organization

ibm.com

Web Services Overview

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 219

Visual 11-2 Objectives

The objectives of this unit are to:

� Understand the Web Services technology

� Understand the underlying technologies of

– Simple Object Access Protocol (SOAP)
– Web Services Description Language (WSDL)
– UDDI Registry

� Understand how Web Services are developed and the tools that are provided
within the Application Developer

Objectives

Learn about Web Services
Service Web
Web Services components
SOAP

Messages
Data Model
Apache SOAP server

WSDL
Interface
Implementation

UDDI Registry
Business entities
Business services

Web Services development
Static and dynamic Web Services

WSAD Web Services tools

Client
Application

Web
Service

UDDI
Registry

publish
WSDL

find
WSDL

bind, invoke

SOAP

Service
Broker

Service
Provider

Service
Requestor
220 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-3 Evolution of the Web

The Web has evolved from static content (documents) to dynamic content
through application servers that provide business logic (CGI programs and Java)
and transaction, as well as new protocols such as wireless access protocol
(WAP) and wireless markup language (WML).

The next step is the introduction of Web Services that provide access to Web
applications, dynamic content, and transactions from programs.

Evolution of the Web

Document Web
Web servers
HTTP protocol
HTLM documents

Application Web
Application servers
Business logic (Java)
Generate HTML
Transactions
Distributed processing
WAP, WML

Service Web
Web services
Generate XML
SOAP, WSDL, UDDI
Transactions initiated
by program

WAP - Wireless
 Access
 Protocol
WLM - Wireless
 Markup
 Language

SOAP Simple Object
Access Protocol

WSDL Web Services
Description Language

UDDI Universal Description
Discovery & Integration

WSFL Web Services Flow
Language

Arthur Ryman:
Understanding Web Services
VisualAge Developer Domain
 Unit 11. Web Services Overview 221

Visual 11-4 What are Web Services?

There are a number of definitions what Web Services are.

The important aspect is that callable functions are made available to programs
on the Web.

What are Web Services?

Web Services are self-contained, self-describing,
modular applications that can be published, located,

and invoked over a network--generally, the Web.

 e-business is the driving force
Merge of Web, IT, object technologies
Highly interoperable Web-based objects
Object-oriented programming through SOAP messages
Expose business functions or data access from existing enterprise code using
SOAP wrappers and WSDL descriptions
Everything is a service, publishing an API for use by other services on
the network and encapsulating implementation details

Universal program-to-program communication
model based on standards and industry support
222 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-5 Web Services Attributes and Examples

Web Services have a number of characteristics.

The most important aspect is the interoperability through platform- and
language-independence.

A number of Web Services are already available on the Internet.

Web Services Attributes and Examples

Self-contained
No additional software
(HTTP, XML, Application Server)

Self-describing
Definition of message travels with message

Modular
Callable services

Published, located, invoked
(SOAP, WSDL, UDDI)
Language-independent and interoperable

Different environments, can make existing
code into a Web Service

Open and standards-based
HTTP, XML

Dynamic
Discovery and invocation can be automated

Composable
Web Service can invoke other Web Services

 Examples
Business information
with rich content

Weather reports
Stock quotes
Airline schedules
Credit check
News feed

Transactional Web
Services for B2B, B2C

Airline reservation
Rental car agreement
Supply chain mgmt

Business process
externalization

Business linkage at
workflow level
Complete integration
at process level
 Unit 11. Web Services Overview 223

Visual 11-6 Conceptual Web Services Stack

SOAP is the XML-based messaging facility built on top of protocols such as
HTTP and others.

WSDL describes the interface of the Web Service and where an implementation
is running.

UDDI provides facilities to publish and find Web Services.

WSFL, the Web Services Flow Language, provides higher-level information how
business applications flow through a series of Web Services.

There are issues to be resolved, such as a standardized mechanism for security,
management facilities, and good standards for quality of service.

Conceptual Web Services Stack

Service Flow

Service
Description

Service Discovery

Service
Publication

XML-based
Messaging

Network

WSFL

UDDI

WSDL

SOAP

HTTP, FTP
MQ, e-mail

Security

Trust

Privacy

M
a
n
a
g
e
m
e
n
t

Quality

of

Service
224 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-7 Web Services Components

First, a Web Service must be created, and its interfaces well defined (WSDL).

To advertise Web Services they can be published in a UDDI Registry, where they
can be located by potential users.

A Web Service can then be invoked on the application server where the service
is installed.

In the Web Services world we therefore have providers that create and publish
Web Services, requestors that find and invoke Web Services, and registries
where Web Services are published.

Web Services Components

A Web Service has to be created, and its interfaces and invocation
methods must be defined

A Web Service has to be published to one or more intranet or Internet
repositories for potential users to locate

A Web Service has to be located to be invoked by potential users

A Web Service has to be invoked to be of any benefit
A Web Service may have to be unpublished when it is no longer
available or needed

publish locate (find)

invoke (bind)

Repository
Registry

Provider Requestor

create
 Unit 11. Web Services Overview 225

Visual 11-8 Web Services Roles

The Web Services provider creates the Web Service and installs it on an
application server.

The Web Services requestor writes the client application that invokes the Web
Service.

The Web Services broker runs a UDDI Registry where providers publish their
Web Services and requestors find the Web Services.

SOAP is the protocol to invoke a Web Services, and it is also a protocol that can
be used to publish and locate Web Services in the UDDI Registry. The registry
can also be accessed from a Web browser.

Client
Application

Web
Service

UDDI
Registry

Web Services Roles

publish
WSDL

find
WSDL

bind, invoke

SOAP

 Browser
SOAP

Browser
 SOAP

Service
Broker

Service
Provider

Service
Requestor
226 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-9 SOAP Introduction

The major advantages of SOAP are:

� All data is transferred in XML format. This includes the parameters used in a
call, as well as the result data.

� It is protocol-, platform-, operating system-, and language-independent. HTTP
is the most used protocol.

SOAP supports the remote procedure call (RPC) protocol, as well as an
asynchronous message style protocol.

A SOAP message is an envelope containing optional headers and always one
body with the actual message containing the parameters or results.

SOAP Introduction

SOAP characteristics
Simple, extensible
Encoding using XML

Parameters and results
Call by reference and remote object activation
not supported

Protocol-, operating system-, and
language-independent

SOAP over HTTP most common

Remote Procedure Call (RPC) style or
Message style

RPC most common, callable service

SOAP message is an envelope
Header(s) - zero, one, many

Control information, security, authorization

Body - one
The actual message (parameters, result)

W3C SOAP 1.1 Specification
(April 2000):

substitutable
- transport bindings
- language bindings
- data encodings
vendor-neutral
independent of
- programming language
- object model
- operating system
- platform

Apache SOAP 2.2
Implementation

SOAP 1.2
working

draft
 Unit 11. Web Services Overview 227

Visual 11-10 SOAP Message Example

This SOAP message example shows the invocation of a Web Service:

� The Web Service returns the exchange rate between the currencies of two
countries.

� The service is installed at www.exch.com.

� An rpcrouter servlet is invoked to route the call to the Exchange Web Service.

� The getRate method of the Exchange service is invoked with two parameters
named country1 and country2, both being of string data type.

� The Web Service call is embedded in the body within the SOAP envelope.

SOAP Message Example

POST /servlet/rpcrouter HTTP/1.0
Host:www.exch.com
Content-Type:text/xml;charset=utf-8
Content-Length:494
SOAPAction:""
<?xml version=’1.0 ’encoding=’UTF-8 ’?>

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getRate xmlns:ns1="urn:Exchange"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <country1 xsi:type="xsd:string">USA</country1 >
 <country2 xsi:type="xsd:string">Germany</country2 >
 </ns1:getRate >
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

getRate(country1, country2)

method

parameters

router servlet

Web server

SOAP envelope namespace

Web Service
228 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-11 SOAP Data Model

The SOAP data model provides definitions for the most used data types, such as
strings, integers, float, double, date.

Result data is usually more complicated and is described in an XML schema
provided by the application.

The process of translating the data (parameters and result) into XML is called
encoding. Simple data can be encoded by the SOAP data types, the Element
class of an XML DOM tree (XML in memory) can be encoded using literal XML,
and user-provided converters can be used as well.

Usually the application
provides the XML Schema

for the data types

SOAP Data Model

Language-independent abstraction of common data types
Simple XSD types: int, String, date, ...
<age xsi:type="xsd:int">66</age>

Structures: XML element with children
<p:person>
 <name>Mike Mechanic</name>
 <age>47</age>
</p:person>

Encoding = data translation between application and protocol
SOAP encoding

Marshall/unmarshall of data types of SOAP data model
SOAP 1.1 standard

Literal XML
Direct conversion between XML DOM tree and SOAP message content
Not in standard but implemented by Apache SOAP

User-provided converters
 Unit 11. Web Services Overview 229

Visual 11-12 Apache SOAP Server

The Apache SOAP server is implemented in WebSphere Application Server and
in the Application Developer.

The Apache SOAP server is based on the IBM SOAP4J API and provides the
transport listeners (such as the rpcrouter servlet), an administration GUI, a
pluggable configuration manager that reads SOAP deployment descriptors.

Web Service
Deployment
Descriptor

Apache SOAP Server

Type
Mapping
Registry

Transport
Listener

(rpcrouter and
messagerouter

servlets for HTTP)

Pluggable
Configuration

Manager

Pluggable
Providers

(JavaBean, EJB,
BSF, COM, custom)

Service
Implementation

any type of
programming

artifact

SOAP
Server
Engine

DeployedServices.ds

SOAP Admin
GUI

(HTML-
based)

 Why SOAP?
Platform-neutral
XML wire format
No restriction on
endpoint
implementation
Implementations
are free

 RMI
Requires Java

 CORBA
Requires
compatible ORBs

 DCOM
Requires Windows

SOAP4J ==>
Open Source

Future: Apache eXtensible Interaction System (AXIS)
230 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-13 Service Implementation and Client Example

The two code fragments show the server (provider code) and client (requestor
code) of the Exchange Web Service:

� The server code shows a JavaBean that implements the Web Service. (The
actual code to query a database for the exchange rate is not shown.)

� The client code shows that a SOAP Call object is instantiated and initialized
with encoding style, Web Service name, method name, and parameters
(stored in a Vector). Then the Web Service is invoked and the result object is
extracted. (The processing of the result is not shown.)

Service Implementation and Client Example

public class Exchange {
public float getRate(String country1, String country2) {

 // lookup exchange rate in table
 return rate; }
}

public class SoapClient {
public void static main(String[] args) {
 Call call = new Call();
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 call.setTargetObjectURI("urn:Exchange");
 call.setMethod("getRate");
 Vector parms = new Vector();
 parms.addElement(new Parameter("country1", String.class,
 "USA", Constants.NS_URI_SOAP_ENC); // ... 2nd parm
 call.setParams(parms);
 URL url = new URL("http://www.exch.com/soap/servlet/rpcrouter");
 Response resp = call.invoke(url, "");
 if (!resp.generatedFault())
 Object obj = (resp.getReturnValue()).getValue();
 // process result
}

provider

requestor
 Unit 11. Web Services Overview 231

Visual 11-14 WSDL Overview

The WSDL language is used to describe a Web Service. Two XML files are used:

� The interface file describes the Web Service, including the method that is
called, the parameters that are passed, and the encoding that is used.

� The implementation file describes where the Web Service is installed and
how it is accessed. The implementation file points to the interface file.

The coding of WSDL files is quite difficult, but in the case of the Application
Developer these files are generated. The naming convention that is used by the
Application Developer is:

Xxxxxxx-binding.wsdl
Xxxxxxx-service.wsdl

WSDL Overview

Specifies the characteristics of a Web Service
Name and addressing information
Protocol and encoding style (parameters, data types)

Actually two XML documents
Service interface - abstract interface and protocol binding

Messages (input and output) with parameters
Port type (operation and method)

Points to input/output messages
Binding (style and encoding)
Type container (XSD = XML schema)

Service implementation - service access
Points to binding in the interface
Location of service

Used by code generators <=== App. Developer Wizard
Proxy bean and service implementation template

Xxxxx-service.wsdl

Xxxxx-binding.wsdl

WSDL 1.1
Specification

Names generated
by WSAD
232 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-15 WSDL Interface Example

This example shows the interface file of the Exchange Web Service:

� The targetNamespace is the name of the Web Service as used in the UDDI
Registry.

� The message entries describe the input and output messages, with their
parameters.

� The portType specifies the name and operation (method name) and points to
the input and output message.

� Continue to visual on next page.

WSDL Interface Example

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="ExchangeRemoteInterface"
 targetNamespace="http://www.exch.com/definitions/Exchange...
 ...RemoteInterface" xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.exch.com/definitions/ExchangeRem..face"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <message name="getRateRequest">
 <part name="country1" type="xsd:string"/>
 <part name="country2" type="xsd:string"/>
 </message>
 <message name="getRateResponse">
 <part name="result" type="xsd:float"/>
 </message>
 <portType name="Exchange">
 <operation name="getRate">
 <input name="getRateRequest" message="tns:getRateRequest"/>
 <output name="getRateResponse" message="tns:getRateResponse"/>
 </operation>
 </portType>
 ...continued...

Messages

Port

Service type
in UDDI
 Unit 11. Web Services Overview 233

Visual 11-16 WSDL Interface Example Binding

� The binding specifies the SOAP operation and style (RPC, in this case) and
the default encoding

WSDL Interface Example Binding

 <binding name="ExchangeBinding" type="tns:Exchange">
 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getRate">
 <soap:operation soapAction="urn:Exchange" style="rpc"/>
 <input>
 <soap:body use="encoded"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
</definitions>

Binding

Encoding
234 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-17 WSDL Implementation Example

This example shows the implementation file of the Exchange Web Service:

� The targetNamespace is the name of the implementation file itself.

� The import points to the binding file (the interface).

� The soap:address points to the location where the services is running.

WSDL Implementation Example

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="ExchangeService"
 targetNamespace="http://www.exch.com/wsdl/Exchange-service.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://localhost/wsdl/Exchange-service.wsdl"
 xmlns:binding=
 "http://www.exch.com/definitions/ExchangeRemoteInterface"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

 <import namespace=
 "http://www.exch.com/definitions/ExchangeRemoteInterface"
 location="http://www.exch.com/wsdl/Exchange-binding.wsdl"/>

 <service name="ExchangeService">
 <port name="ExchangePort" binding="binding:ExchangeBinding">
 <soap:address

location="http://www.exch.com/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions> Target location

WSDL files

Link to interface
 Unit 11. Web Services Overview 235

Visual 11-18 UDDI Overview

A UDDI Registry contains these entries:

� Business entities—companies that want to register Web Services

� Business services—a Web Service that the company registers (this is a
descriptive entry)

� Access point (called binding template)—points to an installed Web Service
(the target address) and to the matching WSDL service (implementation) file

� Web Service type (called tModel)—a Web Service definition that points to the
matching Web Service binding (interface) file

Entries in the registry can be qualified with descriptions and categorizations.

Note that the WSDL files are not stored in the registry, rather they are pointed as
HTTP addresses to the Web Service provider.

InterfaceImplementation

UDDI Overview

UDDI Registry

Business Entity
Business Service

Categorization
Description

Access Point (Binding Template)

Service Type
(tModel)

Specification
Categorization
Description
URL

Xxxxx-service.wsdl Xxxxx-binding.wsdl

White pages

Yellow pages

Green pages
236 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-19 UDDI Server and Registry

A UDDI Registry runs on a UDDI server. The registry is really a Web application
that can be accessed by a browser or by a programmable API, such as UDDI4J
(UDDI for Java), through the SOAP protocol.

In the IBM implementation, the registry entries are stored in a DB2 database.

Requester
Provider

Browser

HTTP Server

SOAP Server Web Application

Login Management

UDDI Registry
businessEntities, businessServices,

bindingTemplates, tModels

Business Logic
find, (un)publish, update

HTTP(S)

UDDI
server

UDDI4J
SOAP
HTTP(S)

UDDI Server and Registry

UDDI
database

Programmatic
access to UDDI
Registry using
SOAP

included in
WAS 4 and
WSAD
 Unit 11. Web Services Overview 237

Visual 11-20 UDDI Registry API

Each entry in the UDDI Registry has a universal unique identifier (the key in the
database).

Through a browser or through the UDDI4J API a user can traverse the registry
from business entities, to business services, to binding templates, and to tModels
(and can also move in the reverse direction).

The categorization of entries can be done according to the NAICS or UN/SPSC
standards, or geographical location.

UDDI Registry API

Access by Web browser
Define business entity, business service,
service types
Find

Programming API
Find business entity through UUID, wildcard
name, category

Universal Unique Identifier is key to all entries
in registry (system assigned)

Navigation from business entity to services
Find service type
Publish business entity, business service,
service types
Update
Unpublish

UDDI4J

 Categories
NAICS

Industry codes
defined by US
government

UN/SPSC
ECMA product
and services

Location
Geographical

More to come

Dynamic Web Services
Application can find Web
Services and call them
238 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-21 UDDI Registries

IBM, Microsoft, and other companies run the official UDDI Business Registry,
which is replicated between the companies (so it does not matter where an entry
is made).

IBM provides a UDDI Test Registry, where any company can make a few entries
for testing of Web Service and UDDI.

IBM provides a stand-alone registry product, the IBM WebSphere UDDI Registry.
This product, currently at beta level, can be installed by a company as a private
UDDI Registry. This product is a Web/EJB application that is installed into
WebSphere Application Server AE or AEs.

UDDI Registries

UDDI Business Registry

IBM Test Registry
Experiment with technology
Publish and test Web Services

WebSphere UDDI Registry
Stand-alone product for intranet
DB2 database
WebSphere Version 4
(AEs) Web application
IBM HTTP Server

IBM

MS

Ariba
HP

ibm.com/services/uddi/protect/registry.html
uddi.microsoft.com

ibm.com/services/uddi/testregistry/protect/registry.html

replicated

Private
Registryhttp://hostname/services/uddi/home.jsp

http://hostname/uddiguibeta
 Unit 11. Web Services Overview 239

Visual 11-22 Web Services Flow Language

The Web Services Flow Language (WSFL) is a new proposed specification to
describe higher-level processes that involve multiple Web Services.

Web Services Flow Language

WSFL
XML language to describe Web Services compositions
Usage pattern of a collection of Web Services

How to achieve a business goal
How to execute a business process
Flow composition (orchestration, choreography)
Defines flow of control and data

Interaction pattern of a collection of Web Services
Describe overall partner interactions

Extensive support for recursive composition of services
Layered on top of WSDL

WSFL white paper:
ibm.com/software/solutions/webservices/pdf/WSFL.pdf
240 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-23 Development of Web Services

The activities for development of Java Web Services applications and clients are:

1. Develop the provider application (the Web Service).

2. Create the WSDL for the Web Service (1 and 2 can also be done in reverse
sequence).

3. Deploy the Web Service to an application server.

4. Publish the Web Service to a UDDI Registry so that a client can find the Web
Service.

5. Client retrieves WSDL file and generates a SOAP client proxy object for the
client application (Application Developer tooling). Client develops the client
application.

6. Client application invokes the Web Service where it is installed:

– The application invokes the proxy.
– The proxy invokes the Web Service through the SOAP server.

Development of Web Services

Provider
Java

SOAP
Server

SOAP
Client
Proxy

Requester
Java

UDDI
Registrydds.xml

2: Server Java to WSDL

3: Deployment

sp.wsdl

4: Publish

5: WSDL to Client Java

1: Develop

5: Develop

6a: Find
(optional)

6c: Transport level call
 (http-POST, ...)

6d: Invoke

UDDIWSDL SOAPJava

Legend:

Code file RegistryServer

2': WSDL to server Java

1': Define

6b:
Invoke

Application Server

Client
 Unit 11. Web Services Overview 241

Visual 11-24 Static and Dynamic Web Services

When a requestor knows the provider and the Web Service, then we talk about a
static Web Service. The client gets the WSDL file with the specification of the
Web Service from the provider, and implements the client application.

When the provider is not known in advance, we call it a dynamic Web Service.
The client application interrogates the UDDI Registry to find providers that
implement a specific Web Service, and then calls all (or selected) requestors.

Static and Dynamic Web Services

Static Web Service
Requester calls fixed provider
Get WSDL file through e-mail, FTP, UDDI Registry
Client application calls the provider Web Service

Dynamic Web Service
Provider not known in advance
Requester client

Interacts with the UDDI Registry through the API
Dynamically retrieves service types from registry
Finds providers that implement the service type
Decides which ones to call
Calls the provider Web Service
242 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-25 Web Services and Security

Security has not been standardized for Web Services.

However, all kind of security concerns can be resolved and implemented using
currently available techniques.

Web Services and Security

SOAP uses HTTP port 80
Right through the firewall

Must address security with other means

Security options
HTTPS ==> identification and authentication

Who are you and is your identity true

W3C digital signatures ==> integrity
Is the data you sent the same data I received

W3C encryption ==> privacy
Nobody can read the data you sent me

WebSphere/LDAP ==> authorization
Are you allowed to perform this transaction

HTTPR protocol ==> non-repudiation
(protocol enhancement proposed by IBM)

Reliable one-time delivery of a message
 Unit 11. Web Services Overview 243

Visual 11-26 Create Web Service from Application

The Application Developer provides a Web Service wizard to generate a number
of components from a given provider Web Service application. The Web Service
is usually implemented by a JavaBean or EJB. This is the input to the wizard.
The generated components are:

� WSDL files (interface and implementation

� The SOAP deployment descriptor (dds.xml)

� An administrative application to list, stop, and start Web Services in the
application server

� A proxy class for client programming

� A test client (Web application) that uses the proxy to invoke the Web Service

� Optionally the WSDL files can be published to the UDDI Registry

.wsdl

Create Web Service from Application

DB Tx

rpcrouterTestClient

Client-App

dds.xml

Web Service
Wizard

Client Server

.wsdl

Proxy

UDDI Explorer
publish deployment

descriptor

Existing
application

S
O
A
Pin

te
rf

ac
e

im
p

le
m

en
ta

ti
o

n

for testing

start
Java
Bean

or
EJB

AdminApp
244 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-27 Create Web Service from WSDL

The wizard can take a WSDL interface (or implementation) file as input. This is
useful when a Web Service specification is known and the Web Service must be
implemented.

The same components are generated. In addition, a skeleton JavaBean for the
server is generated. This skeleton bean can be used as the starting point to
implement the Web Service.

Create Web Service from WSDL

DB Tx

rpcrouterTestClient

Client-App

dds.xml

Client Server

.wsdl

Proxy

UDDI Explorer
find

publish deployment
descriptor

NEW
application

Web Service
Wizard

S
O
A
P

for testing

in
te

rf
ac

e
im

p
le

m
en

ta
ti

o
n

start

Java
Bean

or
EJB

AdminApp

.wsdl

skeleton
 Unit 11. Web Services Overview 245

Visual 11-28 Create Client from WSDL

To create a client for a Web Service, the wizard is run with a WSDL
implementation file as input to generate the starting skeleton code for a client
application.

The proxy bean and the test client are generated, then a real client can be
implemented.

Create Client from WSDL

DB Tx

rpcrouterTestClient

Client-App

dds.xml

Client Server

Proxy

UDDI Explorer
find

deployment
descriptor

Existing
application

Web Service
Wizard

S
O
A
P

im
p

le
m

en
ta

ti
o

n

NEW
application for testing

and skeleton

.wsdl

start

Java
Bean

or
EJB
246 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-29 Web Service Example

The diagram shows an example of a Web application client calling a Web
Service implementation:

1. An HTML form with a part number as input is used to invoke a servlet.

2. The servlet calls the proxy bean, and a SOAP XML message with the part
number is sent to the server.

3. The Web Service is implemented in a JavaBean that invokes a session EJB
that uses entity EJBs for database access.

4. The result of the Web Service is an XML tree in memory.

5. The SOAP server converts the result into an XML SOAP message (in the
client, the XML tree in memory is rebuilt).

6. The servlet gets the result, the XML tree in memory.

7. The servlet calls an XSL processor to convert the XML into an HTML table
that is displayed in a browser.

Servlet

Web Service Example

HTML FORM

DB

Inventory
Part

session EJB

entity EJBs

InquireParts

SOAP rpcrouterProxy

<SOAP-ENV:Envelope><SOAP-ENV:Body>
<ns1:retrievePartInventory xmlns:ns1="urn:InquireParts" ...>
 <partNumber xsi:type="xsd:string">M100000003</partNumber>
</ns1:retrievePartInventory></SOAP-ENV:Body></SOAP-ENV:Envelope>

<SOAP-ENV:Envelope><SOAP-ENV:Body><return>
 <PartInventory ... xsi:schemaLocation=...PartInventory.xsd">
 <Part><ItemNumber>21000003</ItemNumber>
 <Quantity>12</Quantity><Cost>59.59</Cost>...... </Part>
 <Part>...............</Part>
 </PartInventory>
</return></SOAP-ENV:Body>
</SOAP-ENV:Envelope>

M100000003

PartInventory

Part Part

ItemNumber, Quantity, Cost, ...

DOM
Tree

PartNumber Item Quantity Cost
M100000003 21000003 12 59.59
M100000003 21000004 7 46.78

XSL
Processor

HTML Output

PartInquiry

SOAP

 1
 2

 3

 4

 5

 6

 7

Requestor Provider
 Unit 11. Web Services Overview 247

Visual 11-30 More Information

There are a number of IBM and non-IBM sites on the Internet that have
information about Web Services.

More Information

Lots of information on the Internet

IBM sites:
developerWorks
http://www.ibm.com/developerworks/webservices
 /library/w-wsdl.html

alphaWorks
http://www.alphaworks.com/tech/wsde
 /webservicestoolkit

WebSphere Developer Domain
http://www.ibm.com/websphere/developer

VisualAge Developer Domain
http://www.ibm.com/software/vadd

UDDI
http://www.ibm.com/services/uddi
248 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 11-31 Summary

Web Services are the next wave of applications on the Internet and in intranet
solutions.

Web Services are based on three standards: SOAP, WSDL, and UDDI.

The Application Developer provides a Web Service wizard that can be used to
generated the components for provider and requestor coding for Web Services.

