U software = =°

Self-Study Guide:

WebSphere Studio Application
Developer and Web Services

Teach yourself WebSphere Studio
Application Developer

)

Learn about Web Services

~ Create and use Web
Services by example

Ueli Wahli

ibm.com/redbooks REd h OOkS

International Technical Support Organization

Self-Study Guide: WebSphere Studio Application
Developer and Web Services

February 2002

SG24-6407-00

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 393.

First Edition (February 2002)

This edition applies to WebSphere Studio Application Developer Version 4 for use with the
Windows 2000 and Windows NT Operating System.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2

650 Harry Road

San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001, 2002. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface XV
The team that wrote thisredbook. XVi
Special notice. XVi
IBMtrademarks XVii
Comments Welcome. Xvii
Part 1. Presentations 1
Unit 1. Workshop Introduction. 3
Objectives 4
Prerequisites 5
AQENa . . . e 6
ITSO Redbooks.o 7
Web Services Redbook. 8
SUMMANY . . o e 9
Sample Application 10
Automobile Dealership Parts Inventory. 11
Stage 1: Local Dealership Inquiryo i 12
Stage 2: Inquiry on Vehicle Manufacturer. 13
Stage 3: Dynamic Inquiry Manufacturers-1......... 14
Stage 3: Dynamic Inquiry Manufacturers - 2. 15
Stage 4: Cross-Dealership Inquiry - 1. 16
Stage 4: Cross-Dealership Inquiry - 2. i 17
System Diagram 18
Database Implementation. 19
Lab EXercises e 20
SUMMANY . . o 21
Unit 2. Application Developer: Overview......................... 23
Objectives 24
WebSphere Studio Product Suite 25
Ultimate Development Environment 26
Ultimate Development Environment Features 27
Role-based Development 28
WebSphere Studio Branding. 29
Product Functions e 30
Product Packagingt 31
What is the Studio Workbench? 32

© Copyright IBM Corp. 2002 iii

iv

Workbench Architecture 33

Application Developer Overviewt 34
Application Developer Components i, 35
Prerequisites and Platforms 36
Installation. e 37
Verification e 38
Window Preferences. 39
Workbench: Projects and Perspectives 40
Project Import 41
Project Validation e 42
Perspectives 43
Java Perspective. 44
Web Perspective. 45
J2EE Perspective 46
XML Perspective e 47
Data Perspective. e 48
Server Perspective 49
Debug Perspective e 50
Help Perspective. 51
Workbench Key Features i 52
Java lDE 53
Web Toolingo 54
XML TOOlNG . . oot e 55
J2EE Tooling. . .. e 56
Web Services ToOlINGot 57
RDB TOOlNG . . .t e e 58
Performance/Trace Tooling. e 59
Team Development. 60
Supported Standards 61
SUMMANY . . o 62
Unit 3. Application Developer: Java Development 63
Objectives 64
Java Project 65
Create Project 66
Create ProjeCt RESOUICeSo oo e 67
Java Perspective. 68
Java Perspective Layout. 69
dJava Editor 70
SearCh. . 71
Edit Refactoring. 72
Edit Refactoring Preview. 73
Code Formatting i 74

Self-Study Guide: WebSphere Studio Application Developer and Web Services

Type Hierarchy 75

SCrapbooK. 76
Building Projects 77
Debugging. . . o oo e 78
Debug Perspective e 79
Project Properties 80
Java Preferences 81
SUMMANY . . o e 82
Exercise: Java Development. 83
Unit 4. Application Developer: Relational Schema Center........... 85
Objectives 86
Application Developer Database Operations 87
Files: XMl and DDL.o e 88
Data Perspective. 89
DB EXplorer. . ..o 90
Navigator View e 91
Creating Database Objects. i 92
SQL Statements 93
SQL Query Builder 94
SQL Query Execution 95
SUMMANY . . o 96
Exercise: Relational Schema Center 97
Unit 5. Application Developer: XML Development 99
Objectives 100
XML Usage Todayt e e 101
XML Terminologyo e 102
XML Perspectiveo e 103
Authoring TooIso 104
DTD Editor 105
XSD Editor .. oo 106
XML Editor ..o 107
XML ULIItIES . .o e 108
XML-to-XML Mapping oo o e 109
XSOL TraCe . o o oot e 110
XML from SQLQUENY . . . oo e 111
RDB-to-XML Mapping.o oo e 112
JavaBean Generation 113
SUMMANY. . o 114
Exercise: XML Development. 115
Unit 6. Application Developer: Web Development 117
Objectives 118

Contents VvV

vi

Web Interaction: Simple
Web Interaction: Refined.
J2EE Hierarchyo L
Web Perspective.
Web Perspective Folders and Files
Web Project Icons and Wizards
Editing of Web Resources.
CreateServlet.
web.xml Editor.
Wizards
Database Wizard -Run......................
Database Wizard - View Bean Model
Database Wizard - JSP Taglib Model
Testing of Web Applications
Local and Remote Servers
Runtime Support: Servers.
Server Configurations and Instances
Runtime and Test Configurations
Server Perspective
Create Configuration and Instance
Configuration Properties
Testing of Web Applications
Debugging of Web Applications
Summary.
Exercise: Web Development.

Unit 7. Application Developer: EJB Development
Objectives o
EJBReview.
EJBs in J2EE Environment.
Typical EJB Application.
EJBTooling.
J2EE Hierarchy oL
J2EE Perspective L
EJB Development Roadmap.
EJB Project.
J2EE and Navigator View
CreateEJB
IBM Extensions: Inheritance and Associations. . ..
Extension Editor: Associations
IBM Extension: AccessBeans
Customer Finder Methods.
EJB1.1JNDINames

Self-Study Guide: WebSphere Studio Application Developer and Web Services

Entity EJB-to-RDB Mapping oo 162

Entity EJB-to-RDB Mapping Details 163
Entity EJB-to-RDB Mapping File. 164
Generate Deployed Code i 165
Migration from VisualAge forJava 166
EJB Testing. . .. oo 167
Universal TestClient. 168
Universal TestClientRun 169
Universal Test Client Functionality 170
SUMMANY. . . 171
Exercise: EJB Development 172
Unit 8. Application Developer: Deployment to WebSphere 173
Objectives 174
Testing of Applicationsand EJBs, 175
Publishingand Testing e 176
Defininga Remote AEsS Server. i 177
Remote AES Server e 178
Administrative Console of AES 179
Installing an Application into AEsor AE 180
Deployment Activities 181
SUMMANY . . . 182
Exercise: Deployment 183
Unit 9. Application Developer: ProfilingTools 185
Objectiveso 186
OVBIVIBW . o o 187
Architecture. 188
Remote Agent Controller. 189
Profiling Perspective 190
Profiling in WebSphere Test Environment 191
Viewers: Class - Method-Heap i, 192
Viewers: Objects - Execution Flow 193
Viewers Examples: Class - Method 194
Viewers Examples: Objects - Execution Flow. 195
Hintsand Tips e 196
SUMMANY. . . 197
Exercise: Profiling 198
Unit 10. Application Developer: Team Development............... 199
Objectives 200
Team Development Architecture. 201
WOrKSPaCEt e 202
Terminologyo 203

Contents Vii

viii

Optimistic Concurrency Model 204

Comparison of Version Control Systems 205
Terminology Comparison 206
Installing and ConfiguringCVS 207
Team Perspective. 208
Connecting to the Repository 209
Add Project to Repository 210
Add Project from Repository 211
Team-Specific ACtiONS e 212
Synchronization. 213
Synchronization - Conflicts and Ignoring. 214
VerSIONING . . o e e 215
Parallel Development 216
Multiple Streams 217
SUMMANY. . o 218
Unit 11. Web Services Overview 219
Objectives 220
Evolutionofthe Web. 221
What are Web Services? 222
Web Services Attributes and Examples L. 223
Conceptual Web Services Stack. 224
Web Services Components. i 225
Web Services Roles 226
SOAP Introduction 227
SOAP Message Example 228
SOAP DataModel. 229
Apache SOAP Server 230
Service Implementation and Client Example 231
WSDL OVEIVIEW . . o ot e 232
WSDL Interface Example 233
WSDL Interface Example Binding. 234
WSDL Implementation Example i 235
UDDIOVEIVIEW . . o ettt e e e e e e e e 236
UDDI Serverand Registry. 237
UDDI Registry APl 238
UDDI Registries 239
Web Services Flow Language, 240
Developmentof Web Services 241
Static and Dynamic Web Services i i 242
Web Services and Security 243
Create Web Service from Application. 244
Create Web Service from WSDL 245

Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create Client from WSDL e 246

Web Service Example. 247
More Information. 248
SUMMANY. . . 249
Unit 12. Creating Web Services 251
Objectives 252
Create Web Service from Application. 253
CreatingaWeb Service 254
Web Service Example. 255
Web Service Example GeneratedCode 256
Web Service Wizard -1 e 257
Web Service Wizard -2 258
Web Service Wizard -3 259
Generated SOAP Deployment Descriptor. 260
Administrative Application. 261
Generated Client Proxy.o 262
Generated TestClient. 263
Testingthenew Web Service 264
Deploymentto WebSphere. 265
SUMMANY . . o e e 266
Exercise: Create aWeb Service L 267
Exercise: DeployaWeb Service. i 268
Unit 13. Using Web Services 269
Objectives 270
Create Client from WSDL i e 271
Web Service Example. 272
Web Service Example GeneratedCode 273
Web Service Wizard e 274
Generated Client Proxy.o 275
Test Client. e 276
Test Client Result JSP Processing i, 277
Creating a Client Application. i 278
Client Application Run. 279
Servlet Code with Proxyand XSL. 280
XSL to transform XML into HTML i 281
Application with Dynamic Web Services. 282
Dynamic Web Service: Sample Code. 283
SUMMANY. . . 284
Exercise: UsingaWeb Service. i 285
Unit 14. Web Services and the UDDI Explorer 287
Objectives 288

Contents X

UDDI Explorer and UDDI Registry 289

UDDI EXpPlOrer. . oo 290
UDDI Explorer Function 291
Publish Business Entity. 292
Publish Business Service i 293
Importinga WSDL File 294
SUMMANY. . . 295
Exercise: UDDI Explorer. 296
Part 2. EXerCisSes. 297
Sampledata 298
Exercise 1. Javadevelopment 299
Exercise instructions 300
Defineadavaproject 300
Createapackageandaclass., 300
Completethecode i 300
Code assistand hoverhelp. 301
Outline View. 301
Replace from local history. 301
Smartimportassist. 302
Extractingamethod 302
Running the application. 302
Settingthebuildpath 303
Importa Java sourcefile. 303
SearCh. . 304
Run GUI programo 304
Debugging. . . oo 305
Type hierarchy (optional), 305
Rename (optional). 306
Scrapbook page (optional) 306
Whatyoudidinthislab........ 307
Exercise 2. Relational SchemaCenter 309
Exercise instructions 310
Define a project for relational database 310
Create a database connection and importtables 310
Create adatabaseandatable 311
Generate, import,andrun DDL. 311
SQL Query Builder (optional) 312
Whatyoudidinthislab. 313

X Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 3. XML development 315

Exercise instructions 316
Define a Java project and importfiles. 316
Edit DTD and XML schema. i 316
Work with XML Afiles. e 317
Generate an HTLM form 318
XML to XML Mappingvvv et e e e 318
Translatingan XMLfile 319
SQL to XML mapping (optional) 319

Whatyoudidinthislab. 320

Exercise 4. Web development 321

Exercise instructions 322
DefineaWeb project. 322
Import a Web application 322
Completethecode i 323
Preparing a serverfortesting 324
Testthe Web application. 324
Using the Database wizard 325
Configure data sourceandtest. 326
Export Web application as WARfile L. 326
Using the Database wizard and generate JSPs (optional) 326
Debugging JSPs (optional) 327

Whatyoudidinthislab........ 327

Exercise 5. EJB development. 329

Exercise instructions 330
Definean EJB project 330
Createanentitybean 330
Editingthe bean 331
Complete the bean with create and business methods 331
Home andremote interface. 332
Create the mapping to the databasetable 332
Generate deployed code. 333
Bind the containertoa DataSource 333
Testing the inventorybean 333
Creating a session bean (optional), 334
Test the session bean (optional) i 335
Add aservletand HTMLfile 335
Run the servlet application 337

Whatyoudidinthislab........ 337

Contents Xi

Exercise 6. Test and deploy using WebSphere AEs 339

Exercise instructions 340
Prepare Web application dependency 340
Configure a server for remote testing in WebSphere AEs 340
Test the applications in the remote AEs server. 341
Prepare WebSphere AEs for deployment of applications. 341
Deploying an enterprise applicationto AEs 342
Installing the universal test client in AEs (optional). 343
Stopthe AES server 344

Whatyoudidinthislab. 344

Exercise 7. Profiling an application. 345

Exercise instructions. 346
Configure serverinstance i 346
Agent Controller 346
Startthe server 346
Configurethe host. 346
Trace an application 347
Trace analysis.o e 347
Close downo 347

Whatyoudidinthislab. 348

Exercise 8. CreateaWeb Service 349

Exercise instructions 350
Importan EdB project 350
Define a server configuration and instance. 351
Create a Web project for the Web Service 352
Copy the server JavaBean from the EJB project 352
Create the Web Service from the JavaBean. 352
Generated files 353
View deployed Web Service 355
ClieNt ProXY . . o 355
Sample client. 355
Monitoring a Web Service (optional). L. 356

Whatyoudidinthislab........ 356

Addendum: how the EJB JAR file was created 357

Exercise 9. Deploy and testa Web Service. 361

Exercise instructions 362
Prepare the Web application. 362
Prepare WebSphere AEs forport 8080 362
Install the EAR file with EJBs and Web applications. 363
Testing the deployed Web Service 363

Whatyoudidinthislab. 363

xii Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise 10. Using a Web Service in a client application 365

Exercise instructions 366
Define a Web project fortheclient 366
Startthe server 366
Generate the Web Service proxy and sampleclient. 366
Testthe sampleclient. i 367
Build the client application. 367
Test the client application 367
Deploy the client application (optional) 368

Whatyoudidinthislab. 368

Exercise 11. Web Service publishing in the UDDI registry 369
Which UDDI registrytouse. 370

Exercise instructions 371
RegisterauserIDand passwordt 371
Connectingtotheregistry i 371
Creating a business entityintheregistry 371
Publishing a Web Service to theregistry 372
Finding a Web Serviceintheregistry 372
Importing a Web Service from the testregistry.. 373

Application with dynamic Web Services (optional). 373
Test the dynamic Web Services (optional) 374

Whatyoudidinthislab........ 375

Part 3. AppendiXes 377

Appendix A. Installation and configuration 379

Windows NT or Windows 2000 it 379
BrOWSEr . . oo 379

DB2 Version 7.2 Enterprise Edition (or 7.1 Fixpack 3). 380
Create sample database. i 380
Change to JDBC 2.0ottt e 380

WebSphere Application Server Advanced Version4................ 381

WebSphere Studio Application Developer. 382

WebSphere UDDI Registry 383

ITSO workshop sample code. i 384
Create DB2 database forexercise 384

Cloningof machines 385

Performing the exercises 385
Sample code 385

Contents Xiii

Appendix B. Additional material 387

Locating the Web material 387
Usingthe Web material i 388

System requirements for downloading the Web material 388

How to use the Web material 388
Related publications 389
IBM RedboOoksS 389
Referenced Web sites 390
HowtogetIBM Redbooks 391

IBM Redbooks collections. 391
Special notices 393
Abbreviations and acronyms e 395
INdeX e 397

xiv Self-Study Guide: WebSphere Studio Application Developer and Web Services

Preface

This IBM Redbook is a self-study guide for the new application development tool
WebSphere Studio Application Developer and for Web Services.

WebSphere Studio Application Developer is the new IBM tool for Java
development for client and server applications. It provides a Java integrated
development environment (IDE) that is designed to provide rapid development
for J2EE-based applications. It is well integrated with WebSphere Application
Server Version 4 and provides a built-in single server that can be used for testing
of J2EE applications.

Web Services are a new breed of Web applications. Web Services are
self-contained, self-describing, modular applications that can be published,
located, and invoked across the Web. Web Services perform callable functions
that can be anything from a simple request to complicated business processes.
Once a Web Service is deployed and registered, other applications can discover
and invoke the deployed service. The foundation for Web Services is based on
the simple object access protocol (SOAP), the Web Services description
language (WSDL), and the Universal Description, Discovery, and Integration
(UDDI) registry.

This redbook consists of two parts, a presentation guide and an exercise guide:

» The presentation guide explains the new tool and Web Services.

» The exercise guide provides detailed instructions to perform exercises using
WebSphere Studio Application Developer. The sample code used for the
exercises is available for download at the Redbooks Internet site. The sample
code also includes the solutions that can be loaded and studied.

© Copyright IBM Corp. 2002 XV

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Ueli Wahli is a Consultant IT Specialist at the IBM
International Technical Support Organization in San
Jose, California. Before joining the ITSO 18 years
ago, Ueli worked in technical support at IBM
Switzerland. He writes extensively and teaches IBM
classes worldwide on application development,
object technology, VisualAge for Java, WebSphere
Studio, and WebSphere Application Server products.
Ueli holds a degree in Mathematics from the Swiss
Federal Institute of Technology.

Most of the content of this book is based on the redbook Web Services Wizardry
with WebSphere Studio Application Developer, SG24-6292, written by:

» Mark Tomlinson, IBM Application and Integration Middleware technical sales
team, London, England

» Olaf Zimmermann, Consulting IT Architect at IBM Global Services, BIS
e-business Integration Services, Heidelberg, Germany

» Wouter Deruyck, consultant for the EMEA AIM Partner Technical
Enablement Team, La Hulpe, Belgium

» Denise Hendriks, Managing Director and WebSphere Architect with
Perficient, Inc.

Special notice

This publication is intended to help Java developers create client and server
applications on the WebSphere platform, including the creation and usage of
Web Services. The information in this publication is not intended as the
specification of any programming interfaces that are provided by WebSphere
Studio Application Developer. See the PUBLICATIONS section of the IBM
Programming Announcement for WebSphere Studio Application Developer for
more information about what publications are considered to be product
documentation.

Xvi Self-Study Guide: WebSphere Studio Application Developer and Web Services

http://www.ethz.ch
http://www.ethz.ch

IBM trademarks

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

e (logo)® @ IBM ® Redbooks
Redbooks Logo (€@ AIX AlphaWorks

CICSs DB2 IBM Global Network
IBM Registry IMS MQSeries

NetRexx 0S/390 S/390

WebSphere VisualAge z/0S

Comments welcome

Your comments are important to us!
We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:

ibm. com/redbooks
» Send your comments in an Internet note to:

redbook@us. ibm.com

» Mail your comments to the address on page ii.

Preface XVii

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Xviii Self-Study Guide: WebSphere Studio Application Developer and Web Services

Part 1

Presentations

This presentation guide is structured into 14 units:
» A short introduction
» Nine units on WebSphere Studio Application Developer

» Four units on Web Services

© Copyright IBM Corp. 2002

2 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Workshop Introduction

ibm.com

@ Web Services
e-business Studio Application Developer

Workshop Introduction

Redhooks

International Technical Support Organization

Visual 1-1 Title

© Copyright IBM Corp. 2002

Obijectives

Understand the new IBM application development tool

0 WebSphere Studio Application Developer
» Projects

Perspectives and views

Java, XML, Web, EJB, database development

WebSphere Test Environment

Profiling

Team development

yvyVvyYyy

Understand Web Services
0 Technology
0 Creating Web Services
0 Using Web Services
0 Composing new applications with Web Services
0 Using the UDDI Registry

Practical experience with new product and Web Services

Visual 1-2 Objectives

The objectives for this class are two-fold:

» Understand and work with the WebSphere Studio Application Developer
» Understand the new technology of Web Services

Most of the learning occurs by doing the practical lab exercises using the

WebSphere Studio Application Developer and WebSphere Application Server
Advanced Edition Single Server.

4 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Prerequisites for this class
0O Basic understanding of Web Server/Application Server concepts

0 Practical experience with VisualAge for Java
» Understanding of JavaBeans
» WebSphere Test Environment
0 Some experience with WebSphere Application Server
» Installing Web applications
» Configuring an application server
0 Some knowledge of HTML, JSP, servlets, EJB
» Model-View-Controller pattern

Visual 1-3 Prerequisites

Having extensive experience with existing IBM application development products
is not a prerequisite for this class. A number of beginners have successfully gone
through the class, although beginners may not get through the optional parts of

the exercises in the allocated time frame.

Any experience with Java development tools helps, but the most important thing
is that you have a basic understanding of servlets and JavaServer Pages (JSPs),
because these are used in many of the sample applications.

Unit 1. Workshop Introduction 5

HE

éﬁrci.sn 'S -

N
P

Day 1 Day 2 Day 3
9 Introduction Web Services
Web Development Overview
1 -
0 WSAD Overview Wek» %l%ul% %1 ion L%b Create Web Service

:; UTRRTYTERTT)| Bee pevelopmen Creste o
S ARt 28 Lo et
2 elational Center \
Bl fiteil oo U:;Hff i .LHb

XML Development Profiling L sl
ez

Visual 1-4 Agenda

This is the agenda of the 3-day class, consisting of two days on the Application
Developer tool, and one day on Web Services.

About half the time is spent on lab exercises.

6 Self-Study Guide: WebSphere Studio Application Developer and Web Services

ITSO Redbooks: source for more information

0 International Technical Support Organization
0 Homepage: ibm.com/redbooks

PDF files - Redpieces (drafts) - Sample code - Search I

Servlet and JSP-
Programming

Studio and VisualAge for Java

m ITSO San Jose recent AD Redbooks:
e WebSphere V4 Appl. Dev. Handbook
e Programming J2EE APIs with WebSphere
e EJBs for z/OS and OS/390 CICS Trans. Server
e EJB Development with VA Java for WebSphere
e Programming with VA Java Version 3.5
e Version 3.5 Self-Study Guide: VA Java/Studio
e How about Version 3.5 of VA Java/Studio
¢ Servlet/JSP/EJB Design and Implementation
e Servlet and JSP Programming
e XML Files (2 books)

Visual 1-5 ITSO Redbooks

IBM Redbooks are a great source for technical information on application
development tools. Here is a list of recent redbooks:

SG24-6134
SG24-6124
SG24-6284
SG24-6144

SG24-5264
SG24-6136

SG24-6131

SG24-5754

SG24-5755

WebSphere Version 4 Application Development Handbook
Programming J2EE APIs with WebSphere Application Server
Enterprise JavaBeans for z/0S and OS/390 CICS Transaction
Server

EJB Development with VisualAge for Java for WebSphere
Application Server

Programming with VisualAge for Java Version 3.5

Version 2.5 Self-Study Guide: VisualAge for Java and
WebSphere Studio

How about Version 3.5: VisualAge for Java and WebSphere
Studio Provide Great New Function

Design and Implement Servlets, JSPs, and EJBs for IBM
WebSphere Application Server

Serviet and JSP Programming with IBM WebSphere Studio and
VisualAge for Java

Unit 1. Workshop Introduction 7

Web Services Redbook

SG24-6292 Web Services Wizardry with
WebSphere Studio Application Developer

O Structure similar to workshop Web Services Wizardry

0 Comprehensive explanations of with WebSphere Studio

Web Services architecture Application Developer
0 More complicated examples .

0 Currently a Redpiece

“Using the IBM toolset for Web -
services

http://www.redbooks.ibm.com
» Redbooks Online
» Redpieces

Uedi Wahli
Mark Tomlinson
Olaf Zimmermann

ibm.com/redbooks Red bo Oks

Visual 1-6 Web Services Redbook

A new IBM Redbook, Web Services Wizardry with WebSphere Studio
Application Developer, SG24-6292, is a companion book to this class.

This book covers in great detail many of the concepts that are discussed in this
class. The examples in the redbook are more comprehensive than the simple
examples that we cover in the class.

8 Self-Study Guide: WebSphere Studio Application Developer and Web Services

This is a very technical workshop with many hands-on labs
O Learning through practical experience

Hardware:
0O Fast machines required
0 Memory at least 384 MB, but 512 MB is better

Software:
0 DB2 Version 7.2 (or 7.1 Fixpack 3)
0 WebSphere Application Server Advanced Single Server
0 WebSphere Studio Application Developer
0 WebSphere UDDI Registry

Evaluation forms must be turned in! I

Visual 1-7 Summary

To successfully run the lab exercises of this class, you must have fast machines
with ample memory. The memory is more important than the processor speed,

especially when we run WebSphere Application Server and WebSphere Studio
Application Developer at the same time.

Unit 1. Workshop Introduction 9

Sample Application

ka International Technical Support Organization

Visual 1-8 Sample Application

The class is based on a sample application that is explained in detail in the
redbook Web Services Wizardry with WebSphere Studio Application Developer,
SG24-6292.

10 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Automobile Dealership Parts Inventory

Parts inventory application grows in stages:

0 Local dealership inquiry
simple Web application to browse parts

0 Inquiry on vehicle manufacturer system
search manufacturer national warehouse (if no local stock)
» Web Service with static binding between dealer and manufacturer

0 Dynamic inquiry
search Internet for 3rd-party parts manufacturers
» Web Service with dynamic binding

0 Cross dealership inquiry enablement
network of local dealerships with integrated parts systems
» Composed Web Service (one Web service calling another Web service)

Visual 1-9 Automobile Dealership Parts Inventory

The sample is based on parts inventory applications of an automobile dealership,
the manufacturer of the vehicles, and independent parts manufacturers.

The application grows in four stages:

» Local Web application with servlets and JSPs

» Static Web Service, where the local application interacts with a Web Service
implemented by the vehicle manufacturer

» Dynamic Web Service, where the local application interacts with multiple Web
Services implemented by parts manufacturers

» Composed Web Service, where other dealers invoke the dealership
application, which has been converted into a Web Service, which in turn calls
other Web Services

Unit 1. Workshop Introduction 11

Stage 1: Local Dealership Inquiry

J2EE Web application
0 MVC pattern with servlets, JSPs
0 JDBC access to database

Almaden Autos
Dealership Web Dealership Parts &
Application Server JDBC Inventory Database
Servlets 8
Mechanic
(Browser)
WebSphere AE 4.0 DB2 UDB 7.2

Visual 1-10 Stage 1: Local Dealership Inquiry

In stage 1 we have a simple browser-based Web application, with servlets and
JSPs, that displays parts information from an underlying DB2 database.

A mechanic can look up the database to find out if a certain part is available in
the dealership. If a part is not available, the mechanic has to call the vehicle
manufacturer to have a part shipped from the manufacturer’'s warehouse.

12 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Stage 2: Inquiry on Vehicle Manufacturer

Manufacturer defines Web Service for parts application
0 EJB-based database access
0 Dealer uses Web Service to inquire for parts

Almaden Autos

Dealership Web
Applicat. Server

JDBC

Dealership Parts
& Inventory DB

3

Dealer

Mechanic
(Browser) Manufacturer
SOAP Client
WebSphere AE 4.0 DB2 UDB 7.2
SOAP/HTTP Manufacturer Manufacturer Parts
National Depot & Inventory DB
App. Server
EJB JDBC
SOAP Server JBs
Mighty Motors

Visual 1-11 Stage 2: Inquiry on Vehicle Manufacturer

In stage 2, the vehicle manufacturer converts its existing EJB-based Web
application into a Web Service.

The dealership then enhances its own Web application to invoke the Web
Service. If a part is not available locally, the mechanic can now invoke the Web

Services and get immediate feedback as to where the vehicle manufacturer has
the requested part. (This could be extended to having the requested part

shipped.)

Unit 1. Workshop Introduction

13

Stage 3: Dynamic Inquiry Manufacturers - 1

Almaden Autos

Dealership Web Dealership Parts

HTTP Applicat. Server & Inventory DB

Auto Parts
Association

UDDI Registry

uDDI
SOAP DB

' Server

Mechanic
(Browser)

s
“““
.
e

-
““““
o

----- rid e

Parts LN | T .
Manufacturer -

Manufacturer Manufacturer Parts

National Depot & Inventory DB

App. Server

JDBC
' EJBs
SOAP Server

Mighty Motors

Visual 1-12 Stage 3: Dynamic Inquiry Manufacturers - 1

In stage 3, independent parts manufacturers want to participate in the automated
approach.

The auto parts association (a fictional consortium of manufacturers) implements
a UDDI registry where manufacturers can publish their parts inventory Web
Services (1). The association checks that all Web Services implement the same
interface.

The dealership Web application is now enhanced to dynamically find
implementations of the parts inventory Web Service by querying the UDDI
registry (2), and then invoke the Web Service at the manufacturers’ sites (3).

The mechanic is presented with a list of locations where a requested part is
available.

14 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Stage 3: Dynamic Inquiry Manufacturers - 2

Parts manufacturers implement Web Services

0 Car manufacturer and parts manufacturers register Web Services in
UDDI Registry
» Public registry
» Auto industry registry

0 Dealership finds Web Services in UDDI Registry

» Browser search
» UDDI API enables searches and retrieve of implementer's data

0 Dynamically invokes Web Services to locate parts

» Application may invoke multiple Web Service implementations to locate parts
at any manufacturer

1 - Publish Web Service (manual or SOAP/HTTP)
2 - Find Web Service using SOAP/HTTP

3 - Invoke Web Service at manufacturers

Visual 1-13 Stage 3: Dynamic Inquiry Manufacturers - 2

Parts manufacturers (vehicle manufacturer and independent) publish their Web
Services in a UDDI registry.

The UDDI registry could be a public registry where all the entries of parts
inventory Web Services are under control of the auto parts association, or it
could be a private registry run by the association. Each part manufacturer can
then register their Web Service (1).

Web Services can be located by using a browser interface to the registry, or by
using an API directly from the dealership application (2).

Each Web Service implementation can then be invoked by the dealership Web
application (3).

Unit 1. Workshop Introduction 15

Stage 4: Cross-Dealership Inquiry - 1

Almaden Autos

Dealership Web

Applicat. q
pplicat. Server Dealershlp

Mechanic
(Browser)

Auto Parts
Association
UDDI
Registry

.

SOAP SOAP
Client Server

Plenty Parts

Parts
Manufacturer

O

Manufacturer Manufacturer
National Depot Parts & Inventory

App. Server DB
JDBC
EJBs

Mighty Motors

SOAP Server

SOAP Server

Visual 1-14 Stage 4: Cross-Dealership Inquiry - 1

In stage 4, the dealership Web application is turned into a parts inventory Web
Service as well. Such a service would be available to other dealers that do not
want to implement the dynamic Web Service themselves.

Other dealers can modify their own Web applications to call the primary
dealership Web Service, which in turn invokes the manufacturers’ Web Services
if a part is not available locally.

16 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Stage 4: Cross-Dealership Inquiry - 2

Dealers implement and publish own Web Services

0O Dealer's Web Service uses manufacturers' Web Services
0 Composed Web Services

1 - Publish Web Service (dealer)
2 - Find Web Service using SOAP/HTTP

» Other dealers
3 - Invoke Web Service of dealer

4 - Dealer Web Service invokes manufacturers' Web Services
» Composed Web Service

Visual 1-15 Stage 4: Cross-Dealership Inquiry - 2

The dealership converts their application into a Web Service, and optionally
publishes the Web Service to the UDDI registry (1).

Other dealerships can query the registry to locate parts inventory Web Services
(2). Then they can invoke the Web Service of the primary dealership (3).

If no parts are available at the primary dealership, the Web Service invokes the
manufacturers’ Web Services (4).

Unit 1. Workshop Introduction 17

/

System Diagram

Web Services
Registry

register

Manufacturer

- N\ register
Inventory n search

§ Al n| Dealership

n 1
VehicleManuf. 1 n
PartsManuf. Mechanic

Visual 1-16 System Diagram

This diagram shows all relationships between the parties involved:

'S

There are two type of manufacturers (vehicle manufacturers and independent
parts manufacturers). They can register their Web Services in a UDDI
Registry.

The dealership, which employs mechanics, can query the registry, and cam
also publish its own Web Service to the registry.

The dealership is related to one vehicle manufacturer, who may have many
dealerships.

The dealership may get parts from many parts manufacturers.

The dealership and the manufacturer store parts and inventory data in a
relational database. There can be many inventory records for one part.

In the redbook sample application, we implement a database with part and
inventory tables for a dealer and a manufacturer, and a UDDI registry.

18 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Database Implementation

PARTS (Dealer: AAPARTS, Manufacturer: MMPARTS)

char (10) char (30) varchar (100) double varchar(100)
partNumber hame description weight image_URL
M100000001 | CR-MIRROR-L-01 | Large mirror left... 10.5 mirror01.gif

INVENTORY (Dealéy: AAINVENTORY, Manufacturer: MMINVENTORY)

bigint char(10) integer dec(10,2) char(2) wvarchar(100)
itemNumber | partNumber | quantity cost shelf location
21000002 | M100000001 10 89.99 2A AA - Almaden

Visual 1-17 Database Implementation

The relational database contains two sets of two tables:
» AAPARTS and AAINVENTORY for the dealership
» MMPARTS and MMINVENTORY for the manufacturer

In this example, for the sake of simplicity, the two sets of tables are identical, but
in real life the layout of the tables would be different.

A number of different data types are used for the columns. The choices were

made to illustrate how the Application Developer deals with the different types.
These choices do not reflect real life and best performance.

Unit 1. Workshop Introduction 19

Use WebSphere Studio Application Developer to:

0 Implement local dealership inquiry
Java development, test, debugging
Database development
XML Development
Web development

0 Implement manufacturer EJB application
EJB development
Deployment to WebSphere AEs
Analyze performance (profiling)

0 Create and use Web Service
Create Web Service for manufacturer application
Deployment of Web Service to WebSphere AEs
Use Web Service in dealer application
0 Dynamic Web Services
UDDI registry

Visual 1-18 Lab Exercises

The class consists of lectures and 11 exercises that illustrate many of the
facilities of the Application Developer.

20 Self-Study Guide: WebSphere Studio Application Developer and Web Services

The sample application provides
0O Learning through practical example
0 Understanding of concepts
0 Hands-on exercises with actual data

Visual 1-19 Summary

The sample application illustrates many application development tasks and
provides hands-on practice with most of the tools built into the Application
Developer.

Unit 1. Workshop Introduction 21

22 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer:
Overview

ibm.com

@ Web Services \
e-business Studio Application Developer
. Redbooks

International Technical Support Organization

Visual 2-1 Title

© Copyright IBM Corp. 2002

23

Obijectives

Understand the new set of tools
0 WebSphere Studio Workbench
0 WebSphere Studio Site Developer
0 WebSphere Studio Application Developer
0 WebSphere Studio Enterprise Developer

Understand the basic functionality of the
WebSphere Studio Application Developer
O Projects
0O Perspectives

0 Tooling
» Java, Web, J2EE, Web Services, XML, Database, Tracing, Team

Visual 2-2 Objectives

The objectives of this unit are to provide an overview of the new WebSphere
Studio product suite, and a basic understanding of the functionality of the
Application Developer.

24 Self-Study Guide: WebSphere Studio Application Developer and Web Services

WebSphere Studio Product Suite

Provide the leading Web/Java development platform
0 Open tooling and runtime support
0 Open programming model

Provide leading enterprise connectivity
0 EJB and J2EE tooling
O Enterprise connectivity with Enterprise Access Builders

Provide leading integrated end-to-end development
0O Built-in unit test environment
O Incremental compilation
0 Rich debugging support

Providing leading team development solution
O Integrated version control

Visual 2-3 WebSphere Studio Product Suite

The WebSphere Studio product suite replaces, over time, the existing Java and
Web application development tools, VisualAge for Java and WebSphere Studio
(classic).

The new tools are built on an open platform and provide leading edge:

» EJB and J2EE tooling, based on J2EE 1.2 specifications

» Enterprise connectivity (not in first release)

» Built-in unit test environment (WebSphere Application Server and Tomcat)
» Incremental compilation

» Rich debugging (including remote debugging)

» Integrated team environment

Unit 2. Application Developer: Overview 25

Ultimate Development Environment

New development environment
O Ultimate tool integration platform

0 Based on open, highly pluggable platform
WebSphere Studio Workbench

0 Provide multi-level vendor integration

0 Provide role-based development model
» Focus on assets, not on tool

0 Common repository for all assets and tools

0 Provide (over time) many of the functions of
VisualAge for Java Enterprise
WebSphere Studio Advanced

0 Provide rapid support for new standards and technologies
» Web Services

Visual 2-4 Ultimate Development Environment

This ultimate development environment is built on a highly pluggable open
source platform, the WebSphere Studio Workbench.

On top of this platform, IBM implemented the Application Developer, and other
vendors are encouraged to integrate their tools onto the platform.

The development environment is tailored for role-based development, with
appropriate user interface functions for specific roles in the development
process.

All assets are stored in a file-based repository.

Over time, all functions of VisualAge for Java and WebSphere Studio (classic)
will be implemented in the Application Developer.

In addition, Web Services are supported already in the new tool.

26 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Ultimate Development Environment Features

VisualAge for Java WebSphere Studio

2 Incremental Compilation a0 Page Editing (HTML, JSP)
0 Code Assist 0 Link Management

0 Unit Test Environment 0 Advanced Publishing

0O Scrapbook 0 SQL/Database Wizards

0 EJB Development 0 Web Application Packaging
0O Enterprise Access

0 Dynamic Debugging

-

New features
0 Vendor Plug-in

0O File-based IDE

0 XML Tooling

0 Web Services Tooling

0 Pluggable JDK Support

O Flexible Open Team Development Environment

Visual 2-5 Ultimate Development Environment Features

The new tool combines the major functions of the existing tools, VisualAge for
Java and WebSphere Studio (classic), plus a set of new functions that were not
available in the old set of tools.

Unit 2. Application Developer: Overview 27

One tool, many user perspectives

Role-based Development

role
[l
Enterprise Bean Application Page E Web
Integrator Provider Assembler Producer E Master
:
:
Connection Business Application Page Layout E Operational
Data Logic Data Flow and Content H Environment
:
]
[l
[]
[l
:
JavaBean JavaBean Servlet, JSP, HTML, JSP, H Config Data
EJB EJB JavaBean MIME type E Site Usage
:
[]
]

WebSphere Studio Tooling

where everything and everyone works together

Visual 2-6 Role-based Development

28

The new tool provides functions based on the multiple roles in the development

process of Web-based applications.

Tailored user interfaces and tools are provided for each role through
perspectives. A perspective incorporates a set of views of the underlying

resources, and a set of tools to manipulate those resources.

Self-Study Guide: WebSphere Studio Application Developer and Web Services

WebSphere Studio Branding

WebSphere Studio is the brand name for the new tooling
0 WebSphere Studio Workbench

Platform for tool developers (IBM and vendors)

0 WebSphere Studio Site Developer
» HTML, JSP, Servlets, XML, Web Services
» WebSphere Application Server and Team support

0 WebSphere Studio Application Developer
» Site Developer +
» J2EE, EJB, Database applications

0 WebSphere Studio Enterprise Integrator
» CCF (Common Connector Framework) runtime
» J2C (J2EE Connector Architecture)
» Flow modeling

O WebSphere Studio Enterprise Developer
» 2/0S and 0S/390 tooling (COBOL, PL/I)
» eRad (VisualAge Generator technology)

Visual 2-7 WebSphere Studio Branding

The suite of WebSphere Studio products is composed of:

» Workbench—open source platform with underlying technology for tool
builders

» Site Developer—Web application development with servlets, JSPs, XML, and
Web Services

» Application Developer—adds J2EE with EJBs and full database support to
the Site Developer

» Enterprise Integrator—adds connectors and flow modeling

» Enterprise Developer—adds support for z/OS and eRad (the VisualAge
Generator technology)

Note: Enterprise Integrator and Enterprise Developer are tentative names.

Unit 2. Application Developer: Overview 29

Product Functions

» Core Java IDE Site
» Create Web pages Developer
» Animate and customize Application
» JSP tags Developer
Homepage |, yuL Enterprise
Builder » JavaBean Wizard Integrator
» Database Wizard Developer
» Web Services Wizards
» Team Environment
» EJB Development
» J2EE Development
» J2EE Deployment
> Profiling

» IRAD
» COBOL and PL/I

» Enterprise Connectors
(CCF and J2C)

Visual 2-8 Product Functions
This diagram shows the increase in functionality from the simple Homepage

Builder (which is not based on the Studio Workbench), to the Site Developer,
Application Developer, and the Enterprise Integrator and Developer.

30 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Product Packaging

Early 2001 August 2001 November 2001 2002
VA Java
In the box Verslon 4 Version 4 Studio
packaging = Ent.Dev.
pp- Dev. VA Javi .
Beta / Versigna4 Version 4
Studio Studio
Pro/Adv Site Dev.
Version 4
Exclusively from Site Dev.
Partner World Beta Beta-2
Studio Studio Studio |<e}—— ©Open Soudrce
Workbench Workbench Workbench (everybody)
Preview Beta V1.0

Visual 2-9 Product Packaging

In August 2001, the beta code of the Application Developer was made available
together with VisualAge for Java Version 4.

In November 2001, the final Application Developer product was made available,
and a copy of VisualAge for Java is included with the product. At the same time,
the Studio Workbench was made open source for any vendor/developer.

The Site Developer has been available as beta code since November 2001, and
will become available in the first half of 2002.

The Enterprise Integrator and Enterprise Developer will become available during
2002.

Unit 2. Application Developer: Overview 31

What is the Studio Workbench?

Open and portable universal tooling platform and integration
technology

O For tool builders, not customers
0 Base platform for new Studio tools (Site and Application Developer)

Core Workbench technology becomes open source project
http://www.eclipse.org

0O Framework, services, and tools for tool builders
» Focus on tool building, not tool infrastructure

0 Develop plug-ins to install in products

Early code was on AlphaWorks
0 WSDE = Web Services Development Environment

Visual 2-10 What is the Studio Workbench?

The Studio Workbench contains the underlying technology for the Site and
Application Developer, and for any vendor that wants to integrate to the platform.

The Workbench is open source and available at:
http://www.eclipse.org

Tool builders can use the Workbench to integrate their tools to the platform by
creating plug-ins that can be added to the Site or Application Developer.

32 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Workbench Architecture

WebSphere Studio Workbench Overview Meta
Object
N Framework
Rapid AD Modeling
tooling ' Graphics
Editing
Framework

Published Platform core
extension Common services Common frameworks
points » Resource management = Widget toolkit
= Project model) = Ul frameworks

= Source editing framework
WebSphere :
Studio

ISV plug-in or
i in beta
WebDAV-enabled
repository

Visual 2-11 Workbench Architecture
The basic architecture is shown in this diagram.

The platform core provides the integration points (called extension points) for
plug-ins. Plug-ins are used to add tools to the platform by implementing some of
the extension points.

One set of extension points is for version and configuration management. This is
currently implemented by Concurrent Version System (CVS) and ClearCase
Light (CCLT), and will be supported by WebDAV in the future.

Frameworks can be used by tools for functionality:

» Graphics Editing Framework (visual builders)

» Meta Object Framework (to store tool data in XMl files)

» Java Development Tooling (compilation)

Unit 2. Application Developer: Overview 33

Application Developer Overview

ka International Technical Support Organization

Visual 2-12 Application Developer Overview

In this section we provide an overview of the functions of the Application
Developer.

34 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer Components

a
Q
a

u

(]

Qa

Qa

Site Developer features Application Developer ++
0O Partial Studio Classic features 0 EJB 1.1 creation, mapping,
> Migration from Classic testing, assembly, deployment

0 WAS 4.0 Exploitation
» WAS 4 AEs built-in

0 JDK 1.3 JRE is included
O Integrated Java IDE
JSP 1.1 and Servlet 2.2
XML Tools

Web Services Tools VisualAge for Java
» SOAP, WSDL, UDDI

Database Tools (limited) /390, Oracle, Sybase,
Server Configuration SQLServer)
Deployment to WAS 4 and

Tomcat

Team Support (CVS, CC LT)

0 Creation of J2EE packaging

0 Profiling support
(Performance Analysis)

0 Command line gen/deploy
(EJBDeploy)

0 Migration/interoperation from

0 Database support (DB2, /400,

Visual 2-13 Application Developer Components

The features of the Application Developer can be grouped into features that are
also available in the Site Developer, and features that are exclusive to the
Application Developer:

>

>

>

Full EJB 1.1 support

J2EE 1.2 support

Profiling (performance analysis tools)

EJB deployment

Migration and interoperation with VisualAge for Java

Full database support for many platforms and database vendors

Unit 2. Application Developer: Overview 35

Prerequisites and Platforms

Hardware
a Pentium Il or better, 256 MB

For realistic work environment 384MB or 512MB

0 Disk: 400 MB (70 MB TEMP for installation)

Software
0 Windows NT 4 (SP 6a) or 2000 (SP 1), Windows 98/ME, Linux (beta)

0 Database support:

DB2 UDB 6.1, 7.1, 7.2, DB2/390 7.1 FP3, DB2/400
» Oracle 8i R3 8.1.7, Sybase Adaptive 11.9.2, 12.0
» SQL Server 7.0 SP2 and 2000 (Merant driver)

» Informix 7.31 and 9.21 (Merant driver)

v

Deployment platforms

0 Dependent on Application Server (for example, WebSphere AE)
» Windows NT 4 SP6a, Windows 2000 and 2000 Server
» AIX 4.3.3, /390, /400, Solaris, HP-UX, Linux
» Windows 98/ME

Visual 2-14 Prerequisites and Platforms

The Application Developer requires 384 or 512 MB of memory for decent
operation with use of an application server and a relational database at the same
time.

The development environment is limited to Windows (200, NT, 98, ME) for now,
with Linux coming in 2002.

Deployment of Web applications is supported for all platforms where WebSphere
Application Server is available.

36 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Installation

Standard installation process
0 Run SETUP.EXE

O Select target location
c:\Program Files\IBM\Application Developer

===> d: \WSAD
O Select primary user role: =8| & J12EE Developer
» Set default perspective (view) " Web Developer
» Can be changed later Java Developer
0 Installs . . " Web Services Developer
» Application Developer ¢ oth
» IBM Agent Controller Other
(for remote debugging)
= \I?V('abgOtS in NT if , Clinstall g | configurations
Indows components Cli JDK1.3
jre — .

missing during install Ciplugins o | tools
0 Directory structure ——8 "Jreadme - | limitations
Clworkspace —— | user projects

Visual 2-15 Installation
Installation of the Application Developer is straightforward.

You have to choose the installation directory and a primary user role (which can
be changed later).

The process also installs the IBM Agent Controller, which is required for remote
debugging and performance analysis. The Agent Controller must be manually
installed on other machines and platforms where deployed code is executing for
debugging or performance analysis.

Unit 2. Application Developer: Overview 37

Verification

EE - Application Developer
Eile Edit Window Help

T |

Perspective Project

Enterprise Applications
Application Clignt Maodul
Wieh Modules

EJE Madules

[Server Configions
Server Instanc

By
F
Databases e workbench fontains one or more perspectives. Each perspective consists of views [such a:
d editors for working on a particular type of task. The buttons on the shortcut

llz you which perspective you are curnently working with, 'ou have the option of
new perspective in its own window: this is configured from Window > Preferences.

The title bar

Perspectives Projects i
apening &

4 | £]

JZ2EE Wiew, Mavigator / 4|

5= ut , x Tasks [0 items) W on R %
A outing is\ot available [c]] Descriptih | Resowce | InFalder [Lo
Tabs/Pages N Tasks/Problems | .

Tasks] Properties

Visual 2-16 Verification

When the product is started after installation, a welcome panel is displayed.

38 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Window -> Preferences

- ¥ Preferences

2| Workbench ___—1 Editors associated with file types

Appearance M
I:.ompa_re Viewers . i build automatically on resource modification

[Save all modified resources automatizally prior to manual build

v Link Mavigator selection to active editor

. Penspectives <} Default perspective
""" Build Order Open a new perspective
(- Data
B Debug % |n the same window
----- Help " In anewwindow Shift
""" Intermet {~ Replace curent Ctrl
E-Java
i Classpath Wariables

Code Formatter Mew Project Options

nstalled JRE : <l = — . Pluggable JRE
Java Editor * [pen Perzpective in zame window

i Organize [mparts " Open Perspective in new windaw
- Refactaring " Replace Perspective
[Plug-In Development . X
- Fiofiing ¢ Do not switch Tailor many
- Soripts options and
defaults

Visual 2-17 Window Preferences

Many defaults can be set in the Window Preferences dialog (select Window ->
Preferences in the menu bar).

For example, you can configure additional editors based on the file type, or install
additional Java runtime code (JRE) that can be used for certain projects.

Unit 2. Application Developer: Overview 39

Workbench: Projects and Perspectives

Project "look" []

Projects Perspectives

0 Organize resources 0 Initial set and layout of
» Folders (directories) » Views (presentation/navigation)
» Files (in folders) » Editors (open file)

0 Build, version management Types of perspectives
0 workspace directory (default) | | o Java (code)o........
0 Web (HTML, JSP, servlets) le

Types of projects 0 J2EE (EJB development) |&

0 Java project 0 Server (AEs/Tomcat) 3]
O EAR project (J2EE) O XML (DTD, XSD, XSL) |

> Contains Web/EJB/Client 0O Data (database, tables) k=
projects 0 Debug (debugger) =2

0 Web project O Profiling......coooeeiiiiiieeee |E®
o EJB project d Scrlpt l@

a Application Client project i =Y o S E=
1 Server project 0 HEIP coveeeee s [ie)

Visual 2-18 Workbench: Projects and Perspectives

The Application Developer organizes all resources (data, programs) into
projects. Projects are composed of folders (directories) and files. By default,
projects and their folders are stored in a workspace directory.

Each project has a type: Java projects are for stand-alone applications; Web
projects for Web applications; EJB projects for EJB development; EAR projects
tie together Web and EJB (and Client) projects into a J2EE hierarchy; Server
projects are used to define application servers for testing.

Perspectives are the way a developer sees the projects. Perspectives are
tailored for certain tasks, based on the role of the developer. For example, in the
Java perspective you can compile Java code; in the Web perspective, you can
edit and customize Web applications; in the J2EE perspective, you develop J2EE
hierarchies and EJBs.

A perspective is a set of views, arranged into the Workbench window, and a set
of editors and tools that are used to manipulate the resources.

40 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Project Import

Can import existing resources into a project
a From directory

0 ZIP and JAR file
» Expand into project This enables migration from
» Add as ZIP or JAR file to add to build path V's"a'Agﬁm L

O Client JAR file WebSphere Studio Classic
» Create client project

0 EJB JAR file
» Create EJB project
» Select EJBs

a EAR, WAR file
» Creates EAR/Web project

O FTP or HTTP from server projects can be validated
» Specify location (userid/password for FTP) - manual or automatic -
» Limit depth for subdirectories or links

EAR, EJB, Web

Projects can be closed and reopened from the Workbench

Visual 2-19 Project Import

In most development efforts you have existing resources. These resources can
be imported into Application Developer projects in many ways:

>

>

Files from a directory (Java source, HTML, JSPs...)

ZIP and JAR files (import as individual files for editing, or leave as ZIP/JAR
file if only used for compilation)

EJB JAR files with existing EJB definitions (for example, from VisualAge for
Java)

EAR and WAR files from existing Web applications and J2EE archives

FTP or HTTP access to existing Web sites for import of HTML and associated
files

Projects can be closed to save memory.

Unit 2. Application Developer: Overview 41

Project Validation

Comprehensive support for running validation
0 EJB project: EJB validator, Map validator
0 EAR project: EAR validator
0 Web project: WAR validator
0 Server project: Configuration files

Manual validation
0 Project -> Validate Project

Automatic validation (on save)

O Project -> Properties -> Validation
» Can specify which validators to run
> |Is somewhat expensive

Validation results are shown in the task list

Visual 2-20 Project Validation

Comprehensive validation is provided for many types of projects, for example,
the EJB validator checks that EJB 1.1 specifications are followed in the Java
code.

Projects can be validated automatically when a resource is saved (this is the
default), or validation can be performed manually on demand.

42 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Focus on task at hand

0 Provides "views" into the e-business application
» By role (Java, data, EJB)
» By task (develop, test, debug, deploy)

0 Views can be opened, closed, rearranged ReEpeciivsEShowvisH
» Move view to other pane, stack behind other views f Packages
» Move view outside of Workbench as separate window ¥ Hierarchy
» Maximize view with double-click & Search

e code editing #| Processes

0 Multiple perspectives can be opened for same project(s) & consde

0 Perspectives can be customized a= Cutline
» Add views Tasks
» Make look similar to other Java tools TS Mavigator
0 Certain tasks can only be performed Other...

in one perspective and view

Icon to open new perspectives: ﬁ

Visual 2-21 Perspectives
Perspectives are tailored for a developer role or for a certain task.

A perspective provides a number of views of the underlying project resources.
The layout of the Application Developer window can be tailored by moving views
to the edge, between other views, behind other views (as tabs), or as separate
windows. Views can be added to a perspective, and the new layout can be saved
as a new perspective.

In general you see one perspective in the Application Developer window, but you
can have multiple perspectives open and switch between them. The more
perspectives are open, the more memory is consumed. In each open perspective
you can have multiple files (resources) open.

Certain tasks can only be performed in one perspective and view (for example,
EJB development), while other tasks can be performed in many perspectives (for
example, Java editing).

Good practice: close files before switching perspectives!

Unit 2. Application Developer: Overview 43

Java Perspective

Java - Application Developer

I - cdit muttiple files

File Edit

Perspect Bfect Debug Window Help /
o — = Filter
B-TEE|E-F- k- deced e ER K]
i H3 Packages el Ei Listing2 J] GuiListing java :E— Dutline »®
public cla==s Listingd 4 0
% . . <« databaze table Iz J -
[DE 1o ItsowisClientwieh - #7String dbtab = "aaparts": itzo.wead. dealer. apy
E-1a2 ItsowsD ealerEJB =tatic String dbtab = "mmparts ‘= import declarations
W || Ol IbsowsDealerPart - Listirig2
2 = % *o _ts eaecrl darsl public static void [EERN(java.lang. = G* fsmgdbtab-Strin
@ 'SD'W_'SE_' gaer.ap; Sy=tem.out . printlni"Farts List g - 3
i) 5 Listing.jzva 7 connect to database OE min(5tingl]]
Listing2. java Connection con = dull: b 2 9 gonngct(]
i3] =83 itso.wsad dealer par 5911 =thnnect();‘:
o retrieve parts P
L Packages/Classes Statement stmt - o Sova COOf Fields/Methods
- & ResultSet rs = null:
O g ECNpeE [OCTT el String zelect = "SELECT # FROR™
[]---1’3’}3 JRE_LIB - E:\wSAL 4| » 1| | v
- ividah.jar . - :
[]"'f'.}l D:ASALLIE ava'db Tasks}llter showing 1 of 37 iterns] | Tasks: Errors | "B :%:{) *
@ loop.jpage | 1 | Description | Resource | In Folder
BT tscwsDealet/eb MDY dull cannot be resalved Listing2 java Itsoiw'zD ealerParts/its

5

Packages] Hierarchy

4| | »

Tasks| Search Console Iq—

Tabs for other views

Visual 2-22 Java Perspective

The Java Perspective contains four panes by default:
» Left—Packages and Hierarchy view
» Middle—reserved for editors (multiple files can be edited)

Right—Outline view (shows outline of currently selected file in editor pane)
Bottom—Tasks (error messages), Search (result of search operations), and
Console (program output) views

Tabs are used to select a view in a pane.

Each perspective has a tailored toolbar with icons for often-used operations.

On the top left is the new icon or wizard. The pull-down arrow displays a
selection of resources that can be created, whereas the icon button displays the
new wizard that can be used to create any of the supported resource types or
tools.

44 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Perspective

El@ - X ;__'—1| PartList.hitrnl 3¢ | '=1] PartList.jsp I
b|e = PartLizt htrl - PartList. html | BODY - Standard =
-Ta ItsoiwfzDealetveh - m ;I
g |5 i
,% == source L e no
L s s Page Designer
Parts Listing
£
i : : Enter a partial name: [Retrieve
[HE = g InventoryContral|
— 1| | DesignJSource Preview
2= Outlire X Links) N x
EEE] HTML :I — @ redbook s, gif ;I
[.
Link
J = AN PantList S
PartList. htrnl |ﬂ
i || K b
[GallerleutIlneJ I I Tasks Propertlelelnks]Thumbnall Styles Color Palette It Tabs for other views
|tzaiw'sD ealerW'eba"wehAppllcatlon.-’F'artLlst htrml

Visual 2-23 Web Perspective

The Web Perspective contains four panes:

'S

>

'S

'S

Top left—Navigator view (displays the folders and files of the projects)
Top right—reserved for editors

Bottom left—Qutline view (of current editor) or Gallery (for HTML/JSP files)

Bottom right—Tasks (errors), Properties (of selected resource), Links (of Web

resources), Thumbnail, Styles, Color, Palette (Web resources)

One of the supported editors is the Page Designer for HTML and JSP files. The
Page Designer itself has three tabs to display the Design (WYSIWYG), Source
(HTML source code), or Preview (browser) view.

Unit 2. Application Developer:

45

Overview

J2EE Perspective

File Edit

Perspective Project ‘Window Help

= -]

RIS BN H S|V

T | J2eE view x 5
i £ eb Modules d S—— Type: Entity - Contatiner Managed
[= [%B \T.focglu:ﬂd - @& StockUpdate Type options: I Stateless [Stateful [
EUTando . X r- r- .
EH EI[E lteaw/sD ealerE B Tranzaction type: Bean Container
1) =-[Fy Inventory Display name: I
-8 itemMumber : javal Attributes: - =
. : temMumber : jav =
2] partMurnber : java.l: EJB Editor ; ::-::Nﬁrnn:b:r[' i'::
7] EJBs quantity : int quantty int. 2
—_— Fields oozt : java math.Bic cost: javamath. =
shelf : java.lang St ‘I : I : _’|_I
location : java.lang.
i '"“"’"‘-""'f""‘”""ﬁ _ILI Bean class: InventoryBean ||;|
4] b 7l | 3
J2EE View|Navigater | Gieneral|Beans | Security) Transaction | Environment | References | Source
[: -
g Outline _Eﬁonsole oY %

sow sDealerEJB
& Inventomy il ¥

@ StockUpdate EonsoleJTaskS|Pmperties I_; Tabs for other views

Visual 2-24 J2EE Perspective

The J2EE Perspective is used for management of J2EE deployment descriptors
(EAR, enterprise archives), and for development of EJBs.

