
201 West 103rd St., Indianapolis, Indiana, 46290 USA

Martin Bond
Dan Haywood

Debbie Law
Andy Longshaw
Peter Roxburgh

J2EE
in 21 Days

Teach Yourself

00 0672323842 FM 3/20/02 9:31 AM Page i

Sams Teach Yourself J2EE in 21 Days
Copyright 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32384-2

Library of Congress Catalog Card Number: 2001098579

Printed in the United States of America

First Printing: April, 2002

03 02 01 00 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

EXECUTIVE EDITOR

Michael Stephens

MANAGING EDITOR

Matt Purcell

ACQUISITIONS EDITOR

Todd Green

DEVELOPMENT EDITOR

Michael Watson

PROJECT EDITOR

Christina Smith

COPY EDITOR

Pat Kinyon

INDEXERS

Tom Dinse
Erika Millen

PROOFREADER

Melissa Lynch

TECHNICAL EDITOR

Harold Finz, Steve Heckler,
Farooq Karim, and Ari
Krupnikov

TEAM COORDINATOR

Pamalee Nelson

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

PRODUCTION

Cheryl Lynch
Michelle Mitchell

00 0672323842 FM 3/20/02 9:31 AM Page ii

Contents at a Glance
Introduction 1

WEEK 1 Introducing J2EE and EJBs 7
Day 1 The Challenge of N-Tier Development 9

2 The J2EE Platform and Roles 27

3 Naming and Directory Services 81

4 Introduction to EJBs 125

5 Session EJBs 165

6 Entity EJBs 211

7 CMP and EJB QL 271

WEEK 2 Developing J2EE Applications 333
Day 8 Transactions and Persistence 335

9 Java Message Service 395

10 Message-Driven Beans 429

11 JavaMail 461

12 Servlets 501

13 JavaServer Pages 555

14 JSP Tag Libraries 603

WEEK 3 Integrating J2EE into the Enterprise 651
Day 15 Security 653

16 Integrating XML with J2EE 701

17 Transforming XML Documents 741

18 Patterns 787

19 Integrating with External Resources 827

20 Using RPC-Style Web Services with J2EE 869

21 Web Service Registries and Message-Style Web Services 923

Appendixes
Appendix A An Introduction to UML 965

B SQL Reference 977

C An Overview of XML 987

D The Java Community Process 999

Glossary 1003

Index 1025

00 0672323842 FM 3/20/02 9:31 AM Page iii

Contents
Introduction 1

WEEK 1 Introducing J2EE and EJBs 7

DAY 1 The Challenge of N-Tier Development 9

Monolithic Development ..10
Consequences of Monolithic Applications ..10

The Move into the Second Tier ..11
Consequences of the 2-Tier Design ..12

Complexity Simplified by Modularity ..14
Component Technology ..15
Benefits of Modularity ..16

Benefits of the 3-Tier Scenario ..16
A Model for Enterprise Computing ..17

Lifecycle ..18
Persistence ..18
Naming ..18
Transaction ..19

Java 2 Enterprise Edition (J2EE) ..20
Components and Containers ..20
J2EE Standard Services ..21
J2EE Blueprints ..23
J2EE Compatibility Test Suite ..24

The Future of J2EE ..25
Summary ..25
Q&A ..25
Exercises ..26

DAY 2 The J2EE Platform and Roles 27

Revisiting the J2EE Platform ..28
Using Sun Microsystems’ J2EE SDK ..28

Installing J2EE SDK 1.3 ..29
Starting the J2EE Reference Implementation (RI) ..32
Troubleshooting J2EE and Cloudscape ..34
Closing Down J2EE RI and Cloudscape ..37
Optional Software Used in this Book ..37

Understanding Tiers and Components ..38
The Business Tier ..39
The Presentation Tier ..44

00 0672323842 FM 3/20/02 9:31 AM Page iv

Components: Web-Centric ..45
The Client Tier ..49
Standalone Client ..52

Understanding Containers ..55
Understanding the Services Containers Supply to Components56

Hypertext Transfer Protocol (HTTP) ..57
HTTP over Secure Sockets Layer (HTTPS) ..57
Java Database Connectivity (JDBC) ..57
Java Transaction API (JTA) ..58
Java Authentication and Authorization Service (JAAS)58
Java API for XML Parsing (JAXP) ..58
Java Naming and Directory Interface (JNDI) ..59
JavaBeans Activation Framework (JAF) ..59
JavaMail ..60
Java Message Service (JMS) ..60
Java Interface Definition Language (Java IDL) ..60
Remote Method Invocation over Internet Inter-Orb Protocol (RMI-IIOP)61
Connector Architecture ..62

Introducing Platform Roles ..62
J2EE Product Provider ..63
Application Component Provider ..63
Application Assembler ..63
Application Deployer ..64
Systems Administrator ..64
Tool Provider ..65
Future of J2EE tools ..65

Packaging and Deploying J2EE Applications ..66
J2EE applications ..67
Breaking Modules down into Components ..68

Summary ..70
Q&A ..70
Exercises—Case Study ..71

The Job Agency ..72
Using the Agency Case Study ..73
Practice Makes Perfect ..75
The Case Study Directory on the CD-ROM ..76
Installing the Case Study Database ..76

DAY 3 Naming and Directory Services 81

Naming and Directory Services ..82
Why Use a Naming Service? ..82
What is JNDI? ..83

00 0672323842 FM 3/20/02 9:31 AM Page v

Common Naming Services ..83
Naming Conventions ..84
Using JNDI ..85

Using Sun Microsystems’ J2EE Reference Implementation85
Obtaining an Initial Context ..86
Initial Context Naming Exceptions ..86

Defining the JNDI Service ..87
JNDI Properties Files ..88
Application Properties ..89
Applet Parameters ..90
Hard-Coded Properties ..90

Binding JNDI Objects ..90
Binding Objects ..91
Binding Problems ..91
Name Persistence ..92
Rebinding Objects ..92
Unbinding Objects ..92
Renaming Objects ..93

JNDI Name Lookup ..93
Changing Contexts ..94
Narrowing RMI-IIOP Objects ..95

Contexts ..96
Listing Contexts ..96
Creating and Destroying Contexts ..98

More on JNDI Names ..100
Special Characters ..100
Composite and Compound Names ..100
URLs ..101

Attributes ..102
Overview of LDAP X.500 Names ..102
Obtaining an LDAP Server ..103
Using OpenLDAP ..104
Configuring JNDI to use LDAP ..106
Testing the LDAP Server ..107
Obtaining a Directory Context ..108
Reading Attributes ..108
Searching for Objects ..109
Manipulating Attributes ..112

More on Objects ..114
Loading Classes from a Code Base ..114
Defining a Code Base ..114
References ..117

vi Sams Teach Yourself J2EE in 21 Days

00 0672323842 FM 3/20/02 9:31 AM Page vi

Contents vii

What Else Can JNDI Do? ..120
JNDI Events ..120
Security ..121

Summary ..122
Q&A ..123
Exercise ..124

DAY 4 Introduction to EJBs 125

What Is an EJB? ..126
Beans, Clients, Containers, and Servers ..126
The EJB Landscape ..127
Discovering EJBs ..127
Types of EJB ..128
Common Uses of EJBs ..128

Why Use EJBs? ..129
Hiding Complexity ..130
Separation of Business Logic from UI and Data Access130
Container Services ..131

What’s in an EJB? ..132
The Business Interface ..132
The Business Logic ..134
Factory Information ..140
Bean Metadata ..141

How Do I Create an EJB? ..142
The Creation Mechanism ..142
Caveats on Code Creation ..143
Create the Deployable Component ..143

How Do I Deploy an EJB? ..147
Plugging into the Container ..147
Performing the Deployment ..148

How Do I Use an EJB? ..148
Discovery ..148
Retrieval and Use ..149
Disposing of the EJB ..150
Running the Client ..150

Deploying and Using an EJB in the J2EE Reference Implementation151
Opening the Case Study EAR File ..152
Examining the Case Study Application ..154
Deploying the Case Study Application ..156
Testing the Case Study Application ..158
Troubleshooting the Case Study Application ..160

00 0672323842 FM 3/20/02 9:31 AM Page vii

Summary ..161
Q&A ..161
Exercises ..162

DAY 5 Session EJBs 165

Overview ..165
The javax.ejb Package for Session Beans ..167
Stateless Session Bean Lifecycle ..168
Specifying a Stateless Session Bean ..172
Implementing a Stateless Session Bean ..175

Implementing javax.ejb.SessionBean ..175
Implementing the Home Interface Methods ..175
Implementing the Remote Interface Methods ..177
Exceptions ..179

Configuring and Deploying a Stateless Session Bean180
Using deploytool ..181
Structural Elements ..182
Presentational Elements ..183
Session Element ..184
Deploying the Enterprise Application ..193

Stateful Session Bean Lifecycle ..193
Specifying a Stateful Session Bean ..196
Implementing a Stateful Session Bean ..198

Passivation ..198
Timeouts ..199
Chaining State ..200

Configuring and Deploying a Stateful Session Bean ..200
Client’s View ..201
Patterns and Idioms ..202

Business Interface ..203
Adapter ..204
Coarse-Grained ..205

Gotchas ..205
Summary ..206
Q&A ..207
Exercises ..207

DAY 6 Entity EJBs 211

Overview ..211
The N-tier Architecture Revisited ..212
Comparison with RDBMS Technology ..213
Identifying Entities ..214

viii Sams Teach Yourself J2EE in 21 Days

00 0672323842 FM 3/20/02 9:31 AM Page viii

Contents ix

The javax.ejb Package for Entity Beans ..216
Entity Bean Types ..217
Remote Versus Local Interfaces ..217
BMP Entity Bean Lifecycle ..219
Specifying a BMP Entity Bean ..225

Local-Home Interface ..225
Local Interface ..230

Implementing a BMP Entity Bean ..231
Implementing the Local-Home Interface Methods235
Implementing the Local Interface Methods ..241
Generating IDs ..243
Granularity Revisited ..245
Beware Those Finder Methods! ..245
EJB Container Performance Tuning ..247

Configuring and Deploying a BMP Entity Bean ..248
Entity Element ..249

Client’s View ..252
Session Beans Revisited ..254
Patterns and Idioms ..258

Interfaces, Façades, and State ..258
Use Local Interfaces for Entity Beans ..258
Dependent Value Classes ..259
Self-Encapsulate Fields ..261
Don’t Use Enumeration for Finders ..262
Acquire Late, Release Early ..262
Business Interface Revisited ..264

Gotchas ..264
Summary ..265
Q&A ..266
Exercises ..266

DAY 7 CMP and EJB QL 271

Overview of Container-Managed Persistence ..271
N-tier Architecture (Revisited Again) and CMP Fields273
A Quick Word about the Case Study Database ..276

CMP Entity Bean Lifecycle ..277
Container-Managed Relationships ..279

Relationship Types ..280
Navigability ..282
cmr-fields ..282
Manipulating Relationships ..286

00 0672323842 FM 3/20/02 9:31 AM Page ix

EJB QL ..291
Select Methods ..291
Syntax and Examples ..293
Further Notes ..300

Specifying a CMP Entity Bean ..301
The Local-Home Interface ..301
The Local Interface ..301

Implementing a CMP Entity Bean ..302
Implementing javax.ejb.EntityBean ..302
Implementing the Local-Home Interface Methods305
Finder Methods ..308
Implementing the Local Interface Methods ..312

Configuring a CMP Entity Bean ..313
The entity Element ..313
The relationships Element ..317

Deploying a CMP Entity Bean ..322
Patterns and Idioms ..323

Normalize/Denormalize Data in ejbLoad()/ejbStore()323
Don’t Expose cmp-fields ..324
Don’t Expose cmr-fields ..325
Enforce Referential Integrity Through the Bean’s Interface326
Use Select Methods to Implement Home Methods327

Gotchas ..328
Summary ..329
Q&A ..329
Exercises ..330

WEEK 2 Developing J2EE Applications 333

DAY 8 Transactions and Persistence 335

Overview of Transactions ..336
Container-Managed Transaction Demarcation ..338
Bean Managed Transaction Demarcation ..345

Motivation and Restrictions ..345
Using the Java Transaction API ..345
Deploying a BMTD Bean ..349
Client-Demarcated Transactions ..350
Exceptions Revisited ..350

Extended Stateful Session Bean Lifecycle ..352
Transactions: Behind the Scenes ..354

Transaction Managers, Resource Managers, and 2PC354
The JTA API ..356

x Sams Teach Yourself J2EE in 21 Days

00 0672323842 FM 3/20/02 9:31 AM Page x

Contents xi

What If It Goes Wrong? ..359
JTA Versus JTS ..361

Overview of Persistence Technologies ..363
JDBC ..365
SQLj ..367

SQLj Part 0 ..368
SQLj Part 1 ..373
SQLj Part 2 ..378

JDO ..383
JDO Concepts ..384
javax.jdo Classes and Interfaces ..387
Queries ..389
Other Features ..391

Gotchas ..392
Summary ..393
Q&A ..393
Exercises ..394

DAY 9 Java Message Service 395

Messaging ..395
Message Passing ..396

Java Message Service API ..397
JMS and J2EE ..398

JMS API Architecture ..399
Message Domains ..400

Developing JMS Applications Using JBoss1 ..402
JMS Implementation in JBoss ..402

Programming a JMS Application Using J2EE RI ..404
J2EE RI Connection Factories ..404
Adding Destinations in J2EE RI ..404
Creating a Queue in J2EE RI ..404

Point-to-Point Messaging Example ..406
JMS Messages ..407
Creating a Message ..409
Sending a Message ..409
Closing the Connection ..410
Send JMS Text Message Example ..410
Consuming Messages ..411

Simple Synchronous Receiver Example ..412
Receive JMS Text Message Example ..413
Asynchronous Messaging ..414

The Publish/Subscribe Message Domain ..415

00 0672323842 FM 3/20/02 9:31 AM Page xi

Point-to-Point Messaging Example ..416
Bulletin Board Publisher ..417
Bulletin Board Subscriber ..418
Creating Durable Subscriptions ..420
Additional JMS Features ..422

Introduction to XML ..425
What Is XML and Why Would You Use It? ..425

Summary ..426
Q&A ..426
Exercise ..427

DAY 10 Message-Driven Beans 429

What Are Message-Driven Beans? ..430
The Message Producer’s View ..430
Similarities and Differences with Other EJBs ..431

Programming Interfaces in a Message-Driven Bean ..431
Life Cycle of a Message-Driven Bean ..432