Summary

Web Services are based on
SOAP

Protocol for RPC-like invocation of Web Services
Vehicle for transport of data (parameters, results)
XML-based

WSDL
Description language for Web Services

UDDI
Registry for publication of Web Services
API to access and find Web Services

Application Developer provides tools to generate
WSDL files
Java proxy beans for clients
SOAP deployment descriptors
Skeleton client and server applications
 Unit 11. Web Services Overview 249

250 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 12. Creating Web Services

Visual 12-1 Title

12

© 2001 IBM Corporation

International Technical Support Organization

ibm.com

Creating Web Services

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 251

Visual 12-2 Objectives

The objectives of this unit are to:

� Understand the functionality of the Web Service wizard of the Application
Developer

� Understand SOAP encoding of parameters and results

� Understand the code that is generated by the wizard

Objectives

Learn how to create a Web
Service from an existing
application

JavaBean that invokes the
application, or session EJB
Web Service wizard
Parameter and result mapping

SOAP encoding
Literal XML encoding

Client proxy
SOAP administrative application
Client test application

Creating a Web Service from a
WSDL file is similar

Creates skeleton JavaBean

 Tasks

Creating a JavaBean that wraps
the application
Run Web Service wizard

Select Web application
Select JavaBean/EJB
Name the service, generated files
Select encoding of parameters
and results for service method(s)
Specify server side mappings
between Java and XML
Specify client proxy
Specify client side mappings
Specify test client

Test the Web Service
Deploy the Web Service
252 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 12-3 Create Web Service from Application

The Application Developer provides a Web Service wizard to generate a number
of components from a given provider Web Service application. The Web Service
is usually implemented by a JavaBean or EJB. This is the input to the wizard.
The generated components are:

� WSDL files (interface and implementation

� The SOAP deployment descriptor (dds.xml)

� An administrative application to list, stop, and start Web Services in the
application server

� A proxy class for client programming

� A test client (Web application) that uses the proxy to invoke the Web Service

� Optionally the WSDL files can be published to the UDDI Registry

.wsdl

Create Web Service from Application

DB Tx

rpcrouterTestClient

Client-App

dds.xml

Web Service
Wizard

Client Server

.wsdl

Proxy

UDDI Explorer
publish deployment

descriptor

Existing
application

S
O
A
Pin

te
rf

ac
e

im
p

le
m

en
ta

ti
o

n

for testing

start
Java
Bean

or
EJB

AdminApp
 Unit 12. Creating Web Services 253

Visual 12-4 Creating a Web Service

The input to the wizard when creating a Web Service is either an existing
application (JavaBean or EJB), or a WSDL file.

The generated code is almost the same:

� When starting from an application, the WSDL files are generated.

� When starting from a WSDL file, a skeleton JavaBean is generated.

From existing Web application
Start with JavaBean/EJB that invokes existing application

May have to create the JavaBean

WSDL files (interface and implementation)
SOAP deployment descriptor
Administrative application (start/stop Web Service)
Client proxy bean and test client application

From existing WSDL file
Start with WSDL interface file (from UDDI Registry)

Skeleton JavaBean
WSDL implementation file
SOAP deployment descriptor
Administrative application (start/stop Web Service)
Client proxy bean and test client application

Creating a Web Service

generated
files

generated
files
254 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 12-5 Web Service Example

In the Web Service example, described in Visual 11-29 on page 247, we now
look in detail at the provider side, where the Web Service is created from an
existing application.

Servlet

Web Service Example

HTML FORM

DB

Inventory
Part

session EJB

entity EJBs

InquireParts

SOAP rpcrouterProxy

<SOAP-ENV:Envelope><SOAP-ENV:Body>
<ns1:retrievePartInventory xmlns:ns1="urn:InquireParts" ...>
 <partNumber xsi:type="xsd:string">M100000003</partNumber>
</ns1:retrievePartInventory></SOAP-ENV:Body></SOAP-ENV:Envelope>

<SOAP-ENV:Envelope><SOAP-ENV:Body><return>
 <PartInventory ... xsi:schemaLocation=...PartInventory.xsd">
 <Part><ItemNumber>21000003</ItemNumber>
 <Quantity>12</Quantity><Cost>59.59</Cost>...... </Part>
 <Part>...............</Part>
 </PartInventory>
</return></SOAP-ENV:Body>
</SOAP-ENV:Envelope>

M100000003

PartInventory

Part Part

ItemNumber, Quantity, Cost, ...

DOM
Tree

PartNumber Item Quantity Cost
M100000003 21000003 12 59.59
M100000003 21000004 7 46.78

XSL
Processor

HTML Output

PartInquiry

SOAP
 Unit 12. Creating Web Services 255

Visual 12-6 Web Service Example Generated Code

We start with a JavaBean (InquireParts) that uses a session EJB to retrieve
inventory information for a given part number.

The Web Service wizard generates:

� The SOAP deployment descriptor (dds.xml)

� The administrative Web application with HTML and JSP files

� The WSDL files (interface and implementation)

� The proxy JavaBean (InquirePartsProxy)

� The sample test application (TestClient.jsp, and so forth)

Web Service Example Generated Code

rpcrouter dds.xml

S
O
A
P

.wsdl

Client Server
sample

admin

Web Service
TestClient.jsp

DB

PartInquiry

Inventory

Part

session EJB

entity EJBs

list.jsp

stop.jsp

start.jsp
InquireParts-binding.wsdl
InquireParts-service.wsdl

InquireParts

InquirePartsProxy

generated
256 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 12-7 Web Service Wizard - 1

The Web Service wizard is a series of dialog panels that guide you through the
process:

� Select the Web project for the generated code

� Select the type of Web Service (from JavaBean, EJB, WSDL file)

� Select the JavaBean (or EJB)

� Name the service and the generated output files

� Continue working through the panels

One of the important choices is the scope:

� Request—a new JavaBean is created for each client request

� Session—the JavaBean is stored in a user session for repetitive use

� Application—only one bean instance exists and all requests are using it

Web Service Wizard - 1

select JavaBean
or EJB

select Web project

service name

generated files

Scope:
Request
 (bean created for every invocation)
Session
(bean stored in session)
Application
(only one bean instance)

this is the default for EJB

can also start from an existing WSDL file
Skeleton JavaBean generated
 Unit 12. Creating Web Services 257

Visual 12-8 Web Service Wizard - 2

Web Service wizard (continued):

� Select the method to be invoked and the encoding of the parameters and
result

� Check the detailed JavaBean-to-XML mappings (the result of the service is
translated into XML for transmitting to the client)

Web Service Wizard - 2

Select encoding:
SOAP encoding for
parameter
Literal XML encoding
for result
(DOM element tree)

Server Java-XML mapping:
Can specify default or
custom mapping

input parm

output result
258 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 12-9 Web Service Wizard - 3

Web Service wizard (continued):

� Generation and name of the proxy bean

� XML-to-Java mappings (on the client side, the XML is translated back into
Java objects)

� Should the universal test client be started

� Should a sample test client program be generated

At the end of the wizard, the code is generated and installed into the test server
associated with the Web project, and the server is started so that the Web
Service can be immediately tested.

Web Service Wizard - 3

Client proxy for testing

Sample application for testing

Finish

Client Java-XML mapping:
Can specify default or
custom mapping

Universal Test Client
 Unit 12. Creating Web Services 259

Visual 12-10 Generated SOAP Deployment Descriptor

For the SOAP deployment descriptor (dds.xml), an ISD file is created for each
Web Service and then added to the deployment descriptor.

We show here two examples:

� The top shows the ISD file generate for a JavaBean.

� The bottom shows the ISD file generated for a session EJB.

Generated SOAP Deployment Descriptor

dds.xml
<root>
<isd:service
 xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:InquireParts" checkMustUnderstands="false">
 <isd:provider type="java" scope="Request"
 methods="retrievePartInventory">
 <isd:java class="itso.wsad.manu.client.InquireParts"
 static="false"/>
 </isd:provider>
</isd:service>
</root>

JavaBean

for each Web Service ==> added to dds.xmlInquireParts.isd
<isd:service id="urn:InquireParts"
 xmlns:isd="http://xml.apache.org/xml-soap/deployment">
 <isd:provider scope="Application" methods="retrievePartInventory"
 type="com.ibm.soap.providers.WASStatelessEJBProvider" >
 <isd:option key="JNDIName" value="itso/wsad/manu/PartInquiry"/>
 <isd:option key="FullHomeInterfaceName" value="...PartInquiryHome/>
 <isd:option key="ContextProviderURL" value="iiop://localhost:900"/>
 <isd:option key="FullContextFactoryName" value="...ContextFactory"/>
 </isd:provider>
 <isd:mappings > </isd:mappings>
</isd:service>

Session Bean
260 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 12-11 Administrative Application

The administrative application is composed of:

� HTML files, such as an index.hmtl file

� A number of JSPs to list the Web Services, display the properties of a Web
Service, stop a selected Web Service, and start a selected Web Service

By default, all Web Services are started. If a Web Service is stopped, this is
remembered and at the next start of the server the Web Service is still stopped.

Administrative Application

Start and stop services
Status is remembered
over stop/start of server

Implemented with
HTML and JSPs
 Unit 12. Creating Web Services 261

Visual 12-12 Generated Client Proxy

This is an example of a generated client proxy:

� The client proxy allocates a SOAP Call object and initializes it with the target
servlet (rpcrouter).

� The proxy contains a method that the client can call to invoke the Web
Service.

� In this method, the target Web Service and method within the service are set
in the Call object, parameters are stored in a Vector that is also set in the Call
object, and the Web Service is invoked.

� The result object is extracted from the response object of the Web Service
call.

Generated Client Proxy
public class InquirePartsProxy {

 private Call call = new Call();
 private URL url = null;
 private String stringURL =
 "http://..host../..webapp../servlet/rpcrouter";
 private SOAPMappingRegistry smr = call.getSOAPMappingRegistry();

 public synchronized Element retrievePartInventory(String pn)... {
 String targetObjectURI = "urn:InquireParts";
 String SOAPActionURI = "";
 url = new URL(stringURL);
 call.setMethodName("retrievePartInventory");
 call.setEncodingStyleURI(Constants.NS_URI_LITERAL_XML);
 call.setTargetObjectURI(targetObjectURI);

 Vector params = new Vector();
 params.addElement(new Parameter("partNumber",...,pn,...));
 call.setParams(params);
 Response resp = call.invoke(url, SOAPActionURI);
 if (resp.generatedFault()) { ... exception ... }
 else {
 Parameter refValue = resp.getReturnValue();
 return ((org.w3c.dom.Element)refValue.getValue());
 }
 }

result

parameter

proxy class

invoke Web Service

code abbreviated
262 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 12-13 Generated Test Client

The sample test client is composed of a set of JSPs, starting with the
TestClient.jsp.

When running this JSP, you select a method, enter parameters for the method,
and invoke the Web Service. The results of the Web Service are displayed after
conversion to XML.

Generated Test Client

<PartInventory >
<Part>
 <ItemNumber>21000003</ItemNumber>
 <Quantity>12</Quantity>
 <Cost>59.99</Cost>
 <Shelf>L7</Shelf>
 <Location>San Francisco</Location>
 <PartNumber>M100000003</PartNumber>
 <Name>CR-MIRROR-R-01</Name>

</Part>
</PartInventory>

Implemented
with JSPs
 Unit 12. Creating Web Services 263

Visual 12-14 Testing the new Web Service

To test the Web Service that is created, a number of components are required:

� soap.xml—points to a configuration manager that reads the deployment
descriptor

� dds.xml—the SOAP deployment descriptor

� soapcfg.jar—contains required SOAP code

� admin/index.html—starting point of the administrative application

� sample/TestClient.jsp—sample test client

All these components are added to the Web application.

Testing the new Web Service

SOAP runtime/configuration placed into Web application
soap.xml
<soapServer>
 <!-- This ConfigManager looks for a dds.xml file ... -->
 <configManager value="com.ibm.soap.server.XMLDrivenConfigManager"/>
</soapServer>

dds.xml <== generated deployment descriptor
soapcfg.jar <=== added to Web application lib

Testing
Start the server for the Web application

Run admin/index.html for
SOAP administration application

Run sample/InquireParts/TestClient.jsp
for sample test application
264 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 12-15 Deployment to WebSphere

The steps to deploy a Web Service to a real WebSphere Application Server are
as follows:

� Make sure all the specifications are complete (for example, JNDI names of
EJBs).

� Change the proxy bean to point to the real installed Web application.

� Check the generated WSDL file (make sure they point to the correct server as
well).

� Export the EAR file that contains the Web project with the Web Service.

� Install the EAR file into the application server using the administrative facility
or the batch command.

Deployment to WebSphere

The Web Service is in a Web application (Web project)
Web project is part of EAR project
Web application may use EJBs (EJB project in same EAR project)

Deploy the EAR file to WebSphere AE or AEs
Make sure the EJB mapping to JNDI names is complete
Make sure the Web application uses the correct EJB JNDI names
Change the Web Service proxy bean
http://localhost:8080/ItsoWsManufacturerWeb/servlet/rpcrouter
http://www.realhost.com/ ...

Check WSDL file
Export EAR file
Install EAR file (command line or Administrative Console)
seappinstall -install itsowsmanufacturer.ear
 -expandDir d:\websphere\appserver\installedApps\
 itsowsmanufacturer.ear
 -ejbDeploy false -interactive false
 Unit 12. Creating Web Services 265

Visual 12-16 Summary

The Web Service wizard of the Application Developer generates all the code
required to test and deploy a Web Service.

Summary

Web Service wizard creates a Web Service
From a JavaBean (turn existing application into a Web Service)
From a WSDL file (for a new Web Service)

Web Service wizard generates
WSDL files from JavaBean
Skeleton JavaBean from WSDL file
SOAP deployment descriptor (dds.xml)
Client proxy

Makes client programming easy

SOAP administration application
List, start, stop of Web Services

Client test application
Test the Web Service and the client proxy

Deploy the Web Service using an EAR file
266 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 12-17 Exercise: Create a Web Service

The Web Service creation exercise guides you through many of the tasks
discussed in the presentation.

In this exercise you work with an existing EJB-based application:

� Import the EJB application.

� Create a Web Service for this application.

� Test the Web Service.

� Use the TCP/IP Monitoring Server to see the HTTP traffic.

See Exercise 8, “Create a Web Service” on page 349 for the instructions for this
exercise.

Exercise: Create a Web Service

Web Service creation
Import EJB project:
ItsoWsManufacturerEJB

Entity beans and session bean

Import server
Create Web project:
ItsoWsManufacturerWeb
Create Web Service

Generated files (WSDL, dds.xml)
Administrative application
Proxy bean
Client test application

Monitor Web Service
TCP/IP Monitoring server

MMPARTS
MMINVENTORY

ITSOWSAD

Inventory

Admin App

PartInquiry

Part

SOAP

Test
Client

Proxy
Bean

Web Service from EJB application
 Unit 12. Creating Web Services 267

Visual 12-18 Exercise: Deploy a Web Service

The Web Service deployment exercise guides you through the deployment task
discussed in the presentation.

In this exercise you deploy the Web Service created in Exercise 8, “Create a Web
Service” on page 349 to a WebSphere Application Server AEs.

See Exercise 9, “Deploy and test a Web Service” on page 361 for the instructions
for this exercise.

WSAD

Exercise: Deploy a Web Service

Web Service deployment
Prepare Web application
Prepare AEs
Create EAR file in Application
Developer
Install EAR file in AEs
Test installed Web Service

Test
Client

Proxy
Bean

AEs

tables

ITSOWSAD

EAR file
EJBs/Web app

Deploy a Web Service
to WebSphere
268 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 13. Using Web Services

Visual 13-1 Title

13

© 2001 IBM Corporation

International Technical Support Organization

ibm.com

Using Web Services

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 269

Visual 13-2 Objectives

The objectives of this unit are to:

� Understand the Web Service wizard for the creation of a client application that
invokes a Web Service

� Understand SOAP encoding of parameters and result

� Understand how the result of a Web Service can be translated into HTML for
a browser user

� Understand dynamic Web Services where the client application interrogates
the UDDI Registry to locate Web Service providers and invoke their Web
Services

Objectives

Learn how to use a Web
Service

Start with a WSDL file
Web Service wizard
Client mapping of parameter and
result

SOAP encoding
Literal XML encoding

Client proxy
Client test application

Learn how to deal with
returned XML result data

XSL processor

Dynamic Web Services

 Tasks

Get a WSDL file
Run Web Service wizard

Select Web application
Select WSDL file
Select encoding of parameters
and results
Specify client side mappings
between Java and XML
Specify client proxy
Specify test client

Test the Web Service
Implement the client application
Test the client application

Server
must

be
running
270 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 13-3 Create Client from WSDL

To create a client for a Web Service, the wizard is run with a WSDL
implementation file as input to generate the starting skeleton code for a client
application.

The proxy bean and the test client are generated, then a real client can be
implemented.

Create Client from WSDL

DB Tx

rpcrouterTestClient

Client-App

dds.xml

Client Server

Proxy

UDDI Explorer
find

deployment
descriptor

Existing
application

Web Service
Wizard

S
O
A
P

im
pl

em
en

ta
tio

n

NEW
application for testing

and skeleton

.wsdl

start

Java
Bean

or
EJB

Server must
be running
 Unit 13. Using Web Services 271

Visual 13-4 Web Service Example

In the Web Service example, described in Visual 11-29 on page 247, we now
look in detail at the requestor side, where the Web Service is invoked and the
result is displayed in a browser.

Servlet

Web Service Example

HTML FORM

DB

Inventory
Part

session EJB

entity EJBs

InquireParts

SOAP rpcrouterProxy

<SOAP-ENV:Envelope><SOAP-ENV:Body>
<ns1:retrievePartInventory xmlns:ns1="urn:InquireParts" ...>
 <partNumber xsi:type="xsd:string">M100000003</partNumber>
</ns1:retrievePartInventory></SOAP-ENV:Body></SOAP-ENV:Envelope>

<SOAP-ENV:Envelope><SOAP-ENV:Body><return>
 <PartInventory ... xsi:schemaLocation=...PartInventory.xsd">
 <Part><ItemNumber>21000003</ItemNumber>
 <Quantity>12</Quantity><Cost>59.59</Cost>...... </Part>
 <Part>...............</Part>
 </PartInventory>
</return></SOAP-ENV:Body>
</SOAP-ENV:Envelope>

M100000003

PartInventory

Part Part

ItemNumber, Quantity, Cost, ...

DOM
Tree

PartNumber Item Quantity Cost
M100000003 21000003 12 59.59
M100000003 21000004 7 46.78

XSL
Processor

HTML Output

PartInquiry

SOAP
272 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 13-5 Web Service Example Generated Code

To create a client application, the Web Service wizard is run for a WSDL
implementation file as input. The wizard generates:

� The proxy bean that embeds the SOAP Call object and invokes the Web
Service

� A sample test client (a set of JSPs) that can be used to test the Web Service
before implementing the real client

The real client application can then be implemented. Some code generated in
the test client may be useful for the real client.

Web Service Example Generated Code

rpcrouter dds.xml

S
O
A
P

.wsdl

Client Server
sample

admin

Web Service
TestClient.jsp

DB

PartInquiry

Inventory

Part

session EJB

entity EJBs

list.jsp

stop.jsp

start.jsp
InquireParts-binding.wsdl
InquireParts-service.wsdl

InquireParts

InquirePartsProxy

generated
 Unit 13. Using Web Services 273

Visual 13-6 Web Service Wizard

The Web Service wizard guide the user through a series of dialog panels, similar
to the ones shown in Visual 12-7 on page 257 (and subsequent).

The major difference is that a WSDL implementation file is selected as input.

Web Service Wizard

Create client proxy and sample test application
Select Web project
Select WSDL implementation (service) file

Get WSDL file from UDDI Registry
Store WSDL file in Web project

Generate proxy bean
Easiest way for client to connect to server using SOAP

Specify client side Java-XML mapping
Generate sample test client

Sample code shows how to set parameters and retrieve results
Sample method to write XML from DOM tree element

Use sample code for real client application
Copy/paste fragments into application
274 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 13-7 Generated Client Proxy

This is an example of a generated client proxy:

� The client proxy allocates a SOAP Call object and initializes it with the target
servlet (rpcrouter).

� The proxy contains a method that the client can call to invoke the Web
Service.

� In this method, the target Web Service and method within the service are set
in the Call object, parameters are stored in a Vector that is also set in the Call
object, and the Web Service is invoked.

� The result object is extracted from the response object of the Web Service
call.

public class InquirePartsProxy {

 private Call call = new Call();
 private URL url = null;
 private String stringURL =
 "http://..host../..webapp../servlet/rpcrouter";
 private SOAPMappingRegistry smr = call.getSOAPMappingRegistry();

 public synchronized void setEndPoint(URL url)
 { this.url = url; }
 public synchronized Element retrievePartInventory(String pn)... {
 String targetObjectURI = "urn:InquireParts";
 String SOAPActionURI = "";
 url = new URL(stringURL);
 call.setMethodName("retrievePartInventory");
 call.setEncodingStyleURI(Constants.NS_URI_LITERAL_XML);
 call.setTargetObjectURI(targetObjectURI);
 Vector params = new Vector();
 params.addElement(new Parameter("partNumber",...,pn,...));
 call.setParams(params);
 Response resp = call.invoke(url, SOAPActionURI);
 if (resp.generatedFault()) { ... exception ... }
 else {
 Parameter refValue = resp.getReturnValue();
 return ((org.w3c.dom.Element)refValue.getValue());
 }

}

Generated Client Proxy

change target URL for
dynamic Web services

result

parameter

proxy class

invoke Web Service

code abbreviated
 Unit 13. Using Web Services 275

Visual 13-8 Test Client

The sample test client is composed of a set of JSPs, starting with the
TestClient.jsp.

When running this JSP, you select a method, enter parameters for the method,
and invoke the Web Service. The results of the Web Service are displayed after
conversion to XML.

Test Client

TestClient.jsp
Frameset

Method.jsp
lists the
methods
that are
available

Input.jsp
HTML form
enter input parameters
for method to call

Result.jsp
performs all
processing
calls the Web service

output is
XML source
276 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 13-9 Test Client Result JSP Processing

The result JSP of the sample test client uses a domWriter method to convert the
XML data object returned as the result of the Web Service call into a readable
XML file.

This utility method may be useful in a real client.

Test Client Result JSP Processing

<%
String method = request.getParameter("method");
try {
 if (method.equals("retrievePartInventory")) {
 String partNumber= request.getParameter("partNumber");
 org.w3c.dom.Element mtemp =
 proxy.retrievePartInventory(partNumber);
 String tempResult = domWriter
 (mtemp, new java.lang.StringBuffer());
%>
 <%= tempResult %>
<% }} catch (Exception e) { %>
exception: <%= e %>
<% return; } %>

public static java.lang.String domWriter(...,...) {
 // generate XML output from DOM tree
}

code abbreviated

Web Service

utility
method

HTML output
 Unit 13. Using Web Services 277

Visual 13-10 Creating a Client Application

In our example, the client is a Web application:

� A servlet is invoked from an HTML form.

� The servlet extracts the parameter (part number) and calls the proxy object to
invoke the Web Service.

� The result of the Web Service is a XML DOM tree in memory.

� The servlet invokes the XSL transformer.

� The XSL transformer uses an XSL file to convert the XML tree into an HTML
table.

� The HTML table is displayed in a browser.

Creating a Client Application

DB

PartInquiry

Inventory
Part

session EJB

entity EJBs

InquireParts

.xsl DOM
XML

HTML
Output

Browser WebSphere Web Service

Servlet SOAP rpcrouterHTML
Input

FORM

XSL
Transformer

Proxy
278 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 13-11 Client Application Run

A sample run of the client application shows the HTML input form and the HTML
result table.

Client Application Run
 Unit 13. Using Web Services 279

Visual 13-12 Servlet Code with Proxy and XSL

The servlet of the sample application is quite simple:

� The XSL transformer is prepared using the XSL file as base.

� The Web Service is invoked using the part number parameter.

� The XML DOM tree is converted into an XML source object.

� The XSL transformer writes the output directly to the servlet’s output stream.

Servlet Code with Proxy and XSL

public class PartInventoryServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,

 HttpServletResponse response) {
try {
 response.setContentType("text/html; charset=UTF-8");
 TransformerFactory tf =

 TransformerFactory.newInstance();
 Source xslSource = new StreamSource(new

 URL("http://host/..webapp../xxx.xsl").openStream());
 Transformer t = tf.newTransformer(xslSource);

 PrintWriter out = response.getWriter();
 InquirePartsProxy proxy = new InquirePartsProxy();
 String pn = (String)request.getParameter("partNumber");
 Element result = proxy.retrievePartInventory(pn);
 Source xmlSource = new DOMSource(result);
 t.transform(xmlSource, new StreamResult(out));
} catch (Exception e) { e.printStackTrace();}

 }

call Web
Service
280 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 13-13 XSL to transform XML into HTML

The XSL file matches the various tags of the XML result through templates:

� For the root tag, PartInventory, the HTML output is started (<HTML>), a
heading is produced (<H1>, and the table is started (<TABLE>) with a table
heading (<TH>).

Processing of the other tags is then forced <xsl.apply-templates>).

Finally, the table is closed and the HTML ended.

� For the Part tag, a new row in the table is started (<TR>) and for each detail
tag (only the partNumber tag is shown) the value is placed into a table column
(<TD>).

XSL to transform XML into HTML

<PartInventory >
<Part>
 <ItemNumber>21000003</ItemNumber>
 <Quantity>12</Quantity>
 <Cost>59.99</Cost>
 <Shelf>L7</Shelf>
 <Location>San Francisco</Location>
 <PartNumber>M100000003</PartNumber>
 <Name>CR-MIRROR-R-01</Name>

</Part>
</PartInventory>

<xsl:stylesheet ...>
<xsl:output method="html"/>
<xsl:template match="res:PartInventory">
 <HTML><BODY>
 <H1>Part Inventory Inquiry Results</H1>
 <table><tr><TH>Part Number</TH>..</tr>
 <xsl:apply-templates/>
 </table></BODY></HTML>
</xsl:template>
<xsl:template match="res:Part">
 <tr><td>
 <xsl:value-of select="res:PartNumber"/>
 </td> ... </tr>
</xsl:template>
</xsl:stylesheet>

XML + XSL

HTML
 Unit 13. Using Web Services 281

Visual 13-14 Application with Dynamic Web Services

An application with dynamic Web Services uses the UDDI Registry to find Web
Service implementations.

For example, multiple manufacturers implement the PartInventory Web Service,
and all their entries are stored under one business entity, the Automobile
Association (this is to guarantee that all implementations are verified).

The process to find the implementations is outlined:

� Find the service interfaces (tModels) based on the service name
(PartInventory).

� Find the business entity (auto parts association).

� Find all the business services for this entity.

� Find the implementations (binding templates) of these services, restricted to
those that implement the given service interface.

Application with Dynamic Web Services

Application uses UDDI4J API to find and retrieve service
implementations

Multiple ways to find information
Example:

Find tModel based on service name
Find business entities that implement tModel
Find business services of entities
Find binding of services that implement tModel
Invoke each service implementation

Business Entity

Business Service

Binding Template

Service Interface
(tModel)

Invoke
282 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 13-15 Dynamic Web Service: Sample Code

The UDDI4J API itself uses a set of Web Services:

� A proxy object is instantiated, pointing to a UDDI Registry.

� The find_tModel method retrieves a list (actually a Vector) of tModels. The
keys of these tModels are stored in a tModelBag for later use.

� The find_business method retrieves a Vector of business entities. Using the
list, the services are retrieved.

� The find_binding method retrieves the implementations that point to the given
service interface (using the tModelBag built earlier).

� The AccessPoint of the implementation is the address where the Web Service
is running.

The AccessPoint is used to set the endpoint (the target) in the Web Service
proxy object before invoking the Web Service itself.