The J2EE view is the only view where entity and session EJBs can be
developed. This view displays a logical view of the EJBs with their fields, key,
and main underlying Java files (bean class, home and remote interface, key
class).

The Navigator view displays all the project resources, including the control files
(XMl files) that are used to store the EJB design (meta) information.

An EJB Editor is provided to define and manipulate EJB deployment information,
such as JNDI names, transaction attributes, read-only methods, and security
information.

An EJB Extension Editor is provided to define IBM extensions of the EJB
specification, such as associations and custom finders.

46 Self-Study Guide: WebSphere Studio Application Developer and Web Services

XML Perspective

¥ XML - Application Developer
File Edit Perspective Project ‘Window Help
BrEEE R RBR| v 8 AR |FHE
Editors
= = Dutline] w x || [Patdd ” [3] Part.smal 3¢]lg Prart xed
E; 2, sl e] — version="1.0"
& DOCTYPE:Pat -[gr DOCTYPE Part SYSTEM "Part dd”
% «e» Part [=-<er Part [Mame, Description, ‘weight?, AL, lnventory®]
iz | iqey Mame -4a» Partnumber H3
e>» Description ~4&» Name Headlight
ﬁ er Weight -4er Description Description
I A e UAL <y weight 55
— er |nwventony ~+e» URL URL
---<e> [Fep—— Inventoly_ [Duantity, Cost, Shelf?, Location?)
ed@d [bem H3m
a2 e x €8x Huartity 4
—[-la [Es0t 5D ealerml - <@ Cost 34.56 XML Editor
<e» Shelf 52
gg classes i Gexex Location Location
B z;r:;r F-4€r Irwenton [Duantity, Cost, Shelf?, Location?)
[z sglsml2 Desi]S I
] .classpath —|Design|Source_|
[0 ga't-stdl Tasks [Filter showing 0 of 3 items) o 03 :%:b b4
L t
'%' | El [| D escription | Resource | I Falder
-[8] Partxsd Errors
(0] PartDef.did M K | r
ItsotwésDealeraml/Part.zml

Visual 2-25 XML Perspective

The XML perspective is provided for developing XML applications, or adding
XML functionality to Web applications.

XML editors for XML files, DTDs, and XML schemas are provided for
manipulation of XML resource files.

XML tools are provided to convert XML descriptors (DTDs and schemas),
generate files, generate XSL style sheets for XML manipulation, or convert
database data into XML data.

Unit 2. Application Developer:

Overview

47

Data Perspective

File Edit Perspective Project ‘window Help
B HE| ¢
E [DB Explorer] X o= Outline X
% - ConlTSUWSAD i outling is not available
m EI@? IT50W SAD (jdbe: db2:I TSOWSAD) ;
=-3F 150
2 EEI Tahles P&RTHLUMEEF
2 [ITSOMMINVENTORY HAME
i 5 IS0 MMPARTS DESCRIPTION
Fi WEIGHT
IMAGE_LIRL
E
) Table Editor
b2 Structured Types
eI ConlnventoryE JB qI |ﬂ
Add anotherl Deletel
Real time GenerallCqumnsI Primary Key Foreign Keysz I
databas_e con:ec“ons Tasks [Filter showing 0 of 36 itemsz) i3 }:D b4
impo
{Impoy) | El ! | Description | Resouce | In Folder
DB ExplorerJ Data iew Mavigator I | | »

Visual 2-26 Data Perspective

The Data Perspective provides views and tools for definition and maintenance of
descriptors for database, schemas, and table definitions.

The Data view shows database descriptors (XMl files) in a hierarchical format.
Editors are provided to define database, schema, and table descriptors. Tools
are provided to generate SQL DDL files for such descriptors, or to create a
descriptor from an existing DDL file.

The DB Explorer view enables connections to database definitions in real time,
and enables you to import existing descriptors as local resource files (in XMl
format).

SQL statements can be defined graphically, using a wizard. Such statements can
be executed for testing, and can be used by XML tools to convert database data
into XML files. Statements can also be used by Web development tools to create
skeleton Web applications (servlets and JSPs) that access databases.

48 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Server Perspective

server - Application Developer
File Edit Perspective Project ‘Window Help

- HEES|[GE-|eBRe RS

iz 'Eg_ M avigatar] v X l_m' |tsiy A X]]
R.-‘ -l TeoWwWsherver a || JDBC driver list :I
defaultConfiguration.
gg lt:;'; SADEZ '3‘;': o wEe 8 Dbzl dboDriver [COM.ibm db2 jdbe DB 2ConnectionPe add. |
@I E-= ltsowsDealer wss githdbcDriver [com.ibm.ejz.cm. portability. [DE Connecti Remove |
n-III 2= ItzoiwsM anufacturer wsc
...... : Edit... |
= vom_mata 4| yDBC Drivers and DataSources |
[:z: || R 2, chusait
% ----- defaulti nstance. wsi o
N | Iteoh stE 5 wrsi Diata source defined in the JDBC driver selected abowe:
""" !ESD:"\':SRB‘EIB:'WLS' - ﬂ Session Persistence datazource (jdbe/Session] Add..
= - - 3 IT50WSAD [jdbcA TS0 SAD) = LT
¥ Sever Conflguratlon] %8 ’ General "web EJE |Data source | Parts | Trace | Security I
Server Configurations ﬂ } .
Itachw/sAE 5 4L Servers & @ P x
. ItsatwisDealer J Server Instance | Server Configuration | Status -~
E“ﬁ ItsoWsManuffacturer ItsoWsDeaIer Itsoi/sDealer MY Stopped —
| Projects | -1 ltscw/sClientlEAR 1 wfacturer | anufacturer
J E-TER ItacwWsManufacturerE AR il
I L BB hecutehdcmitor hd
4| | >I \r"ariabIBS|Debug|ConsoleISewelsJF’rocesses I

Visual 2-27 Server Perspective

In the Server Perspective we maintain definitions of application servers for
testing of Web applications, EJBs, and Web Services.

Server configurations define the type of server (WebSphere or Tomcat), and are
configured with JDBC drivers and data sources.

Projects are associated with servers. When a server is started, the associated
projects are loaded and their code can be executed.

Servers can be started in normal or debug mode. In debug mode, breakpoints
can be placed into servlets and JSPs for debugging purposes.

Icons are provided to create a server project or server instances and
configurations.

You can use the Server perspective to edit resources and run or debug projects.

Unit 2. Application Developer: Overview 49

File Edit Perspectlve Project Debug WWindow Help

Debug Perspective

B | ez

-k ®

| s BB ¥ §

(e
)5 Variables)

i"':._-_.J""dD"|c>5|o': &

B Systemn Thread [Reference Handler] [(Running)
; B System Thread [Signal dispatcher] (Running)
B @JJ Thread [rnam] [Suspended [breakpdlnt at line 30 ir

~o & args= Sting[0] (id=12)

can= DB2Connection [id=14)]
strat= DB 2Statement [id=21)
1= DB2ReszultSet [id=23)

&
&
&
- &

gelect="SELECT * FROM itz0. aaparts"

Mavigator Processes l

Breakpoints [nepector lVariabIes] Digplay

= I S S G MR

—
;E— Outline '

yhile (r=. next{)) {

1

| [4] Listing java X x
Efent =tmt = null; Source with breakpoints A b 5
ResultSet Tr= = null; 2 @ 9
%‘ String select = "SELECT #* FROM itso. "+dbtab; - H} itso.wsad.dealer.app
try { = import declarations
s=tmt = con.createStatement(): Ny Listi
r= = stnt. ezecutelueryiselect); @y Listing

a5 dhtab - Sting
o @ 5 main[Stingl]l

B Consalz] & X
Farts Listing for aaparts :
< _’l_l
Tasksl[ﬁonsole] I

| |

Visual 2-28 Debug Perspective

The Debug perspective enables debugging of Java code.

Views are provided to display the source code (where breakpoints can be set),
running processes, variables (with their values at the current breakpoint),
evaluated expressions, and an inspector for in-depth analysis of data.

50 Self-Study Guide: WebSphere Studio Application Deve

loper and Web Services

Help Perspective

Help - Application Developer

File Edit Perspective Project

Window Help

Preface

. Introduction here St
i workbench fundamentals
!]3 Application developrment tools
-y Tuterial Warkbench basics
-y Tutoriak Developing a'web-ce
!]3 Tutorial: Developing a B2B apy
B Scenarios

E| Concepts
B Tasks
‘B Reference
E| Samples
< |

-
-
-
[
[

|

By t_l,lpe...IB_l,l feature... Search

Introduction

|BM's WebSphere Studio Application C
pllow-on technology for Visualfge for Jave
ehSphere Studio. It consists of a comm
arNl integrated set of tools that support en

up to meet the reguirements for all
ions. These requirernents include

Flatform Plug-in Developer Guide
JOT Plug-in Developer Guide
|FDE Guide

Lpplication Developer Documentation 'I

=8 fil

7B Java development tooks

=~ B Web development tools

!]3 Web application development

!]3 Developing ‘web applications

B web tools

EJB development tools

!]3 EJB application developrient

!]3 Developing EJB applications

=@y EJB tooks

- B J2EE developmert toals

= E| Web Services development tools

iy Web services development

!]3 Universal Description, Discove
: Simple Object Access: Protoco

B =ML develapment taals

B Database tools

E| Test and deploy tools

B Prafiling tools
| i

Search

PO B e B B
| ey

By type..)| By feature. ..

Visual 2-29 Help Perspective

Online help is provided through the Help Perspective.

Documentation can be accessed by type (shown at left), or by feature (shown at

right).

The help facility also covers the underlying Workbench with a platform plug-in
developer guide, a Java Development Tools (JDT) guide, and a PDE guide.

Unit 2. Application Developer:

Overview

51

Workbench Key Features

Performance

Customizable perspectives
0 Role-based development (Web developer, Java developer, DBA)
0 Use same project artifacts (files)

Pluggable development environment

0 Java and ActiveX plug-in support
O IBM and ISVs use same architecture to extend the Workbench

Support for automated builds
0 Ant support
0 Command line EJB generation

Visual 2-30 Workbench Key Features

Key features of the Workbench include:

» Customizable perspectives for role-based development
» Pluggable environment that enables other tool vendors
» Automated build facilities through the built-in Ant support

52 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Java IDE

0 IBM JDK 1.3 (compile/run) 0 Smart compilation
0 Pluggable JDK per project (run) » No lengthy compile/build/run
0 Java snippets (Scrapbook) a E)Iglgsgable framework to launch
O Code assist (ctrl-space) . .
O Precise reference searching
0O Task sheet (all problems) , ,
O Integrated unit test environment
0 JDIl-based debugger » Easy debugging
> Local and remote » Configure multiple servers
0 Run code with errors 0 J2EE WAR/EAR deployment
0 Refactoring
» Rename, move method/class/pkg
» Fixes all dependencies 0 Hot method replace
» Make code into a method » Have to wait for JVM that
a—_— - supports this technolo
Built-in Java Perspective > JDf(p1 4 &

Visual 2-31 Java IDE

The Java integrated development environment (IDE) is built on top of the IBM
JDK 1.3 that is used for all compilations and as a default runtime JRE.

Facilities include:

>

>

>

Pluggable JDK—a JDK can be assigned to each project for running its code
Scrapbook—files with Java snippets that can be executed

Code assist—entering ctrl-space displays the valid functions

Tasks view—displays all problems

Debugger—for local or remote debugging

Refactoring—rename, move, make new method with update of all references
Search—by Java construct or text

Build—smart, incremental

Test environment—application or server

Unit 2. Application Developer: Overview 53

Web Tooling

Development environment for Web developer
0 HTML and JSP editing

» WYSIWYG page design and source editing
HTTP and FTP import
WAR import/export Many features from

. . . WebSphere Studio Classic
Links view (relations) i
» References in HTML and JSPs

Parsing/link management
» Fix links when resource is moved between folders

Built-in Servlet, JavaBean, Database Wizards
» Quick generation of HTML/serviet/JSP

Built-in JSP debugging

» Not in beta
0 Site style and template support

(]

o o

[

(]

[

Built-in Web Perspective

Visual 2-32 Web Tooling

The Web tooling support includes:

» HTML and JSP editing with the Page Designer

» Site import using FTP or HTTP

» WAR import (existing Web applications) and export (to application server)
» Links view and management of links between related files

» Wizards to generate servlets and JSPs for database and JavaBean
applications

» JSP debugging at source code level

54 Self-Study Guide: WebSphere Studio Application Developer and Web Services

XML Tooling

Integrated tools/perspective
for XML-based components

XML Tools
0 XML Mapping Editor

» Generate XSL to convert XML
between DTDs/schemas

0O XSL Trace Editor
» Trace XSL transformation

0 XML from relational database
» Generate XML/XSL/XSD from an
SQL query

0 RDB/XML Mapping Editor
» Map table columns to elements
and attributes in XML document
» Generate Database Access
Definition (DAD) to compose and
decompose XML to/from DB
o Used with DB2 XML Extender

0 DTD Editor
» Visual editor (design and source)
» Create DTD from XML files

» Generate XML Schema (XSD)
from DTD

» Generate JavaBeans to
manipulate XML documents

» Generate HTML form

0 XML Schema Editor
» Visual editor (design and source)
» Generate DTD from schema

» Generate JavaBeans to
manipulate XML documents

0 XML Source Editor

» DTD and Schema validation
» Code assist

Built-in XML Perspective

Visual 2-33 XML Tooling

The XML tooling support includes:
» Editors for XML files, DTDs, and XML schemas
» Code assist (ctrl-space)

» Utilities to generate XML from DTD, DTD from XML, schema from DTD, DTD
from schema, JavaBeans from DTD or schema

» XSL mapping to convert XML files between two DTDs or schemas, including
a trace editor to display XSL execution

» Generate XML and HTML from database access through a query

» Mapping between XML and relational databases for usage with the DB2 XML
Extender (generate database access definition (DAD) to
compose/decompose XML data into table columns)

Unit 2. Application Developer: Overview 55

J2EE Tooling

J2EE development and
deployment
0 Full EJB 1.1 support

» + associations, inheritance

0 RDB mapping
» Top-down, bottom-up,

0 Updated EJB Test Client
» HTML-based
» Built-in JNDI registry browser

0 Enterprise Connectors

meet-in-the-middle (separate plug-in)
2 WAR/EAR deployment > JCA Connectors
0 All metadata exposed as XMl Many features from
» No hidden metadata VisualAge for Java Enterprise

0 Enhanced Unit Test Environment
» WebSphere or Tomcat
» Create multiple server projects
(server configurations/instances)| | Built-in J2EE Perspective
» Share between developers

Visual 2-34 J2EE Tooling
J2EE tooling enables full J2EE 1.2 support including EJB 1.1 specification.

Full EJB 1.1 support is provided with IBM extensions for associations,
inheritance, custom finders, and access beans. The mapping between entity
EJBs and relational tables can be performed top-down (tables from EJBS),
bottom-up (EJBs from tables), or meet-in-the-middle. EJB deployment
information is kept in XMl files and is not hidden, as in VisualAge for Java.

WebSphere Application Server AEs is built into the Application Developer for
testing, and Tomcat is supported as well (but must be installed). The test
environment supports servlets, JSPs, and EJBs (EJB only on WebSphere).

A new universal test client (UTC) is provided for testing of EJBs (and for Web
Services).

Deployment is made very easy. EAR projects collect Web and EJB projects, and
can easily be exported into an EAR file for deployment into a J2EE-enabled
application server.

56 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Services Tooling

Easily construct and consume Web Services

O Discover
» Browse UDDI registry to locate Web Services
» Generate JavaBean proxy

0 Create and transform
» Create new Web Service from JavaBeans, EJBs

O Test
» Built-in test client for inmediate testing of local and remote Web Services

0 Deploy
» Deploy Web Service to WebSphere or Tomcat for testing

0 Publish
» Publish Web Service to UDDI registry

Visual 2-35 Web Services Tooling
The Web Services tooling enables creating, testing, and consuming of Web
Services. This includes:

» Interaction with a UDDI registry to browse the registry and retrieve Web
Service specifications, or publish new Web Services

» Create Web Services for existing applications based on a JavaBean or an
EJB

» Test Web Services using the universal test client
» Deploy Web Services to an application server

Unit 2. Application Developer: Overview 57

RDB Tooling

Relational Schema Center for DBAs

0 Create databases

0 Create tables, keys (views, indexes, aliases -> future)
0 Generate DDL

O Work online and offline
» Meta-data kept as XMl files

SQL Query Builder

0 Visually construct SQL statements
» Select, insert, delete, update
» Meta-data kept as XMl files

0 SQL/XML mapping

Built-in Data Perspective

Visual 2-36 RDB Tooling

RDB tooling is based around the relational schema center, which includes:
» Interactively create database, schema, and table descriptors.

» Retrieve existing database, schema, and table descriptors by connecting to a
database.

» Generate the DDL from descriptors.

» Execute DDL to create descriptors.

» Create and execute SQL statements. Together with the XML tooling, SQL
results can be converted into XML and HTML.

Descriptors are kept in XMl files, and editors are provided to maintain the
descriptors.

58 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Performance/Trace Tooling

Isolate and fix performance problems in Web applications
0 Attach to local and remote agents for capturing performance data

0 JVMPI monitoring

Heap

Stack

Class and method details
» Object references

0O Resource monitors
» Execution patterns
» CPU usage
» Disk usage

vyvyy

Built-in Profiling Perspective

Visual 2-37 Performance/Trace Tooling

Performance and trace tooling enables the analysis of Java applications by
measuring the time spent in classes and individual methods of these classes.

Events are captured in a local or remote Java Virtual Machine and forwarded
through an agent to the Application Developer for analysis. Results are displayed
in tables and graphically.

Unit 2. Application Developer: Overview 59

Team Development

Integration through Terminology

pluggable adapters O e SlEE

0 Open framework enables any » Project being developed by team
SCM provider to integrate their > Create team stream to load project
SCM system with the Workbench into team server

» Load stream from team server

0 WebDAV-enabled adapter

planned over time 0 Release

» Release local changes back into
team stream on server

Customer can purchase and » Other developers have access

plug-in ClearCase into the

Workbench 0 (CEMH .

» Refresh local project from server
0 CVS is the only SCM in beta with changed/added resources
0 ClearCase LT in GA product 0 Project version

» Unchangeable team stream
Built-in Team Perspective » Create team stream from version

Visual 2-38 Team Development

The Studio Workbench provides extension points for configuration management
products for team development.

The Application Developer ships with support for two underlying team products,
CVS and ClearCase LT. Full-function ClearCase support is available from
Rational.

Projects can be assigned to streams in a shared repository, and multiple
developers can work on a shared project.

A developer can synchronize a project with the project in the team repository:
» Changes made by the developer can be released to the team stream

» Changes made by other developers can be added to the developer’s project
(catch-up)

Projects can be versioned.

60 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Supported Standards

0 EJB 1.1

0 Servlet 2.2

O JSP 1.1

a0 JRE 1.3

0 Web Services Definition Language (WSDL) 1.1
0 Apache SOAP 2.1

0 XML DTD 1.0 (revision 10/2000)

0 XML Namespaces 1/99 version

0 XML Schema 5/2001 version

0 HTML 4.01

0 CSS2 (Page Designer displays a subset)

Visual 2-39 Supported Standards

This is the list of supported standards and specifications in the Application
Developer.

Unit 2. Application Developer: Overview 61

Everyone integrates

O Integration at industry level enables tools to interoperate
» Open standards
» Integration in vendor's lab (not on developer workstation)

0O Entire industry can integrate and interoperate
Modeling: business process/applications
Content: Web pages, graphics

Business logic: Java, JavaBeans, EJBs, servlets
Application assembly: J2EE, scripting, rule-based
Operation: site management

0 IBM takes application development to a higher level

v

vyvyyvyy

WebSphere Studio Application Developer

Leading Web/J2EE Development Environment
and Integration Platform for IBM and Vendors

Visual 2-40 Summary

The Application Developer provides the basis for integration of application
development for Java, Web site, Web application, EJB, Web Services, and XML
development.

62 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer:
Java Development

ibm.com

Web Services
Studio Application Developer

Java Development

,-.; y

:
Redbooks

International Technical Support Organization

/3

Visual 3-1 Title

© Copyright IBM Corp. 2002

63

Obijectives

Learn about Java developer
tasks TaSkS

0 Java project

0O Java perspective
0 Debug perspective
0 Script perspective

0 Create project

O Create and browse resources
» Folders and files

0O Import existing code
0 Edit Java code
0 Refactor code
Java project 0 Search code
0 Stand-alone application O Build code
O Common'code for 0 Run code
other projects 0 Debug code

Visual 3-2 Objectives

The objectives for this unit are to understand the development of Java
application with the Application Developer.

A Java project is used to develop stand-alone Java applications, or to develop
base Java code (JavaBeans, utilities) that are shared between multiple
higher-level projects (Web, EJB, XML projects).

A Java developer will use the Java perspective to edit and build (compile) code,
the Debug perspective to test code, and the Script perspective to work with small
scrapbooks.

The tasks involved in Java development are listed on the right side, starting from
creating a Java project as the base for all development activities.

64 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Java Project

Two project organizations are | project properties
supported

O Source directories
» Project or outside

0 Output folder
» Class files

Simple project
O Source code in project directory

0 Class files built into same Q Projects
structure » Other projects required for build
Complex projects 2 Libraries
. . . » Java JRE rt.jar
0 Multiple source directories > JAR files from other projects
0O Each directory associated with » External JAR files
the project O Order
0 Separate output directory for > Order of projects and JARs for
class files build

» One output directory

Visual 3-3 Java Project
The resources (files) of a Java project can be kept in one place (simple) or
spread over multiple locations on the hard drive(s):

» In asimple project, all files are kept in one main project folder and subfolders.
Compiled class files are kept together with the Java source files in this
organization.

» In a complex project, Java source files are kept in multiple folders (and
subfolders), but all the compiled class files are kept in one output folder.

One of the main project properties is the setup of the build path used to compile

the Java source files. The build path includes the Java runtime (JRE) and:

» Other projects

» JAR files from other projects or external JAR files (for example from
underlying products, such as JDBC drivers from a relational database,
connectors)

Unit 3. Application Developer: Java Development 65

Create Pr

New I

Java Settings

Define the Java build settings.

Source |ﬁ F'miec:tsl 18 Liblariesl T Ulderl

the project a: source folder

Java Project

Create a new Java project.

Praject name: ITBSl

urce folders contained in the project

/' Create Hew Folder.. |
Project Source
Femawe |

[Location: IE:\WSAD\workspace\T est By

<Back | Met> [[Eush | ca

Build output B¥lder:
Required projects MTest Project Build Output

J .
<ﬁack | Mest > | Eirizh I Cancel

v
Source | 1=# Projects i}\ Libraries | 11 Urderl
JARz and class folders on the build path:
& JRE_LIB - E:AWSADAredlibt. jar

Create Faolder... |
Add Folders... |
e | Additional JAR files

Add External JaRs... |

Visual 3-4 Create Project

A SmartGuide is provided to create a Java project:

» A name must be provided.

» The default location can be set for a simple project.

» For a complex project, the source folders can be associated with the project.
» The build output location (for class files).

» The build path, consisting of additional projects and libraries (JAR files).

» The order in which the projects and JAR files are to be used.

JAR files can be copied into the project, or they can be referenced (point to an
external location). Variables can be set up for reference JAR files, which makes it

easier for team development where the actual directory may differ between
multiple developers’ work stations.

66 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create Project Resources

Creating resources
0 Create package Importing resources
» Creates directories according to)
package name 0 From directory
» Shows package name in view o ZIP file
a Create class 0 JAR file
SmartGuide: specify
» Superclass Migration from
» Interfaces to implement VisuaIAge for Java
» Method stubs: . . .
e main, constructors 0 Export into directory or JAR file
e inherited abstract methods O Import into WSAD
a Create interface L
» Specify extended interfaces Missing:
0 Create Scrapbook page (.jpage) 0 Visual Composition Editor
» Try sample code 0 Beanlnfo page

Visual 3-5 Create Project Resources

Project resources in a Java project are mainly Java source files, organized by
Java packages. The package view of the Java perspective shows the fully
qualified package names, instead of showing subfolders for each level.

SmartGuidse are provided to create Java classes and interfaces. For a Java
class, you can specify which interfaces are implemented and what method stubs
should be generated.

A Java scrapbook is a file named .jpage. It can contain code fragments that can
be executed.

Existing resources can be imported into a Java project. Individual files, whole
directories, or ZIP and JAR files can be imported.

To migrate existing code from VisualAge for Java, export the code into a directory
or JAR file, then import into the Application Developer.

Unit 3. Application Developer: Java Development 67

Java Perspective

File Edit

Java - Application Developer

Can edit multiple files

Perspective Project Debug ‘Window Help /
o — — Filter
S-HEB|E-|#- - dfded o ER K]
H3 Packages i Rl N Lizting2 J1 GuiListing java :E— Outline x®

public cla==s Listingd 4

= laz o O
<< database table

iz
B¢
[-1 ItsowsClientwel -
-l IteowisDealerEJB
]
7]
£

) #<String dbtab = "aaparts"; itz0. wead dealer. app
=tatic String dbtab = "mmparts ‘= impart declarations
-t ItsowsDealerPart : Ligting2
= % *o _ts eaecrl darsl public static void [EERN(java.lang. = G* lllssmgdbt b S
@ 120 visad. dealer. Sp System.out . println("Farts List 5 an - 0ing
[3] Listing.java /¢ connect to database @ = main[Sking(])
@ Listing2. java Connection con = dull: o @ 8 conhect()
157} - f itzo.wsad dealer par Een =thnnect();‘:
i retrieve parts I
[Hl* Pack /cl Statement stmt = e =il Fields/Methods
- ackages/Classes s ResultSet rs = null:
O g ECNpeE [OCTT el String zelect = "SELECT # FROR™
- JRE_LIB - E:Nw/SAL | | 3 | | v
- ividah.jar . - :
B, DASALLIBavatdb Tasks [iter showing 1 of 37tems) | Tasks: Errors | W0 p X
@ loop.jpage | 1 | Description [Fesource | In Folder
dull cannot be rezolved LigtingZ. java [tzovw'sD ealerParts/fits

-1 IteowsDealetwieh | N3
| » 4| | :

Packages] Hierarchy

Tasks| Search Console Iq—

Tabs for other views

Visual 3-6 Java Perspective

The Java Perspective contains four panes by default:

'S

>

Left—Packages and Hierarchy view
Middle—reserved for editors (multiple files can be edited)
Right—Outline view (shows outline of currently selected file in editor pane)

Bottom—Tasks (error messages), Search (result of search operations), and
Console (program output) views

Notice the icons in the toolbar:

vVvVvyVvYyVvYyYYvYyYYyvyy

68

New icon to create resources or run tools

Debug icon to run a class in debug mode

Run icon to execute a class

Create icons for project, package, class, interface, scrapbook
Open any type in the editor (enter a name in a dialog)
Search (open search dialog)

Icons for editing and for jumping between errors

Self-Study Guide: WebSphere Studio Application Developer and Web Services

Java Perspective Layout

WEG ll= iz | ' i | Outline
* Show hierarchy of g t| o Summary of edited
atype Java Editor - file (methods,
Packages / § o SIS (e [§ fields, imports)
« Packages with files | } / §
e Library JARs : :
v r===== A = == q
: I Navigator I
: I s Project directories and files |
: I (not open by default) |
1 RS K |

N PO ity eyl by s e S

Tasks

e Compilation errors | Console
o Self-created list ¢ Program output

Search
e Search results

Visual 3-7 Java Perspective Layout

This diagram shows the default organization of the Java perspective:

'S

>

The Packages view shows the resources organized by packages.

The Navigator view shows the resources organized by folders and subfolders.
(This view is not open by default, but can be added.)

The Type Hierarchy view can be opened for a selected type to show
sub/super classes.

The Search view shows the results of search operations.
The Console view shows the output when executing programs.

The Tasks view shows compilation errors or self-created tasks lists.
Double-clicking on an error opens the Java source file with the error.

Editor windows show Java source code.

The Outline view shows the outline (imports, class, fields, methods) of the
currently selected editor window. Clicking on an item in the outline positions
the editor window.

Unit 3. Application Developer: Java Development 69

Java Editor

0 Bound to outline view
» Select field/method in outline, positions and highlights source in editor
0O Syntax highlighting
» Keywords, comments, Strings, Javadoc comments
0 Hover help on fields and methods
0 Editing icons .
» Show source of selected element only = r;-l Jml’ ﬁ
» Show hover help, goto next/previous problem

. try {
O Code assist s=tmt = con.createStatemsnt();
_ re = =tmt.executeluery(select):
(ctrl-space) vhile (rs 3ot) {
\ gtrl_.ng hal D gettmraw(Sting) Aray - ResultSet 3
5 Bookmarks e e
ouble wel @ getheciStream(Sting] InputStream - ResultSel
> -
Add. B°°kn.1ark String url @ gemsciSteam(nt InputStiean - ResulSet
on line or file Systen.o S : R '
T @ getBigDecimallSting] Biglecimal - ResultSet
> OPen Sy=tem.out . pr| @ getBigDecimallString.int] BigDecimal - ResultSet
Bookmarks Stmt-'fl‘:'se(? @ getBigDecimal(int] BigDecimal - ResultSet i
view con.closs(}:) | »

} catch(Exception

Visual 3-8 Java Editor

The Java editor works in conjunction with the Outline view. Selecting an item in
the outline positions the editor window to that part of the code. You can also
choose to only show the selected item in the editor window, instead of showing
the whole file. Icons allow you to filter out fields, static, or public members.

The Java editor uses colors to highlight keywords, strings, and comments.

When holding the mouse cursor over a variable or method, its definition is
displayed as hover help text.

Ctrl-space invokes the code assist feature, which displays possible method calls
that can be inserted at the selected point.

Bookmarks can be assigned to a line in the file, or to a whole file. From the
Bookmark view (which must be opened), you can select a bookmark to open the
associated file at the associated line of code.

70 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Text Search |_5—‘§> Text Search @ Java Search |
0 Pattern match with wildcards ‘ISEB:*_‘E“D'M“
ety
O Find any occurrence of text -

[* = any character, * = any string]

—Search For Limit T
J ava searc h = Type i ’}‘ Declarations © |mplemerters
a Based on Java Ianguage " Constuctor Fiel % Refererces Al Dccurences

[

ad.dealer. parts. Listing [4 matches)

elements
Faster than text search _

- SearCh for type’ methOd’ fleld’ / @ 5minrin[]-itso.u\lsacl.l:lealel.|:alts.Listing12 (4 matches)

constructor

0 Limit to declarations,
references, implementers

Console Tasks ISearch]

=tmt = con.createStatementi():

r= = stnt.executeQuerviselect):

while {(r=.next{)) {
String partnum = ge ring i partH
String name = rs.getString("name"
String descript= r=.getString("descr

Results
O Search view shows files

0 Open file and yellow arrows
show matches

double weight r=.getDouble("weigh
String url = rz.getString("image
Sy=temn.out . println{partnum+” "+name.

Visual 3-9 Search

Two types of searches are supported:

» Text search scans the whole file to find any matching given string.

» Java search only searches for Java constructs (type, constructor, method,
field), and you can search for declarations or references or both.

Search results are displayed in the Search view. Double-click on a result file and
it opens in the editor, with yellow arrows showing the lines that match the search.

Unit 3. Application Developer: Java Development 71

Editing Refactoring

Reorganize code but preserve semantics
0 Rename of type, method, field
0 Move file to another package (drag/drop or context menu)
0 Change method parameter name

0 Extract a method
» Select code and make it a method
» Method call inserted at original location

All references are automatically changed

0 Preview of changes
before commit

O Optional error page .-’-‘«f;Er Finizh' has been prezsed show the Enor.page anly i-f
» Window -> problems ocour that prevent the refactoring from being performed

Relactoring

Preferences -> % emars would be present in the workspace after perfarming the refactoning
Java -> " warnings would be present in the workspace after performing the refactoring
Refactorlng ™ information is generated by the precondition checking

[™ Save all modified resources automatically prior b refactaring

Visual 3-10 Edit Refactoring

The refactoring function enables a developer to make changes to files and have

all references updated automatically.

Possible refactoring activities include:

» Rename a type, method, or field

» Move a type to another package

» Change parameters in a method

» Extract a part of an existing method as a new method, and insert a call into
the existing method to invoke the new method

A preview window displays all the files that would be changed by the refactoring
activity. Each update can be viewed individually and selected for change, or all
changes can be applied.

72 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Editing Refactoring Preview

Refactoring I
Rename Compilation Unit: PartsAccess java

‘L
[~
The following changes are necessary to perform the refactoring. Click on a node to see a preview of E é
that change. Uncheck a change only if you are zure you want to exclude it from the refactoring.

E- Partzdiccess.java | update references to itzo.wead. dealer. partz. Partsficoess
- [l (3 Partsbocess | update type reference List of

Em GuiListing java changes
i ------ [B getSelectl]): update type reference
s Pl 8 getSelsctl]: update type refersnce
- v Partzbccess.java : Rename "AtzowsDealerPartzfitzo wead/dealer/partz/Partsbcoess java” to: PartsDBA

Jl | B

Original Source

- update references to itzo.wsead dealer. partz. Partz,

Refactored Source
e== connl) lllzd de=sler part= Part=DBAcc

selected change

|
¢ Back | st > | Finizh I Cancel |

Visual 3-11 Edit Refactoring Preview

This is an example of the preview window:

» The classes that require change are displayed in a list

» For each class, the individual line changes are displayed as a sublist

» Selecting an item in the list displays the original and changed source code in
the bottom pane

By default, all changes are applied when the Finish action is selected. Individual
changes can be excluded by deselecting the update before the Finish action.

Unit 3. Application Developer: Java Development 73

Code Formatting

Source code formatting controlled through preferences

> Java ->
Code Formatter Code Formatter

Lines Iittingl Style I

[Insert newfine before opening brace

Newlinel Line splitting' Style '

LCompact assignment

O Brace on new line

IV Indentation is represented by tab

catch/else on new line

(]

Amount of spaces reprezenting a tab |4

O else if on same line

=

/
0O Two lines for empty {}

/

= inStream.available():
} catch {(I0Exception =) {
B

0 Maximum line length

if {=ize == currentSize) {
/ l++sj.ze;
2 No space before = pel==
K

Visual 3-12 Code Formatting

Java source code is formatted according to rules set up in the preferences dialog.

74 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Type Hierarchy

. . ~._ Filtered Types t »
Hierarchy view of any type e [te. ®1 T
Q Type hierarchy @——— g)" EE/‘
. B @ Contai
0 Supertype hierarchy e B roc
» Shows implemented interfaces =@ Applet
0 Subtype hierarchy E[:.]met
O Lock view to see overwritten = @ Guilisting
methods in superclasses Y o @ inif]
;: Supertypes T_"}, ’E j.']:g x B GuiListing I?E| ?Ea HE OE o
(@ GuiListing -] B getT ableCalurmn3[) -
J&pplet B getT ableColumnd()
Fanel B handleE zception(Throwable) Inherited
c] Co:tacir;i:ponent ‘: Inlt[] . methods
: initConnections() J
g E‘nb;ZE;tDbSEI\ @ ; main{String(]]
@ MenuConai_| @ paint{Graphics)
8 Serializable OI windowdchivatedMwindowE vent) | _|;|
8 Accessible F| [3
’ 8 Accessible | _,l;l PackagealHierarch}l]

Visual 3-13 Type Hierarchy
The Type Hierarchy view can be opened for any type.

Icons are provided to display the hierarchy top-down (type hierarchy and subtype
hierarchy) or bottom-up (supertype hierarchy).

The supertype hierarchy also shows interfaces that are implemented for each
class in the hierarchy.

The lock view icon can be used to show from which classes a selected method is
inherited. In our example, the init method (selected in the GuiListing class) is
inherited from the Applet class.

Other icons can be used to display all methods (including inherited methods), or
filter out fields, static, or public members.

Unit 3. Application Developer: Java Development 75

Scrapbook

Create file of type Scrapbook Script Perspective
0O name.jpage

X
String total = "": -
Enter any Java COde for (int i=1; 1i<11; i++) {
System.out . printlnii + " square " + i=i);
- Set paCkage for total = total concat{i*i +" ");

execute

return total;

Select code and
execute

0 Display
» Result in edit view: (java.lang.String) 1 4 9 16 25 36 49 64 81 100

O Inspect
» Resultin i

Inspector view
0 Run ==> Console

b count= 28
@ hash=1
------ | offset=0

Fe B values char[28] [id=75]

Visual 3-14 Scrapbook

A scrapbook is a file of type .jpage. You can enter any Java code in a scrapbook,
select some or all of the code, and execute it.

The execution context can be set to any Java package. Execution can be to

display the result in a pop-up window, to open an inspector window, or to just run

with possible output in the Console.

76 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Building Projects

Full build of all projects Build path defined for project
O Project -> Rebuild All O Other projects
Manual build of project 0 JAR files in Workbench
(context menu) 0 JAR files outside Workbench
2 Build project ==> Incremental [Ant’is built into Workbench
0 Rebuild project ==> Full 2 Build files are XML
Automatic build on save of 0 Run Ant for XML build file
resource » Wizard prompts for target
2 Window -> _
Preferences -> |ELlEEiEilD
WorkbenCh Nl Warkbench

Appearance
Compare Vigwers
Diefault Text Editor
File Editors

Local History
Perspectives

[+ Perform build automatically on resource modification

[Save all modified resources automatically prior to rmarual build

¥ Link Navigatar selection to active editor

Visual 3-15 Building Projects
Building a project means to compile the Java source code.

By default, build is automatic every time you save Java code. Automatic build is
set up in the preferences dialog.

With manual build, you can select to build only changed files or you can force a
complete project build.

The most important activity is to set up the build path for the project, consisting of
other projects, JAR files in the Workbench, and external JAR files (from other
products). You can change the build path by opening the project’s properties.

You can also use the built-in Ant feature to create your own XML build files.
However, this task will not be explored in this class.

Unit 3. Application Developer: Java Development 77

Debugging

Set breakpoints in code

» Double-click
Context in left border of editor
Breakpoint on exception
Breakpoint in inner classes

Click Debug icon % v L1 @ |
Debug Perspective (next)

x| 0x| S| x

argz= String[0] (id=12]
db="aaparts"
con= DB 2Cannection (id=20)

vyvyy

Debugger control icons
0 Step into/over
0 Run to return

j}_ ‘1':{!" r DE2ResultSet (id=25]: -
mtam = closed= false
colSizez= intf3] [id=28)

L
&
0 Resume i colTypes= int[3] (id=30] e
b conhection= DB2Connection [id=20)
. date= 1
Variables and Inspector o erorestion 1000
& fetchSize=0
Evaluate expressions (Display view) | | hou=0 : _Ij
1 »

Local and remote debugging BreakpointsIlnspectolIVariables Display
Visual 3-16 Debugging

To debug Java source code, you set breakpoints in the source code. A breakpoint
can be set on a line of code, for when a certain exception occurs.

To start a program in debug mode, use the debug icon, and the Debug
perspective opens (next visual).

In the Debug perspective you use icons to step into a line of code, step over a
line of code, or to run to the end of a method (step return).

The Variables and Inspector view can be used to analyze the values of variables.

Debugging is supported on the local machine (where the Application Developer
runs) or on a remote machine (with the IBM Agent Controller installed).

78 Self-Study Guide: WebSphere Studio Application Developer and Web Services

ebug - Application Developer
Edit Perspective Project Debug window Help

Debug Perspective

T exception
IS ME T X X IR :
% Debug B [f{l. L=l /] Fr x
it Spstem Thread [Finalizer] [Funning) -

B System Thread [Reference Handler] [Running]

B System Thread [Signal dispatcher] [Running)

=@y Thread [main] [Suspended [breakpaint at line 20 in List
== Listing.main(5tring[]] line: 20

=
| |_’|_

Mavigator Processes lD thEJ

Breakpoint

FEEEIEE

Breakpoints]lnspeclor Wariables Display

[J7 Listing.java Xl S 2= Outline %0 & o x
String db = "asparts": ource o itso.wsad.dealer parts
<AString db = "mmnparts"; bl)) ’

import declarations
Lizting
@ 5 main{Sting(])

Systen.out.println({"Parts Listing for "+db):
S/ connect to database
Connection con = null:

try
Clas=. forName("COM. ibm.db2 . jdbc.app.DEZDriver

| mrn = DredverMananer et Comnect 1 nr"4.4h.~-.4h9-_1'IJ
3

B Console
Farts Lizting for aaparts

: o

Tasks IConsole]

Visual 3-17 Debug Perspective

The Debug perspective shows:

» The Processes view with running processes

» The source of the Java program with the current line

» The Outline view of the source code

» The Console output

» The Breakpoint view will all the breakpoints

» The Inspector and Variables views with the current values
» The Display view where expressions can be evaluated

For easy debugging, you may want to make the Variables view a separate
window that you can move away from the Application Developer window.

Unit 3. Application Developer: Java Development

79

Project Properties

Open project properties (context menu)
O Java build path
» Source, projects, JAR files, order

0 Alternate Java runtime (JRE) - Beaninfo Path
> Default or custom - Dlebugger Source Lookup
Default launcher for Run/Debug B | =va Build Path

0 Project references (to other projects) ::;\Eﬂ Info

(]

0 Debugger source lookup o Launcher

» Build classpath or custom lookup . Project References
0 Beanlnfo path (enable introspection) o Team
0 Team

» Location of repository for project

Visual 3-18 Project Properties

The project properties dialog can be used to set up:

» The Java build path

» A custom Java runtime library

» The default launcher (launch a Java program or an application server)

» The location of source code, for example for JAR files that are used by the
application

» The location of the team repository

80 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Java Preferences

Window -> Preferences System-wide properties

O Java classpath variables
» Locate external JAR files without specifying absolute directory

0 Code formatter : :
> Already discussed Defined clazspath vanables:

1 Installed JRES 3 JRE ll'l;LlEH
» Can add alternates and .

. . # JRE_SRC [reserved)
assign to projects 3 JRE_SRCROOT [reserved)

a Java editor font 2 SERVERJDE_PLUGINDIR - E:/ w540 /plugins/com.ibm.stools serve...
. . & S0aPJAR - E:AwSaD/plugine/com. bm. etools. webserviceuntimeds....

4 Organlze |mports & SOAPSECIAR - E:AWSAD /plugins/com.ibm. etoalz. webszphere. runtim. .
» Can SPeCify order of & SOLTOXML - E: AW SAD /plugine/com.ibr. etools. sqltoxmldars sqltoxm. ..
import statement by 3 wib5_PLUGINDIR - E:AWSAD/pluging/com.ibm. etools. websphere.fu..
pa(:kage names WA MALAN - B AMSAD Apluging/com.ibm.etools. websphere. runtime. ..
(wildcards) @ wWibS ®ERCES - E:MWSAD Apluging/com.ibri.etoalz. websphere. runting, .

| Refactoring @ WEBTOOLS_PLUGIMNDIR - E:AwWSAD /plugins. corm.ibm, etoolz, webta. .

¥ERCES - E:AwSAD//plugins/com.ibm. etools. b2bamirt Auerces. jar
& XERCESJAR - E:Aw'SAD /plugine/org. apache. erces/serces. jar
& #SDBEAMS - E:AwSAD pluging com.ibm.etoolz. wedmodel/jarefredbe.

» Already discussed

Visual 3-19 Java Preferences
Many system-wide preferences for Java development are set up in the
preferences dialog (Window -> Preferences). These include:

» Variable to refer to external JAR files instead of specifying directory locations
(many variables that point to JAR files in the Application Developer itself are
predefined)

» Code formatting rules
» Installed Java runtime libraries (to be associated with a project)
» Font used by the Java editor

» The organization (sequence) of import statements that should be used in
Java code

» Refactoring defaults (when to display an error page)

Unit 3. Application Developer: Java Development 81

Java projects and Java development provide

0O Flexible project arrangement
» Source directories entirely inside project
» Source directories outside project

0 Powerful editing

» Code formatting and assistance

» Refactoring
0 Debugging

» Step through code and inspect variables and expressions
O Flexible build

» Automatic or manual

» Full or incremental

0 Java and debug perspective provide easy access to all functions

Visual 3-20 Summary
Java projects are the base for Java code development.

Other project types, such as Web and EJB projects, use these basic facilities as
well, because these projects also deal with Java code and require Java editing
and compilation.

82 Self-Study Guide: WebSphere Studio Application Developer and Web Services

_Exercise: J

WSAD Java development

Java perspective

Create project Listing GuilListing
» ItsoWsDealerParts
Create package, class /
Code assist
Refactor Parts
Build path Dealer application DBAccess
Run application to list the parts
Import code from the database JDBC

Search

Debug @

Scrap page

l_g
<
Rt

il

lopmeint |

b~
P

O O

O U0 U dodoo

AAPARTS

Visual 3-21 Exercise: Java Development

The Java development exercise guides you through many of the tasks discussed
in the presentation.

In this exercise you work with two Java programs:

» Listing, a simple Java program with direct JDBC access to the parts tables in
the ITSOWSAD database

» Guilisting, a Java GUI program that was developed with VisualAge for Java
and that you will import into the Application Developer. This program uses the
data access beans of VisualAge for Java for database access, and you have
to import the JAR file with the underlying support classes as well.

See Exercise 1, “Java development” on page 299 for the instructions for this
exercise.

Unit 3. Application Developer: Java Development 83

84 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer:
Relational Schema Center

ibm.com

@_ Web Services

e-business

Studio Application Developer

Relational Schema Center

Redbooks

International Technical Support Organization

© Copyright IBM Corp. 2002 85

Obijectives

Learn about relational
database development tasks Tasks

0 Data Perspective
0 DB Explorer view 0 Create database schema

0 Data view 0 Create tables with columns
» Primary and foreign keys

0 Create view, index, alias, trigger
» Not in product yet

SQL Query Builder 0 Database connections

0 Create and run SQL statements > Import existing schema
» To generate XML from SQL Modify schema

» For Web applications Generate DDL

Execute DDL to create local def.
Create SQL queries

0 Navigator view

RDB tooling used for EJBs

Visual 4-2 Objectives

The objectives of this unit are:

» Understand the relational schema center that provides tools for relational
database development tasks

» Understand the Data Perspective with the DB Explorer and Data views
» Understand the SQL Query Builder

» Understand the tasks and editors available for managing database
descriptors

86 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer Database Operations

Connections

O Create connection and view database
objects on server

WSAD RDB Tools

Import File System Local I:)Séorage
DDL
0 Import database objects from server — Schema
XM é\Tables
Create and modify
0 Develop database, schema, tables *
0 SmartGuide and editor connection
Generate DDL DB2 i
: : DB2/390,400
0 Create DDL files for objects Sybase
MS SQL
Execute DDL MySQL
]] Oracle
0 Execute a DDL file to create a local object Informix
InstantDB

Visual 4-3 Application Developer Database Operations

The Application Developer provides:

» Local storage (XMl files) to store database descriptors (database, schema,
and tables for now)

» Active connections to databases to retrieve existing definitions and to build
and run SQL queries

Connections are used to retrieve existing descriptors into the local storage
format (XMI).

Editors and tools are used to create and manipulate local descriptors, generate
DDL from local descriptors, and run existing DDL to create local descriptors.

All major database systems are supported.

Unit 4. Application Developer: Relational Schema Center 87

Files: XMI and DDL

<RDBSchema:RDBTable ... name="AAPARTS" ...> I
<columns ... name="PARTNUMBER" ...> Data Table
<type ... SQLCharacterStringType ... length="10"> XMI F“e R

<originatingType ... /> </type> </columns> view (Local)
<columns... </columns>
<namedGroup ... ref by inventory ...> </namedGroup> ‘
<constraints ... name="PARTKEY" ... PRIMARYKEY ... />
<schema href="ltsoWsDealerDatabase\

ITSOWSAD_ITSO.schxmi#RDBSchema_1"/> c
<database href="ltsoWsDealerDatabase\ Editor .
ITSOWSAD.dbxmi#RDBDatabase_1"/> import
</RDBSchema:RDBTable>

generate

Editor

execute view of real tables
' DBExplorer

CREATE TABLE ITSO.AAPARTS
(PARTNUMBER CHARACTER(10) NOT NULL, XML Schema
NAME CHARACTER(30),
DESCRIPTION VARCHAR(100),
WEIGHT DOUBLE,
IMAGE_URL VARCHAR(100) NOT NULLY);

Table
(Server)

ALTER TABLE ITSO.AAPARTS DDL File — manual
ADD CONSTRAINT PARTKEY PRIMARY KEY
(PARTNUMBER); T

Visual 4-4 Files: XMI and DDL

Local descriptors are kept in XMl files that can be manipulated with tailored
editors in the Data view. These editors provide a graphical view of the data;
editing is not performed on the XMI source file.

Through a connection in the DB Explorer view, you retrieve existing table
definitions and convert the definitions into local XMl files.

XMl files and DDL files are used to store the definitions, and each format can be
converted into the other; that is, you can generate DDL from the XMl file, or
generate the XMl file by executing the DDL file.

You can also generate an XML schema from a table definition.

88 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Data Perspective

¥ Data - Application Developer

File Edit Perspective Project Window Help DDL files
= | ¥ /
=] FE1TS0.44P4RTS X | | Table Editor Outine X
R'-J' E-1aF Itsow/sDealeD atabase A autling iz n
- 26) AAIMVENTORY sql
B Bt S NEEETR Colurn Name [PAR TNUMEEF
Eﬂl DB t—}---ﬂ ITSOwSAD DB2UDBYZ2l [N 0 PARTMUMBEF =eumniams
= o7 ITso Schema -8 MaME Colurnn Type ICHAHACTE'I
=3 Tables -8 DESCRIPTION |—
E=] [TS0 MMINVER E mi'gg”um Defaul
T || Tables : ITSOMMPART - ||} / - Nullable [~
ITSD.MINVEN‘i generate/executel
7 Views _| String Length |10
-7 Aliases 1 |» -
notyet ||~(3 Indexes Add anothell Deletel Data Vlew .
i g ;{iggntars a7 GenerallCqumnsIPrimar}l Key Forg o ertable Iocal view Of
muctured Types q
5 T S database opjepts .
I S PartListingm;l i ca|S|3|[! s 0 Import of existing objects
4 » | eschnphion .
0 New objects
DBE =plorer |Data fM avigator \ <| J
0 Generate DDL (from XMI)
SQL Builder O Execute DDL (to XMI)

Visual 4-5 Data Perspective

The Data Perspective provides views and tools for definition and maintenance of
descriptors for database, schema, and table definitions.

The Data view shows database descriptors (XMl files) in a hierarchical format.
Editors are provided to define database, schema, and table descriptors. Tools
are provided to generate SQL DDL files for such descriptors, or to create a

descriptor from an existing DDL file.

The DB Explorer view enables connections to database definitions in real time
and to import existing descriptors as local resource files (in XMI format).

SQL statements can be defined graphically using a wizard. Such statements can
be executed for testing, and can be used by XML tools to convert database data
into XML files. Statements can also be used by Web development tools to create
skeleton Web applications (servlets and JSPs) that access databases.

Unit 4. Application Developer:

89

Relational Schema Center

DB Explorer

Connection

[1TS0WSADdbe: b2 TSOWSAD)

= 8F 1150 <

Tables

ITSO.MMPARTS

DB/Schema

ITSO.MMINVENTORY

Tables

Subset filter

DB Explorer vew
d ConneCt to database server [;:::;i:::f;;g:zr::)er;tion to a databage. @-*-
0 View existing database objects —
0 Import database objects to local ConnectionName |ConlTSOWSAD
Data view Datsbase IEED

D Read'only VleW User 1D I
0 Generate DDL, XML schema Password |

JDELC Driver | IBM DB2 APP DRIVER |

JDBC Subpratocal Iidbc: dbz:
Hast |CHUSA

[Optional]Port Mumber I
JDBC Driver Class ICDM.ibm.db2.idbc.app.DB2Drivet

ID:\SQLLIB\iava\deiava. zip Browse.. I
Iidbc:de:ITSDWSAD Edit UHLI

Clasz Location

Caonrection URL

| —
I DE EHpIDrer]bata Wiews M avigator
— 7

Firizh I Cancel |

Visual 4-6 DB Explorer

Through the DB Explorer view, you can connect in real time to a database and
retrieve existing descriptors.

A SmartGuide is provided to define the connection information, such as the
JDBC driver. A filter can be set up to only retrieve tables that match a given

naming convention.

The DB Explorer is a read-only view. After viewing real-time information, the
descriptors can be imported into a folder and then manipulated using the Data
view. From the DB Explorer, you can generate DDL files and XML schemas.

90 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Navigator View

File operations Navigator View
- copy, move, rename 0 Schema descriptions
0 compare, replace contained in XMl files
0 edit 0 Edit of XMl files is same
¥ Data - Application Developer as edltlng from Data view =1 E3
File Edit Perspective Project Window Help
H-HE&| ¢
E ?g_; Mavigatar v X EW x Ou x
- [=-Ta ItecwsDealerD atabase - W oLt
DDL files % - E_llj BAINVENTORY 5l Folder Iltso\n\-’s Browse...l
iz Database name: IlTSDW’SAD
Tables ﬁ Comments:
E’ : . @ ConlTSOMWSAD_ITSOWSAD dhsri b .
Schema | | LW L ConlTSOWSAD consmi Editors
~~ B ITSOTEST_ITSO. cchumi
@ ITSOTEST.dbwmi
Database B TSOWSAD_ITSO_AAINVENTORY.thlsmi General|
1750w SAD_ITSO_AAPARTS. thlumi T . -
[0 ITSOWSAD_PanListing sq = Vesin ey w8 sp X
4| . » | El 1 | D escription .
DBEproreqDatalNavigatorJ XMI files | | _’l—l

Visual 4-7 Navigator View

The Data Perspective also provides a Navigator view that can be used for
operations on the underlying XMl files.

Invoking an editor on such an XMl file does, however, open the same graphical

editor as from the Data view.

Unit 4. Application Developer: Relational Schema Center

91

Creating Database Objects

Database | Create database | Schema | Create schema | _
Create a new database Create a new schema
|
Destination folder I.-"ltsoWsDeaIerDatabaSe Browse...l Destination folder IItsoWsDeaIerDatabase Browse...l
Database Mame [ITSOTEST Schema name |TEST
Database Wendor Type IDB2 far NT. W71 j Databaze IlTSDTEST Browse...l

Create table

Create a hew table Table columns y
Add columns to new table. Primary Key ... and a key
Destination folder |ItSDWsD ealeiDatabal | E--£3 Columng BT I—Name
Prirnary K.ey Name ITestKeﬂ
Column Type ICHAHACTEH
Database/Schema IlTSUTEST.TEST Source Column
Default I —
T able Name ITESt Fau HAME [Is]
Nullable ¥
> |
Length I‘ID py |
For bit data [~ AII>>|
Add anotherl Deletel <l

Visual 4-8 Creating Database Objects

SmartGuides are provided to create database, schema, and table descriptors.

For a table you can define the columns with their data types, as well as the
primary key and foreign keys.

92 Self-Study Guide: WebSphere Studio Application Developer and Web Services

SQL Statements

. Data View
SQL Wizard
O New -> Other -> SQL Statement SQL Query Builder
0 Guided or manual entry 0O Statement folder: New -> Select
2 From DB model or new 0O Opens STL statement editor
connection » Drag/drop tables
0 Wizard panels (guided): » Select columns graphically
» Select tables » Join tables graphically
» Select columns » Conditions (WHERE)
» Join tables graphically * same as in wizard
» Conditions (WHERE) > Group
e with host variables » Order in column selection
» Group 0 Can run SQL statement
» Order » Prompt for host variables
0 Can run SQL statement 0 Save from editor
» Prompt for host variables
0 Can use editor afterwards
Statement stored as .SQX file

Visual 4-9 SQL Statements

There are two ways to create SQL statements:

» SQL wizard—a guided dialog that goes through a number of panels to select
the table(s), select the columns, and to provide join, where clause condition,
grouping and order information. SQL statements built with the wizard can be
edited afterwards with the query builder.

» SQL query builder—a graphical editor to specify the tables, columns, join,
conditions, group, and order. Instead of a guided dialog, a set of panels
accessible through tabs is provided.

SQL statements can be built from an imported database model or through an
active connection. SQL statements can be run against a real database, and you
are prompted for host variables that were defined in where conditions.

SQL statements are stored as .SQX files, which is an XML file.

Note that you can build select, insert, update, and delete statements.

Unit 4. Application Developer: Relational Schema Center 93

Flle Edit Perspectlve Fioject 'Window Help

SQL Query Builder

QUANTITY
COST

E DESCRIPTION
INEIGHT i

in
[IMAGE_LIRL

Run SQL EER sa
statement
ﬁ £0] ITSOWSAD - PartListingBuilder ¢
| SELECT ITSO. MMPARTS PARTHUMEER. ITSO. MWPARTS HAME. ITSO. MMINVEN| x|
Shows - FROM ITSO.MMPARTS. ITSO.MHMINVENTORY
statement He) WHERE ITSO.MMPARTS FPARTNUMEER = ITSC. MHINVENTORY . PARTHUMEER
= AND ITSO MMINVENTORY . QUANTITY < :quantity
ORDER BY ITSO. MMPARTS PARTNUMEER ASC =
BT _'I_I
MMPARTS FMINVENT ORY
Select PLRTHUMEER = %] ITEMKUMBER, =* = Join:
columns NAME] PARTNUMEER

drag column

[] SHELF | _IJ

Sort order ~_ Staternent |F'artListingBuiIder

[~ DISTINCT

B Columns Conditions I Groupsl Group Eonditions'
Column I Operatar I Yalue I And/Or I
Where ITSO.MMINVENTORY.QUAN... | < “guantity
clause T

Visual 4-10 SQL Query Builder

The SQL query builder is really an editor with three panes:

» The top pane shows the actual SQL statement and you can edit the content.

» The middle pane shows the tables, selected columns, and joins. You can drag
and drop table objects from the Data view into this pane (and also into the top

pane).

A join is performed by dragging a column from one table to the matching

column in another table.

» The bottom pane contains a set of panels that are accessible through tabs
and are used to specify sort information, where clause conditions, and

grouping information.

An icon is provided to run the SQL statement.