The Message-Driven Bean Context ..433
Creating a Message-Driven Bean ..434

Method-Ready Pool ..434
The Demise of the Bean ..435
Consuming Messages ..435
Handling Exceptions ..436
Container- and Bean-Managed Transactions ..436
Message Acknowledgment ..437
JMS Message Selectors ..438

Writing a Simple Message-Driven Bean ..439
Implementing the Interfaces ..439

Running the Example ..440
Creating the Queue ..441
Deploying the Message-Driven Bean ..442
Create a Sender Client to Create a Message ..445

Developing the Agency Case Study Example ..447
Step 1—Sender Helper Class ..447
Step 2—Agency and Register Session Bean ..449
Step 3—The Message-Driven Bean ..451
Step 4—Create the JMS Queue ..456
Step 5—Deploy the EJBS ..456
Step 6—Testing the ApplicantMatch Bean ..457

Using Other Architectures ..457
Summary ..458
Q&A ..458
Exercise ..458

xii Sams Teach Yourself J2EE in 21 Days

00 0672323842 FM 3/20/02 9:31 AM Page xii

Contents xiii

DAY 11 JavaMail 461

Understanding E-Mail ..462
SMTP ..463
Post Office Protocol 3 (POP3) ..463
Internet Message Access Protocol (IMAP) ..464
Other Protocols ..464
Multipurpose Internet Mail Extensions (MIME) ..464

Introducing the JavaMail API ..465
Setting up Your Development Environment ..465
Sending a First E-mail ..466

Creating a First E-mail ..466
Creating Multi-Media E-mails ..472

Creating the Message: Approach #1 ..472
Creating the Message: Approach #2 ..476

Sending E-mails with Attachments ..482
Exploring the JavaMail API ..485

Retrieving Messages ..485
Deleting Messages ..489
Getting Attachments ..490
Authenticating Users and Security ..494

Summary ..497
Q&A ..497
Exercises ..499

DAY 12 Servlets 501

The Purpose and Use of Servlets ..502
Tailored for Web Applications ..502
Server and Platform Independence ..503
Efficient and Scalable ..503
Servlets Integration with the Server ..503

Introduction to HTTP ..504
HTTP Structure ..504
Other HTTP Methods ..507
Server Responses ..507

Introduction to HTML ..509
The Servlet Environment ..513

Servlet Containers ..513
The Servlet Class Hierarchy ..513
Simple Servlet Example ..514
Passing Parameter Data to a Servlet ..519

How to Access Parameters ..519
Servlet Example with Parameters ..520

00 0672323842 FM 3/20/02 9:31 AM Page xiii

Using a POST Request ..522
The Servlet Lifecycle ..522
The Servlet Context ..524

Web Applications ..525
Web Application Files and Directory Structure ..525
The Web Application Deployment Descriptor ..526

Handling Errors ..528
HTTP Errors ..528
Servlet Exception Handling ..529

Retaining Client and State Information ..530
Using Session Objects ..530
Hidden Form Fields ..532
Cookies ..532
Creating a Cookie ..533
URL Rewriting ..535

Servlet Filtering ..535
Programming Filters ..535
Example Auditing Filter ..537
Deploying Filters ..538

Event Listening ..541
Deploying the Listener ..543

Servlet Threads ..545
Security and the Servlet Sandbox ..546
Agency Case Study ..546

AgencyTable Servlet Code ..546
Deploying the AgencyTable Servlet ..548

Summary ..552
Q&A ..553
Exercises ..553

DAY 13 JavaServer Pages 555

What is a JSP? ..556
Separating Roles ..557
Translation and Execution ..557

JSP Syntax and Structure ..557
JSP Elements ..558

First JSP example ..560
JSP Problems ..563

JSP Lifecycle ..563
Detecting and Correcting JSP Errors ..565
JSP Lifecycle Methods ..569

xiv Sams Teach Yourself J2EE in 21 Days

00 0672323842 FM 3/20/02 9:31 AM Page xiv

Contents xv

JSP Directives ..570
The include Directive ..570
The page Directive ..571

Accessing HTTP Servlet Variables ..575
Using HTTP Request Parameters ..576
Simplifying JSP pages with JavaBeans ..577

What Is a JavaBean? ..578
Defining a JavaBean ..579
Getting Bean Properties ..579
Setting Bean Properties ..580
Initializing Beans ..581
Using a Bean with the Agency Case Study ..581

Adding a Web Interface to the Agency Case Study ..585
Structure and Navigation ..585
Look and Feel ..588
Error Page Definition ..595
Deploying the Case Study JSPs ..597

Comparing JSP with Servlets ..600
Summary ..601
Q&A ..601
Exercise ..602

DAY 14 JSP Tag Libraries 603

The Role of Tag Libraries ..604
Developing a Simple Custom Tag ..605

Using a Simple Tag ..605
The Tag Library Descriptor (TLD) ..606
Custom Java Tags ..608
The doStartTag() Method ..610
The “Hello World” Custom Tag ..611
Deploying a Tag Library Web Application ..612
Defining the TLD Location ..614
Using Simple Tags ..614

Tags with Attributes ..615
Tags that Define Script Variables ..618
Iterative Tags ..622
Co-operating Tags ..626

Using Shared Scripting Variables ..626
Hierarchical Tag Structures ..627

Defining Tag Extra Info Objects ..634
Validating Attributes ..635
Defining Scripting Variables ..637

00 0672323842 FM 3/20/02 9:31 AM Page xv

Processing Tag Bodies ..637
JavaServer Pages Standard Tag Library (JSPTL) ..640

Using the JSPTL with the J2EE RI ..641
Using the JSPTL forEach Tag ..643
Other JSPTL Tags ..645
JSPTL Scripting Language ..645
Other Jakarta Tag Libraries ..646

Summary ..647
Q&A ..647
Exercise ..648

WEEK 3 Integrating J2EE into the Enterprise 651

DAY 15 Security 653

Security Overview ..654
Security Terminology ..654

Common Security Technology ..656
Symmetric Encryption ..656
Asymmetric Encryption ..658
SSL and HTTPS ..659
Checksums and Digests ..660
Digital Certificates ..660

Security in J2EE ..661
J2EE Security Terminology ..661
Working with J2EE RI Security ..663

Security and EJBs ..666
Defining EJB Security ..666
Defining Roles ..666
Defining the Security Identity ..668
Defining Method Permissions ..670
Mapping Principals to Roles ..674
Using Roles as the Security Identity ..676

Security in Web Applications and Components ..682
Web Authentication ..683
Configuring J2EE RI Basic Authentication ..684
Declarative Web Authorization ..685
Programmatic Web Authorization ..691
Adding Programmatic Web Security to the Case Study692
Using Secure Web Authentication Schemes ..694

Security and JNDI ..695
Simple LDAP Authentication ..696
SASL Authentication ..696

xvi Sams Teach Yourself J2EE in 21 Days

00 0672323842 FM 3/20/02 9:31 AM Page xvi

Contents xvii

Summary ..698
Q&A ..699
Exercises ..699

DAY 16 Integrating XML with J2EE 701

The Drive to Platform-Independent Data Exchange ..702
Benefits and Characteristics of XML ..703

Origins of XML ..703
Structure and Syntax of XML ..704

HTML and XML ..705
Structure of an XML Document ..705
Declarations ..706
Elements ..706
Well-Formed XML Documents ..708
Attributes ..708
Comments ..709

Creating Valid XML ..710
Document Type Definitions ..710
Namespaces ..714
Enforcing Document Structure with an XML Schema715
How XML Is Used in J2EE ..718

Parsing XML ..718
The JAXP Packages ..720
Parsing XML using SAX ..720
Document Object Model (DOM) Parser ..725
Modifying a DOM Tree ..731
Java Architecture for XML Binding ..732

Differences Between JAXP and JAXB ..733
Extending the Agency Case Study ..734

Step 1—Change Session Beans ..735
Step 2—Amend the MessageSender Helper Class ..736
Step 3—Amend the ApplicantMatch Message-Driven Bean 737

Summary ..739
Q&A ..739
Exercises ..740

DAY 17 Transforming XML Documents 741

Presenting XML to Clients ..742
Presenting XML to Browsers ..743
Extensible Stylesheet Language (XSL) ..744
XSL-FO XSL Formatting Objects ..744

00 0672323842 FM 3/20/02 9:31 AM Page xvii

Extensible Stylesheet Transformations (XSLT) ..745
Applying Stylesheets ..746
Storing Transformed Documents on the Server ..746
Presenting XML Documents and Stylesheets to the Client747
Transforming the XML Document on the Server ..747

Using XALAN with J2EE ..748
Transforming XML Documents with XALAN ..749
Using XALAN from the Command Line ..750

Using XSLT in Java Applications ..751
XSLT Stylesheets ..755

Template Rules ..756
Text Representation of XML Elements ..761
Using XPath with XSLT ..762
Default Stylesheet Rules ..764
Processing Attributes ..765

Using Stylesheet Elements ..767
Processing Whitespace and Text ..767
Adding Comments ..769
Attribute Values ..770
Creating and Copying Elements ..771
Attributes and Attribute Sets ..774
Additional XSL Elements ..777

XSLT Compilers ..780
Summary ..781
Q&A ..782
Exercises ..782

DAY 18 Patterns 787

J2EE Patterns ..788
What Are Patterns? ..788
Why Use Patterns? ..790
Types of Patterns ..790
J2EE Patterns ..791
Pattern Catalogs ..792

Applying J2EE-Specific Patterns ..792
Applying Patterns in a Context ..793
Generic Patterns ..794
J2EE Presentation-Tier Patterns ..795
J2EE Business-Tier Patterns ..795
J2EE Integration-Tier Patterns ..796
Patterns Within J2EE ..797

xviii Sams Teach Yourself J2EE in 21 Days

00 0672323842 FM 3/20/02 9:31 AM Page xviii

Contents xix

Patterns in Context ..797
Analysing the Case Study ..797
Session Facades and Entity EJBs ..798
Data Exchange and Value Objects ..800
Data Access Without Entity EJBs ..804
Messages and Asynchronous Activation ..811
Composing an Entity ..812
Composing a JSP ..813
JSPs and Separation of Concerns ..817
Client-Side Proxies and Delegates ..820
Locating Services ..821
Any Other Business ..822
Refactoring the Case Study ..822

Directions for J2EE Patterns ..823
Summary ..824
Q & A ..824
Exercises ..825

DAY 19 Integrating with External Resources 827

Reviewing External Resources and Legacy Systems ..828
Introducing Connector Architecture ..829

Overview of the Architecture ..829
Roles and Responsibilities ..830

Using the Common Client Interface ..834
Interacting with an EIS ..834
Installing a Resource Adapter ..835
Creating a First CCI Application ..836
Managing Transactions and Exploring Records ..843

Introducing Other Connectivity Technologies ..848
Introducing CORBA ..849
Introducing Java IDL ..851
Using RMI over IIOP ..851

RMI over JRMP Example ..852
RMI over IIOP Example ..857

Introducing JNI ..860
Evaluation of Integration Technologies ..865
Summary ..865
Q&A ..866
Exercises ..867

DAY 20 Using RPC-Style Web Services with J2EE 869

Web Service Overview ..870
What Is a Web Service? ..870
Why Use Web Services? ..872

00 0672323842 FM 3/20/02 9:31 AM Page xix

Web Service Technologies and Protocols ..873
Web Service Architecture ..873

Web Services for J2EE ..875
J2EE Web Service Architecture ..875
Tools and Technologies ..876
Integrating Web Services with Existing J2EE Components878

Using an RPC-style SOAP-Based Web Service ..879
RPC-Oriented Web Services ..880
Setting up Axis under Tomcat 4.0 ..881
Service Description Information ..883
Anatomy of a WSDL Document ..883
Creating a Java Proxy from WSDL ..885
Calling the Web Service Through SOAP ..889
A Half-Way House ..891
Debugging a SOAP Interaction ..892

Implementing an RPC-Style SOAP-Based Web Service894
Wrapping up a Java class as a Web Service ..894
A Client for Your Web Service ..898
Starting from WSDL ..900
Using Axis JWS files ..903
Session Context and Web Services ..905
Wrapping Existing J2EE Functionality as Web Services909

Parameter Types and Type Mapping ..911
Mapping Between Java and SOAP/WSDL Types ..911
Mapping Complex Types with Serializers ..912
Going Further with Complex Type Mapping ..919

Summary ..919
Q&A ..920
Exercises ..921

DAY 21 Web Service Registries and Message-Style Web Services 923

Registries for Web Services ..924
What is a Web Service Registry? ..924
Why Do I Need One? ..924
How Do They Work? ..925
Types of Registry ..925
ebXML Registry and Repository ..926
UDDI Overview ..928

Accessing Information in a UDDI Registry ..929
Manipulating Service Information using UDDI4J ..929
Manipulating Service Information Using the IBM WSTK Client API932
Retrieving and Using Service Information ..933

xx Sams Teach Yourself J2EE in 21 Days

00 0672323842 FM 3/20/02 9:31 AM Page xx

Contents xxi

Using JAXR for Registry Access ..934
A Generic Approach ..934
Using JAXR to Store and Retrieve Service Information936

Using a Message-Based SOAP Interface ..937
Message-Style Versus RPC-style ..937
Creating a Client ..938
Creating a Service ..939

Sending and Receiving SOAP Messages with JAXM939
JAXM and J2EE ..941
Configuring JAXM ..941
Sending Basic SOAP Messages ..942
Running the Simple Client ..947
Populating the Message ..947
Headers and Attachments ..951
Receiving a SOAP Message Using JAXM ..952
Using a JAXM Profile ..955
Sending a Message Using a JAXM Profile ..957
Receiving a Message Using a JAXM Profile ..959

Summary ..962
Q&A ..962
Exercises ..963

Appendix A An Introduction to UML 965

Introducing the UML ..965
Use Case Diagrams ..967
Class Diagrams ..969

Associations ..969
Attributes ..970
Operations ..971
Generalization ..972
Constraints ..973

Sequence Diagrams ..973

Appendix B SQL Reference 977

Commonly Used SQL Statements (SQL99) ..978
ALTER TABLE ..978
CREATE TABLE..979
CREATE VIEW ..979
DELETE ..980
DROP TABLE ..980
DROP VIEW ..980
INSERT ..980

00 0672323842 FM 3/20/02 9:31 AM Page xxi

SELECT ..981
UPDATE ..983

Commonly Used SQL Clauses ..983
FROM ..983
WHERE ..983
GROUP BY ..984
HAVING ..984
ORDER BY ..984

Appendix C An Overview of XML 987

What Is XML? ..988
Elements ..988
Declarations ..989
Comments ..990
Special Characters ..990
Namespaces ..991

Enforcing XML Document Structure ..991
Document Type Definition (DTD) ..992
XML Schema ..995

Where to Find More Information ..997

Appendix D The Java Community Process 999

Introducing the JCP ..999
Getting Involved ..1000

JCP Members ..1000
Expert Groups ..1000
The Public ..1000
Process Management Office (PMO) ..1001
Executive Committees ..1001

Understanding the JSR Process ..1001
Taking the Next Step ..1002

Glossary 1003

Index 1025

00 0672323842 FM 3/20/02 9:31 AM Page xxii

About the Authors
The authors of this book work for Content Master Ltd., a technical authoring company in
the United Kingdom specializing in the production of training and educational materials.
For more information on Content Master, please see its Web site at
www.contentmaster.com.