Dynamic Web Service: Sample Code

UDDI API example to retrieve Web Services
inqAPI = "http://...ibm.../uddi/testregistry/inquiryapi"
pubAPI = "http://....../testregistry/protect/publishapi";
uddi = new UDDIProxy(inqAPI, updAPI);
TModelList tml = uddi.find_tModel(servicename,null,0);
Vector v1 = (tml.getTModelInfos()).getTModelInfoVector();
tmkey = ((TModelInfo)v1.elementAt(i1)).getTModelKey();
TModelBag tmb = new; // add Vector of tmkeys
BusinessList bl = uddi.find_business(provider, null, 0);
Vector v2 = (bl.getBusinessInfos()).getBus..InfoVector();
BusinessInfo bi = (BusinessInfo)v2.elementAt(i2);
Vector v3 = (bi.getServiceInfos()).getServiceInfoVector();
skey = ((ServiceInfo)v3.elementAt(i3)).getServiceKey();
BindingDetail bd = uddi.find_binding(null,skey,tmb,0);
Vector v4 = bd.getBindingTemplateVector();
AccessPoint ap = ((...)v4.elementAt(0)).getAccessPoint();

Setup and invoke proxy
proxy.setEndpoint(new URL(ap.getText()));
result = proxy.retrievePartInventory_(pn);

skeleton code
 Unit 13. Using Web Services 283

Visual 13-16 Summary

The Web Service wizard of the Application Developer generates the proxy object
to be used for client applications that want to invoke a Web Service.

The proxy object can be used to invoke static Web Services as well as dynamic
Web Services.

The invocation of the Web Service from a client application is simple when using
the generated proxy object. Processing the result of a Web Service is the real
challenge.

Summary

Web Service wizard for using a Web Service
Similar to creating a Web Service
Test the Web Service with the test client
Implement the client application

Process XML results
XSL processor

Dynamic Web Services
Interact with UDDI Registry to retrieve Web Service and WSDL files

Quite complicated programming

Dynamically set up the client proxy bean to invoke a Web Service
284 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 13-17 Exercise: Using a Web Service

The Web Service client exercise guides you through many of the tasks discussed
in the presentation.

In this exercise you create a client Web application that invokes the Web Service
created in Exercise 8, “Create a Web Service” on page 349:

� You generate the proxy object from the WSDL implementation file.

� You create the Web application using a servlet with an XSL processor.

See Exercise 10, “Using a Web Service in a client application” on page 365 for
the instructions for this exercise.

Exercise: Using a Web Service

Use a Web Service
Project: ItsoWsClientWeb
Get WSDL file
Web Service wizard to generate

Proxy bean
Client test application
Test

Create real client application
Test client application
Deploy client application

Test
Client

Proxy Bean

Web Service

Real
Client

WSDL
file

Use a Web Service
in a Web application
 Unit 13. Using Web Services 285

286 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Unit 14. Web Services and the UDDI
Explorer

Visual 14-1 Title

14

International Technical Support Organization

ibm.com

UDDI Explorer

Web Services
Studio Application Developer
© Copyright IBM Corp. 2002 287

Visual 14-2 Objectives

The objectives of this unit are to:

� Understand the UDDI Registry

� Understand the UDDI Explorer of the Application Developer

� Connect to a UDDI Registry and work with business entities and business
services

Objectives

Learn how to interact with a
UDDI Registry

UDDI Explorer
Connect to a registry
Business entities
Business services
Identifiers and categories

Publish a Web Service
Define a business service
Provide WSDL file

Retrieve a WSDL file
Use for client implementation

 Tasks

Register with a UDDI Registry
Get user ID and password

Start the UDDI Explorer
Use the UDDI Explorer

Find
Search
Publish
Maintain information
Import WSDL file
Login
288 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 14-3 UDDI Explorer and UDDI Registry

A UDDI Registry contains these entries:

� Business entities—companies that want to register Web Services

� Business services—a Web Service that the company registers

� Access point (called binding template)—points to an installed Web Service
(the target address) and to the matching WSDL service (implementation) file

� Web Service type (called tModel)—a Web Service definition that points to the
matching Web Service binding (interface) file

The Application Developer provides an internal server and a UDDI Explorer
application that can be used to access and update any UDDI Registry that
implements the UDDI4J API.

The UDDI Explorer enables a user to search for entries in the registry and to
navigate between entries. Entries can also be created; for example, a business
entity can be created and a WSDL file can be published.

UDDI Explorer and UDDI Registry

UDDI Registry

Business Entity

Business Service
Categorization
Description

Service Type (tModel)
Specification
Categorization
Description
URL

Xxxxx-service.wsdl

Xxxxx-binding.wsdl

Target ServerWSAD

Server in WSAD

Access Point
(Binding Template)

Details

Search

Messagesstart
 Unit 14. Web Services and the UDDI Explorer 289

Visual 14-4 UDDI Explorer

The UDDI Explorer is started from the Application Developer using either import
or export. Export would be used to publish a Web Service (WSDL file).

The UDDI Explorer is a Web application that runs in a browser. Connection to a
UDDI Registry is done through an internal server.

The first action is to set up the address of a UDDI Registry, for example, the IBM
Test Registry or a private registry (IBM WebSphere UDDI Registry).

UDDI Explorer

Start from Application Developer
File -> Import or Export UDDI

Select project for import
Select WSDL file for export (publish a Web Service)

Starts internal server on port 8090
Starts normal browser
http://localhost:8090/uddiexplorer/uddiexplorer.jsp?.....

Browser communicates with UDDI registry through internal server

Access any UDDI registry
Click on UDDI Main and set registry URL
Default is IBM Test Registry
http://www-3.ibm.com/services/uddi/testregistry/inquiryapi

Production business registry
http://www-3.ibm.com/services/uddi/inquiryapi

IBM WebSphere UDDI Registry
http://hostname/services/uddi/inquiryapi can add to Favorites
290 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 14-5 UDDI Explorer Function

The UDDI Explorer provides three main functions:

� Find—search for entries and navigate between entries

� Publish—publish business entities and business services, and update
information

� Import—retrieve a WSDL file (note that the registry only points to WSDL files;
the actual file is retrieved from a target server)

To publish and update information, you must be registered with the UDDI
Registry and use a logon ID and password to connect.

Publish and update
operations

User must be registered
with UDDI registry

user ID and password

Prompt to login

Publishing from WSAD
Server for project must
run to read WSDL files
WSDL files are not
copied to registry

URL pointer

Import
Server where WSDL files
are must run

UDDI Explorer Function

Find
Find business entity
Find business services
Find service interface
Traverse hierarchy

entity --> services <--> interfaces

Show details

Publish
Publish business entity
Publish business service (for entity)
Publish service interface
Update published information

Import
Import WSDL files into App.Dev.
 Unit 14. Web Services and the UDDI Explorer 291

Visual 14-6 Publish Business Entity

To publish information, you fill out forms provided by the UDDI Explorer.

For example, you do the following to publish a business entity:

� Give it a name and description

� Assign identifiers (phone number, address)

� Assign categories according to one of the supported standards

Publish Business Entity

can add multiple identifiers

can add multiple categories

display list
and select

identifiers and categories
can be used in search
292 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 14-7 Publish Business Service

To publish a Web Service, you point to the WSDL file that describes the Web
Service and add a description and categories.

The server where the WSDL file is retrieved must be running.

The WSDL file is analyzed to extract the information that is stored in the registry.

Publish Business Service

Select WSDL file to be published and File -> Export -> UDDI
Find business entity
Publish Web Service

URL of WSDL file is pre-filled

Select categories

http://localhost:8080/ItsoWsManufacturerWeb/wsdl/InquireParts-service.wsdl
 Unit 14. Web Services and the UDDI Explorer 293

Visual 14-8 Importing a WSDL File

To use a Web Service in a client application you need the WSDL implementation
file. You can find the file through the UDDI Registry and retrieve it from the server
where it is running.

You then use the WSDL file to generate the client proxy or the JavaBean
skeleton (if you want to implement the Web Service).

Importing a WSDL File

To use a Web Service, you must have the WSDL
implementation file

Get the WSDL file from the service provider
Get the WSDL file from the UDDI registry

Find business service
Use Import action
WSDL file stored in selected project

UDDI registry points to URL of WSDL file
Server must be running to retrieve the file

From the WSDL file, using the Web Service wizard, generate
Proxy bean
JavaBean skeleton
Client test application
294 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Visual 14-9 Summary

The UDDI Explorer of the Application Developer provides the necessary facilities
to automate access to a UDDI Registry and integrate the access into the
application development process.

Summary

UDDI Registry can be accessed using a normal browser

Application Developer provides the UDDI Explorer for direct
interaction

Connect to a registry
Browse a registry
Publish to a registry

Business entity
Business service
Service interface

Maintain information
Retrieve WSDL files from a registry
 Unit 14. Web Services and the UDDI Explorer 295

Visual 14-10 Exercise: UDDI Explorer

The UDDI Explorer exercise guides you through many of the tasks discussed in
the presentation.

In this exercise you work with either the IBM Test Registry or the IBM
WebSphere UDDI Registry:

� Register to get a logon ID

� Publish a business entity and a Web Service

� Find a Web Service and retrieve the WSDL file

� Optionally work with a dynamic Web Services application

See Exercise 11, “Web Service publishing in the UDDI registry” on page 369 for
the instructions for this exercise.

WSAD

Exercise: UDDI Explorer

UDDI Explorer
Register with registry

IBM Test Registry
IBM WebSphere UDDI Registry
(stand-alone)

Publish a business entity
Publish a Web Service
Find a Web Service
Import a Web Service

WSDL file

Web application with dynamic Web
Services

Find implementers of Web Service
Invoke Web Services dynamically

UDDI Explorer

WebSphere UDDI Registry

IBM Test Registry

publish find

Use the
UDDI Explorer
to work with a

registry
296 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Part 2 Exercises

In preparation for the hands-on exercises, you have to install the products and
retrieve the sample code from the ITSO Web site. Then you can perform the
exercises by following the instructions for each exercise.

See Appendix A, “Installation and configuration” for detailed installation
instructions.

See Appendix B, “Additional material” for detailed instructions about
downloading and installing the sample code from the ITSO Web site.

The instructions assume that the products and samples are installed as follows:

� DB2 in d:\SQLLIB
� WebSphere Application Server in d:\WebSphere\AppServer
� WebSphere Stusio Application Developer in d:\WSAD
� IBM WebSphere UDDI Registry Preview in d:\UDDI Registry Preview
� Sample code in c:\WS\sampcode
� Database ITSOWSAD created and loaded with sample data

Your setup may be different, so check the installation directories.

Part 2
© Copyright IBM Corp. 2002 297

Sample data
The ITSOWSAD database has two sets of two tables, PARTS and INVENTORY:

� The dealer tables are AAPARTS and AAINVENTORY

� The manufacturer tables are MMPARTS and MMINVENTORY

AAPARTS and MMPARTS tables are identical:

PARTNUMBER NAME WEIGHT DESCRIPTION
---------- --------------- -------- --------------------------------------
M100000001 CR-MIRROR-L-01 10.50 Large drivers side mirror for Cruiser
M100000002 CR-MIRROR-R-01 10.80 Large passenger side mirror for Cruiser
M100000003 CR-MIRROR-R-01 4.60 Large rear view mirror for Cruiser
W111111111 WIPER-BLADE 0.90 Wiper blade for any car
B222222222 BRAKE-CYLINDER 2.20 Brake master cylinder
X333333333 TIMING-BELT 0.60 Timing belt
T0 Team 100.00 International WSAD Groupies
T1 Olaf 100.11 German Turbo Engine
T2 Wouter 100.22 Belgium Chocolate Steering Wheel
T3 Denise 100.33 US Spark Plug
T4 Mark 100.44 British Muffler
T5 Ueli 100.55 Swiss Cheese Cylinder
L1 License 0.30 Personalized license plate

AAINVENTORY table:

ITEMNUMBER PARTNUMBER QUANTITY COST SHELF LOCATION
---------- ---------- ----------- ------------ ----- -------------------
21000001 M100000001 10 89.99 2A AA - Almaden
21000002 M100000002 5 99.99 2B AA - Almaden

MMINVENTORY table:

ITEMNUMBER PARTNUMBER QUANTITY COST SHELF LOCATION
---------- ---------- ----------- ------------ ----- --------------------
21000003 M100000003 10 59.99 L8 MM - San Francisco
21000004 M100000003 12 57.99 B7 MM - New York
31000005 W111111111 2 12.34 H8 MM - Los Angeles
31000006 B222222222 13 123.45 E5 MM - Frankfurt
31000007 X333333333 7 12.34 2D MM - Santa Cruz
900 T0 1 99.00 M0 MM - San Jose
901 T1 1 11.00 M1 MM - Heidelberg
902 T2 1 22.00 M2 MM - Brussels
903 T3 1 33.00 M3 MM - Raleigh
904 T4 1 44.00 M4 MM - London
905 T5 1 55.00 M5 MM - Zurich
910 L1 1 30.00 M6 MM - California
298 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 1. Java development

What this exercise is about
In this lab we set up a Java project in WebSphere Studio Application Developer
and implement simple Java applications.

User requirement
Generate a list of all the parts in the database.

What you should be able to do
At the end of this lab you should be able to:

� Start WebSphere Studio Application Developer

� Define a Java project

� Import and work with Java code

� Run and debug Java applications

Introduction
We implement a command line and a GUI application to list the parts table.

1

© Copyright IBM Corp. 2002 299

Exercise instructions
1. Start WebSphere Studio Application Developer.

Define a Java project
2. Select File -> New -> Project (or use the New button in the toolbar). In the

SmartGuide, select Java and Java Project, then click Next.

3. Enter ItsoWsDealerParts as the project name, and leave Use default location
selected. Click Next.

4. Leave all the Java Settings for now (we use the project as source folder). Click
Finish.

5. Select the Java Perspective. If it is not in the Perspective Bar (on the left),
select Perspective -> Open -> Java.

Create a package and a class
6. Create a Java package (File -> New -> Java Package or New button). Enter

itso.wsad.dealer.app as the package name, then click Finish. The package
appears in the Packages view.

7. Select the new package and create a class (File -> New -> Java Class or New
button). In the SmartGuide, check the package name (itso.wsad.dealer.app)
and enter Listing as the class name. Leave Object as superclass. Select the
main method under Which method stubs would you like to create. Click
Finish. The Listing class appears under the package and a Java editor opens.

Complete the code
8. In the editor, under the package statement, add an import statement:

import java.sql.*;

9. Add a static field under the class:

// database table
static String dbtab = "aaparts";

10.Open the sample file c:\ws\labscode\exjava\cmdapp\ListingMain.txt and
copy/paste the complete method code into the main method between the
braces {}. Notice the color highlighting of the source code.

11.Save the Listing.java file (File -> Save, or ctrl-s). The program is compiled and
one error is noted in the task list (method getnext() is undefined). Double-click
the entry in the task list, and the bad code is highlighted in the editor.
300 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Code assist and hover help
12.Delete the getnext text, place the cursor after rs. and press ctrl-space for

code assist. Select the next() method from the list and double-click to add it
into the code.

13.Save the file (ctrl-s), and the error disappears.

14.Place the cursor on variable references (rs, con, stmt) and watch the hover
help appear. It does not work on the variable declaration. Hide the hover help
by clicking the Text Hover button in the toolbar (third, from right to left).

15.Double-click the title bar of the edit view to make the source code occupy the
complete WSAD window. Double-click again to make it small. Adjust the size
of the panes by moving the borders.

Outline view
16.Select elements in the Outline view and watch the Java editor mark the

selected part of the source code and position it to the top.

17.Click the various buttons in the outline toolbar to see (or not see) fields, static
or public definitions.

18.Select the edited file and click the Show Source of Selected Element Only
button in the toolbar (fourth from right). Now select elements in the outline,
and the editor only displays the selected element. Reset the button for the
editor to see the complete source.

19.Grab the title bar of the outline view and move it away to become a separate
window.

20.Move it back over the main window. Watch the icon at the top of the moving
window change to squares (separate window), folders (overlay a view), and
arrows (add view above, below, left, right). Try different positions. Move it back
to the right border when done experimenting.

Replace from local history
21.Select the main method in the outline view, and from the context menu select

Replace from Local History.

22.A dialog opens and shows all the states of the main method that you saved.
When you select a local version in the top pane, the lower right pane displays
the selected version and highlights the differences to the code loaded in the
Workbench (left pane). You could replace the code with an older version.
Click Cancel.
 Exercise 1. Java development 301

Smart import assist
23.Select the import declarations in the outline, and Delete from the context

menu. The import statement is removed from the source. Do not save the
code, or you will get many errors.

24.In the editor, select Organize Imports from the context menu. A dialog opens
to choose the types to import (because there is more than one Connection
class in the Workbench). Select java.sql.Connection and click Finish.

25.Note that four import statements are added to the source. The other three
types were not ambiguous. Save the code.

Extracting a method
26.We want to make a separate method to connect to the database. In the editor,

select the lines:

try {
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();
con = DriverManager.getConnection("jdbc:db2:itsowsad");

} catch(Exception e) {
System.err.print("Exception: ");
System.err.println(e.getMessage());

}

27.From the context menu, select Extract Method. In the Refactoring
SmartGuide, enter connect as the new method name, and select protected as
the access modifier. Click Next.

28.The SmartGuide shows how the selected lines of code will be replaced by a
method call, and how a new connect method is created from those lines.

con = connect();
protected static Connection connect() { ... }

29.Click Finish to generate the new method. An error appears in the task list
because the variable is not initialized. Note that you can see the error
message as hover help when placing the cursor on the red mark in the editor
window.

30.Fix the code in the connect method and save the code.

Connection con = null;

Running the application
31.Notice the running man next to the class name in the Outline view. This

indicates that the class is executable.
302 Self-Study Guide: WebSphere Studio Application Developer and Web Services

32.Click the Run icon in the toolbar (running man). The first time, you are
prompted to select the launcher. Select Java Application (it is remembered for
the project), then click Next. The Listing class is preselected, so click Finish.

33.The Debug Perspective opens and the Console displays an error message
because the DB2 driver class is not found. If you want the Debug Perspective
to open automatically, use Window -> Preferences -> Debug. The Processes
view shows that the application terminated.

Setting the build path
34.We have to add the db2java.zip file to the build path. We could add the file to

the project itself, but it is better to refer to the file in the DB2 directory. In the
Java Perspective, select the project and Properties (context).

35.Select the Java Build Path, and the Library page. Click Add External JARs
and navigate to d:\SQLLIB\java\db2java.zip, and then click Open. The file is
added to the build path. Click OK. The db2java.zip file appears in the
Packages view with the library symbol.

A better approach is to use a class path variable, so that there is no direct
reference to a real directory, that may be different for another developer. A
variable DB2JAVA may already exist, pointing to the db2java.zip file. See
Window -> Preferences -> Java -> Classpath Variables.

36.Click Run again; this time the output should appear in the Console view of the
Debug Perspective. Close the Debug Perspective.

Import a Java source file
37.In the Java Perspective, select the ItsoWsDealerParts project to import a GUI

application. Select File -> Import -> File system, then click Next. Click Browse
and navigate to the c:\ws\labscode\exjava\guiapp directory. Select the
guiapp directory and click OK. Select the check box (in front of guiapp) to
import all subdirectories and files. Check that the correct project is in the
Folder field, and click Finish.

Do not select the check box Create complete folder structure (under Options).

38.Two Java source files are imported and the package itso.wsad.dealer.parts is
created under the project. Both files show errors that refer to missing
packages (com.ib.ivj, com.ibm.db). This application was created in VisualAge
for Java using the data access beans feature, which is missing in our project.

39.We have to import the JAR file with the supporting packages and classes
(ivjdab.jar) and add it to the build path.
 Exercise 1. Java development 303

Select the project and File -> Import -> File system, Next, Browse to navigate
to c:\ws\labscode\exjava\lib, and then click OK. Select the lib directory (click
lib) to see the files that are in the directory in the right pane; it contains the
ivjdab.jar file. Select the ivjdab.jar file (check box) and click Finish. The file
appears under the project.

40.Select the project and Properties (context), and select Java Build Path and
the Libraries page. Click Add JARs. In the JAR Selection dialog, expand the
ItsoWsDealerParts project and select the ivjdab.jar file. Click OK. Close the
Properties dialog with OK.

41.Notice that the icon of the ivjdab.jar file changes to a “jar” that can be
expanded to reveal the content, packages with classes.

42.All the errors have been resolved, except for a deprecated method warning in
the javax.swing.JViewport class. Double-click the warning to open the
GuiListing file in the source editor. Also notice the Outline view with all fields
and methods.

Search
43.In the source editor error line, select the setBackingStoreEnabled method

name, and from the context menu, select Search -> Declarations in Hierarchy.
This is a fast way of opening the Search dialog (flashlight icon or Edit ->
Search, entering the method name, and searching for method and limit to
declarations).

44.The Search view opens with the method found in the JViewport class.
Double-click on the search match and the JViewport class opens in the editor,
but no source is available. Select the editor window and the outline appears.
However, this does not really help to solve the problem because the
documentation for JViewport is not available.

45.In the GuiListing.java editor, delete the setBackingStoreEnabled(true) call,
and press ctrl-space after getViewport() and select the setScrollMode(int)
method. Enter javax.swing.JViewport.BACKINGSTORE_SCROLL_MODE as
parameter (use ctrl-space instead of typing):

getJScrollPane1().getViewport().setScrollMode
(javax.swing.JViewport.BACKINGSTORE_SCROLL_MODE);

46.Close the JViewport class in the edit view. Save the GuiListing.java file.

Run GUI program
47.Click Run and the GuiListing applet appears. Enter a partial name (for

example, IRRO) and click Select. Matching parts should be listed in the table.
Close the Debug Perspective.
304 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Debugging
48.Open the Listing.java application in the editor. Double-click in the left border

on the line “Connection con = null;” to set a breakpoint.

49.Click the Debug icon in the toolbar. The application runs in debug mode and
the Debug Perspective opens at the breakpoint. Study the different views.
Click Variables under the Breakpoints view and you should see the dbtab
variable (click the S icon to show or not show static fields).

50.Step through the code using the Step over icon in the Debug view. Watch the
con variable appear in the Variables view. Continue stepping through the
code until you pass over the line “while (rs.next()) {“.

51.In the Listing.java view, select the text “rs.getString("name")“ and select
Display in the context menu. The evaluated expression is in the Display view
(top right).

52.In the Variables view, select the variable rs=DB2ResultSet and select Inspect
from the context. Study the variable content in the Inspector view.

53.In the Debug view, click the Resume icon to run the program to the end.

54.Close the Debug Perspective. Close the Listing.java editor.

Type hierarchy (optional)
55.Select the GuiListing in the Outline view and select Open Type Hierarchy from

the context menu.

56.The Types view opens and shows the hierarchy of the class. The bottom part
of the view shows methods and fields. Select a superclass in the top part, and
the fields and methods change in the bottom part.

57.In the Types view, click the Show the supertype hierarchy icon (second from
the right). Now you see the hierarchy inversed, and you also see the
interfaces that are implemented.

58.Select the Applet class and Open Type Hierarchy (context). Now you can
browse the hierarchy from the Applet point of view. Switch between GuiListing
and Applet using the arrow icons.

59.Select the GuiListing in the top pane, and the init method in the bottom pane.
Then click the Lock View and Show Members in Hierarchy icon in the bottom
pane (first on the left). In the top pane you can see in which superclass(es)
the method is defined. Select the paint method for comparison.

60.In the GuiListing editor, find the getSelect1 method (use the Outline view).
Find the code where the PartsDbAccess class is used for the connection and
SQL statement.
 Exercise 1. Java development 305

61.Select PartsDbAccess and Edit -> Open on Selection. This opens the editor
for that class. Close the editor for that class.

62.Select PartsDbAccess and Edit -> Open Type Hierarchy. This opens the
Types view for this class. Close the Types view and the editor of that class.

Rename (optional)
63.Select the PartsDbAccess class in the Packages view and Rename (context).

In the Refactoring dialog, change the name to PartsAccess.java. Click Next.

64.The dialog shows you all the changes that will be performed (for example, the
references in the GuiListing class). Click Finish.

65.The getSelect method in GuiListing has been updated and the file has been
renamed. Run the GUI application; it should still work.

Scrapbook page (optional)
66.In the Java Perspective Packages view, select the project and create a scrap

page (File -> New -> Java -> Java Scrapbook Page). Click Next. Enter loop
as the file name and click Finish. A file named loop.jpage is added to the
project, and the file opens in the editor.

67.Add this code to the empty editor pane (or copy/paste from
c:\ws\labscode\exjava\scrap\loop.txt):

String total = "";
for (int i=1; i<11; i++) {

System.out.println(i + " square " + i*i);
total = total.concat(i*i +" ");

}
return total;

68.Select all the code and click the Run selected code icon (with the J) or Run in
the context menu. The output appears in the Console view.

69.Save the loop.jpage file and close the editor.
306 Self-Study Guide: WebSphere Studio Application Developer and Web Services

What you did in this lab
� Defined a Java project

� Used multiple perspectives and views to work with the Java project

� Created packages, created and imported files

� Fixed code errors

� Used the search facility

� Used code refactoring (rename, method extract)

� Set the build path and run applications

� Used the debugger and a scrapbook
 Exercise 1. Java development 307

308 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 2. Relational Schema Center

What this exercise is about
In this lab we set up a project in WebSphere Studio Application Developer and
work with database schemas, DDL, and SQL statements.

User requirement
Generate a list of all the parts in the database.

What you should be able to do
At the end of this lab you should be able to:

� Define databases, tables, columns

� Connect to a database and import existing schemas

� Create SQL statements

Introduction
We connect to the ITSOWSAD database and work with tables and SQL
statements.

2

© Copyright IBM Corp. 2002 309

Exercise instructions
1. Start WebSphere Studio Application Developer if not already started.

Define a project for relational database
2. Create a new project (File -> New -> Project), select the Simple type, click

Next. Enter ItsoWsDealerDatabase as project name and click Finish.

3. The Resource perspective is open. Close it, and open the Data perspective
(Perspective -> Open -> Other -> Data). Notice the three views in the left
pane: DB Explorer, Data View, Navigator.

Create a database connection and import tables
4. In the DB Explorer, select New Connection from the context menu (put cursor

into the empty space). In the dialog enter:

– Connection name: ConITSOWSAD
– Database: ITSOWSAD
– User ID and password: empty
– Database Vendor Type: DB2 UDB V7.2
– JDBC driver: IBM DB2 APP DRIVER
– Host and port: empty
– Class location: check that d:\SQLLIB\java\db2java.zip is selected

5. Click on Filters. In the dialog enter MM% as new filter and click Add Filter.
Select the filter and change the predicate from NOT LIKE to LIKE. (Click on
NOT LIKE until you get a pull-down.) Select the enabled check box (it should
be already selected). This retrieves the MM tables only. Leave the check box
Exclude system schemas selected. Click OK to close the filters. Click Finish.