94 Self-Study Guide: WebSphere Studio Application Developer and Web Services

SQL Query Execution
¥ Execute S0L Statement '
SCL statement:
|SELEET TS0 MMP&RTS PARTNUMBER. TS0 MMPARTS. NAME . IT50 MMINVENTORY.QU: |
Database
must have
Execute from connection
. editor only
Cluery results:
FARTHUMEER | NatE | auanTiTY | CcosT | SHELF | LocaTion
100000003 CR-MIRROR-R-01 ... 10 53,99 [San Francizoco
k4100000003 CR-MIRROR-R-01 ... 10 59,99 BY Mew v'ork.
Parameter Values
SQL Statements: Specify the vanable values to use
0O SELECT
b arker Mame | Type | Walue
O INSERT Eqantiy HTEGER T2
0 UPDATE S——
Finish Cancel
0 DELETE

Visual 4-11 SQL Query Execution

When an SQL query is executed, you are prompted for the values of any host
variables used in where clauses.

Results are displayed in table format for select statements.

Unit 4. Application Developer: Relational Schema Center 95

Relational Schema Center and Data Perspective provide

0 Management of database objects
» View of real server tables
» Versions supported in team environment

0 DDL generation
» Implement database objects in target environment

0 Schema design for EJBs
» Container-managed entity beans with associations/inheritance
» Schema is required for EJB development

0 Base for SQL statements

» Run SQL statements to generate XML files
» Use SQL statements for Web applications

Visual 4-12 Summary

The relational schema center with the Data perspective and its DB Explorer and
Data views can be used to perform database descriptor maintenance tasks that
are required when developing Java applications that access such databases.

Maintaining database schemas is a requirement when developing entity EJBs
that require a mapping between the EJB and an underlying table.

The SQL statement builder is used for SQL statements that are used in Web
applications. In a Web project, we can generate servlets and JSPs based on
such SQL statements.

SQL statements can also be run to generate result data in XML format.

96 Self-Study Guide: WebSphere Studio Application Developer and Web Services

' Exercise: [

Relational databases WSAD
O Project ltsoWsDealerDatabase
0 Database connection

cenief TN

4 Import tables statements generate

O Create database and tables
0 Generate, import, run DDL
O SQL query builder

local storage

)

connect

Work with
databases
from WSAD

MMPARTS
MMINVENTORY

Visual 4-13 Exercise: Relational Schema Center

The relational database exercise guides you through many of the tasks
discussed in the presentation.

In this exercise you work with the ITSOWSAD database to:

>

>

>

'S

Retrieve existing descriptors using a connection

Create and manipulate descriptors using the SmartGuides and editors
Work with DDL files

Use the SQL query builder to create an SQL statement

See Exercise 2, “Relational Schema Center” on page 309 for the instructions for
this exercise.

Unit 4. Application Developer: Relational Schema Center

97

98 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer:
XML Development

ibm.com

@ Web Services
=were= | Studio Application Developer

XML Development

Redbhooks

International Technical Support Organization

/5

Visual 5-1 Title

© Copyright IBM Corp. 2002

99

Obijectives

Learn about XML development
tasks Tasks
0 XML overview
, 0 Authoring XML files
- AUthofrmg _ » XML, DTD, Schema editors
0 Trans ormatlor'1$ O Utilities
0 XML Perspective » Schema conversion
» Navigator » HTML form
» Outline » JavaBean generation
» Editors aT f fi
e Design and Source view ranstormations .
> Tasks » XML-to-XML mapping
0 Manipulation through JavaBeans > XSt trace
P 9 0 SQL and XML integration
0 Support for DB2 XML Extender » XML/HTML from SQL query
» RDB-to-XML mapping

Visual 5-2 Objectives

The objectives of this unit are to:

» Understand the tools (editors and utilities) provided to work with XML files,
DTD files, and XML schemas

» Understand the XSL transformation tools
» Understand the integration between SQL and XML

100 Self-Study Guide: WebSphere Studio Application Developer and Web Services

XML Usage Today

Intranet
Internet

WebSphere
Application 2Ping

Server

Visual 5-3 XML Usage Today

XML is already used in many applications on the Internet and on the intranet to
send data from one application or database server to another.

XML and XSL are also used to translate such data into formats supported by
Web browsers.

Unit 5. Application Developer: XML Development 101

XML Terminology

DTD (Document Type Definition)
0 Describes structure of XML files (old) DTD "W conversion

XSD (XML Schema) A \\

O Describes structure of XML files and
data types (new)

XSD

Validation
XML file *

O Well structured
» Every tag has an end tag XML
» Properly nested

0 May point to DTD or XSD

» Validation Transformation

XsL |—»
XSL (XML Stylesheet Language) '

0 Transformation of XML files

XML

Visual 5-4 XML Terminology

The different types of files used with XML are:
» DTD—describes the structure of an XML file (old style descriptor)

» XSD (XML schema)—describes the structure and the data types of an XML
file (new style descriptor, is itself an XML file)

» XML—a well-structured file that follows XML conventions:

— Every tag must have an end tag
— Tags must be properly nested

An XML file may point to a DTD or XSD for validation of the structure and the
data types.

» XSL—used by an XSL translator program to convert an XML file into another
format (XML, HTML, other)

102 Self-Study Guide: WebSphere Studio Application Developer and Web Services

XML Perspective

Outline

List of
Files

File:

Project =ML

Edit Perspective Window Help
S-S SRR R v A a X FE)
Editors
= [/== outine] v x || O] Partdtd x| =) Partssd
F oDl wergion="1.0"
it L[DOCTYPE Part SvSTEM "Part.dtd"”
% E1-<e» Part [=)-4ex Part [Mame, Description, Weight?, URL, Inventon®)
EB i4e» Mame ; Partrurnber H3
D-EI &> Description <e» Name Headlight
&> Weight Drescription Drescription
) <o URL <& Waight 55
- +-4€> |nventory LURL URL) :
[l-485 Inventory [Guantity, Cost, Shelf?, Location™)
ar |tem Hzmm
5 Navigator * X e uantity 4
ey Cost 34.56
. 48> Shelf 52
- ItecwsDealeiml o --4€r Location Location
H-{= classes 48 lrnenta [Quantity, Cost, Shelf?, Location™)
= source
[sqleml J Design|Source Design and Source view
------ .clagepath
...... @ Part.dtd Tasks [Filter shawing O of 3 iternz] "geR }:& X
""" .“:l—il Pait.html I Cl [I D escription I Resource
""" Errors
------ Part.xxd
Jrad | »

Visual 5-5 XML Perspective

The XML Perspective is provided for developing XML applications or adding XML
functionality to Web applications.

XML editors for XML files, DTDs, and XML schemas are provided for
manipulation of XML resource files.

XML tools are provided to convert XML descriptors (DTDs and schemas),
generate files, generate XSL style sheets for XML manipulation or for converting
database data into XML data.

Unit 5. Application Developer:

XML Development

103

Authoring Tools

Inte[?Tr;te: set of visual editing tools Conversions
E L ed',Ior 2 DTD to XSD
edttor _ 2 XSD to DTD

0 XML Schema (XSD) editor

Views
0 Outline view with structured content (add, remove)
2 Design view for structural editing with choice list
0 Source view with intelligent assist

Supports W3C standard

Validation of files
o DTD, XSD
0 XML against DTD/XSD

Visual 5-6 Authoring Tools

Graphical editors are provided to create and manipulate XML, DTD, and XML
schema files.

These editors provide a Design view for structural editing and a Source view for
direct editing of the source code (including code assist). Coupled with the editor
is an Outline view with structured content for adding and removing elements.

Conversion utilities can generate an XSD from a DTD, or a DTD from an XSD.

All file formats can be validated; note that XML files can be validated against the
DTD or XSD that they refer to.

104 Self-Study Guide: WebSphere Studio Application Developer and Web Services

DTD Editor

O Create DTD

O Create DTD
from XML file(s)

0 Define/modify
» Elements,
attributes

O Edit in Design
or Source view

Icons to:

» Validate

» Generate
schema,
beans,
HTML form

» Add elements

:z{uutnne)

2 B x
=

| R

= [0] Part.ctd
E|---<e_> Part

SRR

Part
ar Partnumber

<er Mame
Lo(1) [HPCDATA)
[+]--4&» Description
[#--48> Wieight
#-4ex JRL
[=]--4&> |rwentary

ek g

1) Quantity
1) Cost

— Attribute Information

Mame: IPartnumber

Type: I Character Data [CDATA)

L L

" HFIXED

— Attribute default value

" HIMPLIED ' #REQUIRED
 Diefault

One element

Design]F ource

1< ELEMENT

3<1ELEMENT
4 |ELEMENT
5< |ELEMENT
6< |ELEMENT

7

8< |ELEMENT

9< IATTLIST
10< |ELEMENT

11< ELEHMENT
12< |ELEMENT
12

14< |ELEMENT

el

B fand 223 glap

4|

Part (Hame.
Part Partnumber CDATA #REQUIRED
Hame (#PCDATA) »

Description (#PCDATA) =

Weight (#PCDATA) »

TUEL (#PCDATA) »

Inventory (Quantity, Cost. Shelf?
Inventory Item CDATA #REQUIRED >
Cuantity (#PCDATA) »

Cost (#PCDATA) »

Shelf (#PCDATA) >

Location (#PCDATA) >

De=scription. Weight?, a

il

0] esigr‘llSource]]

Visual 5-7 DTD Editor

The DTD editor enables you to create a new DTD or edit existing DTDs.

A Design view and a Source view is provided, and an Outline view is coupled to

the editor.

Elements are added, removed, and selected in the outline, and edited in the

Design or Source view.

Icons are provided to invoke the utilities to validate a file, generate an XML
schema, generate JavaBeans, or generate an HTML form.

Unit 5. Application Developer:

XML Development

105

XSD Editor

O Create new

0 Define/modify RERlr R
» Complex, /

simple

» Elements B8 F":rtDef Element name: [Quantity
’ =59 Part) i
attributest&g Nzrme Type information
.8 Deseriptian © Built-in simple type
- |COhS -89 waight & Userdefined simple type Datatypes
» Validate ‘i‘:g lLIHL " User-defined complex type
=5 reentary
» Generate El-cts st:quantnum ﬂ
beans E-"a /
» Generate / ™ abstract [~ Millable
DTD
Value | Minimurm: I
. o
0 DeSlgn and - ;m?d) 1 M awimum: I_
Source view ,
E
update | ,
-8y Location
[ty quantnum Constraints
sl weighttype
Design| Source
| Design|

Visual 5-8 XSD Editor
The XSD editor enables you to create and edit an XML schema.

A Design view and a Source view is provided, and an Outline view is coupled to
the editor.

Elements are added, removed, and selected in the outline, and edited in the
Design or Source view.

Icons are provided to validate a file, generate JavaBeans, or generate a DTD.

106 Self-Study Guide: WebSphere Studio Application Developer and Web Services

XML Editor

AalE

O Create new,
from DTD,
from XSD

a Icons
» Validate, Dependencies,
Grammar checking

O Source edit

— A
m— Outline

» Code assist
(ctrl-space)

» Smart
double-click

2 wml

[t DOCTYPE:Part
=-4e» Part

-4 Name
4@ Dezcription
-4ey Weight

-4y LIRL

7] “Part uml 3]

1<%=ml]l wersicn="1.0"7:

3¢Part Partnumber="H3":
<Ham=:Headlight < Hane:
¢Description:Description<-Descri
<Weight 5 . 5<-Veight

I nv t g

2¢|DOCTYFE Part SYSTEM "Part.dtd" 7 |

ey |rwventor

e

[l
)

4@y |rwventony

wersion=""1.0"
Part SYSTEM "Part.did”
[=]-<er Part
Partnumber H3
Mame Headlight
Drescription Drescription
Weight 55
URL URL

|rvenbary
H3m

w48 Location | Location

[H-<er |rventary

Design lS ource
4

4
Desig;l Source I
j —

Visual 5-9 XML Editor

The XML editor enables you to create or edit XML files.

Skeleton XML files can be generated from a DTD or schema.

Code assist (ctrl-space) is available in the Source view.

Icons are provided for validation and grammar checking.

Unit 5. Application Developer:

XML Development

107

XML Utilities

XML sexer 2= xmL
e ~
/ new new \
DL convert =1 xsb
| |
generate generate

Y

HTML

HTML form

o fields from DTD
o specify servlet for submit action

\

K

JavaBeans

JavaBeans

» bean for each element
o factory bean for creation of XML

» sample program

» code to instance instead of DOM API

Y

DDL

DDL
o tables for root
and repeating
elements

Visual 5-10 XML Utilities

This diagram shows the conversion and generation possibilities:

'S

>

>

Conversion between DTD and XSD files.
Create new skeleton XML files from DTD or XSD.
Generate a DTD from one or multiple XML files.

Generate a skeleton HTML form from a DTD (the form includes a field for
every element in the DTD, and you can specify the name of a servlet to be
invoked by the Submit action).

Generate JavaBeans from DTD or XSD (one bean for each element, a factory
bean, and a sample program). This API can be used instead of the more
complicated DOM API provided by XML parsers.

Generate DDL for tables from an XSD.

Generate a mapping with an associated XSL file to convert an XML file to

another format.

108 Self-Study Guide: WebSphere Studio Application Developer and Web Services

XML-to-XML Mapping

Convert XML file from one
definition to another

0 Define mapping between
DTDs, XSDs, or XML files
» By name, manual (XMX file)

O Generates transformation XSL
» XSLT processor Xalan

O Can define functions for
conversions
» One element into multiple
» Multiple elements into one

XSL

Y

XML XML

g

- O E[Target) » O

m ta o fn e

ot om n A oA

celh Wisight
-<eb™ LRL

=3 Part %7 ® Partmap
El-<el™ Part El-<els® Part
tdhs® Partnumber tel® D
—teb® Name —teh® Name

-<elx™ Descriptian

-<els™ Inventomy

Target | Source

-<elx® Description
L R
ey weight

[=F%#] Partmap
El—teb Part

2 Irventany

-<eb® LRL
#-<els® |nventomy
| Applied Function/Gr... |
%7 Part
el Part
caly Partrumber
tely N ame
el» Description
cel} wieight
el URL

cels Irwventary

el Quantity el Quantity R
<elr Cost el Cost function
-] k- .
el ‘where welr Shelf, Location @fg' cancat
Compositionn

N

Visual 5-11 XML-to-XML Mapping

The XML-to-XML mapping function enables to you specify a mapping between
two DTDs (or two XSDs or two XML files).

The mapping is performed by drag and drop between the elements of the two
files. Simple mapping from one element to another, and mapping by function
(concatenation, substring...) between one and multiple elements is supported.

From the mapping, an XSL file is generated. This file can be used by the XALAN

XSLT processor.

Unit 5. Application Developer:

XML Development 109

XSL Trace

Apply XSL tO XML ®5L Trace Ex » l

O Select both XML K] Result Xkl Kx] Imput =L [Part. ki)
H < tuml verzion=""1.0" encoding="UTF-8" «| <Y=ml werzion="1.0" encoding="UTF-3" a
and XSL file <Parts I— < Part Partnumber="H3" —
D>H3c/D; e | <Name>Headight</Name>
d Apply to generate <M ame>Headlights /N ame: <Dezcrption: Descrptions /Descrpl
XML or HTML <Deseription> D escriptions /D escri; <Wwleights5.5< M eights
Swfeight:B 5 MAeights — < JRL=URL</URL:
a Step through code <URL:URL</URL> <Inwentony Ibem="H301""> —
. . <lrventony> <Huantity: 4 T uantit:
using icons <Cluantity: 4< Quantity <Cist> 34.56¢/Costs

— <Cisty 34.56< Cast> Shell> 52 Shelf:
| ;—,; 4_& K‘,—E Swiherer 52 in Locationd Awher <Laocation:Location: /Locatian:) +
—_ 1] | v 1] | r

» forward, back, E Input =51 [Partmap.ssl]

restart sl copys "
<I0
1 Save tr_ace as <uzlvalue-of select="tEPartnumber: < Al value-of > _I
result file D>
<Degorption:
<uslvalue-of select="Description/test{]"s < fuskvalue-ofs -
1| 3|

Visual 5-12 XSL Trace

After a mapping has been created and the XSL file has been generated, the
XSLT processor can be invoked for an XML file.

The XSL trace facility shows the original XML file, the translated XML file, and
the XSL file that was used:

» Icons can be used to step through the execution to analyze the XSL rules that
were used to convert the XML elements.

The trace is shown after the conversion has been done; it is not executed in real
time.

110 Self-Study Guide: WebSphere Studio Application Developer and Web Services

XML from SQL Query

Convert SQL query result into XML and HTML

O Start with SQL statement

| Walue

ting x]
deflned Wlth RDB tOOI Structure
. 22
0 Generate files for o o et
conversion @b yin

» XST - DB connection
and SQL statement

datt wrnlna:wsi
daty s sohemal ocation

BRI PARTS_MMINVENTORY

wergion=""1.0" encoding="LITF-8"

hittp: A A, ibm. corn A PART S _bAbIM ..
hittp: At w3 arg /20071 Z<MLS chema-in...
hittp: A A ibmn, corn M PART S_bMIN .
[MAME, QUANTITY, COST)

» XSD - (or DTD) schema for b PARTNLIMBER #4100000003
result XML b NAME
> XSL - stylesheet for | CR-MIRROR-A-01
conversion D OUANTITY XML result
wh 05T
to HTML @l MMPARTS_MMINVENTORY
| S|mp|e mapp|ng Design] Source
» key -> element or
attribute HTML result
> column -> element or attribute PARTNUMEER [NAME QUANTITY [COST
> foreign key -> link MI00000003 |CR-MIRROR-R-01 |10 59.99
M100000003 |CR-MIRROR-R-01 [12 59.99

Visual 5-13 XML from SQL Query

An SQL query created with the SQL query builder of the relational toolset can be
executed and the result converted into XML and HTML files.

The mapping of key and other columns can be specified so that either attributes
of a super element or individual sub-elements are created in the XML file.

A XSL file is generated to create the HTML output in table format.

Unit 5. Application Developer:

XML Development

111

RDB-to-XML Mapping

Map database persistent data to XML
0 Define mapping between table columns and XML element/attribute

0 Generates document access definition (DAD) file
» Used by DB2 XML Extender
» Compose XML documents from DB2
» Decompose XML document into DB2
» Hides the complexity of creating DADs

0 Test harness for deploying the generated DAD to DB2 XML Extender

Visual 5-14 RDB-to-XML Mapping

For DB2 with the DB2 XML Extender product, XML data may be stored in DB2
tables, either as a BLOB column, or as individual columns for the XML elements.

The mapping is specified in a document access definition (DAD) file.

This feature will not be discussed in detail in this class.

112 Self-Study Guide: WebSphere Studio Application Developer and Web Services

JavaBean Generation

Can generate JavaBeans for each element of DTD or XSD
0 Create a package (under source) for the JavaBeans
0 Select a DTD (or XSD) and the target package
0 Generate the beans

JAR files are added to the build path
0 XSDBEANS variable
0 XERCES variable

Also generates a sample program that uses the JavaBeans to
create an XML file

0 Sample data is very simple

0 Best to update with real data before running

0 Result in project folder by default (location is set in sample code)

Visual 5-15 JavaBean Generation
From a DTD or XSD file, JavaBeans can be generated to provide a simple API to
programmatically access XML files:

» For each element, a JavaBean is generated. The JavaBean contains sample
test data, which should be modified before running the sample program.

» A sample program is generated as well. This program creates a sample XML
file by using the generated JavaBeans.

These JavaBeans could be used in own programs to manipulate XML files. This
would be an alternative to the DOM and SAX APlIs provided by IBM Java XML

tools.

Unit 5. Application Developer: XML Development 113

XML Tooling provides
0 Management of XML files
0 Management of descriptors (DTD, XML schema)
0 Utilities for creation and conversion

0 Transformation of files using XSL
» XML ==> XML
» SQL query ==> XML and HTML

Visual 5-16 Summary

The XML tooling of the Application Developer provides a rich set of tools for
manipulating XML files and the associated DTD and XSD descriptors.

114 Self-Study Guide: WebSphere Studio Application Developer and Web Services

| Exercise: | XL VeIt |

XLM development
O Project: ltsoWsDealerXml

0 XML Perspective WSAD
O Work with DTD and XML schema -
0 Work with XML files :

Part.xml

0 XML-to-XML mapping Part.dtd

» XSL translation Part.xsd

0 SQL-to-XML mapping

Work with
XML files

DTDs and schemas w

Visual 5-17 Exercise: XML Development

The XML development exercise guides you through many of the tasks discussed
in the presentation.

In this exercise you work with XML files, DTDs, and XSDs that describe the parts
data stored in the ITSOWSAD database:

» Use DTD and XSD editors and convert between the formats.

» Work with XML files.

» Create an XML-to-XML mapping between two DTDs that describe the same
XML part files. Use the XSLT processor to convert an XML file.

» Use the SQL-to-XML mapping to execute an SQL statement and convert the
result into XML and HTML files.

See Exercise 3, “XML development” on page 315 for the instructions for this
exercise.

Unit 5. Application Developer: XML Development 115

116 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer:
Web Development

ibm.com
@ Web Services
e business Studio Application Developer

Web Development

Redbhooks

International Technical Support Organization
itle

e 6-1

Figur

© Copyright IBM Corp. 2002

117

Obijectives

Learn about Web development
O Web project, in J2EE hierarchy | 1aSKS
» HTML, JSP
» WAR file management 0O Import
(import, export) » Site (HTTP, FTP)
» web.xml editor » WAR file
0 Web Perspective 0 Authoring
» source (servlets) » Create, edit HTML, JSP, ...
» webApplication (HTML, JSP) » Java development
e WEB-INF, web.xml » Wizards
0 Servlet wizard 0 Publishing (export) - copy, FTP
0 Database and JavaBean wizards > Link parsing and management
» Input HTML, result JSP > web.xml maintenance
» DB access in JavaBean or JSP » WAR file
0 Test environment 0 Deployment
. , ipt
O JSP debugglng (not in beta) » J2EE deployment descriptor

Visual 6-2 Objectives

The objectives of this unit are to:
» Understand Web projects and their fit in the J2EE hierarchy
» Understand the Application Developer tools provided for Web development

» Understand the SmartGuides and wizards that are provided to create servlets
and simple Web applications based on SQL statements or JavaBeans

» Understand the built-in test environment for running and debugging Web
applications

» Understand deployment of Web applications to WebSphere Application
Server

118 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Interaction: Simple

Server

Browser

Servlet

-
-.-.
.
-

<

HTML

page
(form)

prepare bean

relational
data

HTML

page
(result) compiled

JSP

access bean

Visual 6-3 Web Interaction: Simple

Let us review how a simple Web interaction works:

» An HTML page is displayed in a browser. The HTML page contains a form
where the user can enter data and submit the form for processing.

» The Web server passes the request to an application server that schedules a
servlet to process the form.

» In the model-view-controller (MVC) design pattern, the servlet is the
controller. The servlet uses a JavaBean (the model) for the business logic.
The JavaBean performs the requested tasks, for example, by accessing a
relational database.

» The servlet then invokes a JSP (the view) to format the HTML result page.
The JSP accesses the JavaBean to retrieve the result data of the processing
task.

Unit 6. Application Developer: Web Development 119

Web Interaction: Refined

HTTP Server
|

Browser n Application cics
Server
HTML E
page <>
with Command “
Form Beans
MQ
other

Result

one Web interaction
with dynamic content

JSPs

Visual 6-4 Web Interaction: Refined

In many real Web applications, processing is more complex:

1.
2.
3.

A servlet is invoked from an HTML form.
The servlet uses command beans to process the request.

Command beans perform the business logic by accessing databases and/or
back-end transaction systems.

The result of commands are data beans (JavaBeans); for example, the result
of a CICS transaction is a COMMAREA represented in a Java record.

The servlet allocates view beans that are used to process and format the data
stored in the data beans into formats suitable for HTML output. (This is
optional, but sometimes required data beans may be predefined.)

The servlet invokes a JSP to generate the HTML output. Depending on return
codes from the command beans, one of multiple JSPs may be invoked.

The JSP uses the view beans to retrieve formatted results.
The view beans use the data beans to process and format the results.
The JSP generates the HTML result page.

120 Self-Study Guide: WebSphere Studio Application Developer and Web Services

J2EE Hierarchy

DD = Deployment Descriptor

J2EE —
Application }———» Applsc;tlon
EAR file

Project

Client
Module
JAR file

Module
JAR file

Project

f Enterprise

Bean

Web .'\. { Client
DD N DD

Visual 6-5 JZ2EE Hierarchy

This diagram shows the J2EE hierarchy and the matching support in the
Application Developer:

» A J2EE application is stored in an enterprise archive (EAR) file which
contains EJB modules (stored in an EJB JAR file), Web modules (stored in
Web archives (WAR) files), and client modules (stored in a JAR file).

» Each of the modules contains a deployment descriptor; for example, a WAR
file contains a web.xml file.

» A WAR file contains all the components of a Web application, that is, servlets,
JSPs, HTML files, images, and so forth.

» The J2EE hierarchy is matched by projects in the Application Developer. An
EAR project contains references to EJB, Web, and client projects. A Web
project contains all the resources (servlet, JSP, HTML, images) and the
deployment file (web.xml).

This setup makes deployment to a J2EE-based application server very easy.

Unit 6. Application Developer: Web Development 121

Web Perspective

HE | @ e¢Xa s & 8 Snad| ¢
: = = |

B®|2e [maH(s| ol

J|B 7 u|Aasf | FgH-—EEI

E' - x ;__'—1| PartLizst.htrnl 3¢ | '=1] PartLizt.jzp
% RN FartLizt.hitrnl - PartList. htrnl | BODY - Standard -
=t ﬁ ItzabfsDealers’eb - m ;I
[I
L,% . Bz source L e no
’ L s o P Desi
.| Files - - age Designer
[=l-{=- wehApplicatid
L [oo Parts Listing
A& theme M
551} 5 WEBINF Enter a partial name: | Retrieve ;
Tl ol InventonControl |~
— 1| | » DesignJSource Preview
2= Outine) x |[F i) N x
—
-] HTML -] i =l
T-4T> HEAD J " — @ redbook s, gif o
= ANE| Partlist

PartList hirl |ﬂ
ba [R S

GallerleutIineJ I I Tasks Propertieleinks]Thumbnail Stylez Color Palette Ig:
|tzoiw'sD ealerw'ebAwebdpplication/PartList. html

pr—
|

Tabs for other views

Visual 6-6 Web Perspective

The Web Perspective contains four panes:

» Top left—Navigator view (displays the folders and files of the projects)

» Top right—reserved for editors

» Bottom left—OQutline view (of current editor) or Gallery (for HTML/JSP files)

» Bottom right—Tasks (errors), Properties (of selected resource), Links (of Web
resources), Thumbnail, Styles, Color, Palette (Web resources)

One of the supported editors is the Page Designer for HTML and JSP files. The
Page Designer itself has three tabs to display the Design (WYSIWYG), Source
(HTML source code) or Preview (browser) view.

122 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Perspective Folders and Files

EAR project

Flle Edit Perspective Project Wwindow Help

L eerssd DS v

W

v X
f + ItzciwisDealerEAR -
t ﬁ t
Web projec 1“-. Itzatw/sD ealerParts
EI =% ItsowsDealeiwish
i) (= source
source: package structure = |'> 2G5 itso
B- {5 wsad Editors
,F‘ B dealer
Servlets — (= web
-» ----- [PartList java
I'_'l B webdpplication
Web application Bz theme
/-—' 5 WEB-INF
/ {&= classes
Style sheet & lb
ty — X#| ibm-web-bnd.xrmi
A#] ibrm-web-ext xmi Tt i) 52
invisible in Web Class files web, xml
Perspective L— % PartList. htrnl —| = 2
' PartList. jsp I CI | I Descrip
/ L .classpath -
Meta files 1 " A Meschwis
T} Gallery x|, R
£8 Outline | -
HTML, JSP 4 Gallery]DutIine Styles Links C 4 »
tl
Itzoiwsadw sCurConiweb

Visual 6-7 Web Perspective Folders and Files

The Navigator view of the Web Perspective shows the setup of a Web project:

» The source folder contains the Java source code of servlets, organized in
subfolders that form the package structure.

» The webApplication folder contains all the other Web resources:

— The theme folder is HTML style sheets.
— The WEB-INF folder with the compiled servlet classes, the lib folder with
additional JAR files, the deployment descriptor (web.xml) and IBM

extension files.

— The HTML, JSP, and image files (these files are usually organized into

many subfolders).

Notice our naming standard:

» EAR project names carry the suffix EAR
» Web project names carry the suffix Web
» EJB project names carry the suffix EJB

Unit 6. Application Developer:

Web Development 123

Web Project Icons and Wizards

Create project
0 Name and owning EAR project
0 Context root: alias name used in HTML requests
0 Location for source (project or source folder or other)
0 Output folder (webApplication\WEB-INF\classes

creates servlet,
creates servlet, | JavaBean Database | HTML, JSP,
Open Web Browser - Run on Server HTML, JSP Wizard Wizard DB-bean

vy R

BN X Rl 2k 4 Al

i L S,

CREATE Project - Servlet - HTML - JSP - CSS - Image XML

Visual 6-8 Web Project Icons and Wizards
When creating a Web project, you must also supply an existing or define a new
owning EAR project:
» In this class we always name Web projects with a Web suffix and EAR
projects with an EAR suffix.

You specify the location of the source (Java servlets), the compiled class files,
and the build path (this is the same as for a Java project).

The Web Perspective provides a number of icons to quickly access some of the
tasks:

» Open a Web browser (for testing)

» Run on Server (open the welcome page of the Web application)

» Create icons for a Web project and the different type of files

» Icons to invoke the JavaBean wizard and the Database wizard

124 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Editing of Web Resources

> PartList html - PartList. html

Page Designer

O HTML and JSP files, same
as in Studio Classic

Animated GIF Designer,
WebArt Designer

O GIF files

Stylesheet Editor
0 CSSfiles

Web Application
Deployment Data

o web.xml
» Define servlets and JSPs

| FoRM + | Standad -

@ Redhooks

HTML

Parts Listing

' Diesign | ource Preview

PartList.jzp - PartList.jzp | BODY - | Standard -
Parts Listing Results -
- B JSP
|Numher |Name |Description |Weight |Image
@

BB B B @
[

-]

Design] Source Preview

Visual 6-9 Editing of Web Resources

The Page Designer (that was available in WebSphere Studio classic) is the

editor for HTML and JSP files:

» The Design view is for WYSIWYG construction.
» The Source view shows the HTML source.
» The Preview view shows the page as it appears in a browser.

Additional tools are the Animated GIF Designer, the Web Art Designer, and the
Stylesheet editor. We will not discuss these tools in this class.

The Web application deployment descriptor is the web.xml file, where servlets
and JSPs are defined together with additional deployment information.

Unit 6. Application Developer: Web Development

125

Create Servlet

Create the Servlet Class

Create a skeleton servlet ceate the sewviet Class s
Specify a name and pack.age location for the new Servlet clags. (|
| PaCkage and name Alzo, indicate any modifiers, interfaces, or methods to be generated. p=
d SUperCIaSS Folder: |JItsoWsDeaIerWebx’source Browse...l
0 Methods Package: [itso.wsad.dealer web Browse...l
Servlet Mame: IMySewlet
Add to web'xm I Superclass: IiavaH.sewIet.http.HttpS ervlet Browse... |
0 URL
Moadifiers: v public [7 abstract [final

| |n|t parameters Options: M Use Single Thread kodel

v Add b web.sml? Interfaces: e

Hemove

I

Dizplay Mame: IM_I,IS erviet

M appings: URL | Which method stubs would you like to create?
S ervlet [init]) [toStringl) [getServetinfaf)
¥ doPost() [doPutf) [~ doDelete()
[destoy() [+ doGet])

Init Parameters: [|vitialization parameter | Value |

¥ Irherited abstract methods

[T Constructors from superclass

Visual 6-10 Create Serviet

A SmartGuide is provided to define a servlet:

» You specify the folder, the package name, the name of the serviet, its
superclass, modifiers, interfaces that must be implemented, and the method

skeletons that should be generated.

» On the second page, you can add the servlet to the web.xml file and specify
its alias name (for invocation) and initialization parameters and their values.

126 Self-Study Guide: WebSphere Studio Application Developer and Web Services

web.xml Editor

. . . M . Web deployment
Edit Web application |deployment|information descriptor file in
WAR file
0 General
» Name, MIME
d SerVIetS and JSPS Servlets Type: % Servlet class © JSPfile -
» URL, Init-parms ® PartList Iitso.wsad.dealer.web.F'artList J
0 Security _ .
» Roles Display name: IPartLl&t
constraints Description: =
0 Environment < _>|_I
» Variables Authorized Roles: Edit
| .
0 References EJB references URL Mappings: [patljat Mew
» EJBs e later in EJB 0
» JSP tag-libs N | , [k
- Pages Initialization: |
» Welcome, error New..| Add| Delete | =
0 Source : = e) _'lJ
. G Servietyd 5 ity Ervi t
> XML flle Ehera ElVIE ECUINEY ERvYIrohmen elErences Fage: aLrce

Visual 6-11 web.xml Editor
The web.xml editor is provided to maintain the deployment descriptor.

A number of panels (accessible by tabs) are provided. For example:

» On the General page, you can provide a description and mime type
mappings.

» On the Servlets page, servlet and JSP information is maintained.

» On the References page, you can define references to EJBs that are used in
the Web application.

» On the Pages page, you can define the default welcome page.

» On the Source page, you can edit the actual XML source (but this is not
suggested).

Unit 6. Application Developer: Web Development 127

Database wizard JavaBean wizard
0 Create DB application from an 0 Create application using a
SQAL statement JavaBean
0 View bean or JSP taglib model 0 View bean or JSP taglib model
0 Wizard sequence 0 Wizard sequence
» Folder and prefix » Folder and prefix

» Session or request
» View bean or JSP taglib
» SQL statement

Session or request

View bean or JSP taglib

Select JavaBean

(manual or guided) Method to execute

DataSource or driver Tailor forms

» Tailor forms (input, result table, detail)
(input, result table, detail) Generate code

» Generate code

A\
vyVvyVvYyyvyy

A\

Function very similar to Database and JavaBean wizards in WebSphere Studio classic

Visual 6-12 Wizards

Two wizards are provided to generate skeleton Web applications:
» Database wizard—generates a Web application based on an SQL statement
» JavaBean wizard—generates a Web application based on a JavaBean

For both wizards, two models are supported:

» View bean model—generates a controller servlet, a JavaBean for processing,
and JSPs for output

» JSP taglib model—generates a controller servlet and JSPs for processing
and output

Each wizard guides the user through a series of panels where you specify the
output folder, if a session should be used, the model, the SQL statement and
data source (or JavaBean and method to invoke), the forms (input HTML, output
JSPs). Then you generate the code.

128 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Database Wizard - Run

Search for Parts
with Low Inventory

Low Inventory

Details \

Enter a quantity: IED Submit

Back
FPartnumber; K{100000003
Marme: CE-MIEREOR-E-01

OQuantity: 10

Cost: 59.99
Ttermnumber: 21000003
Shelf L8

Location: San Francisco

Low Inventory Listing

Back Eefresh Detals

|Sele|:t |Partnumher ‘Name |Quantity |Cust
& [M100000003 CR-MIRROR-R-01 |10 159.99
|© [M100000003 |CR-MIRROR-R-01 |10 159.99

Dezcription: Large rear view smitror for Criiser

Tmage TEL: mirror03. gf

Visual 6-13 Database Wizard - Run

Here we see a sample execution of a Web application generated with the

database wizard:

» The HTML input form is displayed and the user enters values for the input

field(s).

» The list of matching database records is displayed in a table, usually with a
subset of the columns retrieved by the SQL statement.

» One record can be selected and its details are displayed in a detail form that

usually shows all

the columns retrieved by the SQL statement.

Unit 6. Application Developer: Web Development

129

Database Wizard - View Bean Model

HTML Control
Servlet

Form

=

MasterView DetailsView

JSP JSP
MasterView DetailsView
(Bean
SQL .".0“’ .“..‘... J
Statement JSSIIIIioiids

DataSource
Connection

Visual 6-14 Database Wizard - View Bean Model

When using the view bean model of the database wizard, the generated
components include:

» HTML input form.
» Controller servlet, which invokes the master view or the details view JSP.

» Master view and details view JSPs, which invoke the master view or details
view JavaBean for database access.

» The SQL statement is used to generate the database access code into the
master and details view JavaBeans, using the data access bean technology
from VisualAge for Java.

» The database is accessed using a data source that provides connection
pooling.

130 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Database Wizard - JSP Taglib Model

SQL
HTML Statement Database
Form
DataSource
Seaq Connection
dab:tags
Control MasterView DetailsView
Servlet JSP JSP

<%@ taglib uri="/WEB-INF/lib/jspsql.jar" prefix="dab" %>
<dab:dataSourceSpec id = "PConn" scope="page"
dataSource = "<%=datasourcename%>" userid=... password=... />
<dab:select id="selectl" scope="request" connectionSpecRef="PConn">
<dab:sqgl>SELECT ... FROM ... WHERE ... ORDER BY ... </dab:sql>
<dab:parameter position="1" type="CHAR" value="<%=inputxxxl%>"/>
</dab:select>
<dab:repeat name = "selectl" index = "rowNum" over = "rows" >
<dab:getColumn index="1"/>

Visual 6-15 Database Wizard - JSP Taglib Model
When using the JSP taglib model of the database wizard, the generated
components include:
» HTML input form.

» Controller servlet, which invokes the master view or the details view JSP.

» Master view and details view JSPs, which invoke the master view or details
view JavaBean for database access.

» The SQL statement is used to generate the database access code into the
JSPs using special JSP tags to define the data source, run the SQL
statement, repeat through the result set, and retrieve the column values.

Unit 6. Application Developer: Web Development 131

Testing of Web Applications

Developer Deployment
WSAD Machine Machine
WebSphere AE
\ (future)
WebSphere\ WebSphere WebSphere
AEd \\ AEs AEs
built-in \ 4 *
App App App -
start start
Agent Controller Agent Controller
—{ must be installed |

Visual 6-16 Testing of Web Applications

The Application Developer provides a local and remote test environment for
testing of Web applications:

» WebSphere Application Server AEd (developer edition, same code as AEs,
but free) is built into the Application Developer.

» WebSphere Application Server AEs (single server edition) can be installed on
the same machine, or on a remote machine. A remote server is started
through the IBM Agent Controller, which must be installed on the machine
where the server runs.

For testing, a Web application is published to the selected server by installing the
owning EAR project file into the application server. Then the server is started and
the Web application can be tested in a Web browser.

132 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Local and Remote Servers

Un|t test Tomcat must be
installed separately Local
0 Run projects from WSAD folders
0 Built-in server is used inside WSAD (separate process) Server
» WebSphere AEd, Tomcat
Local unit test
0 Install separate server on same machine
» WebSphere AEs, Tomcat
0 Project published to local server and run
Remote unit test = WebSphere exclusive Remote
3 Install server on separate machine Server
» WebSphere AEs (AE maybe in future)
0 Install IBM Remote Agent Controller on server machine
» Comes with WSAD
0 Project published to remote server and run

Visual 6-17 Local and Remote Servers

WebSphere AEs and Tomcat are supported for testing of Web applications.

If the server runs inside the Application Developer, we call it a local server. If the
server runs outside, on the same or another machine, we call it a remote serer. A

remote server is started through the Agent Controller.

Only WebSphere AEs can be used as a remote server on another machine.

Tomcat must be installed separately in all cases.

WebSphere AEs must be installed separately when used as a remote server on

the same or another machine.

Unit 6. Application Developer:

Web Development 133

Runtime Support: Servers

Generic server support WebSphere AEd

0 Could plug in any server 0 Runs EJB, servlet, JSP, HTML
0 Limited for now ——————— » Web, EJB, EAR projects

0 Picks up changes made to files
(except EJB interfaces)

|Instance!| ,—|Instance g U Default server type

b m1 ‘ Server || Apache Tomcat

Project | | 1, Must be installed separately
Config Config 0 Web projects only (no EJBs)
\neq{ TCP/IP Monitoring Server

' ' 0 Simple server intercepts HTTP,

Project] Project] FTP and forwards to real server
» Web projects only

EAR (EJB, Web) 0 Displays request/response

Visual 6-18 Runtime Support: Servers

Servers are defined in the Application Developer. To run a server you must have
an instance of the server, and a server configuration.

Server instances and configurations are defined in Server projects, which can be
shared between developers.

Multiple instances can point to the same configuration.

EAR projects (with contained EJB and Web projects) are associated with server
configurations. A configuration can be associated with multiple projects, and a
project can be associated with multiple configurations, one of which will be the
preferred configuration.

When a server is started, all associated projects are loaded. When a project is
run on a server, the preferred server is used (or started).

The TCP/IP Monitoring Server can be used to intercept and display the actual
messages between browser and server.

134 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Server Configurations and Instances

Configuration Instance
0 Information that is required to set| | O Points to a specific run-time
up and deploy to a server environment
O Port » AEs local or remote
. » Tomcat
0 JDBC drivers
4 DataS 0O Reference to a server
SlEEOLITEE configuration
0 MIME types 0 PATH and CLASSPATH
0 Session/Cookie information information
0 EJB Client enablement 0 System properties
0 Deployed project information 0 Remote server information
» Host Address
» Installation directory
Created automatically if no > Deployment directory
server assigned to the project » File transfer information

Visual 6-19 Server Configurations and Instances

A server configuration specifies:

» Information about the server facilities, such as ports that are used, JDBC
drivers to be loaded, data sources to be defined, mime types, if sessions or
cookies are used, and if the universal test client should be loaded.

A server instance specifies:

» The runtime environment (WebSphere AEs or Tomcat), PATH and
CLASSPATH information, system properties (for example, JIT compiler), and
how projects are deployed to a remote server.

» A remote server requires information about the host address, the installation
and deployment directories, and how files are transferred (either through LAN
copy or through FTP).

Unit 6. Application Developer: Web Development 135

Runtime and Test Configurations

Server project
0 For team sharing of configurations

Server consists of configuration and instance
0 Automatic for simple scenarios Server

0 Manual in most real scenarios
» Can define and reuse templates

¥ Actions start zerver in debug mode

¥ Switch to server perspective when the server starts

Templates [Switch to the server perspective for clients
) Save a Configuration as a template v &utomatically publish before starting the server
» Window -> Preferences -> [Show publishing details
Server -> Templates [Automatically restart server when necessary
O Saves time to create [Enable server sounds

multiple similar configurations

Default Server Instances

Server preferences —————— B [@.owpoaer

» Window -> Preferences -> Servers

Visual 6-20 Runtime and Test Configurations

A Server project is used to keep server definitions. Such a project can be shared
and versioned in a team environment.

Servers can be defined automatically for simple projects, but in most cases
tailored servers are defined for a set of projects that run on the same server.

A server definition can be stored as a template for easy definition of additional
servers with the same, or similar, characteristics.

136 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Server Perspective

==l

- ¥ Server - Application Developer

Fle Edt Perspective Pioiect window Help create project, config+inst, config, instance
A-lEE|e-|W(aNS)s
B %g_: Navigatar - x ||[@|web BIDDIMJ
= @|le =2 08
E;, L:_Iﬁ ItzasD ealerwah & —
m --B sOUrCE jr—
{72 webtpplication @ H db ks
o = images U e no Web Browser
ﬁl #-{= theme
{= WEB-INF L [
—_— mamoeans | | PArts Listing
E& Inventaryl nputForr '
[HI‘ InventanyResultT a_ae] E ol ; Ii B
e Pailisthirl—_] || Enter a partial name: _Fetieve | =
PartLizst.jzp
Server Cantral Panel i % > 0 @ x
Server [nstance | Server Configuration | Statug Server State
ItsoWsDeaIer ItzaiwizDealer & Started Server iz spnchranize
Server
Configurations Servers normal or
. . debug mode
with assigned ul 2
projects Tl Itsow'sDiealerE AR Variables|Debug|EonsolelSewers]F‘rocesses
| Console Messages

Visual 6-21 Server Perspective

In the Server Perspective we maintain definitions of application servers for
testing of Web applications, EJBs, and Web Services.

Server configurations define the type of server (WebSphere or Tomcat), and are
configured with JDBC drivers and data sources.

Projects are associated with servers. When a server is started, the associated
projects are loaded and their code can be executed.

Servers can be started in normal or debug mode. In debug mode, breakpoints
can be placed into servlets and JSPs for debugging purposes.

Icons are provided to create a server project or server instances and
configurations.

You can use the Server Perspective to edit resources and run or debug projects.

Unit 6. Application Developer: Web Development 137

Create Configuration and Instance

Create a New Server Instance and Configuration

Create bOth _> Create a new server instance and configuration
Config uratlon and Chooze the properties of the new server Q

instance together

Server name: IIts-:-WsManufacturer
Separate WebSphere

e same or other machine

Create separately

Server project folder:

O Set Conﬁguration Server instance type: - ¥ wWebSphere Servers -
for instance before o L% webSphere 4.0 Remote Test Environn
Starting instance _Choose : L fas ‘webGphere v4.0 Test Ervitorment

instance - §# Apache Tomcat
. type ... B TCPAP Moritaring Server -
Can use predefined L4 [B
tem plates Template: I MHone j
Dezcription: This iz the unit tezt enviohment server instance of
Set pO rt (Next) WwiehSphere w4.0

O Default 8080

Server configuration pe: ﬁ WwiebSphere vw4.0 Configuration

Assign projects to
configuration afterwards Template: INDHE =l

* Set default config for project Dezcription: This iz the server configuration of “WebSphere v4.0

Visual 6-22 Create Configuration and Instance
A SmartGuide is provided to define a server instance and configuration. You
have to specify:
» Name of the server
» Server project
» Instance type (WebSphere AEs or Tomcat)
» Port (on the next panel)

For a remote server, additional panels are required. (This will be discussed later
in the class).

After defining a server you can associate EAR projects with the server
configuration, and you can assign a preferred (default) server for each project.

138 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Configuration Properties

Project -> Run on Server Mime Types: [17 e =
O Assigned server is started of
bk java
N test il hitrn,htrnl
Server Perspective il wid
i . »-application axe
a Conflgure server propertles —_— wapplication/zip 2
a Start server
JDBC Driver List JDBC Drivers =] _
Il Options: I~ Enable session management
L3 DbZldbeDriver [COM.ibm.db2. jdbe. DE2ConnectionPoolD atas ource] Add... | .
Qidb]dbcDriver [com.ibm. ejs.cm. portability. DB ConnectionPoolD ataS ource] E— | ; E::E:: izl;;zt;:: .
Edi. | 4 [_,l—l
Genera[Web]EJB Datazource Ports

D atasources defined in the JOBC driver selected above:

ﬂ Seszion Persistence datasource (jdbc/Session] Add. .
o Remove |
Server Project
Configure DataSources _ Ed. | _ « Server configuration/instance
1 _,lJ o For team sharing of definition

General “wWeb EJB[DatasourcelPorts
.

Visual 6-23 Configuration Properties

The server configuration properties are maintained in a special editor:
» Mime types

» Enable session management

» Enable URL rewrite

» Enable cookies

» Define JDBC drivers to be loaded (click Add and specify the class and
location of the ZIP/JAR file)

» Define data sources for JDBC drivers (click Add and define the JNDI name,
database name, and connection pooling information)

Unit 6. Application Developer: Web Development 139

Testing of Web Applications

Preparation EC& Server Instances
s . ith P P ItzowfeD ealer
- er\{er pr(?jeC'F wit Server. Eﬁi Server Configurations
configuration/instance defined =B lisowsDealer
0 Project attached to server configuration g T ItschwsDealerEAR

Start server instance

0 Explicit or automatic
(run project or file on server)

0 Debug mode or normal mode % * E[B

p— -
= i RUn on Server

Start browser
O Explicit or automatic
O Can use external browser

http://localhost:8080.......
Web browser
Run application " Gisturs e browser

Visual 6-24 Testing of Web Applications

Testing a Web application involves these steps:

» Define a server and associate the EAR project that contains the Web project
with the server

» Start the server in normal or debug mode. You can simply select the project
and Run on Server to start the preferred server in debug mode, or you can
start the server manually.

» Start a Web browser by selecting an HTML file and Run on Server, or start a
Web browser manually (inside the Application Server or outside) and enter a
URL.

140 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Set breakpoint in
servlet or JSP

0 JSP breakpoints
at JSP tags only

Run Web app

Debug servlet
0O Same as Java

Debug JSP
0 JSP source code

O Java source is
hidden

0 Variables visible

Debugging of Web Applications

Start server in Debug mode

izt jspfld]3 wiah Browser

PartLizt jzp - PartList.jsp

B

-

I+ = U=E0EdIl 10 Pt LIt EST L
1241 int 1i; String[] row; =
13<:TAELE border="1":

14 <TBODY »

15 «TR:

16 <TH>Hunber< - TH>

17 <TH>Hame< ~TH>

18 <TH:Description: T
19 <TH:>Weight < TH:

20 <TH>Image: TH»

<~TH>»

L e e T e

=

< Yarishles £ & | Ox | . | o X

this= PartList_jsp_2 [id=3504] =
cl="warClazsloader [id=3!
config= DefaultServietConl
config= null
i=0
pagelontext= null

row= Strng[B] [id=3533)
- [0]="'+1000000071"
[1]= "CR-MIRROR-L-
[2]="Large drivers si

= -:;: b [3="10.5"

POl = e W a [minodl gf

<TDy <= row[3] #» [l & request='WebdppDispatcherRe

<TD>» <img src="ima| B~ & response=‘WebdppDizpatcherk

. °/< /TR; B _jsprFactorp= JspFactorplmpl fin
33 + catch (Exception e=)|4 L4
| __ ¥
Design lSource] Preview

Visual 6-25 Debugging of Web Applications

To debug a Web application, you start the server in debug mode.

In debug mode you can set breakpoints in servlets and JSPs, step through the
code using the standard debug icons (step into, step over, step return), and
monitor variables.

Debugging Java code is the same as for a Java project.

Debugging a JSP is performed at the source code level. You can set breakpoints
only at JSP tag lines, not in HTML code. The variables of the JSP servlet are
visible in the Variables view.

Unit 6. Application Developer:

Web Development 141

Web projects and Perspective provide
0 Web development environment
0 J2EE-conforming deployment
0 Page Designer for HTML and JSP
0 Wizards for code generation

Server project and Server Perspective provide
0 Test environment for Web applications

0 Server configurations and instances
» JDBC drivers and DataSource

Visual 6-26 Summary

The Application Developer provides very good tooling for Web application
development and testing.

The setup is very effective for J2EE-enabled application servers because the
project setup in the Application Developer mirrors the deployment information
required for J2EE.

The built-in test environment makes testing and debugging of Web applications
very easy.

142 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Wek

Develapment

Web applications

0 Project: ltsoWsD

0O Import Web application eeeec-®»
0 Prepare server with

WebSphere Test
0 Test application

PartList.html

Inventory HTML

ealerWeb

Environment

Database wizard

0 Create Web application with

i\ /
PartList.java Inventory servlets
\ /
PartList.jsp Inventory JSPs

0 Configure data source
0 Export WAR file for

deployment

Web applications
with database access

\

[

WebSphere Test Environment

MMPARTS
MMINVENTORY

Visual 6-27 Exercise: Web Development

The Web development exercise guides you through many of the tasks discussed

in the presen

tation.

In this exercise you work with two applications:

» PartList—Web application with a servlet and a JSP with JDBC access to the
ITSOWSAD database

» Inventory—Web application generated with the database wizard

See Exercise 6, “Application Developer:

the instructio

ns for this exercise.

Unit 6. Application Developer: Web Development

Web Development” on page 117 for

143

144 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer:
EJB Development

ibm.com
@ Web Services
ebusiness Studio Application Developer

EJB Development

Redbhooks

International Technical Support Organization

|7

Visual 7-1 Title

© Copyright IBM Corp. 2002 145

Obijectives

Learn about EJB development

0 EJB project, in J2EE hierarchy | Tasks
» EJBs, schema, mapping

» IBM extensions 0 Import
0 J2EE Perspective > EJB 1.1 JAR file
» bin (output classes) 0 Authoring
» ejbModule (EJBs) » Create and edit EJBs
» META-INF with schema, mapping, » Inheritance, Relationships
deployment descriptor » Access Beans
» J2EE view » Custom queries

e EJB activities
» Navigator view
o Code, meta-data

0 Test environment
» Server Perspective
» EJB Test Client

0 EJB testing
» Configure server
» Run EJB Test Client

0 Deployment
» J2EE deployment descriptor

Visual 7-2 Objectives

The objectives of this unit are to:

» Understand the EJB development environment provided by the Application
Developer

» Understand the EJB project and J2EE Perspective
» Understand the test environment, including the EJB test client

146 Self-Study Guide: WebSphere Studio Application Developer and Web Services

EJB Review

EJB specification (server-side Java)
0 Defined by Sun Microsystems
0 Compatible with CORBA

Session

There are 2 types of EJB

0 Entity Bean
» This EJB represents persistent business data, such as customer, account, ...

0 There are 2 types of Entity EJBs
CMP (Container-Managed Persistence)entity bean
» EJB developer specifies mapping to relational database
» An EJB container, such as WebSphere, provides persistence
BMP (Bean-Managed Persistence)entity bean
» EJB developer must develop persistence layer

0O Session Bean
» This EJB executes business logic on behalf of a single client in a server

» For example, you can implement a set of transactions in a session bean
» stateless (shared) or stateful (for one user)

Visual 7-3 EJB Review

The EJB specification provides for entity and session EJBs.
In this class we only deal with container-managed persistence entity EJBs that

are mapped to relational tables, and stateless session EJBs that are used for
business logic and transaction management.

Unit 7. Application Developer: EJB Development 147

EJBs in J2EE Environment

[Home Interface | WebSp here

| Remote Interface |

5 EJB Container

WebICIIent Session Instances of
Container | @\ ol Ll EJB classes
EJB
Client

(Servlet)

- ~

Access Ly ‘ \
Bean EJB Object

A deployment tool of
the EJB container

generates this code

Visual 7-4 EJBs in J2EE Environment

The EJB specification dictates that EJBs run in an EJB container, which is
usually provided by an application server.
Clients connect to EJBs through the RMI-IIOP protocol using two interfaces:

» The home interface that gives access to EJB instances through create (for
new beans) and find (for existing beans) methods.

» The remote interface that is used to access the entity instances created or
found through the home interface.

Each EJB has a JNDI (Java Naming and Directory Interface) name, which is
used to acquire the home interface.

Notice that session EJBs access entity EJBs through the home and remote
interfaces as well.

148 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Typical EJB Application

Browser Application Server

Web Container EJB Container

HTML

Session EJB

_ Serviet

v

HTML

Entity EJBs _‘
|

Visual 7-5 Typical EJB Application

Thi

s diagram shows the structure of a typical (simplified) EJB-based Web

application:

>

>

A servlet is invoked from an HTML form.

The servlet invokes a method in a session EJB (first the home of the session
EJB is acquired and a session bean instance is created). This starts a
transaction.

The session EJB accesses multiple entity EJBs for database retrieval and
update. All business logic is in the session bean.

When the session bean method ends, the transaction is committed and the
database updates are made permanent (this may require two-phase commit if
multiple database managers are involved).

The servlet invokes a JSP to produce HTML output (not shown are additional
beans need to pass the data to the JSP.

Unit 7. Application Developer: EJB Development 149

EJB Tooling

Development Environment Components
2 Full EJB 1.1 support 0 EAR and EJB projects
0 Creation, edit Web and Client projects
0 import/export 0 EJB editor
0 Meta-data exposed as XMI - I G
O Mapping to RDB “2OZE

» top-down/bottom-up/middle 3 EJB Extension editor
ibm-ejb-jar-ext.xmi
ibm-ejb-jar-bnd.xmi

0 EJB RDB mapping editor

Map . mapxmi

0 WebSphere extensions and
bindings
» Associations, Inheritance
» Access beans, custom finders
» DataSource O Enterprise application editor

0 Unit test environment CIPIER EENEE ot
» WebSphere

0 J2EE Perspective <———— 0 J2EE and Navigator views

Visual 7-6 EJB Tooling

The EJB tooling support provided by the Application Developer includes full
support of the EJB 1.1 specification. In addition IBM extensions for associations,
inheritance, access beans, and custom finders are supported.

All the control information is kept in EJB deployment descriptors: the ejb-jar.xml

file, and IBM extension files (ibm-ejb-jar-ext.xmi, for example). Editors are
provided to maintain the deployment descriptors.

150 Self-Study Guide: WebSphere Studio Application Developer and Web Services

J2EE Hierarchy

DD = Deployment Descriptor

J2EE —
Application }———» Applsc;tlon
EAR file

EAR

Project Client
Module
JAR file

Module
JAR file

Project

u

Visual 7-7 J2EE Hierarchy

This diagram shows the J2EE hierarchy and the matching support in the
Application Developer:

» A J2EE application is stored in an enterprise archive (EAR) file that contains
EJB modules (stored in an EJB JAR file), Web modules (stored in Web
archives (WAR) files), and client modules (stored in a JAR file).

» Each of the modules contains a deployment descriptor; for example, an EJB
JAR file contains the ejb-jar.xml file.

» The EJB JAR file contains all the interfaces and deployed code that make up
entity and session EJBs.

» The J2EE hierarchy is matched by projects in the Application Developer. An
EAR project contains references to EJB, Web, and client projects. An EJB
project contains all definitions of the EJBs, including the mapping to relational
tables.

This setup makes deployment to a J2EE-based application server very easy.