Martin Bond, B.Sc. M.Sc. C.Eng, M.B.C.S., was born near Manchester England in
1958. Martin left a budding academic career to develop parallel processing compilers for
Inmos. Martin has designed and developed systems using C++, Java, and JavaScript and
has developed training courses on Unix programming, Solaris security, Java program-
ming, and XML. Martin has an honors degree and a masters degree in computer science
from Aberystwyth, Wales, and is a European chartered engineer. Martin currently works
as an IT trainer and consultant based in Cornwall, England.

Dan Haywood has been working on large and small software development projects for
more than 12 years. These days, he fills his days with consulting, training and technical
writing, specializing in OO design, Java and J2EE, Sybase technical consulting, and data
modeling. Previously, Dan worked at Sybase Professional Services, performing a variety
of roles, mostly in the financial industry, including architect, performance specialist, and
project manager. Dan started his IT career at (what was then) Andersen Consulting,
working as a developer on large-scale projects in government and in utilities. Dan is mar-
ried and has a baby daughter.

Debbie Law B.Sc., was born in Romsey, England in 1959. Debbie started on compiler
development for parallel processing systems, later working on the design and develop-
ment of client server applications. As a technical manager for Siemens, she was one of a
small group of select staff on an intensive learning program studying worldwide business
practices, including several weeks at MIT and Harvard. Debbie has an honors degree in
computer science from Southampton, England and currently works as an IT consultant
based in Cornwall, England.

Andy Longshaw is a consultant, writer, and educator specializing in J2EE, XML, and
Web-based technologies and components, particularly the design and architecture deci-
sions required to use these technologies successfully. Andy has been explaining technolo-
gy for most of the last decade as a trainer and in conference sessions. A wild rumor sug-
gests that some people have managed to stay awake in these sessions. Despite being well
educated and otherwise fairly normal, Andy still subjects himself and his family to “trial
by unpredictability” by watching Manchester City FC far more often than is healthy.

00 0672323842 FM 3/20/02 9:31 AM Page xxiii

Peter Roxburgh graduated with a first class degree with honors in business, and has
since followed a diverse career path. From his home in the medieval walled town of
Conwy, North Wales, he authors a wide-variety of training courses, and books including
Building .NET Applications for Mobile Devices (Microsoft Press, 2002). He has also
written and contributed to a number of journals and Web sites on cutting-edge technolo-
gies.

Peter spends his spare time playing guitar and bouldering on nearby sea cliffs and moun-
tain crags. When he is not strumming or risking life and limb, he enjoys spending relax-
ing and quality time with his daughter, Chloe.

00 0672323842 FM 3/20/02 9:31 AM Page xxiv

Dedication
To Sarah, for encouragement, advice, and regular supplies of flapjacks; and to Adam and Josh, for pro-

viding me with a life that doesn’t revolve around computers. —AL

To Sue: Thank you for all these happy years. —Love, Dan.

Acknowledgments
The authors would like to thank the various project managers and editors involved in this
book, without whom it would never have seen the light of day. Special thanks go to
Suzanne Carlino at Content Master and Todd Green, Michael Watson, Christy Franklin,
and the editing team at SAMS. We would also like to acknowledge the work of Alex
Ferris and John Sharp in the initial phases of this project.

00 0672323842 FM 3/20/02 9:31 AM Page xxv

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can fax,
e-mail, or write me directly to let me know what you did or didn’t like about this book—
as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4770

E-mail: feedback@samspublishing.com

Mail: Michael Stephens
Executive Editor
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 0672323842 FM 3/20/02 9:31 AM Page xxvi

Introduction
The world has come a long way since Duke first started tumbling in early versions of
Netscape Navigator. Java has outgrown its humble origins as a cool way of providing
interactivity on Web pages and has found a new role as a major, server-side development
platform. The actual Java language has changed little in the intervening years, but an
enterprise-quality infrastructure has risen up around it. This infrastructure, Java 2
Enterprise Edition or J2EE for short, allows Java developers to create sophisticated and
powerful enterprise applications that provide mission-critical functionality for many
thousands of users.

Unlike competing platforms, such as Microsoft .NET, J2EE is a specification rather than
a product. The capabilities and functionality of each release of J2EE is agreed on through
the Java Community Process (JCP). The platform is then implemented by application
server vendors and producers, such as BEA, IBM, iPlanet, ATG, SilverStream, and
JBOSS. This means that J2EE developers have a choice of product vendors from whom
to select, based on quality, support, or ease of use. The ability to submit technologies
through the JCP, and the two-way flow that exists between the main Java vendors and the
open-source community, ensures that a constant stream of new ideas helps to move J2EE
forward.

This book intends to take you on a journey through the J2EE landscape, from the sim-
plest components through design considerations and on to the latest Web Services. There
is a lot to learn in three weeks—but this should provide the essential grounding you need
to use the J2EE platform effectively. If you need to create robust enterprise applications
and Java is your tool of choice, read on.

How This Book is Organized
Sams Teach Yourself J2EE in 21 Days covers version 1.3 of the J2EE platform. It is orga-
nized as three separate weeks that guide you through the different functionality provided
by J2EE.

The first week gives you a broad grounding in J2EE before moving on to investigate
Enterprise JavaBeans (EJBs) in detail:

• Day 1, “The Challenge of N-Tier Development,” defines the landscape in which
J2EE applications operate and provides the architectural concepts with which you
need to become familiar to create J2EE applications.

01 0672323842 Intro 3/20/02 9:23 AM Page 1

2 Sams Teach Yourself J2EE in 21 Days

• Day 2, “The J2EE Platform and Roles,” takes you on a whistle-stop tour of the
J2EE platform, the major technologies, the types of component from which J2EE
applications are assembled, and the container with which they interact. You also
install the J2EE platform and start to look at the case study used throughout the
book.

• On Day 3, “Naming and Directory Services,” you start using your first J2EE API,
the Java Naming and Directory Interface (JNDI), to store, retrieve, and manipulate
information that can be accessed by all J2EE components.

• Day 4, “Introduction to EJBs,” introduces Enterprise JavaBeans (EJB)—the core
technology of the J2EE platform. You will examine the role of EJBs and how they
work. You will then deploy an example EJB and create a simple client application
for it.

• On Day 5, “Session EJBs,” you will explore Session EJBs in more depth. This
includes the creation of both stateful and stateless Session EJBs.

• Day 6, “Entity EJBs,” moves on to Entity EJBs and examines their role and lifecy-
cle. Particular attention is paid to how state is stored and retrieved using Bean-
Managed Persistence (BMP).

• On Day 7, “CMP and EJB QL,” the discussion of Entity EJBs expands to cover
entities that use Container-Managed Persistence (CMP) to store and retrieve their
state. This includes an exploration of the EJB Query Language and Container-
Managed Relationships that were introduced in J2EE 1.3.

The second week moves beyond EJBs to look at asynchronous interaction and the devel-
opment of Web-based components:

• On Day 8, “Transactions and Persistence,” you will delve deeper into the use of
transactions in the J2EE platform—what they can achieve and how your compo-
nents can take advantage of them. Some alternative persistence mechanisms are
also explored.

• Day 9, “Java Message Service,” looks at asynchronous messaging with the Java
Message Service (JMS) using message queues and topics. You will apply JMS to
implement a producer and consumer of asynchronous messages.

• Day 10, “Message-Driven Beans,” builds on the coverage of JMS to associate mes-
sage queues with Message-driven EJBs. You will create an EJB whose functionali-
ty is triggered on receipt of an asynchronous message.

• On Day 11, “JavaMail,” another asynchronous communication mechanism is
examined—namely e-mail. You will learn how to send and retrieve e-mail under
J2EE and how this can be applied to transport data in a J2EE application.

01 0672323842 Intro 3/20/02 9:23 AM Page 2

• Day 12, “Servlets,” is the first of three Web-oriented days that explore the creation
of Web-oriented J2EE applications. This starts by creating servlets to take advan-
tage of the EJB-based services you built earlier. You will look at the servlet lifecy-
cle and central issues, such as session tracking and state management.

• Day 13, “JavaServer Pages,” looks at how JavaServer Pages (JSP) can help to inte-
grate Java and J2EE functionality with HTML content. It examines the role of JSPs
and how JavaBeans can be used to encapsulate Java functionality in JSPs.

• On Day 14, “JSP Tag Libraries,” you will use custom JSP tag libraries to encapsu-
late Java functionality to improve the maintainability of the JSP pages.

The third week explores essential aspects of enterprise applications, such as security and
integration, before moving on to application design and ending with a look at the Web
Service functionality that will form the future of J2EE:

• Day 15, “Security,” begins week 3 by applying security to your J2EE application.
You will weigh up the benefits of declarative and programmatic security and how
they can be applied within your application.

• On Day 16, “Integrating XML with J2EE,” you will examine the role of XML in
J2EE applications. You will create J2EE components that produce and consume
XML documents and process data using the Java APIs for XML Processing
(JAXP).

• Day 17, “Transforming XML Documents,” focuses on the transformation of XML
documents into other formats, including other dialects of XML, primarily using the
XSLT transformation language. Again, JAXP allows you to do this programmati-
cally from within J2EE components.

• On Day 18, “Patterns,” you will take some time to consider the bigger picture and
examine design issues for J2EE applications. The specific focus will be on com-
mon patterns that have been found as people have applied J2EE technologies in
live applications. You will use this knowledge to improve parts of the case study
design.

• Day 19, “Integrating with External Resources,” explores the various technologies
that can be used to integrate J2EE applications with non-J2EE components and ser-
vices. These mechanisms include the Java Connector Architecture, CORBA, RMI-
IIOP, and the Java Native Interface.

• Day 20, “Using RPC-Style Web Services with J2EE,” looks ahead to the use of
J2EE components as Web Services. You will use common Web Service technolo-
gies (such as SOAP and WSDL) to expose Java functionality as Web Services, and
look at how the Java API for XML-Based RPC (JAX-RPC) addresses this.

Introduction 3

01 0672323842 Intro 3/20/02 9:23 AM Page 3

• Day 21, “Web Service Registries and Message-Style Web Services,” concludes the
examination of J2EE-based Web Services by examining the role of XML-based
registries and how the Java API for XML Registries (JAXR) enables access to this
information. You will also create a message-oriented producer and consumer of
Web Services using the Java API for XML Messaging (JAXM).

About This Book
This book is a practical, down-to-earth guide for intermediate Java developers. It is not
intended to be a reference book, with lists of API calls or extensive discussion of the
inner workings of the technologies. Rather, it provides you with a grounding in applying
the essential J2EE technologies and leads you through the essential steps required to get
a program or component written, packaged, and deployed on the J2EE platform. By the
time you finish Sams Teach Yourself J2EE in 21 Days, you should have the confidence to
create or maintain code that uses any of the major J2EE APIs.

Who Should Read This Book?
This book in intended for experienced Java developers who have been involved with Java
development for at least 3–6 months. You should be confident writing Java code and
familiar with the commonly used Java 2 Standard Edition APIs, such as string handling,
JDBC, collections, iterators, and so on.

In addition to a firm grasp of Java, the following knowledge will speed your progress
through the book:

• An understanding of how the Web operates, such as the use of a Web browser to
retrieve pages of HTML from Web Servers.

• Familiarity with XML syntax to the level of reading small extracts of XML con-
taining elements, attributes, and namespaces.

• An understanding of relational databases and how data is structured in tables. A
familiarity with basic SQL to the level of understanding simple queries, inserts,
updates, and joins.

• Familiarity with distributed systems, such as n-tier development, client-server pro-
gramming, and remote procedure calls.

If you are not familiar with one or more of these topics, don’t panic! There are appendixes
on the CD-ROM that provide introductory material on XML and SQL. The essential con-
cepts of distributed systems and Web-based development are covered in the main body of
the book as required.

4 Sams Teach Yourself J2EE in 21 Days

01 0672323842 Intro 3/20/02 9:23 AM Page 4

How This Book is Structured
This book is intended to be read and absorbed over the course of three weeks. During
each week, you read seven chapters that present concepts related to J2EE and the cre-
ation of enterprise applications in Java. Care has been taken to try to ensure that concepts
and technologies are introduced in an appropriate order, so it is best to read the chapters
sequentially if possible.

At the end of each lesson are a set of questions asked about the subject covered that day.
Answers to these questions are provided by the authors. There are also exercises for you
to test your newly found skills by creating some related application or service.

The exercises in the book are largely based around a case study that is described in detail
at the end of Day 2. The files for the case study and worked solutions to the exercises
can be found on the CD-ROM that accompanies this book. The idea of the case study is
that it will help you apply J2EE technologies and techniques in a consistent context and
as part of a working application. This should provide you with a deeper understanding of
the technology involved and how to apply it than is possible working with standalone
examples.

Typographic Conventions

Introduction 5

A Note presents interesting, sometimes technical, pieces of information
related to the surrounding discussion.

Note

A Tip offers advice or suggests an easier way of doing something.Tip

A Caution advises you of potential problems and helps you avoid causing
serious damage.

Caution

Text that you type, text that should appear on your screen, and the names of Java classes
or methods are presented in monospace type.

01 0672323842 Intro 3/20/02 9:24 AM Page 5

01 0672323842 Intro 3/20/02 9:24 AM Page 6

Introducing J2EE
and EJBs

1 The Challenge of N-Tier
Development

2 J2EE Platform and Roles

3 Naming and Directory Services

4 Introduction to EJBs

5 Session EJBs

6 Entity EJBs

7 CMP and EJB QL

WEEK 1 1

2

3

4

5

6

7

02 0672323842 Week1 3/20/02 9:35 AM Page 7

02 0672323842 Week1 3/20/02 9:35 AM Page 8

DAY 1

WEEK 1

The Challenge of N-Tier
Development

The current trend in enterprise program development is to provide n-tier frame-
works aimed at delivering applications that are secure, scalable, and available.
To this end, Sun Microsystems introduced Java 2 Enterprise Edition (J2EE),
and Microsoft Corporation ventured the .NET framework to help developers
build applications that are Web-friendly and frequently used to deliver
e-commerce solutions. There are a myriad of application servers available to
house enterprise applications, and many service providers are writing modular
tools to plug in and extend the rich functionality. The clients that are taking
advantage of this distributed architecture can be as simple as a Web browser (a
so-called thin client).