6. The database, schema, and two tables appear in the DB Explorer.
Double-click on a table and it expands into columns, but no editor opens. The
Explorer view cannot be used for editing.

7. Select the ITSOWSAD database and Import to Folder (context). In the import
to folder dialog select the ItsoWsDealerDatabase project. Click OK and then
Finish.

8. Switch to the Data view and you find the database, schema, and the two
MM% table definitions added. Double-click on a table to open the table editor.
Go through the panels (bottom), then close the editor.

9. Switch to the Navigator view and study the underlying XMI files that contain
the database, schema, and table definitions. You can double-click a file and
the same editor as in the Data view appears.
310 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create a database and a table
10.In the Data view select the ItsoWsDealerDatabase project. Create a new

database (File -> New -> Other -> Database or New -> New Database from
context). Enter ITSOTEST as database name and DB2 7.1 as database
vendor type. Click Finish.

Note: In such a manual database you cannot execute SQL statements
because no connection definition exists.

11.Select the ITSOTEST database and New -> New Schema (context). Enter
TEST as schema name, click Finish. These steps only illustrate that DB,
schemas and tables can be created - we do not use ITSOTEST further.

12.We will do all work in the ITSOWSAD database that was created through the
connection. Expand the ITSOWSAD database and ITSO schema. Select the
schema and New -> New Table (context). Enter AAPARTS as table name,
click Next.

13.Click Add another to define the columns. After entering the data for each
column, click Add another again.

– Name: PARTNUMBER, type: CHARACTER, length: 10, not null (nullable
not checked), not bit (for bit data not checked)

– Name: NAME, type: CHARACTER, length: 30, nullable, not bit
– Name: DESCRIPTION, type: VARCHAR, length: 100, nullable, not bit
– Name: WEIGHT, type: DOUBLE, nullable
– Name: IMAGE_URL, type: VARCHAR, length: 100, not null, not bit

14.Click Next. Enter PARTKEY as primary key name, select the PARTNUMBER
column and click >>. Click Next (nothing to enter for foreign keys), click
Finish.

15.The ITSO.AAPARTS table appears under the schema/tables. Double-click on
the table and a table editor appears, where you could make changes using
the different panels. Close the editor.

Generate, import, and run DDL
16.Select the ITSO.AAPARTS table and Generate DDL (context). The filename

AAPARTS.sql is prefilled. Leave the default options (fully qualified names).
Click Finish.

17.The file AAPARTS.sql is added to the project. Double-click to bring up an
editor and look at the DDL. Close the editor.

18.Import a DDL file. Select File -> Import -> File system, click Next. Click
Browse and navigate to the c:\ws\labscode\exdata\ddlimport directory.
Select the directory and the AAINVENTORY.sql file in the directory. Set the
 Exercise 2. Relational Schema Center 311

target folder by Browse and locate the ItsoWsDealerDatabase project. Do not
select Create complete folder structure. Click Finish.

19.Select the AAINVENTORY.sql file and Execute (context). In the Execute
dialog click Browse for default schema and select the ITSWSAD database
and ITSO schema. Click OK and Finish.

20.The ITSO.AAINVENTORY table is added to the schema. Double-click on the
table to open an editor. Go through the pages; the table includes foreign key
to the AAPARTS table. Close the editor.

21.To actually run the DDL into DB2, we would have to use a DB2 command
window or the DB2 Control Center. However, the tables do already exist in
DB2.

22.You can also generate a DDL script for the database (or schema). It will
include all the components (tables).

SQL Query Builder (optional)
23.In the Data view, select the Statements folder (under the ITSOWSAD

database) and New -> Select Statement. Enter PartListing as name and
click OK. The editor opens with SELECT *.

Note: If the Statements folder is not visible, close the Data Perspective and
reopen it; this may help. Otherwise, select New -> Data -> SQL Statement,
click Next, and a wizard appears. Select Create an SQL resource and invoke
the SQL Builder, Use existing database model (Browse to
ItsoWsDealerDatabase -> ITSOWSAD), enter PartListing as statement
name, and the file is created and opened in the editor.

24.In the Data view, expand the database, schema (ITSO) and tables. Drag the
MMPARTS and MMINVENTORY tables into the middle (or top) pane of the
editor. The tables are shown graphically in the middle pane and are listed in
the top pane.

25.Select desired columns in the middle pane, for example, partnumber and
name in MMPARTS, and quantity and cost in MMINVENTORY.

26.Drag the partnumber column from MMPARTS to the same column in
MMINVENTORY to create the join.

27.In the bottom pane for Columns, select the sort type (Ascending) for the
partnumber column.

28.In the bottom pane for Conditions, select the quantity column, operator <, and
for the value type :quantity (host variable). Click in another field to complete
the line.
312 Self-Study Guide: WebSphere Studio Application Developer and Web Services

29.Run the SQL statement (SQL run icon). In the execute dialog, click Execute,
and specify a value for :quantity, for example 11. Click Finish and the result
rows appear. Close the dialog.

30.Save the SQL statement and close the editor. When you are prompted for the
host variable value, click Cancel to proceed - we want to leave the host
variable in the statement. The SQL statement is saved as file
ITSOWSAD_PartListing.sqx.

What you did in this lab
� Connected to a database to view tables

� Imported database, schema, and tables into local storage

� Manually created database, schema, and table objects

� Generated DDL, imported DDL, and executed DDL

� Built and ran an SQL statement
 Exercise 2. Relational Schema Center 313

314 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 3. XML development

What this exercise is about
In this lab we set up a Java project in WebSphere Studio Application Developer
and work with XML files.

User requirement
Use XML for distribution of the parts inventory.

What you should be able to do
At the end of this lab you should be able to:

� Work with DTDs and XML schemas and convert one format into the other

� Work with XML files that match a DTD or an SXML schema

� Create an XSL mapping between DTDs and transform an XML file

� Generate XML output from an SQL query

Introduction
We use XML to represent parts and inventory.

3

© Copyright IBM Corp. 2002 315

Exercise instructions
1. Start WebSphere Studio Application Developer.

Define a Java project and import files
2. Define a new Java project named ItsoWsDealerXml. Click Next. Select Use

source folders contained in the project and click Create New Folder and
create a source folder. For the Build output folder enter
/ItsoWsDealerXML/classes, and click Finish.

3. Open the XML Perspective (Perspective -> Open -> ...)

4. Import a DTD and an XML schema. Select File -> Import -> File system, click
Next, and Browse to the c:\ws\labscode\exxml\schemas directory. Click
OK. Select the schema’s directory to show the list of files. Import Part.dtd and
PartDef.xsd. Set the folder to the ItsoWsDealerXml project. Click Finish.

5. The files appear in the Navigator view.

Edit DTD and XML schema
6. Edit the Part.dtd file. Notice the Outline view and the editor. In the editor,

switch between Design and Source views. You have to use the Outline to
move to different parts in the design or in the source.

7. In the Outline, select Part.dtd and Add Element from the context. Enter
Location as name (overtype NewElement in the Design view). Select the
EMPTY subitem under Location (in the Outline) and change it to #PCDATA
(pull-down) in the editor (Design view).

8. Expand the Inventory. Select the model group (,) and Add Element to Content
Model (context). Select Location for the name (pull-down) and select the
Optional radio button. Save the changed DTD and close the editor.

9. Generate an XML schema from the DTD. Select the DTD and Generate ->
XML Schema from the context menu. The resulting schema file is named
Part.xsd. Click Finish.

10.Edit the Part.xsd file. Check out the Outline, Design, and Source views.
Select and expand the elements in the Outline.

11.Edit the PartDef.xsd file. This is basically the same schema as Part.xsd, but
improved. For example, the Cost is defined as decimal (not string), the
Weight is defined using a weighttype with a constraint (maximum 100), and
the quantity is defined using a quantnum type (range 1-20). Default values are
also defined.
316 Self-Study Guide: WebSphere Studio Application Developer and Web Services

12.Select the PartDef.xsd file in the Navigator and Generate -> DTD (context).
Edit the resulting PartDef.DTD file and notice in the Source view that the
special datatype definitions could not be converted to a DTD.

13.Close the editors.

Work with XML files
14.Select the Part.dtd and Generate -> XML File (context). Name the output file

Part.xml (default) and click Next. Select the root element (Part) and Create
required and optional content. Click Finish.

15.The Part.xml file appears in the outline and editor. Enter some data for the
elements, for example, partnumber H3, name Headlight, weight 5.5,
inventory item H301, quantity 4, cost 34.56, shelf S2. Save the file; there
should be no errors.

16.Switch to the Source view. Delete the <Quantity>4</Quantity> line. Save the
file. You get an error in the Tasks list, because quantity is required by the
DTD.

17.Select the Inventory element in the editor (Design view) and Add Child ->
Quantity (context). Set the value to 4 and save; the error disappears. You can
also use the Validate icon (page with check mark) in the toolbar.

18.Select the Part and Add -> Child -> Inventory to add another inventory item.
Notice that only required elements (quantity, cost) are added. Set some
values for item (H302), quantity (5), and cost (67.89), and save the file. Close
the editor.

19.Import an XML file. Select File -> Import -> File system, click Next, and
Browse to the c:\ws\labscode\exxml\xml directory. Click OK. Select the xml
directory to show the list of files. Import PartDef.xml. Set the folder to the
ItsoWsDealerXml project. Click Finish.

20.Edit the PartDef.xml file. Notice in the Source and Design view that it refers
to the XML schema (PartDef.xsd), not the DTD.

21.Validate the file using the toolbar icon. You get an error message box and 3
errors in the Tasks list. The PartDef.xsd file defines data types and valid
values. Fix the errors in the design or source: weight 11.5, quantity 6, cost
40.00. Validate again and the errors disappear.

22.Use File -> Save PartDef.xml As to save the corrected file as
PartDefFixed.xml and close the editor.
 Exercise 3. XML development 317

Generate an HTLM form
23.Select the Part.dtd file and Generate -> HTML Form (context). In the dialog

select all fields (expand first), and click Next. For the servlet name, change
testServlet to PartXmlServlet. Click Finish.

Edit the resulting Part.html file. You can see the form that is generated. Note
that the servlet is not generated for you—it is only the name used in the HTML
form action. We work with HTML and Web development in later exercises.
Close the editor.

XML to XML mapping
24.Import the file Partmap.dtd from the c:\ws\labscode\exxml\mapping

directory into the project. This DTD is similar to the Part.dtd file.

25.Select File -> New -> XML to XML Mapping. Set the folder to
ItsoWsDealerXml, the filename to Partmap.xmx and click Next.

26.In the Source dialog, select the Part.dtd (under ItsoWsDealerXml) and click >
to copy the name to the right. Click Next. In the Target dialog, select
Partmap.dtd (under ItsoWsDealerXml), click Next. In the Root dialog, Part
should be preselected. Click Finish.

27.The editor opens with the Partmap.xmx file. Expand the elements on both
sides to perform the mapping.

28.Drag elements from left to right: Partnumber to ID, Name to Name, ...,
Inventory to Inventory, ... Cost to Cost. The mapping appears in the bottom
pane. A shortcut is to select the Part element in the bottom pane and Match
by Name from the context. (Partnumber to ID must be done manually.)

29.Select Shelf and Location (ctrl-key) and drag to Where. This creates a
composite mapping.

30.Select Where in the bottom pane and Define XSL Function (context). In the
dialog, leave String selected, and click Next. As function, leave concat. Click
Add and enter ‘ in ‘ (including single quotes and spaces) and click OK. Select
the entry and use Up or Down to place the constant between shelf and
location. Click Finish and a function icon is added to the mapping line for
Where. Save the code.

31.Click the Generate XSLT script for mapping toolbar icon (last on right). As file
name leave the default, Partmap.xsl. Select the ItsoWsDealerXml project
and click Finish. The generated Partmap.xsl file opens in the editor. Close the
editor for both files.
318 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Translating an XML file
32.In the Navigator view, select the files Part.xml and Partmap.xsl (ctrl-key) and

Apply XSL -> As XML (context).

33.The XSL Trace Editor opens and you can see the result XML. Notice in the
Result XML pane that the second inventory created the <where> tag with just
the word ‘in’ because no shelf and location were present.

34.Use the arrow buttons to step through the code and watch the input, XSL, and
output lines being highlighted.

35.Save the result XML file (File -> Save XSL Trace Editor As) and enter
Partmapresult.xml as the file name.

SQL to XML mapping (optional)
36.In the Navigator view create a new folder named sqlxml in the

ItsoWsDealerXml project.

37.Switch to the Data perspective and the ItsoWsDealerDatabase project. In
the DB Explorer view look at the ConITSOWSAD connection. If no database
content is displayed under the connection, select Reconnect from the context
menu. (A connection is lost if you shut down WSAD.)

38.In the Data view, select the PartListing SQL statement you built in the RBD
lab, and select Generate new XML from the context menu.

39.Select Primary keys as attributes, XML Schema, Generate query template file
(PartListing.xst), and the sqlxml folder in the ItsoWsDealerXml project as
output folder. Click Finish.

40.If you used a host variable, you are prompted for input. Enter 10, for example.

41.Switch to the Navigator view and the sqlxml folder. Open the various files:

– PartListing.xml contains the XML output
– PartListing.html shows the output as an HTML table
– PartListing.xsd is the underlying XML schema
– PartListing.xsl is the XSL transformation file
– PartListing.xst is the template with the SQL statement and the options

42.Close all files.
 Exercise 3. XML development 319

What you did in this lab
� Imported DTD, XML schema, and XML files

� Worked with DTDs, XML schemas, and XML files

� Generated and validated XML files

� Transformed an XML file from one DTD to another

� Generated XML and HTML output from an SQL query
320 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 4. Web development

What this exercise is about
In this lab we set up a Web project in WebSphere Studio Application Developer
and implement simple Web applications.

User requirement
Generate a list of selected parts in the database. Query the database for parts
with low inventory.

What you should be able to do
At the end of this lab you should be able to:

� Create and test Web applications

� Work with the Page Designer

� Configure and run the WebSphere test environment

� Use the Database Wizard to generate a Web application

Introduction
We use WSAD to implement Web applications using servlets, HTML, and JSPs.

4

© Copyright IBM Corp. 2002 321

Exercise instructions
1. Start WebSphere Studio Application Developer.

Define a Web project
2. Define a new project (New -> Web -> Web Project) with the name

ItsoWsDealerWeb. Use the default location. For the EAR project name, enter
ItsoWsDealerEAR. For the context root, leave ItsoWsDealerWeb. Click Next
twice. Leave the default source location (ItsoWsDealerWeb/source) and the
default output folder (ItsoWsDealerWeb/webApplication/WEB-INF/classes).
Click Finish. This creates both the Web and the EAR project.

3. Open the Web Perspective and expand the ItsoWsDealerWeb project. You
should find the source folder (for Java servlets), the webApplication folder
with the WEB-INF folder, and the web.xml deployment descriptor file.

Import a Web application
4. Select the webApplication folder and create a subfolder named images.

Make sure to have it under webApplication!

5. Select the images folder and File -> Import -> File system, Browse to
c:\ws\labscode\exweb\images (click OK), and select all the GIF files in that
directory. Click Finish to import all the images.

6. Select the webApplication folder and File -> Import -> File system, Browse to
c:\ws\labscode\exweb\web (click OK), and select the PartList.html and
PartList.jsp file in that directory. Click Finish to import the files.

Note: The PartList.hmtl and .jsp files must be directly in the webApplication
folder, not in a web subfolder (do not import the web folder, only the files
contained in it).

7. Notice the warning and error in the Tasks list; we will fix these later.
Double-click on each file to open the Page Designer. Both should display the
ITSO image on the top. Close the editors.

8. Select the source folder and New -> Other -> Java -> Java Package. Click
Next and enter itso.wsad.dealer.web as package name and click Finish. The
folder structure appears under the source folder.

9. Select the itso\wsad\dealer\web folder and click the Create a Java Servlet
Class icon (or New -> Web -> Servlet). The package should be preselected.
Enter PartList as the servlet name, HttpServlet as superclass, select init,
doPost, doGet methods. Click Next.
322 Self-Study Guide: WebSphere Studio Application Developer and Web Services

10.Select Add to web.xml (preselected). We use the default display name and
URL (PartList). The servlet will be in the deployment web.xml descriptor. Click
Finish.

11.The Java editor opens for PartList.java. Study the skeleton code.

Complete the code
12.Open the file c:\ws\labscode\exweb\servlet\PartList.txt in Notepad. We

use this code to complete the servlet:

– Replace import javax.servlet.http.HttpServlet with the list of import
statement from PartList.txt

– Complete the empty body of doPost with: doGet(request, response);

– Complete the empty body of doGet with the code from PartList.txt

– Add the new method getResults after the doGet method

Make sure all the brackets match.

13.Save the PartList.java file, there should be no errors. Study the code. The
doGet method gets the parameter from the HTML file (partialName), prepares
a result object (Vector partListResult), calls getResults, stores the Vector in
the request block, and calls the JSP (PartList.jsp).

The getResults method connects to the database, executes the SELECT
statement, and stores the values of the columns of one row in an array that is
added to the result Vector. The JSP can retrieve all the values from the
Vector.

14.Open the HTML file (PartList.html). Select the form (dotted line) and
Attributes (context). Enter PartList as the Action, replacing the XXXXX. The
HTML file now invokes the PartList servlet. Save and close the editor.

15.Open the JSP file (PartList.jsp). Select the Source view and study the code.
The results are retrieved from the partListResult bean and placed into a table.
However, the declaration of the bean is missing:

– Delete the text “-- the bean from the servlet goes here --”.

– Switch to the Design view. The cursor should be in front of the first JSP tag
icon, after the title. Select JSP -> Insert Bean (there is also a small bean
icon you can use).

– Enter partListResult as ID, java.util.Vector as Type, and request as
Scope (it has to match what the servlet stores in the request block). Click
OK and switch to the Source view to see the <jsp:useBean> tag.

Save the JSP. The error in the Tasks list disappears.

16.Close all the editors.
 Exercise 4. Web development 323

Preparing a server for testing
17.Open the Server Perspective (Perspective -> Open -> Other -> Server).

18.Create a new Server project (New -> Server -> Server Project), click Next,
enter ItsoWsServer as name, click Finish.

19.Select the ItsoWsServer project and New -> Server Instance and
Configuration. Enter ItsoWsDealer as server name. For instance type,
expand WebSphere Servers and select WebSphere v4.0 Test Environment.
Click Next, leave port 8080, click Finish.

20.Expand the ItsoWsServer project. The configuration and instance also
appears in the Server Configuration view (bottom left) and in the Servers view
(bottom right).

21.Edit the configuration properties: either double-click the server-cfg.xml file in
the Navigator view, or double-click the ItsoWsDealer configuration in the
Server Configuration view. Go through the pages.

22.The only change we have to perform is in the Datasource view. Select the
Db2JdbcDriver and click Edit. Check that the class path points to the
db2java.zip file in the DB2 installation directory, for example
D:\SQLLIB\java\db2java.zip (or wherever DB2 is installed). Click OK, save
and close the configuration.

23.Select the ItsoWsDealer configuration and Add Project -> ItsoWsDealerEAR.
We associate our project to this server.

24.Select Window -> Preferences and select Server. The first check box
determines if the server runs in normal or debug mode when you select Run
on Server. For now we leave debug mode; we can always start the server
manually in normal or debug mode.

Test the Web application
25.Start the server in the Servers view (use the start icon, or the context menu).

Watch the Console view until the server is open for e-business. As part of the
messages you should see that the Web module is loaded, because we
associated the project with this server.

26.Expand the ItsoWsDealerWeb project, select the PartList.html file, and Run
on Server (context). A Web browser view opens with the HTML file. Enter
IRRO as partial name, click Retrieve. The servlet is invoked (see Console),
then wait for the JSP to compile and display the results.

27.Go back in the browser and enter other values (L, X, T).
324 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Enhancement (optional)
28.Display the image belonging to a result row. Edit the PartList.jsp file. Change

the display of the last column (row[4]) to:

<TD> <img src="images/<%= row[4] %>"> </TD>

Save the JSP and rerun the sample in the browser view.

29.Close the browser.

Using the Database wizard
30.In the Web Perspective, select the source folder, and create a new Java

package named itso.wsad.dealer.dbapp (New -> Other -> Java ...).

31.Click the Create Web pages that access database fields icon (or New -> Web
-> Database Web Pages) to start the Database wizard.

32.For the destination folder, select ItsoWsDealerWeb/webApplication (click
Browse). For the package name, select itso.wsad.dealer.dbapp. For Web
Pages, select both input and details form. For Model, select View Bean to
generate servlet and JSP. Select store results in request. Click Next.

33.Skip the panel Choose an existing select statement (click Next). On Specify
SQL statement information, select Be guided through creating an SQL
statement. Select Use existing database model and click Browse to locate the
ItsoWsDealerDatabase project (expand) and select the ITSOWSAD database
and click OK. Click Next.

34.Construct the SQL statement:

– Select the tables MMINVENTORY and MMPARTS, click >.

– Columns: MMPARTS: partnumber, name, description, image_url
INVENTORY: itemnumber, quantity, cost, shelf, location

– JOIN: join the tables on part number (drag the partnumber field)

– Condition: column quantity, operator <, value :quantity (use drop-downs
for column and operator, type :quantity into the field)

– ORDER: mmparts.partnumber, ASC

35.Click Next. The SQL statement is complete. You can Execute it with 20 as
value. Click Next.

36.Connection: select Use data source connection and enter jdbc/ITSOWSAD
as JNDI name. Click Next.

37.Input form: set label to Quantity, set size and max length to 4. Click Next.

38.Result table: Select only part number, name, quantity, cost, deselect others.
Change the labels for the four columns to Partnumber, Name, Quantity, Cost
(Use the Enter key, or click on another property). Click Next.
 Exercise 4. Web development 325

39.Details: select all columns. Optionally change the labels. Click Next.

40.Specify Front Controller and View Bean Choices: take the defaults to have a
controller servlet and view beans generated. Click Next.

41.Select Inventory as prefix. Click Finish. The generated servlets (three files)
appear in the source package folder and the HTML (one file) and JSPs (two
files) in the webApplication folder.

Configure data source and test
42.In the Server Perspective, edit the ItsoWsDealer configuration. In the

Datasource view, click Add for data sources. Enter ITSOWSAD as name,
jdbc/ITSOWSAD as JNDI name, and ITSOWSAD as database name. Click
OK. Save and close the configuration.

43.Start or restart the ItsoWsDealer server. Wait until it is ready.

44.Select the InventoryInputForm.html file and Run on Server (context). The
browser view displays the input form. Enter a value (20) and click Submit. It
takes a while but the result rows should display. Select a row and click
Details.

45.Optionally, tailor the HTML and JSP layouts using the Page Designer. For
example, display the GIF image instead of the image_url text. (Use a
technique similar to step 28.)

46.Stop the ItsoWsDealer server.

Export Web application as WAR file
47.In the Web Perspective, select the ItsoWsDealerWeb project and Export WAR

(context). Specify an output directory and file (d:\itsowsdealerweb.war) and
click Finish.

If you get an error message, rebuild the project (Web perspective, Rebuild
Project from context) and validate it (Validate Project from context).

Using the Database wizard and generate JSPs (optional)
48.Redo the database example, but choose Tag library for the model. This

generates a solution using JSPs and no servlets.

Note: Use = as comparison operator. Smaller < and greater > result in JSP
parser/compiler errors, although the code does work.
326 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Debugging JSPs (optional)
49.Set some breakpoints in the PartList.jsp file (open the JSP source view,

select a line with a JSP tag, and in the line prefix select Add breakpoint from
context).

50.Start the ItsoWsDealer server in debug mode.

51.Select the PartList.html file and Run on Server.

52.Enter a partial partname (RR) and step through the JSP code in the Debug
view. Study variable values in the Variables view.

53.Stop the server when done. Remove the breakpoints in the JSP and close it.

What you did in this lab
� Defined a Web project with an EAR project

� Imported an existing Web application and used the Page Designer

� Configured a WebSphere test server and ran the Web application

� Used the Database Wizard to create HTML, JSPs, and servlets

� Configured a DataSource and ran the generated application

� Exported a Web application to a WAR file
 Exercise 4. Web development 327

328 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 5. EJB development

What this exercise is about
In this lab we set up a Java project in WebSphere Studio Application Developer
and implement an entity and a session enterprise bean.

User requirement
Update stock in the inventory.

What you should be able to do
At the end of this lab you should be able to:

� Define entity beans and map to a database table

� Define session beans with business methods

� Configure a server to test enterprise beans

� Use the EJB test client to verify the functionality

Introduction
We implement an entity bean to interact with the inventory table. Then we
implement a session bean with business methods to update the stock through
the entity bean.

5

© Copyright IBM Corp. 2002 329

Exercise instructions
1. Start WebSphere Studio Application Developer.

Define an EJB project
2. Define a new project (New -> EJB -> EJB Project) with the name

ItsoWsDealerEJB. Use the default location. For the EAR project name,
select ItsoWsDealerEAR. Click Next twice. Preselected is Use source folders
contained in the project (ItsoWsDealerEJB/ejbModule). Leave the default
output folder (ItsoWsDealerEJB/bin). Click Finish. This creates the EJB
project and attaches it to the existing EAR project.

3. The J2EE perspective is opened automatically. You can expand the
enterprise applications, Web modules, EJB modules, server configurations
and instances, and databases.

Create an entity bean
4. Create a new Java package named itso.wsad.dealer.ejb under the project

folder ItsoWsDealerEJB/ejbModule (from the Navigator or J2EE view).

5. In the J2EE view, click the Create an enterprise bean icon in the toolbar (or
New -> EJB -> Enterprise Java Bean). Select CMP as type, enter
ItsoWsDealerEJB as project and Inventory as bean name,ejbModule as
source folder, and itso.wsad.dealer.ejb as package. Click Next. The bean
class becomes itso.wsad.dealer.ejb.InventoryBean.

6. Leave the defaults for the interface names and key class. For persistence
fields, click Add. Enter the following fields:

– itemNumber, java.lang.Long, key field, click Add
(do not use “long”, it must be java.lang.Long)

– partNumber, String, access with getter/setter, promote to remote
interface, make getter read-only, click Add

– quantity, int, getter/setter, promote, read-only, click Add
– cost, java.math.BigDecimal, getter/setter, promote, read-only, click Add
– shelf, String, getter/setter, promote,read-only, click Add
– location, String, getter/setter, promote, read-only, click Add
– Click Close.

7. Select Use the single key attribute type for the key class. Click Next.

8. For import statements, click Add Package, and enter/select javax.ejb, click
OK. Select Add Type and java.math.BigDecimal, click OK.

Note: Do not select com.ibm.math.BigDecimal.
330 Self-Study Guide: WebSphere Studio Application Developer and Web Services

9. Click Finish to create the Java code for the bean, key, home and remote
interface. The inventory bean with CMP fields and classes appears in the
J2EE view under the EJB Modules. The Java source code for the classes is
there as well.