Unit 7. Application Developer: EJB Development 151

J2EE Perspective

¥ J2EE - Application Developer
File Edit Perspective Project ‘Window Help

| lFoBE BB =7

o
5 || g J2ee view x || (@ sibianam % | | EJB editor
Eﬁl E|---- Enterprize Applications Al Enterpiise beans: 1=l
it EI@ Application s sDealerEAR
----- \lsu\v\u"sDeaIar\v\u’eb‘.war G ; ;
% : @ Itzow'sDealerEJB jar @ StockUpdate Type: Entity - Cantatiner M anaged
m [+ Application Client Modules
g “web Modules Type options: Stateless: [Stateful [Feentrart: [
i} EJB Modules i O
) [ltsosDaalerEJB AL RS
- E& \I’WE!ﬂlDl}l i B Atlributes: Q@itemNumbar: java.lang.Long O
»@@ iternMumber : .|ava.\ang.Lc eans parthluber : javalang.Sting
partumber : java.lang.Sh [LI
quantity : int
Beans cost : java.math. BigD ecin Attributes Newl Daletel |
shell : javalang. Sting —
lozation : java.lang Sting Bean class: Irwentongean Edill
[IrwentorHame
R .
(S Imventary Home interface: InventgiuH ame ﬂl
e [03 ImventoryBean -
| B . ‘-Ju hd
J2EE View Favigalor | — - - e
GenarallBeanISecunty Transaction Enviroment EJB Heference/{JB Resource Aeference Source
x N 7
Tasks (1 item] ot 2 5
B[tsowsDealeElB - Y - / - >
-y Irwentary [t [Desciption | Resouwce [InFolder
itermMumber - java lang Long: ul | »
- [@ partMurnber : java.lang. Sting j Tasksl Froperties

Visual 7-8 JZ2EE Perspective

The J2EE Perspective is used for management of J2EE deployment descriptors
(EAR, enterprise archives), and for development of EJBs.

The J2EE view is the only view where entity and session EJBs can be
developed. This view displays a logical view of the EJBs with their fields, key,
and main underlying Java files (bean class, home and remote interface, key
class).

The Navigator view displays all the project resources, including the control files
(XMl files) that are used to store the EJB design (meta) information.

An EJB Editor is provided to define and manipulate EJB deployment information,
such as JNDI names, transaction attributes, read-only methods, and security
information.

An EJB Extension Editor is provided to define IBM extension of the EJB
specification, such as associations and custom finders.

152 Self-Study Guide: WebSphere Studio Application Developer and Web Services

EJB Development Roadmap

Create EJB project (and EAR project)

Create EJB
O Attributes, business methods, remote/home interface

EJB extensions
O Inheritance, associations, custom finders, access beans

JNDI names
O Local and global JNDI names, binding local to global

Entity EJB-to-RDB mapping
Generate deployed code

EJB testing
0 Server configuration/instance and data source JNDI
0 EJB test client

Deployment to WebSphere

Visual 7-9 EJB Development Roadmap

The steps involved to create the EJB-based application are:
» Create an EJB project to hold all the definitions and deployed code.

» Create entity and session EJBs with attributes, business methods, home and
remote interface.

» Define IBM-supported EJB extensions.

» Define the JNDI names used to acquires EJB home interfaces. In EJB 1.1,
applications should use local JNDI names that are then mapped to global
(unigue) names in an application server.

» Map entity EJBs to relational tables.
» Generate the deployed code from the definitions and the mapping.

» Define a server for testing, and configure data sources for EJB access in the
database. Add the project to the server, start the server, and use the test
client to instantiate EJBs and run methods.

» Deploy EJB applications to an application server.

Unit 7. Application Developer: EJB Development 153

Create project
0 Name and owning EAR project
O Location for source (project or ejobModule folder or other)
0 Output folder (bin), build path

Result

0 Project contains META-INF folder with:
Schema (folder)
» Database and tables

EJB Project

ejb-jar.xml --&
» Deployment descriptor
ibm-ejb-jar-ext.xmi -

EJB editor

» Extensions (associations, inheritance, read-only methods, ...)
ibm-ejb-jar-bnd.xmi -

» Bindings (JNDI names, DataSource)
Map .mapxmi g

EJB
Extension
Editor

» Mapping from bean to tables

Mapping
Editor

Visual 7-10 EJB Project

An EJB project must be attached to an EAR project.

As for a Java project, you have to define the source and output folders and the

build path that is used to compile the Java source code.

The EJB project contains a META-INF folder for the control information:

» Schema (tables) used in the mapping

» EJB deployment descriptor

» IBM extension deployment information (XMl files)
» Mapping file for entity-to-table mapping

154 Self-Study Guide: WebSphere Studio Application Developer and Web Services

J2EE and Navigator Views

S| BB

2y
i

v

| create projects

== ebhodule

B’ com

EIE itso

= wead
E|Bv dealer

(= &b

@ _EJSRemoteCMPlrventon Tieja
[_EJSRemoteCMPInventonHome_

[StockUpdateHome
[ShockUpdate

4% StockUpdateBean -
< | B

[J2EE View]]\l avigatar

%+] ibm-ejb-jar-bnd. =i
| Mapping [-&% Map.mapsmi

g8 itemMumber ; i?a;aj@ng Lc : Deployed ety Shubjavs
MU hEs .Sl code [EJ5SJDBCPersteMPl nventomyBe
par ;:m ,Ert- lavala 9~l 4] Inventory java
-2l quantity - in . [IrnventoryBean java
--[@ cost: javamath.BigDecir [d ¢ [T InventoryHome java
Beans and - [@ shelf; java.lang Sting (= session
Attributes --[@ location : java.lang Sting B METAINF Deployment
[InwentaryHome . Bz Schema
e [8 Irvwentory Editor I L CHUSA_Conl TSOWSAD. conxmi
- [¥ InwentaryBean Tables | FH CHUSA_ITSOWSAD_ITSO_MMINVEMTO
E‘B.‘ Long CHED 9 CHUSA_ITSOWSAD_ITSO_MMPARTS th
Se i i CHUSA_ITSOWSAD_ITSO. schemi e
=l @ Stocklpdat * i1 - -
E® StockUpdate Yoo e [Schema.dbsmi

mE

[J2EE View| Navigator |

Visual 7-11 J2EE and Navigator View

The J2EE Perspective comes with two main views:

The J2EE view for design and specification of EJBs. This view shows the

logical structure of the EJB modules and only the main files:

— The key class that holds the key attribute of an entity EJB

»
— The home interface
— The remote interface
— The bean itself

S

The Navigator view that shows all the folders and files:

— The bin folder with the class files

— The ejbModule folder with the Java source code
— The META-INF folder with the schema, deployment descriptors, and

mapping

Unit 7. Application Developer:

EJB Development

155

Create EJB

. . Create an Enterprise Bean I
- SmartGUIde to SpeCIfy Create an Enterprise Bean
> Type Select the EJB type and the basic properties of the bean. @
» Name
> PaCKage " Session bean
» Attributes \\ Entity bean with bean-managed persistence [BMP] fislds
& Entity bean with container-managed persistence [CMP) figlds -
\ Bean name: IF'art @
.
Use EJB Editor project: IItsoW'sDeaIerEJB j
for modifications
Bean suMstype: |<none> j
Bean class: |itso.wsad.dealer.eib.F‘altB Ban Package... | Clazs... |
. ‘ Home interface: |itso.wsad.dealer.eib.PaltHome Package... | Class... |
0 Add business methods _ . . | |
Remote interface: IItso.wsad.dealer.eﬂJ.Palt Package... Class...
> PromOte to remote Feey) Iiava larg. String Fackage, [{ass
. £y class: lang. | |
interface
. CHP attributes:
d Change ejbCI’eate java.lang.String partHumnber (Key)
h d java.lang.String namne
met (0] java.lang.String description Edit...
double weight \
> PromOte to home java.math BigDecimal co=t Remave |
interface Dialog
[V {se the single key attribute tpe for the key class #

Visual 7-12 Create EJB
A SmartGuide is provided to define an EJB. This visual shows the definition of an
entity bean (container-managed). The user specifies:
» The name and type
» The project and package
» The bean name
» The superclass for beans with inheritance
» The home and remote interface names are derived automatically
» Persistence fields (click Add to define fields)
» The key field can be embedded in a key class, or used directly

At the end of the SmartGuide, the Java code for bean, home interface, remote
interface, and key are generated.

Typical follow-on tasks include defining business methods (for the remote
interface) and adding tailored create methods (for the home interface).

156 Self-Study Guide: WebSphere Studio Application Developer and Web Services

IBM Extensions: Inheritance & Associations

Inheritance Associations
Standard inheritance Supported are
O Properties/methods from a 1:10or1im
non-EJB classes/interface O m:m ==> two 1:m with int.EJB

. » Manual specification
EJB inheritance

0 Properties/methods from other Specify roles

EJB in same project Q finder methods generated for
0 Home interface does not inherit traversing
0 Remote interface does Implementation
- Key class is common 0O Foreign keys between tables

EJB Extension Editor

Visual 7-13 IBM Extensions: Inheritance and Associations
The EJB 1.1 specification does not support inheritance and associations.
IBM extensions are provided in the Application Developer for these functions.

Inheritance:

» An EJB can inherit attributes and methods from another EJB. Note that the
home interface is separate and does not use inheritance.

Associations:

» 1:mand 1:1 associations are supported directly. For m:m, an intermediate
EJB with two 1:m associations must be defined.

» Associations are implemented by foreign keys in the underlying tables.

Unit 7. Application Developer: EJB Development 157

Extension Editor: Associations

Relationships:
tary OfPart
i1§ IrventorDiPar \ —
getThePart [——] getStocks =
setThePart addStocks ﬂl

(removeStocks) > Apply |

Felationship name: |lreeentarp0fPart

Rale name: Rale name:
|theF'art . Ish:u:ks
Enterprize bean [V Mavigable % Navigable Enterprize bean
I lmPart j I rmlrventary j
™ Fareign ey 1 . m ¥ Fareign key
A ualtiplicity: rultiphcity:

I'I..‘l VI ID..* VI

Methods | Inhentance [F! elatiunxhips]]:indem | Container | Bindings

Visual 7-14 Extension Editor: Associations
An association is defined in the Extension editor.

The association is defined between two entity beans, MmPart and MmInventory.
The cardinality (1:m) is defined through the two multiplicity values; 1..1 specifies
one and only one part (for an inventory item), while 0..m specifies multiple but
optional inventory items (for a part).

A role name is defined for each direction; for example, the role of the
MmlInventory bean as seen from the MmParts bean is stocks.
» This specification generates a method named getStocks into the part bean.

» Because the association is 1:m, a method named addStocks is generated to
add an inventory item to the part (removeStocks is not generated because
1..1 forces an inventory item to be associated with a part).

The role name of the part is defined as thePart (there is only one part for an
inventory item):

» The generated methods are getThePart and setThePart.

158 Self-Study Guide: WebSphere Studio Application Developer and Web Services

IBM Extensions: Access Beans

Easier access to EJBs from client programs
0 Lookup of home, create or findByPrimaryKey

Optimized access through caching of attributes

Access bean types
0 JavaBean wrapper ——

deprecated
0 Copy helper ——— & P
0 Data class >
> Replaces copy helper 50 AT
» Caches and synchronizes attributes applications
0 Factory >

» Generated with any other

» Provides access to home
0 RBowset

» Not supported

Visual 7-15 IBM Extension: Access Beans
Another IBM extension is access beans.

Access beans make client access to EJBs easier. The access bean contains the
code to look up a home by its JNDI name and provide direct access to the
remote interface.

Access beans can cache the attributes of entity beans for faster access, and then
synchronize (commit) values at the end of business logic methods.

JavaBean wrapper and copy helper access beans were used in VisualAge for
Java, but are now deprecated (they can still be used). The copy helper has been
replaced by the data class access bean that provides the caching function.
Rowset access beans, which were collections of copy helpers, are not supported
any more.

Unit 7. Application Developer: EJB Development 159

Custom Finder Methods

Compatibility with previous

0 You can continue to define SQL query strings or method declarations in
the finder helper interface

New development

0 Define methods in home interface
public Enumeration findByQuantity (int quantx) throws ...;
public Collection findByCost (BigDecimal costx) throws ...;

0 Extension editor

» EJB query language and SQL language

ibm-ejb-jar-ext.xmi

& ‘where clause: [T1.C057T ¢ 7 -]

EJB Extension

Finders: / -

E[E Itz zDealerEJB | 4
& v Entony

; --qg findyCost[iava.math.I
Wy findByuantitfint ' Eibal [select e from InventoryBean e where e.quantity < 71 = |

~ _Ij
g .

Visual 7-16 Customer Finder Methods
By default, entity EJBs are accessed by their primary key.

For many applications, access by other attributes or partial values is required.
This can be implemented through custom finder methods that can return multiple
EJBs that qualify the search criteria.

In VisualAge for Java, custom finders were defined in the finder helper interface.
This is still supported, but the Application Developer provides better function:

» First define the custom finder methods in the home interface. Note that with
EJB 1.1, the return value can be an Enumeration (as before) or a Collection
(new in EJB 1.1).

» Use the extension editor to specify the underlying SQL statement where
clause that is used to retrieve the matching EJBs. In addition to the SQL
language, a new EJB query language (Ejbql) can also be used.

160 Self-Study Guide: WebSphere Studio Application Developer and Web Services

EJB 1.1 JNDI Names

EJB Editor
O Local name

i@ X Local JNDI name: java:comp/env/ejb/MmPart

EJE Bean | Type | Home | Femate | Link

=] MmPart

eib/Mminventory =¥ Entity o itso.wsad manu.gjb.Mmlrventor.. &® itsowsadm.. o Mmlnventoy
» Generated for Mmirvventory | _ _
b/ P art =¥ Entity o itso.wsad manu.gjb. MmPatHome & itsowsadm.. o MmPart

associations

» Should be used
in session bean

EJB Extension Edi

0 Binding local name
to global name
» Can also be done
at deployment
using AAT or
Admin Console

B Fatinguy | |
' eib/mPart =¥ Entity o itso.wsad. manu.gjb.MmPatHome & itsowsadm.. % MmPart

pr—
General Bean Security Transaction EnviromentlEJB HeferencelEJB Fesource Reference Source
S—

to

Global JNDI name: itso/wsad/manu/MmPart |

=R Mmlnventary
H MR E (bR ef cib/MPart

; JNDI name: I—
B & Partlnguiny
<if® EibRef eibMmPart Detault user id: I
Detault pagsward: I—

E x
E@ Itsowish arufactureE. B - =
-y MmPar JMDI name: [itsovisad/manu/MmPart
[% EibRef sipMminventary Datasource

-
1 — _»l_l

General Methods Relationship Roles Finder-Desciiptor CUnlainerlBindingJ l
—

EJB references (local JNDI

» Binding can be done usin

¢ Binding specification to global name (was not available in the beta code)

names) can also be defined in Web module (web.xml) for servlets

g AAT (Application Assembly Tool) or Admin Console

Visual 7-17 EJB 1.1 JNDI Names

In the EJB 1.1 specification, it is suggested that applications use local JNDI
names to access EJBs. A local JNDI name is specified as ejb/Beanname (in the

Java code, the

home is found using java:comp/env/ejb/Beanname). In an

application server, global JNDI names are used and they must be unique.

Local JNDI names are used in the generated code for associations. They should
also be used in hand-written code of session beans (that access entity beans)
and in Web applications (servlets).

Local names a

nd their mapping to EJBs are defined in the EJB editor. The

mapping of local names to global names (called the binding) can be done in the
extension editor, or it can be done as a deployment activity in the Application

Assembly Tool

(AAT) of WebSphere.

Unit 7. Application Developer: EJB Development

161

Entity EJB-to-RDB Mapping

-

EJB Definition EJB Mapping Schema DB Table

o =
45 2P ==

EJB Project Mapping Editor Rel. Schema Center
define generated generated create
Top-down
generated generated imported existing
Bottom-up
define manual imported existing

Meet-in-the-Middle

Visual 7-18 Entity EJB-to-RDB Mapping

Entity beans (container-managed) must be mapped to relational tables. This can
be done in three ways:

» Top-down—Define the entity bean and have the matching tables generated
(one column for each property).

» Bottom-up—Import existing tables using the relational schema center and
have matching entity beans generated (one property per column).

» Meet-in-the-middle—Define the entity bean and import an existing table.
Perform the mapping by hand (using the mapping editor). The entity bean
should correspond to the table from the beginning, but this approach gives
more freedom in regard to data type conversions.

The disadvantages of top-down and bottom-up are that the user has little control
over the names and data types that are generated.

162 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Top-down
O Define EJBs with attributes

0 Generate schema (database tables) and mapping
0 Can generate DDL and run into DBMS

Bottom-up
0 Import schema from database
0 Generate EJBs (and mapping) based on tables

Meet-in-the-middie
0 Define EJBs
0 Import schema from database
0 Create mapping by hand

Attribute <==> Column Association <==> Foreign Key

Entity EJB-to-RDB Mapping Details

Associations and
inheritance are
supported

Inheritance:
e single table
o root/leaf

Converters and
composers for
transformations

e Converter:
one attribute to
one column

e Composer:

multiple attributes

to one column

Visual 7-19 Entity EJB-to-RDB Mapping Details

Associations and inheritance are supported by the mapping tool as well.

An inheritance structure can be mapped into a single table or into multiple tables

(one per entity bean).

Associations map to foreign keys implemented in the tables.

Special mapping function called converters and composers enable more
complex transformations of data types, or to compose entity attribute types from

multiple table columns.

Unit 7. Application Developer:

EJB Development

163

Entity EJB-to-RDB Mapping File

=t ap. maps)(” mapping file |
(] EJB2 o ta o o o w O [w| Tables oot o o @ oa w O
(@ ItschwisDeslerE IR =@ ® ITS0WSAD | -]
= & " Inventory = E® MMINVENTORY table |
. 1@@ iterhurber © javalang.Long b ™ ITEMNUMBER : BIGIN

entity bean - [@ ™ partMumber : java.lang.Sting B ® PARTNUMBER : CHARACTER(10]
@ quantity : int drag/drop P [® QUANTITY : INTEGER
™ cost: javamath.BigDecimal A ® COST: DECIMAL(1D, 2]
@™ shelf : javalang Sting B ™ SHELF : CHARACTER(Z)
: . lacation : java.lang. String A ® LOCATION : VARCHAR(10D) e
#- @ StackUpdate 20" ITEMPART : MMPARTS =
O

CErm— e
EJBs Tables |

E—@ Itzoin'sDealerEJB 0 1ITS0wWsAD database

entity bean | B MMINYENTORY

@@ |temNumber java.lang.Long éﬁ ITEMMIUMBER : BIGIMT

@ partMumber : java.lang.Sting A PaRTHMUMBER : CH&RACTER[1)
quantity ; int A QUaNTITY: INTEGER

cogt : java.math.BigDecimal A COST:DECIMALITID, 2)

zhell : java.lang. Sting J SHELF: CH&RACTER(Z)

lozation : java.lang. Sting completed A LOCATION : VARCHAR[100)

Enmpositinn‘ mapping

Visual 7-20 Entity EJB-to-RDB Mapping File

The mapping tool provides the support for the mapping of entity beans to
relational tables:

» In the top pane, you drag entities to tables, entity attributes to columns,
associations to foreign keys (also in the opposite direction).

» The bottom pane shows the mapping that has been completed.

The mapping information is stored in the Map.mapxmi file of the EJB project.

164 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Generate Deployed Code

0 Business methods specified and promoted to interface
0 Mapping completed
0 Custom finder methods specified

home interface |——»= InventoryHome.java
remote interface [Inventory.java
the bean ——» InventoryBean.java <a—— business methods

InventoryData.java
— ypata-J

access bean R
InventoryFactory.java

EJSCMPInventoryHomeBean. java

container
implementation EJSRemoteCMPInventoryHome. java
generated code EJSRemoteCMPInventory.java

EJSFinderInventoryBean.java

JDBC access —»> EJSJDBCPersisterCMPInventoryBean.java

_EJSRemoteCMPInventory Tie.java
Inventory Stub.java

A al _EJSRemoteCMPInventoryHome Tie.java

_InventoryHome Stub.java

Visual 7-21 Generate Deployed Code
When all the specifications are complete, you generate the deployed code.

One class named EJSJDBCPersisterCMPxxxxx contains all the SQL statements
used to create, retrieve, update, and delete the entity bean.

Unit 7. Application Developer: EJB Development 165

Migration from VisualAge for Java

Export VA Java 3.5.3/4.0 project to file system
0 Import into Application Developer
0 Manually complete the EJB definition

Export EJB 1.1 compliant JAR from VA Java 4.0
0 This is the migration path for EJB metadata

0 Produces an EJB 1.1 JAR file containing new map and schema
metadata

0 This EJB 1.1 JAR file can be imported directly into Application
Developer

EJB Validator in Application Developer
0 Verifies compatibility with EJB 1.1 spec
0 Incompatibilities flagged as warnings/errors

Visual 7-22 Migration from VisualAge for Java

Migration of EJB definitions from VisualAge for Java is easy when an EJB 1.1
compliant JAR file can be generated. This is only supported in VisualAge for
Java Version 4. Such a JAR file contains all the deployment information including
the mapping to the tables.

From earlier versions of VisualAge for Java you can export the Java source files
into an EJB project, but manual effort is required to complete the definitions and
to redo the mapping to tables.

The Application Developer provides an EJB validator that checks if the EJB 1.1
specifications have been followed.

166 Self-Study Guide: WebSphere Studio Application Developer and Web Services

EJB Testing

K Edit a Database

Specify DataSource JNDI name for .. [DbzidbeDiver
EJB project (or for individual EJBs) Description: |DE2JDEC Diiver
. . . mplementation | COM.ibrm.db2 jdbe. OB 2ConnectionP o
Server configuration and instance ™™™ :_db _
. URL prefis: 1dbe:
- Set Up JDBC drlver » Classpath; ID:qulliba’iavaa’db2iava.2ip
and data source
an Conﬁgu outoe \ il Edit a Datasource
0 Assign project to configuration Name: ITsow/sAD
JNDI ame: Jidbc/TS0MSAD
Run project on server Poeslse |
0 Project -> Run on Server Catagory: |
» Starts server instance Database name: |1 TSOWSAD
» Starts browser Minirum pool size: |1
a Or Start server manua”y Mazimum poal size: IBD
» Then start browser Connection tmeout; [1000
Il timeout 2000
Use Univeral Test Client phen tmeout 5003

Visual 7-23 EJB Testing
EJBs can be tested right in the Application Developer in the embedded
WebSphere AEs server. The steps are:
» Define the data source JNDI name in the EJB editor.

» Set up a WebSphere AEs server with JDBC driver and data source
information that matches the JNDI name and access the correct database.

» Assign the project to the server.
» Start the server (manually or by selecting Run on Server for the project).
» Start a browser with the EJB test client.

Unit 7. Application Developer: EJB Development 167

Universal Test Client

New test client
IBM EJE Test Client ALY = @
0 Browser-based |.®
ﬁ Homepage taa;);\
L -
. Slmllar The EJB page allows yau
f nction The JMDI Explorer allaws waou to wiew and invake
u Ct on as to view the JMDI namespace riethods of laaded EJB
VA Java EJB NDI and load EJB beans, data Home and Rermots
. SOUL - sources, and EJB Page interfaces, as well as
Test Cllent Euplorer | oqrmransaction for testing other objects and classes
used in testing
0 Can test EJBs |||| start here
and Web The JMDI Chjects page
. allows wou bo wiew The Properties page
Se rvices E information on data sources, E allow wou to connect to a
and access the remoke server or add
J'_"ﬂ UserTransaction for JNDI_ additional JMDI
Obiects contraling dient-side Properties q.onerties
transactions
The Online Help page provides
@ some brief infarmation on each
- page. For full documentation,
Online ey, the product —
Helb gocymentation LI

Visual 7-24 Universal Test Client
The universal test client (UTC) can be used to test EJBs very effectively.

This test client provides functions similar to the EJB test client of VisualAge for
Java, but it is browser-based and also provides functions to test Web Services.

The starting point to test EJBs is the JNDI Explorer, where we can find the
homes of the EJBs that run in the EJB container in the server.

168 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Universal Test Client Run

|@E JNDI Explorer 6§“3‘)
JMDT Marne:
| i Lookup 9 (1) Select EJB home in JNDI Explorer
EB itso
E"E wsad
| EME dealer - reuse and constructorl
Inventory (itso.wsad.dealer.ejb. InventoryHome Stub
Stocklpdate (itsn,wsad, dealer, session, StockL dateHo:Jf l
y4
& [EMER Test Client / for B &l & @
% References /u@ | |j® Parameters /'-'@ |
E"’—P EJB References = @ itso,wsad dealer, eib, Inventory findByPrimaryKey(Long)
E"& Inventary
= ™ InventoryHome | Parameter Yalue [

(2) Select met

— -
5= Method vishilty ™., ‘o javalang.long [21000003 W [Gbjets =] [Gorstractors =]

(6) Invoke
methods
on EJB

© Inventory createllond Stric

@ Inventory findBy PrimaryKey
% voke |<afl——— (3) Set parameters, Invoke

=3 mventary (21000003
- B= Method Visibiliy

...9"3 ink sddShockiint) Last result: ._)‘Inventory (itso.wsad, dealer.ejb. _Invenkory _Skub)
oo .~
N . O BigDiecirmal getCaost() [Returned Frorm @ itso.v;s'aﬂv#gl.er.ejb._In\rentoryHome_Stub.FindByPrimaryKeyU)
L i e
' Object References N '-._..

\j;. Wark with Object | < Sese

t ‘}9 Class References
=-#1 vtilities

(4) Result object

! (5) Add object to references |

Visual 7-25 Universal Test Client Run

A typical test run progresses as follows:

'S

>

Select an EJB in the JNDI Explorer.
The home interface is displayed in the References pane.
Select a method of the home interface (create or findByPrimaryKey).

Enter parameter values in the right pane. For simple types, you can just enter
the value, while for objects you can reuse an existing object or invoke a
constructor.

Click Invoke to run the method. The result EJB is shown in the bottom pane.
Click Work with Object to add the remote object to the References pane.

Expand the remote object and select a method to be tested.

Enter parameter values (as above) and /Invoke the method. Result values or
objects are displayed and can be added as references (EJB references or
object references).

This cycle can be repeated with any method selected in the References pane.

Unit 7. Application Developer: EJB Development 169

Universal Test Client Functionality

Can use built-in browser or external browser

JNDI explorer
0 Search name space, find any EJB
Dynamic method invocation
0 Creation and passing of complex objects as parameters

Object clipboard

0 Save returned objects
» Constructors when building parameters
e BigDecimal values for example

Universal Test Client
can be installed in

. stand-alone
0 Reuse in other method calls WebSphere
2 Stored under Object References e

Class loader
0 Load a JavaBean, instantiate, run methods (Web Services)

Visual 7-26 Universal Test Client Functionality

The universal test client can be run in the internal browser or in an external
browser.

The object clipboard can be used to save any result object and reuse it as
parameter for further method calls.

The test client is a Web application and is available as an EAR project that can
be installed into a stand-alone WebSphere Application Server for testing.

170 Self-Study Guide: WebSphere Studio Application Developer and Web Services

EJB project and J2EE Perspective provide
0 EJB development environment
0 J2EE-conforming deployment
0 EJB Editor and EJB Extension Editor
0 Wizard for creation
0 Three mapping approaches

Server project and Perspective provide

0 Full EJB test environment
0 JNDI lookup
0 Universal Test Client

Visual 7-27 Summary

The EJB tooling support of the Application Developer provides full support for
J2EE application development, including support for the EJB 1.1 specification.

The universal test client provides support for dynamic testing of EJBs (as well as
for Web Services).

Unit 7. Application Developer: EJB Development 171

_Exercise: BB DEVEIaL

EJB development Inventory
0 Project: ItsoWsDealerEJB Control

0 Create entity EJB (Inventory) <, .‘

» Business methods Seeu
Create mapping to DB o S
Deployed code o e’ e
Container DataSource -
Test in server ‘;."
» EJB test client .,.-",‘

O Create session EJB =~ ¢
(StockUpdate) ’ WebSphere Test | Environment

» Test in server o

. . 4
O Create Web application® w
» HTML, serviet]
» Test Web application SENLEMEAEIEELL

entity bean
and session bean

StockUpdate

vyvyyy

Inventory

Visual 7-28 Exercise: EJB Development

The EJB development exercise guides you through many of the tasks discussed
in the presentation.
In this exercise you work with two EJBs:

» Inventory—an entity bean that maps to the inventory table in the ITSOWSAD
database

» StockUpdate—a session bean with business methods to manipulate stock
values in the entity EJB

You also create a Web application that uses the EJBs to update the database.

See Exercise 5, “EJB development” on page 329 for the instructions for this
exercise.

172 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer:
Deployment to WebSphere

ibm.com
@ Web Services
o-business Studio Application Developer

Deployment to WebSphere

¢ Redbooks

International Technical Support Organization

Figure 8-1 Title

© Copyright IBM Corp. 2002 173

Obijectives

Learn about remote testing

and deployment Tasks
0 Local and remote unit test
configuration 0 Remote server

. . » Define and configure
0 Remote testing of applications - @il e

0 Configuring AEs O Configure remote AEs
1 Deployment of EAR files into AEs » JDBC driver/DataSource

O Start remote server

i i Publish licati
Learn about application = Pl Gl et

. . > Test
installation
. 0 Deployment
O EAR files » Export application as EAR

» Configure AEs

WebSphere Application Server > Install application EAR file

Advanced Edition Single Server
AEs (AEd)

Visual 8-2 Objectives

The objectives of this unit are to:
» Understand local and remote testing of Web applications and EJBs
» Understand how to set up a remote test configuration

» Understand deployment of Web applications and EJBs to WebSphere
Application Server AEs and AE

» Understand installation of an application archive (EAR) files

174 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Testing of Applications and EJBs

Developer Deployment
WSAD Machine Machine
WebSphere AE
\ (future)
WebSphere\ WebSphere WebSphere
AEd \ AEs AEs
built-in \ 4 *
App App App -
start start
Agent Controller Agent Controller
—{ must be installed]

Visual 8-3 Testing of Applications and EJBs

The Application Developer provides a local and remote test environment for
testing of Web applications:

» WebSphere Application Server AEd (developer edition, same code as AEs,
but free) is built into the Application Developer.

» WebSphere Application Server AEs (single server edition) can be installed on
the same or on a remote machine. A remote server is started through the IBM
Agent Controller, which must be installed on the machine where the server
runs.

For testing, a Web application is published to the selected server by installing the
owning EAR project file into the application server. Then the server is started and
the Web application can be tested in a Web browser.

Unit 8. Application Developer: Deployment to WebSphere 175

Publishing and Testing

Built-in server
0 Define server configuration/instance with JDBC driver/data source
0 Assign project to server configuration
O Start server and browser or Run on Server

WebSphere AEs on same or other machine
0O Define server configuration/instance with JDBC driver/data source

O Remote server instance: WebSphere v4.0 Remote Test Environment
» hostname, AE installation and deployment directory

0O Remote file transfer instance EAR file
» Copy files or FTP files e Web modules
» Remote target directory e EJB modules

0 Assign project to server configuration

0 Start server and browser or Run on Server
» IBM Agent Controller must be installed on remote server to start remote AEs
¢ serviceconfig.xml must point to AEs home directory

Visual 8-4 Publishing and Testing

The built-in server (WebSphere AEd) has to be configured with JDBC drivers and
data sources, and the EAR project has to be assigned to the server.

The EAR file is installed into the test server before the server is started; this is
called publishing the code to the server.

If WebSphere AEs is installed separately from the Application Developer, on the
same or another machine, we can test applications remotely. In a remote test
environment, the application code has to be transferred to the application server.
This can be done by file copy (LAN drive) or by FTP.

The remote server is started from the Application Developer through the IBM
Agent Controller that must be installed on the machine where AEs is installed.

176 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Defining a Remote AEs Server

Server name:

Server project folder:

Server instance type:

[scindsAE single Define

=

e configuration
e instance

B * WebSphere Servers
; @ ‘wiebSphere w40 Remate Test Environment remote
@ wiebSphere w40 Test Environment T

Define

o file transfer

Host address: AEs |chusa.almaden.ibm.com
WebSphere installation directary: -
[for example: C:AwebS phereddppServer]: Id.\WebSphere"-AppSewer

¥ Use default WebSphere deployment directory

&+ Create a new remate file transfer instance

Ut Copy File
{L'll.", FTP File Transfer Mechanizm \ Fiemnate file transfer name: Ichusa where

i o [tzohisS
Transfer Mechanizm Beef iaE=n I SOME2BIVED

how

Femate target directany: I:-:: WalebSphere\appServer _»

Visual 8-5 Defining a Remote AEs Server

To define a remote AEs server, you have to specify:

'S

>

>

>

The host name or address

The WebSphere installation directory

The mechanism of file transfer (copy of FTP)
The remote target directory

The remote file transfer mechanism is stored as an object (XMl file) in the server
project.

Unit 8. Application Developer: Deployment to WebSphere 177

Remote AEs Server

Properties of remote configuration

0 Can enable administrative client
» Note that a temporary server-cfg.xml file is used

0 Can enable the test client and the IBMUTC.ear is installed
0 Must configure JDBC driver and define data sources

0 Can set port
» Default AEs port is 9080 Administrative
» Default Admin port is 9090 <& Console
http://hostname:9090/admin * browser-based

0 AEs does contain an HTTP server
» IBM HTTP Server installation not required

Properties of remote instance
0 AEs installation directory and target directory

0 File transfer mechanism
» Appears as separate object that can be shared

Visual 8-6 Remote AEs Server

For a remote AEs server, you can:

» Activate the administrative client of AEs so you can do configuration tasks
right from the Application Developer

» Enable the universal test client so that EJBs can be tested
» Configure JDBC drivers and data sources
» Set up port numbers for the different servers

Note that AEs has a built-in HTTP server, so you do not require a separate HTTP
server (such as the IBM HTTP server).

178 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Administrative Console of AEs

JF\'E Edit ‘iew Favorites Took Help |

| «Back - # - @ [# | ©Search &Favorites FHistory |5 & @
JAddrBSS I@ http:iflocalhost:8090/admin/secureflogon.do?action=0K j @Go

WebSphere Application Server

Console Home Configuration Preferences Save

aﬁﬁj ywehsSphere Administrative Dom-
El = Modes

E‘@ CHUSA The JZEE applications {EAR files) installed on the application server
--l:[Enterprise applications

;0 Enterprise Applications

S application Servers +Eor mare inforration

= Default Server
e e Stat| Ston| Restart | nstall | Unintall | Export | EwportDDL |

e et rescurce provi | [

7 Virtual Hosts & sampleapn FIAPP_INSTALL _ROOT}/sampleApp ear

Blag Security I 8 Server Administration Application FAPP_INSTALL_ROOT Madmin.ear

=@ Resources
: © & wehSphere Application Server Samples $APP_INSTALL ROOTRSamples ear
B3 Mail Providers

£ URL Providers & petstore ${APP_INSTALL_ROOT}petstore.ear
Elz JDBC Drivers — & universal EJB Test Client F{APP_INSTALL_ROOTRBMUTC ear
- Db2ldbeDriver & tsowshDealerEAR F{APP_INSTALL ROOTRitsowsdealer ear
. . [Data Sources -
4 | B
|@ |] '_’_ (2F Local intranet A

Visual 8-7 Administrative Console of AEs

The administrative console of AEs shows the installed applications, such as the
universal test client and the application that you want to test.

Unit 8. Application Developer: Deployment to WebSphere 179

Installing an Application into AEs (or AE)

Configure AEs with Admin Console

0 JDBC drivers and data sources WSAD
Export application as EAR file
. export
0 Contains Web and EJB modules
Install EAR file EAR File
0 Using Admin Console Ad ' e _
» Configure JNDI names SrEElE install
» Configure EJB references banels are
» Do not re-deploy differe AEs
0O Batch (all EJB ref must be OK)
seappinstall -install e:\..\itsowsdealer.ear Stop start
-expandDir d:\was..\installedApps\itsowsdealer.ear
-ejbDeploy false -interactive false
T
Stop/start server and test est

Can install EJB test client
0 EAR directory provided

Visual 8-8 Installing an Application into AEs or AE

To deploy applications into a real WebSphere AEs or AE server, you have to:
» Configure JDBC drivers and data sources used in the real environment.
» Export the EAR file of the containing EAR project.

» Install the EAR file in the application server. This can be performed in two
ways:

— Using the administrative console. This allows to perform additional
configuration tasks, such as JNDI names and EJB references.

— Using a batch command (seappinstall). In this case you should have done
all configuration work in the Application Developer.

» Stop and start the server to enable the application.

The universal test client can also be installed manually on any WebSphere
application server by copying the UTC EAR directory and installing it. This
enables testing of EJBs from a browser in the real environment.

180 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Deployment Activities

Deployment activities
0 Configure JNDI names

0 Bind EJB references (local names) to global JNDI names
Can be done in WSAD
» EJB-to-EJB references, serviet-to-EJB references

0 Deploy EJBs (generate code)
Can be done in WSAD
Application Assembly Tool (AAT)
0 Can perform all deployment activities
» Install EAR file after that is easy
Batch installation (SEApplInstall)

0 All mapping should have been done before
» Fully deployed EAR file

O Interactive mode possible

Visual 8-9 Deployment Activities

Deployment activities in WebSphere Application Server include:
» Configure global JNDI names

» Bind the local JNDI names to global JNDI names (EJB references, such as
associations and session to entity references, and servlet to EJB references)

» Regenerate the deployed code

These activities can be performed in the administrative console or by using the
Application Assembly Tool (AAT).

The fastest way to deploy is by performing all deployment specifications in the
Application Developer and by using the batch command to deploy the EAR file.

Unit 8. Application Developer: Deployment to WebSphere 181

Server perspective provides
0 Remote server for unit testing
0 Remote server and file transfer configuration

0 Remote start/stop of server through the
IBM Agent Controller

EAR file

0 Deployable application
» Contains Web and EJB modules

0 Can be installed in WebSphere Application Server AE and AEs

Visual 8-10 Summary

The support for WebSphere Application Server in the Application Developer is
outstanding. This enables easy testing inside the Application Developer, outside
in an AEs server, and deployment to AEs or AE full function.

182 Self-Study Guide: WebSphere Studio Application Developer and Web Services

_Exercise: Dep

Deploy Web and EJB
applications to WebSphere WSAD
Application Server AEs
0 Configure WSAD for remote \
testing in AEs publish EAR file

O Test applications with remote \ +

AEs server
0 Configure AEs

0 Deploy applications using WebSphere
EAR file: ItsoWsDealerEAR AEs

O Install EJB test client in AEs
Deployment of w

J2EE applications
with Web and EJB

Visual 8-11 Exercise: Deployment

The deployment exercise guides you through many of the tasks discussed in the
presentation.

In this exercise you work with the EAR project that contains the Web and EJB
projects developed in the previous exercises:

» Set up a server for remote testing and test the applications

» Configure AEs for deployment

» Export the EAR file and install it in the application server

» Optionally, install the universal test client

See Exercise 6, “Test and deploy using WebSphere AEs” on page 339 for the
instructions for this exercise.

Unit 8. Application Developer: Deployment to WebSphere 183

184 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Application Developer:
Profiling Tools

ibm.com
@ Web Services
ebusiness Studio Application Developer

Profiling Tools

Redbhooks

International Technical Support Organization

Figure 9-1 Title

© Copyright IBM Corp. 2002 185

Obijectives

Learn about performance
analysis tools included with Tasks
Application Developer

O Architecture 0 Install IBM Agent Controller on
0 Class and method path length remote systems
O Object leaks 0 Configure WebSphere Test

Environment

» Enable agent
Learn about the different > Disable JIT compiler
views provided for Q Start trace
performance analysis Run application

0O Use viewers to analyze trace
data

0 Performance bottlenecks

(]

Visual 9-2 Objectives

The objectives of this unit are to:
» Understand the profiling tools of the Application Developer
» Understand how to set up performance measurement

» Understand the reports that are produced

186 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Overview

WSAD Performance Analyzer can gather application
information on

0 Applications running in WebSphere Application Server
0 Stand-alone applications
0 Same or remote machine from Application Developer

Performance analysis early in the development cycle
0 Within WSAD WebSphere Test Environment
0 When testing on WebSphere AEs and AE

0 Early detection leads to architectural changes before it is too late
» Reduced risk

IBM Agent Controller to route trace information from
execution JVS to WSAD for analysis

Visual 9-3 Overview

Performance analysis should be done early in the project cycle to identify
bottlenecks and correct them before going into production with Web applications.

The profiling tools can measure performance inside the Application Developer or
outside, for example in WebSphere Application Servers.

Unit 9. Application Developer: Profiling Tools 187

Architecture

Deployment Host(s) Development Host

Application Developer

Java Virtual Machine

Performance Analyzer

User
App Pe Control Interface
L~
dat -
= : /control Viewer
* control L~
| i}
Agent Controller data g Formatter

Visual 9-4 Architecture

The architecture of the profiling tools involves:
» The Java Virtual Machine (JVM) where the application is running

» An agentinside the JVM that captures the events (entering methods, memory
management)

» The IBM Agent Controller that is used between the Application Developer and
the remote machine to control the agent and to retrieve the performance
measurement data

» The performance analyzer inside the Application Developer that controls the
agent and that invokes the formatters and viewers

188 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Remote Agent Controller

Stand-alone daemon or service on the deployment host
0 Platforms: Windows, z/OS, 400, AlX, Solaris, HP
0 Must be installed (provided with Application Developer)
0 Can attach to running agent or launch a new process

0 Agents are based on Java Virtual Machine Profiler Interface (JVMPI)
» Profile agent receives notification of events (heap alloc, thread start,...)
» Agent can request additional information from JVM

0 WebSphere Test Environment can enable agent (-XrunPIAgent flag)
» Set for a server instance

User
App

JVM

JVMPI
events

-

controls

3

Agent
Controller

Java Virtual Machine process

Profile process

Visual 9-5 Remote Agent Controller

The IBM Agent Controller runs on many platforms, where it must be installed.

The agents that run in the JVM and capture events use the official Java Virtual
Machine Profiler Interface (JVMPI) to gather the performance data.

WebSphere AEs (and AE) provide facilities to enable the profiling agent inside
their JVM.

WebSphere AE:

— Open the Admin Console
— Stop the server to be used for profiling, for example, the Default Server
— On the right-hand side, select JVM Settings
— Click Advanced JVM Settings

— Add this line as the command line arguments:

-XrunPIAgent:server=enabled

— Click Apply
— Start the server

>

Unit 9. Application Developer:

Profiling Tools

189

Profiling Perspective

FI|E Edit Perspectwe Project Window Help

- H & |mf'»[®zv)%%[f?ﬂaagb]$
ﬁ E kanitars - + =
P-'_\J El ﬁ F'n:uflleF'ru:qect “ Vlews
m || B awimnams) Class statistics
EH ‘ F""hl"'gm Attach o Agent
m Detech o A || [Method statistics
|H'|-ﬁ;. . | Skark Monitaring d
Stap Monikorin
——) [Heap
B Console Cipen Wikh L
resdioniocd (4] | Object Reference
— Execution Flow
q Propertiss = |E|ass Statistics Execution FIDWIDbiectHeferenceJ

Visual 9-6 Profiling Perspective

The Profiling Perspective is used to activate an agent by launching an application
or by attaching to a running process.

The control interface is then used to start and stop monitoring, retrieve
performance measurement data, and display that data in a number of textual and
graphical views.

190 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Profiling in WebSphere Test Environment

Configure server instance
0 Set flag
0 Disable JIT compiler

\.
T

Instance name: IllSDWSDealer

¥ Enable profile server process

System properties

Profiling Perspective

1 Select | = - | icon down arrow
» Attach -> Java Process

Select the javaw process
with the Profiling object

Set filters for Profiling object —#9
» Which packages not to trace

Start monitoring
Run application
Use viewers to display results

A

U

{ Wariabl [vae |
| i MNOME
~ Trace Fitters
| Enabled | Fiter Visihilty |«
B jeva* EXCLUDE
i e] Fun® EXCLUDE
@ GOM.SUN.* EXCLUDE
@ com.itim.* EXCLUDE
o) orgeclipze * EXCLUDE
o) org.apache EXCLUDE
B R EXCLUDE |
) org.sml* EXCLUDE
& javasxmlparsers * EXCLUDE LI
Removel Iy g | hdow e D own
New fiter | Al Fitter, |

Visual 9-7 Profiling in WebSphere Test Environment

The tasks involved in profiling an application inside WebSphere AEs are:

» Configure the WebSphere AEs server for profiling. For example, the
just-in-time compiler (JIT) must be disabled so that all code runs through the

JVM.

Start monitoring.
Run the Web application.

Stop monitoring.

Attach to the WebSphere AEs server process.

Unit 9. Application Developer:

Set filters (that is, which classes should not be trace).

Retrieve and performance data and display results in the viewers.

191

Profiling Tools

Viewer: Class - Method - Heap

Class statistics - tabular
0 Number of instances, garbage collected

Class statistics
» Identify time-consuming

0 Base time classes
O Cumulative time (includes called) > ::"I'::;Z‘; LD AL CL S
0 Memory consumption of class object » Gauge garbage collection

0 Number of calls . e
Method statistics

Method statistics - tabular > Identify time-consuming
methods
O Number of calls
O Base time Heap

» lIdentify time-/memory-

0 Cumulative time :
consuming classes/methods

. leaks

H - araphical > Locate memory
eap - graphica » Method execution as function
O Instances of class of time

Visual 9-8 Viewers: Class - Method - Heap

A number of viewers are provided to display the performance data:

» Class statistics—the time spent in each class

» Method statistics—the time spent in each method of each class

» Heap—-class instances

» Object references—all objects with their references to other objects

» Execution flow—a graphical view of the execution through the methods of the
involved classes

192 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Viewers: Objects - Execution Flow

Object reference - graphical
0 Base set of objects
0 References between instances
0 Node repetition
0 Old/new objects against specific time

Execution flow - graphical
0 Objects and time scale
0 Time when method is called
O Time spent executing a method
0 Time when method returns

Object reference
» Determine cause of memory
leak

» Determine why object is not
garbage-collected

Execution flow

» Identify which threads are
active when

» Identify long-lived or
frequently called methods

» Gauge the amount of garbage
collection

» Identify phases of program
execution

Visual 9-9 Viewers: Objects - Execution Flow

Performance analysis identifies:

'S

>

Time-consuming classes and methods

Garbage collection and memory leaks (references not freed for garbage

collection)

Long-lived and frequently called methods

Unit 9. Application Developer: Profiling Tools

193

Viewers Example: Class - Method

Fiter |

Cla=s Names | Package Instances Collected Baze Time =Cumulative Time

[=] CannectionPool comibmeiscm... 1 1] 0.052023 56.318580
getConnection]) Connection 0.00817E 16145486
allocateConnection? String, Strin... 0035193 §.063754
find ConmectionF or Tx Coardingt ... n.o01142 025589
findFreeConnection(String, Stri. . 0000634 5027447
cresteOrVatFarConnection Stre... 0.000352 3.026813
createConnectiong String, String... 0.005529 5026461

DataSourcelmgpl comkm.gjs cm 1 1] 2074731 13 6365535

DEZReusahieConnection COMibmob2jd.. 2 0 SAT2EET+1 67 16.368499(+4 4. .

Fiter |

Method Mames Class Names: | Callz | Baze Time | sCumulstive Time |
getCannedtion() Connection GonnectionPool 4 0.003176 16143486

doGet(HitpServietReguest, HitpServiet. . Crested coount 2 0950533 14 5455035
getConnection () Connection DataSourcelmpl 1 0000165 12 061617
allocateConnadctiont String, String 1 Gon... ConnectionPool 2 0.035193 g.063754
findConnectionForTx(Coordinator, Stri.. ConnectionPool 2 0001142 §.0255849

findF reeC onnectiont String, String 1 Co... ConnectionPool 2 0000534 5.027447
createCn®atr orConnection String, Str... ConnectionPool 2 0000352 3026813
createConnection(String, String) Conn... ConnectionPool 2 0005529 5.026461

Visual 9-10 Viewers Examples: Class - Method

These views show the class and method statistics of a Web application.

194 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Viewers Examples: Objects - Execution Flow

ervlet Engine. Transports: 1 0[2305]

Object Feference tae B @l Gl '&93

Display: INonJDK and Mon-érray Objects j

Mon-JDE Objects (40 obijs)

3 FileJutputSir 2 Finalizer
] [nlel)

2 BufferedOutpu 2 LocalizedPrin
Zold] [2 old)
2 LocalizedPrin D- 2 DutputStreamW,l| 2 LocalizedPrin
[3ald 2 old] [2 ald)
2 PeromanceE s CIREneE =
D.Tz ald) =B 12 old) '

2 Panzl
- {2 old)
2 FocusEwent
[2 old)

Visual 9-11 Viewers Examples: Objects - Execution Flow

This views shows the object references and execution flow of an application.

Unit 9. Application Developer:

Profiling Tools

195

U

I R R N

Hints and Tips

IBM Agent Controller service must be started
External JVM requires agent controller BIN directory in PATH

Disable the JIT compiler
-Djava.compiler=NONE
» System property in WSAD WebSphere Test Environment
» Disable JIT check box in WebSphere Application Server Version 4

Limitation in JDK:
» Cannot use profiling and debugging at the same time

Communication to/from RAC uses TCP/IP socket 10002 (beta)
» Configurable at GA
» Firewall may block

Currently no authentication for RAC

Choose good filters

Refresh views to ensure consistent and current data

Execution flow view has no correlation when using multiple processes

Visual 9-12 Hints and Tips

196

This visual lists a number of hints and tips to make performance measurement
effective.

Self-Study Guide: WebSphere Studio Application Developer and Web Services

Performance analysis tools can be used to identify
performance problems early in the development cycle

Architecture allows for profiling of distributed applications
running in multiple JVMs

Multiple views provide ability to identify large number of
performance problems

Visual 9-13 Summary

The profiling tools provide sufficient function to analyze application performance
early in the life cycle, during development time, instead of measuring deployed
applications in a test or production environment.

Unit 9. Application Developer: Profiling Tools 197

“Exercise: | B

Profiling tools
0 Configure server for profiling

- =
==
&
.

a Agent Controller WSAD
0 Start an agent
» Attach to the server Application
O Start server I
0 Start monitoring o Agent
0 Measure an application JVM |
0 Analyze results :
Agent
Controller

Performance analysis

Visual 9-14 Exercise: Profiling

The profiling exercise guides you through many of the tasks discussed in the
presentation.

In this exercise you work with a Web application developed in a previous
exercise:

» Configure a server for profiling

» Attach an agent to the server

» Start the server and enable monitoring

» Collect results and display in viewers

See Exercise 7, “Profiling an application” on page 345 for the instructions for this
exercise.

198 Self-Study Guide: WebSphere Studio Application Developer and Web Services

10

Application Developer:
Team Development

ibm.com

@ Web Services
e-business Studio Application Developer
[wobeewsed |
. Redbooks

International Technical Support Organization

© Copyright IBM Corp. 2002 199

Obijectives

Learn about team

development Tasks
O Architecture
2 Terminolo 0 Install CVS (or CC LT)
I .gy 0 Define repository
0 Optimistic concurrency model))
. 0O Add project to repository
O Versioning systems .
» Concurrent Versions Systems 2 Import from repository
0 Team Perspective O Examine code differences
0 Management of projects 0 Release code to repository
O Team actions 0 Pick up changes from repository
0 Synchronization with repository 2 Fix conflicts (merge code)
» Release 0O Version projects
» Catch up
0O Parallel development
» Merge

» Multiple streams

Visual 10-2 Objectives

The objectives of this unit are to:

» Understand the team development environment provided by the Application
Developer

» Understand the optimistic concurrency model

» Understand the versioning systems supported, Concurrent Versions System
(CVS) and ClearCase Light (CC LT)

» Understand the team member actions

200 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Team Development Architecture

Tools |

Workspace

Version and Configuration Management

CVS
ClearCase LT
ClearCase
Merant PVCS

RePOSitories ..others..
_I—

Visual 10-3 Team Development Architecture

The version and configuration management architecture enables vendor tools to
enable to the Workbench platform.

Unit 10. Application Developer: Team Development 201

a

a

(]

Maintained by the IDE

Snapshot of all code
WSAD/workspace/...projectDirectory

If editing by external editor
» Refresh from local

Deletes are permanent

Local history of changes
WSAD/workspace/.metadata/.plugins/

org.eclipse.core.resources/.history

» Compare with or Replace with -> Local History

Can configure multiple workspaces
wsappdev.exe -data myworkspacedir

Can open multiple IDEs with different workspaces

Recommendation:
e Use versioning system even on single workstation

Visual 10-4 Workspace

The Application Developer maintains a workspace where the project data is
stored. By default it is the directory:

d:\<WSADROOT>\workspace
The workspace directory can be specified when the Application Developer is
started (-data workspacedirectory).
The interactive development environment has these facilities:
» Deletes are permanent (no recycle bin)
» A history of all changes is maintained locally, and files can be reset to a
previous state

To enable versioning of project data, it is suggested that a versioning system
(such as CVS) be used even for a single workstation environment.

202 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Terminology

Stream

0 Shared workspace that resides in a repository
» Configuration of one or more related projects and their folders and files
» Developers share a stream that reflects all their changes integrated to date

Synchronize workspace with stream

0 Release: team member releases changes to stream

0 Catch-up: team member retrieves changes from stream
» Selectively on resource subtree, preview of changes

Branch
0 Project may be in multiple streams
» Product releases, developer personal test stuff
Version

0 Baseline of a project
» WSAD only versions projects explicitly

Visual 10-5 Terminology

The team development environment uses this terminology:

» Stream—a shared workspace on a team server where project data is stored.
Developers share a stream and can work on the same projects.

» Synchronize—the action of a developer to synchronize their own (local)
project data with the shared repository. There are two actions a developer
performs:

— Release—making their own changes available to the team, that is, copying
changed files to the team stream

— Catch-up—retrieve changes other developers have made to the local
workspace

» Branch—a project may be developed in multiple parallel streams, for example
developing version 1.3 and version 2 of a product

» Version—a baseline (frozen code) of a project

Unit 10. Application Developer: Team Development 203

Optimistic Concurrency Model

Any team member can change any resource
0 Assumption is that conflicts are rare
0 System detects conflicts and they must be dealt with | Highly collaborative

developers
o frequently share code

initial
development change #2
Developer 1 IR i
release catchiup release
Stream , : —
catchéup release catch%up
Developer 2 —'_ >
change #1 time

Visual 10-6 Optimistic Concurrency Model

In the optimistic concurrency model, any developer can change any code. This
assumes that conflicts are rare because developers usually work on different
files.

The same file may be updated by multiple developers, but only after changes
have been released.

However, conflicts where multiple developers change the same file at the same
time do occur and must be dealt with. This will be discussed later in this unit.

204 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Comparison of Version Control Systems

Cvs

(Concurrent Versions System)
is the only system in the

beta code

CVS

= Version control
= Parallel development
= Life cycle integration

Freeware
Open source community

ClearCase LT

= Version control
= Parallel development

= L ife cycle integration

= UCM out of the box

= Web Browser interface
= Promotion Model

= Baseline Comparison
= Snapshot views

Included in IBM package
Low cost of adoption

ClearCase

= Version control

= Parallel development
= Life cycle integration
= UCM out of the box

= Web Browser interface

= Promotion Model

= Baseline Comparison

= Snapshot views

= Dynamic views

= Binary Sharing

= Auto build dependency
= Distributed builds

= Distributed servers

= Support for MultiSite

Sold exclusively by Rational
Upgrade for CC LT

Visual 10-7 Comparison of Version Control Systems

This diagram shows the functionality of the three systems that are supported
when the Application Developer became available.

Unit 10. Application Developer: Team Development 205

WSAD CVS ClearCase
Workspace File system Work area
Repository Repository VOB

Stream Branch (tag) Stream and project

Project Folder View
Resource File Element

Release Revision Check-in
Catch-up Update Compare with
Version Commit (tag) Version

Visual 10-8 Terminology Comparison

When working with the Application Developer, you use the terminology provided
by the team development environment.

When you use facilities of the versioning systems outside of the Application
Developer, you use the terminology provided by those products.

206 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Installing and Configuring CVS

Get code from

http://www.cvshome.org - source and binaries
http://www.cvsnt.com - Windows binaries for NT service

Install on Windows NT/2000

0 Unzip code into directory
d:\CVSNT

0 Create repository

cd d:\CVSNT

cvs -d :local:x:/CVSRepo init (x=target drive)
0O Create NT service

ntservice -i x:/CVSRepo

O Start NT service

Visual 10-9 Installing and Configuring CVS

Setting up an environment with CVS on Windows is very easy:
» Get the freely available code from the CVS Web site.

» Unzip the code into a product directory.

» Create the repository directory and initialize the repository.
» Create service that can be started and stopped.

» Start the service.

Unit 10. Application Developer: Team Development 207

Team Perspective

iz 5+ Navigator] v X es R & & = gh x
— . epositol
il |G shlanuiw/eb 21| =0 perverELI@chusa:d /CYSRepo P ry =
ﬂﬁ| B F0UICE o E% Project Versians
El+{z webApplication o T ItsowsPatsManuw/eb
E'; —|-(25- zample H- e ItechwsPartsManuiwel v1_1 = .
B E-(5 InquireParts ! 128 ItsowePartshanuiweb 1 pIojectiversions
Input.jzp E---ft Streams
FHI* Method.jsp E‘t HEAD
o Flesuﬂ:isp _ -1 IteowsPartsMaruiwieb
= TestClient.jsp B soUICe project streams
=l {z=r webapplication
[z WEB-INF
&= WEBNF - 5= sample i
E-Z= InquireParts
------ §n InquireParts.usd Input.jzp 1.1
= ERNR vy T [= B P) A..—.,;. FMethod. i
< R I -
(= Properties = :»'.=:5> E? v X HepositoriesJ Synchronize I
Proper, Val “ i
[?::;1; I U:EF I E‘ﬂ Resource History - Result jsp hIStOI’y of Changes bt
comment test change \.-"etsionl Created | Author | Comment |
modified 9730401 1:11 PM 1.2 [v.. 9/30/01 1:11 PM LELI test change
hame Fesult jzp I 9 = T P 194:9&‘ LELI |mitial code base
WErsion 1.2 Tasklelesource Histor_l,l] I
ItzobdsPartsM anuiw/eb/webdpplication/zample/ ngquireFarts Hesult jzp in repository :pserver UELI@Rchusa:d: /CVYSRepo

Visual 10-10 Team Perspective

The Team Perspective is used to manage projects in conjunction with a shared

repository:

» The Repositories view displays the repository connections, the project
versions, and the active project streams with the projects.

» The Synchronize view displays the changes between files in the local
workspace and the team stream.

» The Resource History view shows the sequence of changes performed on

one file.

208

Self-Study Guide: WebSphere Studio Application Developer and Web Services

Connecting to the Repository

Define repository location

0 New CVS Repository

0 Connection
pserver
> password server protocol
ssh

0 Prompt for password
0 Connected!

™= Project Versions

E|---{t- Strearms

CY¥S Repository Location
Femember the location of an existing CWS repositon.