This is the overarching vision and the state of the art. But, how did we get
here?

To understand this landscape, this chapter investigates the principles of multiple
tiers, component environments, and standards that underlie the frameworks.
One of the objectives will be to give you a clear understanding of concepts and

03 0672323842 CH01 3/20/02 9:26 AM Page 9

terminology used when discussing such frameworks. Such terminology can frequently be
confusing and inconsistently used. As a start along this road, please note that for the pur-
poses of the following discussions, a tier refers to a physical separation (a different
machine), and a layer refers to a logical layer in software terms, such that multiple layers
can be on the same machine.

Monolithic Development
In the days of the mainframe or the standalone personal computer, when an application
was housed on a single machine, it was common to find monolithic applications contain-
ing all the functionality of the application in one large, frequently unmaintainable piece
of software (sometimes referred to as spaghetti code). All user input, verification, busi-
ness logic, and data access could be found together. This suited the world of the main-
frame and corporate data center because everything was controlled and the systems
themselves tended to evolve slowly. However, as the world has speeded up over the last
two decades, the high levels of maintenance required to keep up with changing business
needs using such an application would mean that recompilation would be almost a daily
event.

10 Day 1

Even today, if you need a very simple application where, for example, the
client application accesses and updates information on a database, locally
you need only one tier. However, as you will see, you will still probably want
to use components and or layers to control its complexity.

Note

Figure 1.1 shows how this application may look running on a single machine.

FIGURE 1.1
Monolithic code
scenario. Presentation

Logic
Business

Logic
Data

Access Logic

Monolithic Code

Database

Consequences of Monolithic Applications
If you are writing a simple utility that does not use network connectivity, the previous sce-
nario might suffice. However, any changes required to any part of the functionality may

03 0672323842 CH01 3/20/02 9:26 AM Page 10

The Challenge of N-Tier Development 11

1
potentially affect other parts. Because the Presentation, Business, and Data Access logic
are located within the same piece of application code, recompilation of many parts of the
code may be necessary, increasing the overhead of adding or changing functionality.
Worse still, changes in part of the code may introduce unintentional bugs in other, seem-
ingly unrelated, parts.

Of course, updating the application involves only one machine, but the rollout of new
versions of the software gets more complicated as more users install and use the applica-
tion.

The Move into the Second Tier
The move towards 2-tier systems was born from the desire to share data between multi-
ple applications installed on different machines. To do this, a separate database server
machine was required. Figure 1.2 shows how this is achieved. The application now con-
sists of presentation and business logic. Data is accessed by connecting to a database on
another machine. Any changes to the Data Access logic should not affect the
Presentation or Business logic in the application.

As indicated by Figure 1.2, splitting out Data Access Logic into a second tier keeps the
data access independent and can deliver a certain amount of scalability and flexibility
within the system.

FIGURE 1.2
2-tier scenario.

2 Tier

Database

Presentation
Logic

Business
Logic

Data
Access Logic

The advantage of having the Data Access Logic split into a separate physical environ-
ment means that not only can data be shared, but any changes to the data access logic are
localized in that second tier. In fact, the whole of the second tier could be replaced with a
different database and different code as long as the interface between the two tiers
remained the same.

This provides an alternative way of looking at the program logic. Each part of the logic
from the monolithic system could be regarded as a separate layer.

03 0672323842 CH01 3/20/02 9:26 AM Page 11

The logical division into layers of functionality can be based on the different responsibil-
ities of parts of the code, namely,

• Presentation Logic—This dictates how the user interacts with the application and
how information is presented.

• Business Logic—This houses the core of the application, namely the rules govern-
ing the business process (or any other functionality) embedded in the application.

• Data Access Logic—This governs the connection to any datasources used by the
application (typically databases) and the provision of data from those datasources
to the business logic.

So, we have two tiers in Figure 1.2 with two logical layers. The Presentation and
Business Logic layers are still lumped together as one piece of potentially monolithic
code.

Consequences of the 2-Tier Design
One of the central problems faced by application developers using the type of architec-
ture shown in Figure 1.2 was that the client is still full of business code and it still needs
to know details about the location of its data sources. Because there is such a concentra-
tion of functionality on the client, this type of client is generally termed a thick client.
Thick clients usually need to be updated whenever the application changes.

Because the users of a thick client application have much of the application code
installed on their local systems, there is a need to install fresh copies of the updated
application when changes are made. This presents a serious manageability issue in terms
of roll out and version control. Also, it is not always practical to use a thick client,
because the application user may not want to install code on his or her machine to use a
particular application. Similarly, the application provider may not want to provide code
containing its business logic to relatively unknown third parties, even if it is pre-
compiled.

Another issue with the use of thick clients relates to data access. The need to provide
access to the back-end data for all clients of the application severely limits the reach and
scalability of the application.

In addition to these inherent problems, many applications written with tools aimed at the
two-tier environment still had all of their code in a single executable module. This
increased maintenance headaches because there was a need to update the program design
and implementation if any changes are required to any part of the system. With the
advent of the Internet, there was a movement to separate Business logic from the user
interface. Internet users, or more precisely Web users, need to access applications

12 Day 1

03 0672323842 CH01 3/20/02 9:26 AM Page 12

The Challenge of N-Tier Development 13

1
without installing new code on their machines. In fact, they want to be able to use the
same client application—a Web browser—to access all of the different applications they
encounter on the Web. Because the application logic associated with a thick client is no
longer resident on the user’s machine, this type of client is known as a thin client. The
implication is that all of the “bulk” of the application has been moved into another tier.
When a Web browser is used as a thin client, the application code will be run on the Web
servers with which the browser communicates (or on other machines with which the Web
servers communicate). The presentation tier logic for such an application must generate
Hypertext Markup Language (HTML) rather than manipulate graphical elements on a
GUI screen.

All of this has a serious implication for 2-tier systems. If a 2-tier system is to be adapted
for use on the Internet, the thick client part that contains the business logic and the pre-
sentation logic must be re-written to run on a Web server. This will then mean that there
are two copies of the business logic—one housed in the original thick client and the
other housed in the Web-based version of the application. This is a nightmare in mainte-
nance terms because any changes or updates must be made in both places. More decou-
pling is required to improve the manageability and maintainability of the application.

The decoupling of application logic by introducing additional tiers, as started with the
two-tier system shown in Figure 1.2, can be continued with the separation of the
Business and Presentation Logic. By housing the separated Business Logic in another
tier, the thick client suddenly becomes thinner, as Figure 1.3 shows.

FIGURE 1.3
3-tier scenario.

3 Tier

Database

Data
Access Logic

Business
Logic

Presentation
Logic

The Presentation Logic is now separated into its own layer in its own tier. This means
that different types of Presentation Logic, such as HTML-based and GUI-based user
interface code, can all access the same Business Logic on the middle tier.

This 3-tier model has become the de-facto architecture for Web-based business systems.
The separation into layers makes systems more flexible so that parts can be changed
independently. An example of this would be creating a presentation layer specifically

03 0672323842 CH01 3/20/02 9:26 AM Page 13

targeted at mobile devices. Given the separation of business and presentation functionali-
ty, this should not require any changes to the business of Data Access logic. The separa-
tion into separate physical tiers provides the opportunity to inject enhanced scalability
and availability by replicating machines and software at the different tiers.

With the logic now separated into layers, it is far easier to write code that is tailored to
its particular task. For example, because the Presentation logic is now housed in its own
physical and logical layer, such code can be written by a developer who is skilled in this
particular area. Developers who are skilled in the use of Java Web components, such as
servlets (see Day 12, “Servlets”) and Java Server Pages (JSPs) (see Day 13, “JavaServer
Pages”) can write the code for this layer. These developers do not need to know about the
technologies used in the business or data access code.

Complexity Simplified by Modularity
When designing a system, certain concepts will naturally sit together. By placing these
into shared modules, a certain amount of separation can be achieved that is independent
of the layering discussed so far. Functionality can be split into classes, and these classes
can be grouped in packages or components. By reducing the dependencies between the
classes and packages, this functionality can be used by different parts of the application.
By defining and maintaining interfaces between classes and packages, the actual imple-
mentation of a class can be replaced without requiring a change to other classes that
depend on it. The Unified Modeling Language (UML) diagram in Figure 1.4 shows this
type of decomposition.

14 Day 1

FIGURE 1.4
Modularity.

Package

Class

State
Behaviour

Class

State
Behaviour

Package

Class

State
Behaviour

Class

State
Behaviour

Class

State
Behaviour

Component

03 0672323842 CH01 3/20/02 9:26 AM Page 14

The Challenge of N-Tier Development 15

1
Object-oriented (OO) modeling promotes modularity to a large extent. Objects encapsu-
late their data or state and offer functionality through their interfaces. If designed correct-
ly, the dependencies between different objects can be minimized. This reduction in
dependency means that the objects are loosely coupled. Loosely coupled systems tend to
be easier to maintain and evolve.

Object-oriented programming tried to improve maintainability with encapsulation and to
aid system design with a definition of specific classes for specific roles, providing coher-
ent groups of functionality. This significantly improved the previously poorly designed
monolithic code and made things more maintainable and flexible. However, it was lan-
guage-specific (Java, C++, and Smalltalk) and so did not make deployment or integration
easier.

Although it is not the whole solution, you have some useful tools for modularizing your
applications in Java:

• A Java class is a way of adding modularity by housing all state and behavior
belonging to an entity into one part of the design.

• A Java package is another way of using modularity to house all classes and inter-
faces that belong together to perform a specific set of functions.

What you then need is a way of going beyond simple objects to provide more coarse-
grained packages of functionality that can be glued together to create custom applica-
tions. To be correctly glued, these packages must conform to certain rules that are
defined by a framework. This leads us to components.

Component Technology
A component is a unit of functionality that can be used within a particular framework.
Component frameworks have evolved to provide support for simplified application devel-
opment. When using a component framework, a container provides the components with
certain standard services, such as communication and persistence. Because standard
mechanisms are used for component definition and inter-component communication, it
becomes possible to write tools that examine components and display their information
to an application writer. A developer can then use the tool to drag and drop these compo-
nents into his or her application. This can be seen in the typical GUI interface builder
environments, such as Visual Basic, or the Java equivalents, such as Borland’s JBuilder
and IBM’s Visual Age for Java.

The component principle applies to non-visual components also. Whole distributed appli-
cations can be created from components. One of the benefits of distributed component
frameworks is that they can provide language independence. Using CORBA, for exam-
ple, components written in C can communicate with those written in OO languages such
as Java and Smalltalk.

03 0672323842 CH01 3/20/02 9:26 AM Page 15

In Java, there are several component frameworks from which to choose. The J2EE plat-
form uses components extensively to provide modularity within the layers of an applica-
tion. As such

• A Java component is yet another way of using modularity to house all packages
required to perform a specific task. In the 3-tier environment, for example, the
functionality of the Data Access Logic layer would be split into multiple compo-
nents.

• A component will publish its interface defining the functionality it offers. This
functionality can then be used by the application itself or by other components.

Benefits of Modularity
If separate parts of the design can be identified, the most appropriate developers can be
tasked with the implementation simultaneously. Some components can also be purchased
from third parties and integrated quite easily because all components will conform to the
framework. This brings down the time to market and is, therefore, a significant cost ben-
efit.

The system is more maintainable if identifiable parts are capable of being upgraded and
re-implemented without hindering the existing running of the system. With modularity
comes the possibility of loose coupling, which means the system itself is extendable
without introducing dependencies. If a module has loose coupling, its maintenance is
simpler.

Using components within layers allows you to further modularize the functionality in
those layers.

Benefits of the 3-Tier Scenario
A modern n-tier application architecture, such as that provided by J2EE, involves the
separation of functionality both by using layers and tiers and also the use of components
within those layers (and objects within those components).

Now, presentational developers need not know anything of the business rules in the sys-
tem, and any changes to any of the layers should not impact the effectiveness of any of
the others. This aids in maintenance of the system and promotes scalability and extensi-
bility. The separation into components helps with the division of tasks even further.

With the advent of the Internet, enabling more businesses to deliver goods and services
online, it is easier to deliver functionality to customers and business users. There may be
issues with particular versions of browsers, but compared to the situation where thick

16 Day 1

03 0672323842 CH01 3/20/02 9:26 AM Page 16

The Challenge of N-Tier Development 17

1
client applications would need to be distributed and installed on each client machine, the
relative merit of distributing functionality using the Internet remains overwhelming con-
sidering the potential user base companies are striving to reach.

It is this emphasis on the Internet that many enterprise service vendors are seeking to
exploit. Most organizations have some form of Web presence and many are trying to use
this to offer services to their customers. Since such services interact directly with the
customer, their levels of reliability and usability must be high. Such Web-based applica-
tions are now common currency, and the world is evolving further. Web services are
being discussed as the next generation of n-tier development, allowing applications to be
created from components distributed across the Internet. As this model evolves, the dis-
tributed Internet becomes the computer.

Enterprise applications can be Web centric, but need not be. To cover Web-centric pro-
gramming, this book shows how to integrate Servlets (see Day 12, “Servlets”) and Java
Server Pages (JSPs) (see Day 13, “JavaServer Pages”) into Enterprise applications.
Within an organization, or even when creating business-to-business (B2B) links, enter-
prise applications need not use Servlets or JSPs. In this case, clients may connect directly
to business components, in the shape of Enterprise JavaBeans (see Day 4, “Introduction
to EJBs”), over RMI or CORBA.

As the provision of functionality over the Internet gains importance, most companies will
expose the functionality of their internal applications as part of a Web-based application.
As functionality is exposed, it becomes important to maintain the integrity of the data in
the corporate systems. Transactions provide a common mechanism for doing this.
Transactions are covered in detail in Day 8, “Transactions and Persistence.”

A Model for Enterprise Computing
So, an n-tier, component-based, Web-friendly environment is needed, but what about the
detail—what specific functionality is needed to support such applications? When consid-
ering what is needed for a distributed environment, we can turn to an organization that
has been involved in this area for a long time. Since its inauguration in 1989, the OMG
has been working with key industry players (such as 3Com Corporation, American
Airlines, Canon, Inc., Data General, Hewlett-Packard, Philips Telecommunications N.V.,
Sun Microsystems, and Unisys Corporation) to produce a component-based software
market by hastening the introduction of standardized object software. Many of the
OMG’s specifications have become a standard part of the Distributed Object Computing
landscape, such as the Common Object Request Broker Architecture (CORBA), the
Internet Inter-Orb Protocol (IIOP), and the Unified Modeling Language (UML).