Editing the bean
10.Double-click on Inventory (not the InventoryBean.java); no editor opens. You

can only edit the whole module. Double-click on the ItsoWsDealerEJB JAR
with beans. This opens the ejb-jar.xml file (the EJB JAR). Go through the
different pages, then in the Bean page, select the Inventory bean. You could
make updates here. Close the editor.

Complete the bean with create and business methods
11.Several columns are mandatory in the database and we must make sure that

the values are not null when an instance is created. Open an editor
(double-click) for the InventoryBean (Java code). The code changes are in
the file c:\ws\labscode\exejb\bean\InventoryBean.txt for copy/paste.

12.Find the ejbCreate method. Change the code to:

public java.lang.Long ejbCreate(java.lang.Long itemNumber,
String partNumber, int quantity, BigDecimal cost)
throws javax.ejb.CreateException {

_initLinks();
this.itemNumber = itemNumber;
this.partNumber = partNumber;
this.quantity = quantity;
this.cost = cost;
this.shelf = null;
this.location = null;
return null;

}

13.Find the ejbPostCreate method. The parameters must match ejbCreate:

public void ejbPostCreate(java.lang.Long itemNumber, String partNumber,
int quantity, BigDecimal cost) throws javax.ejb.CreateException {

}

14.Add business methods to remove and add stock at the edn of the class:

public int removeStock(int amount) throws InsufficientStockException {
if (quantity < amount) throw

new InsufficientStockException("Insufficient stock");
quantity -= amount;
return quantity;

}
public int addStock(int amount) {
 Exercise 5. EJB development 331

quantity += amount;
return quantity;

}

15.Save the code. You get errors because the InsufficientStockException class is
missing and because the home does not match the ejbCreate method.

16.Import the InsufficientStockException class. Select File -> Import -> File
system, click Browse to locate c:\ws\labscode\exejb\bean, select the
InsufficientStockException.java file. Import into the folder
ItsoWsDealerEJB\ejbModule\itso\wsad\dealer\ejb. Some errors disappear.

Note that you cannot see the InsufficientStockException class in the J2EE
view; you have to select the Navigator view to see non-EJB classes.

Home and remote interface
17.With the InventoryBean in the editor, select the two methods removeStock

and addStock in the Outline view, and Enterprise Bean -> Promote to Remote
Interface (context). This adds the methods to the remote interface; open the
Inventory interface and check that the methods were added. Also a small R
icon is added to the method in the outline view.

18.Select the ejbCreate method in the Outline view and Enterprise Bean ->
Promote to Home Interface (context), where a matching create method is
added. Open the InventoryHome interface. Delete the old create method
(with one parameter) and add the import statement:

import java.math.BigDecimal;

19.Save the code. If errors still show in the Tasks view, make a dummy change to
the InventoryBean class and save again. The errors disappear. Close the
editors.

Create the mapping to the database table
20.Switch to the Data Perspective. In the DBExplorer view, reconnect the

ConITSOWSAD connection (context menu). (This connection was created in
step 4 in Exercise 2, “Relational Schema Center”.)

21.Select the ITSOWSAD database and Import to Folder (context). Select the
ItsoWsDealerEJB project, click OK. The ejbModule\META-INF\Schema
folder is automatically selected. Click Finish. In the Confirm target dialog, click
Yes, to import the schema.

22.Switch to the J2EE Perspective, Navigator view, and you can see the
imported schema in the ejbModule\META-INF folder.
332 Self-Study Guide: WebSphere Studio Application Developer and Web Services

23.Select the ItsoWsDealerEJB project and click the Create an EJB to RDB
mapping icon in the toolbar (or Generate -> EJB to RDB Mapping from the
context).

24.In the create mapping dialog, select Meet In The Middle. Select Open
mapping editor after completion. Click Next. Select Match by Name, click
Finish.

25.The mapping editor opens with the Map.mapxmi file. Expand the Inventory
EJB (left) and MMINVENTORY table (right). Nothing is matched because the
bean name (Inventory) does not match the table name (MMINVENTORY).

26.Map the Inventory bean to the MMINVENTORY table by drag/drop:

– Drag the Inventory bean to the MMINVENTORY table
– Drag bean attributes to matching columns (or columns to attributes)

27.Save the file and close the editor. The mapping file is only visible in the
Navigator view in the META-INF directory.

Generate deployed code
28.In the J2EE view, select the ItsoWsDealerEJB module and Generate ->

Deploy and RMIC Code. Select the Inventory bean and click Finish. The
generated classes are visible in the Navigator view.

Bind the container to a DataSource
29.In the J2EE view, select the ItsoWsDealerEJB module and Open With -> EJB

Extension Editor (context). Go through the pages, and select the Binding tab.

30.Select the ItsoWsDealerEJB and set the JNDI name for the DataSource to
jdbc/ITSOWSAD, and user ID and password to db2admin (or the userID
used to install DB2). We could also set the JNDI name for the Inventory EJB
itself; for an empty name, a default name of InventoryHome will be used.

Note: You must have completed step 42 in Chapter 4, “Web development” to
define the jdbc/ITSOWSAD data source for the ItsoWsDealer server.

31.Save and close the editor.

Testing the inventory bean
32.Switch to the ServerPperspective and start the ItsoWsDealer server. (The

EAR file is already attached to that server.) Wait for the server to be ready.

33.In the Navigator, select the ItsoWsDealerEJB project and Run on Server
(context). This opens the universal test client (UTC) in a browser view.
 Exercise 5. EJB development 333

34.Select the JNDI Explorer. You can enter a JNDI name, or select from the list.
Click on the InventoryHome.

35.Expand EJB References -> Inventory -> InventoryHome. Click on the
findByPrimaryKey method. Enter 21000003 as key value, click Invoke. The
EJB object is added to the bottom pane. Click Work with Object and the
Inventory object is added to the EJB References (left).

36.Invoke some get methods of the Inventory object. The result is shown in the
bottom pane. After executing the getCost method, click on Work with Object
and the BigDecimal value is added to Object References (left).

37.Invoke the addStock and removeStock methods. Try to remove more than the
quantity and you get the InsufficientStockException.

38.Invoke the create method on the home. First set the BigDecimal value (last).
Click on the constructor icon (right), select the BigDecimal(String) constructor,
enter 22.22 as value, and Invoke and Return. Then set the other parameters
as 33000007, M100000002, and 7. Note that the partNumber (M100000002)
must exist in the database.

39.Once BigDecimal objects have been added to the references, you can also
select values from the pull-down instead of using a constructor.

40.Close the test client browser and stop the server.

Creating a session bean (optional)
41.In the J2EE view, create a new enterprise bean named StockUpdate, of type

Session. Click on Packages, select the itso.wsad.dealer.ejb package, then
overtype ejb with session to make it itso.wsad.dealer.session. Click Finish.

42.Edit the StockUpdateBean to complete the code with business methods.
Open the file c:\ws\labscode\exejb\bean\StockUpdateBean.txt and use it
to copy/paste:

– import statements
– a variable: private InventoryHome inventoryHome = null;
– in ejbCreate: inventoryHome = getHome();
– new methods: addStock, removeStock, moveStock, getHome

43.Save the class. Promote the addStock, removeStock, moveStock methods:
select the methods in the Outline view and Enterprise Bean -> Promote to
Remote Interface (context). Close the editor.

44.Edit the StockUpdate interface. Several errors:

– add: import javax.ejb.*;
– add: import itso.wsad.dealer.ejb.*;

Save and close the editor.
334 Self-Study Guide: WebSphere Studio Application Developer and Web Services

45.Generate the deployed code. In the J2EE view, select the EJB project and
Generate -> Deploy and RMIC Code. Select only the StockUpdate bean (we
did not change the Inventory bean).

46.In the J2EE perspective and view, select the ItsoWsDealerEJB module and
Open With -> EJB Editor (context). Go to the EJB Reference page. Select the
StockUpdate bean, click Add. The session bean uses the local reference
java:comp/env/ejb/Inventory in the getHome method to find the Inventory
bean. We have to specify this reference for later binding to a real JNDI name.
In the dialog enter:

– ejb/Inventory (for the name)
– Entity (for type)
– itso.wsad.dealer.ejb.InventoryHome (for home)
– itso.wsad.dealer.ejb.Inventory (for remote)
– Inventory (for link).

Save and close.

47.Select the ItsoWsDealerEJB module again and Open With -> EJB Extension
Editor (context). On the Bindings page, the JNDI name for the data source
should still be jdbc/ITSOWSAD. Expand the ItsoWsDealerEJB, select each
bean, and set the JNDI name to the names itso/wsad/dealer/Inventory and
itso/wsad/dealer/StockUpdate. (Do not set data source JNDI names for the
beans.)

Set the reference under StockUpdate to itso/wsad/dealer/Inventory so that
the session bean can find the inventory entity bean in the getHome method.
Save and close the extension editor.

Test the session bean (optional)
48.Switch to the Server Perspective. Restart the ItsoWsDealer server.

49.Select the ItsoWsDealerEJB project and Run on Server (context).

50.Use the JNDI Explorer to locate the itso/wsad/dealer/StockUpdate home.
Invoke the create method, then work with the object. Invoke the business
methods for item numbers 21000003, 21000004, 33000007. Check the
results using the InventoryHome.

Add a servlet and HTML file
This section requires that the ItsoWsDealerWeb project was created and the
images were imported (see steps 2 through 5 in Exercise 4, “Web
development”).

51.Switch to the Web Perspective, and click the Create a Java Servlet Class icon
in the toolbar:
 Exercise 5. EJB development 335

– For the folder Browse to /ItsoWsDealerWeb/source
– For package enter: itso.wsad.dealer.ejbweb
– For servlet name enter: InventoryControl
– For superclass select HttpServlet
– For methods: init, doGet, doPost
– Click Next.

52.Select Add to web.xml (leave the default names) and click Finish.

53.Edit the servlet InventoryControl.java.

54.Replace the code with the code from
c:\ws\labscode\exejb\servlet\InventoryControl.txt or
c:\ws\labscode\exejb\servlet\InventoryControlNoSession.txt and Save.

55.The references to the EJB package are not resolved. Open the properties of
the ItsoWsDealerWeb project (select Properties from the context), and select
the Java Build Path. On the projects page mark the ItsoWsDealerEJB project
and click OK. The errors should be fixed.

56.Select the webApplication folder and File -> Import -> File system. Click
Browse to locate c:\ws\labscode\exejb\servlet and select the
InventoryControl.html file. Click Finish.

57.Open the file and study the form and the possible actions, and then study the
InventoryControl servlet to understand the processing. Notice the init method
where the homes of the EJBs are acquired. Note that the homes are retrieved
by global JNDI names, but the code for local JNDI names is in comments.

To use local JNDI names you have to edit the web.xml file, go to the
References page, and add two references:

– ejb/Inventory (Entity, itso.wsad.dealer.ejb.InventoryHome,
itso.wsad.dealer.ejb.Inventory, itso/wsad/dealer/Inventory)

– ejb/StockUpdate (Session, itso.wsad.dealer.session.StockUpdateHome,
itso.wsad.dealer.session.StockUpdate, itso/wsad/dealer/StockUpdate)

The binding information between local and global JNDI names is stored in the
ibm-web-bnd.xmi file.

58.Close the editors.

59.ISelect the ItsoWsDealerWeb project and Edit Module Dependencies
(context menu). Select the ItsoWsDealerEJB.jar file and click Finish. This

Note: If you did not implement the session bean, use the file
c:\ws\labscode\exejb\servlet\InventoryControlNoSession.txt to
replace the servlet code.
336 Self-Study Guide: WebSphere Studio Application Developer and Web Services

makes sure that the Web application can access the EJBs in the server where
the application is deployed.

Run the servlet application
60.Select the InventoryControl.html file and Run on Server (context). The

ItsoWsDealer server should start (if it not already running). You can also start
the ItsoWsDealer server first and then run the HTML file.

61.Test the different actions.

62.Stop the server.

What you did in this lab
� Defined an EJB project as part of an EAR project

� Defined an entity bean and mapped it to an existing database

� Defined a session bean that uses the entity bean

� Defined business methods

� Tested the EJBs in the built-in server

� Imported and run a servlet application that uses the EJBs.
 Exercise 5. EJB development 337

338 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 6. Test and deploy using
WebSphere AEs

What this exercise is about
In this lab we test an application on a real WebSphere Application Server Single
Server (AEs).

User requirement
Run the application in a real WebSphere environment.

What you should be able to do
At the end of this lab you should be able to:

� Define a server in WSAD to publish to AEs

� Test a Web application and EJBs on AEs

� Setup and configure WebSphere Application Server AEs

� Deploy an application and install it in AEs

Introduction
We prepare AEs and WSAD for test and deployment.

6

© Copyright IBM Corp. 2002 339

Exercise instructions
1. Start WebSphere Studio Application Developer.

2. Make a copy of the WebSphere AEs server configuration file:
d:\WebSphere\AppServer\config\server-cfg.xml ==> server-cfgSAVE.xml

3. Check in Services that the IBM Agent Controller is started.

Prepare Web application dependency
4. In the Web Perspective, select the ItsoWsDealerWeb project and Edit

Module Dependencies (context menu). Check that the ItsoWsDealerEJB.jar
file is selected (if not, selected the file) and click Finish. This makes sure that
the Web application can access the EJBs in the server where the application
is deployed.

Configure a server for remote testing in WebSphere AEs
5. In the Server Perspective, click the Create server instance and configuration

in the toolbar (or New -> Server -> Server Instance and Configuration).

6. Enter ItsoWsAEs as server name, ItsoWsServer as project folder, select
WebSphere v4.0 Remote Server as instance type, click Next.

7. Enter 127.0.0.1 (or localhost) as host address, d:\WebSphere\AppServer
as WebSphere installation directory, and select Use default WebSphere
deployment directory. This sets the deployment directory as
d:\WebSphere\AppServer. Click Next.

8. Select Create a new file transfer instance, and Copy File Transfer
Mechanism, click Next.

9. Enter ItsoWsServer as project folder, your-host-name (or localhost) as
remote file transfer name, and d:\WebSphere\AppServer as remote target
directory. Click Next.

10.Change the port from 8080 to 9080 to match AEs. Click Finish.

11.You should find the new configuration and instance in the Server
Configuration View, and the your-host-name.rft file in the Navigator view.

12.Double-click the ItsoWsAEs instance to open the editor (you can make
changes here). Close the editor.

13.Double-click the ItsoWsAEs configuration to open the editor:

– On the General page, select Enable administration client (you can open
the Administrative Console while testing).

– On the EJB page, Enable the EJB test client should be preselected.
340 Self-Study Guide: WebSphere Studio Application Developer and Web Services

– On the Datasource page, edit the Db2JdbcDriver and set the class path to
D:/sqllib/java/db2java.zip. Click OK. Then click Add for a new data
source and enter ITSOWSAD (name), jdbc/ITSOWSAD (JNDI name)
ITSOWSAD (database name). Click OK.

– Save the changes and close the editor.

14.Select the ItsoWsAEs configuration, and Add Project -> ItsoWsDealerEAR
(context). This will publish the application when we start the server.

Test the applications in the remote AEs server
15.In the Servers view, select the ItsoWsAEs server, and Start (context or icon).

Watch the console; you should see the EJB and the Web module loaded
without errors, and the message:

Server Default Server open for e-business

Note that the IBM Agent Controller must be running on the machine to start a
server from WSAD.

16.Select the ItsoWsDealerWeb project and Properties, and in Server
Preference, change the default server from ItsoWsDealer to ItsoWsAEs. This
enables launching the Web browser from files.

17.Select the PartList.html file and Run on Server. The browser opens with
http://127.0.0.1:9080/ItsoWsDealerWeb/PartList.html and you can test the
application. Select the InventoryInputForm.html file and test it, as well.

18.Enter http://127.0.0.1:9080/UTC to start the EJB test client. Test the EJBs.
(You could also change the default server launcher for the ItsoWsDealerEJB
project and then Run on Server for the project.) Select the
InventoryControl.html file and test the servlet with EJB access.

19.Start the Administrator Console with http://127.0.0.1:9090/admin. Login with
your user ID, click Submit. You can browse the configuration.

20.Close the browser and stop the ItsoWsAEs server from the Servers view.

21.Change the default server launcher for the ItsoWsDealerWeb and
ItsoWsDealerEJB projects back to the ItsoWsDealer server (in the Properties
Server Preference menu).

Prepare WebSphere AEs for deployment of applications
22.When we started the ItsoWsAEs server from WSAD, it changed the original

AEs server configuration file d:\WebSphere\AppServer\config\server-cfg.xml,
and we have to restore the original. WSAD created a wasTools_bkup
subdirectory with the original configuration file.
 Exercise 6. Test and deploy using WebSphere AEs 341

Copy wasTools_bkup\server-cfg_bk_xxxxxx.xml to the config directory, delete
the server-cfg.xml file, and rename the server-cfg_bk_xxxxxx.xml as
server-cfg.xml.

You could also copy from the saved file server-cfgSAVE.xml.

23.Start WebSphere AEs, either:

– From a command window: startserver
– From Start -> Programs -> IBM WebSphere -> Application Server V4.0

AES -> Start Application Server

24.Wait for the message:

WSPL0057I: The server Default Server is open for e-business

25.Start the Administrative Console from Start -> Programs -> IBM WebSphere
-> Application Server V4.0 AES -> Administrator’s Console.

26.Login with your user ID, click Submit.

27.Expand Resources -> JDBC Drivers, select Db2JdbcDriver. Set the server
class path to d:/SQLLIB/java/db2java.zip (or where DB2 is installed) and
click OK.

28.Expand Db2JdbcDrivers, select Data Sources. Click New to define a new
data source. Enter ITSOWSAD as name, jdbc/ITSOWSAD as JNDI name,
ITSO Data Source as description, ITSOWSAD as database name, db2admin
as user ID and password (or the userID of DB2 installation). Click OK at the
bottom.

29.At the top of the panel you should see the message Configuration needs to be
saved. Select the message (or select Save in the menu bar). Click OK in the
save panel.

30.Expand Nodes -> yournode -> Enterprise Applications, and you should see
some samples that are preinstalled. Expand Application Servers -> Default
Server -> Web Container, select HTTP Transports, and you should see three
ports: 9080 is the default built-in HTTP Server, 9090 is the Administrative
Console (look at your browser address field: http://localhost:9090/admin), and
9443 is for SSL. (We defined the server in WSAD that uses port 9080 to run
directly with the HTTP server of AEs.)

31.Expand the EJB Container and you should see some installed sample EJBs.

Deploying an enterprise application to AEs
32.In WSAD, export the EAR file by selecting File -> Export -> EAR file, click

Next. Select the ItsoWsDealerEAR resource, and d:\itsowsdealer.ear as
target directory and file. Click Finish.

33.In the AEs Administrator Console, select Enterprise Applications. Click Install.
342 Self-Study Guide: WebSphere Studio Application Developer and Web Services

34.For the path, click Browse to locate the d:\itsowsdealer.ear file you exported.
Click Next.

35.For EJB JNDI names, the names we set in the extension editor are displayed:

itso/wsad/dealer/Inventory
itso/wsad/dealer/StockUpdate (if the session bean was created)

Click Next.

36.If you defined the session bean (Exercise 5, “EJB development” on
page 329): for EJB Reference mapping, the reference from the session bean
to the entity bean is filled properly.

If you defined the references from the servlet (step 57 in Exercise 5, “EJB
development” on page 329), then the global JNDI names are filled, as well.
Click Next.

37.Database is DB2UDBWIN_72, and the datasource JNDI name should be
jdbc/ITSOWSAD with db2admin (or your own user ID) as user ID. There is no
need to set JNDI names for individual EJBs; click Next.

38.Click Next again; the defaults are fine.

39.Remove the check mark from Re-deploy. WSAD has deployed everything
already. Click Next, review and click Finish.

40.If the IBM HTTP server is used instead of the built-in server, then the plug-in
must be regenerated and the HTTP Server stopped and started.

41.Save the configuration and exit the console.

42.Perform stopserver and startserver to activate the enterprise application.

43.Open a regular browser window and enter:

http://yourhostname:9080/ItsoWsDealerWeb/PartList.html
http://yourhostname:9080/ItsoWsDealerWeb/InventoryInputForm.html
http://yourhostname:9080/ItsoWsDealerWeb/InventoryControl.html

Installing the universal test client in AEs (optional)
44.Note that you cannot test the EJBs using the universal test client, because

the test client is not installed in WebSphere AEs.

45.You also have to set the module visibility for the Default Server so that the test
client can see other Web applications. Start the server (if not started). Use the
administrative console (expand Node to the Default Server). Change the
module visibility value from APPLICATION to COMPATIBILITY and save the
configuration. Exit the administrative console.

46.Stop the server (stopserver command).
 Exercise 6. Test and deploy using WebSphere AEs 343

47.To install the universal test client in WebSphere AEs, copy the IBMUTC.ear
directory:

from: WSAD\plugins\com.ibm.etools.websphere.tools\IBMUTC
to: d:\WebSphere\AppServer\installableApps

and run the command:

seappinstall -install d:\websphere\appserver\installableApps\IBMUTC.ear
-expandDir d:\websphere\appserver\installedApps\IBMUTC.ear -ejbDeploy false
-interactive false

48.Start the server (startserver command), and http://localhost:9080/UTC should
bring up the test client.

Stop the AEs server
49.To enable further testing in WSAD, stop AEs (stopserver command).

What you did in this lab
� Defined a server in WSAD to publish and test with WebSphere Application

Server Single Server (AEs)

� Tested an application from WSAD in AEs

� Configured AEs for deployment

� Deployed and installed an application from WSAD into AEs
344 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 7. Profiling an application

What this exercise is about
In this lab we trace a Web application using the profiling tool.

User requirement
Analyze where most time is spent in a Web application.

What you should be able to do
At the end of this lab you should be able to:

� Configure a server for tracing

� Start and stop a trace

� Analyze the trace results

Introduction
We trace the dealer Web application and analyze where the most time is spent.

7

© Copyright IBM Corp. 2002 345

Exercise instructions
1. Start WebSphere Studio Application Developer.

Configure server instance
2. In the Server Perspective, select the ItsoWsDealer instance and edit it

(double-click). Select Enable profile server process.

3. Disable the just-in-time compiler: On the Environment page, click Add to
define a new variable. Enter java.compiler as name, and NONE as value. (A
value of jitc enables the JIT compiler.)

4. Save and close the editor.

Agent Controller
5. In the Windows Services list, make sure that the IBM Agent Controller is

started.

Start the server
6. Start the ItsoWsDealer server in the Server Control Panel view. Check the

Console for message similar to these:

WebSphere AEs 4.0.1 a0130.02 running with process name localhost/
Default Server and process id 1932

Host Operating System is Windows 2000, version 5.0
Java version = J2RE 1.3.0 IBM build cn130-20010609 (JIT disabled),

Java Compiler = NONE

Take note of the process ID, as you will need it later.

Configure the host
7. Open the Profiling Perspective. In the toolbar, find the Profile icon (stop

watch) and click the down-arrow and select Attach -> Java Process.

8. In the Attach to Java Process dialog, find the process (javaw) with the same
ID as noted in the Console log (select Show all processes if you cannot see
the javaw process with the same ID). Select the process and click >> to move
the process to the target area. Click Next, leave the default names, click Next,
leave the default filters, click Finish.

9. The javaw process shows up in the Monitors view in the ProfileProject with a
Profiling object under it. Select the Profiling object and Properties (context).
346 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Here you could configure which packages should be excluded or included in
the trace. We will use the defaults, so click Cancel.

Trace an application
10.Select the Profiling object and Start Monitoring (context).

11.In the Server Perspective, open the Properties of the ItsoDealerWeb project
and check that the server preference is ItsoWsDealer. Expand the project,
select the PartList.html file, and Run on Server (context). Enter RR as partial
name and click Retrieve. Be patient, and wait for the result.

12.Click Back to the previous page (left arrow) in the browser, enter L as partial
name, and click Retrieve again. This time, the result arrives much faster.

Trace analysis
13.In the Profiling Perspective, select the Profiling object and Refresh (context).

In the Class Statistics view, click the Update View icon. This action should
display:

– base time in the class
– cumulative time in the class (includes calls to other classes)

14.Switch to the Execution Flow view (use the icons in the toolbar) to graphically
see where the time was spent. Use the zoom buttons to magnify interesting
areas of the graph.

15.Switch to the Method Statistics view to see the time spent in each method.

16.Switch to the Heap view to see the objects that exist in the JVM. This view
can be helpful to diagnose memory leaks.

17.Switch to the Object References view (you may have to open it) to see
objects and the references they hold. References can be the reason that
objects are not garbage-collected.

Close down
18.Select the Profiling object and Stop Monitoring (context).

19.Close the Profiling Perspective (you can optionally save the data as files
under the ProfileProject).

20.In the Server Perspective, close the Web browser and stop the ItsoWsDealer
server. (You may get an internal error.)

21.Edit the ItsoWsDealer server instance, remove the check mark for Enable
profile server process, and remove the java.compiler variable on the
 Exercise 7. Profiling an application 347

Environment page (or set the value from NONE to jitc). Save and close the
editor.

What you did in this lab
� Configured a server for tracing

� Started and stopped a trace

� Analyzed the trace to understand the execution flow and time spent in classes
and methods
348 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 8. Create a Web Service

What this exercise is about
In this lab we create a Web Service based on a session EJB that uses two entity
EJBs to query the parts and inventory tables for available parts.

User requirement
Provide a callable service to clients looking for parts.

What you should be able to do
At the end of this lab you should be able to:

� Create a Web Service from a JavaBean

� Understand the Web Service wizard

� Understand the generated WSDL files, the proxy bean and the sample client

� Test a Web Service with the sample client and proxy bean

Introduction
We use an access bean that wraps the session EJB. The Web Service wizard
takes a JavaBean as input. The session bean and the entity EJBs are provided
as a base for this lab.

8

© Copyright IBM Corp. 2002 349

Exercise instructions
1. Start WebSphere Studio Application Developer.

Make sure that no internal or external (AEs) server is running—stop all
servers that are running.

Import an EJB project
2. Create a new EJB project named ItsoWsManufacturerEJB which points to a

new ItsoWsManufacturerEAR project. Click Next twice. For Java build
settings, on the Library page, click Add Variable, click Browse and select the
XERCES variable (WSAD\plugins\org.apache.xerces\xerces.jar). This is the
XML parser for Java which is used by the session bean. Leave the Path
Extension empty, click OK and Finish.

3. Select File -> Import -> EJB JAR file. Click Next, then Browse to locate the
c:\ws\labscode\exwscreate\import\itsowsmanufacturerejb.jar file. For the
EJB project, select ItsoWsManufacturerEJB (the EAR project is then
preselected as ItsoWsManufacturerEAR). Also select Overwrite existing
resources without warning. Click Finish.

Note: If you are interested how this EJB JAR file was created, see
“Addendum: how the EJB JAR file was created” on page 357 in this exercise.