]

Caonnection ype: Ipsewer j
IJser name: IUELl
Hozt name: Ichusa

Repository path: II:I:.-"CVSFHepn

w5 location: I:pserver:UELI@chusa:d:HC‘JSHepD

[v i alidate location on finiske

Visual 10-11 Connecting to the Repository

The first task in a CVS environment is to connect to the shared repository.

Unit 10. Application Developer: Team Development

209

Add Project to Repository

- ¥ Set Project Sharing

Open project properties
0 Select Team -> Change —p»|

Pleaze choose a repository and stream for [beotwfsPartzhd anuiweb.

Repogitonies
Release project to a3 !Jpserver:UELl@chusa:d:a’CVSHepo
repository —
0 Team -> Synchronize yeer
>
e (o o |
0 Select project -> Release =
» Files are copied to 0 Aeocaiey

B[] :pserverUELI@chusa d /CWSRepo
EI% Project Versions
: E|Ea_'| ItsotwsPartsh anuvw'eb
_| -1 ItsotwsPartshd anuw'eb w1 I after version
-4k Sheams

repository stream

Refresh repository view —ps|)

Version project —

O From stream or from
workspace

{= web&pplization
.clazspath 1.1
e vom_meta 1.7

Visual 10-12 Add Project to Repository

The next task is to add projects to the team stream by invoking the release
action. This makes projects available in the shared environment.

An initial version of the project can be established, as well.

210 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Add Project from Repository

Select project in Repository view
0 Select a project version or from a stream

Add to workspace

0 Creates the project
in the workspace

l|‘| Repositaries
B [J :pserverUELI@chusa d/C¥SRepo
E% Project VYersions
: EE Itz sPartshd anuivdeb
] H-Ta Itsow/sPartstanuiyeh w1
E---‘k‘k Shreams

Cpen
Mew 3

= h HEAD
-1 ItsowsPartshanuweb
{E} TOUTCE
; {= webdpplication
.clazspath 1.1

Showe in Resource Histary
COMpare

Add to Workspace

Wersion from Strean, ..

wvom_meta 1.2

Manage the workspace
0O Version project
0 Delete from workspace
0 Load again when needed

Visual 10-13 Add Project from Repository

Team members can add projects from the repository by selecting the project from
the team stream and adding it to the workspace.

Unit 10. Application Developer:

Team Development

211

Team-Specific Actions

Compare with stream or version
0 Compare workspace file with repository stream
0 Opens the compare dialog
Replace with stream or version
0 Back out changes
Show in Resource History
0 Displays changes by users in history view

Synchronize with stream
0 Compares workspace with stream ==> display changes

O Release
» From workspace to stream

0 Catch-up
» From stream to workspace

Version (for project only)

Visual 10-14 Team-Specific Actions

The actions of a team member are:

'S

>

>

Compare the project in the workspace with the project in the team stream.
Replace the workspace project with the version in the repository.

Show the history of a file, that is, the changes of all developers that touched
the file.

Synchronize the project in the workspace with the team stream. A dialog
showing all the differences is displayed. From this list, the team member can
decide to:

— Release their own changes to the team stream.
— Catch-up changes of other developers into the workspace.

A conflict is displayed if the same file has been changed by the team member
and other developers. Conflicts must be resolved by merging the changes.
This is covered later in this unit under Parallel Development.

Version the project (from the workspace or from the team stream.

212 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Synchronization

Structure Compare o1
E----B Iteoiw'sPartshd anutyeb =
o EW vem_meta
EI FOUCE =
B. =B s <——] new folder catch-up|| release both conflicts
g B semvice mode mode only
H |:D InguireParts java
EI = webApphcatlon
E| = sample
oE- E- InqulreF'alts Release
L Resutisp <@@——— changed file T :
. L TestClentjsp e individual files
E E” simple ¢ folders
: ‘:l} SimplelnputForm. html ¢ whole project
2 Simplelesults sp differences in file proj
B WEB INF |
;-:ﬂ Text Compare / E | - ¢:] | I
“wiorkszpace file: Result.jzp Repository file; Result.jzp 1.1
’< HTHL > <HTHL> -
<HEAD » <HEAD> p—
[<META http—equiv="Content-Typ=" conten ¢TITLE:FHe=ult<- TITLE>
<TITLE:Result<~ TITLE: < HEAD >
<~ HEAD > <BODY >
<BODY » <Hl:Hesult< Hl:]
[<H1:>Welb Service Test Client Result<-H1
[<:|sp useBean id="prozxy" =cope=" page _|
. | 3

Visual 10-15 Synchronization

The Synchronize view displays the list of changes in the top pane, and the details
of a selected change in the bottom pane.

Icons allow to display only catch-up changes (made by other developers),
release changes (made by the developer), both together, or conflicts only (same
file changed by both).

After viewing changes, a release or catch-up action can be executed.

213

Unit 10. Application Developer: Team Development

Synchronization - Conflicts and Ignoring

Conflicts

0 User's change conflicts with the change of another user

0 Conflicts always shown in synchronized view regardless of mode
0 Conflicts must be fixed manually
» Parallel development

Ignoring files from team development
0 *.class, *.tmp examples of workspace files to be ignored

0 Workbench global ignore
» Specify file extension pattern in Team Preferences
» *.class set as default

0 CVS ignore

» .cvsignore file in each directory that should be ignored

Visual 10-16 Synchronization - Conflicts and Ignoring
Conflicts are always displayed and must be resolved.

Certain files are not managed by the team environment:

» Class files

» Temporary files

» Files with extensions set in team preferences

» CVS ignore files, identified by .cvsignore files in directories

214 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Versioning

Version from stream
0 Attach version name to current state of stream
0 Local workspace contents not involved
0O Version name is arbitrary string
0 Version name retrieves same state of files in the future

Version from workspace
0 Releases workspace changes to team stream
0O Attaches version name

- ¥ Version Selected Resources

VerSion names: Chooze a version name:;

. . " Automatic
» Automatic naming _ _
¢ ne Mame w2

» Apply one name to

selected stream " Name Each
» Prompt for different name

for each project

ok I Cancel

Visual 10-17 Versioning
Project versions can be created from the workspace or from the team stream.

When versioning from the workspace, a synchronize action is performed first to
update the team stream with the workspace data.

Version names can be assigned automatically, or by specification.

Unit 10. Application Developer: Team Development 215

Parallel Development

change #3
Developer 1 —‘_ -
i catch-up v1.3 release v1.4
Stream ’ : >

catch-up v1.3

merge v1.4 and
release v1.5

Bl

Developer 2 >
change #4 time
Merging changes:
e g g cha geS . copy current
0O Synchronize view shows conflicts ancestor change
0 Can open common ancestor = | 2] | o
0 Use icons to decide on each change
copy whole next
document change

Visual 10-18 Parallel Development

In parallel development, the same file (or files) are updated by multiple team
members at the same time.

The first member to synchronize with the stream has no conflicts and can release
the changes.

The second member to synchronize gets a conflict and must resolve it by:

>

'S

>

>

>

Studying the changes made by the developers
Optionally, opening the common ancestor from which the changes were made

Acting on individual changed lines and copying from either of the two
developers

Acting on the whole file and copying one of the two files

Releasing the merged copy

Icons are provided for these operations.

216 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Multiple Streams

bug fix
Developer 1 ‘— -
catch-up v1.5 release v1.5.2.1
create N\ delete
Stream 2 .5 W, ®>stream
version
. copy project vi_1
p:"g;:(l:?r\:1 project v1 release v1.7
Stream 1) : >
catch-up v1.5 release v1.6

e
v

Developer 2
new feature time

Visual 10-19 Multiple Streams
A project can be developed in multiple streams, for example to perform
maintenance on one version of a product, while developing a new version at the
same time.

It is possible to merge the two stream later in the process.

A new stream must be created from a version of the project.

Unit 10. Application Developer: Team Development 217

Team development provides for

0 Shared repository

» Manage projects in repository

» Add project: workspace to repository, repository to workspace
0 Synchronize workspace with repository

» Release changes to repository

» Catch-up up changes from other developers
0 Conflict management

» Optimistic concurrency allows conflicts
» Conflicts must be resolved
e Merge of code

CVS or CCLT
0 Suggested even for single developer
0 Workspace management ===> versions of own projects

Visual 10-20 Summary

The team development environment provides the necessary function for multiple
developers to work on the same project.

Even for a single workstation, a team repository provides the much-needed
function of versioning the projects.

218 Self-Study Guide: WebSphere Studio Application Developer and Web Services

11

Web Services Overview

ibm.com

@ Web Services

e-business

Studio Application Developer

Redhooks

International Technical Support Organization

© Copyright IBM Corp. 2002 219

Obijectives

Learn about Web Services
0 Service Web
0 Web Services components
o SOAP

» Messages
» Data Model
» Apache SOAP server

0 WSDL
» Interface
» Implementation

0 UDDI Registry
» Business entities
» Business services

Service
Broker

find

publish WSDL

WSDL

bind, invoke
Service

Provider

Service

Web
Service

Application

Web Services development
» Static and dynamic Web Services

WSAD Web Services tools

Visual 11-2 Objectives

The objectives of this unit are to:
» Understand the Web Services technology
» Understand the underlying technologies of

— Simple Object Access Protocol (SOAP)
— Web Services Description Language (WSDL)
— UDDI Registry

» Understand how Web Services are developed and the tools that are provided
within the Application Developer

220 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Document Web

e Web servers
e HTTP protocol
e HTLM documents

WAP - Wireless
Access
Protocol

WLM - Wireless
Markup
Language

Application Web
e Application servers
e Business logic (Java)
e Generate HTML
e Transactions
e Distributed processing
e WAP, WML

Evolution of the Web

SOAP Simple Object
Access Protocol
WSDL Web Services
Description Language
uDDI Universal Description
Discovery & Integration
WSFL Web Services Flow
Language

Service Web

Arthur Ryman:

Understanding Web Services
VisualAge Developer Domain

e Web services
e Generate XML
e SOAP, WSDL, UDDI

e Transactions initiated
by program

Visual 11-3 Evolution of the Web

The Web has evolved from static content (documents) to dynamic content
through application servers that provide business logic (CGl programs and Java)

and transaction, as well as new protocols such as wireless access protocol
(WAP) and wireless markup language (WML).

The next step is the introduction of Web Services that provide access to Web
applications, dynamic content, and transactions from programs.

Unit 11. Web Services Overview 221

What are Web Services?

Web Services are self-contained, self-describing,
modular applications that can be published, located,
and invoked over a network--generally, the Web.

Universal program-to-program communication
model based on standards and industry support

e-business is the driving force

0 Merge of Web, IT, object technologies

O Highly interoperable Web-based objects

a0 Object-oriented programming through SOAP messages

0 Expose business functions or data access from existing enterprise code using
SOAP wrappers and WSDL descriptions

» Everything is a service, publishing an API for use by other services on
the network and encapsulating implementation details

Visual 11-4 What are Web Services?
There are a number of definitions what Web Services are.

The important aspect is that callable functions are made available to programs
on the Web.

222 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Services Attributes and Examples

0 Self-contained
» No additional software
(HTTP, XML, Application Server)
0 Self-describing
» Definition of message travels with message
0 Modular
» Callable services
0 Published, located, invoked
(SOAP, WSDL, UDDI)
0 Language-independent and interoperable
» Different environments, can make existing
code into a Web Service
0 Open and standards-based
» HTTP, XML
0 Dynamic
» Discovery and invocation can be automated
0 Composable
» Web Service can invoke other Web Services

Examples

O Business information
with rich content
» Weather reports
» Stock quotes
» Airline schedules
» Credit check
» News feed

0 Transactional Web
Services for B2B, B2C
» Airline reservation
» Rental car agreement
» Supply chain mgmt

0O Business process
externalization
» Business linkage at
workflow level
» Complete integration
at process level

Visual 11-5 Web Services Attributes and Examples

Web Services have a number of characteristics.

The most important aspect is the interoperability through platform- and

language-independence.

A number of Web Services are already available on the Internet.

Unit 11. Web Services Overview

223

Conceptual Web Services Stack

WSEL w-eseseeeee- Service Flow
.-~ | Service Discovery M
uDDI < a
Service Security n Quality
Publication a
Trust 9 of
............ Service ©
WSDL e m
Description Privacy e Service
n
XML-based
SOAP eeseseesees Messaging !
HTTP, FIE.... Network
MQ, e-mail

Visual 11-6 Conceptual Web Services Stack

SOAP is the XML-based messaging facility built on top of protocols such as
HTTP and others.

WSDL describes the interface of the Web Service and where an implementation
is running.

UDDI provides facilities to publish and find Web Services.

WSFL, the Web Services Flow Language, provides higher-level information how
business applications flow through a series of Web Services.

There are issues to be resolved, such as a standardized mechanism for security,
management facilities, and good standards for quality of service.

224 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Services Components

O A Web Service has to be created, and its interfaces and invocation

methods must be defined

O A Web Service has to be published to one or more intranet or Internet

repositories for potential users to locate

0 A Web Service has to be located to be invoked by potential users
O A Web Service has to be invoked to be of any benefit
0 A Web Service may have to be unpublished when it is no longer

available or needed

publish

Repository
Registry

create

Provider

invoke (bind)

locate (find)

Requestor

Visual 11-7 Web Services Components

First, a Web Service must be created, and its interfaces well defined (WSDL).

To advertise Web Services they can be published in a UDDI Registry, where they
can be located by potential users.

A Web Service can then be invoked on the application server where the service

is installed.

In the Web Services world we therefore have providers that create and publish
Web Services, requestors that find and invoke Web Services, and registries
where Web Services are published.

Unit 11. Web Services Overview 225

Web Services Roles

uDDI
Registry

Service
Broker

publish

WSDL find

WSDL

Browser Browser
SOAP SOAP

bind, invoke

< ————

Web <.....§Qﬁf Client

Service Application

Service
Requestor

Service
Provider

Visual 11-8 Web Services Roles

226

The Web Services provider creates the Web Service and installs it on an
application server.

The Web Services requestor writes the client application that invokes the Web
Service.

The Web Services broker runs a UDDI Registry where providers publish their
Web Services and requestors find the Web Services.

SOAP is the protocol to invoke a Web Services, and it is also a protocol that can
be used to publish and locate Web Services in the UDDI Registry. The registry
can also be accessed from a Web browser.

Self-Study Guide: WebSphere Studio Application Developer and Web Services

SOAP Introduction

SOAP characteristics m‘;lsfoo";” Specification
0 Simple, extensible o substitutable
. . - transport bindings

- EnCOdmg using XML - language bindings

» Parameters and results - data encodings

» Call by reference and remote object activation sivendorneutral

not supported I ALl °f|
. - programming language
0 Protocol-, operating system-, and - object model
p g sy !
language-independent :;.’;i:?,‘,',:g system

» SOAP over HTTP most common

0 Remote Procedure Call (RPC) style or
Message style SOAI':_1-2
» RPC most common, callable service wg:a;tng
SOAP message is an envelope

0 Header(s) - zero, one, many '

» Control information, security, authorization

Apache SOAP 2.2

0 Body - one Implementation

» The actual message (parameters, result)

Visual 11-9 SOAP Introduction

The major advantages of SOAP are:

» All data is transferred in XML format. This includes the parameters used in a
call, as well as the result data.

» ltis protocol-, platform-, operating system-, and language-independent. HTTP
is the most used protocol.

SOAP supports the remote procedure call (RPC) protocol, as well as an
asynchronous message style protocol.

A SOAP message is an envelope containing optional headers and always one
body with the actual message containing the parameters or results.

Unit 11. Web Services Overview 227

SOAP Message Example

POST /servlet/rpcrouter HTTP/1.0 <agf—— routerserviet
Host:www.exch.com g
Content-Type:text/xml;charset=utf-8
Content-Length:494

SOAPAction:""

<?xml version='1.0 ‘encoding=’'UTF- SV SOAP envelope namespace

Web server

<SOAP-ENV:Envelope /

xmlns : SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<SOAP-ENV:Body>

<nsl:getRate xmlns:nsl="urn:Exchange" <ef———————— Web Service
SOAP-ENV:encodingStyle=
method "http://schemas.xmlsoap.org/soap/encoding/">
<countryl xsi:type="xsd:string">USA</countryl >
<country2 xsi:type="xsd:string">Germany</country2 >
</nsl:getRate
</SOAP-ENV:Body> parameters

</SOAP-ENV:Envelope>
getRate(country1, country2)

Visual 11-10 SOAP Message Example

This SOAP message example shows the invocation of a Web Service:

'S

The Web Service returns the exchange rate between the currencies of two
countries.

The service is installed at www.exch.com.
An rpcrouter servlet is invoked to route the call to the Exchange Web Service.

The getRate method of the Exchange service is invoked with two parameters
named country1 and country2, both being of string data type.

The Web Service call is embedded in the body within the SOAP envelope.

228 Self-Study Guide: WebSphere Studio Application Developer and Web Services

SOAP Data Model

Language-independent abstraction of common data types
0 Simple XSD types: int, String, date, ...
<age xsi:type="xsd:int">66</age>
0 Structures: XML element with children

<p:person>

<name>Mike Mechanic</name> Usually the application
<age>47</age> provides the XML Schema

for the data types
</p:person>

Encoding = data translation between application and protocol

0 SOAP encoding
» Marshall/unmarshall of data types of SOAP data model
» SOAP 1.1 standard

O Literal XML
» Direct conversion between XML DOM tree and SOAP message content
» Not in standard but implemented by Apache SOAP

0 User-provided converters

Visual 11-11 SOAP Data Model

The SOAP data model provides definitions for the most used data types, such as
strings, integers, float, double, date.

Result data is usually more complicated and is described in an XML schema
provided by the application.

The process of translating the data (parameters and result) into XML is called
encoding. Simple data can be encoded by the SOAP data types, the Element
class of an XML DOM tree (XML in memory) can be encoded using literal XML,
and user-provided converters can be used as well.

Unit 11. Web Services Overview 229

SOAP4J ==>
Open Source

Transport
Listener

(rpcrouter and
messagerouter

servlets for HTTP)

SOAP Admin
GUI
(HTML-
based)

Type
Mapping
Registry

SOAP

Server
Engine

Pluggable
Configuration
Manager

v

Apache SOAP Server

Pluggable
Providers

(JavaBean, EJB,
BSF, COM, custom)

Service
Implementation

any type of
programming
artifact

DeployedServices.ds

/

Web Service
Deployment
Descriptor

Why SOAP?

0 Platform-neutral

0 XML wire format

O No restriction on
endpoint
implementation

0O Implementations
are free

RMI

0 Requires Java

CORBA
0 Requires
compatible ORBs

DCOM
0 Requires Windows|

Future: Apache eXtensible Interaction System (AXIS)

Visual 11-12 Apache SOAP Server

The Apache SOAP server is implemented in WebSphere Application Server and
in the Application Developer.

The Apache SOAP server is based on the IBM SOAP4J API and provides the
transport listeners (such as the rpcrouter servlet), an administration GUI, a
pluggable configuration manager that reads SOAP deployment descriptors.

230 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Service Implementation and Client Example

}

public class Exchange {

public float getRate(String countryl, String country2) {
// lookup exchange rate in table
return rate; }

provider

public class SoapClient {
public void static main(Stringl[] args) {

requestor

Call call = new Call();
call.setEncodingStyleURI (Constants.NS URI SOAP_ ENC) ;
call.setTargetObjectURI ("urn: Exchange") ;
call.setMethod ("getRate") ;
Vector parms = new Vector();
parms.addElement (new Parameter ("countryl", String.class,
"USA", Constants.NS URI SOAP ENC); // ... 2nd parm
call.setParams (parms) ;
URL url = new URL("http://www.exch.com/soap/servlet/rpcrouter") ;
Response resp = call.invoke(url, "");
if (!resp.generatedFault())
Object obj = (resp.getReturnValue()) .getValue();
// process result

Visual 11-13 Service Implementation and Client Example

The two code fragments show the server (provider code) and client (requestor
code) of the Exchange Web Service:

» The server code shows a JavaBean that implements the Web Service. (The
actual code to query a database for the exchange rate is not shown.)

» The client code shows that a SOAP Call object is instantiated and initialized
with encoding style, Web Service name, method name, and parameters
(stored in a Vector). Then the Web Service is invoked and the result object is
extracted. (The processing of the result is not shown.)

Unit 11. Web Services Overview 231

WSDL Overview

Specifies the characteristics of a Web Service T
0 Name and addressing information Specification
0 Protocol and encoding style (parameters, data types)

Actually two XML documents

0 Service interface - abstract interface and protocol binding
» Messages (input and output) with parameters
» Port type (operation and method)
e Points to input/output messages
» Binding (style and encoding) Names generated
» Type container (XSD = XML schema) by WSAD

0 Service implementation - service access
» Points to binding in the interface
» Location of service

Xxxxx-binding.wsdl

Xxxxx-service.wsdl

Used by code generators <=== App. Developer Wizard
0 Proxy bean and service implementation template

Visual 11-14 WSDL Overview

The WSDL language is used to describe a Web Service. Two XML files are used:

» The interface file describes the Web Service, including the method that is
called, the parameters that are passed, and the encoding that is used.

» The implementation file describes where the Web Service is installed and
how it is accessed. The implementation file points to the interface file.

The coding of WSDL files is quite difficult, but in the case of the Application
Developer these files are generated. The naming convention that is used by the
Application Developer is:

Xxxxxxx-binding.wsdl
Xxxxxxx-service.wsd]

232 Self-Study Guide: WebSphere Studio Application Developer and Web Services

WSDL Interface Example

<?xml version="1.0" encoding="UTF-8"?> Se_r‘"ce type
<definitions name="ExchangeRemoteInterface" in UDDI
| targetNamespace="http://www.exch.com/definitions/Exchange... |
...RemoteInterface" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.exch.com/definitions/ExchangeRem. .face"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<message name="getRateRequest">

<part name="countryl" type="xsd:string"/> Messages
<part name="country2" type="xsd:string"/>
</message>

<message name="getRateResponse">
<part name="result" type="xsd:float"/>
</message>
<portType name="Exchange"> Port
<operation name="getRate">
<input name="getRateRequest" message="tns:getRateRequest"/>
<output name="getRateResponse" message="tns:getRateResponse"/>
</operation>
</portType>
...continued...

Visual 11-15 WSDL Interface Example

This example shows the interface file of the Exchange Web Service:

» The targetNamespace is the name of the Web Service as used in the UDDI
Registry.

» The message entries describe the input and output messages, with their
parameters.

» The portType specifies the name and operation (method name) and points to
the input and output message.

» Continue to visual on next page.

Unit 11. Web Services Overview 233

WSDL Interface Example Binding

<binding name="ExchangeBinding" type="tns:Exchange">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getRate">
<soap:operation soapAction="urn:Exchange" style="rpc"/> |
<input>
<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output> Encoding
<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>
</definitions>

Binding

Visual 11-16 WSDL Interface Example Binding

» The binding specifies the SOAP operation and style (RPC, in this case) and
the default encoding

234 Self-Study Guide: WebSphere Studio Application Developer and Web Services

WSDL Implementation Example

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="ExchangeService"
targetNamespace="http://www.exch.com/wsdl/Exchange-service.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://localhost/wsdl/Exchange-service.wsdl"
xmlns:binding=

WSDL files

"http://www.exch.com/definitions/ExchangeRemoteInterface"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<import namespaces=

"http://www.exch.com/definitions/ExchangeRemoteInterface"
location="http://www.exch.com/wsdl/Exchange-binding.wsdl"/>

<service name="ExchangeService">

<port name="ExchangePort" binding="binding:ExchangeBinding">
<soap:address

location="http://www.exch.com/soap/servlet/rpcrouter"/>
</port>

</service> ‘

C o sas Link to interface
</definitions> Target location

Visual 11-17 WSDL Implementation Example

This example shows the implementation file of the Exchange Web Service:
» The targetNamespace is the name of the implementation file itself.
» The import points to the binding file (the interface).

» The soap:address points to the location where the services is running.

Unit 11. Web Services Overview 235

UDDI Overview

UDDI Registry
Business Entity Service Type

Business Service (tMSOdefl)
izati e Specification
. Categ?rl.zatlon T : Cpt S ton
e Description Da egorizatio
e Description
* e URL
Access Point (Binding Template) =

] []

Implementation | Xxxxx-service.wsdl Xxxxx-binding.wsdl Interface

Visual 11-18 UDDI Overview

A UDDI Registry contains these entries:
» Business entities—companies that want to register Web Services

» Business services—a Web Service that the company registers (this is a
descriptive entry)

» Access point (called binding template)—points to an installed Web Service
(the target address) and to the matching WSDL service (implementation) file

» Web Service type (called tModel)—a Web Service definition that points to the
matching Web Service binding (interface) file

Entries in the registry can be qualified with descriptions and categorizations.

Note that the WSDL files are not stored in the registry, rather they are pointed as
HTTP addresses to the Web Service provider.

236 Self-Study Guide: WebSphere Studio Application Developer and Web Services

UDDI Server and Registry

Requester
Provider

Programmatic
access to UDDI
Registry using

SOAP
e included in
WAS 4 and
WSAD

Browser
UDDI4J
| HTTPServer |
| Login Management |
SOAP Server | | Web Application | UuDDI
server
Business Logic
find, (un)publish, update
UDDI
UDDI Registry
businessEntities, businessServices, database
bindingTemplates, tModels

Visual 11-19 UDDI Server and Registry

A UDDI Registry runs on a UDDI server. The registry is really a Web application
that can be accessed by a browser or by a programmable API, such as UDDI4J
(UDDI for Java), through the SOAP protocol.

In the IBM implementation, the registry entries are stored in a DB2 database.

Unit 11. Web Services Overview

237

UDDI Registry API

Access by Web browser Categories
0 Define business entity, business service, O NAICS
service types » Industry codes
government
Programming API 0 UN/SPSC
. . . . ECMA product
0 Find business entity through UUID, wildcard g and sef‘,r;e:c
name, category aL .
» Universal Unique Identifier is key to all entries ocation .
in registry (system assigned) > Geographical
0 Navigation from business entity to services 2 More to come

0O Find service type
Publish business entity, business service,

service types Dynamic Web Services
0 Update UDDI4J | . Application can find Web

. Services and call them
Unpublish

[

[

Visual 11-20 UDDI Registry API

Each entry in the UDDI Registry has a universal unique identifier (the key in the
database).

Through a browser or through the UDDI4J API a user can traverse the registry
from business entities, to business services, to binding templates, and to tModels
(and can also move in the reverse direction).

The categorization of entries can be done according to the NAICS or UN/SPSC
standards, or geographical location.

238 Self-Study Guide: WebSphere Studio Application Developer and Web Services

UDDI Registries

. . |
U D D I B u Sl neSS Reg ISt I‘y ibm.com/services/uddi/protect/registry.html

uddi.microsoft.com

|
IBM Test Registry

e Experiment with technology
e Publish and test Web Services

ibm.com/services/uddi/testregistry/protect/registry.html
|
L HP i |replicated WebSphere UDDI Registry

---------- e Stand-alone product for intranet
e DB2 database

e WebSphere Version 4 Private
http://hostname/services/uddi’/home.jsp (AES) Web app"catlon Registry
http://hostname/uddiguibeta o IBM HTTP Server

Visual 11-21 UDDI Registries

IBM, Microsoft, and other companies run the official UDDI Business Registry,

which is replicated between the companies (so it does not matter where an entry
is made).

IBM provides a UDDI Test Registry, where any company can make a few entries
for testing of Web Service and UDDI.

IBM provides a stand-alone registry product, the IBM WebSphere UDDI Registry.
This product, currently at beta level, can be installed by a company as a private
UDDI Registry. This product is a Web/EJB application that is installed into
WebSphere Application Server AE or AEs.

Unit 11. Web Services Overview 239

Web Services Flow Language

WSFL

0 XML language to describe Web Services compositions

0 Usage pattern of a collection of Web Services
» How to achieve a business goal
» How to execute a business process
» Flow composition (orchestration, choreography)
» Defines flow of control and data

O Interaction pattern of a collection of Web Services
» Describe overall partner interactions

0 Extensive support for recursive composition of services
0 Layered on top of WSDL

WSFL white paper:

ibm.com/software/solutions/webservices/pdf/WSFL.pd£f

Visual 11-22 Web Services Flow Language

The Web Services Flow Language (WSFL) is a new proposed specification to
describe higher-level processes that involve multiple Web Services.

240 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Development of Web Services

1: Develop

1': Define

Provider
Java

- 2: Server Java to WSDL -
2': WSDL to server Java W

A

5: WSDL to Client Java

3: Déployment

6d: Invoke 4: |Publish

- uDDI
— SOAP Reaistry [Client
Server gistry ~1 Proxy

Application Server

Client

SOAP

_/’/

6c: Transport level call

Legend:

6a: Find 6b:

http-POST, ... i
(http) (optional) | 1,y0ke

Java

WSDL SOAP uDDI Requester

Code

Java

file Server ﬂ Registry 5: Develop

Visual 11-23 Development of Web Services

The activities for development of Java Web Services applications and clients are:

1.
2.

Develop the provider application (the Web Service).

Create the WSDL for the Web Service (1 and 2 can also be done in reverse
sequence).

Deploy the Web Service to an application server.

4. Publish the Web Service to a UDDI Registry so that a client can find the Web

Service.

Client retrieves WSDL file and generates a SOAP client proxy object for the
client application (Application Developer tooling). Client develops the client
application.

Client application invokes the Web Service where it is installed:

— The application invokes the proxy.
— The proxy invokes the Web Service through the SOAP server.

Unit 11. Web Services Overview 241

Static and Dynamic Web Services

Static Web Service
0 Requester calls fixed provider
0 Get WSDL file through e-mail, FTP, UDDI Registry
0 Client application calls the provider Web Service

Dynamic Web Service
O Provider not known in advance

0 Requester client

Interacts with the UDDI Registry through the API
» Dynamically retrieves service types from registry
» Finds providers that implement the service type
» Decides which ones to call

» Calls the provider Web Service

v

Visual 11-24 Static and Dynamic Web Services

When a requestor knows the provider and the Web Service, then we talk about a
static Web Service. The client gets the WSDL file with the specification of the
Web Service from the provider, and implements the client application.

When the provider is not known in advance, we call it a dynamic Web Service.
The client application interrogates the UDDI Registry to find providers that
implement a specific Web Service, and then calls all (or selected) requestors.

242 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Services and Security

SOAP uses HTTP port 80

0 Right through the firewall
» Must address security with other means

Security options
O HTTPS ==> identification and authentication
» Who are you and is your identity true
0 W3C digital signatures ==> integrity
» Is the data you sent the same data | received

0 W3C encryption ==> privacy
» Nobody can read the data you sent me

O WebSphere/LDAP ==> authorization
» Are you allowed to perform this transaction

0 HTTPR protocol ==> non-repudiation
(protocol enhancement proposed by IBM)
» Reliable one-time delivery of a message

Visual 11-25 Web Services and Security
Security has not been standardized for Web Services.

However, all kind of security concerns can be resolved and implemented using
currently available techniques.

Unit 11. Web Services Overview 243

Create Web Service from Application

Web Service

Wizard E——
xisting
application
. for testin
Client / / 9 Server)
5 rpcrouter
G
g|E S
—E |0 (0)
Client-App Sl=
Proxy g P
UDDI Explorer DB
pUb"Sh deployment L
descriptor

Visual 11-26 Create Web Service from Application

The Application Developer provides a Web Service wizard to generate a number
of components from a given provider Web Service application. The Web Service
is usually implemented by a JavaBean or EJB. This is the input to the wizard.
The generated components are:

>

>

>

WSDL files (interface and implementation
The SOAP deployment descriptor (dds.xml)

An administrative application to list, stop, and start Web Services in the
application server

A proxy class for client programming
A test client (Web application) that uses the proxy to invoke the Web Service
Optionally the WSDL files can be published to the UDDI Registry

244 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create Web Service from WSDL
Web Service
Wizard NEW
application
. for testi kelet
Client /°r es 79 SSeen Server
g AdminApp
0o 5 rpcrouter
o whd
c S
| £5_ Q
T 9 Java
Client-App —a Bean
' Proxy £ or
* EJB
UDDI Explorer ! DB Tx ;
deployment See
descriptor

Visual 11-27 Create Web Service from WSDL

The wizard can take a WSDL interface (or implementation) file as input. This is
useful when a Web Service specification is known and the Web Service must be
implemented.

The same components are generated. In addition, a skeleton JavaBean for the
server is generated. This skeleton bean can be used as the starting point to
implement the Web Service.

Unit 11. Web Services Overview 245

Create Client from WSDL

Web Service

NEW Wizard Existing
application for testing application
and skeleton
Server
c
o) rpcrouter
g S /
c (0]
)
= ™ A Java
. o P B
Client-App o} ean
E or
EJB
UDDI Explorer DB Tx
deployment
descriptor

Visual 11-28 Create Client from WSDL

To create a client for a Web Service, the wizard is run with a WSDL
implementation file as input to generate the starting skeleton code for a client
application.

The proxy bean and the test client are generated, then a real client can be
implemented.

246 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Service Example

HTML FORM

M100000003

Processor

v HTML Output

<SOAP-ENV:Envelope><SOAP-ENV:Body>

<ns1:retrievePartinventory xmins:ns1="urn:InquireParts" ...>
<partNumber xsi:type="xsd:string">M100000003</partNumber>

</ns1:retrievePartinventory></SOAP-ENV:Body></SOAP-ENV:Envelope>

SOAP - soap [P rpcrouter

."“ ‘
id [J
-tS‘OAP-ENV:Envelope><SOAP-ENV:Body><return> H

<Partinventory ... xsi:schemaLocation:...Partlnventory!xsd"> o
<Part><IltemNumber>21000003</ltemNumber> : InquireParts
session| EJB

<Quantity>12</Quantity><Cost>59.59</Cost>...... §</Part>
Partinquiry

</Partinventory> DOM
</return></SOAP-ENV:Body> Tree
</SOAP-ENV:Envelope>

Partinventory

entity | EJBs
Part

Part

PartNumber Item Quantity Cost
M100000003 21000003 12 59.59
M100000003 21000004 7 46.78 IltemNumber, Quantity, Cost, ...

[Tnventory |

Requestor Provider

Visual 11-29 Web Service Example

The diagram shows an example of a Web application client calling a Web
Service implementation:

1.
2.

An HTML form with a part number as input is used to invoke a servlet.

The servlet calls the proxy bean, and a SOAP XML message with the part
number is sent to the server.

The Web Service is implemented in a JavaBean that invokes a session EJB
that uses entity EJBs for database access.

4. The result of the Web Service is an XML tree in memory.

5. The SOAP server converts the result into an XML SOAP message (in the

client, the XML tree in memory is rebuilt).

6. The servlet gets the result, the XML tree in memory.

7. The servlet calls an XSL processor to convert the XML into an HTML table

that is displayed in a browser.

Unit 11. Web Services Overview 247

More Information

Lots of information on the Internet

IBM sites:

0 developerWorks
http://www.ibm.com/developerworks/webservices
/library/w-wsdl.html

O alphaWorks
http://www.alphaworks.com/tech/wsde
/webservicestoolkit

0 WebSphere Developer Domain
http://www.ibm.com/websphere/developer

O VisualAge Developer Domain
http://www.ibm.com/software/vadd

0 uDDI

http://www.ibm.com/services/uddi

Visual 11-830 More Information

There are a number of IBM and non-IBM sites on the Internet that have
information about Web Services.

248 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Services are based on
a SOAP

» Protocol for RPC-like invocation of Web Services
» Vehicle for transport of data (parameters, results)
» XML-based

0 WSDL

» Description language for Web Services

a uDDI
» Registry for publication of Web Services
» API to access and find Web Services

Application Developer provides tools to generate
0 WSDL files
0 Java proxy beans for clients
0 SOAP deployment descriptors
0 Skeleton client and server applications

Visual 11-31 Summary

Web Services are the next wave of applications on the Internet and in intranet
solutions.

Web Services are based on three standards: SOAP, WSDL, and UDDI.

The Application Developer provides a Web Service wizard that can be used to
generated the components for provider and requestor coding for Web Services.

Unit 11. Web Services Overview 249

250 Self-Study Guide: WebSphere Studio Application Developer and Web Services

12

Creating Web Services

ibm.com
@ Web Services
e business Studio Application Developer

Creating Web Services

Redbooks

International Technical Support Organization

©2001 IBM Corporation

Visual 12-1 Title

© Copyright IBM Corp. 2002 251

Obijectives

Learn how to create a Web

Service from an existing Tasks
application ,
PP , 0 Creating a JavaBean that wraps
0 JavaBean that invokes the the application
application, or session EJB 2 Run Web Service wizard
0 Web Service wizard » Select Web application
0 Parameter and result mapping » Select JavaBean/EJB
» SOAP encoding » Name the service, generated files
» Literal XML encoding » Select encoding of parameters

a Client and results for service method(s)
ient proxy » Specify server side mappings
0 SOAP administrative application between Java and XML

0 Client test application > Specify clientproxy
» Specify client side mappings

Creating a Web Service from a > Specify test client
WSDL file is similar 0 Test the Web Service

O Creates skeleton JavaBean 0 Deploy the Web Service

Visual 12-2 Objectives

The objectives of this unit are to:

» Understand the functionality of the Web Service wizard of the Application
Developer

» Understand SOAP encoding of parameters and results
» Understand the code that is generated by the wizard

252 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create Web Service from Application

Web Service

Wizard —
Existing
application
. for testin
Client / / 9 Server)
5 rpcrouter
oI
8 [E S
—€ |0 (o]
Client-App St
Proxy 3 P
UDDI Explorer o DB
pUb"Sh deployment L
descriptor

Visual 12-3 Create Web Service from Application

The Application Developer provides a Web Service wizard to generate a number
of components from a given provider Web Service application. The Web Service
is usually implemented by a JavaBean or EJB. This is the input to the wizard.
The generated components are:

>

>

>

WSDL files (interface and implementation
The SOAP deployment descriptor (dds.xml)

An administrative application to list, stop, and start Web Services in the
application server

A proxy class for client programming
A test client (Web application) that uses the proxy to invoke the Web Service
Optionally the WSDL files can be published to the UDDI Registry

Unit 12. Creating Web Services 253

Creating a Web Service

From existing Web application
Start with JavaBean/EJB that invokes existing application
» May have to create the JavaBean

0 WSDL files (interface and implementation) =
0 SOAP deployment descriptor -]
0 Administrative application (start/stop Web Service) <a——— files

0 Client proxy bean and test client application

From existing WSDL file

Start with WSDL interface file (from UDDI Registry)
0O Skeleton JavaBean =
0 WSDL implementation file -
0 SOAP deployment descriptor - ge?ﬁged
0 Administrative application (start/stop Web Service) <———
0 Client proxy bean and test client application -&—————

Visual 12-4 Creating a Web Service

The input to the wizard when creating a Web Service is either an existing
application (JavaBean or EJB), or a WSDL file.

The generated code is almost the same:
» When starting from an application, the WSDL files are generated.
» When starting from a WSDL file, a skeleton JavaBean is generated.

254 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Service Example

HTML FORM

<SOAP-ENV:Envelope><SOAP-ENV:Body>
<ns1:retrievePartinventory xmins:ns1="urn:InquireParts" ...>

M100000003 <partNumber xsi:type="xsd:string">M100000003</partNumber>

</ns1:retrievePartinventory></SOAP-ENV:Body></SOAP-ENV:Envelope>

SOAP

Servlet

soap = rpcrouter

<Part>............... </Part>
</Partinventory>
</return></SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Processor

-‘<§‘OAP-ENV:Envelope><SOAP-ENV:Body><return> H
<Partlnventory ... xsi:schemalocation=...Partinventory§xsd">
<Part><ltemNumber>21000003</ltemNumber>

<Quantity>12</Quantity><Cost>59.59</Cost>

[
[}
E</Part> J
4 session| EJB

r L

9

InquireParts

* HTML Output

PartNumber Item Quantity Cost
M100000003 21000003 12 59.59
M100000003 21000004 7 46.78

DOM
Tree

Part

ItemNumber, Quantity, Cost, ...

)
Partinventory g

1 Partinquiry
. g

Visual 12-5 Web Service Example

In the Web Service example, described in Visual 11-29 on page 247, we now
look in detail at the provider side, where the Web Service is created from an

existing application.

Unit 12. Creating Web Services

255

Web Service Example Generated Code

Client

TestClient.jsp

Server

rpcrouter _w

Web Service

>

InquireParts

S
o
A session | EJB
P .
.y Partinquiry
InquirePartsProxy
A entity | EJBs
InquireParts-binding. wsd o e
nquireParts-binding.ws Inventory
InquireParts-service.wsdl stop.jsp |
—-—

generated list.jsp m

Visual 12-6 Web Service Example Generated Code

We start with a JavaBean (InquireParts) that uses a session EJB to retrieve
inventory information for a given part number.

The Web Service wizard generates:

>

>

>

The SOAP deployment descriptor (dds.xml)

The administrative Web application with HTML and JSP files
The WSDL files (interface and implementation)

The proxy JavaBean (InquirePartsProxy)

The sample test application (TestClient.jsp, and so forth)

256 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Service Wizard - 1

select Web project -

select JavaBean

Weh service type: I.Java bean Web service

Web Service Java Bean Selection

Select adava bean

Ywizard default

‘Web project: IItsoWsManufacturerWeb —_—

¥ Generate a prosy

[V Start Web service in Web project

[Launch the Uriversal Test Client / can also start from an existing WSDL file
¥ Generate a zample
[Launch the zample
[Launch the UDDI Explarer to publish this Web service. Web Service Java Bean Identity

o Skeleton JavaBean generated

web Service

Configure the Java bean as a'Web service. m@'

[Dwenrite files without warning .

[Create folders when necessam

wieb zervice URI: Iurn:lnquireF’alts

Scope: IAppIication j
/I_ |z static methads

o Application

scoPe: [Use secure SO4P [wehSphere anly]
* Request
(bean created for every invocation) Falder: I.-"Itso\,\-"sManufac:tu[er\.\-"eh
® Session

(bean stored in session)

(only one bean instance)
> this is the default for EJB

15D file name: IwebAppIicationME B-IMF fizd/AnguireParts. isd

WSDL service document name: Iwehﬂpplicationa’wsdla’l nquireParts-service. wedl

WS DL binding document name: IwebApplicationa’wsdla’l nquireP artz-binding, wed|

WSDL schema document name: IwebAppIicatiom’wsdlx’l hquirePartz-schema. xsd

Visual 12-7 Web Service Wizard - 1

The Web Service wizard is a series of dialog panels that guide you through the
process:

>

>

>

>

>

Select the Web project for the generated code

Select the type of Web Service (from JavaBean, EJB, WSDL file)
Select the JavaBean (or EJB)

Name the service and the generated output files

Continue working through the panels

One of the important choices is the scope:

>

>

>

Request—a new JavaBean is created for each client request
Session—the JavaBean is stored in a user session for repetitive use
Application—only one bean instance exists and all requests are using it

Unit 12. Creating Web Services 257

Web Service Wizard - 2

Web Service

Web Service Java Bean Methods

Select encoding:
é e SOAP encoding for
parameter
o Literal XML encoding
for result
(DOM element tree)

Specify methods to deploy. Edit the encoding style for each method if required.

r— Input encoding for retrieveP artlventony

Output encoding for retrievePartl nventary —
(¢ SOAP encoding ' S0AP encoding
" Literal %ML encoding ¢ Literal %ML encading

¥ Show server [Java to sbL) s | Web Service

Web Service Java to XML Mappings

Review your Web service lppe mappings and make any necesszary changes before

proceeding to the next page.
{ input parm

Server Java-XML mapping:

e Can specify default or
custom mapping

| encoding

™ Show and use the default Java bean mapping

' Show and use the default DOM Element mapping

= Edit and use a customized mapping

Visual 12-8 Web Service Wizard - 2

Web Service wizard (continued):

» Select the method to be invoked and the encoding of the parameters and
result

» Check the detailed JavaBean-to-XML mappings (the result of the service is
translated into XML for transmitting to the client)

258 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Service Wizard - 3

Client Java-XML mapping:

Web Service Binding Proxy Generation « Can specify default or
Select the bindings for which you want to generate a'Web service prodw. custom mapping
wSDL Bindings: Web Service

I - [SOAF Binding

Client proxy for testing

Web Service XML to Java Mappings

Falder; Ia"ltsoWsManufacturerWeb.-’source

Review your 'Web service type mappings and make anp necess
proceeding to the nest page.

Clazs: Ipm:-c_l,J.soap.itso.wsad.manu.facade.F’altInquiryF'mx_l,l

XML Types:

hittp: # A, partinguiry, comy schemas/PartlnguingR emotelnterfa

Web Service

Web Service Sample

Do pou want to generate a sample Webanolicabicss 5
’ : i ||

" Show and uze the default Java bean mapping

Generation /

L h th | -
B Lo e [~ Launch the test client |
Praxy folder: I.-"| tovdahd anufactureryfeb sounce
Proxy gualified path name: IproHya’soapa"itsoa’wsada’manuﬂacade.”Partl nquirePrasy. java
JSP folder: Ia"ltsoWsM anufacturerweb/webdpplicationsample/Partlnguir . Finish

Sample application for testing

Web Service Test Client

Do you want to launch a test client

4| Universal Test Client |

rH rguiru P oy,

Visual 12-9 Web Service Wizard - 3

Web Service wizard (continued):

'S

>

>

>

Generation and name of the proxy bean

XML-to-Java mappings (on the client side, the XML is translated back into
Java objects)

Should the universal test client be started
Should a sample test client program be generated

At the end of the wizard, the code is generated and installed into the test server
associated with the Web project, and the server is started so that the Web
Service can be immediately tested.

Unit 12. Creating Web Services 259

Generated SOAP Deployment Descriptor

dds.xml

<root>
<isd:service
xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:InquireParts" checkMustUnderstands="false">
<isd:provider type="java" scope="Request"
methods="retrievePartInventory">
<isd:java class="itso.wsad.manu.client.InquireParts"
static="false"/>

</isd:provider> JavaBean
</isd:service> g 4
</root>
InquireParts.isd = for each Web Service ==> added to dds.xml

<isd:service id="urn:InquireParts"
xmlns:isd="http://xml.apache.org/xml-soap/deployment">
<isd:provider scope="Application" methods="retrievePartInventory"
type="com. ibm.soap.providers.WASStatelessEJBProvider" >
<isd:option key="JNDIName" value="itso/wsad/manu/PartInquiry"/>

<isd:option key="FullHomeInterfaceName" value="...PartInquiryHome/>
<isd:option key="ContextProviderURL" value="iiop://localhost:900"/>
<isd:option key="FullContextFactoryName" value="...ContextFactory"/>
</isd:provider>
<isd:mappings > </isd:mappings> Session Bean

</isd:service>

Visual 12-10 Generated SOAP Deployment Descriptor

For the SOAP deployment descriptor (dds.xml), an ISD file is created for each
Web Service and then added to the deployment descriptor.

We show here two examples:
» The top shows the ISD file generate for a JavaBean.
» The bottom shows the ISD file generated for a session EJB.

260 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Administrative Application

m wieh Browss.d l

Ihttp:Ja"localhost:EDSDa’ItsoWsManufacturerWebx’admim’indeH.html j (o) | s 2 0O @§3 =

Implemented with

K

XML-SOAP Admin

HTML and JSPs

List all services

Service Listing

Statt a service
Here are the registered services (select

Stop a service

Active services:

o urnIncuireParts

\

v

Start and stop services
o Status is remembered
over stop/start of server

'urn:InquireParts' Service

Deployment Descriptor
| Property | Details
|]:D |w*r1:InquireParts
|Scope |Request

|Provider Type hava

|Provider Class |itso.wsad.manu.c]ient.InqmrePaIts

|Use Static Class |false

|Metho ds |ret1'ieveP artlnventory
Type Wappings

Default Mapping
Eegistry Class

Visual 12-11 Administrative Application

The administrative application is composed of:

» HTML files, such as an index.hmtl file

» A number of JSPs to list the Web Services, display the properties of a Web
Service, stop a selected Web Service, and start a selected Web Service

By default, all Web Services are started. If a Web Service is stopped, this is
remembered and at the next start of the server the Web Service is still stopped.

Unit 12. Creating Web Services

261

Generated Client Proxy

public class InquirePartsProxy {

proxy class .
code abbreviated

private Call call = new Call();
private URL url = null;
private String stringURL =

["http://..host../..webapp../servliet/rpcrouter"; |
private SOAPMappingRegistry smr = call.getSOAPMappingRegistry () ;

public synchronized Element retrievePartInventory(String pn)... {
[String targetObjectURI = "urn:IngquireParts";
String SOAPActionURI = "";
url = new URL(stringURL) ;
call.setMethodName ("retrievePartInventory") ;
call.setEncodingStyleURI (Constants.NS URI LITERAL XML) ;
call.setTargetObjectURI (targetObjectURI) ;

parameter

Vector params = new Vector() ;
params.addElement (new Parameter ("partNumber",...,pn,...));
call.setParams (params) ;
| Response resp = call.invoke(url, SOAPActionURI); ||invoke Web Service
if (resp.generatedFault()) { ... exception ...

else {
Parameter refValue = resp.getReturnValue(); result
return ((org.w3c.dom.Element)refValue.getValue()) ;

}

Visual 12-12 Generated Client Proxy

This is an example of a generated client proxy:

» The client proxy allocates a SOAP Call object and initializes it with the target
servlet (rpcrouter).

» The proxy contains a method that the client can call to invoke the Web
Service.

» In this method, the target Web Service and method within the service are set
in the Call object, parameters are stored in a Vector that is also set in the Call
object, and the Web Service is invoked.

» The result object is extracted from the response object of the Web Service
call.

262 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Generated Test Client

<Cost>59.99</Cost>
<Shelf>L7</Shelf>
<Location>San Francisco</Location>
<PartNumber>M100000003</PartNumber>
<Name>CR-MIRROR-R-01l</Name>

</Part>

</PartInventory>

m Weh Browseie:d l
:'r\::tpr:ingir;ted Ihttp:f;’localhost:BDSDa’ltsoWsManufeittl,lrerWebfsampleflnquirePartsHTestCIient.isp j (0} | <A £-1v§“"? i
Methods Inputs
o retievePartlwentory |y oMumber: [M100000003
Irivoke | Clearl Ll
Result :I
<PartInventory > ¥
<Part> ararwr redbools b/t omTTSOWS AD zchernas)
<ItemNumber>21000003</ItemNumber> o i w3, org/ g0 1ML Schema-instance'
s SRS e cation=""ttp/fgpffw redboolks ibm. comTTSOWS

| o

Visual 12-13 Generated Test Client

The sample test client is composed of a set of JSPs, starting with the

TestClient.jsp.

When running this JSP, you select a method, enter parameters for the method,
and invoke the Web Service. The results of the Web Service are displayed after

conversion to XML.

Unit 12. Creating Web Services

263

Testing the new Web Service

SOAP runtime/configuration placed into Web application

0 soap.xml
<soapServer>
<!-- This ConfigManager looks for a dds.xml file ... -->
<configManager value="com.ibm.soap.server.XMLDrivenConfigManager"/>
</soapServer>

L:_I{Er webdpplication

in

0 dds.xml <== generated deployment descriptor

. . . . blank| _htrnl
0 soapcfg.jar <=== added to Web application lib pom
i, hkrnl
Testing istisp
showdetails. jsp
O Start the server for the Web application soapadmin.gi
o]| startjsp
0 Run admin/index.html for % stop.jsp
SOAP administration application -]l tochiml
. . . EI{Ev zample
0 Run sample/InquireParts/TestClient.jsp B InquireParts
H : Input.jsp
for sample test application \ Method jsp
Result.jzp
TestClent.jsp

Visual 12-14 Testing the new Web Service

To test the Web Service that is created, a number of components are required:

» soap.xml—points to a configuration manager that reads the deployment
descriptor

» dds.xml—the SOAP deployment descriptor

» soapcfg.jar—contains required SOAP code

» admin/index.html—starting point of the administrative application
» sample/TestClient.jsp—sample test client

All these components are added to the Web application.

264 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Deployment to WebSphere

The Web Service is in a Web application (Web project)
0 Web project is part of EAR project
0 Web application may use EJBs (EJB project in same EAR project)

Deploy the EAR file to WebSphere AE or AEs
0 Make sure the EJB mapping to JNDI names is complete
0 Make sure the Web application uses the correct EJB JNDI names

0 Change the Web Service proxy bean
http://localhost:8080/ItsoWsManufacturerWeb/servlet/rpcrouter
http://www.realhost.com/

1 Check WSDL file
0 Export EAR file

0 Install EAR file (command line or Administrative Console)
seappinstall -install itsowsmanufacturer.ear
-expandDir d:\websphere\appserver\installedApps\
itsowsmanufacturer.ear
-ejbDeploy false -interactive false

Visual 12-15 Deployment to WebSphere
The steps to deploy a Web Service to a real WebSphere Application Server are
as follows:

» Make sure all the specifications are complete (for example, JNDI names of
EJBs).

» Change the proxy bean to point to the real installed Web application.

» Check the generated WSDL file (make sure they point to the correct server as
well).

» Export the EAR file that contains the Web project with the Web Service.

» Install the EAR file into the application server using the administrative facility
or the batch command.

Unit 12. Creating Web Services 265

Web Service wizard creates a Web Service
0 From a JavaBean (turn existing application into a Web Service)
0 From a WSDL file (for a new Web Service)

Web Service wizard generates
0 WSDL files from JavaBean
0 Skeleton JavaBean from WSDL file
0 SOAP deployment descriptor (dds.xml)

0 Client proxy
» Makes client programming easy

0 SOAP administration application
» List, start, stop of Web Services

0 Client test application
» Test the Web Service and the client proxy

Deploy the Web Service using an EAR file

Visual 12-16 Summary

The Web Service wizard of the Application Developer generates all the code
required to test and deploy a Web Service.

266 Self-Study Guide: WebSphere Studio Application Developer and Web Services

| Exercise: | CrEaIE A WeH Sk

Web Service creation

0 Import EJB project:
ItsoWsManufacturerEJB .‘
> Entity beans and session bean . ;

Admin App [SOAP

0 Import server ""--..___ ""i-.,__
1 Create Web project: ~ ~™eee Tl -
ltsoWsManufacturerWeb ":f--..___ Partinquiry
0O Create Web Service s Tt - | |
» Generated files (WSDL, dds.xml) .’
» Administrative application g Part || Inventory

> Proxy bean eeeeeeeesceccccccccecegmM=CEN
» Client test application Seeetetea..

O Monitor Web Service b ITSOWSAD

» TCP/IP Monitoring server T?St
Client

MMPARTS
MMINVENTORY

Web Service from EJB application

Visual 12-17 Exercise: Create a Web Service

The Web Service creation exercise guides you through many of the tasks
discussed in the presentation.

In this exercise you work with an existing EJB-based application:

» Import the EJB application.

» Create a Web Service for this application.

» Test the Web Service.

» Use the TCP/IP Monitoring Server to see the HTTP traffic.

See Exercise 8, “Create a Web Service” on page 349 for the instructions for this
exercise.

Unit 12. Creating Web Services 267

 Exercise: MMMV

Web Service deployment
O Prepare Web application WSAD
0 Prepare AEs

b Senvice |

O Create EAR file in Application Test
Developer Client
0 Install EAR file in AEs
0 Test installed Web Service '
¥
EAR file
Deploy a Web Service EJBsiWeb app

to WebSphere
AEs @

Visual 12-18 Exercise: Deploy a Web Service

The Web Service deployment exercise guides you through the deployment task
discussed in the presentation.

In this exercise you deploy the Web Service created in Exercise 8, “Create a Web
Service” on page 349 to a WebSphere Application Server AEs.

See Exercise 9, “Deploy and test a Web Service” on page 361 for the instructions
for this exercise.

268 Self-Study Guide: WebSphere Studio Application Developer and Web Services

13

Using Web Services

ibm.com
@ Web Services
=were= | Studio Application Developer

Using Web Services

Redbooks

International Technical Support Organization

© 2001 IBM Corporation

Visual 13-1 Title

© Copyright IBM Corp. 2002 269

Obijectives

Learn how to use a Web
Service s
erver

0 Start with a WSDL file ml;’eSt

0 Web Service wizard | running | | 0 Geta WSDL file
O Client mapping of parameter and | 2 Run Web Service wizard
result » Select Web application
» SOAP encoding » Select WSDL file
> Literal XML encoding » Select encoding of parameters

Tasks

and results
0 Client proxy » Specify client side mappings
0 Client test application e de el 4a
» Specify client proxy
Learn how to deal with = el el
returned XML result data 1 Test the Web Service
0 XSL processor 0O Implement the client application

0 Test the client application

Dynamic Web Services

Visual 13-2 Objectives

The objectives of this unit are to:

» Understand the Web Service wizard for the creation of a client application that
invokes a Web Service

» Understand SOAP encoding of parameters and result

» Understand how the result of a Web Service can be translated into HTML for
a browser user

» Understand dynamic Web Services where the client application interrogates
the UDDI Registry to locate Web Service providers and invoke their Web
Services

270 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create Client from WSDL

NEW
application for testing
and skeleton

Web Service
Wizard

Client-App

Server must
be running

Existing
application

Server)

implementation

UDDI Explorer

rpcrouter
s /
(o)
B A Java
P Bean
EJB
DB | Tx
deployment
descriptor

Visual 13-3 Create Client from WSDL

To create a client for a Web Service, the wizard is run with a WSDL
implementation file as input to generate the starting skeleton code for a client

application.

The proxy bean and the test client are generated, then a real client can be

implemented.

Unit 13. Using Web Services 271

Web Service Example

<SOAP-ENV:Envelope><SOAP-ENV:Body>
<ns1:retrievePartinventory xmins:ns1="urn:InquireParts" ...>
<partNumber xsi:type="xsd:string">M100000003</partNumber>

</ns1:retrievePartinventory></SOAP-ENV:Body></SOAP-ENV:Envelope>

SOAP soap[—® rpcrouter

e ’ *

HTML FORM

[] -t
: -‘<§‘OAP-ENV‘fnveIope><SOAP-ENV:Body><return> H
0 <Partlnventdry ... xsi:schemalocation=...Partinventory§xsd"> .
. <Part><ItefiNumber>21000003</ltemNumber> :
.. <Quaftity>12</Quantity><Cost>59.59</Cost>...... E</Part>
[<Part>....g........ </Part> Dom L session| EJB
1) 7

di’;i:tr:':ve'g’;‘:ENwBo ay> |Tree Partinventory (<@ Partinquiry

Processor dSOAPﬁﬁI:Envelop»
@ Part B

PartNumber Item Quantity Cost
M100000003 21000003 12 59.59
ItemNumber, Quantity, Cost, ...