03 0672323842 CH01 3/20/02 9:26 AM Page 17

By examining some of the key requirements outlined in the OMG’s Enterprise
Computing Model, it is possible to explore what is required from a modern distributed
computing environment.

Lifecycle
There must be a safe mechanism for creating, copying, moving, and deleting distributed
objects. A distributed component environment must provide containers to manage the
lifetime of components and assist in their deployment. There are also other lifecycle
issues that must be addressed in a distributed environment. For example, distributed
garbage collection (getting rid of unused objects) can be handled in different ways
according to the operating environment. With Java’s Remote Method Invocation (RMI), a
distributed leasing mechanism is used. With CORBA, there are lifecycle management
services. Microsoft’s Distributed COM (DCOM), on the other hand, relies on objects
controlling their own lifetimes.

Persistence
In an enterprise application, you need to be able to store data permanently for later
retrieval. Object Database Management Systems (ODBMS) and Relational Database
Management Systems (RDBMS) commonly support this requirement. A distributed
application environment must provide a way of accessing and updating persistent data in
a simple yet flexible way. It is also important to support different types of data persis-
tence (different databases, legacy systems, and so on) and different ways of accessing
this data (locally or across a network). Any help that can be given to the developer for
data persistence is generally very welcome.

Naming
Distributed applications will be formed from components that reside on different
machines. The parts of the application that use components on other machines must be
able to locate and invoke such components. What is needed is a directory service in
which components or services can register themselves. Any part of the application that
wants to use such a service can look up the location of the service and retrieve informa-
tion about how to contact it.

Common directory services and protocols include the following:

• CORBA Common Object Services (COS) Naming Service—This allows you to
store object references in a namespace. The COS naming service is widely used in
Java-based distributed environments as a way of storing information about the
location of remote objects. Further information on COS Naming can be found
online at http://www.omg.org.

18 Day 1

03 0672323842 CH01 3/20/02 9:26 AM Page 18

The Challenge of N-Tier Development 19

1
• X.500—This defines an information model for storing hierarchical information and

an access protocol called the Directory Access Protocol (DAP). Further informa-
tion about X.500 can be found online at http://java.sun.com/products/
jndi/tutorial/ldap/models/x500.html.

• Lightweight Directory Access Protocol (LDAP)—This is a lightweight version of
the X.500 protocol that runs over TCP/IP. Further information on LDAP can be
found online at http://www.openldap.org.

• Domain Name System—This is an Internet protocol that allows translation between
host names and Internet addresses. DNS is used by all Internet clients, such as Web
browsers. More information on DNS can be found at
http://www.dns.net/dnsrd/rfc/.

• Microsoft Active Directory—The Active Directory service allows organizations to
store central information on data and services within an enterprise. Further infor-
mation on Active Directory can be found online at http://www.microsoft.com/
windows2000/technologies/directory/default.asp.

Transaction
In a distributed enterprise application, certain business processes will involve multiple
steps. For example, a typical exchange of goods or services for payment will need to take
payment details, verify those payment details, allocate the goods to be shipped, arrange
the shipping, and take the payment. At any stage, the customer might be interrupted or
the server could crash, not completing the entire transaction. If that happens, the enter-
prise application must be able to retrieve the previous state to continue with the transac-
tion at a later time or to roll back the transaction so that the system is restored to its orig-
inal state.

Transaction services provide a way of grouping updates to data so that either all of the
updates are performed or none of them are performed. A transaction coordinator will be
responsible for ensuring this. Transaction information is persisted so that the state of a
transaction can survive a system crash. Transactions can be propagated across distributed
method calls and even across message-based systems.

Security
A secure enterprise application environment will provide the following:

• Authentication—Are you who you say you are?

• Authorization—Are you permitted to do things you are requesting to do?

In addition to this, many enterprise application environments will support both program-
matic and declarative security. Programmatic security is enforced within the enterprise
application itself, while declarative security is enforced by the enterprise application

03 0672323842 CH01 3/20/02 9:26 AM Page 19

environment within which the application runs. The enterprise application environment
will consult configuration information to decide which security restrictions to enforce for
a particular application. Changes to this information would not necessitate recompilation
of the application itself.

Java 2 Enterprise Edition (J2EE)
J2EE is an on-going standard for producing secure, scalable, and highly-available enter-
prise applications. The standard defines which services should be provided by servers
that support J2EE. These servers will provide J2EE containers in which J2EE compo-
nents will run. The containers will provide a defined set of services to the components.
The J2EE specification provides a definition from which enterprise vendors can produce
J2EE application servers on which J2EE-compliant applications can be deployed. An
impressive list of expert group members produced the latest version of the associated
Java Specification Request (JSR 58 which contains the standard definition for J2EE ver-
sion 1.3), which can be found online at http://java.sun.com/j2ee/sdk 1.3/
index.html.

Although the J2EE specification defines a set of services and component types, it does
not contain information on how to arrange the logical architecture into physical
machines, environments, or address spaces.

The J2EE platform provides a common environment for building secure, scalable, and
platform-independent enterprise applications. Many businesses are now delivering goods
and services to customers via the Internet by using such J2EE-based servers. The
requirements of such an environment demand open standards on which to build applica-
tions, for example,

• Java 2 Platform, Standard Edition (J2SE), a platform independent language

• Components that deliver Web-based user interfaces

• Components to encapsulate business processes

• Access to data in corporate data stores

• Connectivity to other data sources and legacy systems

• Support for XML, the language of B2B e-commerce

Components and Containers
J2EE specifies that a compliant J2EE application server must provide a defined set of
containers to house J2EE components. Containers supply a runtime environment for the
components. As such, Java 2 Platform, Standard Edition (J2SE) is available in each con-
tainer. Application Programming Interfaces (APIs) in J2EE are also made available to

20 Day 1

03 0672323842 CH01 3/20/02 9:26 AM Page 20

The Challenge of N-Tier Development 21

1
provide communication between components, persistence, service discovery, and so on.
Containers are implemented by J2EE application server vendors and there should be a
container available for each type of J2EE component:

• Applet Container

• Application Client Container

• Web Container

• EJB Container

There are two types of components deployed, managed, and executed on a J2EE Server:

• Web components—A Web component interacts with a Web-based client, such as a
Web browser. There are two kinds of Web components in J2EE—Servlet
Component and Java Server Pages (JSP) Component. Both types handle the pre-
sentation of data to the user. Please see Days 12 and 13 for further details.

• EJB components—There are three kinds of Enterprise JavaBean components—
Session beans, Entity beans, and Message-Driven Beans. Please see Day 4, Day 5,
“Session EJBs,” Day 6, “Entity EJBs,” and Day 10, respectively, for further infor-
mation.

Figure 1.5 shows the overall relationships between the different containers and compo-
nents in the J2EE environment.

FIGURE 1.5
J2EE logical architec-
ture.

Application Client
Container

Enterprise
Bean

Enterprise
Bean

EJB Container

Database

Servlet JSP Page

Web Container

J2EE Server

Application
Client

Browser

J2EE Standard Services
Containers must provide each type of component with a defined set of services that are
covered in detail as you progress through the book. Briefly these services consist of

03 0672323842 CH01 3/20/02 9:26 AM Page 21

• Connectivity—Containers must support connectivity to other components and to
application clients. One form of required connectivity is to distributed objects
through both Java Remote Method Invocation (RMI) and CORBA (as implemented
by the Java IDL package and RMI over IIOP). Internet connectivity must be pro-
vided both through the Hypertext Transport Protocol (HTTP) and its secure form
(HTTPS).

• Directory services—J2EE servers are required to provide naming services in which
components can be registered and discovered. The Java Naming and Directory
Interfaces (JNDI) provide a way of accessing these services.

• Data access and persistence—Data access is provided through the Java Database
Connection API (JDBC). This API works both at the application level to interface
with databases and also service providers who build drivers for specific databases.

• Legacy connectivity—The Java Connector Architecture (JCA or Connectors) pro-
vides J2EE support in integrating Enterprise Information Servers and legacy sys-
tems, such as mainframe transaction processing and Enterprise Resource Planning
(ERP) systems. This support extends to J2EE service providers who are writing
adapters to connect other systems to the J2EE enterprise architecture.

• Security—Security is built into the J2EE model. APIs, such as the Java
Authentication and Authorization Service (JAAS), assist the J2EE enterprise appli-
cation in imposing authentication and authorization security checks on users.

• XML Support—The JAXP API supports the parsing of XML documents using
Document Object Model (DOM), SimpleAPI for XML documents (SAX), and the
eXtensible Stylesheet Language Transformations (XSLT).

• Transactions—A J2EE server must provide transaction services for its components.
The boundaries of transactions need to be specified by the container or the applica-
tion. The container will usually take responsibility for transaction demarcation,
although the Java Transaction API (JTA) allows the component to control its own
transactions if required.

• Messaging and e-mail—The Java Message Service (JMS) allows components to
send and receive asynchronous messages, typically within an organizational bound-
ary. The JavaMail API enables Internet mail to be sent by components and also
provides functionality to retrieve e-mail from mailstores. JavaMail uses the
JavaBeans Activation Framework (JAF) to support various MIME types.

Figure 1.6 shows the J2EE architecture updated with the services available to its contain-
ers. All of these services are discussed in more detail tomorrow.

Every J2EE-compliant server must support the services defined in this section. To pro-
vide a concrete example of how services should work, the team working on the J2EE

22 Day 1

03 0672323842 CH01 3/20/02 9:26 AM Page 22

The Challenge of N-Tier Development 23

1

J2EE Blueprints
The J2EE Blueprints are a set of best practices that show how best to implement J2EE
applications. The Blueprints provide a concrete implementation of Sun’s vision for 3-tier,
J2EE-based systems. There is a download available from the Sun Web site called Java
Pet Store Sample Application that shows these best practices. This can be found online at
http://java.sun.com/j2ee/blueprints.

The Java Pet Store is a typical online e-commerce application. The best practices cover
application design and, in particular, the promotion of the following:

• Code reuse

• Logical functional partitioning

• The separation of areas of high maintenance

• Extensibility

• Modularity

• Security

• Simple and consistent user interface

FIGURE 1.6
The J2EE platform
with services avail-
able.

Applet
Container

J2SE

JM
S

JA
X

P

JA
A

S

JD
B

C

Enterprise
Bean

Enterprise
Bean

EJB Container

Database

J2EE Server

Application
Client

JM
S

Ja
va

M
ai

l

JA
X

P

JA
A

S

JD
B

C

JT
A

JA
F

C
on

ne
ct

io
ns

Applet
Container

J2SE

Servlet JSP Page

Web Container

Applet
Client

JM
S

Ja
va

M
ai

l

JA
X

P

JA
A

S

JD
B

C

JT
A

JA
F

C
on

ne
ct

io
ns

HTTP

HTTP

JSR is responsible for providing a Reference Implementation (RI) of the J2EE APIs. This
RI is freely available from Sun and provides a convenient platform for prototyping appli-
cations and testing technologies.

03 0672323842 CH01 3/20/02 9:26 AM Page 23

• Efficient network usage

• Data integrity

The J2EE Blueprints will show you step-by-step how to design multi-tier enterprise
applications. There are explorations on the following topic areas:

• The Client Tier

• The Web Tier

• The Enterprise JavaBeans Tier

• The Enterprise Information Systems Tier

• Design Patterns

In addition, there are discussions on how to package and deploy your enterprise applica-
tions.

J2EE Compatibility Test Suite
Enterprise service providers will sell more if their enterprise servers meet with the J2EE
specification requirements. To enable them to test their products against the specification,
Sun Microsystems Inc. offers a testing environment. Servers that pass all of the tests can
be certified as J2EE compliant. Further details of the compatibility suite can be found
online at http://java.sun.com/j2ee/compatibility.html.

The following are some examples of application vendors and their servers that have been
certified by Sun Microsystems as being compatible with the J2EE specification (some of
these may not yet have attained J2EE 1.3 certification, so please check on the Sun Web
site).

• Allaire (www.macromedia.com/software/coldfusion)—ColdFusion 5 comes with
its own markup language (ColdFusion Markup Language) that integrates with all
popular Web languages and technologies. ColdFusion works with multi-tier archi-
tectures through COM, CORBA, and EJB integration.

• BEA Systems (www.bea.com)—BEA Weblogic Server includes support for Web
Services, J2EE Connector Architecture, and updated J2EE services, with EJB 2.0,
Servlet 2.3, and JSP 1.2.

• IBM (www.ibm.com)—Websphere Commerce Business Edition supports EJB, JSP,
XML, HTTP, and wireless markup language technologies.

• iPlanet (www.iplanet.com)—iPlanet Application Server Enterprise Edition sup-
ports the J2EE platform and is integrated with transaction monitor, iPlanet Web
Server, and iPlanet Directory Server. It supports XML, wireless application proto-
cols, Simple Network Management Protocol (SNMP), LDAP, CORBA, and JDBC.

24 Day 1

03 0672323842 CH01 3/20/02 9:26 AM Page 24

The Challenge of N-Tier Development 25

1
• JBoss (www.jboss.org)—JBoss is a freeware server that houses an implementation

of the EJB 1.1 (and parts of 2.0) specification. It is similar to Sun’s J2EE
Reference Implementation, but the JBoss core server provides only an EJB server.
JBoss does not include a Web container, but JBoss is available to download with a
freeware Web server.

• Persistence (www.persistence.com)—PowerTier Release 7 for J2EE supports Java,
EJB deployment, and Rational Rose integration.

The Future of J2EE
Probably the major area for the future of J2EE is that of Web Services. There are a num-
ber of JSRs active at the time of this writing on the following topic areas:

• JSR 67 Java APIs for XML Messaging (JAXM) 1.0—Message-based communica-
tion between Web Services and Web Service clients. Please refer to Day 21, “Web
Service Registries and Message-style Web Services,” for further details.

• JSR 93 Java APIs for XML Registries 1.0 (JAXR)—Registry and naming service
access for Web Services. Please refer to Day 21 for further details.

• JSR 101 Java APIs for XML-RPC (JAX-RPC)—RPC-style interaction with Web
Services. Please refer to Day 20, “Using RPC-Style Web Services with J2EE,” for
further details.

• JSR 109 Implementing Enterprise Web Services—A model of how Web Services
should work within J2EE.

These JSRs can be found through the Java Community Process (JCP) Web site at
http://www.jcp.org.