4. In the J2EE Perspective and view, select the ItsoWsManufacturerEJB
module. There are two entity EJBs (MmPart, MmInventory - mapping to the
MM tables), and one session EJB (PartInquiry).

5. Open the ItsoWsManufacturerEJB module in the extension editor (context).
On the Relationship page you can see the 1:m relationship between Part and
Inventory.

To retrieve the inventory items for a part, a getStocks method is generated
(role name stocks). Similarly, there is a getThePart method to get the part for
an inventory item. You can also see the relationships when expanding the
EJBs in the J2EE view.

On the Binding page you can see the JNDI names of the EJBs specified as
itso/wsad/manu/Xxxxx.

6. Open the PartInquiry session bean. This session bean retrieves the
inventory items for a part and returns a Vector of PartInventory JavaBeans.
Open the PartInquiryBean Java file and browse the code. You should find:

– private variable for the MmPartHome

– getPartHome method to find the home for the MmPart EJB
350 Self-Study Guide: WebSphere Studio Application Developer and Web Services

– retrievePartInventory method that returns the Vector of PartInventory
beans by finding the MmPart bean for the given part number, retrieving all
the MmInventory beans for the given part, constructing a PartInventory
bean for each one, and adding it to the Vector. This method is the public
business method promoted to the remote interface.

– retrievePartInventoryArray method that returns the same result as array of
PartInventory beans, by converting the Vector to an array. (This method
will not be used in the lab exercise.)

7. In the Navigator view you can also find the itso.wsad.manu.beans package
with two JavaBeans. One bean is the PartInventory bean discussed in the
session bean. This bean contains properties for all the attributes of a part and
an inventory item.

The other bean is called InquireParts and is the base for our Web Service. It
returns the result Vector of the session bean as an XML element. This bean
contains:

– Two private fields, for the PartInquiry session bean home and for an XML
document builder

– getPartInquiryHome, to instantiate the partInquiryHome field

– getDocumentBuilder, to instantiate the document builder field

– newElement, which creates a name/value pair for an XML element

– populatePart, which creates the XML tree for a PartInventory bean

– retrievePartInventory, which is the public business method that locates and
calls the session bean and converts the Vector of PartInventory beans to
an XML element by calling populatePart to create the XML tree for each
item.

Define a server configuration and instance
8. In the Server Perspective, select the ItsoWsServer project and New ->

Server Instance and Configuration. Enter ItsoWsManufacturer as server
name and select WebSphere v4.0 Test Environment as instance type. Click
Finish.

9. Edit the configuration properties: double-click the ItsoWsManufacturer
configuration in the Server Configuration view. In the Datasource view, select
the Db2JdbcDriver and click Edit. Check that the class path points to the
correct db2java.zip file.

Click Add for data sources. Enter ITSOWSAD as name, jdbc/ITSOWSAD as
JNDI name, and ITSOWSAD as database name. Click OK. Save and close
the configuration.
 Exercise 8. Create a Web Service 351

10.Select the configuration and Add Project -> ItsoWsManufacturerEAR.

Create a Web project for the Web Service
11.In the Web Perspective, create a new ItsoWsManufacturerWeb Web project,

which points to the ItsoWsManufacturerEAR project. Click Next. Under
Module Dependencies, select the ItsoWsManufacturerEJB.jar file. Click Next.
For Java build settings, on the Library page, click Add Variable and select the
XERCES variable (d:\WSAD\plugins\org.apache.xerces\xerces.jar).

Check that the ivjejb35.jar file is in the list of JAR files on the Library page. If
not, click Add External Jars and select the file
d:\WSAD\plugins\com.ibm.etools.websphere.runtime\lib\ivjejb35.jar.

Click Finish.

Copy the server JavaBean from the EJB project
12.In the Web Perspective, select the source folder of the new Web project, and

create a Java package named itso.wsad.manu.server.

13.Select the InquireParts in the ItsoWsManufacturerEJB project, ejbModule,
itso.wsad.manu.beans folder, and Copy from the context menu. Select the
ItsoWsManufacturerWeb project, source, itso.wsad.manu.server package as
destination.

14.Open the copied InquireParts.java file, and change the package name to
itso.wsad.manu.server. Save and close the changed file.

Create the Web Service from the JavaBean
15.In the Web Perspective, select the itso.wsad.manu.server.InquireParts bean

and New -> Other -> Web Service -> Web Service, click Next. The Web
Service type (JavaBean) and the project (ItsoWsManufacturerWeb) should be
preselected. For defaults, select Start Web service in Web project, Generate
a proxy, and Generate a sample. Select Create folders when necessary. Click
Next.

16.On the JavaBean selection panel, the InquireParts bean is preselected, click
Next.

17.On the identity panel, set the Web Service URI to urn:InquireParts, and the
scope to Application. Do not select any of the check boxes. Change the ISD
filename to webApplication/WEB-INF/isd/InquireParts.isd.

The WSDL file names are set to:

webApplication/wsdl/InquireParts-service.wsdl
webApplication/wsdl/InquireParts-binding.wsdl
352 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Change the WSDL schema to:

webApplication/wsdl/InquireParts.xsd

Click Next.

18.On the Java Beans Methods panel, the retrievePartInventory method is
preselected. Select the method name, leave input encoding as SOAP
(parameters), and output encoding as Literal XML (our output is XML). Select
Show server Java to XML type mappings. Click Next.

19.On the Java to XML mapping panel:

– Select the String encoding, but leave the default JavaBean mapping.

– Select the Element encoding, but leave the Show and use the default
DOM Element mapping.

– Click Next.

20.On the proxy generation panel, select SOAP Bindings (preselected). The
folder is correct (/ItsoWsManufacturerWeb/source). Change the class to:

itso.wsad.manu.proxy.InquirePartsProxy

Select Show mappings and click Next.

21.On the XML to Java mappings panel, select each mapping, but do not change
anything. Click Next. In the SOAP binding mapping panel leave the defaults,
and click Next.

22.On the test client panel, do not select Launch the test client (this would launch
the universal test client). Click Next.

23.On the sample generation panel, select Generate a sample, but do not select
Launch the sample. Leave the target JSP folder as set, and click Next.

24.On the publication panel do not select Launch the UDDI Explorer.

25.Click Finish.

26.Be patient; it takes a while to generate all the code. Also, the
ItsoWsManfufacturer server is started.

Generated files
27.In the Web Perspective, expand the ItsoWsManufacturerWeb project,

webApplication.

28.The wsdl directory contains two generated WSDL files:

– InquireParts-service.wsdl: implementation - how to invoke

– InquireParts-binding.wsdl: interface - how to connect
 Exercise 8. Create a Web Service 353

29.For publishing of the Web Service to a UDDI registry, unique names must be
assigned to services; we will use:

http://www.redbooks.ibm.com/ITSOWSAD/definitions/InquirePartsRemoteInterface

Open the InquireParts-service.wsdl file. In the Design view, change the
values of <definitions ... xmlns:binding and import namespace:

from: http://www.inquireparts.com/definitions/InquirePartsRemoteInterface
to : http://www.redbooks.ibm.com/ITSOWSAD/definitions/InquirePartsRemoteInterface

30.Open the InquireParts-binding.wsdl file. In the Design view, change the
values of <definitions ... targetNamespace, and xmlns:tns:

from: http://www.inquireparts.com/definitions/InquirePartsRemoteInterface
to : http://www.redbooks.ibm.com/ITSOWSAD/definitions/InquirePartsRemoteInterface

Change the values of xmlns:xsd1, and import namespace:

from: http://www.inquireparts.com/schemas/InquirePartsRemoteInterface
to : http://www.redbooks.ibm.com/ITSOWSAD/schemas/PartInventory

Check that the value of <import ... location is:

http://localhost:8080/ItsoWsManufacturerWeb/wsdl/InquireParts.xsd

31.Save the WSDL files.

32.The generated file ..\wsdl\InquireParts.xsd is incomplete and does not
contain all the XML elements, because the wizard does not know what the
session bean generates as XML output (DOM tree).

Import the correct schema file. Select the wsdl folder and File -> Import ->
File system, Browse to locate c:\ws\labscode\exwscreate\import and select
only the InquireParts.xsd file. Select Overwrite existing resources and click
Finish. This schema defines the XML structure generated by the session
bean.

33.Open the InquireParts.isd file (in WEB-INF\isd). It is only used to build the
dds.xml file. This file defines the JavaBean session bean) and the method to
be invoked (retrievePartInventory).

34.Open the dds.xml file (in webApplication). It is a concatenation of all .isd files.

35.Open the soap.xml file. It instantiates the XMLDrivenConfigManager class
that looks for the dds.xml file.

36.Close all the files.

37.Open the web.xml file (in WEB-INF). On the Servlets panel you can find two
servlets that were added to the Web application: rpcrouter, and
messagerouter. The rpcrouter is used in our case, as defined in the
InquireParts-service.wsdl file <soap:address> tag. The servlets are
implemented in the soapcfg.jar file which you can find in the lib folder. Close
the web.xml file.
354 Self-Study Guide: WebSphere Studio Application Developer and Web Services

View deployed Web Service
38.A Web application to view and configure the Web Service has been

generated into the webApplication\admin folder. Expand the admin folder.

39.Select the index.html file, and Run on Server (context). Click on List all
services and the InquireParts service should be listed. The other actions can
be used to start and stop Web Services (all the started initially).

40.Click on urn:InquireParts to see the details of the service.

Client proxy
41.The client proxy code was generated into source\itso\wsad\manu\proxy as

InquirePartsProxy file. Open the file and browse the code:

– A variable defines the URL of the Web Service.

– The retrievePartInventory method invokes the Web Service using the Call
class from the org.apache.soap.rpc package. You can see the input
parameter and the handling of the response. Close the editor.

Sample client
42.The sample client Web application was generated into the

webApplication\sample\InquireParts folder. There are four files:

– TestClient.jsp is the frameset for the other three files.

– Method.jsp lists the available Web Services.

– Input.jsp provides a form for the input parameter.

– Results.jsp creates the client proxy and executes the Web Service using
the input data. It also contains a domWriter method that generates an XML
file from the result tree.

43.To run the sample client, select the TestClient.jsp and Run on Server
(context). Be patient; wait until the frames appear in the browser.

44.Click the retrievePartInventory method, and the input form should appear.

45.Enter M100000003 as part number and click Invoke. Be patient; wait until the
XML output appears in the output frame.

46.Use the admin application to stop the Web Service, then try to invoke it from
the TestClient. You should get an error message in the output.

47.Start the Web Service again and rerun the TestClient. It should work again.

48.Stop the ItsoWsManufacturer server (or do the optional exercise).
 Exercise 8. Create a Web Service 355

Monitoring a Web Service (optional)
49.In the Server Perspective, create a new server instance and configuration

(toolbar icon or File -> New ->Server Instance and Configuration).

50.Enter ItsoWsMonitor as server name, select TCP/IP Monitoring Server as
instance type, and click Finish.

51.Start the ItsoWsManufacturer server (if you stopped it).

52.Start the ItsoWsMonitor server. The console should display:

Monitoring server started
localhost:8081 -> localhost:8080

53.Add the TCP/IP Monitor view to the Server Perspective using Perspective ->
Show View -> TCP/IP Monitor.

54.Select the TestClient.jsp (in the sample Web application) and Run on Server.
You are prompted for the server; select the TCP/IP monitoring server.

55.Run the application (with partNumber M100000003), then maximize the
TCP/IP Monitor view and click on each request in the left pane to see the
input and output streams. The XML response is not easy to see in this format.

56.To see the SOAP requests we have to modify the client proxy. Edit the
InquirePartsProxy file (in ItsoWsManufacturerWeb\source).

57.Change the URL and save the code:

from: http://localhost:8080/ItsoWsManufacturerWeb/servlet/rpcrouter
to : http://localhost:8081/ItsoWsManufacturerWeb/servlet/rpcrouter

58.Rerun the application, then switch to the TCP/IP Monitor view. The last
request (ItsoWsManufacturerWeb/servlet/rpcrouter) shows the SOAP request
input and output and you can see the XML in a good format.

59.Change the InquirePartsProxy file back to port 8080, save, and close the
editor.

60.Close the TCP/IP Monitor view.

61.Stop the ItsoWsMonitor server.

62.Stop the ItsoWsManufacturer server.

What you did in this lab
� Created a Web Service based on a session enterprise bean

� Used the Web Services administrative application

� Tested the Web Service using the generated sample client
356 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Addendum: how the EJB JAR file was created
1. Create a new EJB project named ItsoWsManufacturerEJB which points to a

new ItsoWsManufacturerEAR project. Click Next. For Java build settings, on
the Library page, click Add Variable, click Browse and select the XERCES
variable (WSAD\plugins\org.apache.xerces\xerces.jar). This is the XML
parser for Java which is used by the session bean. Click Finish.

2. Create packages itso.wsad.manu.ejb and itso.wsad.manu.facade under
the ejbModule folder.

Create CMP entity beans with association
3. Create a new CMP entity bean named MmPart in itso.wsad.manu.ejb, with

fields: partNumber (String, key), name (String), description (String), weight
(double), imageUrl (string). Use single key attribute as the key class.

4. Create a new CMP entity bean named MmInventory in itso.wsad.manu.ejb,
with fields: itemNumber (java.lang.Long, key), quantity (int), cost
(java.math.BigDecimal), shelf (String), location (string). Use single key
attribute as the key class.

5. Create an association: select the EJB module and Open With -> EJB
Extension Editor. On the relationships page, click Add and define:
InventoryForPart, between MmPart and MmInventory, roles thePart and
stocks, navigable, 1..1 and 0..m (1:m). Click Apply. Save and close the
extension editor.

Complete the code
6. Edit MmPartBean.java. In the ejbCreate method, before the return, add:

this.imageUrl = "";

7. Add method to return the key value:

public java.lang.String getPartNumber() { return partNumber; }

8. Select the getPartNumber method in the Outline, and Enterprise Bean ->
Promote to Remote Interface. Save the code.

9. Edit MmInventoryBean.java. Replace the ejbCreate method with:

public java.lang.Long ejbCreate(java.lang.Long itemNumber,
itso.wsad.manu.ejb.MmPart aThePart)

throws javax.ejb.CreateException {
_initLinks();
this.itemNumber = itemNumber;
this.quantity = 1;
this.cost = new java.math.BigDecimal(0.0);
try { this.setThePart(aThePart); }
catch (java.rmi.RemoteException ex)
 Exercise 8. Create a Web Service 357

{ throw new javax.ejb.CreateException("Create inventory failed
for part "+aThePart); }

return null;
}

10.Replace the ejbPostCreate method with:

public void ejbPostCreate(java.lang.Long itemNumber,
itso.wsad.manu.ejb.MmPart aThePart)

throws javax.ejb.CreateException {}

11.Add a method to return the key value:

public java.lang.Long getItemNumber() { return itemNumber; }

12.Save the code. Select the ejbCreate method in the Outline, and Enterprise
Bean -> Promote to Home Interface. Select the getItemNumber method in the
Outline, and Enterprise Bean -> Promote to Remote Interface.

13.Edit MmInventoryHome.java. Delete the create method with only one
parameter. Save and close.

14.You may have to save the MmInventoryBean again to get rid of the error
messages.

Import beans for the Web Service
15.Create a new itso.wsad.manu.beans package under the ejbModule folder

(Navigator view). Import the two files PartInventory.java and InquireParts.java
from c:\ws\labscode\exwscreate\beans. The PartInventory bean will be
used in the session bean, and the InquireParts bean will be used for the Web
Service. (The second file will have errors for now.)

Create session bean
16.Create a session bean named PartInquiry in itso.wsad.manu.facade. Click

Finish.

17.Edit PartInquiryBean.java. Replace the code with the content of the file
c:\ws\labscode\exwscreate\ejbcode\PartInquiryBean.java. This code has
the business methods. Save the code.

18.Select the retrievePartInventory and retrievePartInventoryArray methods in
the Outline, and Enterprise Bean -> Promote to Remote Interface.

Set EJB references
19.Select the EJB module and Open With -> EJB Editor. On the References

page select the PartInquiry bean, click Add, and create a new reference:
ejb/MmPart, Entity, itso.wsad.manu.ejb.MmPartHome, itso.....MmPart,
MmPart (identical to the reference under MmInventory). Save and close.
358 Self-Study Guide: WebSphere Studio Application Developer and Web Services

20.Select the EJB module and Open With -> EJB Extension Editor. On the
Bindings page: For the ItsoWsManufacturerEJB module, the data source
JNDI name must be jdbc/ITSOWSAD with db2admin as user ID/password.

– Set the JNDI names for the beans to itso/wsad/manu/MmPart,
itso/wsad/manu/MmInventory and itso/wsad/manu/PartInquiry.

– Set the JNDI names for the references to the same values.

21.Save and close.

Create mapping
22.Select the EJB module and Generate -> EJB to RDB Mapping. Select Meet In

The Middle and Open mapping editor after completion, click Next.

23.Database connection: Select Use existing connection ConITSOWSAD, click
Next. Select tables MMINVENTORY and MMPARTS, click Next. Select Match
By Name, click Finish and the mapping editor opens.

24.Complete the mapping by expanding the beans (left) and tables (right) and
dragging first the beans (from left) to the matching tables (right), and then the
attributes to the columns.

To map the association: drag the attribute thePart:MmPart in the Inventory
bean to the ITEMPART:MMPARTS column in the INVENTORY table. (This
maps both directions of the association.)

25.Save the mapping and close the editor.

Generate deployed code
26.Generate the deployed code by selecting the EJB module and Generate ->

Deploy and RMIC Code. Select all beans and click Finish. The generated
classes are visible in the Navigator view.

You will get an error in EJSJDBCPersisterCMPMmInventoryBean.java. Open
the file (double-click the error in the Tasks view) and change the references to
inkey.partNumber to inkey.

Export EJB JAR
27.Create the JAR file by selecting File -> Export -> EJB JAR file, click Next.

Select the ItsoWsManufacturerEJB module and enter the name of an output
file (c:\ws\labscode\excreate\import\itsowsmanufacturerejb.jar). Select Export
source files and click Finish.
 Exercise 8. Create a Web Service 359

360 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 9. Deploy and test a Web
Service

What this exercise is about
In this lab we deploy the Web Service and the sample client to WebSphere
Application Server AEs.

User requirement
Deploy the Web Service to a production machine.

What you should be able to do
At the end of this lab you should be able to:

� Configure ports in WebSphere AEs

� Deploy an enterprise application using the SEAppInstall command

� Deploy a Web Service and administer the Web Service

� Run the sample test client

Introduction
We configure AEs for deployment and deploy the enterprise application with the
Web Service.

9

© Copyright IBM Corp. 2002 361

Exercise instructions
1. Start WebSphere Studio Application Developer.

Prepare the Web application
2. In the Web Perspective, expand the ItsoWsManufacturerWeb project -

source - itso - wsad - manu - proxy, and edit the InquirePartsProxy.java file.
Notice how the rpcrouter is invoked:

http://localhost:8080/ItsoWsManufacturerWeb/servlet/rpcrouter

3. WebSphere AEs by default listens to port 9080, or port 80 when using the
HTTP server. For deployment we can either change the code here, or we
configure AEs to also listen on port 8080 (which is what we will do).

4. Close the editor without changing anything.

5. For deployment we require an EAR file. Select File -> Export -> EAR file. For
resources, select the ItsoWsManufacturerEAR project. For the export
location, Browse to c:\ws\labscode\exwsdeploy\EARfiles, and enter
itsowsmanufacturer.ear as file name. Click Finish to create the EAR file.

Prepare WebSphere AEs for port 8080
6. Make sure that no server runs in WSAD.

7. Check that the original WebSphere AEs configuration file was restored
(d:\WebSphere\AppServer\config\server-cfg.xml) if you used remote testing
in Exercise 6, “Test and deploy using WebSphere AEs” on page 339.

(Otherwise, copy wasTools_bkup\server-cfg_bk_xxxxxx.xml to the config
directory, delete the server-cfg.xml file, and rename the
server-cfg_bk_xxxxxx.xml as server-cfg.xml.)

8. Start WebSphere AEs (startserver command).

9. Open the Administrator’s Console with http://localhost:9090/admin (or Start
-> Programs -> IBM WebSphere -> Application Server V4.0 AES ->
Administrator’s Console). Login with your user ID, then click Submit.

10.Expand Nodes -> yournode -> Application Servers -> Default Server -> Web
Container -> HTTP Transports. You should see ports 9080, 9443, and 9090.
Click on HTTP Transports. Click New. Enter * as host name, 8080 as port,
and click OK.

11.Expand Virtual Hosts -> default_host and click on Aliases. Click New. Enter *
as host name, 8080 as port, and click OK.

12.Save the configuration and Exit the Console.
362 Self-Study Guide: WebSphere Studio Application Developer and Web Services

13.Stop WebSphere AEs (stopserver command).

Install the EAR file with EJBs and Web applications
14.To install the EAR file, use this command:

SEAppInstall
-install c:\ws\labscode\exwsdeploy\earfiles\itsowsmanufacturer.ear
-expandDir d:\websphere\appserver\installedApps\itsowsmanufacturer.ear
-ejbDeploy false -interactive false

You can use the c:\ws\labscode\exwsdeploy\installManu.bat file to run this
command—but be sure to check the directory names, which may be different
than for your installation.

15.Start WebSphere AEs (startserver command).

16.Open the Administrator’s Console with http://localhost:9090/admin and
login with your user ID, then click Submit.

17.Expand Nodes -> yournnode -> Enterprise Applications and you should see
the installed ItsoWsManufacturerEAR application.

Testing the deployed Web Service
18.To test the Web Services administration client, open a browser and enter:

http://localhost:9080/ItsoWsManufacturerWeb/admin/index.html

19.List the services, stop the service, and start the service.

20.To test the Web Service, enter:

http://localhost:9080/ItsoWsManufacturerWeb/sample/InquireParts/TestClient.jsp

21.Click the retrievePartInventory method and enter M100000003 as part
number and click Invoke. The output should appear as an XML file.

22.Use the admin application to stop the Web Service, then run the test client
again. Restart the Web Service.

23.Stop WebSphere AEs (stopserver command).

What you did in this lab
� Configured AEs with an additional port

� Exported an enterprise application with a Web Service and installed it in
WebSphere AEs

� Tested the deployed Web Service using the test client
 Exercise 9. Deploy and test a Web Service 363

364 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 10. Using a Web Service in a
client application

What this exercise is about
In this lab we create a client application that uses the Web Service. In the client,
we transform the XML result into HTML using an XSL style sheet.

User requirement
Create a client application to query the manufacturer parts database using the
Web Service.

What you should be able to do
At the end of this lab you should be able to:

� Use the Web Service wizard to create a client proxy and sample client
application

� Create a real client application that invokes the Web Service

Introduction
We implement an HTML page that invokes a servlet that invokes the Web
Service. The resulting XML file is transformed into HTML.

10
© Copyright IBM Corp. 2002 365

Exercise instructions
1. Start WebSphere Studio Application Developer.

Define a Web project for the client
2. In the Web Perspective, define a new Web project named ItsoWsClientWeb,

pointing to a new ItsoWsClientEAR project. Click Finish.

3. Web Service clients can only be created from WSDL files in their own project.
In the Web Perspective, create a wsdl folder under webApplication.

4. Expand the ItsoWsManufacturerWeb project -> webApplication -> wsdl and
select the InquireParts-service.wsdl file. Select copy from the context
menu, and point to ItsoWsClientWeb\webApplication\wsdl for the destination
folder.

5. In the Server Perspective (Configuration view), add the ItsoWsClientEAR to
the ItsoWsManufacturer server (Add Project in context).

Start the server
6. When creating a client with the Web Service wizard, certain files are retrieved

from the server. In the Server Perspective, start the ItsoWsManufacturer
server. (Note that an external WebSphere AEs server must be stopped.)

Generate the Web Service proxy and sample client
7. In the Web Perspective, select the ItsoWsClientWeb project and New -> Other

-> Web Services -> Web Service client. The Web project should be
preselected, so click Next.

8. Web Service file selection: the InquireParts-service.wsdl should be
preselected, so click Next.

9. Web Service proxy generation: select SOAP Binding, the folder is set to
source, for the class enter itso.wsad.wsclient.proxy.InquirePartsProxy.
Select Show mappings, then click Next.

10.XML to Java mappings: leave the defaults, click Next.

11.SOAP binding mapping configuration: leave defaults, click Next.

12.Test client: do not select Launch the test client, click Next.

13.Sample generation: select Generate a sample, but do not select Launch the
sample. Click Finish.
366 Self-Study Guide: WebSphere Studio Application Developer and Web Services

14.Study the generated classes. The folder source\itso\wsad\wsclient\proxy
contains the InquirePartsProxy file. This class contains the
retrievePartInventory method for the client to invoke the Web Service.

Test the sample client
15.Open the Properties (context) of the ItsoWsClientWeb project. Notice in the

Java Build Path the JAR files that were added to the Library page.

Select Server Preferences and make the ItsoWsManufacturer server the
preferred instance (click Apply). Close the properties dialog.

16.Select the TestClient.jsp (in webApplication\sample\InquireParts) and Run
on Server (context). Select Open Web browser (not the TCP/IP Monitor).

17.Select the retrievePartInventory method and run it with a part number of
M100000003. It should work.

Build the client application
18.For the client, we want to translate the returned XML document into HTML

using the XALAN style sheet processor.

19.Open the properties of the ItsoWsClientWeb project, and in the Java Build
Path -> Libraries page, click Add External JAR file and add the
WSAD\plugins\com.ibm.etools.xalanrt\xalan.jar file. Click OK.

20.Create a new servlet (toolbar icon or New -> Web -> Servlet). Select
ItsoWsClientWeb/source as folder, enter itso.wsad.wsclient.servlet as
package, PartInventoryServlet as name, javax.servlet.http.HttpServlet as
superclass, generate doGet and doPost methods. Click Next.

21.Select Add to web.xml (preselected) and click Finish.

22.The new servlet is open in the editor. Copy/paste the code from
c:\ws\labscode\exwsuse\wsservlet\PartInventoryServlet.txt to complete
the servlet source code. Save and close the servlet.

23.Import the HTML and XSL files. Select the webApplication folder and File ->
Import -> File system, click Browse to c:\ws\labscode\exwsuse\wsclient
and select the folder.

For the target location, specify ItsoWsClientWeb/webApplication/wsclient so
that a subfolder is created. Click Finish.

Test the client application
24.Restart the ItsoWsManufacturer server. This loads the ItsoWsClientWeb

project, as well as the ItsoWsManufacturerWeb and EJB projects.
 Exercise 10. Using a Web Service in a client application 367

25.Select the PartInventory.html file (in wsclient) and Run on Server. Execute
the part inquiry with part number M100000003. The servlet is invoked, and it
uses the proxy to invoke the Web Service, which invokes the session bean
(through the access bean), which uses the entity beans to access the
database. The resulting XML file is transformed into HTML using the XSL
style sheet.

26.Stop the ItsoWsManufacturer server.

Deploy the client application (optional)
27.Create an EAR file for the ItsoWsClientEAR project (itsowsclient.ear into

c:\ws\labscode\exwsuse\earfiles).