M100000003 21000004 7 46.78

Visual 13-4 Web Service Example

In the Web Service example, described in Visual 11-29 on page 247, we now
look in detail at the requestor side, where the Web Service is invoked and the

result is displayed in a browser.

272 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web Service Example Generated Code

Server

Client

rpcrouter

Web Service

TestClient.jsp 4
S InqwrParts
o
A session | EJB
P
= Partinqui
InquirePartsProxy [_ Sl
= ? admin entity | EJBs
_ . start.jsp e |
InquireParts-binding.wsdl | Inventory
InquireParts-service.wsdl stop.jsp
—-—
generated IISt'JSp m

Visual 13-5 Web Service Example Generated Code

To create a client application, the Web Service wizard is run for a WSDL
implementation file as input. The wizard generates:

» The proxy bean that embeds the SOAP Call object and invokes the Web
Service

» A sample test client (a set of JSPs) that can be used to test the Web Service
before implementing the real client

The real client application can then be implemented. Some code generated in
the test client may be useful for the real client.

Unit 13. Using Web Services 273

Web Service Wizard

Create client proxy and sample test application
0 Select Web project

0 Select WSDL implementation (service) file
» Get WSDL file from UDDI Registry
» Store WSDL file in Web project

0 Generate proxy bean
» Easiest way for client to connect to server using SOAP
0 Specify client side Java-XML mapping

0 Generate sample test client
» Sample code shows how to set parameters and retrieve results
» Sample method to write XML from DOM tree element

Use sample code for real client application
0 Copy/paste fragments into application

Visual 13-6 Web Service Wizard

The Web Service wizard guide the user through a series of dialog panels, similar
to the ones shown in Visual 12-7 on page 257 (and subsequent).

The major difference is that a WSDL implementation file is selected as input.

274 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Generated Client Proxy

public class InquirePartsProxy {

proxy class .
code abbreviated

private Call call = new Call();
private URL url = null;
private String stringURL =

["http://..host../..webapp../servliet/rpcrouter”; |
private SOAPMappingRegistry smr = call.getSOAPMappingRegistry () ;

change target URL for

public synchronized void setEndPoint (URL url) dynamic Web services

{ this.url = url; }
public synchronized Element retrievePartInventory(String pn)... {

String targetObjectURI = "urn:InquireParts";

String SOAPActionURI = "";

url = new URL(stringURL) ;

call.setMethodName ("retrievePartInventory") ;

call.setEncodingStyleURI (Constants.NS URI LITERAL XML) ;

call.setTargetObjectURI (targetObjectURI) ; parameter

Vector params = new Vector() ;

params.addElement (new Parameter ("partNumber",...,pn,...));

call.setParams (params) ;
| Response resp = call.invoke(url, SOAPActionURI); || invoke Web Service

if (resp.generatedFault()) { ... exception ...

else {
Parameter refValue = resp.getReturnValue(); result
return ((org.w3c.dom.Element)refValue.getValue()) ;

Visual 13-7 Generated Client Proxy

This is an example of a generated client proxy:

» The client proxy allocates a SOAP Call object and initializes it with the target
servlet (rpcrouter).

» The proxy contains a method that the client can call to invoke the Web
Service.

» In this method, the target Web Service and method within the service are set
in the Call object, parameters are stored in a Vector that is also set in the Call
object, and the Web Service is invoked.

» The result object is extracted from the response object of the Web Service
call.

Unit 13. Using Web Services 275

Test Client

TestClient.jsp

Ihttp:a’a’localhost:BDBDHItsoWsManufacturerWeb.-’sample.-’lnquireF'alts.-’TestCIient.isp ¢ Frameset (0] | B (,.§“9 a
- -
Methods Inputs
. Input.js
« retrievePartlventory | partNumber: [M100000003 -pHTIlVIIE)form

» enter input parameters

Method.jsp I | rmehedio Tl &
o lists the
methods ~
that are Result
available
<PartInventory
snlns="http(fwrww redboolks tbm. comTTSOW S AD schemasP artInventory”
slnsxe="httpFarww w3 orgl 200133 S chema-mstance”
zstschemal ocaton="http fwww redbooks tbm comTT3OWS ATV zchemas/FPa
wadlPartInventory xsd">
<Part> Result.jsp
i || lemiTumber=21000003</Temtumber> 'gf;fc‘;'s";isnz"
OUIPULIS 1o v ity 1 2 </ Quarnitity» i
XML source “Cost>59 09</Cogts o calls the Web service _

=l | »

Visual 13-8 Test Client

The sample test client is composed of a set of JSPs, starting with the
TestClient.jsp.

When running this JSP, you select a method, enter parameters for the method,

and invoke the Web Service. The results of the Web Service are displayed after
conversion to XML.

276 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Test Client Result JSP Processing

<% code abbreviated
String method = request.getParameter ("method") ;
try {
if (method.equals("retrievePartInventory")) {
String partNumber= request.getParameter ("partNumber") ;

org.w3c.dom.Element mtemp =)
proxy.retrievePartInventory (partNumber) ;| |Web Service
String tempResult = domWriter
(mtemp, new java.lang.Str Buffer());

%>

<%= tempResult %> g HTML output
<% }} catch (Exception e) { %>
exception: <%= e %>
<% return; } %>
public static java.lang.String domWriter(...,...) { 1

// generate XML output from DOM tree :l:id
}

Visual 13-9 Test Client Result JSP Processing
The result JSP of the sample test client uses a domWriter method to convert the
XML data object returned as the result of the Web Service call into a readable
XML file.

This utility method may be useful in a real client.

Unit 13. Using Web Services 277

Creating a Client Application

Browser WebSphere Web Service
HTML Servlet SOAP || rpcrouter
Input {

FORM /

| InquireParts |
sessionl EJB

Partinquiry
XSL .
Transfsormer entltyl EJBs
Part
Inventory
DB

Visual 13-10 Creating a Client Application

In our example, the client is a Web application:

'S

>

A servlet is invoked from an HTML form.

The servlet extracts the parameter (part number) and calls the proxy object to
invoke the Web Service.

The result of the Web Service is a XML DOM tree in memory.
The servlet invokes the XSL transformer.

The XSL transformer uses an XSL file to convert the XML tree into an HTML
table.

The HTML table is displayed in a browser.

278 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Client Application Run

Ihttp:a’a’localhost:BUBDHItSDW'SCIientWeb.u’wsclienta"F'artInventory.html j

Part Inventory

Inquiry

Enter a part number: [M100000003

: Hetrieve

v

Part Inventory Inquiry Results

|Part Number| Name |Quantity|Cnst | Location
M100000003 |CR-MIRROR-R-01 12 59 99 |San Francisco
M100000003 |CR-MIRROR-R-01 12 159,99 [Mew York

Visual 13-11 Client Application Run

A sample run of the client application shows the HTML input form and the HTML

result table.

Unit 13. Using Web Services

279

Serviet Code with Proxy and XSL

public class PartInventoryServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response) {
try {

response.setContentType ("text/html; charset=UTF-8");

TransformerFactory tf =
TransformerFactory.newInstance() ;

Source xslSource = new StreamSource(new

URL ("http://host/..webapp../xxx.xsl") .openStream());
Transformer t = tf.newTransformer (xslSource) ;
PrintWriter out = response.getWriter();

InquirePartsProxy proxy = new InquirePartsProxy () ;
String pn = (String)request.getParameter ("partNumber") ;
Element result = proxy.retrievePartInventory (pn) ;

call Web
Service

Source xmlSource = new DOMSource (result) ;
t.transform(xmlSource, new StreamResult (out)) ;
} catch (Exception e) { e.printStackTrace();}

}

Visual 13-12 Serviet Code with Proxy and XSL

280

The servlet of the sample application is quite simple:

» The XSL transformer is prepared using the XSL file as base.
» The Web Service is invoked using the part number parameter.
» The XML DOM tree is converted into an XML source object.

» The XSL transformer writes the output directly to the servlet’s output stream.

Self-Study Guide: WebSphere Studio Application Developer and Web Services

XSL to transform XML into HTML

<PartInventory

</Part>
</PartInventory>

<PArt> e
<ItemNumber>21000003</Ttel «xa1:stylesheet ...> .
<Quantity>12</Quantity> -
<Cost>59.99</Cost>
<Shelf>L7</Shelf>
<Location>San Francisco</|

—

£

XML

XSL

<xsl:output method="html"/> T
<xsl:tempIatg match="res:PartInventory">
<HTML><BODYS-.
<Hl>Part Inventory Inquiry Results</H1>
<table><tr><TH>Part Number</TH>..</tr>
<xsl:apply-templates/>
"""" ~</table></BODY></HTML>..

Sy

</xsl:E€mpla§E§

<xsl:template Tateh="res:Part">

<tr><td> = e .

...

<xsl:value-of select="res:PartNumber"/>
</td> ... </tr>

</xsl:template>

</xsl:stylesheet>

Part Inventory Inquiry Results

|Part Number| Name |Quantity|Cust | Location
100000003 |CR-MIRROR-R-01 |12 59,99 [San Francisco
100000003 |CR-MIRROR-R-01 |12 159.99 [New York HTML

Visual 13-13 XSL to transform XML into HTML

The XSL file matches the various tags of the XML result through templates:

» For the root tag, Partinventory, the HTML output is started (<HTML>), a
heading is produced (<H1>, and the table is started (<TABLE>) with a table
heading (<TH>).

Processing of the other tags is then forced <xsl.apply-templates>).
Finally, the table is closed and the HTML ended.

» For the Part tag, a new row in the table is started (<TR>) and for each detalil
tag (only the partNumber tag is shown) the value is placed into a table column

(<TD>).

Unit 13. Using Web Services 281

Application with Dynamic Web Services

Application uses UDDI4J API to find and retrieve service
implementations

0 Multiple ways to find information

0 Example:

Find tModel based on service name

Find business entities that implement tModel
Find business services of entities

Find binding of services that implement tModel
Invoke each service implementation

v

>
>
>
>

Business Entity |- Service Interface

\ P (tModel)

Business Service o

N &

Binding Template e Invoke

Visual 13-14 Application with Dynamic Web Services

An application with dynamic Web Services uses the UDDI Registry to find Web
Service implementations.

For example, multiple manufacturers implement the Partinventory Web Service,
and all their entries are stored under one business entity, the Automobile
Association (this is to guarantee that all implementations are verified).

The process to find the implementations is outlined:

» Find the service interfaces (tModels) based on the service name
(Partinventory).

» Find the business entity (auto parts association).
» Find all the business services for this entity.

» Find the implementations (binding templates) of these services, restricted to
those that implement the given service interface.

282 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Dynamic Web Service: Sample Code

UDDI API example to retrieve Web Services
ingAPI = "http://...ibm.../uddi/testregistry/inquiryapi™"
pubAPI = "http://...... /testregistry/protect/publishapi®;
uddi = new|UDDIProxy(inqAPI, updAPI) ;
TModelList tml =[uddi.find tModel (servicename,null,0); |
Vector vl = (tml.getTModelInfos()).getTModelInfoVector():;
tmkey = ((TModelInfo)vl.elementAt(il)) .getTModelKey() ;
TModelBag tmb = new; // add Vector of tmkeys
BusinessList bl =|uddi.find business(provider, null, 0); |
Vector v2 = (bl.getBusinessInfos()) .getBus..InfoVector();
BusinessInfo bi = (BusinessInfo)v2.elementAt(i2);
Vector v3 = (bi.getServiceInfos()).getServiceInfoVector():;
skey = ((ServiceInfo)v3.elementAt(i3)) .getServiceKey () ;
BindingDetail bd =|uddi.find_binding(null,skey,tmb,0);
Vector v4 = bd.getBindingTemplateVector () ;
AccessPoint ap = ((...)v4.elementAt(0)) .getAccessPoint();

Setup and invoke proxy skeleton code
proxy.setEndpoint (new URL (ap.getText())):
result = proxy.retrievePartInventory (pn);

Visual 13-15 Dynamic Web Service: Sample Code

The UDDI4J API itself uses a set of Web Services:
» A proxy object is instantiated, pointing to a UDDI Registry.

» The find_tModel method retrieves a list (actually a Vector) of tModels. The
keys of these tModels are stored in a tModelBag for later use.

» The find_business method retrieves a Vector of business entities. Using the
list, the services are retrieved.

» The find_binding method retrieves the implementations that point to the given
service interface (using the tModelBag built earlier).

» The AccessPoint of the implementation is the address where the Web Service
is running.

The AccessPoint is used to set the endpoint (the target) in the Web Service
proxy object before invoking the Web Service itself.

Unit 13. Using Web Services 283

Web Service wizard for using a Web Service
Q Similar to creating a Web Service
0 Test the Web Service with the test client

0 Implement the client application
» Process XML results
» XSL processor

Dynamic Web Services

0 Interact with UDDI Registry to retrieve Web Service and WSDL files
» Quite complicated programming

0 Dynamically set up the client proxy bean to invoke a Web Service

Visual 13-16 Summary

The Web Service wizard of the Application Developer generates the proxy object
to be used for client applications that want to invoke a Web Service.

The proxy object can be used to invoke static Web Services as well as dynamic
Web Services.

The invocation of the Web Service from a client application is simple when using

the generated proxy object. Processing the result of a Web Service is the real
challenge.

284 Self-Study Guide: WebSphere Studio Application Developer and Web Services

i3
L

Weh He

“Exercise: [

Use a Web Service WSDL
0 Project: ltsoWsClientWeb file
0 Get WSDL file
0O Web Service wizard to generate *

» Proxy bean
» Client test application
» Test

Test Real
Client Client

0 Create real client application

0 Test client application

0 Deploy client application Proxy Bean
Use a Web Service '

in a Web application

Web Service

Visual 13-17 Exercise: Using a Web Service

The Web Service client exercise guides you through many of the tasks discussed
in the presentation.

In this exercise you create a client Web application that invokes the Web Service
created in Exercise 8, “Create a Web Service” on page 349:

» You generate the proxy object from the WSDL implementation file.

» You create the Web application using a servlet with an XSL processor.

See Exercise 10, “Using a Web Service in a client application” on page 365 for
the instructions for this exercise.

Unit 13. Using Web Services 285

286 Self-Study Guide: WebSphere Studio Application Developer and Web Services

14

Web Services and the UDDI

Explorer
ibm.com
@ Web Services
=were= | Studio Application Developer

UDDI Explorer

Redbooks

International Technical Support Organization

Visual 14-1

© Copyright IBM Corp. 2002 287

-1 Title

Obijectives

Learn how to interact with a Tasks
UDDI Registry
= UDDI Explorer _ 0 Register with a UDDI Registry
0 Connect to a registry » Get user ID and password
0O Business entities 0 Start the UDDI Explorer
0 Business services 0 Use the UDDI Explorer
0 Identifiers and categories > Find
» Search
Publish a Web Service > Publish
Defi busi . » Maintain information
O Define a business service » Import WSDL file
0 Provide WSDL file » Login

Retrieve a WSDL file
0 Use for client implementation

Visual 14-2 Objectives

The objectives of this unit are to:
» Understand the UDDI Registry
» Understand the UDDI Explorer of the Application Developer

» Connect to a UDDI Registry and work with business entities and business
services

288 Self-Study Guide: WebSphere Studio Application Developer and Web Services

UDDI Explorer and UDDI Registry

%5 UDDT Mavigator

& UDDI Main) UDDI Registr

¥ Favnrites Details g y

=-El 1M Test Registry
-B¥Find Businass Entitias

- Find Business Services Search i W

£f Find Service Interfaces / Business Service

E--:;:_é’quer results ’ L4 Categorization
SE=Y TS0 Usli twahli e Description

{_g Find Business Services /
=55 query results ‘

Elte= InquirePartsService —

Business Entity

\

start - Find Service Interfaces g AC_CG?S Point
=55 query results essages |~ ” (Binding Template)
- 0l bt S redbooks. bm.corn, — — I
[]
L~
WSAD Target Server Service Type (tModel)
) ¢ Specification
| | | | Xxxxx-service.wsdl » Categorization
. » Description
| Server in WSAD | |Xxxxx-binding.wsd| |T e URL

Visual 14-3 UDDI Explorer and UDDI Registry

A UDDI Registry contains these entries:
» Business entities—companies that want to register Web Services
» Business services—a Web Service that the company registers

» Access point (called binding template)—points to an installed Web Service
(the target address) and to the matching WSDL service (implementation) file

» Web Service type (called tModel)—a Web Service definition that points to the
matching Web Service binding (interface) file

The Application Developer provides an internal server and a UDDI Explorer
application that can be used to access and update any UDDI Registry that
implements the UDDI4J API.

The UDDI Explorer enables a user to search for entries in the registry and to

navigate between entries. Entries can also be created; for example, a business
entity can be created and a WSDL file can be published.

Unit 14. Web Services and the UDDI Explorer 289

UDDI Explorer

Start from Application Developer

0 File -> Import or Export UDDI

» Select project for import

» Select WSDL file for export (publish a Web Service)
0 Starts internal server on port 8090
0 Starts normal browser

0 Browser communicates with UDDI registry through internal server

Access any UDDI registry
0 Click on UDDI Main and set registry URL
0 Default is IBM Test Registry
http://www-3.ibm.com/services/uddi/testregistry/inquiryapi
0 Production business registry
http://www-3.ibm.com/services/uddi/inquiryapi
0 IBM WebSphere UDDI Registry

http://hostname/services/uddi/inquiryapi g o

Visual 14-4 UDDI Explorer

The UDDI Explorer is started from the Application Developer using either import
or export. Export would be used to publish a Web Service (WSDL file).

The UDDI Explorer is a Web application that runs in a browser. Connection to a
UDDI Registry is done through an internal server.

The first action is to set up the address of a UDDI Registry, for example, the IBM
Test Registry or a private registry (IBM WebSphere UDDI Registry).

290 Self-Study Guide: WebSphere Studio Application Developer and Web Services

UDDI Explorer Function

fifA

G iz B

E43

Find
0 Find business entity
0 Find business services
0 Find service interface

0 Traverse hierarchy
» entity --> services <--> interfaces

0 Show details

Publish
0 Publish business entity
0 Publish business service (for entity)
0 Publish service interface
0 Update published information

Import
0 Import WSDL files into App.Dev.

Publish and update
operations

0 User must be registered
with UDDI registry
» user ID and password

0O Prompt to login r}é

Publishing from WSAD

0 Server for project must
run to read WSDL files

0 WSDL files are not
copied to registry
» URL pointer

Import

O Server where WSDL files
are must run

Visual 14-5 UDDI Explorer Function

The UDDI Explorer provides three main functions:

» Find—search for entries and navigate between entries

» Publish—publish business entities and business services, and update

information

» Import—retrieve a WSDL file (note that the registry only points to WSDL files;
the actual file is retrieved from a target server)

To publish and update information, you must be registered with the UDDI
Registry and use a logon ID and password to connect.

Unit 14. Web Services and the UDDI Explorer

291

Publish Business Entity

MName |

IITSO Lisli Wfahli identifiers and categories

Description can be used in search

Ueli wahli of ITSO San Jose =]

|I dentifiers Add | Remove selections | can add multiple identifiers

| - | 1, | Iphune number | |1—4DB-}{}{}{—}{}{}{}{

|[:ategur|es Add | Remove selections can add multiple categories

: display list

| 1.||M1cS =] [pata Processing Services |51421 | Edit... | e o et

Visual 14-6 Publish Business Entity
To publish information, you fill out forms provided by the UDDI Explorer.

For example, you do the following to publish a business entity:

» Give it a name and description

» Assign identifiers (phone number, address)

» Assign categories according to one of the supported standards

292 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Publish Business Service

0O Select WSDL file to be published and File -> Export -> UDD/
0 Find business entity

0 Publish Web Service
» URL of WSDL file is pre-filled

http://localhost:8080/ltsoWsManufacturerWeb/wsdl/InquireParts-service.wsdl

0O Select categories

URL for WSOL Implementation file
|http flocalhost: 2080, TtsoWwshManufactureriivel

Description

Inquire parts and inventory for auto parts =]

[|

‘E ategories A4dd | Remove selections |

’F| 1 ||naics =] lautomotive parts and accessories ¢ |[44131 ‘ Edit... |

Visual 14-7 Publish Business Service

To publish a Web Service, you point to the WSDL file that describes the Web
Service and add a description and categories.

The server where the WSDL file is retrieved must be running.

The WSDL file is analyzed to extract the information that is stored in the registry.

Unit 14. Web Services and the UDDI Explorer

293

Importing a WSDL File

To use a Web Service, you must have the WSDL
implementation file

0 Get the WSDL file from the service provider
0 Get the WSDL file from the UDDI registry

» Find business service
» Use Import action
» WSDL file stored in selected project

0 UDDI registry points to URL of WSDL file

» Server must be running to retrieve the file

From the WSDL file, using the Web Service wizard, generate
0 Proxy bean
0O JavaBean skeleton
0 Client test application

Visual 14-8 Importing a WSDL File
To use a Web Service in a client application you need the WSDL implementation
file. You can find the file through the UDDI Registry and retrieve it from the server
where it is running.

You then use the WSDL file to generate the client proxy or the JavaBean
skeleton (if you want to implement the Web Service).

294 Self-Study Guide: WebSphere Studio Application Developer and Web Services

UDDI Registry can be accessed using a normal browser

Application Developer provides the UDDI Explorer for direct
interaction

0 Connect to a registry

O Browse a registry

0 Publish to a registry
» Business entity
» Business service
» Service interface

0 Maintain information
0 Retrieve WSDL files from a registry

Visual 14-9 Summary
The UDDI Explorer of the Application Developer provides the necessary facilities

to automate access to a UDDI Registry and integrate the access into the
application development process.

Unit 14. Web Services and the UDDI Explorer 295

=3 T EABIom:]
UDDI Explorer

0 Register with registry WSAD
» IBM Test Registry

» IBM WebSphere UDDI Registry

(stand-alone) UDDI Explorer

0 Publish a business entity
0 Publish a Web Service

. . Use the
0 Find a Web Service UDDI Explorer | -
2 Import a Web Service to work with a publish find
» WSDL file registry
0 Web application with dynamic Web
Services IBM Test Registry
» Find implementers of Web Service
» Invoke Web Services dynamically WebSpheI‘e uUDDI Registry

Visual 14-10 Exercise: UDDI Explorer

The UDDI Explorer exercise guides you through many of the tasks discussed in
the presentation.

In this exercise you work with either the IBM Test Registry or the IBM
WebSphere UDDI Registry:

» Register to get a logon ID

» Publish a business entity and a Web Service

» Find a Web Service and retrieve the WSDL file

» Optionally work with a dynamic Web Services application

See Exercise 11, “Web Service publishing in the UDDI registry” on page 369 for
the instructions for this exercise.

296 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Part 2

Exercises

In preparation for the hands-on exercises, you have to install the products and
retrieve the sample code from the ITSO Web site. Then you can perform the
exercises by following the instructions for each exercise.

See Appendix A, “Installation and configuration” for detailed installation
instructions.

See Appendix B, “Additional material” for detailed instructions about
downloading and installing the sample code from the ITSO Web site.

The instructions assume that the products and samples are installed as follows:

DB2 in d:\SQLLIB

WebSphere Application Server in d:\WebSphere\AppServer
WebSphere Stusio Application Developer in dA\WSAD

IBM WebSphere UDDI Registry Preview in d:\UDDI Registry Preview
Sample code in c:\WS\sampcode

Database ITSOWSAD created and loaded with sample data

vVvyvyvyYYyy

Your setup may be different, so check the installation directories.

© Copyright IBM Corp. 2002 297

Sample data

The ITSOWSAD database has two sets of two tables, PARTS and INVENTORY:
» The dealer tables are AAPARTS and AAINVENTORY
» The manufacturer tables are MMPARTS and MMINVENTORY

AAPARTS and MMPARTS tables are identical:
PARTNUMBER NAME WEIGHT DESCRIPTION

M100000001 CR-MIRROR-L-01 10.50 Large drivers side mirror for Cruiser

M100000002 CR-MIRROR-R-01 10.80 Large passenger side mirror for Cruiser
M100000003 CR-MIRROR-R-01 4.60 Large rear view mirror for Cruiser
W111111111 WIPER-BLADE 0.90 Wiper blade for any car

B222222222 BRAKE-CYLINDER 2.20 Brake master cylinder

X333333333 TIMING-BELT 0.60 Timing belt

TO Team 100.00 International WSAD Groupies

T1 0laf 100.11 German Turbo Engine

T2 Wouter 100.22 Belgium Chocolate Steering Wheel
T3 Denise 100.33 US Spark Plug

T4 Mark 100.44 British Muffler

T5 Ueli 100.55 Swiss Cheese Cylinder

L1 License 0.30 Personalized license plate

AAINVENTORY table:

ITEMNUMBER PARTNUMBER QUANTITY CoST SHELF LOCATION
21000001 M100000001 10 89.99 2A AA - Almaden
21000002 M100000002 5 99.99 2B AA - Almaden
MMINVENTORY table:
ITEMNUMBER PARTNUMBER QUANTITY CoST SHELF LOCATION
21000003 M100000003 10 59.99 L8 MM - San Francisco
21000004 M100000003 12 57.99 B7 MM - New York
31000005 W111111111 2 12.34 H8 MM - Los Angeles
31000006 B222222222 13 123.45 E5 MM - Frankfurt
31000007 X333333333 7 12.34 2D MM - Santa Cruz
900 TO 99.00 MO MM - San Jose

1
901 T1 1 11.00 M1 MM - Heidelberg
902 T2 1 22.00 M2 MM - Brussels
903 T3 1 33.00 M3 MM - Raleigh
904 T4 1 44.00 M4 MM - London

905 T5 1 55.00 M5 MM - Zurich

910 L1 1 30.00 M6 MM - California

298 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Java development

What this exercise is about

In this lab we set up a Java project in WebSphere Studio Application Developer
and implement simple Java applications.

User requirement
Generate a list of all the parts in the database.

What you should be able to do

At the end of this lab you should be able to:

» Start WebSphere Studio Application Developer
» Define a Java project

» Import and work with Java code

» Run and debug Java applications

Introduction
We implement a command line and a GUI application to list the parts table.

© Copyright IBM Corp. 2002 299

Exercise instructions

1. Start WebSphere Studio Application Developer.

Define a Java project
2. Select File -> New -> Project (or use the New button in the toolbar). In the
SmartGuide, select Java and Java Project, then click Next.

3. Enter ItsoWsDealerParts as the project name, and leave Use default location
selected. Click Next.

4. Leave all the Java Settings for now (we use the project as source folder). Click
Finish.

5. Select the Java Perspective. If it is not in the Perspective Bar (on the left),
select Perspective -> Open -> Java.

Create a package and a class

6. Create a Java package (File -> New -> Java Package or New button). Enter
itso.wsad.dealer.app as the package name, then click Finish. The package
appears in the Packages view.

7. Select the new package and create a class (File -> New -> Java Class or New
button). In the SmartGuide, check the package name (itso.wsad.dealer.app)
and enter Listing as the class name. Leave Object as superclass. Select the
main method under Which method stubs would you like to create. Click
Finish. The Listing class appears under the package and a Java editor opens.

Complete the code

8. In the editor, under the package statement, add an import statement:
import java.sql.*;
9. Add a static field under the class:

// database table
static String dbtab = "aaparts";

10.0Open the sample file c:\ws\labscode\exjava\cmdapp\ListingMain.txt and
copy/paste the complete method code into the main method between the
braces {}. Notice the color highlighting of the source code.

11.Save the Listing.java file (File -> Save, or ctrl-s). The program is compiled and
one error is noted in the task list (method getnext() is undefined). Double-click
the entry in the task list, and the bad code is highlighted in the editor.

300 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Code assist and hover help

12.Delete the getnext text, place the cursor after rs. and press ctrl-space for
code assist. Select the next() method from the list and double-click to add it
into the code.

13.Save the file (ctrl-s), and the error disappears.

14.Place the cursor on variable references (rs, con, stmt) and watch the hover
help appear. It does not work on the variable declaration. Hide the hover help
by clicking the Text Hover button in the toolbar (third, from right to left).

15.Double-click the title bar of the edit view to make the source code occupy the
complete WSAD window. Double-click again to make it small. Adjust the size
of the panes by moving the borders.

Outline view

16.Select elements in the Outline view and watch the Java editor mark the
selected part of the source code and position it to the top.

17.Click the various buttons in the outline toolbar to see (or not see) fields, static
or public definitions.

18.Select the edited file and click the Show Source of Selected Element Only
button in the toolbar (fourth from right). Now select elements in the outline,
and the editor only displays the selected element. Reset the button for the
editor to see the complete source.

19.Grab the title bar of the outline view and move it away to become a separate
window.

20.Move it back over the main window. Watch the icon at the top of the moving
window change to squares (separate window), folders (overlay a view), and
arrows (add view above, below, left, right). Try different positions. Move it back
to the right border when done experimenting.

Replace from local history

21.Select the main method in the outline view, and from the context menu select
Replace from Local History.

22.A dialog opens and shows all the states of the main method that you saved.
When you select a local version in the top pane, the lower right pane displays
the selected version and highlights the differences to the code loaded in the
Workbench (left pane). You could replace the code with an older version.
Click Cancel.

Exercise 1. Java development 301

Smart import assist

23.Select the import declarations in the outline, and Delete from the context
menu. The import statement is removed from the source. Do not save the
code, or you will get many errors.

24.In the editor, select Organize Imports from the context menu. A dialog opens
to choose the types to import (because there is more than one Connection
class in the Workbench). Select java.sql. Connection and click Finish.

25.Note that four import statements are added to the source. The other three
types were not ambiguous. Save the code.

Extracting a method

26.We want to make a separate method to connect to the database. In the editor,
select the lines:

try {
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();
con = DriverManager.getConnection("jdbc:db2:itsowsad");

} catch(Exception e) {
System.err.print("Exception: ");
System.err.printin(e.getMessage());

}

27.From the context menu, select Extract Method. In the Refactoring
SmartGuide, enter connect as the new method name, and select protected as
the access modifier. Click Next.

28.The SmartGuide shows how the selected lines of code will be replaced by a
method call, and how a new connect method is created from those lines.

con = connect();
protected static Connection connect() { ... }

29.Click Finish to generate the new method. An error appears in the task list
because the variable is not initialized. Note that you can see the error
message as hover help when placing the cursor on the red mark in the editor
window.

30.Fix the code in the connect method and save the code.

Connection con = null;
Running the application

31.Notice the running man next to the class name in the Outline view. This
indicates that the class is executable.

302 Self-Study Guide: WebSphere Studio Application Developer and Web Services

32.Click the Runicon in the toolbar (running man). The first time, you are
prompted to select the launcher. Select Java Application (it is remembered for
the project), then click Next. The Listing class is preselected, so click Finish.

33.The Debug Perspective opens and the Console displays an error message
because the DB2 driver class is not found. If you want the Debug Perspective
to open automatically, use Window -> Preferences -> Debug. The Processes
view shows that the application terminated.

Setting the build path

34.We have to add the db2java.zip file to the build path. We could add the file to
the project itself, but it is better to refer to the file in the DB2 directory. In the
Java Perspective, select the project and Properties (context).

35.Select the Java Build Path, and the Library page. Click Add External JARs
and navigate to d:\SQLLIB\java\db2java.zip, and then click Open. The file is
added to the build path. Click OK. The db2java.zip file appears in the
Packages view with the library symbol.

A better approach is to use a class path variable, so that there is no direct
reference to a real directory, that may be different for another developer. A
variable DB2JAVA may already exist, pointing to the db2java.zip file. See
Window -> Preferences -> Java -> Classpath Variables.

36.Click Run again; this time the output should appear in the Console view of the
Debug Perspective. Close the Debug Perspective.

Import a Java source file

37.In the Java Perspective, select the ItsoWsDealerParts project to import a GUI
application. Select File -> Import -> File system, then click Next. Click Browse
and navigate to the c:\ws\labscode\exjava\guiapp directory. Select the
guiapp directory and click OK. Select the check box (in front of guiapp) to
import all subdirectories and files. Check that the correct project is in the
Folder field, and click Finish.

Do not select the check box Create complete folder structure (under Options).

38.Two Java source files are imported and the package itso.wsad.dealer.parts is
created under the project. Both files show errors that refer to missing
packages (com.ib.ivj, com.ibm.db). This application was created in VisualAge
for Java using the data access beans feature, which is missing in our project.

39.We have to import the JAR file with the supporting packages and classes
(ividab.jar) and add it to the build path.

Exercise 1. Java development 303

Select the project and File -> Import -> File system, Next, Browse to navigate
to c:\ws\labscode\exjava\lib, and then click OK. Select the lib directory (click
lib) to see the files that are in the directory in the right pane; it contains the
ivjdab.jar file. Select the ivjdab.jar file (check box) and click Finish. The file
appears under the project.

40.Select the project and Properties (context), and select Java Build Path and
the Libraries page. Click Add JARs. In the JAR Selection dialog, expand the
ltsoWsDealerParts project and select the ividab.jar file. Click OK. Close the
Properties dialog with OK.

41.Notice that the icon of the ivjdab.jar file changes to a “jar” that can be
expanded to reveal the content, packages with classes.

42 _All the errors have been resolved, except for a deprecated method warning in
the javax.swing.JViewport class. Double-click the warning to open the
GuiListing file in the source editor. Also notice the Outline view with all fields
and methods.

Search

43.In the source editor error line, select the setBackingStoreEnabled method
name, and from the context menu, select Search -> Declarations in Hierarchy.
This is a fast way of opening the Search dialog (flashlight icon or Edit ->
Search, entering the method name, and searching for method and limit to
declarations).

44.The Search view opens with the method found in the JViewport class.
Double-click on the search match and the JViewport class opens in the editor,
but no source is available. Select the editor window and the outline appears.
However, this does not really help to solve the problem because the
documentation for JViewport is not available.

45.In the GuilListing.java editor, delete the setBackingStoreEnabled(true) call,
and press ctrl-space after getViewport() and select the setScrollMode(int)
method. Enter javax.swing.JViewport.BACKINGSTORE_SCROLL_MODE as
parameter (use ctrl-space instead of typing):

getJScrollPanel().getViewport().setScrollMode
(javax.swing.JViewport.BACKINGSTORE_SCROLL_MODE) ;

46.Close the JViewport class in the edit view. Save the GuiListing.java file.

Run GUI program

47.Click Run and the GuiListing applet appears. Enter a partial name (for
example, IRRO) and click Select. Matching parts should be listed in the table.
Close the Debug Perspective.

304 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Debugging

48.0pen the Listing.java application in the editor. Double-click in the left border
on the line “Connection con = null;” to set a breakpoint.

49.Click the Debug icon in the toolbar. The application runs in debug mode and
the Debug Perspective opens at the breakpoint. Study the different views.
Click Variables under the Breakpoints view and you should see the dbtab
variable (click the Sicon to show or not show static fields).

50.Step through the code using the Step overicon in the Debug view. Watch the
con variable appear in the Variables view. Continue stepping through the
code until you pass over the line “while (rs.next()) {“

51.In the Listing.java view, select the text “rs.getString("name")*“ and select
Display in the context menu. The evaluated expression is in the Display view
(top right).

52.In the Variables view, select the variable rs=DB2ResultSet and select Inspect
from the context. Study the variable content in the Inspector view.

53.1n the Debug view, click the Resume icon to run the program to the end.
54.Close the Debug Perspective. Close the Listing.java editor.

Type hierarchy (optional)

55.Select the GuiListing in the Outline view and select Open Type Hierarchy from
the context menu.

56.The Types view opens and shows the hierarchy of the class. The bottom part
of the view shows methods and fields. Select a superclass in the top part, and
the fields and methods change in the bottom part.

57.In the Types view, click the Show the supertype hierarchy icon (second from
the right). Now you see the hierarchy inversed, and you also see the
interfaces that are implemented.

58.Select the Applet class and Open Type Hierarchy (context). Now you can
browse the hierarchy from the Applet point of view. Switch between GuiListing
and Applet using the arrow icons.

59.Select the Guilisting in the top pane, and the init method in the bottom pane.
Then click the Lock View and Show Members in Hierarchy icon in the bottom
pane (first on the left). In the top pane you can see in which superclass(es)
the method is defined. Select the paint method for comparison.

60.In the GuiListing editor, find the getSelect? method (use the Outline view).
Find the code where the PartsDbAccess class is used for the connection and
SQL statement.

Exercise 1. Java development 305

61.Select PartsDbAccess and Edit -> Open on Selection. This opens the editor
for that class. Close the editor for that class.

62.Select PartsDbAccess and Edit -> Open Type Hierarchy. This opens the
Types view for this class. Close the Types view and the editor of that class.

Rename (optional)

63.Select the PartsDbAccess class in the Packages view and Rename (context).
In the Refactoring dialog, change the name to PartsAccess.java. Click Next.

64.The dialog shows you all the changes that will be performed (for example, the
references in the GuiListing class). Click Finish.

65.The getSelect method in GuilListing has been updated and the file has been
renamed. Run the GUI application; it should still work.

Scrapbook page (optional)

66.In the Java Perspective Packages view, select the project and create a scrap
page (File -> New -> Java -> Java Scrapbook Page). Click Next. Enter loop
as the file name and click Finish. A file named loop.jpage is added to the
project, and the file opens in the editor.

67.Add this code to the empty editor pane (or copy/paste from
c:\ws\labscode\exjava\scrap\loop.txt):

String total = "";

for (int i=1; i<ll; i++) {
System.out.printIn(i + " square " + i*i);
total = total.concat(i*i +" ");

}

return total;

68.Select all the code and click the Run selected code icon (with the J) or Runin
the context menu. The output appears in the Console view.

69.Save the loop.jpage file and close the editor.

306 Self-Study Guide: WebSphere Studio Application Developer and Web Services

What you did in this lab

» Defined a Java project

» Used multiple perspectives and views to work with the Java project
» Created packages, created and imported files

» Fixed code errors

» Used the search facility

» Used code refactoring (rename, method extract)

» Set the build path and run applications

» Used the debugger and a scrapbook

Exercise 1. Java development 307

308 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Relational Schema Center

What this exercise is about

In this lab we set up a project in WebSphere Studio Application Developer and
work with database schemas, DDL, and SQL statements.

User requirement
Generate a list of all the parts in the database.

What you should be able to do

At the end of this lab you should be able to:

» Define databases, tables, columns

» Connect to a database and import existing schemas
» Create SQL statements

Introduction

We connect to the ITSOWSAD database and work with tables and SQL
statements.

© Copyright IBM Corp. 2002 309

Exercise instructions

1. Start WebSphere Studio Application Developer if not already started.

Define a project for relational database

2. Create a new project (File -> New -> Project), select the Simple type, click
Next. Enter ltsoWsDealerDatabase as project name and click Finish.

3. The Resource perspective is open. Close it, and open the Data perspective
(Perspective -> Open -> Other -> Data). Notice the three views in the left
pane: DB Explorer, Data View, Navigator.

Create a database connection and import tables

4. In the DB Explorer, select New Connection from the context menu (put cursor
into the empty space). In the dialog enter:

— Connection name: ConlITSOWSAD

— Database: ITSOWSAD

— User ID and password: empty

— Database Vendor Type: DB2 UDB V7.2

— JDBC driver: IBM DB2 APP DRIVER

— Host and port: empty

— Class location: check that d:\SQLLIB\java\db2java.zip is selected

5. Click on Filters. In the dialog enter MM% as new filter and click Add Filter.
Select the filter and change the predicate from NOT LIKE to L/KE. (Click on
NOT LIKE until you get a pull-down.) Select the enabled check box (it should
be already selected). This retrieves the MM tables only. Leave the check box
Exclude system schemas selected. Click OKto close the filters. Click Finish.

6. The database, schema, and two tables appear in the DB Explorer.
Double-click on a table and it expands into columns, but no editor opens. The
Explorer view cannot be used for editing.

7. Select the ITSOWSAD database and Import to Folder (context). In the import
to folder dialog select the /tsoWsDealerDatabase project. Click OK and then
Finish.

8. Switch to the Data view and you find the database, schema, and the two
MM% table definitions added. Double-click on a table to open the table editor.
Go through the panels (bottom), then close the editor.

9. Switch to the Navigator view and study the underlying XMl files that contain
the database, schema, and table definitions. You can double-click a file and
the same editor as in the Data view appears.

310 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create a database and a table

10.In the Data view select the ItsoWsDealerDatabase project. Create a new
database (File -> New -> Other -> Database or New -> New Database from
context). Enter ITSOTEST as database name and DB2 7.1 as database
vendor type. Click Finish.

Note: In such a manual database you cannot execute SQL statements
because no connection definition exists.

11.Select the ITSOTEST database and New -> New Schema (context). Enter
TEST as schema name, click Finish. These steps only illustrate that DB,
schemas and tables can be created - we do not use ITSOTEST further.

12.We will do all work in the ITSOWSAD database that was created through the
connection. Expand the ITSOWSAD database and ITSO schema. Select the
schema and New -> New Table (context). Enter AAPARTS as table name,
click Next.

13.Click Add anotherto define the columns. After entering the data for each
column, click Add another again.

— Name: PARTNUMBER, type: CHARACTER, length: 10, not null (nullable
not checked), not bit (for bit data not checked)

— Name: NAME, type: CHARACTER, length: 30, nullable, not bit

— Name: DESCRIPTION, type: VARCHAR, length: 100, nullable, not bit

— Name: WEIGHT, type: DOUBLE, nullable

— Name: IMAGE_URL, type: VARCHAR, length: 100, not null, not bit

14.Click Next. Enter PARTKEY as primary key name, select the PARTNUMBER
column and click >>. Click Next (nothing to enter for foreign keys), click
Finish.

15.The ITSO.AAPARTS table appears under the schema/tables. Double-click on
the table and a table editor appears, where you could make changes using
the different panels. Close the editor.

Generate, import, and run DDL

16.Select the ITSO.AAPARTS table and Generate DDL (context). The filename
AAPARTS.sql is prefilled. Leave the default options (fully qualified names).
Click Finish.

17.The file AAPARTS.sql is added to the project. Double-click to bring up an
editor and look at the DDL. Close the editor.

18.Import a DDL file. Select File -> Import -> File system, click Next. Click
Browse and navigate to the c:\ws\labscode\exdata\ddlimport directory.
Select the directory and the AAINVENTORY.sql file in the directory. Set the

Exercise 2. Relational Schema Center 311

target folder by Browse and locate the ltsoWsDealerDatabase project. Do not
select Create complete folder structure. Click Finish.

19.Select the AAINVENTORY.sql file and Execute (context). In the Execute
dialog click Browse for default schema and select the ITSWSAD database
and ITSO schema. Click OK and Finish.

20.The ITSO.AAINVENTORY table is added to the schema. Double-click on the
table to open an editor. Go through the pages; the table includes foreign key
to the AAPARTS table. Close the editor.

21.7To actually run the DDL into DB2, we would have to use a DB2 command
window or the DB2 Control Center. However, the tables do already exist in
DB2.

22.You can also generate a DDL script for the database (or schema). It will
include all the components (tables).

SQL Query Builder (optional)

23.In the Data view, select the Statements folder (under the ITSOWSAD
database) and New -> Select Statement. Enter PartListing as name and
click OK. The editor opens with SELECT *.

Note: If the Statements folder is not visible, close the Data Perspective and
reopen it; this may help. Otherwise, select New -> Data -> SQL Statement,
click Next, and a wizard appears. Select Create an SQL resource and invoke
the SQL Builder, Use existing database model (Browse to
ItsoWsDealerDatabase -> ITSOWSAD), enter PartListing as statement
name, and the file is created and opened in the editor.

24.In the Data view, expand the database, schema (ITSO) and tables. Drag the
MMPARTS and MMINVENTORY tables into the middle (or top) pane of the
editor. The tables are shown graphically in the middle pane and are listed in
the top pane.

25.Select desired columns in the middle pane, for example, partnumber and
name in MMPARTS, and quantity and costin MMINVENTORY.

26.Drag the partnumber column from MMPARTS to the same column in
MMINVENTORY to create the join.

27.In the bottom pane for Columns, select the sort type (Ascending) for the
partnumber column.

28.In the bottom pane for Conditions, select the quantity column, operator <, and
for the value type :quantity (host variable). Click in another field to complete
the line.

312 Self-Study Guide: WebSphere Studio Application Developer and Web Services

29.Run the SQL statement (SQL run icon). In the execute dialog, click Execute,
and specify a value for :quantity, for example 11. Click Finish and the result
rows appear. Close the dialog.

30.Save the SQL statement and close the editor. When you are prompted for the
host variable value, click Cancel to proceed - we want to leave the host
variable in the statement. The SQL statement is saved as file
ITSOWSAD_PartListing.sgx.

What you did in this lab

» Connected to a database to view tables

» Imported database, schema, and tables into local storage
» Manually created database, schema, and table objects

» Generated DDL, imported DDL, and executed DDL

» Built and ran an SQL statement

Exercise 2. Relational Schema Center 313

314 Self-Study Guide: WebSphere Studio Application Developer and Web Services

XML development

What this exercise is about

In this lab we set up a Java project in WebSphere Studio Application Developer
and work with XML files.

User requirement
Use XML for distribution of the parts inventory.

What you should be able to do
At the end of this lab you should be able to:

» Work with DTDs and XML schemas and convert one format into the other
» Work with XML files that match a DTD or an SXML schema

» Create an XSL mapping between DTDs and transform an XML file

» Generate XML output from an SQL query

Introduction
We use XML to represent parts and inventory.

© Copyright IBM Corp. 2002 315

Exercise instructions

1. Start WebSphere Studio Application Developer.

Define a Java project and import files

2. Define a new Java project named ItsoWsDealerXml. Click Next. Select Use
source folders contained in the project and click Create New Folder and
create a source folder. For the Build output folder enter
/ltsoWsDealerXML/classes, and click Finish.

3. Open the XML Perspective (Perspective -> Open -> ...)

4. Importa DTD and an XML schema. Select File -> Import -> File system, click
Next, and Browse to the c:\ws\labscode\exxml\schemas directory. Click
OK. Select the schema’s directory to show the list of files. Import Part.dtd and
PartDef.xsd. Set the folder to the ltsoWsDealerXml project. Click Finish.

5. The files appear in the Navigator view.

Edit DTD and XML schema

6. Edit the Part.dtd file. Notice the Outline view and the editor. In the editor,
switch between Design and Source views. You have to use the Outline to
move to different parts in the design or in the source.

7. In the Outline, select Part.dtd and Add Element from the context. Enter
Location as name (overtype NewElement in the Design view). Select the
EMPTY subitem under Location (in the Outline) and change it to #PCDATA
(pull-down) in the editor (Design view).

8. Expand the Inventory. Select the model group (,) and Add Element to Content
Model (context). Select Location for the name (pull-down) and select the
Optional radio button. Save the changed DTD and close the editor.

9. Generate an XML schema from the DTD. Select the DTD and Generate ->
XML Schema from the context menu. The resulting schema file is named
Part.xsd. Click Finish.

10.Edit the Part.xsd file. Check out the Outline, Design, and Source views.
Select and expand the elements in the Outline.

11.Edit the PartDef.xsd file. This is basically the same schema as Part.xsd, but
improved. For example, the Cost is defined as decimal (not string), the
Weight is defined using a weighttype with a constraint (maximum 100), and
the quantity is defined using a quantnum type (range 1-20). Default values are
also defined.

316 Self-Study Guide: WebSphere Studio Application Developer and Web Services

12.Select the PartDef.xsd file in the Navigator and Generate -> DTD (context).
Edit the resulting PartDef.DTD file and notice in the Source view that the
special datatype definitions could not be converted to a DTD.

13.Close the editors.

Work with XML files

14.Select the Part.dtd and Generate -> XML File (context). Name the output file
Part.xml (default) and click Next. Select the root element (Part) and Create
required and optional content. Click Finish.

15.The Part.xml file appears in the outline and editor. Enter some data for the
elements, for example, partnumber H3, name Headlight, weight 5.5,
inventory item H301, quantity 4, cost 34.56, shelf S2. Save the file; there
should be no errors.

16.Switch to the Source view. Delete the <Quantity>4</Quantity> line. Save the
file. You get an error in the Tasks list, because quantity is required by the
DTD.

17.Select the Inventory element in the editor (Design view) and Add Child ->
Quantity (context). Set the value to 4 and save; the error disappears. You can
also use the Validate icon (page with check mark) in the toolbar.

18.Select the Part and Add -> Child -> Inventory to add another inventory item.
Notice that only required elements (quantity, cost) are added. Set some
values for item (H302), quantity (5), and cost (67.89), and save the file. Close
the editor.

19.Import an XML file. Select File -> Import -> File system, click Next, and
Browse to the c:\ws\labscode\exxml\xml directory. Click OK. Select the xm|
directory to show the list of files. Import PartDef.xml. Set the folder to the
ItsoWsDealerXml project. Click Finish.

20.Edit the PartDef.xml file. Notice in the Source and Design view that it refers
to the XML schema (PartDef.xsd), not the DTD.

21.Validate the file using the toolbar icon. You get an error message box and 3
errors in the Tasks list. The PartDef.xsd file defines data types and valid
values. Fix the errors in the design or source: weight 11.5, quantity 6, cost
40.00. Validate again and the errors disappear.

22.Use File -> Save PartDef.xml As to save the corrected file as
PartDefFixed.xml and close the editor.

Exercise 3. XML development 317

Generate an HTLM form

23.Select the Part.dtd file and Generate -> HTML Form (context). In the dialog
select all fields (expand first), and click Next. For the servlet name, change
testServietto PartXmiServlet. Click Finish.

Edit the resulting Part.html file. You can see the form that is generated. Note
that the servlet is not generated for you—it is only the name used in the HTML
form action. We work with HTML and Web development in later exercises.
Close the editor.

XML to XML mapping

24.Import the file Partmap.dtd from the c:\ws\labscode\exxml\mapping
directory into the project. This DTD is similar to the Part.dtd file.

25.Select File -> New -> XML to XML Mapping. Set the folder to
ltsoWsDealerXml, the filename to Partmap.xmx and click Next.

26.In the Source dialog, select the Part.dtd (under ItsoWsDealerXml) and click >
to copy the name to the right. Click Next. In the Target dialog, select
Partmap.dtd (under ItsoWsDealerXml), click Next. In the Root dialog, Part
should be preselected. Click Finish.

27.The editor opens with the Partmap.xmx file. Expand the elements on both
sides to perform the mapping.

28.Drag elements from left to right: Partnumber to ID, Name to Name, ...,
Inventory to Inventory, ... Cost to Cost. The mapping appears in the bottom
pane. A shortcut is to select the Part element in the bottom pane and Match
by Name from the context. (Partnumber to ID must be done manually.)

29.Select Shelf and Location (ctrl-key) and drag to Where. This creates a
composite mapping.

30.Select Where in the bottom pane and Define XSL Function (context). In the
dialog, leave String selected, and click Next. As function, leave concat. Click
Add and enter ‘in ‘ (including single quotes and spaces) and click OK. Select
the entry and use Up or Down to place the constant between shelf and
location. Click Finish and a function icon is added to the mapping line for
Where. Save the code.

31.Click the Generate XSLT script for mapping toolbar icon (last on right). As file
name leave the default, Partmap.xsl. Select the ltsoWsDealerXml project
and click Finish. The generated Partmap.xsl file opens in the editor. Close the
editor for both files.

318 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Translating an XML file

32.In the Navigator view, select the files Part.xml and Partmap.xsl (ctrl-key) and
Apply XSL -> As XML (context).

33.The XSL Trace Editor opens and you can see the result XML. Notice in the
Result XML pane that the second inventory created the <where> tag with just
the word ‘in’ because no shelf and location were present.

34.Use the arrow buttons to step through the code and watch the input, XSL, and
output lines being highlighted.

35.Save the result XML file (File -> Save XSL Trace Editor As) and enter
Partmapresult.xml as the file name.

SQL to XML mapping (optional)

36.In the Navigator view create a new folder named sqlxml in the
ItsoWsDealerXml project.

37.Switch to the Data perspective and the ltsoWsDealerDatabase project. In
the DB Explorer view look at the ConITSOWSAD connection. If no database
content is displayed under the connection, select Reconnect from the context
menu. (A connection is lost if you shut down WSAD.)

38.In the Data view, select the PartListing SQL statement you built in the RBD
lab, and select Generate new XML from the context menu.

39.Select Primary keys as attributes, XML Schema, Generate query template file
(PartListing.xst), and the sqglxml folder in the ltsoWsDealerXml project as
output folder. Click Finish.

40.1f you used a host variable, you are prompted for input. Enter 10, for example.
41.Switch to the Navigator view and the sqlxml folder. Open the various files:

— PartListing.xml contains the XML output

PartListing.html shows the output as an HTML table

PartListing.xsd is the underlying XML schema

PartListing.xsl is the XSL transformation file

PartListing.xst is the template with the SQL statement and the options

42 .Close all files.

Exercise 3. XML development 319

What you did in this lab

» Imported DTD, XML schema, and XML files

» Worked with DTDs, XML schemas, and XML files

» Generated and validated XML files

» Transformed an XML file from one DTD to another

» Generated XML and HTML output from an SQL query

320 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Web development

What this exercise is about

In this lab we set up a Web project in WebSphere Studio Application Developer
and implement simple Web applications.

User requirement
Generate a list of selected parts in the database. Query the database for parts
with low inventory.

What you should be able to do
At the end of this lab you should be able to:

>

>

>

>

Create and test Web applications

Work with the Page Designer

Configure and run the WebSphere test environment
Use the Database Wizard to generate a Web application

Introduction
We use WSAD to implement Web applications using servlets, HTML, and JSPs.

© Copyright IBM Corp. 2002

321

Exercise instructions

1.

Start WebSphere Studio Application Developer.

Define a Web project

2.

Define a new project (New -> Web -> Web Project) with the name
ItsoWsDealerWeb. Use the default location. For the EAR project name, enter
ItsoWsDealerEAR. For the context root, leave ltsoWsDealerWeb. Click Next
twice. Leave the default source location (ltsoWsDealerWeb/source) and the
default output folder (ItsoWsDealerWeb/webApplication/WEB-INF/classes).
Click Finish. This creates both the Web and the EAR project.

Open the Web Perspective and expand the ltsoWsDealerWeb project. You
should find the source folder (for Java servlets), the webApplication folder
with the WEB-INF folder, and the web.xml deployment descriptor file.

Import a Web application

4.

Select the webApplication folder and create a subfolder named images.
Make sure to have it under webApplication!

Select the images folder and File -> Import -> File system, Browse to
c:\ws\labscode\exweb\images (click OK), and select all the GIF files in that
directory. Click Finishto import all the images.

Select the webApplication folder and File -> Import -> File system, Browse to
c:\ws\labscode\exweb\web (click OK), and select the PartList.html and
PartList.jsp file in that directory. Click Finish to import the files.

Note: The PartList.hmtl and .jsp files must be directly in the webApplication
folder, not in a web subfolder (do not import the web folder, only the files
contained in it).

Notice the warning and error in the Tasks list; we will fix these later.
Double-click on each file to open the Page Designer. Both should display the
ITSO image on the top. Close the editors.

Select the source folder and New -> Other -> Java -> Java Package. Click
Next and enter itso.wsad.dealer.web as package name and click Finish. The
folder structure appears under the source folder.

Select the itso\wsad\dealer\web folder and click the Create a Java Serviet
Class icon (or New -> Web -> Servlet). The package should be preselected.
Enter PartList as the servlet name, HtfpServiet as superclass, select init,
doPost, doGet methods. Click Next.

322 Self-Study Guide: WebSphere Studio Application Developer and Web Services

10.Select Add fo web.xml (preselected). We use the default display name and
URL (PartList). The servlet will be in the deployment web.xml descriptor. Click
Finish.

11.The Java editor opens for PartList.java. Study the skeleton code.

Complete the code

12.0pen the file c:\ws\labscode\exweb\serviet\PartList.txt in Notepad. We
use this code to complete the servlet:

Replace import javax.serviet.http. HttpServlet with the list of import
statement from PartList.txt

Complete the empty body of doPost with: doGet(request, response);
Complete the empty body of doGet with the code from PartList.txt
Add the new method getResults after the doGet method

Make sure all the brackets match.

13.Save the PartList.java file, there should be no errors. Study the code. The
doGet method gets the parameter from the HTML file (partialName), prepares
a result object (Vector partListResult), calls getResults, stores the Vector in
the request block, and calls the JSP (PartList.jsp).

The getResults method connects to the database, executes the SELECT
statement, and stores the values of the columns of one row in an array that is
added to the result Vector. The JSP can retrieve all the values from the
Vector.

14.0Open the HTML file (PartList.html). Select the form (dotted line) and
Attributes (context). Enter PartList as the Action, replacing the XXXXX. The
HTML file now invokes the PartList servlet. Save and close the editor.

15.0pen the JSP file (PartList.jsp). Select the Source view and study the code.
The results are retrieved from the partlListResult bean and placed into a table.
However, the declaration of the bean is missing:

Delete the text “-- the bean from the servlet goes here --”.

— Switch to the Design view. The cursor should be in front of the first JSP tag

icon, after the title. Select JSP -> Insert Bean (there is also a small bean
icon you can use).

— Enter partListResult as ID, java.util.Vector as Type, and request as

Scope (it has to match what the servlet stores in the request block). Click
OK and switch to the Source view to see the <jsp:useBean> tag.

Save the JSP. The error in the Tasks list disappears.

16.Close all the editors.

Exercise 4. Web development 323

Preparing a server for testing

17.0pen the Server Perspective (Perspective -> Open -> Other -> Server).

18.Create a new Server project (New -> Server -> Server Project), click Next,
enter ItsoWsServer as name, click Finish.

19.Select the ltsoWsServer project and New -> Server Instance and
Configuration. Enter ItsoWsDealer as server name. For instance type,
expand WebSphere Servers and select WebSphere v4.0 Test Environment.
Click Next, leave port 8080, click Finish.

20.Expand the ltsoWsServer project. The configuration and instance also
appears in the Server Configuration view (bottom left) and in the Servers view
(bottom right).