Summary
Enterprise application development has helped businesses provide Web-enabled, scalable,
secure applications quickly. It has also enabled vendors to produce pluggable tools and
services to augment the J2EE standard defined through the Java Community Process.
This chapter describes the journey towards the n-tier environment that underpins the
architecture of enterprise application programming. You have investigated the basic ser-
vices that should be available to an n-tier enterprise application, and examined a few of
the enterprise application servers on the market.

Q&A
Q I have a monolithic program that I would like transition into an n-tier appli-

cation. How do I do this?

03 0672323842 CH01 3/20/02 9:26 AM Page 25

A First you need to identify what sort of target architecture is required. If your appli-
cation is to be Web-enabled, you will need to provide Web-oriented functionality in
the presentation layer. If you are working with persistent data, you will need data
access through a data access layer. You should map out your target architecture
based on the services available under the J2EE platform.

Next, you will need to sift through the monolithic code separating out the code
belonging to the logical layers. This code might need to be rewritten in such a way
as to make it maintainable and extensible. Introduce modularity by adopting
object-oriented programming and design classes. Package these classes and design
components to have maximum cohesion and loose coupling wherever possible.

To implement and deploy your J2EE application, read the rest of the book and fol-
low the examples.

Q What is the difference between Microsoft’s .NET framework and J2EE?

A You can build enterprise applications with both platforms. Both J2EE and .NET
framework applications can provide good levels of scalability, availability and so
forth. The essential difference is largely one of choice. J2EE lets you use any oper-
ating system, such as Windows, UNIX, or a mainframe. J2EE’s development envi-
ronment can be chosen to suit developers from a variety of Integrated Development
Environment (IDE) and J2EE application server vendors. The .NET framework is
essentially limited to the Windows family of operating systems. This allows it to be
more cleanly integrated with the operating system, but reduces the choice of target
platform.

Exercises
To extend your knowledge of n-tier development, try the following exercises:

1. Write a design for a monolithic application to provide a shopkeeper with data con-
cerning stock information.

2. Redesign the application based on the contents of this chapter, so as to make it
accessible over the Internet.

3. Visit http://java.sun.com/j2ee for further details of the J2EE programming
tools and utilities.

4. Visit http://www.microsoft.com for further details of the .NET framework.
Compare and contrast this with the facilities available under J2EE.

26 Day 1

03 0672323842 CH01 3/20/02 9:26 AM Page 26

DAY 2

WEEK 1

The J2EE Platform and
Roles

Yesterday, you learned about enterprise computing and some of the problems
facing developers of enterprise solutions. The day also introduced J2EE, a tech-
nology that can help you develop secure, scalable, and platform-independent
solutions that meet the needs of today’s business.

Today, you will explore the J2EE platform and see what it can offer you to help
solve your business problems. J2EE is a large framework that boasts of a wide-
range of components, services, and roles. It is these that you explore today, so
that you’ll be eager and prepared to start writing code tomorrow. The following
are the major topics today covers:

• Understanding how J2EE delivers solutions for today’s business

• Introducing the available Web-centric components

• Introducing the use of Enterprise JavaBeans

• Assessing platform roles

• Exploring the packaging and deployment of enterprise applications

04 0672323842 CH02 3/20/02 9:37 AM Page 27

Revisiting the J2EE Platform
You learned a lot about enterprise computing yesterday. You learned specifically about
how business needs force the evolution of application architectures; today, most applica-
tions are distributed across multiple machines. This approach, the n-tier model, gives
rise to different ways of writing and structuring applications. Units of functionality—
components—provide modularity that allow multiple developers to work more easily on
different parts of the application. Use of a component framework also allows developers
to apply third-party components to speed development. These loosely-coupled compo-
nents may run as an application on a desktop client, within a Web server, or even on a
server that connects to a legacy system. In addition, data has undergone a revolution.
Data sources now go beyond simple, relational databases containing tables to encompass
databases that contain serialized objects or plain text files containing XML. Alternatively,
data may take the form of user information in an LDAP directory or information in an
Enterprise Resource Planning (ERP) system.

Applications written in traditional programming languages that do not have supporting
frameworks simply cannot perform the operations required by today’s environment.
Instead, you must employ component-aware programming languages together with
frameworks dedicated to enterprise computing. As you have already seen, J2EE is such a
framework. Although the environment within which J2EE operates might sound daunt-
ing, J2EE isn’t. When you write J2EE applications, you still write Java code, and you
still get to use the J2SE classes with which you are familiar.

To successfully use J2EE, you must

• Install and configure your J2EE environment

• Understand J2EE roles

• Appreciate the purpose of containers

• Understand how you can use J2EE components

• Understand the services that containers supply to components

• Learn or explore a new set of APIs

Yesterday’s lesson introduced the first four points in the list. You will explore them in
more depth today. After you understand these, you will be ready for tomorrow, when you
will start to apply the new APIs and to code real applications against them.

Using Sun Microsystems’ J2EE SDK
Before you can start coding real J2EE applications, you need a J2EE implementation and
a Java development environment, such as Sun Microsystems JDK or a Java Integrated

28 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 28

The J2EE Platform and Roles 29

2

Development Environment (IDE). This book uses the Sun Microsystems’ J2EE SDK,
which is a complete reference implementation of J2EE. It includes all the classes, con-
tainers, and tools you need to learn J2EE.

To run the example code provided on the CD-ROM accompanying this book, you will
also need to install a sample database. Installing the sample database is described in the
Exercise at the end of this day’s lesson. But now, to give you some hands-on work
before you study the theory behind J2EE, you will install the J2EE SDK 1.3 on your
workstation.

The J2EE SDK is free to download, use for learning J2EE, and use as a devel-
opment tool. The Sun Microsystems license for this product states that you
may not use it in a production environment. Be warned!

Note

Installing J2EE SDK 1.3
Before you download the SDK, ensure that you have J2SE 1.3.1_01 (also known as JDK
1.3.1) or later correctly installed and are using one of the following supported platforms:

• Windows NT4 or 2000

• Solaris SPARC 7 or 8

• Linux Redhat v 6.0 or 6.1

You can use a Java IDE that supports J2SE 1.3 (or later) in preference to the Sun
Microsystem’s J2SE JDK 1.3.1.

Before installing J2EE SDK 1.3, you must uninstall any previous versions of the J2EE
SDK.

Finally, you must ensure that you have a JAVA_HOME environment variable that points to
the location of the directory where you installed J2SE SDK (or your preferred Java IDE).
This should have been defined when you (or your administrator) installed the J2SE SDK
(JDK). If the JAVA_HOME variable is not defined, you must define it now as follows.

If you are using Windows NT or 2000 (remember J2EE SDK is not supported on other
Windows’ platforms) you should set the JAVA_HOME variable in your system environment
so that it is defined for all of the programs you run. Do this using the Control Panel as
follows:

1. Within the Control Panel, select System.

2. The System Properties dialog appears, select the Advanced tab.

3. Click Environment Variables.

04 0672323842 CH02 3/20/02 9:37 AM Page 29

4. The Environment Variables dialog appears, click New.

5. The New System Variable dialog appears, enter the name and value of the variable.
Assuming that you installed the J2EE SDK 1.3 on the C: drive using the default
directory name, you will set the JAVA_HOME variable to

C:\j2sdkee1.3

6. Click OK to clear each of the dialogs.

You must have administrator privileges to edit or change system environment vari-
ables. If you do not have administrator privilege, you can still use the JDK, but
you’ll have to define the variables in your user environment. Any other users of
your workstation will also have to define the same variables in their environment.

If you are using Linux or Unix and the JAVA_HOME environment variable does not exist,
you can set it with the following command(you must be using the Bourne, Korn, Bash or
compatible shell):

JAVA_HOME=/usr/local/jdk1.3.1
export JAVA_HOME

This example assumes you have installed the Sun Microsystems’ JDK 1.3.1 in
/usr/local.

Typically, you will add these variable definitions to your login environment by adding
the same two lines to the.profile file in your home directory.

Finally, you should ensure that the JDK bin directory is in your search path (again this
should already be configured on your workstation).

For Windows users, if your search path does not contain the JDK bin directory, add the
following directory to your PATH via the Control Panel:

%JAVA_HOME%\bin

For Linux/Unix users, if your search path does not contain the JDK bin directory, add
the following line to your .profile file:

PATH=$PATH:$JAVA_HOME/bin

Now download the J2EE SDK in the format appropriate to your system from
http://java.sun.com/j2ee/sdk_1.3/index.html. You should download the J2EE SDK
to a temporary directory because the installation process will ask you where to install the
SDK.

The installation of the SDK is quite straightforward; just follow the instructions for your
platform:

30 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 30

The J2EE Platform and Roles 31

2

• Windows—Double-click the icon of the j2sdkee-1_3_01-win.exe file and follow
the onscreen instructions.

• Solaris—Issue the following commands to make the download bundle executable
and run the installation::
chmod a+x ./j2sdkee-1_3__01-solsparc.sh
./j2sdkee-1_3__01-solsparc.sh

• Linux—Change directories to the required parent directory for the J2EE SDK (for
example, /usr/local) and extract the download bundle using the following com-
mand:

tar – xzvf <download_directory>/j2sdkee-1_3_01-linux.tar.gz

Now you must:

1. Define the J2EE_HOME variable.

2. Add the J2EE SDK bin directory to your search path.

3. Add the J2EE classes to your CLASSPATH.

You have already been shown how to define variables and change your path for your
environment (Windows users use the Control Panel and Linux/Unix users add variable
definition lines to .profile), so making these changes will be straightforward.

Windows users must (assuming the J2EE SDK was installed on the C: drive)

1. Define the following environment variable

J2EE_HOME=c:\j2eesdk1.3

2. Add the following directory to the end of the PATH variable:

%J2EE_HOME%\bin

3. Add the J2EE JAR files to the CLASSPATH variable:

%J2EE_HOME%\lib\j2ee.jar;%J2EE_HOME%\lib\locale

If your CLASSPATH variable is not currently defined, you must ensure that it
includes the current directory so the full setting will be

.;%J2EE_HOME%\lib\j2ee.jar;%J2EE_HOME%\lib\locale

Linux/Unix users must add the following to their .profile (assuming the J2EE SDK
was installed in /usr/local/j2eesdk1.3):

1. Define the following environment variable:

J2EE_HOME=/usr/local/j2eesdk1.3

2. Update the PATH variable for J2EE SDK:

PATH=$PATH:$J2EE_HOME/bin

04 0672323842 CH02 3/20/02 9:37 AM Page 31

3. Add the J2EE JAR files to the CLASSPATH variable:

CLASSPATH=$CLASSPATH:$J2EE_HOME/lib/j2ee.jar:$J2EE_HOME/lib/locale

If your CLASSPATH variable is not currently defined, you must ensure that it
includes the current directory so the full setting will be:

CLASSPATH=.:$J2EE_HOME/lib/j2ee.jar:$J2EE_HOME/lib/locale

That is it! You are now ready to start using the J2EE SDK.

32 Day 2

All the documentation for the J2EE utility programs and class files is con-
tained in the J2EE SDK download bundle. You will find the documentation
in the docs sub-directory of the J2EE installation directory.

Note

Starting the J2EE Reference Implementation (RI)
The J2EE SDK includes a Reference Implementation of J2EE. This Reference
Implementation (RI) contains the following software programs:

• A J2EE server

• A relational database called Cloudscape

• An HTTP (Web) server

• A JNDI service implementation

• A JMS service implementation

• Class files for the J2EE APIs

• Various administration and support utilities

The server software components of the RI (database, JNDI, Web server, and J2EE server)
are purely for development and are not designed for commercial use. The J2EE RI has
been used for the code shown in this book because it is free of charge and conforms to
the J2EE 1.3 specification.

To develop J2EE applications and run the example code presented in this book, you will
need to start the J2EE server and the Cloudscape database server. Starting the J2EE
server will also start the JNDI, JMS, and HTTP servers provided with the J2EE RI.

There are no graphic tools for managing the J2EE and Cloudscape servers, so you will
have to start them from the command line. Each server should be started in a separate
command window or Telnet window if you are not using a graphical console. It does not
matter in which order you start the J2EE and Cloudscape servers.

04 0672323842 CH02 3/20/02 9:37 AM Page 32

The J2EE Platform and Roles 33

2

In the following examples, you must have configured your search path (the PATH environ-
ment variable) to include the J2EE SDK bin directory as shown previously.

To start the J2EE RI server, create a new window with access to a command-line prompt
(command window for Windows NT/2000 or a terminal or shell window for Linux/Unix
users). Enter the following command at the prompt:

j2ee –verbose

This will start the J2EE server in the current window with diagnostic messages displayed
in the window. If (or when) you have problems deploying your J2EE applications to the
server, it is this window you should examine for error messages. If you put simple diag-
nostic messages in your EJBs that write to System.out or System.err, these messages
will also appear in this window.

Listing 2.1 shows the diagnostic messages issued as the J2EE RI and associated servers
startup.

LISTING 2.1 Successful J2EE Reference Implementation Startup Diagnostics

1: > j2ee -verbose
2: J2EE server listen port: 1050
3: Naming service started:1050
4: Binding DataSource, name = jdbc/DB2,

➥url = jdbc:cloudscape:rmi:CloudscapeDB;create=true
5: Binding DataSource, name = jdbc/DB1,

➥url = jdbc:cloudscape:rmi:CloudscapeDB;create=true
6: Binding DataSource, name = jdbc/InventoryDB,

➥url = jdbc:cloudscape:rmi:CloudscapeDB;create=true
7: Binding DataSource, name = jdbc/Cloudscape,

➥url = jdbc:cloudscape:rmi:CloudscapeDB;create=true
8: Binding DataSource, name = jdbc/EstoreDB,

➥url = jdbc:cloudscape:rmi:CloudscapeDB;create=true
9: Binding DataSource, name = jdbc/XACloudscape, url = jdbc/XACloudscape__xa
10: Binding DataSource, name = jdbc/XACloudscape__xa, dataSource = COM.cloud-

scape.core.RemoteXaDataSource@653220
11: Starting JMS service...
12: Initialization complete - waiting for client requests
13: Binding: < JMS Destination : jms/Queue , javax.jms.Queue >
14: Binding: < JMS Destination : jms/firstQueue , javax.jms.Queue >
15: Binding: < JMS Destination : jms/Topic , javax.jms.Topic >
16: Binding: < JMS Cnx Factory :

➥QueueConnectionFactory , Queue , No properties >
17: Binding: < JMS Cnx Factory :

➥jms/QueueConnectionFactory , Queue , No properties >
18: Binding: < JMS Cnx Factory :

➥TopicConnectionFactory , Topic , No properties >
19: Binding: < JMS Cnx Factory :

04 0672323842 CH02 3/20/02 9:37 AM Page 33

➥jms/TopicConnectionFactory , Topic , No properties >
20: Starting web service at port: 8000
21: Starting secure web service at port: 7000
22: J2EE SDK/1.3
23: Starting web service at port: 9191
24: J2EE SDK/1.3
25: J2EE server startup complete.