28.Run SEAppInstall to install the EAR file (use the installClient.bat file).

29.Start the AES server.

30.Open a browser with

http://localhost:9080/ItsoWsClientWeb/wsclient/PartInventory.html

31.Enter a part number and run the application

32.Stop the AEs server.

What you did in this lab
� Defined a Web project for the client application

� Used the Web Service wizard to create the base code for the client

� Implemented a client application consisting of an HTML page, a servlet, and
an XSL style sheet

� Tested the client application

� Deployed the client application in WebSphere Application Server AEs.
368 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 11. Web Service publishing in
the UDDI registry

What this exercise is about
In this lab we publish a Web Service to a UDDI registry and retrieve the definition
of a Web Service from the registry.

User requirement
Publish a Web Service to make it available and searchable on the Web.

What you should be able to do
At the end of this lab you should be able to:

� Work with the UDDI registry to create a business entity

� Publish a Web Service

� Find published Web Services

� Retrieve the WSDL files of a Web Service

Introduction
We use the IBM Test Registry or the WebSphere UDDI Registry to publish and
find Web Services.

11
© Copyright IBM Corp. 2002 369

Which UDDI registry to use
If you have an Internet connection, you can use the IBM Test Registry.
Otherwise, you can install the IBM WebSphere UDDI Registry and work with a
registry on your own machine.

Use the URLs listed below to connect to the UDDI registry.

IBM Test Registry
From an external browser:

http://www-3.ibm.com/services/uddi/testregistry/index.html

From a program (UDDI Explorer) using the UDDI API:

http://www-3.ibm.com/services/uddi/testregistry/inquiryapi
https://www-3.ibm.com/services/uddi/testregistry/protect/publishapi

IBM WebSphere UDDI Registry
For the beta code available February 2002, the URLs are listed here. For later
code, check the product documentation.

From an external browser:

http://localhost:9080/uddiguibeta

From a program (UDDI Explorer) using the UDDI API:

http://localhost:9080/uddibeta/inquiryapi
http://localhost:9080/uddibeta/publishapi

IBM WebSphere UDDI Registry Preview
The IBM WebSphere UDDI Registry Preview is the predecessor for the beta
code, but it is no longer available for the Windows platform.

From an external browser:

http://hostname/services/uddi/home.jsp

From a program (UDDI Explorer) using the UDDI API:

http://hostname/services/uddi/inquiryapi
http://hostname/services/uddi/publishapi

Attention: Some of the exercise instructions do not work with the beta code of
the WebSphere UDDI Registry.
370 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise instructions
1. Start WebSphere Studio Application Developer.

Register a user ID and password
2. Connect to the registry using an external browser.

3. You have to register to use the registry and get a user ID and password. Once
you have registered, you can login to perform actions. However, we will use
WSAD to connect to the registry to perform the actions.

Note that you can only define one business entity with one user ID in the test
registry.

4. Close the browser.

Connecting to the registry
5. In the Web Perspective, select the ItsoWsDealerWeb project, and File ->

Import -> UDDI. Click Next, then click Finish. Be patient; this starts an internal
server and opens a browser with the URL.

http://localhost:xxxx/uddiexplorer/uddiexplorer.jsp

6. For the IBM Test Registry:

– Click on IBM Test Registry, and a number of toolbar icons appear in the
right-hand pane.

For the WebSphere UDDI Registry:

– Click on UDDI Main. Enter WebSphereUDDI Registry as name, and the
inquiry API URL listed under “Which UDDI registry to use” on page 370.

– Click Go, and the WebSphere UDDI Registry should appear in the
Navigator.

– Click on WebSphere UDDI Registry, and a number of toolbar icons appear
in the right-hand pane.

– Click on the Add to Favorites icon (the flag at top right) to add this registry
to the Favorites, and you never have to enter the URL again.

Creating a business entity in the registry
7. Click on the Publish Business Entity icon. This opens a login form where you

enter the user ID and password you obtained.

For the WebSphere UDDI Registry, you also have to enter the publish URL.
 Exercise 11. Web Service publishing in the UDDI registry 371

Click Go.

8. The form to define a business entity opens up. Enter:

– Name: your name
– Description: anything
– Identifiers: click Add, and enter phone number as key name and any

number as value (for example).
– Categories: click Add, select NAICS, click Browse and select a suitable

category, for example, Retail Trade -> Motor Vehicles and Parts Dealers ->
Automotive Parts, Accessories ... -> Automotive Parts and Accessories
Stores (44131). (You may skip this for the WebSphere UDDI Registry.)

Click Go, and the business entity is created.

Publishing a Web Service to the registry
9. To publish a Web Service, the server that runs the Web Service must be

started. Start the ItsoWsManufacturer server in the Server Perspective.

Note: If the UDDI browser is not open, you can select the
ItsoWsManufacturerWeb project and File -> Export -> UDDI, select the
InquireParts-service.wsdl file, and click Finish.

10.Select the business entity in the Navigator. You can also use the search
facility (Find Business Entity) to locate the business entity.

11.Click the Publish Business Service icon. Login if necessary. A form appears.
In the implementation URL enter:

http://localhost:8080/ItsoWsManufacturerWeb/wsdl/InquireParts-service.wsdl

Note: This is prefilled if you started the browser with File -> Export -> UDDI.

12.For the description enter anything (for example, ITSO workshop manufacturer
parts inventory Web Service).

13.For the categories, click Add and locate the 44131 entry. (You may skip this
for the WebSphere UDDI Registry.)

14.Click Go. The InquirePartsService is added to the business entity, and also
an interface is added with the name (URL):

http://www.redbooks.ibm.com/ITSOWSAD/definitions/InquirePartsRemoteInterface

When you click on this interface, you can see the bindings.wsdl file listed.

15.Close the UDDI Explorer. Leave the ItsoWsManufacturer server running.

Finding a Web Service in the registry
16.In the Web Perspective, select the ItsoWsDealerWeb project and File ->

Import -> UDDI, click Next, then click Finish. The UDDI browser opens.
372 Self-Study Guide: WebSphere Studio Application Developer and Web Services

17.Select the IBM Test Registry or the WebSphere UDDI Registry.

18.Expand the registry entry, and click on Find Business Entity.

19.Enter the first letters of your business entity and click Go. You should find your
business entity in this way.

20.Expand the business entity and click Find Business Services. Click Go and
the InquirePartsService should be found.

21.Expand the InquirePartsService and click Find Service Interfaces. Click Go
and you should see your interface.

Importing a Web Service from the test registry
22.To import the WSDL files, the ItsoWsManufacturer server must be running.

23.Select the InquirePartsService and click the Import to Workbench icon. On
the import panel, select the ItsoWsDealerWeb project, then click Go.

24.Select the interface (http://www.redbooks.ibm.com/...) and click the Import
to Workbench icon. On the import panel, select the ItsoWsDealerWeb project,
then click Go.

25.In WSAD you should now see both WSDL files in the ItsoWsDealerWeb
project, webApplication folder.

26.With these files we could now implement client applications, as done in the
previous exercise.

27.Close the UDDI Explorer and stop the ItsoWsManufacturer server.

Application with dynamic Web Services (optional)
28.In the Web Perspective, select the ItsoWsClientWeb project and open the

Properties (context). In the Java Build Path, Library page, add two variables
(click Add Variables, click Browse, click New to define the variables):

– UDDI4J, pointing to

WSAD/plugins/com.ibm.etools.websphere.runtime/lib/uddi4j.jar

– MAILJAR, pointing to

WSAD/plugins/com.ibm.etools.servletengine/lib/mail.jar

Click OK to close the properties.

29.Add two new folders to the project:

– wsdynamic, under source\itso\wsad

– wsdynamic, under webApplication
 Exercise 11. Web Service publishing in the UDDI registry 373

30.Create a new servlet named DynamicServlet in itso.wsad.wsdynamic
(subclass of HttpServlet) and add it to the web.xml file.

31.Replace the code of the servlet with the code from
c:\labscode\exwsuddi\dynamic\DynamicServlet.java, and save the file.

32.Import the files UddiServiceImplementer.java and UddiTestList.java from
ic:\labscode\exwsuddi\dynamic into the itso.wsad.wsdynamic folder.

33.Import the files DynamicPartInventory.html and DynamicPartInventory.xsl
from c:\labscode\exwsuddi\dynamic into the webApplication\wsdynamic
folder.

34.Study the UddiServiceImplementer code. This helper class accesses the
UDDI Registry starting from a given provider and service name. It finds the
tModels from the service name, finds the business entities from the provider
name, follows to their services, and finally finds the implementers of the given
service. The access points of the implementers are returned.

Attention: You have to use the correct API URLs to connect to either the IBM
Test Registry or the WebSphere UDDI Registry. Activate the correct code at
the beginning of the getImplementers method.

35.Study the DynamicServlet code. The servlet is similar to the
PartInventoryServlet. However, it uses the UddiServiceImplementer helper to
get the access points, then each access point is passed into the
PartInventoryProxy to invoke the Web Service. The resulting XML file of each
access is converted into HTML by an XSL style sheet.

36.The HTML and XSL files are basically the same as for the fixed Web Service.
The only real change is that the XSL only produces a part of the final HTML
file. The start and end of the HTML are produced by the servlet.

Test the dynamic Web Services (optional)
37.If you are using the IBM Registry Preview, make sure it is started.

38.In the Java Perspective, select the UddiTestList program and run it. This is a
stand-alone program that uses the UddiServiceImplementer to list the
services. It should find your service.

39.With the IBM Test Registry:

– Start the ItsoWsManufacturer server in the Server Perspective. Select the
DynamicPartInventory.html file and Run on Server.

– Enter a part number (M100000003) and click Retrieve. It should all work.

– Stop the ItsoWsManufacturer server.
374 Self-Study Guide: WebSphere Studio Application Developer and Web Services

With the WebSphere UDDI Registry product, it is difficult to test the servlet
because of port conflicts between WebSphere AEs and the internal
ItsoWsManufacturer server. Therefore, we can only use WebSphere AEs:

– You must have completed Exercise 9, “Deploy and test a Web Service”
and installed the ItsoWsManufacturerEAR in WebSphere AEs.

– Start WebSphere AEs (where the WebSphere UDDI Registry is running).

– Export an EAR file for the ItsoWsClientEAR project (itsowsclient.ear)

– Uninstall the ItsoWsClientEAR application in AEs:

seappinstall -uninstall ItsoWsClientEAR -delete true

– Install the new ItsoWsClientEAR application in AEs:

seappinstall -install itsowsclient.ear
-expandDir d:\websphere\appserver\installedApps\itsowsclient.ear
-ejbDeploy false -interactive false

– Start WebSphere AEs (where the WebSphere UDDI Registry is running).

– Start the servlet using:

http://localhost:8080/ItsoWsClientWeb/wsdynamic/DynamicPartInventory.html

– Enter a part number (M100000003) and click Retrieve. It should all work.

– Stop WebSphere AEs.

What you did in this lab
� Created a business entity in the UDDI registry

� Published a Web Service to the registry

� Searched the registry for Web Services

� Retrieved implementation and bindings files for a Web Service through the
registry

� Optionally worked with an application using dynamic Web Services
 Exercise 11. Web Service publishing in the UDDI registry 375

376 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Part 3 Appendixes

Part 3
© Copyright IBM Corp. 2002 377

378 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Appendix A. Installation and
configuration

In this appendix we describe how to install the products to perform the exercises.
See “System requirements for downloading the Web material” on page 388 for
hardware prerequisites.

Windows NT or Windows 2000
Install Windows NT 4.0 workstation (or server) with Fixpack 6a, or as an
alternative, Windows 2000 Professional with service pack 1 or 2.

Browser
You must have a recent Internet browser installed as well:

� Netscape 4.7

� Internet Explorer 5.0.1

A

© Copyright IBM Corp. 2002 379

DB2 Version 7.2 Enterprise Edition (or 7.1 Fixpack 3)
Installation procedure for DB2 Enterprise Edition:

� Select DB2 Enterprise Edition.

� Select DB2 Application Development Client.

� Do not select DB2 Administration Client (optional).

� Select custom install with:

– Communication protocols
– Administration/Configuration tools
– Getting Started

Other components are optional, not used in workshop.

� Directory: c:\SQLLIB (or d:\SQLLIB).

� Create the DB2 instance:

– User ID/password: db2admin/db2admin (use same value)

� Install.

� Cancel the product registration, which starts afterwards
(you can also remove the registration from the Startup folder).

Fixpack
� Stop all DB2 services.

� Install FixPack 3 for DB2 Version 7.1.

� Install latest FixPack for DB2 Version 7.2.

Create sample database
� Run First Steps after reboot and create the SAMPLE database

(only DB2 UDB Sample, not other samples).

Change to JDBC 2.0
Access to DB2 using DataSource only works with JDBC 2.0.

� Stop all DB2 processes from the Services list.

� Change to JDBC 2.0 by running:

c:\SQLLIB\java12\usejdbc2.bat

� Restart DB2 processes.
380 Self-Study Guide: WebSphere Studio Application Developer and Web Services

WebSphere Application Server Advanced Version 4
Install the Application Server Single Server (AEs) Version 4.01 to run the
examples in a real environment.

Installation procedure:

� Run SETUP.EXE.

� Language English.

� Select Typical install; this also installs HTTP Server and JDK 1.3.

� User ID: use your Windows NT user ID (with admin authority).

� Directory: c:\WebSphere\AppServer, c:\IBM HTTTP Server (or d:\...).

� Install.

� Restart the system.

� Install Fixpacks (not required for exercises).

Verification
� Edit c:\IBM HTTP Server\conf\http.conf. This file should contain these lines

at the very end:

LoadModule ibm_app_server_http_module
 D:/WebSphere/AppServer/bin/mod_ibm_app_server_http.dll

Alias /IBMWebAS/ "D:/WebSphere/AppServer/web/"
Alias /WSsamples "D:/WebSphere/AppServer/WSsamples/"
WebSpherePluginConfig D:\WebSphere\AppServer\config\plugin-cfg.xml

If these lines are missing, add them, and stop and start the HTTP server.

� Run First Steps (should be started automatically); otherwise, Program -> IBM
WebSphere -> Application Server V4.0 AEs -> First Steps.

– Start the application server (wait for the command window to complete).

– Launch Administrative Console:

• Login with your system user ID.
• Expand Node - Enterprise applications (you should see the sample

applications).
• Config -> Save.
• Exit.
• Close browser.

– Close First Steps.

– Stop the application server in a command window: stopserver.
 Appendix A. Installation and configuration 381

WebSphere Studio Application Developer
Install Version 4.0.2 of the Application Developer. The instructions for the
exercises have been updated for Version 4.0.2, but the samples also work on
Version 4.0. (The content and sequence of some dialogs and SmartGuides has
changed a little bit.)

Installation procedure:

� Run SETUP.EXE.

� Accept the license.

� Change directory to c:\WSAD (or d:\WSAD).

� Select Java Developer.

� Select CVS as team repository.

� Install.

Verification
� Start WSAD: Programs -> IBM WebSphere Studio Application Developer ->

IBM WebSphere Studio Application Developer.

� You should see the Welcome panel.

� Stop WSAD using File -> Exit.
382 Self-Study Guide: WebSphere Studio Application Developer and Web Services

WebSphere UDDI Registry
Download the UDDI registry code from:

http://www7b.boulder.ibm.com/wsdd/downloads/UDDIregistry.html

You have to register to download the code.

The IBM WebSphere UDDI Registry can be used instead of the IBM Test
Registry for Web Services publishing. This is especially useful for testing on a
machine that is not connected to the Internet.

The IBM WebSphere UDDI Registry is not a complete product at the time of the
writing of this redbook (February 2002):

� The beta code for Windows does not work with the Application Developer for
publishing of business services.

� Later versions may provide the required functionality.

� You can perform the UDDI Explorer exercise using the IBM UDDI Test
Registry.

Installing the WebSphere UDDI Registry
� Follow the instructions that come with the product.

� Install the product into WebSphere Application Server AEs.
 Appendix A. Installation and configuration 383

ITSO workshop sample code
The sample code is available from the Redbooks Web site at:

ftp://www.redbooks.ibm.com/redbooks/SG246407/

Download the sg246407code.zip file and expand to the C drive. Select the
option to use the folder names. This creates a directory structure under:

c:\ws\labscode\ex......

Create DB2 database for exercise
The exercises are based on a DB2 database named ITSOWSAD.

� Open a DB2 command window.

� Go to the directory: c:\ws\labscode\setup

� Run the commands:

db2 -tf itsowsad.ddl (define database and tables)
db2 -tf itsowsad.sql (load sample data into tables)

� The database is created with four tables and sample data:

itso.aaparts, itso.aainventory <=== dealer
itso.mmparts, itso.mminventory <=== manufacturer

� The sample data is listed in Part 2, “Exercises”.
384 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Cloning of machines
You can install one machine and then copy the whole drive to another machine,
but you should then run disconnected, because all machines have the same
machine name.

If you change the machine name to run connected:

� Change the Computer Name (Control Panel -> Network).

� Reboot.

� HTTP Server:

– Edit c:\IBM HTTP Server\conf\httpd.conf:

ServerName xxxxxx.yyyyy.com (xxxx=new computer name)

� WebSphere AEs:

– Edit c:\WebSphere\AppServer\bin\SetupCmdline.bat

SET COMPUTERNAME=xxxxxx

– Edit the files:

• c:\WebSphere\AppServer\config\server-cfg.xml
• c:\WebSphere\AppServer\config\server-cfg.xml~
• c:\WebSphere\AppServer\config\template-server-cfg.xml~
• c:\WebSphere\AppServer\config\admin-server-cfg.xml

and change the line:

<nodes xmi:id="Node_1" name="xxxxxx">

Performing the exercises
After the products are installed, you can perform the exercises.

Sample code
The instructions refer to c:\ws\labscode\xxxxx, and that is the location where
you should have installed the sample code.
 Appendix A. Installation and configuration 385

386 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246407

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-6407.

B

© Copyright IBM Corp. 2002 387

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246407code.zip Sample code for exercises
sg246407solution.zip Solutions of exercises

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space 3 GB
Operating System Windows NT or Windows 2000
Processor 550 MHz or better
Memory 385 MB, recommended 512 MB

How to use the Web material
Unzip the contents of the Web material sg246407code.zip file onto your hard
drive. This creates a folder structure c:\ws\labscode\exxxxx, where exxxxx
refers to an exercise:

exjava Java development
exdata Relational data center
exxml XML development
exweb Web development
exejb EJB development
exdeploy Deployment of Web and EJB applications
exwscreate Web Service creation
exwsdeploy Web Service deployment
exwsuse Web Service usage
exwsuddi Web Services and UDDI

setup Setup of DB2 database and tables

The sg246407solution.zip file contains a similar folder structure with directories
c:\ws\labssolutions\exxxxx that contain ZIP, WAR, or EAR files with the project
content created in Application Developer.
388 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 391.

� Web Services Wizardry with WebSphere Studio Application Developer,
SG24-6292

� IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

� WebSphere Version 4 Application Development Handbook, SG24-6134

� Programming J2EE APIs with WebSphere Advanced, SG24-6124

� Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server V2.1,
SG24-6284

� EJB Development with VisualAge for Java for WebSphere Application Server,
SG24-6144

� Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

� Programming with VisualAge for Java Version 3.5, SG24-5264
© Copyright IBM Corp. 2002 389

� Version 3.5 Self Study Guide: VisualAge for Java and WebSphere Studio,
SG24-6136

� How about Version 3.5? VisualAge for Java and WebSphere Studio Provide
Great New Function, SG24-6131

� Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755

� Migrating WebLogic Applications to WebSphere Advanced Edition,
SG24-5956

� Self-Service Applications Using IBM WebSphere V4.0 and IBM MQSeries
Integrator, SG24-6160

� Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864

� The XML Files: Using XML for Business-to-Business and
Business-to-Consumer Applications, SG24-6104

� The XML Files: Using XML and XSL with IBM WebSphere V3.0, SG24-5479

Referenced Web sites
These Web sites are also relevant as further information sources:

� Apache SOAP:

http://www.apache.org/soap/

� The Apache XML project:

http://www.apache.org/xerces-j/, http://www.apache.org/xalan-j/

� IBM developerWorks, Web Services zone:

http://www.ibm.com/developerworks/webservices/

� IBM UDDI Business and Test Registries:

http://www.ibm.com/services/uddi

� UDDI Homepage:

http://www.uddi.org

� World Wide Web Consortium (W3C), XML homepage:

http://www.w3c.org/XML

� Web Services Toolkit Version 2.3 on IBM alphaWorks:

http://www.alphaworks.ibm.com/tech/webservicestoolkit

� XMethods Web Service repository:

http://www.xmethods.com/
390 Self-Study Guide: WebSphere Studio Application Developer and Web Services

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order
hardcopy from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 391

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

392 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.
© Copyright IBM Corp. 2002 393

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others
394 Self-Study Guide: WebSphere Studio Application Developer and Web Services

acronyms
AAT application assembly tool

ACL access control list

API application programming
interface

BLOB binary large object

BMP bean-managed persistence

CCF Common Connector
Framework

CICS Customer Information Control
System

CMP container-managed
persistence

CORBA Component Object Request
Broker Architecture

DBMS database management
system

DCOM Distributed Component
Object Model

DDL data definition language

DLL dynamic link library

DML data manipulation language

DOM document object model

DTD document type description

EAB Enterprise Access Builder

EAI Enterprise Application
Registration

EAR enterprise archive

EIS Enterprise Information
System

EJB Enterprise JavaBeans

EJS Enterprise Java Server

FTP File Transfer Protocol

GUI graphical user interface

HTML Hypertext Markup Language

Abbreviations and
© Copyright IBM Corp. 2002
HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IDE integrated development
environment

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IMS Information Management
System

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JAF Java Activation Framework

JAR Java archive

JDBC Java Database Connectivity

JDK Java Developer’s Kit

JFC Java Foundation Classes

JMS Java Messaging Service

JNDI Java Naming and Directory
Interface

JSDK Java Servlet Development Kit

JSP JavaServer Page

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

MFS message format services

MVC model-view-controller

OLT object level trace

OMG Object Management Group

OO object oriented
 395

OTS object transaction service

RAD rapid application development

RDBMS relational database
management system

RMI Remote Method Invocation

SAX Simple API for XML

SCCI source control control
interface

SCM software configuration
management

SCMS source code management
systems

SDK Software Development Kit

SMR Service Mapping Registry

SOAP Simple Object Access
Protocol (a.k.a. Service
Oriented Architecture
Protocol)

SPB Stored Procedure Builder

SQL structured query language

SRP Service Registry Proxy

SSL secure socket layer

TCP/IP Transmission Control
Protocol/Internet Protocol

UCM Unified Change Management

UDB Universal Database

UDDI Universal Description,
Discovery, and Integration

UML Unified Modeling Language

UOW unit of work

URL uniform resource locator

VCE visual composition editor

VXML voice extensible markup
language

WAR Web application archive

WAS WebSphere Application
Server

WML Wireless Markup Language

WS Web Service

WSBCC WebSphere Business
Components Composer

WSDL Web Service Description
Language

WSTK Web Service Development Kit

WTE WebSphere Test Environment

WWW World Wide Web

XMI XML metadata interchange

XML eXtensible Markup Language

XSD XML schema definition
396 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Index

A
AAINVENTORY table 19
AAPARTS table 19
access bean 150, 159
access point 236, 283
administrative application 244, 261
administrative console 179, 180
AE 174
AEd 132, 175
AEs 132, 174
agenda 6
agent 59, 188
Agent Controller

debugging 78
installation 37
performance analysis 188
platforms 189
remote testing 175

alphaWorks 248
Animated GIF Designer 125
Ant 52, 77
Apache SOAP server 230
Application Assembly Tool 161, 181
Application Developer 29

create Web services 251
deployment 173
EJB development 145
features 35
import 41
installation 37, 382
Java development 63
overview 23, 34
perspective 40
profiling 185
projects 40
Relational Schema Center 85
team development 199
testing 132
UDDI explorer 287
using Web Services 269
Web development 117
Web Services overview 219
XML development 99
© Copyright IBM Corp. 2002
architecture 33
associations

EJB 150, 157
auto parts association 14, 282
automobile dealership 11

B
baseline 203
batch command 180
bean-managed persistence 147
binding template 236, 282
BLOB 112
Bookmark

view 70
bookmark 70
bottom-up mapping 162
branch 203
breakpoint 78, 305
Breakpoints

view 50, 79
broker 226
build 53, 77
build path 303
business

entity 236, 282, 289, 292
logic 120
service 236, 282, 289

C
cache 159
cardinality 158
catch-up 60, 203, 212
categorization 238
CCLT 33, 60, 200
CGI 221
CICS

transaction 120
class statistics 192, 347
classpath variable 303
ClearCase Light

see CCLT
client proxy 262, 275
cloning 385
 397

code
assist 53, 55, 70, 107, 301
formatting 74, 81

color view 45
column 92
command

bean 120
COMMAREA 120
composer 163
concurrency 204
Concurrent Version System

see CVS
configuration 379
conflict 212
connection

database 87, 90
pooling 130

Console
view 44, 69, 79

container-managed persistence 147
context root 322
controller servlet 130
converter 163
cookie 139
copy helper 159
custom finder 160
CVS 33, 60, 200

ignore 214
installation 207

D
Data

Perspective 48, 89
view 48, 88, 310

data
bean 120
class access bean 159
source 49, 137, 167

Database
wizard 124, 128, 325

database
connection 87
definition 89
descriptors 87
objects 92

DB Explorer
view 48, 88, 90, 310

DB2 380

command window 312
installation 380

DDL 58, 87
import 311

dds.xml 244, 253, 260, 264
Debug

perspective 50, 78, 79, 303
debugger 53
debugging 141
deployed code 165
deployment 173

descriptor 127
EJB 150
J2EE 121
Web Services 265

Design
view 104, 125

developerWorks 248
Display

view 79
document access definition 112
DOM API 108, 113
domWriter 277
DTD 55, 102

editor 105
import 316

dynamic Web Services 242, 282

E
EAR

file 41, 121
project 56, 121, 132, 175

eclipse 32
EJB

application 149
associations 157
container 148
deployed code 165
deployment descriptor 150, 154
development 145, 153
editor 46, 152
extension editor 46, 152
inheritance 157
JAR file 121, 151, 357
mapping 154, 162, 332
migration 166
project 121, 153
query language 160
398 Self-Study Guide: WebSphere Studio Application Developer and Web Services

SmartGuide 156
specification 42, 147
testing 167
tooling 150
universal test client 168
validator 166

ejbModule 155
Ejbql 160
encoding 229
enterprise archive 121
Enterprise Developer 29
Enterprise Integrator 29
entity

bean 330
EJB 147

example
Web Services 247

execution flow 192, 347
Exercise

create Web Service 267, 349
deploy Web Service 268, 361
deployment 183, 339
EJB development 172, 329
Java development 83, 299
profiling 198, 345
Relational Schema Center 97, 309
UDDI explorer 296
UDDI registry 369
using a Web Service 285, 365
Web development 143, 321
XML development 115, 315

extension
editor 152
point 33, 60

F
filter 310
findByPrimaryKey 169
font 81
foreign key 92
format

code 74
FTP 41, 54

G
garbage collection 193, 347
global JNDI name 161, 181
graphics editing framework 33