21.Edit the configuration properties: either double-click the server-cfg.xml file in
the Navigator view, or double-click the ltsoWsDealer configuration in the
Server Configuration view. Go through the pages.

22.The only change we have to perform is in the Datasource view. Select the
Db2JdbcDriver and click Edit. Check that the class path points to the
db2java.zip file in the DB2 installation directory, for example
D:\SQLLIB\java\db2java.zip (or wherever DB2 is installed). Click OK, save
and close the configuration.

23.Select the ItsoWsDealer configuration and Add Project -> ltsoWsDealerEAR.
We associate our project to this server.

24.Select Window -> Preferences and select Server. The first check box
determines if the server runs in normal or debug mode when you select Run
on Server. For now we leave debug mode; we can always start the server
manually in normal or debug mode.

Test the Web application

324

25.Start the server in the Servers view (use the start icon, or the context menu).
Watch the Console view until the server is open for e-business. As part of the
messages you should see that the Web module is loaded, because we
associated the project with this server.

26.Expand the ltsoWsDealerWeb project, select the PartList.html file, and Run
on Server (context). A Web browser view opens with the HTML file. Enter
IRRO as partial name, click Retrieve. The servlet is invoked (see Console),
then wait for the JSP to compile and display the results.

27.Go back in the browser and enter other values (L, X, T).

Self-Study Guide: WebSphere Studio Application Developer and Web Services

Enhancement (optional)

28.Display the image belonging to a result row. Edit the PartList.jsp file. Change
the display of the last column (row[4]) to:

<TD> <img src="images/<%= row[4] %>"> </TD>
Save the JSP and rerun the sample in the browser view.
29.Close the browser.

Using the Database wizard

30.In the Web Perspective, select the source folder, and create a new Java
package named itso.wsad.dealer.dbapp (New -> Other -> Java ...).

31.Click the Create Web pages that access database fields icon (or New -> Web
-> Database Web Pages) to start the Database wizard.

32.For the destination folder, select ltsoWsDealerWeb/webApplication (click
Browse). For the package name, select itso.wsad.dealer.dbapp. For Web
Pages, select both input and details form. For Model, select View Bean to
generate servlet and JSP. Select store results in request. Click Next.

33.Skip the panel Choose an existing select statement (click Next). On Specify
SQL statement information, select Be guided through creating an SQL
statement. Select Use existing database model and click Browse to locate the
ItsoWsDealerDatabase project (expand) and select the ITSOWSAD database
and click OK. Click Next.

34.Construct the SQL statement:
— Select the tables MMINVENTORY and MMPARTS, click >.

— Columns: MMPARTS: partnumber, name, description, image_url
INVENTORY: itemnumber, quantity, cost, shelf, location

— JOIN: join the tables on part number (drag the partnumber field)

— Condition: column quantity, operator <, value :quantity (use drop-downs
for column and operator, type :quantity into the field)

— ORDER: mmparts.partnumber, ASC

35.Click Next. The SQL statement is complete. You can Execute it with 20 as
value. Click Next.

36.Connection: select Use data source connection and enter jdbc/ITSOWSAD
as JNDI name. Click Next.

37.Input form: set label to Quantity, set size and max length to 4. Click Next.

38.Result table: Select only part number, name, quantity, cost, deselect others.
Change the labels for the four columns to Partnumber, Name, Quantity, Cost
(Use the Enter key, or click on another property). Click Next.

Exercise 4. Web development 325

39.Details: select all columns. Optionally change the labels. Click Next.

40.Specify Front Controller and View Bean Choices: take the defaults to have a
controller servlet and view beans generated. Click Next.

41.Select Inventory as prefix. Click Finish. The generated servlets (three files)
appear in the source package folder and the HTML (one file) and JSPs (two
files) in the webApplication folder.

Configure data source and test

42.In the Server Perspective, edit the ItsoWsDealer configuration. In the
Datasource view, click Add for data sources. Enter ITSOWSAD as name,
jdbc/ITSOWSAD as JNDI name, and ITSOWSAD as database name. Click
OK. Save and close the configuration.

43.Start or restart the ltsoWsDealer server. Wait until it is ready.

44 .Select the InventorylnputForm.html file and Run on Server (context). The
browser view displays the input form. Enter a value (20) and click Submit. It
takes a while but the result rows should display. Select a row and click
Details.

45.Optionally, tailor the HTML and JSP layouts using the Page Designer. For
example, display the GIF image instead of the image_url text. (Use a
technique similar to step 28.)

46.Stop the ItsoWsDealer server.

Export Web application as WAR file

47.In the Web Perspective, select the ItsoWsDealerWeb project and Export WAR
(context). Specify an output directory and file (d:\itsowsdealerweb.war) and
click Finish.

If you get an error message, rebuild the project (Web perspective, Rebuild
Project from context) and validate it (Validate Project from context).

Using the Database wizard and generate JSPs (optional)

48.Redo the database example, but choose Tag library for the model. This
generates a solution using JSPs and no servlets.

Note: Use = as comparison operator. Smaller < and greater > result in JSP
parser/compiler errors, although the code does work.

326 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Debugging JSPs (optional)

49.Set some breakpoints in the PartList.jsp file (open the JSP source view,
select a line with a JSP tag, and in the line prefix select Add breakpoint from
context).

50.Start the ltsoWsDealer server in debug mode.
51.Select the PartList.html file and Run on Server.

52.Enter a partial partname (RR) and step through the JSP code in the Debug
view. Study variable values in the Variables view.

53.Stop the server when done. Remove the breakpoints in the JSP and close it.

What you did in this lab

» Defined a Web project with an EAR project

» Imported an existing Web application and used the Page Designer
» Configured a WebSphere test server and ran the Web application
» Used the Database Wizard to create HTML, JSPs, and servlets

» Configured a DataSource and ran the generated application

» Exported a Web application to a WAR file

Exercise 4. Web development 327

328 Self-Study Guide: WebSphere Studio Application Developer and Web Services

EJB development

What this exercise is about

In this lab we set up a Java project in WebSphere Studio Application Developer
and implement an entity and a session enterprise bean.

User requirement
Update stock in the inventory.

What you should be able to do

At the end of this lab you should be able to:

» Define entity beans and map to a database table
» Define session beans with business methods

» Configure a server to test enterprise beans

» Use the EJB test client to verify the functionality

Introduction

We implement an entity bean to interact with the inventory table. Then we
implement a session bean with business methods to update the stock through
the entity bean.

© Copyright IBM Corp. 2002 329

Exercise instructions

1.

Start WebSphere Studio Application Developer.

Define an EJB project

2.

Define a new project (New -> EJB -> EJB Project) with the name
ItsoWsDealerEJB. Use the default location. For the EAR project name,
select ItsoWsDealerEAR. Click Next twice. Preselected is Use source folders
contained in the project (ItsoWsDealerEJB/ejpModule). Leave the default
output folder (ItsoWsDealerEJB/bin). Click Finish. This creates the EJB
project and attaches it to the existing EAR project.

The J2EE perspective is opened automatically. You can expand the
enterprise applications, Web modules, EJB modules, server configurations
and instances, and databases.

Create an entity bean

4.

Create a new Java package named itso.wsad.dealer.ejb under the project
folder ltsoWsDealerEJB/ejbModule (from the Navigator or J2EE view).

In the J2EE view, click the Create an enterprise bean icon in the toolbar (or
New -> EJB -> Enterprise Java Bean). Select CMP as type, enter
ItsoWsDealerEJB as project and Inventory as bean name,ejbModule as
source folder, and itso.wsad.dealer.ejb as package. Click Next. The bean
class becomes itso.wsad.dealer.ejb.InventoryBean.

Leave the defaults for the interface names and key class. For persistence
fields, click Add. Enter the following fields:

— itemNumber, java.lang.Long, key field, click Add
(do not use “long”, it must be java.lang.Long)

— partNumber, String, access with getter/setter, promote to remote
interface, make getter read-only, click Add

— quantity, int, getter/setter, promote, read-only, click Add

— cost, java.math.BigDecimal, getter/setter, promote, read-only, click Add

— shelf, String, getter/setter, promote,read-only, click Add

— location, String, getter/setter, promote, read-only, click Add

— Click Close.

7. Select Use the single key attribute type for the key class. Click Next.

8. For import statements, click Add Package, and enter/select javax.ejb, click

OK. Select Add Type and java.math.BigDecimal, click OK.
Note: Do not select com.ibm.math.BigDecimal.

330 Self-Study Guide: WebSphere Studio Application Developer and Web Services

9. Click Finish to create the Java code for the bean, key, home and remote
interface. The inventory bean with CMP fields and classes appears in the
J2EE view under the EJB Modules. The Java source code for the classes is
there as well.

Editing the bean

10.Double-click on Inventory (not the InventoryBean.java); no editor opens. You
can only edit the whole module. Double-click on the ItsoWsDealerEJB JAR
with beans. This opens the ejb-jar.xml file (the EJB JAR). Go through the
different pages, then in the Bean page, select the Inventory bean. You could
make updates here. Close the editor.

Complete the bean with create and business methods

11.Several columns are mandatory in the database and we must make sure that
the values are not null when an instance is created. Open an editor
(double-click) for the InventoryBean (Java code). The code changes are in
the file c:\ws\labscode\exejb\bean\inventoryBean.txt for copy/paste.

12.Find the ejbCreate method. Change the code to:

public java.lang.Long ejbCreate(java.lang.Long itemNumber,

String partNumber, int quantity, BigDecimal cost)
throws javax.ejb.CreateException {

_initLinks();

this.itemNumber = itemNumber;

this.partNumber = partNumber;

this.quantity = quantity;

this.cost = cost;

this.shelf = null;

this.location = null;

return null;

}
13.Find the ejbPostCreate method. The parameters must match ejbCreate:

public void ejbPostCreate(java.lang.Long itemNumber, String partNumber,
int quantity, BigDecimal cost) throws javax.ejb.CreateException {

}
14.Add business methods to remove and add stock at the edn of the class:

public int removeStock(int amount) throws InsufficientStockException {
if (quantity < amount) throw
new InsufficientStockException("Insufficient stock");
quantity -= amount;
return quantity;

}
public int addStock(int amount) {

Exercise 5. EJB development 331

quantity += amount;
return quantity;

}

15.Save the code. You get errors because the InsufficientStockException class is
missing and because the home does not match the ejbCreate method.

16.Import the InsufficientStockException class. Select File -> Import -> File
system, click Browse to locate c:\ws\labscode\exejb\bean, select the
InsufficientStockException.java file. Import into the folder
ItsoWsDealerEJB\ejbModulelitso\wsad\dealer\ejb. Some errors disappear.

Note that you cannot see the InsufficientStockException class in the J2EE
view; you have to select the Navigator view to see non-EJB classes.

Home and remote interface

17.With the InventoryBean in the editor, select the two methods removeStock
and addStock in the Outline view, and Enterprise Bean -> Promote to Remote
Interface (context). This adds the methods to the remote interface; open the
Inventory interface and check that the methods were added. Also a small R
icon is added to the method in the outline view.

18.Select the ejbCreate method in the Outline view and Enterprise Bean ->
Promote to Home Interface (context), where a matching create method is
added. Open the InventoryHome interface. Delete the old create method
(with one parameter) and add the import statement:

import java.math.BigDecimal;

19.Save the code. If errors still show in the Tasks view, make a dummy change to
the InventoryBean class and save again. The errors disappear. Close the
editors.

Create the mapping to the database table

20.Switch to the Data Perspective. In the DBExplorer view, reconnect the
ConITSOWSAD connection (context menu). (This connection was created in
step 4 in Exercise 2, “Relational Schema Center”.)

21.Select the ITSOWSAD database and Import to Folder (context). Select the
ItsoWsDealerEJB project, click OK. The ejbModule\META-INF\Schema
folder is automatically selected. Click Finish. In the Confirm target dialog, click
Yes, to import the schema.

22.Switch to the J2EE Perspective, Navigator view, and you can see the
imported schema in the ejpModule\META-INF folder.

332 Self-Study Guide: WebSphere Studio Application Developer and Web Services

23.Select the ltsoWsDealerEJB project and click the Create an EJB to RDB
mapping icon in the toolbar (or Generate -> EJB to RDB Mapping from the
context).

24.In the create mapping dialog, select Meet In The Middle. Select Open
mapping editor after completion. Click Next. Select Match by Name, click
Finish.

25.The mapping editor opens with the Map.mapxmi file. Expand the Inventory
EJB (left) and MMINVENTORY table (right). Nothing is matched because the
bean name (Inventory) does not match the table name (MMINVENTORY).

26.Map the Inventory bean to the MMINVENTORY table by drag/drop:

— Drag the Inventory bean to the MMINVENTORY table
— Drag bean attributes to matching columns (or columns to attributes)

27.Save the file and close the editor. The mapping file is only visible in the
Navigator view in the META-INF directory.

Generate deployed code

28.In the J2EE view, select the ltsoWsDealerEJB module and Generate ->
Deploy and RMIC Code. Select the Inventory bean and click Finish. The
generated classes are visible in the Navigator view.

Bind the container to a DataSource

29.In the J2EE view, select the ltsoWsDealerEJB module and Open With -> EJB
Extension Editor (context). Go through the pages, and select the Binding tab.

30.Select the ltsoWsDealerEJB and set the JNDI name for the DataSource to
jdbc/ITSOWSAD, and user ID and password to db2admin (or the userlD
used to install DB2). We could also set the JNDI name for the Inventory EJB
itself; for an empty name, a default name of InventoryHome will be used.

Note: You must have completed step 42 in Chapter 4, “Web development” to
define the jdbc/ITSOWSAD data source for the ltsoWsDealer server.

31.Save and close the editor.

Testing the inventory bean

32.Switch to the ServerPperspective and start the ItsoWsDealer server. (The
EAR file is already attached to that server.) Wait for the server to be ready.

33.In the Navigator, select the ltsoWsDealerEJB project and Run on Server
(context). This opens the universal test client (UTC) in a browser view.

Exercise 5. EJB development 333

34.Select the JNDI Explorer. You can enter a JNDI name, or select from the list.
Click on the InventoryHome.

35.Expand EJB References -> Inventory -> InventoryHome. Click on the
findByPrimaryKey method. Enter 21000003 as key value, click Invoke. The
EJB object is added to the bottom pane. Click Work with Object and the
Inventory object is added to the EJB References (left).

36.Invoke some get methods of the Inventory object. The result is shown in the
bottom pane. After executing the getCost method, click on Work with Object
and the BigDecimal value is added to Object References (left).

37.Invoke the addStock and removeStock methods. Try to remove more than the
quantity and you get the InsufficientStockException.

38.Invoke the create method on the home. First set the BigDecimal value (last).
Click on the constructor icon (right), select the BigDecimal(String) constructor,
enter 22.22 as value, and Invoke and Return. Then set the other parameters
as 33000007, M100000002, and 7. Note that the partNumber (M100000002)
must exist in the database.

39.0nce BigDecimal objects have been added to the references, you can also
select values from the pull-down instead of using a constructor.

40.Close the test client browser and stop the server.

Creating a session bean (optional)

41.In the J2EE view, create a new enterprise bean named StockUpdate, of type
Session. Click on Packages, select the itso.wsad.dealer.ejb package, then
overtype ejb with session to make it itso.wsad.dealer.session. Click Finish.

42 Edit the StockUpdateBean to complete the code with business methods.
Open the file c:\ws\labscode\exejb\bean\StockUpdateBean.txt and use it
to copy/paste:

— import statements

— a variable: private InventoryHome inventoryHome = null;

— in ejbCreate: inventoryHome = getHome();

— new methods: addStock, removeStock, moveStock, getHome

43.Save the class. Promote the addStock, removeStock, moveStock methods:
select the methods in the Outline view and Enterprise Bean -> Promote to
Remote Interface (context). Close the editor.

44 Edit the StockUpdate interface. Several errors:

— add: import javax.ejb.*;
— add: import itso.wsad.dealer.ejb.*;

Save and close the editor.

334 Self-Study Guide: WebSphere Studio Application Developer and Web Services

45.Generate the deployed code. In the J2EE view, select the EJB project and
Generate -> Deploy and RMIC Code. Select only the StockUpdate bean (we
did not change the Inventory bean).

46.In the J2EE perspective and view, select the ltsoWsDealerEJB module and
Open With -> EJB Editor (context). Go to the EJB Reference page. Select the
StockUpdate bean, click Add. The session bean uses the local reference
java:comp/env/ejb/Inventory in the getHome method to find the Inventory
bean. We have to specify this reference for later binding to a real JNDI name.
In the dialog enter:

— ejb/Inventory (for the name)

— Entity (for type)

— itso.wsad.dealer.ejb.InventoryHome (for home)
— itso.wsad.dealer.ejb.Inventory (for remote)

— Inventory (for link).

Save and close.

47.Select the ItsoWsDealerEJB module again and Open With -> EJB Extension
Editor (context). On the Bindings page, the JNDI name for the data source
should still be jdbc/ITSOWSAD. Expand the ltsoWsDealerEJB, select each
bean, and set the JNDI name to the names itso/wsad/dealer/Inventory and
itso/wsad/dealer/StockUpdate. (Do not set data source JNDI names for the
beans.)

Set the reference under StockUpdate to itso/wsad/dealer/Inventory so that
the session bean can find the inventory entity bean in the getHome method.
Save and close the extension editor.

Test the session bean (optional)

48.Switch to the Server Perspective. Restart the ltsoWsDealer server.
49.Select the ItsoWsDealerEJB project and Run on Server (context).

50.Use the JNDI Explorer to locate the itso/wsad/dealer/StockUpdate home.
Invoke the create method, then work with the object. Invoke the business
methods for item numbers 21000003, 21000004, 33000007. Check the
results using the InventoryHome.

Add a serviet and HTML file

This section requires that the ltsoWsDealerWeb project was created and the
images were imported (see steps 2 through 5 in Exercise 4, “Web
development”).

51.Switch to the Web Perspective, and click the Create a Java Servlet Class icon
in the toolbar:

Exercise 5. EJB development 335

— For the folder Browse to /ltsoWsDealerWeb/source
— For package enter: itso.wsad.dealer.ejbweb

— For servlet name enter: InventoryControl

— For superclass select HttpServlet

— For methods: init, doGet, doPost

— Click Next.

52.Select Add to web.xml (leave the default names) and click Finish.
53.Edit the servlet InventoryControl.java.

54 .Replace the code with the code from
c:\ws\labscode\exejb\serviet\InventoryControl.txt or
c:\ws\labscode\exejb\serviet\InventoryControlNoSession.txt and Save.

Note: If you did not implement the session bean, use the file
c:\ws\labscode\exejb\servlet\InventoryControlNoSession.txt to
replace the servlet code.

55.The references to the EJB package are not resolved. Open the properties of
the ltsoWsDealerWeb project (select Properties from the context), and select
the Java Build Path. On the projects page mark the ltsoWsDealerEJB project
and click OK. The errors should be fixed.

56.Select the webApplication folder and File -> Import -> File system. Click
Browse to locate c:\ws\labscode\exejb\serviet and select the
InventoryControl.html file. Click Finish.

57.0pen the file and study the form and the possible actions, and then study the
InventoryControl servlet to understand the processing. Notice the init method
where the homes of the EJBs are acquired. Note that the homes are retrieved
by global JNDI names, but the code for local JNDI names is in comments.

To use local JNDI names you have to edit the web.xml file, go to the
References page, and add two references:

— ejb/Inventory (Entity, itso.wsad.dealer.ejb.InventoryHome,
itso.wsad.dealer.ejb.Inventory, itso/wsad/dealer/Inventory)

— ejb/StockUpdate (Session, itso.wsad.dealer.session.StockUpdateHome,
itso.wsad.dealer.session.StockUpdate, itso/wsad/dealer/StockUpdate)

The binding information between local and global JNDI names is stored in the
ibm-web-bnd.xmi file.

58.Close the editors.

59.I1Select the ltsoWsDealerWeb project and Edit Module Dependencies
(context menu). Select the ltsoWsDealerEJB.jar file and click Finish. This

336 Self-Study Guide: WebSphere Studio Application Developer and Web Services

makes sure that the Web application can access the EJBs in the server where
the application is deployed.

Run the servlet application

60.Select the InventoryControl.html file and Run on Server (context). The
ItsoWsDealer server should start (if it not already running). You can also start
the ltsoWsDealer server first and then run the HTML file.

61.Test the different actions.
62.Stop the server.

What you did in this lab

» Defined an EJB project as part of an EAR project

» Defined an entity bean and mapped it to an existing database
» Defined a session bean that uses the entity bean

» Defined business methods

» Tested the EJBs in the built-in server

» Imported and run a servlet application that uses the EJBs.

Exercise 5. EJB development 337

338 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Test and deploy using
WebSphere AEs

What this exercise is about

In this lab we test an application on a real WebSphere Application Server Single
Server (AEs).

User requirement
Run the application in a real WebSphere environment.

What you should be able to do

At the end of this lab you should be able to:

» Define a server in WSAD to publish to AEs

» Test a Web application and EJBs on AEs

» Setup and configure WebSphere Application Server AEs
» Deploy an application and install it in AEs

Introduction
We prepare AEs and WSAD for test and deployment.

© Copyright IBM Corp. 2002 339

Exercise instructions

. Start WebSphere Studio Application Developer.

Make a copy of the WebSphere AEs server configuration file:
d:\WebSphere\AppServer\config\server-cfg.xml ==> server-cfgSAVE.xml

Check in Services that the IBM Agent Controller is started.

Prepare Web application dependency

4.

In the Web Perspective, select the ltsoWsDealerWeb project and Edit
Module Dependencies (context menu). Check that the ltsoWsDealerEJB.jar
file is selected (if not, selected the file) and click Finish. This makes sure that
the Web application can access the EJBs in the server where the application
is deployed.

Configure a server for remote testing in WebSphere AEs

5.

In the Server Perspective, click the Create server instance and configuration
in the toolbar (or New -> Server -> Server Instance and Configuration).

Enter ltsoWsAEs as server name, ltsoWsServer as project folder, select
WebSphere v4.0 Remote Server as instance type, click Next.

Enter 127.0.0.1 (or localhost) as host address, d:\\WebSphere\AppServer
as WebSphere installation directory, and select Use default WebSphere
deployment directory. This sets the deployment directory as
d:\WebSphere\AppServer. Click Next.

Select Create a new file transfer instance, and Copy File Transfer
Mechanism, click Next.

Enter ltsoWsServer as project folder, your-host-name (or localhost) as
remote file transfer name, and d:\WebSphere\AppServer as remote target
directory. Click Next.

10.Change the port from 8080 to 9080 to match AEs. Click Finish.
11.You should find the new configuration and instance in the Server

Configuration View, and the your-host-name.rft file in the Navigator view.

12.Double-click the ltsoWsAEs instance to open the editor (you can make

changes here). Close the editor.

13.Double-click the ltsoWsAEs configuration to open the editor:

— On the General page, select Enable administration client (you can open
the Administrative Console while testing).

— On the EJB page, Enable the EJB test client should be preselected.

340 Self-Study Guide: WebSphere Studio Application Developer and Web Services

— On the Datasource page, edit the Db2JdbcDriver and set the class path to
D:/sqllib/java/db2java.zip. Click OK. Then click Add for a new data
source and enter ITSOWSAD (name), jdbc/ITSOWSAD (JNDI name)
ITSOWSAD (database name). Click OK.

— Save the changes and close the editor.

14.Select the ItsoWsAEs configuration, and Add Project -> ItsoWsDealerEAR
(context). This will publish the application when we start the server.

Test the applications in the remote AEs server

15.In the Servers view, select the lfsoWsAEs server, and Start (context or icon).
Watch the console; you should see the EJB and the Web module loaded
without errors, and the message:

Server Default Server open for e-business

Note that the IBM Agent Controller must be running on the machine to start a
server from WSAD.

16.Select the ltsoWsDealerWeb project and Properties, and in Server
Preference, change the default server from ltsoWsDealer to ItsoWsAEs. This
enables launching the Web browser from files.

17.Select the PartList.html file and Run on Server. The browser opens with
http://127.0.0.1:9080/l1tsoWsDealerWeb/PartList.html and you can test the
application. Select the InventorylnputForm.html file and test it, as well.

18.Enter http://127.0.0.1:9080/UTC to start the EJB test client. Test the EJBs.
(You could also change the default server launcher for the ltsoWsDealerEJB
project and then Run on Server for the project.) Select the
InventoryControl.html file and test the servlet with EJB access.

19.Start the Administrator Console with http://127.0.0.1:9090/admin. Login with
your user ID, click Submit. You can browse the configuration.

20.Close the browser and stop the ItsoWsAEs server from the Servers view.

21.Change the default server launcher for the ItsoWsDealerWeb and
ltsoWsDealerEJB projects back to the ItsoWsDealer server (in the Properties
Server Preference menu).

Prepare WebSphere AEs for deployment of applications

22.When we started the ItsoWsAEs server from WSAD, it changed the original
AEs server configuration file d:\WebSphere\AppServer\config\server-cfg.xml,
and we have to restore the original. WSAD created a wasTools_bkup
subdirectory with the original configuration file.

Exercise 6. Test and deploy using WebSphere AEs 341

Copy wasTools_bkup\server-cfg_bk_xxxxxx.xml to the config directory, delete
the server-cfg.xml file, and rename the server-cfg_bk_xxxxxx.xml as
server-cfg.xml.

You could also copy from the saved file server-cfgSAVE.xml.
23.Start WebSphere AEs, either:

— From a command window: startserver
— From Start -> Programs -> IBM WebSphere -> Application Server V4.0
AES -> Start Application Server

24 Wait for the message:
WSPLO0571: The server Default Server is open for e-business

25.Start the Administrative Console from Start -> Programs -> IBM WebSphere
-> Application Server V4.0 AES -> Administrator’s Console.

26.Login with your user ID, click Submit.

27.Expand Resources -> JDBC Drivers, select Db2JdbcDriver. Set the server
class path to d:/SQLLIB/java/db2java.zip (or where DB2 is installed) and
click OK.

28.Expand Db2JdbcDrivers, select Data Sources. Click New to define a new
data source. Enter ITSOWSAD as name, jdbc/ITSOWSAD as JNDI name,
ITSO Data Source as description, ITSOWSAD as database name, db2admin
as user ID and password (or the userID of DB2 installation). Click OK at the
bottom.

29.At the top of the panel you should see the message Configuration needs to be
saved. Select the message (or select Save in the menu bar). Click OK in the
save panel.

30.Expand Nodes -> yournode -> Enterprise Applications, and you should see
some samples that are preinstalled. Expand Application Servers -> Default
Server -> Web Container, select HTTP Transports, and you should see three
ports: 9080 is the default built-in HTTP Server, 9090 is the Administrative
Console (look at your browser address field: http://localhost:9090/admin), and
9443 is for SSL. (We defined the server in WSAD that uses port 9080 to run
directly with the HTTP server of AEs.)

31.Expand the EJB Container and you should see some installed sample EJBs.

Deploying an enterprise application to AEs

32.In WSAD, export the EAR file by selecting File -> Export -> EAR file, click
Next. Select the ItsoWsDealerEAR resource, and d:\itsowsdealer.ear as
target directory and file. Click Finish.

33.In the AEs Administrator Console, select Enterprise Applications. Click Install.

342 Self-Study Guide: WebSphere Studio Application Developer and Web Services

34.For the path, click Browse to locate the d:\itsowsdealer.ear file you exported.
Click Next.

35.For EJB JNDI names, the names we set in the extension editor are displayed:

itso/wsad/dealer/Inventory
itso/wsad/dealer/StockUpdate (if the session bean was created)

Click Next.

36.If you defined the session bean (Exercise 5, “EJB development” on
page 329): for EJB Reference mapping, the reference from the session bean
to the entity bean is filled properly.

If you defined the references from the servlet (step 57 in Exercise 5, “EJB
development” on page 329), then the global JNDI names are filled, as well.
Click Next.

37.Database is DB2UDBWIN_72, and the datasource JNDI name should be
jdbc/ITSOWSAD with db2admin (or your own user ID) as user ID. There is no
need to set JNDI names for individual EJBs; click Next.

38.Click Next again; the defaults are fine.

39.Remove the check mark from Re-deploy. WSAD has deployed everything
already. Click Next, review and click Finish.

40.1f the IBM HTTP server is used instead of the built-in server, then the plug-in
must be regenerated and the HTTP Server stopped and started.

41.Save the configuration and exit the console.
42 Perform stopserver and startserver to activate the enterprise application.
43.0pen a regular browser window and enter:

http://yourhostname:9080/ItsoWsDealerWeb/PartList.html
http://yourhostname:9080/ItsoWsDealerWeb/InventoryInputForm.html
http://yourhostname:9080/ItsoWsDealerWeb/InventoryControl.html

Installing the universal test client in AEs (optional)

44 .Note that you cannot test the EJBs using the universal test client, because
the test client is not installed in WebSphere AEs.

45.You also have to set the module visibility for the Default Server so that the test
client can see other Web applications. Start the server (if not started). Use the
administrative console (expand Node to the Default Server). Change the
module visibility value from APPLICATION to COMPATIBILITY and save the
configuration. Exit the administrative console.

46.Stop the server (stopserver command).

Exercise 6. Test and deploy using WebSphere AEs 343

47.To install the universal test client in WebSphere AEs, copy the IBMUTC.ear

directory:

from: WSAD\plugins\com.ibm.etools.websphere.tools\IBMUTC
to: d:\WebSphere\AppServer\installableApps

and run the command:

seappinstall -install d:\websphere\appserver\installableApps\IBMUTC.ear
-expandDir d:\websphere\appserver\installedApps\IBMUTC.ear -ejbDeploy false
-interactive false

48.Start the server (startserver command), and http://localhost:9080/UTC should

bring up the test client.

Stop the AEs server

49.To enable further testing in WSAD, stop AEs (stopserver command).

What you did in this lab

>

Defined a server in WSAD to publish and test with WebSphere Application
Server Single Server (AES)

Tested an application from WSAD in AEs
Configured AEs for deployment
Deployed and installed an application from WSAD into AEs

344 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Profiling an application

What this exercise is about
In this lab we trace a Web application using the profiling tool.

User requirement
Analyze where most time is spent in a Web application.

What you should be able to do

At the end of this lab you should be able to:
» Configure a server for tracing

» Start and stop a trace

» Analyze the trace results

Introduction
We trace the dealer Web application and analyze where the most time is spent.

© Copyright IBM Corp. 2002 345

Exercise instructions

1.

Start WebSphere Studio Application Developer.

Configure server instance

2.

In the Server Perspective, select the ltsoWsDealer instance and edit it
(double-click). Select Enable profile server process.

Disable the just-in-time compiler: On the Environment page, click Add to
define a new variable. Enter java.compiler as name, and NONE as value. (A
value of jitc enables the JIT compiler.)

Save and close the editor.

Agent Controller

5.

In the Windows Services list, make sure that the IBM Agent Controller is
started.

Start the server

6. Start the ItsoWsDealer server in the Server Control Panel view. Check the

Console for message similar to these:

WebSphere AEs 4.0.1 a0130.02 running with process name localhost/
Default Server and process id 1932
Host Operating System is Windows 2000, version 5.0
Java version = J2RE 1.3.0 IBM build cn130-20010609 (JIT disabled),
Java Compiler = NONE

Take note of the process ID, as you will need it later.

Configure the host

7. Open the Profiling Perspective. In the toolbar, find the Profile icon (stop

watch) and click the down-arrow and select Attach -> Java Process.

In the Attach to Java Process dialog, find the process (javaw) with the same
ID as noted in the Console log (select Show all processes if you cannot see
the javaw process with the same ID). Select the process and click >>to move
the process to the target area. Click Next, leave the default names, click Next,
leave the default filters, click Finish.

The javaw process shows up in the Monitors view in the ProfileProject with a
Profiling object under it. Select the Profiling object and Properties (context).

346 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Here you could configure which packages should be excluded or included in
the trace. We will use the defaults, so click Cancel.

Trace an application
10.Select the Profiling object and Start Monitoring (context).

11.In the Server Perspective, open the Properties of the ItsoDealerWeb project
and check that the server preference is ItsoWsDealer. Expand the project,
select the PartList.html file, and Run on Server (context). Enter RR as partial
name and click Retrieve. Be patient, and wait for the result.

12.Click Back to the previous page (left arrow) in the browser, enter L as partial
name, and click Retrieve again. This time, the result arrives much faster.

Trace analysis

13.In the Profiling Perspective, select the Profiling object and Refresh (context).
In the Class Statistics view, click the Update View icon. This action should
display:

— base time in the class
— cumulative time in the class (includes calls to other classes)

14.Switch to the Execution Flow view (use the icons in the toolbar) to graphically
see where the time was spent. Use the zoom buttons to magnify interesting
areas of the graph.

15.Switch to the Method Statistics view to see the time spent in each method.

16.Switch to the Heap view to see the objects that exist in the JVM. This view
can be helpful to diagnose memory leaks.

17.Switch to the Object References view (you may have to open it) to see
objects and the references they hold. References can be the reason that
objects are not garbage-collected.

Close down
18.Select the Profiling object and Stop Monitoring (context).

19.Close the Profiling Perspective (you can optionally save the data as files
under the ProfileProject).

20.In the Server Perspective, close the Web browser and stop the ItsoWsDealer
server. (You may get an internal error.)

21.Edit the ltsoWsDealer server instance, remove the check mark for Enable
profile server process, and remove the java.compiler variable on the

Exercise 7. Profiling an application 347

Environment page (or set the value from NONE to jitc). Save and close the
editor.

What you did in this lab

» Configured a server for tracing
» Started and stopped a trace

» Analyzed the trace to understand the execution flow and time spent in classes
and methods

348 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Create a Web Service

What this exercise is about

In this lab we create a Web Service based on a session EJB that uses two entity
EJBs to query the parts and inventory tables for available parts.

User requirement
Provide a callable service to clients looking for parts.

What you should be able to do

At the end of this lab you should be able to:

» Create a Web Service from a JavaBean

» Understand the Web Service wizard

» Understand the generated WSDL files, the proxy bean and the sample client

» Test a Web Service with the sample client and proxy bean

Introduction

We use an access bean that wraps the session EJB. The Web Service wizard
takes a JavaBean as input. The session bean and the entity EJBs are provided
as a base for this lab.

© Copyright IBM Corp. 2002 349

Exercise instructions

1. Start WebSphere Studio Application Developer.

Make sure that no internal or external (AEs) server is running—stop all
servers that are running.

Import an EJB project

2. Create a new EJB project named ItsoWsManufacturerEJB which points to a
new ltsoWsManufacturerEAR project. Click Next twice. For Java build
settings, on the Library page, click Add Variable, click Browse and select the
XERCES variable (WSAD\plugins\org.apache.xerces\xerces.jar). This is the
XML parser for Java which is used by the session bean. Leave the Path
Extension empty, click OK and Finish.

3. Select File -> Import -> EJB JAR file. Click Next, then Browse to locate the
c:\ws\labscode\exwscreate\importlitsowsmanufacturerejb.jar file. For the
EJB project, select ltsoWsManufacturerEJB (the EAR project is then
preselected as ItsoWsManufacturerEAR). Also select Overwrite existing
resources without warning. Click Finish.

Note: If you are interested how this EJB JAR file was created, see
“Addendum: how the EJB JAR file was created” on page 357 in this exercise.

4. In the J2EE Perspective and view, select the ltsoWsManufacturerEJB
module. There are two entity EJBs (MmPart, MmInventory - mapping to the
MM tables), and one session EJB (Partinquiry).

5. Open the ltsoWsManufacturerEJB module in the extension editor (context).
On the Relationship page you can see the 1:m relationship between Part and
Inventory.

To retrieve the inventory items for a part, a getStocks method is generated
(role name stocks). Similarly, there is a getThePart method to get the part for
an inventory item. You can also see the relationships when expanding the
EJBs in the J2EE view.

On the Binding page you can see the JNDI names of the EJBs specified as
itso/wsad/manu/Xxxxx.

6. Open the Partlnquiry session bean. This session bean retrieves the
inventory items for a part and returns a Vector of Partinventory JavaBeans.
Open the PartinquiryBean Java file and browse the code. You should find:

— private variable for the MmPartHome
— getPartHome method to find the home for the MmPart EJB

350 Self-Study Guide: WebSphere Studio Application Developer and Web Services

— retrievePartinventory method that returns the Vector of Partinventory
beans by finding the MmPart bean for the given part number, retrieving all
the MmInventory beans for the given part, constructing a Partinventory
bean for each one, and adding it to the Vector. This method is the public
business method promoted to the remote interface.

— retrievePartinventoryArray method that returns the same result as array of
Partinventory beans, by converting the Vector to an array. (This method
will not be used in the lab exercise.)

In the Navigator view you can also find the itso.wsad.manu.beans package
with two JavaBeans. One bean is the Partlnventory bean discussed in the
session bean. This bean contains properties for all the attributes of a part and
an inventory item.

The other bean is called InquireParts and is the base for our Web Service. It
returns the result Vector of the session bean as an XML element. This bean
contains:

— Two private fields, for the Partinquiry session bean home and for an XML
document builder

— getPartinquiryHome, to instantiate the partinquiryHome field
— getDocumentBuilder, to instantiate the document builder field
— newElement, which creates a name/value pair for an XML element
— populatePart, which creates the XML tree for a Partinventory bean

— retrievePartlnventory, which is the public business method that locates and
calls the session bean and converts the Vector of Partinventory beans to
an XML element by calling populatePart to create the XML tree for each
item.

Define a server configuration and instance

8.

In the Server Perspective, select the ltsoWsServer project and New ->
Server Instance and Configuration. Enter tsoWsManufacturer as server
name and select WebSphere v4.0 Test Environment as instance type. Click
Finish.

Edit the configuration properties: double-click the ltsoWsManufacturer
configuration in the Server Configuration view. In the Datasource view, select

the Db2JdbcDriver and click Edit. Check that the class path points to the
correct db2java.zip file.

Click Add for data sources. Enter ITSOWSAD as name, jdbc/ITSOWSAD as
JNDI name, and ITSOWSAD as database name. Click OK. Save and close
the configuration.

Exercise 8. Create a Web Service 351

10.Select the configuration and Add Project -> ItsoWsManufacturerEAR.

Create a Web project for the Web Service

11.In the Web Perspective, create a new ltsoWsManufacturerWeb Web project,
which points to the ItsoWsManufacturerEAR project. Click Next. Under
Module Dependencies, select the ltsoWsManufacturerEJB.jar file. Click Next.
For Java build settings, on the Library page, click Add Variable and select the
XERCES variable (d:\\WSAD\plugins\org.apache.xerces\xerces.jar).

Check that the ivjejb35.jar file is in the list of JAR files on the Library page. If
not, click Add External Jars and select the file
d:\WSAD\plugins\com.ibm.etools.websphere.runtime\lib\ivjejb35.jar.

Click Finish.

Copy the server JavaBean from the EJB project

12.In the Web Perspective, select the source folder of the new Web project, and
create a Java package named itso.wsad.manu.server.

13.Select the InquireParts in the ItsoWsManufacturerEJB project, ejbModule,
itso.wsad.manu.beans folder, and Copy from the context menu. Select the
ltsoWsManufacturerWeb project, source, itso.wsad.manu.server package as
destination.

14.0Open the copied InquireParts.java file, and change the package name to
itso.wsad.manu.server. Save and close the changed file.

Create the Web Service from the JavaBean

15.In the Web Perspective, select the itso.wsad.manu.server.InquireParts bean
and New -> Other -> Web Service -> Web Service, click Next. The Web
Service type (JavaBean) and the project (ltsoWsManufacturerWeb) should be
preselected. For defaults, select Start Web service in Web project, Generate
a proxy, and Generate a sample. Select Create folders when necessary. Click
Next.

16.0n the JavaBean selection panel, the InquireParts bean is preselected, click
Next.

17.0n the identity panel, set the Web Service URI to urn:InquireParts, and the
scope to Application. Do not select any of the check boxes. Change the ISD
filename to webApplication/WEB-INF/isd/InquireParts.isd.

The WSDL file names are set to:

webApplication/wsd1/InquireParts-service.wsdl
webApplication/wsd1/InquireParts-binding.wsdl

352 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Change the WSDL schema to:
webApplication/wsd1/InquireParts.xsd
Click Next.

18.0n the Java Beans Methods panel, the retrievePartinventory method is
preselected. Select the method name, leave input encoding as SOAP
(parameters), and output encoding as Literal XML (our output is XML). Select
Show server Java to XML type mappings. Click Next.

19.0n the Java to XML mapping panel:
— Select the String encoding, but leave the default JavaBean mapping.

— Select the Element encoding, but leave the Show and use the default
DOM Element mapping.

— Click Next.

20.0n the proxy generation panel, select SOAP Bindings (preselected). The
folder is correct (/ltsoWsManufacturerWeb/source). Change the class to:

itso.wsad.manu.proxy.InquirePartsProxy
Select Show mappings and click Next.

21.0n the XML to Java mappings panel, select each mapping, but do not change
anything. Click Next. In the SOAP binding mapping panel leave the defaults,
and click Next.

22.0n the test client panel, do not select Launch the test client (this would launch
the universal test client). Click Next.

23.0n the sample generation panel, select Generate a sample, but do not select
Launch the sample. Leave the target JSP folder as set, and click Next.

24.0n the publication panel do not select Launch the UDDI Explorer.
25.Click Finish.

26.Be patient; it takes a while to generate all the code. Also, the
ltsoWsManfufacturer server is started.

Generated files

27.In the Web Perspective, expand the ltsoWsManufacturerWeb project,
webApplication.

28.The wsdl directory contains two generated WSDL files:
— InquireParts-service.wsdl: implementation - how to invoke

— InquireParts-binding.wsdl: interface - how to connect

Exercise 8. Create a Web Service 353

354

29.For publishing of the Web Service to a UDDI registry, unique names must be
assigned to services; we will use:

http://www.redbooks.ibm.com/ITSOWSAD/definitions/InquirePartsRemoteInterface
Open the InquireParts-service.wsdl file. In the Design view, change the
values of <definitions ... xmins:binding and import namespace:

from: http://www.inquireparts.com/definitions/InquirePartsRemotelInterface

to : http://www.redbooks.ibm.com/ITSOWSAD/definitions/InquirePartsRemoteInterface
30.0pen the InquireParts-binding.wsdl file. In the Design view, change the

values of <definitions ... targetNamespace, and xmins:tns:

from: http://www.inquireparts.com/definitions/InquirePartsRemotelInterface
to : http://www.redbooks.ibm.com/ITSOWSAD/definitions/InquirePartsRemoteInterface

Change the values of xmlns:xsd1, and import namespace:

from: http://www.inquireparts.com/schemas/InquirePartsRemotelnterface
to : http://www.redbooks.ibm.com/ITSOWSAD/schemas/PartInventory

Check that the value of <import ... location is:
http://Tocalhost:8080/ItsoWsManufacturerleb/wsd1/InquireParts.xsd
31.Save the WSDL files.

32.The generated file ..\wsdl\InquireParts.xsd is incomplete and does not
contain all the XML elements, because the wizard does not know what the
session bean generates as XML output (DOM tree).

Import the correct schema file. Select the wsdl folder and File -> Import ->
File system, Browse to locate c:\ws\labscode\exwscreate\import and select
only the InquireParts.xsd file. Select Overwrite existing resources and click
Finish. This schema defines the XML structure generated by the session
bean.

33.0pen the InquireParts.isd file (in WEB-INR\isd). It is only used to build the
dds.xml file. This file defines the JavaBean session bean) and the method to
be invoked (retrievePartinventory).

34.0pen the dds.xml file (in webApplication). It is a concatenation of all .isd files.

35.0pen the soap.xml file. It instantiates the XMLDrivenConfigManager class
that looks for the dds.xml file.

36.Close all the files.

37.0pen the web.xml file (in WEB-INF). On the Servlets panel you can find two
servlets that were added to the Web application: rpcrouter, and
messagerouter. The rpcrouter is used in our case, as defined in the
InquireParts-service.wsdl file <soap:address> tag. The servlets are
implemented in the soapcfg.jar file which you can find in the lib folder. Close
the web.xml file.

Self-Study Guide: WebSphere Studio Application Developer and Web Services

View deployed Web Service

38.A Web application to view and configure the Web Service has been
generated into the webApplication\admin folder. Expand the admin folder.

39.Select the index.html file, and Run on Server (context). Click on List all
services and the InquireParts service should be listed. The other actions can
be used to start and stop Web Services (all the started initially).

40.Click on urn:InquireParts to see the details of the service.

Client proxy

41.The client proxy code was generated into source\itso\wsad\manu\proxy as
InquirePartsProxy file. Open the file and browse the code:

— A variable defines the URL of the Web Service.

— The retrievePartinventory method invokes the Web Service using the Call
class from the org.apache.soap.rpc package. You can see the input
parameter and the handling of the response. Close the editor.

Sample client

42.The sample client Web application was generated into the
webApplication\sample\InquireParts folder. There are four files:

— TestClient.jsp is the frameset for the other three files.
— Method.jsp lists the available Web Services.
— Input.jsp provides a form for the input parameter.

— Resulis.jsp creates the client proxy and executes the Web Service using
the input data. It also contains a domWeriter method that generates an XML
file from the result tree.

43.To run the sample client, select the TestClient.jsp and Run on Server
(context). Be patient; wait until the frames appear in the browser.

44 Click the retrievePartinventory method, and the input form should appear.

45.Enter M100000003 as part number and click Invoke. Be patient; wait until the
XML output appears in the output frame.

46.Use the admin application to stop the Web Service, then try to invoke it from
the TestClient. You should get an error message in the output.

47.Start the Web Service again and rerun the TestClient. It should work again.
48.Stop the ltsoWsManufacturer server (or do the optional exercise).

Exercise 8. Create a Web Service 355

Monitoring a Web Service (optional)

49.In the Server Perspective, create a new server instance and configuration
(toolbar icon or File -> New ->Server Instance and Configuration).

50.Enter ltsoWsMonitor as server name, select TCP/IP Monitoring Server as
instance type, and click Finish.

51.Start the ltsoWsManufacturer server (if you stopped it).
52.Start the ltsoWsMonitor server. The console should display:

Monitoring server started
localhost:8081 -> localhost:8080

53.Add the TCP/IP Monitor view to the Server Perspective using Perspective ->
Show View -> TCP/IP Monitor.

54.Select the TestClient.jsp (in the sample Web application) and Run on Server.
You are prompted for the server; select the TCP/IP monitoring server.

55.Run the application (with partNumber M100000003), then maximize the
TCP/IP Monitor view and click on each request in the left pane to see the
input and output streams. The XML response is not easy to see in this format.

56.To see the SOAP requests we have to modify the client proxy. Edit the
InquirePartsProxy file (in ltsoWsManufacturerWeb\source).

57.Change the URL and save the code:

from: http://localhost:8080/ItsoWsManufacturerWeb/serviet/rpcrouter
to : http://lTocalhost:8081/ItsoWsManufacturerWeb/servlet/rpcrouter

58.Rerun the application, then switch to the TCP/IP Monitor view. The last
request (ltsoWsManufacturerWeb/servlet/rpcrouter) shows the SOAP request
input and output and you can see the XML in a good format.

59.Change the InquirePartsProxy file back to port 8080, save, and close the
editor.

60.Close the TCP/IP Monitor view.
61.Stop the ltsoWsMonitor server.
62.Stop the IltsoWsManufacturer server.

What you did in this lab

» Created a Web Service based on a session enterprise bean
» Used the Web Services administrative application
» Tested the Web Service using the generated sample client

356 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Addendum: how the EJB JAR file was created

1.

Create a new EJB project named ItsoWsManufacturerEJB which points to a
new ltsoWsManufacturerEAR project. Click Next. For Java build settings, on
the Library page, click Add Variable, click Browse and select the XERCES
variable (WSAD\plugins\org.apache.xerces\xerces.jar). This is the XML
parser for Java which is used by the session bean. Click Finish.

. Create packages itso.wsad.manu.ejb and itso.wsad.manu.facade under

the ejpModule folder.

Create CMP entity beans with association

3.

Create a new CMP entity bean named MmPart in itso.wsad.manu.ejb, with
fields: partNumber (String, key), name (String), description (String), weight
(double), imageUrl (string). Use single key attribute as the key class.

Create a new CMP entity bean named Mmlnventory in itso.wsad.manu.ejb,
with fields: itemNumber (java.lang.Long, key), quantity (int), cost
(java.math.BigDecimal), shelf (String), location (string). Use single key
attribute as the key class.

Create an association: select the EJB module and Open With -> EJB
Extension Editor. On the relationships page, click Add and define:
InventoryForPart, between MmPart and MmInventory, roles thePart and
stocks, navigable, 1..1 and 0..m (1:m). Click Apply. Save and close the
extension editor.

Complete the code

6.

Edit MmPartBean.java. In the ejbCreate method, before the return, add:
this.imageUrl = "";

Add method to return the key value:

public java.lang.String getPartNumber() { return partNumber; }

Select the getPartNumber method in the Outline, and Enterprise Bean ->
Promote to Remote Interface. Save the code.

Edit MmiInventoryBean.java. Replace the ejbCreate method with:

public java.lang.Long ejbCreate(java.lang.Long itemNumber,
itso.wsad.manu.ejb.MmPart aThePart)
throws javax.ejb.CreateException {
_initLinks();
this.itemNumber = itemNumber;
this.quantity = 1;
this.cost = new java.math.BigDecimal(0.0);
try { this.setThePart(aThePart); }
catch (java.rmi.RemoteException ex)

Exercise 8. Create a Web Service 357

{ throw new javax.ejb.CreateException("Create inventory failed
for part "+aThePart); }
return null;

}
10.Replace the ejbPostCreate method with:

public void ejbPostCreate(java.lang.Long itemNumber,
itso.wsad.manu.ejb.MmPart aThePart)
throws javax.ejb.CreateException {}

11.Add a method to return the key value:
public java.lang.Long getItemNumber() { return itemNumber; }

12.Save the code. Select the ejbCreate method in the Outline, and Enterprise
Bean -> Promote to Home Interface. Select the getltemNumber method in the
Outline, and Enterprise Bean -> Promote to Remote Interface.

13.Edit MmInventoryHome.java. Delete the create method with only one
parameter. Save and close.

14.You may have to save the MminventoryBean again to get rid of the error
messages.

Import beans for the Web Service

15.Create a new itso.wsad.manu.beans package under the ejbModule folder
(Navigator view). Import the two files Partinventory.java and InquireParts.java
from c:\ws\labscode\exwscreate\beans. The Partinventory bean will be
used in the session bean, and the InquireParts bean will be used for the Web
Service. (The second file will have errors for now.)

Create session bean

16.Create a session bean named Partlnquiry in itso.wsad.manu.facade. Click
Finish.

17.Edit PartinquiryBean.java. Replace the code with the content of the file

c:\ws\labscode\exwscreate\ejbcode\PartinquiryBean.java. This code has
the business methods. Save the code.

18.Select the retrievePartinventory and retrievePartinventoryArray methods in
the Outline, and Enterprise Bean -> Promote to Remote Interface.

Set EJB references

19.Select the EJB module and Open With -> EJB Editor. On the References
page select the Partlnquiry bean, click Add, and create a new reference:
ejb/MmPart, Entity, itso.wsad.manu.ejb.MmPartHome, itso.....MmPart,
MmPart (identical to the reference under Mminventory). Save and close.

358 Self-Study Guide: WebSphere Studio Application Developer and Web Services

20.Select the EJB module and Open With -> EJB Extension Editor. On the
Bindings page: For the ltsoWsManufacturerEJB module, the data source
JNDI name must be jdbc/ITSOWSAD with db2admin as user ID/password.

— Set the JNDI names for the beans to itso/wsad/manu/MmPart,
itso/wsad/manu/Mminventory and itso/wsad/manu/Partinquiry.
— Set the JNDI names for the references to the same values.

21.Save and close.

Create mapping
22.Select the EJB module and Generate -> EJB to RDB Mapping. Select Meet In
The Middle and Open mapping editor after completion, click Next.

23.Database connection: Select Use existing connection ConITSOWSAD, click
Next. Select tables MMINVENTORY and MMPARTS, click Next. Select Match
By Name, click Finish and the mapping editor opens.

24.Complete the mapping by expanding the beans (left) and tables (right) and
dragging first the beans (from left) to the matching tables (right), and then the
attributes to the columns.

To map the association: drag the attribute thePart:MmPart in the Inventory
bean to the ITEMPART:MMPARTS column in the INVENTORY table. (This
maps both directions of the association.)

25.Save the mapping and close the editor.

Generate deployed code

26.Generate the deployed code by selecting the EJB module and Generate ->
Deploy and RMIC Code. Select all beans and click Finish. The generated
classes are visible in the Navigator view.

You will get an error in EJSJDBCPersisterCMPMmInventoryBean.java. Open
the file (double-click the error in the Tasks view) and change the references to
inkey.partNumber to inkey.

Export EJB JAR

27.Create the JAR file by selecting File -> Export -> EJB JAR file, click Next.
Select the ltsoWsManufacturerEJB module and enter the name of an output
file (c:\ws\labscode\excreate\import\itsowsmanufacturerejb.jar). Select Export
source files and click Finish.

Exercise 8. Create a Web Service 359

360 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Deploy and test a Web
Service

What this exercise is about

In this lab we deploy the Web Service and the sample client to WebSphere
Application Server AEs.

User requirement
Deploy the Web Service to a production machine.

What you should be able to do
At the end of this lab you should be able to:

» Configure ports in WebSphere AEs
» Deploy an enterprise application using the SEAppInstall command
» Deploy a Web Service and administer the Web Service

» Run the sample test client
Introduction

We configure AEs for deployment and deploy the enterprise application with the
Web Service.

© Copyright IBM Corp. 2002 361

Exercise instructions

1. Start WebSphere Studio Application Developer.

Prepare the Web application

2. In the Web Perspective, expand the ltsoWsManufacturerWeb project -
source - itso - wsad - manu - proxy, and edit the InquirePartsProxy.java file.
Notice how the rpcrouter is invoked:

http://localhost:8080/ItsoWsManufacturerieb/servlet/rpcrouter

3. WebSphere AEs by default listens to port 9080, or port 80 when using the
HTTP server. For deployment we can either change the code here, or we
configure AEs to also listen on port 8080 (which is what we will do).

4. Close the editor without changing anything.

5. For deployment we require an EAR file. Select File -> Export -> EAR file. For
resources, select the ltsoWsManufacturerEAR project. For the export
location, Browse to c:\ws\labscode\exwsdeploy\EARfiles, and enter
itsowsmanufacturer.ear as file name. Click Finish to create the EAR file.

Prepare WebSphere AEs for port 8080

6. Make sure that no server runs in WSAD.

7. Check that the original WebSphere AEs configuration file was restored
(d:\WebSphere\AppServer\config\server-cfg.xml) if you used remote testing
in Exercise 6, “Test and deploy using WebSphere AEs” on page 339.

(Otherwise, copy wasTools_bkup\server-cfg_bk_xxxxxx.xml to the config
directory, delete the server-cfg.xml file, and rename the
server-cfg_bk_xxxxxx.xml as server-cfg.xml.)

8. Start WebSphere AEs (startserver command).

9. Open the Administrator's Console with http://localhost:9090/admin (or Start
-> Programs -> IBM WebSphere -> Application Server V4.0 AES ->
Administrator’s Console). Login with your user ID, then click Submit.

10.Expand Nodes -> yournode -> Application Servers -> Default Server -> Web
Container -> HTTP Transports. You should see ports 9080, 9443, and 9090.
Click on HTTP Transports. Click New. Enter * as host name, 8080 as port,
and click OK.

11.Expand Virtual Hosts -> default_host and click on Aliases. Click New. Enter *
as host name, 8080 as port, and click OK.

12.Save the configuration and Exit the Console.

362 Self-Study Guide: WebSphere Studio Application Developer and Web Services

13.Stop WebSphere AEs (stopserver command).

Install the EAR file with EJBs and Web applications

14.To install the EAR file, use this command:

SEAppInstall
-install c:\ws\labscode\exwsdeploy\earfiles\itsowsmanufacturer.ear
-expandDir d:\websphere\appserver\installedApps\itsowsmanufacturer.ear
-ejbDeploy false -interactive false

You can use the c:\ws\labscode\exwsdeploy\installManu.bat file to run this
command—but be sure to check the directory names, which may be different
than for your installation.

15.Start WebSphere AEs (startserver command).

16.0pen the Administrator’s Console with http://localhost:9090/admin and
login with your user ID, then click Submit.

17.Expand Nodes -> yournnode -> Enterprise Applications and you should see
the installed ltsoWsManufacturerEAR application.

Testing the deployed Web Service
18.To test the Web Services administration client, open a browser and enter:
http://Tocalhost:9080/ItsoWsManufacturerWeb/admin/index.html
19.List the services, stop the service, and start the service.
20.To test the Web Service, enter:
http://localhost:9080/ItsoWsManufacturerWeb/sample/InquireParts/TestClient.jsp

21.Click the retrievePartinventory method and enter M100000003 as part
number and click Invoke. The output should appear as an XML file.

22.Use the admin application to stop the Web Service, then run the test client
again. Restart the Web Service.

23.Stop WebSphere AEs (stopserver command).

What you did in this lab

» Configured AEs with an additional port

» Exported an enterprise application with a Web Service and installed it in
WebSphere AEs

» Tested the deployed Web Service using the test client

Exercise 9. Deploy and test a Web Service 363

364 Self-Study Guide: WebSphere Studio Application Developer and Web Services

10

Using a Web Service in a
client application

What this exercise is about

In this lab we create a client application that uses the Web Service. In the client,
we transform the XML result into HTML using an XSL style sheet.

User requirement
Create a client application to query the manufacturer parts database using the
Web Service.

What you should be able to do
At the end of this lab you should be able to:

» Use the Web Service wizard to create a client proxy and sample client
application

» Create a real client application that invokes the Web Service
Introduction

We implement an HTML page that invokes a servlet that invokes the Web
Service. The resulting XML file is transformed into HTML.

© Copyright IBM Corp. 2002 365

Exercise instructions

1. Start WebSphere Studio Application Developer.

Define a Web project for the client

2. In the Web Perspective, define a new Web project named ItsoWsClientWeb,
pointing to a new IltsoWsClientEAR project. Click Finish.

3. Web Service clients can only be created from WSDL files in their own project.
In the Web Perspective, create a wsdl folder under webApplication.