If you start the J2EE server without the -verbose option, all the diagnostic messages will
be written to log files in the logs sub-directory of the J2EE SDK installation directory.
You will find additional logging information is also written to these log files even with
the -verbose option specified.

The J2EE log files are stored in a sub-directory named after your workstation in the logs
sub-directory of the J2EE SDK installation directory. Further sub-directories are used to
separate the log files for the J2EE, JMS, and HTTP servers.

To start up the Cloudscape database server, you must open a new window and enter the
following command:

cloudscape –start

Again, some simple diagnostic messages will be displayed as the server starts up, as
shown in Listing 2.2.

LISTING 2.2 Successful Cloudscape Startup Diagnostics

> cloudscape -start
Thu Jan 10 10:52:18 GMT+00:00 2002:
➥ [RmiJdbc] Starting Cloudscape RmiJdbc Server
Version 1.7.2 ...
Thu Jan 10 10:52:25 GMT+00:00 2002:
➥ [RmiJdbc] COM.cloudscape.core.JDBCDriver registered in DriverManager
Thu Jan 10 10:52:25 GMT+00:00 2002: [RmiJdbc] Binding RmiJdbcServer
Thu Jan 10 10:52:25 GMT+00:00 2002:
➥ [RmiJdbc] No installation of RMI Security Manager
Thu Jan 10 10:52:26 GMT+00:00 2002:
➥ [RmiJdbc] RmiJdbcServer bound in rmi registry

Troubleshooting J2EE and Cloudscape
You should have no problems starting up either server. If you do have problems, check
the error messages displayed in the relevant window. The most likely problems are dis-
cussed in the rest of this section.

34 Day 2

LISTING 2.1 Continued

04 0672323842 CH02 3/20/02 9:37 AM Page 34

The J2EE Platform and Roles 35

2

Read Only Installation Directory
You will not be able to run J2EE RI and Cloudscape unless you have installed the J2EE
SDK in a writeable directory. If you have installed the J2EE SDK as a privileged user
(Administrator, root, or whomever), make sure that you grant your normal login account
read and write permission to the installation directory and all contained files and directo-
ries.

Server Port Conflicts
Although the J2EE SDK software uses TCP port numbers that are not normally used by
other software, there is always a possibility that there will be a port number conflict.

If a port is used by another software server, a J2EE component will fail to start up and
you will see an error message stating that the server “Could not connect to a required
port.” The error will normally include a stack trace.

The most likely cause of a port conflict is where you (or another developer) have already
started the J2EE server. Listing 2.3 shows the error message for this situation.

LISTING 2.3 Error Message Caused by Running the J2EE Server Twice

> j2ee -verbose
J2EE server listen port: 1050
org.omg.CORBA.INTERNAL: minor code: 1398079697 completed: No
at com.sun.corba.ee.internal.iiop.
➥GIOPImpl.createListener(GIOPImpl.java:256)

at com.sun.corba.ee.internal.iiop.
➥GIOPImpl.getEndpoint(GIOPImpl.java:205)

at com.sun.corba.ee.internal.iiop.
➥GIOPImpl.initEndpoints(GIOPImpl.java:140)

at com.sun.corba.ee.internal.POA.POAORB.
➥getServerEndpoint(POAORB.java:488)

at com.sun.corba.ee.internal.POA.POAImpl.
➥pre_initialize(POAImpl.java:154)

at com.sun.corba.ee.internal.POA.POAImpl.<init>(POAImpl.java:112)
at com.sun.corba.ee.internal.POA.POAORB.makeRootPOA(POAORB.java:110)
at com.sun.corba.ee.internal.POA.POAORB$1.evaluate(POAORB.java:128)
at com.sun.corba.ee.internal.core.Future.evaluate(Future.java:21)

at com.sun.corba.ee.internal.corba.ORB.
➥resolveInitialReference(ORB.java:2421)

at com.sun.corba.ee.internal.corba.ORB.
➥resolve_initial_references(ORB.java:2356)

at com.sun.enterprise.server.J2EEServer.run(J2EEServer.java:193)
at com.sun.enterprise.server.J2EEServer.main(J2EEServer.java:913)

java.lang.RuntimeException: Unable to create ORB.
➥ Possible causes include TCP/IP ports in use by another process

04 0672323842 CH02 3/20/02 9:37 AM Page 35

at com.sun.enterprise.server.J2EEServer.run(J2EEServer.java:203)
at com.sun.enterprise.server.J2EEServer.main(J2EEServer.java:913)

java.lang.RuntimeException: Unable to create ORB.
➥Possible causes include TCP/IP ports in use by another process

at com.sun.enterprise.server.J2EEServer.run(J2EEServer.java:203)
at com.sun.enterprise.server.J2EEServer.main(J2EEServer.java:913)

java.lang.RuntimeException: Unable to create ORB.
➥Possible causes include TCP/IP ports in use by another process

at com.sun.enterprise.server.J2EEServer.run(J2EEServer.java:350)
at com.sun.enterprise.server.J2EEServer.main(J2EEServer.java:913)

J2EE server reported the following error: Unable to create ORB.
➥Possible causes include TCP/IP ports in use by another process
Error executing J2EE server ...

You cannot run more than one J2EE RI server on the same workstation.

If your port conflict is with another piece of software, try to disable this software when
running J2EE RI and Cloudscape. If this is not possible, you can change the port num-
bers used by each J2EE server by editing the file called server.xml in the conf sub-
directory of the J2EE SDK installation directory. The definitions of the default server
port numbers are obvious if you are used to reading and editing XML files. Changing the
J2EE RI port numbers is something you should avoid if at all possible.

Applications Failing with a “Connection Refused: no further
information” Exception
A common error when working with the J2EE RI is to forget to start up the Cloudscape
database server in a separate window. If you fail to start the database and use a J2EE
component, such as an EJB, that accesses the database, you will get the following error:

java.sql.SQLException: Connection refused to host:
➥<hostname>; nested exception is:
java.net.ConnectException: Connection Refused: no further information

To solve this problem, start up the Cloudscape server as described previously and stick a
note to your monitor to remind you to start the database as well as J2EE. If you are con-
fident with batch or shell scripts, you can write your own scripts to start both servers in
separate windows.

The following simple scripts will work for the indicated platforms:

On Windows NT/2000, use

start “J2EE” j2ee –verbose
start “Cloudscape” cloudscape –start

36 Day 2

LISTING 2.3 Continued

04 0672323842 CH02 3/20/02 9:37 AM Page 36

The J2EE Platform and Roles 37

2

On Solaris, use

dtterm –name j2ee –e “j2ee –verbose” &
dtterm –name cloudscape –e “cloudscape –start” &

On Linux, use

xterm –title j2ee –e “j2ee –verbose” &
xterm –title cloudscape –e “cloudscape –start” &

Closing Down J2EE RI and Cloudscape
To close down J2EE RI and Cloudscape, you should use the following commands:

j2ee –stop
cloudscape –stop

These commands can be run from any command window. Remember that the J2EE and
Cloudscape server windows are busy and cannot accept additional commands while the
servers are running.

Although Sun Microsystems do not recommend this approach, typing ^C (Ctrl+C) in the
server window or simply closing the window will also shut down the servers.

Optional Software Used in this Book
A Java IDE (JDK) and a J2EE implementation (J2EE SDK) are all you require to learn
how to develop J2EE applications. However, areas of this book look at using J2EE appli-
cations in a wider context and make use of additional (freely available) software.

So that you are aware of this software, Table 2.1 lists the optional software used in this
book. Full instructions for downloading and configuring this software (should you want
to do so) are included in the relevant day’s instructions. You do not need to download this
software at the present time.

TABLE 2.1 Optional Software Used in Daily Lessons

Day Software Resource URL

3 OpenLDAP and a Unix http://www.openldap.org/

system to run the Open software/download/

LDAP server.

14 JSPTL Java Standard Tag http://jakarta.apache.

libraries from the org/taglibs/index.html

Apache Jakarta project.

17 XALAN from the Apache http://xml.apache.org/

project. xalan-j/index.html

04 0672323842 CH02 3/20/02 9:37 AM Page 37

20 Apache Axis alpha2. http://xml.apache.org/

axis/index.html

Apache Tomcat 4.0.1. http://jakarta.apache.org/

tomcat/index.html

JAXM 1.0 reference http://java.sun.com/xml

implementation (part of
the “JAX Pack Fall 01”).

Understanding Tiers and Components
The 3-tier model splits an application down so that business logic resides in the middle
of the 3 tiers. This is often called the middle tier, business tier, or EJB tier. Throughout
this section, this tier will be referred to as the business tier. The first tier has the role of
providing the interface between the user and the application. Depending on your specific
architecture, this can be known as the client tier or presentation tier. Throughout this sec-
tion, the term presentation tier will be used to define this client-centric tier.

Most of the code written by J2EE application developers resides in the presentation and
business tiers. The next two sections explore these tiers. You will see that different types
of components are used in each tier to deliver particular application functionality. The
components in different tiers should be loosely coupled. In other words, a component
should not have dependencies on the client or other components. For example, imagine a
business component that processes credit card payments. If the component is self con-
tained, almost any application can pass it payment information and it, in turn, can return
an appropriate response. Figure 2.1 shows such a business component communicating
with a variety of clients:

As you can see, because this business component encapsulates all the payment process
functionality, it is not tied to any component in the presentation tier, so it can serve mul-
tiple client types. Code that supports more than one type of client is only one advantage
of component architecture; you will learn about some of the other advantages later in this
chapter.

38 Day 2

TABLE 2.1 Continued

Day Software Resource URL

04 0672323842 CH02 3/20/02 9:37 AM Page 38

The J2EE Platform and Roles 39

2

The Business Tier
As you have just seen, business components sit in the business tier of a J2EE application.
These business components encapsulate business logic and are used by components in
the presentation tier that deliver this functionality to users of the application.

Benefits of Business Components
Previously, you saw a simple credit card processing component that provided that service
for a number of different clients. This demonstrated just one benefit of component archi-
tecture but, in fact, components offer many advantages over a composite architecture:

• Increased efficiency—The division of labor helps a business to roll out applications
quickly. The use of components allows presentation developers to develop GUIs,
process programmers to focus on business logic, and data access experts to focus
on data access.

• Extensibility—You can simply add or remove components to an application so that
it can offer further functionality, for example, if you want to expose application
functionality through a Web Service. The component architecture allows you to
simply add the additional units of functionality the system requires. By the way, if
you don’t know about Web Services, don’t worry. Day 20, “Using RPC-Style Web
Services with J2EE,” and Day 21, “Web Service Registries and Message-Style Web
Services,” show you how to apply a J2EE application as a Web Service.

• Language independence—A modularized system allows you to write code in one
language that communicates with code written in another. For example, you can

FIGURE 2.1
Multiple clients
accessing the services
of a business compo-
nent.

J2EE ServerWireless
Client

Web
Browser

Desktop
Application

Enterprise
Bean

Containing
Payment
Process

Functionality

EJB Container

JSP

JSP Container Presentation
Tier

Business
Tier

04 0672323842 CH02 3/20/02 9:37 AM Page 39

access the functionality of a J2EE application from a CORBA client by using RMI-
IIOP, or from a Microsoft COM client by using the Client Access Services COM
Bridge.

• System upgrade—Inevitably, an organization’s business processes change, and so
too must the application logic. The use of components allows you to change one
component without affecting the other components in the system.

This list is not an exhaustive survey of the benefits of components. But it should make it
clear that components offer both developers and business an ideal way of providing
application functionality.

J2EE defines how various types of components perform specific roles in different tiers.
In the presentation tier, different types of components will be applied to provide func-
tionality for different types of client (application components, applet components, servlet
components, and JavaServer Page components). The business tier houses different types
of business components. In J2EE terms, business components are embodied as Enterprise
JavaBeans. The following sections focus on how such components are applied for the
most common application architecture currently—namely, a business system with a Web-
based user interface.

Components: Enterprise JavaBeans
In a typical business application built on the J2EE platform, business logic will be encap-
sulated in Enterprise JavaBeans (EJBs). It is possible to use other types of component or
plain Java objects to implement business logic, but EJBs provide a convenient way of
encapsulating and sharing common business logic, as well as benefiting from the ser-
vices provided by the EJB container.

Suppose you were tasked with designing and implementing a typical Web-based,
e-commerce application. Although the precise analysis of the business problem would be
specific to your own environment, you would probably end up with the following flow
through your application:

1. Display your products to the customer.

2. Allow the customer to select one or more products.

3. Confirm the order and take shipping details.

4. Take payment for the items.

5. Deliver the order to your warehousing and distribution systems.

6. [optional] Authenticate the user to access previously stored personal information or
preferences.

40 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 40

The J2EE Platform and Roles 41

2

7. [optional] Generate a report from the items purchased by a particular customer or
on a particular day.

All of these steps involve a certain amount of business logic and data manipulation. For
example, in step 1, your application will need to send pages of HTML to the customer’s
browser containing product descriptions and pricing information. To do this, you will
need to retrieve this product and pricing information from somewhere. The obvious
choice is a database that stores your product catalog information together with pricing
information.

As you will see, it would be quite possible to deliver the catalog functionality you
require simply by using database access code from a Web component such as a
JavaServer Page. However, what if gathering this catalog information was not quite so
straightforward?

• The product and pricing information may be spread across multiple databases.
Even worse, it may be that some of the information must be extracted from (or
delivered to, in the case of submitting an order) a legacy system. This means that
the user-interface component would have to know details about data access.

• There may be extra business processes that need to be applied during the creation
of the catalog. These could range from custom pricing for a specific group or indi-
vidual through cross-selling of related products and on to the suggested substitu-
tion of alternative products for any that are not in stock. This means that the user
interface component must have knowledge of multiple business processes.

• If a customer is to be identified and their preferences reflected, authentication is
required. Also, some information about them and their preferences must be main-
tained against a database somewhere. This means that the user interface component
must know about authentication and mapping user identity to stored information.

As you can see, the user interface component rapidly becomes its own version of the
monolithic applications you saw yesterday. The business logic associated with all of this
processing should be devolved to EJBs in order that the user interface component can
concentrate on what it does best, namely generating a compelling user interface and
guiding the user through a particular interaction.