H
heap 192, 347
Help

Perspective 51
help

hover 70
online 51

Hierarchy
view 44

hierarchy 75
home interface 148, 160, 169
Homepage Builder 30
host variable 312
hover help 70, 301
HTML

form 130, 149
HTTP server 178

I
IBM Test Registry 370
IBM WebSphere UDDI Registry 370
icon

Debug 78
Web perspective 124

import 41
declarations 302
statement 81

inheritance 150
EJB 157

Inspector
view 50, 79

installation 37, 379
Application Developer 382
DB2 380
WebSphere Application Server 381
WebSphere UDDI Registry 383
Windows NT/2000 379

Internet Explorer 379
ISD file 260
ITSOWSAD

database 83, 115, 143, 310, 384

J
J2EE

application 121, 151
environment 148
hierarchy 121, 151
Perspective 46, 152
 Index 399

tooling 56
view 46, 152, 155

JAR
file 41, 65

external 81
JAR file 151
Java

build path 80
editor 70
import 303
integrated development environment 53
Naming and Directory Interface 148
package 300
Perspective 44, 68, 300
preferences 81
project 64, 65, 300
runtime library 80, 81
search 71
tooling 53
Virtual Machine 188

Profiler Interface 189
JavaBean

from XML 113
wizard 124, 128
wrapper 159

JDBC
2.0 activation 380
driver 49, 90, 135, 137, 167, 180

JDK 53
JIT compiler 135, 191
JNDI 148

explorer 168
name 161, 167

jpage 76, 306
JRE 53, 65
JSP 120

debugging 54, 141
taglib 128, 131

JVMPI 189

K
key field 156
keyword

highlighting 70

L
lab exercises 20
launcher 80

Links
view 45, 122

local
history 301
JNDI name 161, 181, 336
server 133
testing 175

M
manufacturer

parts 14
vehicle 13

mapping
EJB 154, 162
tool 164
XML 108

meet-in-the-middle 162
memory requirements 9, 36
merge 217
message style 227
meta object framework 33
META-INF

EJB 154
method statistics 192, 347
migration

EJB 166
mime type 139
MMINVENTORY table 19
MMPARTS table 19
model-view-controller 119
Monitors

view 346
move 72
MVC 119

N
NAICS 238
Navigator

view 45, 69, 91, 122, 152, 155, 310
Netscape 379

O
object

clipboard 170
references 192, 347

objectives 4
open source 32
400 Self-Study Guide: WebSphere Studio Application Developer and Web Services

optimistic concurrency 204
Outline

view 44, 69, 79, 105, 122

P
package 300
Packages

view 44, 69, 306
packaging 31
Page Designer 45, 54, 122, 125
Palette

view 45
parallel development 216
performance 185

analysis 187
tooling 59

Perspective
Data 48, 89
EJB 152
Help 51
J2EE 46
Java 44, 68
Server 49, 137
Team 208
Web 45, 122

perspective 28, 40, 43
Debug 50, 78, 79
Profiling 190
Resource 310
XML 47, 103

platforms 36
plug-in 33
port 138, 340, 362
preferences 39, 74

Java 81
prerequisites 5
Preview

view 125
primary key 92, 160
Processes

view 79
Profiling

perspective 190
profiling 185

tools 187
project 40

build 77
create 66

properties 80
resources 67
version 215

Properties
view 45

properties
project 80

provider 226, 255
proxy 241, 244, 246, 253, 275
publish

Web Services 225, 291, 293

R
Rational

ClearCase 60
RDB

tooling 58
redbooks 7
Redbooks Web site 391

Contact us xvii
refactoring 53, 72, 81

SmartGuide 302
Relational Schema Center 85
release 203, 212
remote

interface 148
procedure call 227
server 133, 177
test environment 175, 176
testing 340

rename 72
Repositories

view 208
repository 26, 209
request 257
requestor 226, 272
Resource

perspective 310
Resource History

view 208
resources 65
role name 158
role-based development 26, 28, 52
rowset 159
RPC 227
rpcrouter 228, 262, 275
 Index 401

S
sample

application 10
code 384
database 19

SAX API 113
scrapbook 53, 67, 76, 306
seappinstall 180, 344
Search

view 44, 69, 71, 304
search 53, 71
security 243
Server

Configuration view 49
Perspective 49, 137, 324

server 133
configuration 134, 351
instance 134, 351
project 136
SmartGuide 138
start 140
template 136

servlet 119
SmartGuide 126
Web Services client 280

session 257
bean 334
EJB 147
management 139

shared repository 209
Site Developer 29

features 35
skeleton JavaBean 245
SmartGuide

EJB 156
refactoring 302
server 138
servlet 126

SOAP 220, 224
administration 244, 253, 261
Call object 231, 262, 273, 275
client proxy 241
data model 229
deployment descriptor 244, 253, 260
encoding 229, 252, 270
envelope 228
message 227
server 230, 241, 247
XML message 247

soap.xml 264
soapcfg.jar 264
Source

view 105, 125, 317
SQL

execute 95
mapping to XML 319
query 95
query builder 93, 94, 111, 312
statement 48, 58, 89, 93, 311
wizard 93
XML generation 111

standards 61
startserver 344, 362
stateless session EJB 147
static Web Service 242
stopserver 343, 363, 381
stream 203, 210

merge 217
Styles

view 45
stylesheet editor 125
subtype 75
supertype 75
Synchronize

view 208
synchronize 60, 203, 212

T
tag library 326
Tasks

view 44, 69, 122
TCP/IP Monitoring Server 134
Team

Perspective 208
team

development
terminology 203

repository 80
stream 210

template
server 136

terminology
comparison 206
team development 203
XML 102

test client 246, 256, 263, 273, 276
testing
402 Self-Study Guide: WebSphere Studio Application Developer and Web Services

EJB 167
text

search 71
Thumbnail

view 45, 122
tModel 236, 282, 283
Tomcat 25, 133, 138
top-down mapping 162
trace 59

XSL 110
transaction 149
Type Hierarchy

view 69, 75

U
UDDI 224

API 237
Business Registry 239
explorer 287, 288, 290
Registry 15, 57, 220, 236, 253, 288
server 237
Test Registry 239

UDDI4J 237, 238, 283, 289
UN/SPSC 238
universal test client 56

configuration 135
EJB 168
enable 178
installation 343

URL rewrite 139
UTC

see universal test client
utilities

XML 104

V
validation 42
variable

JAR file 66, 81
Variables

view 50, 79, 141, 305
verification 38
version 203, 212, 215
view 43

bean 120, 128, 130
VisualAge Developer Domain 248
VisualAge for Java 25

EJB 166

W
WAP 221
WAR

file 41, 121
import 54

Web
application

debugging 141
testing 132, 140, 324

browser 140
development 117
interaction 119
module 121
Perspective 45, 122
project 121, 123
resources 122, 125
server 119
tooling 54

Web Art Designer 125
Web Services

client 246, 271
composed 11
creation 252
definition 222
deployment 265
Description Language

see WSDL
development 241
dynamic 11, 242, 282
example 231, 247
flow language 240
JavaBean 254
overview 219
publish 225, 291, 293
security 243
start 261
static 11, 242
stop 261
test client 273, 276
tooling 57
wizard 244, 256, 271

web.xml 121, 127
webApplication 123
WebDav 33
WEB-INF 123
WebSphere

Application Server 132
installation 381

Studio
 Index 403

branding 29
classic 25
product suite 25
Workbench 26, 32

UDDI Registry 239
installation 383

wizard 54, 124, 128, 244
WML 221
workspace 202, 211
WSDL 224

create client 271
development 241
example 233
generated files 253
import 291, 294
overview 232

WSFL 224, 240

X
XALAN 109
XMI file 56, 88
XML

authoring 104
conversion 104
descriptor 103
development 99
DOM tree 280
editor 103, 107
element 105
Extender 112
extender 55
file 102
from SQL 111
JavaBean generation 113
mapping 108, 109, 318
mapping from SQL 319
perspective 47, 103
schema 55, 88, 102, 106, 229, 316
terminology 102
tooling 55
tree 278
usage 101
utilities 104, 108

XSD 102
editor 106

XSL 102
file 278
mapping 55

processor 109, 247
style sheets 103
trace 110
trace editor 319
transformer 278, 280

XSLT 109

Z
ZIP file 41
404 Self-Study Guide: WebSphere Studio Application Developer and Web Services

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

Self-Study Guide: W
ebSphere Studio Application Developer

and W
eb Services

®

SG24-6407-00 ISBN 0738424196

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Self-Study Guide:
WebSphere Studio Application
Developer and Web Services

Teach yourself
WebSphere Studio
Application
Developer

Learn about Web
Services

Create and use Web
Services by example

This IBM Redbook is a self-study guide for the new application
development tool WebSphere Studio Application Developer and for Web
services.

WebSphere Studio Application Developer is the new IBM tool for
Java development for client and server applications. It provides a Java
integrated development environment (IDE) that is designed to provide
rapid development for J2EE-based applications. It is well integrated
with WebSphere Application Server Version 4 and provides a built-in
single server that can be used for testing of J2EE applications.

Web Services are a new breed of Web applications. Web Services are
self-contained, self-describing, modular applications that can be
published, located, and invoked across the Web. Web Services perform
callable functions that can be anything from a simple request to
complicated business processes. Once a Web Service is deployed and
registered, other applications can discover and invoke the deployed
service. The foundation for Web Services are the simple object access
protocol (SOAP), the Web Services description language (WSDL), and
the Universal Description, Discovery, and Integration (UDDI) registry.

This redbook consists of two parts: a presentation guide and an
exercise guide. The presentation guide explains the new tool and Web
services. The exercise guide provides detailed instructions to perform
exercises using WebSphere Studio Application Developer. The sample
code used for the exercises is available for download at the Redbooks
Internet site. The sample code also includes the solutions that can be
loaded and studied.

Back cover

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 Presentations
	Unit 1. Workshop Introduction
	Visual 1-2 Objectives
	Visual 1-3 Prerequisites
	Visual 1-4 Agenda
	Visual 1-5 ITSO Redbooks
	Visual 1-6 Web Services Redbook
	Visual 1-7 Summary
	Visual 1-8 Sample Application
	Visual 1-9 Automobile Dealership Parts Inventory
	Visual 1-10 Stage 1: Local Dealership Inquiry
	Visual 1-11 Stage 2: Inquiry on Vehicle Manufacturer
	Visual 1-12 Stage 3: Dynamic Inquiry Manufacturers - 1
	Visual 1-13 Stage 3: Dynamic Inquiry Manufacturers - 2
	Visual 1-14 Stage 4: Cross-Dealership Inquiry - 1
	Visual 1-15 Stage 4: Cross-Dealership Inquiry - 2
	Visual 1-16 System Diagram
	Visual 1-17 Database Implementation
	Visual 1-18 Lab Exercises
	Visual 1-19 Summary

	Unit 2. Application Developer:��� Overview
	Visual 2-2 Objectives
	Visual 2-3 WebSphere Studio Product Suite
	Visual 2-4 Ultimate Development Environment
	Visual 2-5 Ultimate Development Environment Features
	Visual 2-6 Role-based Development
	Visual 2-7 WebSphere Studio Branding
	Visual 2-8 Product Functions
	Visual 2-9 Product Packaging
	Visual 2-10 What is the Studio Workbench?
	Visual 2-11 Workbench Architecture
	Visual 2-12 Application Developer Overview
	Visual 2-13 Application Developer Components
	Visual 2-14 Prerequisites and Platforms
	Visual 2-15 Installation
	Visual 2-16 Verification
	Visual 2-17 Window Preferences
	Visual 2-18 Workbench: Projects and Perspectives
	Visual 2-19 Project Import
	Visual 2-20 Project Validation
	Visual 2-21 Perspectives
	Visual 2-22 Java Perspective
	Visual 2-23 Web Perspective
	Visual 2-24 J2EE Perspective
	Visual 2-25 XML Perspective
	Visual 2-26 Data Perspective
	Visual 2-27 Server Perspective
	Visual 2-28 Debug Perspective
	Visual 2-29 Help Perspective
	Visual 2-30 Workbench Key Features
	Visual 2-31 Java IDE
	Visual 2-32 Web Tooling
	Visual 2-33 XML Tooling
	Visual 2-34 J2EE Tooling
	Visual 2-35 Web Services Tooling
	Visual 2-36 RDB Tooling
	Visual 2-37 Performance/Trace Tooling
	Visual 2-38 Team Development
	Visual 2-39 Supported Standards
	Visual 2-40 Summary

	Unit 3. Application Developer:��� Java Development
	Visual 3-2 Objectives
	Visual 3-3 Java Project
	Visual 3-4 Create Project
	Visual 3-5 Create Project Resources
	Visual 3-6 Java Perspective
	Visual 3-7 Java Perspective Layout
	Visual 3-8 Java Editor
	Visual 3-9 Search
	Visual 3-10 Edit Refactoring
	Visual 3-11 Edit Refactoring Preview
	Visual 3-12 Code Formatting
	Visual 3-13 Type Hierarchy
	Visual 3-14 Scrapbook
	Visual 3-15 Building Projects
	Visual 3-16 Debugging
	Visual 3-17 Debug Perspective
	Visual 3-18 Project Properties
	Visual 3-19 Java Preferences
	Visual 3-20 Summary
	Visual 3-21 Exercise: Java Development

	Unit 4. Application Developer:��� Relational Schema Center
	Visual 4-2 Objectives
	Visual 4-3 Application Developer Database Operations
	Visual 4-4 Files: XMI and DDL
	Visual 4-5 Data Perspective
	Visual 4-6 DB Explorer
	Visual 4-7 Navigator View
	Visual 4-8 Creating Database Objects
	Visual 4-9 SQL Statements
	Visual 4-10 SQL Query Builder
	Visual 4-11 SQL Query Execution
	Visual 4-12 Summary
	Visual 4-13 Exercise: Relational Schema Center

	Unit 5. Application Developer:��� XML Development
	Visual 5-2 Objectives
	Visual 5-3 XML Usage Today
	Visual 5-4 XML Terminology
	Visual 5-5 XML Perspective
	Visual 5-6 Authoring Tools
	Visual 5-7 DTD Editor
	Visual 5-8 XSD Editor
	Visual 5-9 XML Editor
	Visual 5-10 XML Utilities
	Visual 5-11 XML-to-XML Mapping
	Visual 5-12 XSL Trace
	Visual 5-13 XML from SQL Query
	Visual 5-14 RDB-to-XML Mapping
	Visual 5-15 JavaBean Generation
	Visual 5-16 Summary
	Visual 5-17 Exercise: XML Development

	Unit 6. Application Developer:��� Web Development
	Visual 6-2 Objectives
	Visual 6-3 Web Interaction: Simple
	Visual 6-4 Web Interaction: Refined
	Visual 6-5 J2EE Hierarchy
	Visual 6-6 Web Perspective
	Visual 6-7 Web Perspective Folders and Files
	Visual 6-8 Web Project Icons and Wizards
	Visual 6-9 Editing of Web Resources
	Visual 6-10 Create Servlet
	Visual 6-11 web.xml Editor
	Visual 6-12 Wizards
	Visual 6-13 Database Wizard - Run
	Visual 6-14 Database Wizard - View Bean Model
	Visual 6-15 Database Wizard - JSP Taglib Model
	Visual 6-16 Testing of Web Applications
	Visual 6-17 Local and Remote Servers
	Visual 6-18 Runtime Support: Servers
	Visual 6-19 Server Configurations and Instances
	Visual 6-20 Runtime and Test Configurations
	Visual 6-21 Server Perspective
	Visual 6-22 Create Configuration and Instance
	Visual 6-23 Configuration Properties
	Visual 6-24 Testing of Web Applications
	Visual 6-25 Debugging of Web Applications
	Visual 6-26 Summary
	Visual 6-27 Exercise: Web Development

	Unit 7. Application Developer:��� EJB Development
	Visual 7-2 Objectives
	Visual 7-3 EJB Review
	Visual 7-4 EJBs in J2EE Environment
	Visual 7-5 Typical EJB Application
	Visual 7-6 EJB Tooling
	Visual 7-7 J2EE Hierarchy
	Visual 7-8 J2EE Perspective
	Visual 7-9 EJB Development Roadmap
	Visual 7-10 EJB Project
	Visual 7-11 J2EE and Navigator View
	Visual 7-12 Create EJB
	Visual 7-13 IBM Extensions: Inheritance and Associations
	Visual 7-14 Extension Editor: Associations
	Visual 7-15 IBM Extension: Access Beans
	Visual 7-16 Customer Finder Methods
	Visual 7-17 EJB 1.1 JNDI Names
	Visual 7-18 Entity EJB-to-RDB Mapping
	Visual 7-19 Entity EJB-to-RDB Mapping Details
	Visual 7-20 Entity EJB-to-RDB Mapping File
	Visual 7-21 Generate Deployed Code
	Visual 7-22 Migration from VisualAge for Java
	Visual 7-23 EJB Testing
	Visual 7-24 Universal Test Client
	Visual 7-25 Universal Test Client Run
	Visual 7-26 Universal Test Client Functionality
	Visual 7-27 Summary
	Visual 7-28 Exercise: EJB Development

	Unit 8. Application Developer:��� Deployment to WebSphere
	Visual 8-2 Objectives
	Visual 8-3 Testing of Applications and EJBs
	Visual 8-4 Publishing and Testing
	Visual 8-5 Defining a Remote AEs Server
	Visual 8-6 Remote AEs Server
	Visual 8-7 Administrative Console of AEs
	Visual 8-8 Installing an Application into AEs or AE
	Visual 8-9 Deployment Activities
	Visual 8-10 Summary
	Visual 8-11 Exercise: Deployment

	Unit 9. Application Developer:��� Profiling Tools
	Visual 9-2 Objectives
	Visual 9-3 Overview
	Visual 9-4 Architecture
	Visual 9-5 Remote Agent Controller
	Visual 9-6 Profiling Perspective
	Visual 9-7 Profiling in WebSphere Test Environment
	Visual 9-8 Viewers: Class - Method - Heap
	Visual 9-9 Viewers: Objects - Execution Flow
	Visual 9-10 Viewers Examples: Class - Method
	Visual 9-11 Viewers Examples: Objects - Execution Flow
	Visual 9-12 Hints and Tips
	Visual 9-13 Summary
	Visual 9-14 Exercise: Profiling

	Unit 10. Application Developer:��� Team Development
	Visual 10-2 Objectives
	Visual 10-3 Team Development Architecture
	Visual 10-4 Workspace
	Visual 10-5 Terminology
	Visual 10-6 Optimistic Concurrency Model
	Visual 10-7 Comparison of Version Control Systems
	Visual 10-8 Terminology Comparison
	Visual 10-9 Installing and Configuring CVS
	Visual 10-10 Team Perspective
	Visual 10-11 Connecting to the Repository
	Visual 10-12 Add Project to Repository
	Visual 10-13 Add Project from Repository
	Visual 10-14 Team-Specific Actions
	Visual 10-15 Synchronization
	Visual 10-16 Synchronization - Conflicts and Ignoring
	Visual 10-17 Versioning
	Visual 10-18 Parallel Development
	Visual 10-19 Multiple Streams
	Visual 10-20 Summary

	Unit 11. Web Services Overview
	Visual 11-2 Objectives
	Visual 11-3 Evolution of the Web
	Visual 11-4 What are Web Services?
	Visual 11-5 Web Services Attributes and Examples
	Visual 11-6 Conceptual Web Services Stack
	Visual 11-7 Web Services Components
	Visual 11-8 Web Services Roles
	Visual 11-9 SOAP Introduction
	Visual 11-10 SOAP Message Example
	Visual 11-11 SOAP Data Model
	Visual 11-12 Apache SOAP Server
	Visual 11-13 Service Implementation and Client Example
	Visual 11-14 WSDL Overview
	Visual 11-15 WSDL Interface Example
	Visual 11-16 WSDL Interface Example Binding
	Visual 11-17 WSDL Implementation Example
	Visual 11-18 UDDI Overview
	Visual 11-19 UDDI Server and Registry
	Visual 11-20 UDDI Registry API
	Visual 11-21 UDDI Registries
	Visual 11-22 Web Services Flow Language
	Visual 11-23 Development of Web Services
	Visual 11-24 Static and Dynamic Web Services
	Visual 11-25 Web Services and Security
	Visual 11-26 Create Web Service from Application
	Visual 11-27 Create Web Service from WSDL
	Visual 11-28 Create Client from WSDL
	Visual 11-29 Web Service Example
	Visual 11-30 More Information
	Visual 11-31 Summary

	Unit 12. Creating Web Services
	Visual 12-2 Objectives
	Visual 12-3 Create Web Service from Application
	Visual 12-4 Creating a Web Service
	Visual 12-5 Web Service Example
	Visual 12-6 Web Service Example Generated Code
	Visual 12-7 Web Service Wizard - 1
	Visual 12-8 Web Service Wizard - 2
	Visual 12-9 Web Service Wizard - 3
	Visual 12-10 Generated SOAP Deployment Descriptor
	Visual 12-11 Administrative Application
	Visual 12-12 Generated Client Proxy
	Visual 12-13 Generated Test Client
	Visual 12-14 Testing the new Web Service
	Visual 12-15 Deployment to WebSphere
	Visual 12-16 Summary
	Visual 12-17 Exercise: Create a Web Service
	Visual 12-18 Exercise: Deploy a Web Service

	Unit 13. Using Web Services
	Visual 13-2 Objectives
	Visual 13-3 Create Client from WSDL
	Visual 13-4 Web Service Example
	Visual 13-5 Web Service Example Generated Code
	Visual 13-6 Web Service Wizard
	Visual 13-7 Generated Client Proxy
	Visual 13-8 Test Client
	Visual 13-9 Test Client Result JSP Processing
	Visual 13-10 Creating a Client Application
	Visual 13-11 Client Application Run
	Visual 13-12 Servlet Code with Proxy and XSL
	Visual 13-13 XSL to transform XML into HTML
	Visual 13-14 Application with Dynamic Web Services
	Visual 13-15 Dynamic Web Service: Sample Code
	Visual 13-16 Summary
	Visual 13-17 Exercise: Using a Web Service

	Unit 14. Web Services and the UDDI Explorer
	Visual 14-2 Objectives
	Visual 14-3 UDDI Explorer and UDDI Registry
	Visual 14-4 UDDI Explorer
	Visual 14-5 UDDI Explorer Function
	Visual 14-6 Publish Business Entity
	Visual 14-7 Publish Business Service
	Visual 14-8 Importing a WSDL File
	Visual 14-9 Summary
	Visual 14-10 Exercise: UDDI Explorer

	Part 2 Exercises
	Sample data

	Exercise 1. Java development
	Exercise instructions
	Define a Java project
	Create a package and a class
	Complete the code
	Code assist and hover help
	Outline view
	Replace from local history
	Smart import assist
	Extracting a method
	Running the application
	Setting the build path
	Import a Java source file
	Search
	Run GUI program
	Debugging
	Type hierarchy (optional)
	Rename (optional)
	Scrapbook page (optional)

	What you did in this lab

	Exercise 2. Relational Schema Center
	Exercise instructions
	Define a project for relational database
	Create a database connection and import tables
	Create a database and a table
	Generate, import, and run DDL
	SQL Query Builder (optional)

	What you did in this lab

	Exercise 3. XML development
	Exercise instructions
	Define a Java project and import files
	Edit DTD and XML schema
	Work with XML files
	Generate an HTLM form
	XML to XML mapping
	Translating an XML file
	SQL to XML mapping (optional)

	What you did in this lab

	Exercise 4. Web development
	Exercise instructions
	Define a Web project
	Import a Web application
	Complete the code
	Preparing a server for testing
	Test the Web application
	Using the Database wizard
	Configure data source and test
	Export Web application as WAR file
	Using the Database wizard and generate JSPs (optional)
	Debugging JSPs (optional)

	What you did in this lab

	Exercise 5. EJB development
	Exercise instructions
	Define an EJB project
	Create an entity bean
	Editing the bean
	Complete the bean with create and business methods
	Home and remote interface
	Create the mapping to the database table
	Generate deployed code
	Bind the container to a DataSource
	Testing the inventory bean
	Creating a session bean (optional)
	Test the session bean (optional)
	Add a servlet and HTML file
	Run the servlet application

	What you did in this lab

	Exercise 6. Test and deploy using WebSphere AEs
	Exercise instructions
	Prepare Web application dependency
	Configure a server for remote testing in WebSphere AEs
	Test the applications in the remote AEs server
	Prepare WebSphere AEs for deployment of applications
	Deploying an enterprise application to AEs
	Installing the universal test client in AEs (optional)
	Stop the AEs server

	What you did in this lab

	Exercise 7. Profiling an application
	Exercise instructions
	Configure server instance
	Agent Controller
	Start the server
	Configure the host
	Trace an application
	Trace analysis
	Close down

	What you did in this lab

	Exercise 8. Create a Web Service
	Exercise instructions
	Import an EJB project
	Define a server configuration and instance
	Create a Web project for the Web Service
	Copy the server JavaBean from the EJB project
	Create the Web Service from the JavaBean
	Generated files
	View deployed Web Service
	Client proxy
	Sample client
	Monitoring a Web Service (optional)

	What you did in this lab
	Addendum: how the EJB JAR file was created

	Exercise 9. Deploy and test a Web Service
	Exercise instructions
	Prepare the Web application
	Prepare WebSphere AEs for port 8080
	Install the EAR file with EJBs and Web applications
	Testing the deployed Web Service

	What you did in this lab

	Exercise 10. Using a Web Service in a client application
	Exercise instructions
	Define a Web project for the client
	Start the server
	Generate the Web Service proxy and sample client
	Test the sample client
	Build the client application
	Test the client application
	Deploy the client application (optional)

	What you did in this lab

	Exercise 11. Web Service publishing in the UDDI registry
	Which UDDI registry to use
	Exercise instructions
	Register a user ID and password
	Connecting to the registry
	Creating a business entity in the registry
	Publishing a Web Service to the registry
	Finding a Web Service in the registry
	Importing a Web Service from the test registry

	Application with dynamic Web Services (optional)
	Test the dynamic Web Services (optional)

	What you did in this lab

	Part 3 Appendixes
	Appendix A. Installation and configuration
	Windows NT or Windows 2000
	Browser

	DB2 Version 7.2 Enterprise Edition (or 7.1 Fixpack 3)
	Create sample database
	Change to JDBC 2.0

	WebSphere Application Server Advanced Version 4
	WebSphere Studio Application Developer
	WebSphere UDDI Registry
	ITSO workshop sample code
	Create DB2 database for exercise

	Cloning of machines
	Performing the exercises
	Sample code

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Abbreviations and acronyms
	Index
	Back cover