4. Expand the ItsoWsManufacturerWeb project -> webApplication -> wsdl and
select the InquireParts-service.wsdl file. Select copy from the context
menu, and point to ltsoWsClientWeb\webApplication\wsdl for the destination
folder.

5. In the Server Perspective (Configuration view), add the ltsoWsClientEAR to
the ItsoWsManufacturer server (Add Project in context).

Start the server

6. When creating a client with the Web Service wizard, certain files are retrieved
from the server. In the Server Perspective, start the ltsoWsManufacturer
server. (Note that an external WebSphere AEs server must be stopped.)

Generate the Web Service proxy and sample client

7. Inthe Web Perspective, select the ltsoWsClientWeb project and New -> Other
-> Web Services -> Web Service client. The Web project should be
preselected, so click Next.

8. Web Service file selection: the InquireParts-service.wsdl should be
preselected, so click Next.

9. Web Service proxy generation: select SOAP Binding, the folder is set to
source, for the class enter itso.wsad.wsclient.proxy.InquirePartsProxy.
Select Show mappings, then click Next.

10.XML to Java mappings: leave the defaults, click Next.
11.SOAP binding mapping configuration: leave defaults, click Next.
12.Test client: do not select Launch the test client, click Next.

13.Sample generation: select Generate a sample, but do not select Launch the
sample. Click Finish.

366 Self-Study Guide: WebSphere Studio Application Developer and Web Services

14.Study the generated classes. The folder source\itso\wsad\wsclient\proxy
contains the InquirePartsProxy file. This class contains the
retrievePartinventory method for the client to invoke the Web Service.

Test the sample client

15.0pen the Properties (context) of the ltsoWsClientWeb project. Notice in the
Java Build Path the JAR files that were added to the Library page.

Select Server Preferences and make the ltsoWsManufacturer server the
preferred instance (click Apply). Close the properties dialog.

16.Select the TestClient.jsp (in webApplication\sample\lnquireParts) and Run
on Server (context). Select Open Web browser (not the TCP/IP Monitor).

17.Select the retrievePartinventory method and run it with a part number of
M100000003. It should work.

Build the client application

18.For the client, we want to translate the returned XML document into HTML
using the XALAN style sheet processor.

19.0pen the properties of the ltsoWsClientWeb project, and in the Java Build
Path -> Libraries page, click Add External JAR file and add the
WSAD\plugins\com.ibm.etools.xalanrt\xalan.jar file. Click OK.

20.Create a new servlet (toolbar icon or New -> Web -> Serviet). Select
ltsoWsClientWeb/source as folder, enter itso.wsad.wsclient.servlet as
package, PartinventoryServlet as name, javax.servlet.http.HttpServiet as
superclass, generate doGet and doPost methods. Click Next.

21.Select Add to web.xml (preselected) and click Finish.

22.The new servlet is open in the editor. Copy/paste the code from
c:\ws\labscode\exwsuse\wsservlet\PartinventoryServlet.txt to complete
the servlet source code. Save and close the servlet.

23.Import the HTML and XSL files. Select the webApplication folder and File ->
Import -> File system, click Browse to c:\ws\labscode\exwsuse\wsclient
and select the folder.

For the target location, specify ltsoWsClientWeb/webApplication/wsclient so
that a subfolder is created. Click Finish.

Test the client application

24 Restart the ItsoWsManufacturer server. This loads the ltsoWsClientWeb
project, as well as the ltsoWsManufacturerWeb and EJB projects.

Exercise 10. Using a Web Service in a client application ~ 367

25.Select the Partlnventory.html file (in wsclient) and Run on Server. Execute
the part inquiry with part number M100000003. The servlet is invoked, and it
uses the proxy to invoke the Web Service, which invokes the session bean
(through the access bean), which uses the entity beans to access the
database. The resulting XML file is transformed into HTML using the XSL
style sheet.

26.Stop the ltsoWsManufacturer server.

Deploy the client application (optional)

27.Create an EAR file for the ItsoWsClientEAR project (itsowsclient.ear into
c:\ws\labscode\exwsuse\earfiles).

28.Run SEApplnstall to install the EAR file (use the installClient.bat file).

29.Start the AES server.

30.0pen a browser with
http://Tocalhost:9080/ItsoWsClientWeb/wsclient/PartInventory.html

31.Enter a part number and run the application

32.Stop the AEs server.

What you did in this lab

» Defined a Web project for the client application
» Used the Web Service wizard to create the base code for the client

» Implemented a client application consisting of an HTML page, a servlet, and
an XSL style sheet

» Tested the client application
» Deployed the client application in WebSphere Application Server AEs.

368 Self-Study Guide: WebSphere Studio Application Developer and Web Services

11

Web Service publishing in
the UDDI registry

What this exercise is about
In this lab we publish a Web Service to a UDDI registry and retrieve the definition
of a Web Service from the registry.

User requirement
Publish a Web Service to make it available and searchable on the Web.

What you should be able to do

At the end of this lab you should be able to:

» Work with the UDDI registry to create a business entity
» Publish a Web Service

» Find published Web Services

» Retrieve the WSDL files of a Web Service

Introduction

We use the IBM Test Registry or the WebSphere UDDI Registry to publish and
find Web Services.

© Copyright IBM Corp. 2002 369

Which UDDI registry to use

If you have an Internet connection, you can use the IBM Test Registry.
Otherwise, you can install the IBM WebSphere UDDI Registry and work with a
registry on your own machine.

Use the URLs listed below to connect to the UDDI registry.

IBM Test Registry

From an external browser:

http://www-3.ibm.com/services/uddi/testregistry/index.html

From a program (UDDI Explorer) using the UDDI API:

http://www-3.ibm.com/services/uddi/testregistry/inquiryapi
https://www-3.ibm.com/services/uddi/testregistry/protect/publishapi

IBM WebSphere UDDI Registry

For the beta code available February 2002, the URLs are listed here. For later
code, check the product documentation.
From an external browser:

http://Tocalhost:9080/uddiguibeta

From a program (UDDI Explorer) using the UDDI API:

http://Tocalhost:9080/uddibeta/inquiryapi
http://Tocalhost:9080/uddibeta/publishapi

Attention: Some of the exercise instructions do not work with the beta code of
the WebSphere UDDI Registry.

IBM WebSphere UDDI Registry Preview

The IBM WebSphere UDDI Registry Preview is the predecessor for the beta
code, but it is no longer available for the Windows platform.

From an external browser:

http://hostname/services/uddi/home.jsp

From a program (UDDI Explorer) using the UDDI API:

http://hostname/services/uddi/inquiryapi
http://hostname/services/uddi/publishapi

370 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Exercise instructions

1.

Start WebSphere Studio Application Developer.

Register a user ID and password

2.
3.

4.

Connect to the registry using an external browser.

You have to register to use the registry and get a user ID and password. Once
you have registered, you can login to perform actions. However, we will use
WSAD to connect to the registry to perform the actions.

Note that you can only define one business entity with one user ID in the test
registry.

Close the browser.

Connecting to the registry

5.

In the Web Perspective, select the ItsoWsDealerWeb project, and File ->
Import -> UDDI. Click Next, then click Finish. Be patient; this starts an internal
server and opens a browser with the URL.

http://lTocalhost:xxxx/uddiexplorer/uddiexplorer.jsp
For the IBM Test Registry:

— Click on IBM Test Registry, and a number of toolbar icons appear in the
right-hand pane.

For the WebSphere UDDI Registry:

— Click on UDDI Main. Enter WebSphereUDDI Registry as name, and the
inquiry APl URL listed under “Which UDDI registry to use” on page 370.

— Click Go, and the WebSphere UDDI Registry should appear in the
Navigator.

— Click on WebSphere UDDI Registry, and a number of toolbar icons appear
in the right-hand pane.

— Click on the Add to Favorites icon (the flag at top right) to add this registry
to the Favorites, and you never have to enter the URL again.

Creating a business entity in the registry

7.

Click on the Publish Business Entity icon. This opens a login form where you
enter the user ID and password you obtained.

For the WebSphere UDDI Registry, you also have to enter the publish URL.

Exercise 11. Web Service publishing in the UDDI registry 371

Click Go.
8. The form to define a business entity opens up. Enter:

— Name: your name

— Description: anything

— Identifiers: click Add, and enter phone number as key name and any
number as value (for example).

— Categories: click Add, select NAICS, click Browse and select a suitable
category, for example, Retail Trade -> Motor Vehicles and Parts Dealers ->
Automotive Parts, Accessories ... -> Automotive Parts and Accessories
Stores (44131). (You may skip this for the WebSphere UDDI Registry.)

Click Go, and the business entity is created.

Publishing a Web Service to the registry

9. To publish a Web Service, the server that runs the Web Service must be
started. Start the ItsoWsManufacturer server in the Server Perspective.

Note: If the UDDI browser is not open, you can select the
ltsoWsManufacturerWeb project and File -> Export -> UDDI, select the
InquireParts-service.wsdl file, and click Finish.

10.Select the business entity in the Navigator. You can also use the search
facility (Find Business Entity) to locate the business entity.

11.Click the Publish Business Service icon. Login if necessary. A form appears.
In the implementation URL enter:

http://Tocalhost:8080/ItsoWsManufacturerWeb/wsd1/InquireParts-service.wsdl
Note: This is prefilled if you started the browser with File -> Export -> UDDI.

12.For the description enter anything (for example, ITSO workshop manufacturer
parts inventory Web Service).

13.For the categories, click Add and locate the 44131 entry. (You may skip this
for the WebSphere UDDI Registry.)

14.Click Go. The InquirePartsService is added to the business entity, and also
an interface is added with the name (URL):

http://www.redbooks.ibm.com/ITSOWSAD/definitions/InquirePartsRemoteInterface
When you click on this interface, you can see the bindings.wsdl file listed.
15.Close the UDDI Explorer. Leave the ltsoWsManufacturer server running.

Finding a Web Service in the registry

16.In the Web Perspective, select the ltsoWsDealerWeb project and File ->
Import -> UDDI, click Next, then click Finish. The UDDI browser opens.

372 Self-Study Guide: WebSphere Studio Application Developer and Web Services

17.Select the IBM Test Registry or the WebSphere UDDI Registry.
18.Expand the registry entry, and click on Find Business Entity.

19.Enter the first letters of your business entity and click Go. You should find your
business entity in this way.

20.Expand the business entity and click Find Business Services. Click Go and
the InquirePartsService should be found.

21.Expand the InquirePartsService and click Find Service Interfaces. Click Go
and you should see your interface.

Importing a Web Service from the test registry

22.To import the WSDL files, the ItsoWsManufacturer server must be running.

23.Select the InquirePartsService and click the Import to Workbench icon. On
the import panel, select the ItsoWsDealerWeb project, then click Go.

24.Select the interface (http://www.redbooks.ibm.com/...) and click the Import
to Workbench icon. On the import panel, select the ItsoWsDealerWeb project,
then click Go.

25.In WSAD you should now see both WSDL files in the ltsoWsDealerWeb
project, webApplication folder.

26.With these files we could now implement client applications, as done in the
previous exercise.

27.Close the UDDI Explorer and stop the ltsoWsManufacturer server.

Application with dynamic Web Services (optional)

28.In the Web Perspective, select the ltsoWsClientWeb project and open the
Properties (context). In the Java Build Path, Library page, add two variables
(click Add Variables, click Browse, click New to define the variables):

— UDDI4J, pointing to
WSAD/plugins/com.ibm.etools.websphere.runtime/1ib/uddi4j.jar
— MAILJAR, pointing to
WSAD/plugins/com.ibm.etools.servletengine/1ib/mail. jar
Click OK to close the properties.
29.Add two new folders to the project:
— wsdynamic, under source\itso\wsad

— wsdynamic, under webApplication

Exercise 11. Web Service publishing in the UDDI registry 373

30.Create a new servlet named DynamicServlet in itso.wsad.wsdynamic
(subclass of HttpServlet) and add it to the web.xml file.

31.Replace the code of the servlet with the code from
c:\labscode\exwsuddi\dynamic\DynamicServlet.java, and save the file.

32.Import the files UddiServicelmplementer.java and UddiTestList.java from
ic:\labscode\exwsuddi\dynamic into the itso.wsad.wsdynamic folder.

33.Import the files DynamicPartinventory.html and DynamicPartinventory.xsl
from c:\labscode\exwsuddi\dynamic into the webApplication\wsdynamic
folder.

34.Study the UddiServicelmplementer code. This helper class accesses the
UDDI Registry starting from a given provider and service name. It finds the
tModels from the service name, finds the business entities from the provider
name, follows to their services, and finally finds the implementers of the given
service. The access points of the implementers are returned.

Attention: You have to use the correct API URLs to connect to either the IBM
Test Registry or the WebSphere UDDI Registry. Activate the correct code at
the beginning of the getimplementers method.

35.Study the DynamicServlet code. The servlet is similar to the
PartinventoryServlet. However, it uses the UddiServicelmplementer helper to
get the access points, then each access point is passed into the
PartinventoryProxy to invoke the Web Service. The resulting XML file of each
access is converted into HTML by an XSL style sheet.

36.The HTML and XSL files are basically the same as for the fixed Web Service.
The only real change is that the XSL only produces a part of the final HTML
file. The start and end of the HTML are produced by the servlet.

Test the dynamic Web Services (optional)

37.1f you are using the IBM Registry Preview, make sure it is started.

38.1In the Java Perspective, select the UddiTestList program and run it. This is a
stand-alone program that uses the UddiServicelmplementer to list the
services. It should find your service.

39.With the IBM Test Registry:

— Start the ItsoWsManufacturer server in the Server Perspective. Select the
DynamicPartinventory.html file and Run on Server.

— Enter a part number (M100000003) and click Retrieve. It should all work.
— Stop the ItsoWsManufacturer server.

374 Self-Study Guide: WebSphere Studio Application Developer and Web Services

With the WebSphere UDDI Registry product, it is difficult to test the servlet
because of port conflicts between WebSphere AEs and the internal
ltsoWsManufacturer server. Therefore, we can only use WebSphere AEs:

— You must have completed Exercise 9, “Deploy and test a Web Service”
and installed the ltsoWsManufacturerEAR in WebSphere AEs.

— Start WebSphere AEs (where the WebSphere UDDI Registry is running).
— Export an EAR file for the ltsoWsClientEAR project (itsowsclient.ear)
— Uninstall the ltsoWsClientEAR application in AEs:
seappinstall -uninstall ItsoWsClientEAR -delete true
— Install the new ltsoWsClientEAR application in AEs:

seappinstall -install itsowsclient.ear
-expandDir d:\websphere\appserver\installedApps\itsowsclient.ear
-ejbDeploy false -interactive false

— Start WebSphere AEs (where the WebSphere UDDI Registry is running).

— Start the servlet using:
http://localhost:8080/ItsoWsClientWeb/wsdynamic/DynamicPartInventory.html

— Enter a part number (M100000003) and click Retrieve. It should all work.

— Stop WebSphere AEs.

What you did in this lab

» Created a business entity in the UDDI registry
» Published a Web Service to the registry
» Searched the registry for Web Services

» Retrieved implementation and bindings files for a Web Service through the
registry

» Optionally worked with an application using dynamic Web Services

Exercise 11. Web Service publishing in the UDDI registry 375

376 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Part 3

Appendixes

378 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Installation and
configuration

In this appendix we describe how to install the products to perform the exercises.
See “System requirements for downloading the Web material” on page 388 for
hardware prerequisites.

Windows NT or Windows 2000

Install Windows NT 4.0 workstation (or server) with Fixpack 6a, or as an
alternative, Windows 2000 Professional with service pack 1 or 2.

Browser
You must have a recent Internet browser installed as well:
» Netscape 4.7
» Internet Explorer 5.0.1

© Copyright IBM Corp. 2002 379

DB2 Version 7.2 Enterprise Edition (or 7.1 Fixpack 3)

Installation procedure for DB2 Enterprise Edition:

» Select DB2 Enterprise Edition.

» Select DB2 Application Development Client.

» Do not select DB2 Administration Client (optional).
» Select custom install with:

— Communication protocols
— Administration/Configuration tools
— Getting Started

Other components are optional, not used in workshop.
» Directory: ¢:\SQLLIB (or d:\SQLLIB).
» Create the DB2 instance:

— User ID/password: db2admin/db2admin (use same value)
» Install.

» Cancel the product registration, which starts afterwards
(you can also remove the registration from the Startup folder).

Fixpack
» Stop all DB2 services.
» Install FixPack 3 for DB2 Version 7.1.

» Install latest FixPack for DB2 Version 7.2.

Create sample database

» Run First Steps after reboot and create the SAMPLE database
(only DB2 UDB Sample, not other samples).

Change to JDBC 2.0

Access to DB2 using DataSource only works with JDBC 2.0.

» Stop all DB2 processes from the Services list.

» Change to JDBC 2.0 by running:
c:\SQLLIB\javal2\usejdbc2.bat

» Restart DB2 processes.

380 Self-Study Guide: WebSphere Studio Application Developer and Web Services

WebSphere Application Server Advanced Version 4

Install the Application Server Single Server (AEs) Version 4.01 to run the
examples in a real environment.

Installation procedure:

» Run SETUP.EXE.

» Language English.

» Select Typical install; this also installs HTTP Server and JDK 1.3.

» User ID: use your Windows NT user ID (with admin authority).

» Directory: c:\\WebSphere\AppServer, c:\IBM HTTTP Server (or d:\...).

» Install.

» Restart the system.

» Install Fixpacks (not required for exercises).

Verification

» Edit c:\IBM HTTP Server\conf\http.conf. This file should contain these lines

at the very end:

LoadModule ibm_app_server_http_module
D:/WebSphere/AppServer/bin/mod_ibm_app_server_http.d11

Alias /IBMWebAS/ "D:/WebSphere/AppServer/web/"

Alias /WSsamples "D:/WebSphere/AppServer/WSsamples/"

WebSpherePTuginConfig D:\WebSphere\AppServer\config\plugin-cfg.xml

If these lines are missing, add them, and stop and start the HTTP server.

Run First Steps (should be started automatically); otherwise, Program -> IBM
WebSphere -> Application Server V4.0 AEs -> First Steps.

— Start the application server (wait for the command window to complete).
— Launch Administrative Console:

e Login with your system user ID.

e Expand Node - Enterprise applications (you should see the sample
applications).

e Config -> Save.

e Exit.

* Close browser.

— Close First Steps.

— Stop the application server in a command window: stopserver.

Appendix A. Installation and configuration 381

WebSphere Studio Application Developer

382

Install Version 4.0.2 of the Application Developer. The instructions for the
exercises have been updated for Version 4.0.2, but the samples also work on
Version 4.0. (The content and sequence of some dialogs and SmartGuides has
changed a little bit.)

Installation procedure:

>

>

>

Run SETUP.EXE.

Accept the license.

Change directory to ¢:\\WSAD (or d:\\WSAD).
Select Java Developer.

Select CVS as team repository.

Install.

Verification

>

>

>

Start WSAD: Programs -> IBM WebSphere Studio Application Developer ->
IBM WebSphere Studio Application Developer.

You should see the Welcome panel.
Stop WSAD using File -> Exit.

Self-Study Guide: WebSphere Studio Application Developer and Web Services

WebSphere UDDI Registry

Download the UDDI registry code from:
http://www7b.boulder.ibm.com/wsdd/downloads/UDDIregistry.html

You have to register to download the code.

The IBM WebSphere UDDI Registry can be used instead of the IBM Test
Registry for Web Services publishing. This is especially useful for testing on a
machine that is not connected to the Internet.

The IBM WebSphere UDDI Registry is not a complete product at the time of the
writing of this redbook (February 2002):

» The beta code for Windows does not work with the Application Developer for
publishing of business services.

» Later versions may provide the required functionality.

» You can perform the UDDI Explorer exercise using the IBM UDDI Test
Registry.

Installing the WebSphere UDDI Registry
» Follow the instructions that come with the product.

» Install the product into WebSphere Application Server AEs.

Appendix A. Installation and configuration 383

ITSO workshop sample code

The sample code is available from the Redbooks Web site at:
ftp://www.redbooks.ibm.com/redbooks/SG246407/

Download the sg246407code.zip file and expand to the C drive. Select the
option to use the folder names. This creates a directory structure under:

c:\ws\labscode\ex......

Create DB2 database for exercise

The exercises are based on a DB2 database named ITSOWSAD.
» Open a DB2 command window.

» Go to the directory: c:\ws\1abscode\setup

» Run the commands:
db2 -tf itsowsad.ddl (define database and tables)
db2 -tf itsowsad.sql (Toad sample data into tables)

» The database is created with four tables and sample data:
itso.aaparts, itso.aainventory <=== dealer
itso.mmparts, itso.mminventory <=== manufacturer

» The sample data is listed in Part 2, “Exercises”.

384 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Cloning of machines

You can install one machine and then copy the whole drive to another machine,
but you should then run disconnected, because all machines have the same
machine name.
If you change the machine name to run connected:
» Change the Computer Name (Control Panel -> Network).
» Reboot.
» HTTP Server:
— Edit c:\IBM HTTP Server\confihttpd.conf:
ServerName XXXXXX.Yyyyyy.com (xxxx=new computer name)
» WebSphere AEs:
— Edit c:\WebSphere\AppServer\bin\SetupCmdline.bat
SET COMPUTERNAME=xXXXXX
— Edit the files:

c:\WebSphere\AppServer\config\server-cfg.xml
c:\WebSphere\AppServer\config\server-cfg.xml~
c:\WebSphere\AppServer\config\template-server-cfg.xml~
c:\WebSphere\AppServer\config\admin-server-cfg.xml

and change the line:

<nodes xmi:id="Node_1" name="xxxxxx">

Performing the exercises

After the products are installed, you can perform the exercises.

Sample code

The instructions refer to c:\ws\1abscode\xxxxx, and that is the location where
you should have installed the sample code.

Appendix A. Installation and configuration 385

386 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material

The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246407

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-6407.

© Copyright IBM Corp. 2002 387

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material

The additional Web material that accompanies this redbook includes the

following files:

File name Description
sg246407code.zip Sample code for exercises
s$g246407solution.zip Solutions of exercises

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space 3GB

Operating System Windows NT or Windows 2000
Processor 550 MHz or better

Memory 385 MB, recommended 512 MB

How to use the Web material

Unzip the contents of the Web material sg246407code.zip file onto your hard
drive. This creates a folder structure c:\ws\labscode\exxxxx, where exxxxx

refers to an exercise:

exjava Java development

exdata Relational data center

exxml XML development

exweb Web development

exejb EJB development

exdeploy Deployment of Web and EJB applications
exwscreate Web Service creation

exwsdeploy Web Service deployment
exwsuse Web Service usage

exwsuddi Web Services and UDDI

setup Setup of DB2 database and tables

The sg246407solution.zip file contains a similar folder structure with directories
c:\ws\labssolutions\exxxxx that contain ZIP, WAR, or EAR files with the project

content created in Application Developer.

388 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks

on page 391.

>

© Copyright IBM Corp

Web Services Wizardry with WebSphere Studio Application Developer,
SG24-6292

IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176
WebSphere Version 4 Application Development Handbook, SG24-6134
Programming J2EE APIs with WebSphere Advanced, SG24-6124

Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server V2.1,
SG24-6284

EJB Development with VisualAge for Java for WebSphere Application Server,
SG24-6144

Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

Programming with VisualAge for Java Version 3.5, SG24-5264

. 2002 389

Version 3.5 Self Study Guide: VisualAge for Java and WebSphere Studio,
SG24-6136

How about Version 3.5? VisualAge for Java and WebSphere Studio Provide
Great New Function, SG24-6131

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755

Migrating WebLogic Applications to WebSphere Advanced Edition,
SG24-5956

Self-Service Applications Using IBM WebSphere V4.0 and IBM MQSeries
Integrator, SG24-6160

Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864

The XML Files: Using XML for Business-to-Business and
Business-to-Consumer Applications, SG24-6104

The XML Files: Using XML and XSL with IBM WebSphere V3.0, SG24-5479

Referenced Web sites

These Web sites are also relevant as further information sources:

>

Apache SOAP:

http://www.apache.org/soap/

The Apache XML project:
http://www.apache.org/xerces-j/, http://www.apache.org/xalan-j/
IBM developerWorks, Web Services zone:
http://www.ibm.com/developerworks/webservices/

IBM UDDI Business and Test Registries:
http://www.ibm.com/services/uddi

UDDI Homepage:

http://www.uddi.org

World Wide Web Consortium (W3C), XML homepage:
http://www.w3c.org/XML

Web Services Toolkit Version 2.3 on IBM alphaWorks:
http://www.alphaworks.ibm.com/tech/webservicestoolkit
XMethods Web Service repository:
http://www.xmethods.com/

390 Self-Study Guide: WebSphere Studio Application Developer and Web Services

How to get IBM Redbooks

Search for additional Redbooks or Redpieces, view, download, or order
hardcopy from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections

Redbooks are also available on CD-ROMs. Click the CD-ROMSs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.

Related publications 391

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

392 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 2002 393

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others

394 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Abbreviations and acronyms

AAT
ACL
API

BLOB
BMP
CCF

CiCs

CMP

CORBA

DBMS

DCOM

DDL

DLL

DML
DOM
DTD

EAB
EAI

EAR
EIS

EJB
EJS
FTP
GUI
HTML

application assembly tool
access control list

application programming
interface

binary large object
bean-managed persistence

Common Connector
Framework

Customer Information Control
System

container-managed
persistence

Component Object Request
Broker Architecture

database management
system

Distributed Component
Object Model

data definition language
dynamic link library

data manipulation language
document object model
document type description
Enterprise Access Builder

Enterprise Application
Registration

enterprise archive

Enterprise Information
System

Enterprise JavaBeans
Enterprise Java Server

File Transfer Protocol
graphical user interface
Hypertext Markup Language

© Copyright IBM Corp. 2002

HTTP
IBM

IDE

IDL
lIop
IMS

ITSO

J2EE
J2SE
JAF
JAR
JDBC
JDK
JFC
JMS
JNDI

JSDK
JSP
JTA
JTS
JVM
LDAP

MFS
Mvc
OLT
OoMG
0]0)

Hypertext Transfer Protocol

International Business
Machines Corporation

integrated development
environment

Interface Definition Language
Internet Inter-ORB Protocol

Information Management
System

International Technical
Support Organization

Java 2 Enterprise Edition
Java 2 Standard Edition
Java Activation Framework
Java archive

Java Database Connectivity
Java Developer’s Kit

Java Foundation Classes
Java Messaging Service

Java Naming and Directory
Interface

Java Servlet Development Kit
JavaServer Page

Java Transaction API

Java Transaction Service
Java Virtual Machine

Lightweight Directory Access
Protocol

message format services
model-view-controller
object level trace

Object Management Group
object oriented

395

oTS
RAD
RDBMS

RMI
SAX
SCCI

SCM

SCMS

SDK
SMR
SOAP

SPB
SQL
SRP
SSL
TCP/IP

UcMm
ubDB
uDDI

UML
uow
URL
VCE
VXML

WAR
WAS

WML

396

object transaction service ws

rapid application development WSBCC

relational database

management system WSDL
Remote Method Invocation

Simple API for XML WSTK
source control control WTE
interface www
software configuration XMI
management XML
source code management XSD

systems
Software Development Kit
Service Mapping Registry

Simple Object Access
Protocol (a.k.a. Service
Oriented Architecture
Protocol)

Stored Procedure Builder
structured query language
Service Registry Proxy
secure socket layer

Transmission Control
Protocol/Internet Protocol

Unified Change Management
Universal Database

Universal Description,
Discovery, and Integration

Unified Modeling Language
unit of work

uniform resource locator
visual composition editor

voice extensible markup
language

Web application archive

WebSphere Application
Server

Wireless Markup Language

Web Service

WebSphere Business
Components Composer

Web Service Description
Language

Web Service Development Kit
WebSphere Test Environment
World Wide Web

XML metadata interchange
eXtensible Markup Language
XML schema definition

Self-Study Guide: WebSphere Studio Application Developer and Web Services

Index

A
AAINVENTORY table 19
AAPARTS table 19
access bean 150, 159
access point 236, 283
administrative application 244, 261
administrative console 179, 180
AE 174
AEd 132,175
AEs 132,174
agenda 6
agent 59, 188
Agent Controller
debugging 78
installation 37
performance analysis 188
platforms 189
remote testing 175
alphaWorks 248
Animated GIF Designer 125
Ant 52,77
Apache SOAP server 230
Application Assembly Tool 161, 181
Application Developer 29
create Web services 251
deployment 173
EJB development 145
features 35
import 41
installation 37, 382
Java development 63
overview 23,34
perspective 40
profiling 185
projects 40
Relational Schema Center 85
team development 199
testing 132
UDDI explorer 287
using Web Services 269
Web development 117
Web Services overview 219
XML development 99

© Copyright IBM Corp. 2002

architecture 33
associations
EJB 150, 157
auto parts association 14, 282
automobile dealership 11

B
baseline 203
batch command 180
bean-managed persistence 147
binding template 236, 282
BLOB 112
Bookmark
view 70
bookmark 70
bottom-up mapping 162
branch 203
breakpoint 78, 305
Breakpoints
view 50, 79
broker 226
build 53, 77
build path 303
business
entity 236, 282, 289, 292
logic 120
service 236, 282, 289

C
cache 159
cardinality 158
catch-up 60, 203, 212
categorization 238
CCLT 33, 60, 200
CcaGl 221
CICS

transaction 120
class statistics 192, 347
classpath variable 303
ClearCase Light

see CCLT
client proxy 262,275
cloning 385

397

code
assist 53, 55, 70, 107, 301
formatting 74, 81
color view 45
column 92
command
bean 120
COMMAREA 120
composer 163
concurrency 204
Concurrent Version System
see CVS
configuration 379
conflict 212
connection
database 87, 90
pooling 130
Console
view 44,69, 79
container-managed persistence 147
context root 322
controller servlet 130
converter 163
cookie 139
copy helper 159
custom finder 160
CVS 33, 60, 200
ignore 214
installation 207

D
Data
Perspective 48, 89
view 48, 88, 310
data
bean 120
class access bean 159
source 49, 137,167
Database
wizard 124, 128, 325
database
connection 87
definition 89
descriptors 87
objects 92
DB Explorer
view 48, 88, 90, 310
DB2 380

command window 312

installation 380
DDL 58, 87

import 311
dds.xml 244, 253, 260, 264
Debug

perspective 50, 78, 79, 303
debugger 53
debugging 141
deployed code 165
deployment 173

descriptor 127

EJB 150

J2EE 121

Web Services 265
Design

view 104, 125
developerWorks 248
Display

view 79
document access definition 112
DOM APl 108, 113
domWriter 277
DTD 55,102

editor 105

import 316
dynamic Web Services 242, 282

E

EAR
file 41,121
project 56, 121, 132, 175

eclipse 32

EJB
application 149
associations 157
container 148
deployed code 165
deployment descriptor 150, 154
development 145, 153
editor 46, 152
extension editor 46, 152
inheritance 157
JARfile 121, 151, 357
mapping 154, 162, 332
migration 166
project 121,153
query language 160

398 Self-Study Guide: WebSphere Studio Application Developer and Web Services

SmartGuide 156
specification 42, 147
testing 167
tooling 150
universal test client 168
validator 166
ejpModule 155
Ejbgl 160
encoding 229
enterprise archive 121
Enterprise Developer 29
Enterprise Integrator 29
entity
bean 330
EJB 147
example
Web Services 247
execution flow 192, 347
Exercise
create Web Service 267, 349
deploy Web Service 268, 361
deployment 183, 339
EJB development 172, 329
Java development 83, 299
profiling 198, 345
Relational Schema Center 97, 309
UDDI explorer 296
UDDI registry 369
using a Web Service 285, 365
Web development 143, 321
XML development 115, 315
extension
editor 152
point 33, 60

F
filter 310
findByPrimaryKey 169
font 81
foreign key 92
format

code 74
FTP 41,54

G
garbage collection 193, 347

global JNDI name 161, 181
graphics editing framework 33

H
heap 192, 347
Help

Perspective 51
help

hover 70

online 51
Hierarchy

view 44
hierarchy 75
home interface 148, 160, 169
Homepage Builder 30
host variable 312
hover help 70, 301
HTML

form 130, 149
HTTP server 178

|
IBM Test Registry 370
IBM WebSphere UDDI Registry 370
icon
Debug 78
Web perspective 124
import 41
declarations 302
statement 81
inheritance 150
EJB 157
Inspector
view 50, 79
installation 37, 379
Application Developer 382
DB2 380
WebSphere Application Server 381
WebSphere UDDI Registry 383
Windows NT/2000 379
Internet Explorer 379
ISD file 260
ITSOWSAD
database 83, 115, 143, 310, 384

J

J2EE
application 121, 151
environment 148
hierarchy 121, 151
Perspective 46, 152

Index

399

tooling 56

view 46, 152, 155
JAR

file 41,65

external 81

JAR file 151
Java

build path 80

editor 70

import 303

integrated development environment 53

Naming and Directory Interface 148
package 300
Perspective 44, 68, 300
preferences 81
project 64, 65, 300
runtime library 80, 81
search 71
tooling 53
Virtual Machine 188
Profiler Interface 189
JavaBean
from XML 113
wizard 124, 128
wrapper 159
JDBC
2.0 activation 380
driver 49, 90, 135, 137, 167, 180
JDK 53
JIT compiler 135, 191
JNDI 148
explorer 168
name 161, 167
jpage 76, 306
JRE 583, 65
JSP 120
debugging 54, 141
taglib 128, 131
JVMPI 189

K

key field 156

keyword
highlighting 70

L
lab exercises 20
launcher 80

Links
view 45, 122
local
history 301
JNDI name 161, 181, 336
server 133
testing 175

M
manufacturer

parts 14

vehicle 13
mapping

EJB 154, 162

tool 164

XML 108
meet-in-the-middle 162
memory requirements 9, 36
merge 217
message style 227
meta object framework 33
META-INF

EJB 154
method statistics 192, 347
migration

EJB 166
mime type 139
MMINVENTORY table 19
MMPARTS table 19
model-view-controller 119
Monitors

view 346
move 72
MVC 119

N
NAICS 238
Navigator
view 45,69, 91, 122, 152, 155, 310
Netscape 379

0]
object
clipboard 170
references 192, 347
objectives 4
open source 32

400 Self-Study Guide: WebSphere Studio Application Developer and Web Services

optimistic concurrency 204

Outline

view 44,69, 79, 105, 122

P
package 300
Packages

view 44, 69, 306
packaging 31

Page Designer 45, 54, 122, 125

Palette
view 45

parallel development 216

performance 185
analysis 187
tooling 59

Perspective
Data 48, 89
EJB 152
Help 51
J2EE 46
Java 44,68
Server 49, 137
Team 208
Web 45, 122

perspective 28, 40, 43
Debug 50, 78, 79
Profiling 190
Resource 310
XML 47,103

platforms 36

plug-in 33

port 138, 340, 362

preferences 39, 74
Java 81

prerequisites 5

Preview
view 125

primary key 92, 160

Processes
view 79

Profiling
perspective 190

profiling 185
tools 187

project 40
build 77
create 66

properties 80
resources 67
version 215
Properties
view 45
properties
project 80
provider 226, 255
proxy 241,244,246, 253, 275
publish
Web Services 225, 291, 293

R
Rational
ClearCase 60
RDB
tooling 58
redbooks 7
Redbooks Web site 391
Contact us xvii
refactoring 53, 72, 81
SmartGuide 302
Relational Schema Center 85
release 203, 212
remote
interface 148
procedure call 227
server 133,177
test environment 175, 176
testing 340
rename 72
Repositories
view 208
repository 26, 209
request 257
requestor 226, 272
Resource
perspective 310
Resource History
view 208
resources 65
role name 158
role-based development 26, 28, 52
rowset 159
RPC 227
rpcrouter 228, 262, 275

Index

401

S soap.xml 264

sample soapcfg.jar 264
application 10 Source
code 384 view 105, 125, 317
database 19 SQL
SAX APl 113 execute 95
scrapbook 53, 67, 76, 306 mapping to XML 319
seappinstall 180, 344 query 95
Search query builder 93, 94, 111, 312
view 44,69, 71, 304 statement 48, 58, 89, 93, 311
search 53, 71 wizard 93
security 243 XML generation 111
Server standards 61
Configuration view 49 startserver 344, 362
Perspective 49, 137, 324 stateless session EJB 147
server 133 static Web Service 242
configuration 134, 351 stopserver 343, 363, 381
instance 134, 351 stream 203, 210
project 136 merge 217
SmartGuide 138 Styles
start 140 view 45
template 136 stylesheet editor 125
servlet 119 subtype 75
SmartGuide 126 supertype 75
Web Services client 280 Synchronize
session 257 view 208
bean 334 synchronize 60, 203, 212
EJB 147
management 139 T
shared repository 209 tag library 326
Site Developer 29 Tasks
features 35 view 44, 69, 122
skeleton fJavaBean 245 TCP/IP Monitoring Server 134
SmartGuide Team
EJB 156 Perspective 208
refactoring 302 team
server 138

development
terminology 203
repository 80

servlet 126
SOAP 220, 224
administration 244, 253, 261

- stream 210
Call object 231, 262, 273, 275 template
client proxy 241
dat dol 229 server 136
ata mode terminology

deployment descriptor 244, 253, 260 comparison 206

encoding 229, 252, 270 team development 203
envelope 228 XML 102

message 227 test cli
server 230, 241, 247 tg:ﬁgéent 246, 256, 263, 273, 276

XML message 247

402 Self-Study Guide: WebSphere Studio Application Developer and Web Services

EJB 167
text

search 71
Thumbnail

view 45,122
tModel 236, 282, 283
Tomcat 25, 133, 138
top-down mapping 162
trace 59

XSL 110
transaction 149
Type Hierarchy

view 69, 75

U
uDDI 224
APl 237
Business Registry 239
explorer 287, 288, 290
Registry 15, 57, 220, 236, 253, 288
server 237
Test Registry 239
uDDI4J 237, 238, 283, 289
UN/SPSC 238
universal test client 56
configuration 135
EJB 168
enable 178
installation 343
URL rewrite 139

UTC

see universal test client
utilities

XML 104
\")
validation 42
variable

JAR file 66, 81
Variables

view 50, 79, 141, 305
verification 38
version 203, 212,215
view 43

bean 120, 128, 130
VisualAge Developer Domain 248
VisualAge for Java 25

EJB 166

w
WAP 221
WAR
file 41,121
import 54
Web
application
debugging 141
testing 132, 140, 324
browser 140
development 117
interaction 119
module 121
Perspective 45, 122
project 121,123
resources 122, 125
server 119
tooling 54
Web Art Designer 125
Web Services
client 246, 271
composed 11
creation 252
definition 222
deployment 265
Description Language
see WSDL
development 241
dynamic 11, 242, 282
example 231, 247
flow language 240
JavaBean 254
overview 219
publish 225, 291, 293
security 243
start 261
static 11, 242
stop 261
test client 273, 276
tooling 57
wizard 244, 256, 271
web.xml 121,127
webApplication 123
WebDav 33
WEB-INF 123
WebSphere
Application Server 132
installation 381
Studio

Index

403

branding 29
classic 25
product suite 25

Workbench 26, 32

UDDI Registry 239
installation 383

wizard 54, 124, 128, 244

WML 221

workspace 202,211

WSDL 224
create client 271
development 241
example 233
generated files 253
import 291, 294
overview 232

WSFL 224, 240

X

XALAN 109

XMl file 56, 88

XML
authoring 104
conversion 104
descriptor 103
development 99
DOM tree 280
editor 103, 107
element 105
Extender 112
extender 55
file 102
from SQL 111

JavaBean generation 113
mapping 108, 109, 318
mapping from SQL 319

perspective 47, 103

schema 55, 88, 102, 106, 229, 316

terminology 102

tooling 55

tree 278

usage 101

utiliies 104, 108
XSD 102

editor 106
XSL 102

file 278

mapping 55

processor 109, 247
style sheets 103
trace 110

trace editor 319
transformer 278, 280

XSLT 109

ZIP file 41

404 Self-Study Guide: WebSphere Studio Application Developer and Web Services

Self-Study Guide: WebSphere Studio Application Developer

and Web Services

ey

Redbooks

[
(0.5” spine)

0.475"<->0.875"
250 <-> 459 pages

Self-Study Guide:

WebSphere Studio Application
Developer and Web Services

Teach yourself
WebSphere Studio
Application
Developer

Learn about Web
Services

Create and use Web
Services by example

This IBM Redbook is a self-study guide for the new application
development tool WebSphere Studio Application Developer and for Web
services.

WehbSphere Studio Application Developer is the new IBM tool for
Java development for client and server applications. It provides a Java
integrated development environment (IDE) that is designed to provide
rapid development for J2EE-based applications. It is well integrated
with WebSphere Application Server Version 4 and provides a built-in
single server that can be used for testing of J2EE applications.

Web Services are a new breed of Web applications. Web Services are
self-contained, self-describing, modular applications that can be
published, located, and invoked across the Web. Web Services perform
callable functions that can be anything from a simple request to
complicated business processes. Once a Web Service is deployed and
registered, other applications can discover and invoke the deployed
service. The foundation for Web Services are the simple object access
protocol (SOAP), the Web Services description language (WSDL), and
the Universal Description, Discovery, and Integration (UDDI) registry.

This redbook consists of two parts: a presentation guide and an
exercise guide. The presentation guide explains the new tool and Web
services. The exercise guide provides detailed instructions to perform
exercises using WebSphere Studio Application Developer. The sample
code used for the exercises is available for download at the Redbooks
Internet site. The sample code also includes the solutions that can be
loaded and studied.

SG24-6407-00 ISBN 0738424196

=4G)

Redhooks

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic

scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 Presentations
	Unit 1. Workshop Introduction
	Visual 1-2 Objectives
	Visual 1-3 Prerequisites
	Visual 1-4 Agenda
	Visual 1-5 ITSO Redbooks
	Visual 1-6 Web Services Redbook
	Visual 1-7 Summary
	Visual 1-8 Sample Application
	Visual 1-9 Automobile Dealership Parts Inventory
	Visual 1-10 Stage 1: Local Dealership Inquiry
	Visual 1-11 Stage 2: Inquiry on Vehicle Manufacturer
	Visual 1-12 Stage 3: Dynamic Inquiry Manufacturers - 1
	Visual 1-13 Stage 3: Dynamic Inquiry Manufacturers - 2
	Visual 1-14 Stage 4: Cross-Dealership Inquiry - 1
	Visual 1-15 Stage 4: Cross-Dealership Inquiry - 2
	Visual 1-16 System Diagram
	Visual 1-17 Database Implementation
	Visual 1-18 Lab Exercises
	Visual 1-19 Summary

	Unit 2. Application Developer:��� Overview
	Visual 2-2 Objectives
	Visual 2-3 WebSphere Studio Product Suite
	Visual 2-4 Ultimate Development Environment
	Visual 2-5 Ultimate Development Environment Features
	Visual 2-6 Role-based Development
	Visual 2-7 WebSphere Studio Branding
	Visual 2-8 Product Functions
	Visual 2-9 Product Packaging
	Visual 2-10 What is the Studio Workbench?
	Visual 2-11 Workbench Architecture
	Visual 2-12 Application Developer Overview
	Visual 2-13 Application Developer Components
	Visual 2-14 Prerequisites and Platforms
	Visual 2-15 Installation
	Visual 2-16 Verification
	Visual 2-17 Window Preferences
	Visual 2-18 Workbench: Projects and Perspectives
	Visual 2-19 Project Import
	Visual 2-20 Project Validation
	Visual 2-21 Perspectives
	Visual 2-22 Java Perspective
	Visual 2-23 Web Perspective
	Visual 2-24 J2EE Perspective
	Visual 2-25 XML Perspective
	Visual 2-26 Data Perspective
	Visual 2-27 Server Perspective
	Visual 2-28 Debug Perspective
	Visual 2-29 Help Perspective
	Visual 2-30 Workbench Key Features
	Visual 2-31 Java IDE
	Visual 2-32 Web Tooling
	Visual 2-33 XML Tooling
	Visual 2-34 J2EE Tooling
	Visual 2-35 Web Services Tooling
	Visual 2-36 RDB Tooling
	Visual 2-37 Performance/Trace Tooling
	Visual 2-38 Team Development
	Visual 2-39 Supported Standards
	Visual 2-40 Summary

	Unit 3. Application Developer:��� Java Development
	Visual 3-2 Objectives
	Visual 3-3 Java Project
	Visual 3-4 Create Project
	Visual 3-5 Create Project Resources
	Visual 3-6 Java Perspective
	Visual 3-7 Java Perspective Layout
	Visual 3-8 Java Editor
	Visual 3-9 Search
	Visual 3-10 Edit Refactoring
	Visual 3-11 Edit Refactoring Preview
	Visual 3-12 Code Formatting
	Visual 3-13 Type Hierarchy
	Visual 3-14 Scrapbook
	Visual 3-15 Building Projects
	Visual 3-16 Debugging
	Visual 3-17 Debug Perspective
	Visual 3-18 Project Properties
	Visual 3-19 Java Preferences
	Visual 3-20 Summary
	Visual 3-21 Exercise: Java Development

	Unit 4. Application Developer:��� Relational Schema Center
	Visual 4-2 Objectives
	Visual 4-3 Application Developer Database Operations
	Visual 4-4 Files: XMI and DDL
	Visual 4-5 Data Perspective
	Visual 4-6 DB Explorer
	Visual 4-7 Navigator View
	Visual 4-8 Creating Database Objects
	Visual 4-9 SQL Statements
	Visual 4-10 SQL Query Builder
	Visual 4-11 SQL Query Execution
	Visual 4-12 Summary
	Visual 4-13 Exercise: Relational Schema Center

	Unit 5. Application Developer:��� XML Development
	Visual 5-2 Objectives
	Visual 5-3 XML Usage Today
	Visual 5-4 XML Terminology
	Visual 5-5 XML Perspective
	Visual 5-6 Authoring Tools
	Visual 5-7 DTD Editor
	Visual 5-8 XSD Editor
	Visual 5-9 XML Editor
	Visual 5-10 XML Utilities
	Visual 5-11 XML-to-XML Mapping
	Visual 5-12 XSL Trace
	Visual 5-13 XML from SQL Query
	Visual 5-14 RDB-to-XML Mapping
	Visual 5-15 JavaBean Generation
	Visual 5-16 Summary
	Visual 5-17 Exercise: XML Development

	Unit 6. Application Developer:��� Web Development
	Visual 6-2 Objectives
	Visual 6-3 Web Interaction: Simple
	Visual 6-4 Web Interaction: Refined
	Visual 6-5 J2EE Hierarchy
	Visual 6-6 Web Perspective
	Visual 6-7 Web Perspective Folders and Files
	Visual 6-8 Web Project Icons and Wizards
	Visual 6-9 Editing of Web Resources
	Visual 6-10 Create Servlet
	Visual 6-11 web.xml Editor
	Visual 6-12 Wizards
	Visual 6-13 Database Wizard - Run
	Visual 6-14 Database Wizard - View Bean Model
	Visual 6-15 Database Wizard - JSP Taglib Model
	Visual 6-16 Testing of Web Applications
	Visual 6-17 Local and Remote Servers
	Visual 6-18 Runtime Support: Servers
	Visual 6-19 Server Configurations and Instances
	Visual 6-20 Runtime and Test Configurations
	Visual 6-21 Server Perspective
	Visual 6-22 Create Configuration and Instance
	Visual 6-23 Configuration Properties
	Visual 6-24 Testing of Web Applications
	Visual 6-25 Debugging of Web Applications
	Visual 6-26 Summary
	Visual 6-27 Exercise: Web Development

	Unit 7. Application Developer:��� EJB Development
	Visual 7-2 Objectives
	Visual 7-3 EJB Review
	Visual 7-4 EJBs in J2EE Environment
	Visual 7-5 Typical EJB Application
	Visual 7-6 EJB Tooling
	Visual 7-7 J2EE Hierarchy
	Visual 7-8 J2EE Perspective
	Visual 7-9 EJB Development Roadmap
	Visual 7-10 EJB Project
	Visual 7-11 J2EE and Navigator View
	Visual 7-12 Create EJB
	Visual 7-13 IBM Extensions: Inheritance and Associations
	Visual 7-14 Extension Editor: Associations
	Visual 7-15 IBM Extension: Access Beans
	Visual 7-16 Customer Finder Methods
	Visual 7-17 EJB 1.1 JNDI Names
	Visual 7-18 Entity EJB-to-RDB Mapping
	Visual 7-19 Entity EJB-to-RDB Mapping Details
	Visual 7-20 Entity EJB-to-RDB Mapping File
	Visual 7-21 Generate Deployed Code
	Visual 7-22 Migration from VisualAge for Java
	Visual 7-23 EJB Testing
	Visual 7-24 Universal Test Client
	Visual 7-25 Universal Test Client Run
	Visual 7-26 Universal Test Client Functionality
	Visual 7-27 Summary
	Visual 7-28 Exercise: EJB Development

	Unit 8. Application Developer:��� Deployment to WebSphere
	Visual 8-2 Objectives
	Visual 8-3 Testing of Applications and EJBs
	Visual 8-4 Publishing and Testing
	Visual 8-5 Defining a Remote AEs Server
	Visual 8-6 Remote AEs Server
	Visual 8-7 Administrative Console of AEs
	Visual 8-8 Installing an Application into AEs or AE
	Visual 8-9 Deployment Activities
	Visual 8-10 Summary
	Visual 8-11 Exercise: Deployment

	Unit 9. Application Developer:��� Profiling Tools
	Visual 9-2 Objectives
	Visual 9-3 Overview
	Visual 9-4 Architecture
	Visual 9-5 Remote Agent Controller
	Visual 9-6 Profiling Perspective
	Visual 9-7 Profiling in WebSphere Test Environment
	Visual 9-8 Viewers: Class - Method - Heap
	Visual 9-9 Viewers: Objects - Execution Flow
	Visual 9-10 Viewers Examples: Class - Method
	Visual 9-11 Viewers Examples: Objects - Execution Flow
	Visual 9-12 Hints and Tips
	Visual 9-13 Summary
	Visual 9-14 Exercise: Profiling

	Unit 10. Application Developer:��� Team Development
	Visual 10-2 Objectives
	Visual 10-3 Team Development Architecture
	Visual 10-4 Workspace
	Visual 10-5 Terminology
	Visual 10-6 Optimistic Concurrency Model
	Visual 10-7 Comparison of Version Control Systems
	Visual 10-8 Terminology Comparison
	Visual 10-9 Installing and Configuring CVS
	Visual 10-10 Team Perspective
	Visual 10-11 Connecting to the Repository
	Visual 10-12 Add Project to Repository
	Visual 10-13 Add Project from Repository
	Visual 10-14 Team-Specific Actions
	Visual 10-15 Synchronization
	Visual 10-16 Synchronization - Conflicts and Ignoring
	Visual 10-17 Versioning
	Visual 10-18 Parallel Development
	Visual 10-19 Multiple Streams
	Visual 10-20 Summary

	Unit 11. Web Services Overview
	Visual 11-2 Objectives
	Visual 11-3 Evolution of the Web
	Visual 11-4 What are Web Services?
	Visual 11-5 Web Services Attributes and Examples
	Visual 11-6 Conceptual Web Services Stack
	Visual 11-7 Web Services Components
	Visual 11-8 Web Services Roles
	Visual 11-9 SOAP Introduction
	Visual 11-10 SOAP Message Example
	Visual 11-11 SOAP Data Model
	Visual 11-12 Apache SOAP Server
	Visual 11-13 Service Implementation and Client Example
	Visual 11-14 WSDL Overview
	Visual 11-15 WSDL Interface Example
	Visual 11-16 WSDL Interface Example Binding
	Visual 11-17 WSDL Implementation Example
	Visual 11-18 UDDI Overview
	Visual 11-19 UDDI Server and Registry
	Visual 11-20 UDDI Registry API
	Visual 11-21 UDDI Registries
	Visual 11-22 Web Services Flow Language
	Visual 11-23 Development of Web Services
	Visual 11-24 Static and Dynamic Web Services
	Visual 11-25 Web Services and Security
	Visual 11-26 Create Web Service from Application
	Visual 11-27 Create Web Service from WSDL
	Visual 11-28 Create Client from WSDL
	Visual 11-29 Web Service Example
	Visual 11-30 More Information
	Visual 11-31 Summary

	Unit 12. Creating Web Services
	Visual 12-2 Objectives
	Visual 12-3 Create Web Service from Application
	Visual 12-4 Creating a Web Service
	Visual 12-5 Web Service Example
	Visual 12-6 Web Service Example Generated Code
	Visual 12-7 Web Service Wizard - 1
	Visual 12-8 Web Service Wizard - 2
	Visual 12-9 Web Service Wizard - 3
	Visual 12-10 Generated SOAP Deployment Descriptor
	Visual 12-11 Administrative Application
	Visual 12-12 Generated Client Proxy
	Visual 12-13 Generated Test Client
	Visual 12-14 Testing the new Web Service
	Visual 12-15 Deployment to WebSphere
	Visual 12-16 Summary
	Visual 12-17 Exercise: Create a Web Service
	Visual 12-18 Exercise: Deploy a Web Service

	Unit 13. Using Web Services
	Visual 13-2 Objectives
	Visual 13-3 Create Client from WSDL
	Visual 13-4 Web Service Example
	Visual 13-5 Web Service Example Generated Code
	Visual 13-6 Web Service Wizard
	Visual 13-7 Generated Client Proxy
	Visual 13-8 Test Client
	Visual 13-9 Test Client Result JSP Processing
	Visual 13-10 Creating a Client Application
	Visual 13-11 Client Application Run
	Visual 13-12 Servlet Code with Proxy and XSL
	Visual 13-13 XSL to transform XML into HTML
	Visual 13-14 Application with Dynamic Web Services
	Visual 13-15 Dynamic Web Service: Sample Code
	Visual 13-16 Summary
	Visual 13-17 Exercise: Using a Web Service

	Unit 14. Web Services and the UDDI Explorer
	Visual 14-2 Objectives
	Visual 14-3 UDDI Explorer and UDDI Registry
	Visual 14-4 UDDI Explorer
	Visual 14-5 UDDI Explorer Function
	Visual 14-6 Publish Business Entity
	Visual 14-7 Publish Business Service
	Visual 14-8 Importing a WSDL File
	Visual 14-9 Summary
	Visual 14-10 Exercise: UDDI Explorer

	Part 2 Exercises
	Sample data

	Exercise 1. Java development
	Exercise instructions
	Define a Java project
	Create a package and a class
	Complete the code
	Code assist and hover help
	Outline view
	Replace from local history
	Smart import assist
	Extracting a method
	Running the application
	Setting the build path
	Import a Java source file
	Search
	Run GUI program
	Debugging
	Type hierarchy (optional)
	Rename (optional)
	Scrapbook page (optional)

	What you did in this lab

	Exercise 2. Relational Schema Center
	Exercise instructions
	Define a project for relational database
	Create a database connection and import tables
	Create a database and a table
	Generate, import, and run DDL
	SQL Query Builder (optional)

	What you did in this lab

	Exercise 3. XML development
	Exercise instructions
	Define a Java project and import files
	Edit DTD and XML schema
	Work with XML files
	Generate an HTLM form
	XML to XML mapping
	Translating an XML file
	SQL to XML mapping (optional)

	What you did in this lab

	Exercise 4. Web development
	Exercise instructions
	Define a Web project
	Import a Web application
	Complete the code
	Preparing a server for testing
	Test the Web application
	Using the Database wizard
	Configure data source and test
	Export Web application as WAR file
	Using the Database wizard and generate JSPs (optional)
	Debugging JSPs (optional)

	What you did in this lab

	Exercise 5. EJB development
	Exercise instructions
	Define an EJB project
	Create an entity bean
	Editing the bean
	Complete the bean with create and business methods
	Home and remote interface
	Create the mapping to the database table
	Generate deployed code
	Bind the container to a DataSource
	Testing the inventory bean
	Creating a session bean (optional)
	Test the session bean (optional)
	Add a servlet and HTML file
	Run the servlet application

	What you did in this lab

	Exercise 6. Test and deploy using WebSphere AEs
	Exercise instructions
	Prepare Web application dependency
	Configure a server for remote testing in WebSphere AEs
	Test the applications in the remote AEs server
	Prepare WebSphere AEs for deployment of applications
	Deploying an enterprise application to AEs
	Installing the universal test client in AEs (optional)
	Stop the AEs server

	What you did in this lab

	Exercise 7. Profiling an application
	Exercise instructions
	Configure server instance
	Agent Controller
	Start the server
	Configure the host
	Trace an application
	Trace analysis
	Close down

	What you did in this lab

	Exercise 8. Create a Web Service
	Exercise instructions
	Import an EJB project
	Define a server configuration and instance
	Create a Web project for the Web Service
	Copy the server JavaBean from the EJB project
	Create the Web Service from the JavaBean
	Generated files
	View deployed Web Service
	Client proxy
	Sample client
	Monitoring a Web Service (optional)

	What you did in this lab
	Addendum: how the EJB JAR file was created

	Exercise 9. Deploy and test a Web Service
	Exercise instructions
	Prepare the Web application
	Prepare WebSphere AEs for port 8080
	Install the EAR file with EJBs and Web applications
	Testing the deployed Web Service

	What you did in this lab

	Exercise 10. Using a Web Service in a client application
	Exercise instructions
	Define a Web project for the client
	Start the server
	Generate the Web Service proxy and sample client
	Test the sample client
	Build the client application
	Test the client application
	Deploy the client application (optional)

	What you did in this lab

	Exercise 11. Web Service publishing in the UDDI registry
	Which UDDI registry to use
	Exercise instructions
	Register a user ID and password
	Connecting to the registry
	Creating a business entity in the registry
	Publishing a Web Service to the registry
	Finding a Web Service in the registry
	Importing a Web Service from the test registry

	Application with dynamic Web Services (optional)
	Test the dynamic Web Services (optional)

	What you did in this lab

	Part 3 Appendixes
	Appendix A. Installation and configuration
	Windows NT or Windows 2000
	Browser

	DB2 Version 7.2 Enterprise Edition (or 7.1 Fixpack 3)
	Create sample database
	Change to JDBC 2.0

	WebSphere Application Server Advanced Version 4
	WebSphere Studio Application Developer
	WebSphere UDDI Registry
	ITSO workshop sample code
	Create DB2 database for exercise

	Cloning of machines
	Performing the exercises
	Sample code

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Abbreviations and acronyms
	Index
	Back cover