What is needed then is for the business logic in the EJB to be made available to other
components that may want to use it. The mechanisms involved must be commonly avail-
able to the potential clients to impose minimal overhead on those clients. Hence, the EJB
model makes use of two mechanisms found in J2SE—namely Remote Method
Invocation (RMI) and the Java Naming and Directory Interface (JNDI)—to facilitate
interaction between the EJB and its client. When an EJB is written, the functionality it

04 0672323842 CH02 3/20/02 9:37 AM Page 41

offers to clients is defined as an RMI remote interface. When an EJB is deployed, its
location is registered in the naming service.

A client will then use JNDI to look up the location of the EJB. It will interact with a fac-
tory object, called the EJB’s home, to obtain an instance of the EJB. This is equivalent of
using new to create an instance of a local object. When the client has a reference to the
EJB, it can use the business functionality offered by the EJB. This sequence is shown in
Figure 2.2.

42 Day 2

FIGURE 2.2
A client uses JNDI and
RMI to access an EJB.

Enterprise
Bean

Home

Component

EJB Container

Client

Client Container

Factory1

3
Call business
methods

2
Obtain
instance

Look up EJB

Database

RMI

RMI

There is a more detailed look at how to use EJBs on Day 4, “Introduction to EJBs.”

Within the required business logic, certain components will be primarily concerned with
data and the manipulation of that data, whereas others will focus on the sequencing of
business logic and the associated workflow. Equally, components will interact in differ-
ent ways, depending on the needs of the application. Some interactions will be synchro-
nous in nature; there is no point in performing the next stage of the process until the cur-
rent one has finished. Other interactions can be handled asynchronously; an appropriate
message can be sent to another component and then the originator of the message can
carry on to the next stage of the process. This means that clients using asynchronous
interactions complete faster, but they may not be suitable for all applications if there
must be a guarantee that an operation has completed or if return values are required. This
difference between synchronous and asynchronous interactions is shown in Figure 2.3.

04 0672323842 CH02 3/20/02 9:37 AM Page 42

The J2EE Platform and Roles 43

2

Because different business components are called on to behave in different ways, there
are multiple types of EJB defined that can be used to encapsulate different parts of an
application’s business logic.

Components: Session Beans
Session EJBs, often just called session beans, are the simplest and probably most com-
mon type of EJB. A session bean is primarily intended to encapsulate a set of common
business functions. When capturing the outputs of business analysis using the Unified
Modeling Language (UML), Use Cases are identified. A Use Case documents a particu-
lar interaction sequence between a user and a system (a common example is withdrawing
money from an ATM). Such an interaction typically involves multiple, but related, steps.
The business logic associated with the steps from such a Use Case can typically be
housed in a session bean. There are various analogies for and examples of session beans
on Day 4 and Day 5, “Session EJBs.”

Session beans offer a synchronous interface through which the client can use the busi-
ness logic. Session beans are not intended to hold essential business data. The session
bean will either hold no data on an ongoing basis, or the data it does hold will tend to be
temporary (only relevant to the current user session) rather than persistent. If a session
bean wants to obtain data from a database, it can use JDBC calls. Such a bean may pro-
vide part of solution when providing an e-commerce catalog as described earlier.
Alternatively, application data can be obtained through entity EJBs.

Components: Entity Beans
An entity EJB, again often just called an entity bean, is a representation of some business
data. During analysis, various business concepts will be discovered, such as “customer”
or “account.” These business “objects,” sometimes called “entities,” represent the core
data manipulated during the business processes. If such a business object contains

FIGURE 2.3
Synchronous interac-
tions will result in the
caller waiting for the
function to complete,
whereas asynchronous
interactions allow
callers to proceed
without waiting.

Client BusinessObject

Call function

Return value

Synchronous interaction

Client BusinessObject1

BusinessObject2

Send message

Send message

Asynchronous interaction

04 0672323842 CH02 3/20/02 9:37 AM Page 43

dynamic data, has associated functionality, and can be shared between multiple clients at
any one time, this business object would probably map to an entity bean.

Entity beans offer a synchronous interface through which the client can access its data and
functionality. Entity beans will access underlying data sources (frequently, a database or
possibly an ERP system) to collect all the business information they represent. The entity
bean will then act as the dynamic representation of this business data—providing methods
to update and retrieve it in various ways. As you will see later, entity beans are frequently
used together with session beans to provide the business functionality of a system. Entity
beans are discussed further on Day 6, “Entity EJBs.”

A message-driven EJB, or just message-driven bean, fulfills a similar purpose to a ses-
sion bean, but is asynchronous in nature. There are times when it is inefficient to interact
synchronously with a component. One example would be if you wanted to log the details
of a particular transaction to an underlying data store. In many cases, it is not important
that the logging is done immediately, just as long as it is done reliably. This type of oper-
ation can quickly become a performance bottleneck if performed synchronously. The
same is true of “undoable” operations, such as credit card processing.

Components: Message Beans
Message-driven beans offer an asynchronous interface through which clients can interact
with them. The bean is associated with a particular message queue, and any messages
arriving on that queue will be delivered to an instance of the message-driven bean. As
with session beans, message-driven beans are intended to house business logic rather
than data, so they will access any data required through JDBC or entity beans. To use the
services of a message-driven bean, a client will send a message to its associated message
queue. If a response is required, another message queue will typically be used. Message-
driven beans and the Java Message Service with which they interact are discussed further
on Day 9, “Java Message Service,” and Day 10, “Message-Driven Beans.”

The Presentation Tier
Given some business logic implemented as EJBs, you must provide clients with access to
this functionality. What is needed is some presentation logic coupled with a way of dis-
playing information to the user. The presentation logic will govern which screens are dis-
played to the user in which order and how the presentation logic will interact with the
business logic in the business tier to work through the appropriate business process.

The way in which user input is received and information is displayed will depend on
the type of client. The client can range from a WAP phone through to a standalone
Java application with Swing interface. Each type of client will require different

44 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 44

The J2EE Platform and Roles 45

2

presentation tier functionality to exchange and display information. The most common
type of client for a J2EE application is a Web client, in the shape of a Web browser. In
this case, the presentation tier will present a Web-based interface that produces HTML
and consumes HTML form-based input.

Components: Web-Centric
To create a Web-based user interface, you need to apply Web-centric components. J2EE
provides two types of Web-centric components—JavaServer Pages (JSP) and Java
servlets. These components are applied in the presentation tier and provide services to
clients that use HTTP as a means of communication. For example, Web-centric compo-
nents can interact with clients such as the following:

• Standard HTML-oriented browsers, such as Microsoft Internet Explorer and
Netscape Navigator

• Java 2 Micro Edition (J2ME) enabled devices, connecting across a wireless net-
work

• Desktop clients using raw HTTP or sockets functionality

• Wireless Markup Language (WML) browsers, such as those found on WAP-
enabled mobile phones

Figure 2.4 shows how you would typically use these components.

FIGURE 2.4
Typical use of Web-
centric.components.

J2EE Server

Presentation
Tier

Business
Tier

Enterprise
Bean

EJB Container

JSP
or

Servlet

Web Container

Web-centric
Client

HTTP
Request

HTTP
Response

Figure 2.4 shows a Web-centric client making a request to either a servlet or JSP. The
server-side component parses the client’s request and then calls the EJB. The EJB con-
tains the application’s business logic. When the servlet or JSP receives a response from
the EJB, it is responsible for presenting the data it receives. After the servlet or JSP has

04 0672323842 CH02 3/20/02 9:37 AM Page 45

prepared the response, it passes it back to the client, completing the request-response
cycle.

The previous illustration demonstrated a model where the Web-centric component was
responsible for presenting data supplied by an EJB. The EJB was responsible for the
execution of the business logic. However, you do not have to use EJBs as part of a Web-
centric solution. A simpler application can consist of pages of markup—for example,
HTML—and servlets, or JSPs, or a combination of JSPs and servlets.

The next section of today’s lesson shows you the relationship between JSPs and servlets,
so that you are in a position to choose which of these technologies best suit your needs.

JavaServer Pages (JSP)
JSPs allow you to dynamically create pages of markup, such as HTML, in response to a
client’s request. If you are familiar with other Internet technologies, you can liken JSP to
Active Server Pages (ASP) or ColdFusion. But be aware that these technologies are simi-
lar to JSP—not the same.

A JSP consists of a combination of JSP tags and scriplets, which contain the executable
code, and static markup, such as HTML or XML. The code contained in the JSP is iden-
tified and executed by the server, and the resulting page is delivered to the client. This
means that the embedded code can generate additional markup dynamically that is deliv-
ered to the client alongside the original static markup. The client sees none of this pro-
cessing, just the result.

The JSP tags delimit sections of executable code and form the basis of any JSP page.
Scriplets are delimited sections of script that allow a JSP further processing power.
Typically, you can write this script using the Java programming language, but different
JSP implementations may support additional languages.

Day 13, “JavaServer Pages,” shows you in detail how to write JSPs and how JSPs inter-
act with other J2EE components. To whet your appetite today will introduce you to how
JSPs work and interact with other J2EE components. Figure 2.5 shows a scenario that
depicts the typical interactions of client, JSP, and J2EE components.

Figure 2.5 shows a client making a HTTP request for a JSP. The first time a user makes a
request the JSP container handles it by converting the JSP into a Java source file and
compiling it. In most implementations, this file is a servlet. The servlet forwards the
request to a business logic component, such as another servlet, a JavaBean, or an
Enterprise JavaBean. The component performs some action, such as accesses a database
or processes the client’s input, and returns a response to the servlet. The servlet passes
this response to a JSP that generates the markup language that the client will display.
Finally, the JSP container and the Web Server return the markup to the client.

46 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 46

The J2EE Platform and Roles 47

2

As you can see, JSPs provide a very powerful method for dynamically creating pages of
markup. They also allow Web clients to indirectly access the application logic that other
J2EE components contain. Importantly, you have seen the relationship between a JSP
and a servlet.

Java Servlets
Servlets add processing power to servers that employ a response-request model. Perhaps
the most common of such servers is the Web server. In this instance in the past, CGI
scripts would provide this kind of functionality; now you can use servlets. Although
servlets are similar to CGI scripts, they are superior in many ways:

• Speed—You deploy servlets as Java class files. The class file consists of Java byte
codes, which means that they execute faster than interpreted scripting languages,
such as Perl.

• Platform Independence—Servlets are platform-independent classes, so they can be
run under different servers on different operating systems.

• Consistency—Servlets use a standard API (the Servlet API), so they enjoy the sup-
port of many Web servers.

• Power—Servlets can access any of the Java APIs. For example, a servlet can use
JDBC to access a data store, or access remote objects such as EJBs over RMI.

• Support—The Servlet API exposes a number of classes that greatly simplify many
of the tasks a server-side programmer must perform. For example, the Servlet API
provides direct access to response and request information (you do not have to
explicitly parse request data), and it provides support for state management through
a Session object and classes to manipulate cookies.

FIGURE 2.5
The interactions
between a client, JSP,
and J2EE component.

J2EE Server

Enterprise
Bean

EJB Container

JSP

JSP Container

Web-centric
Client

HTTP
Request

HTTP
Response

Database

04 0672323842 CH02 3/20/02 9:37 AM Page 47

One of the greatest facets of the servlet is its ability to interact with other J2EE compo-
nents. Servlets can interact with other servlets or EJBs in just the same way as a JSP.
For example, Figure 2.6 shows a client calling a servlet and then that servlet accessing
an EJB.

48 Day 2

FIGURE 2.6
The interactions
between a client,
servlet, and EJB.

Web Browser J2EE Server

Enterprise
Bean

EJB Container

Servlet

Servlet Container

HTML Page

HTML Form

HTTP
POST

HTTP
Response

Figure 2.6 shows a user completing an HTML form and then initiating a HTTP POST to a
servlet on a Web server. The Servlet Container on the Web Server invokes the servlet and
passes it an object that represents the client’s request. The servlet calls on the services of
the EJB to perform the applications logic. Finally, the servlet generates an HTML
response, which it returns to the client via a response object. In this instance, the servlet
used an EJB, but it could also perform the processing itself or call another servlet or
JavaBean.

Evaluation of Web-Centric Components
Now that you’ve been introduced to JSPs and servlets, you may wonder which compo-
nent best suits a given scenario. In many instances, you can use JSPs and servlets inter-
changeably—remember that a servlet underlies a JSP. Both components dynamically cre-
ate markup, operate on a request-response model, and can interact with other J2EE com-
ponents.

However, Sun Microsystems provide guidance to help you develop applications using
Web-centric components. This guidance takes the form of BluePrints that offer guide-
lines on the best practice and recommended use of J2EE technologies. The following
guidelines derive from these BluePrints.

Generally, the presentation tier should use JSP pages that are presentation-centric, mak-
ing them ideally suited to the generation of markup. In addition, JSP pages consist of

04 0672323842 CH02 3/20/02 9:37 AM Page 48

The J2EE Platform and Roles 49

2

XML tags, which are familiar to Web content providers. This familiarity allows content
providers to easily maintain a site’s content without altering code. Conversely, you
should consider servlets as a programmatic tool that you don’t modify frequently. There
are two main instances when you should use servlet in preference to JSPs:

• Generating Binary Data—You should use servlets to output binary data, such as
images.

• Extending Web Server Functionality—For example, you could use a servlet to do
the filtering of mail for a mail service.

As a guide, you should use JSPs in preference to servlets unless you require one of the
previously mentioned items of servlet functionality.

The Client Tier
J2EE supports a wide range of clients. These clients range from thin clients, such as a
Web browser, to intelligent clients, such as mobile devices that run J2ME Midlets. Both
of these clients communicate through HTTP, but other clients may use SOAP, sockets, or
even CORBA. The factors that unite these disparate clients are that they all call and sub-
sequently receive a response from J2EE middle tier components. This part of the day
looks at a range of J2EE clients and focuses on which components interact with them.

HTTP Clients
Java technologies have a long history of providing a wide range of services to clients that
communicate via HTTP. For example, is it possible that someone has never heard of
applets? J2EE provides services to Web-based clients by using two components—JSPs
and servlets. These technologies may not be as familiar to you as the applet. Previously,
this chapter explained what these components are; now, it explains how they integrate
with HTTP clients.

Static HTML Client

It’s hard to imagine a Web application that relies on static HTML pages, but, believe it or
not, some do. Typically, sites that use static pages are small and require very little func-
tionality. The type of functionality they do require includes the processing of user
response forms, basic e-commerce capabilities, and automated navigation. In a non-
enterprise environment, a developer can use a CGI script to provide this functionality.
With J2EE, you can use a servlet. For example, consider a customer feedback form writ-
ten in HTML.

Figure 2.7 shows that the user completes the HTML Form and then initiates a HTTP
POST to the servlet. The servlet parses the POST data; at this point, it could pass the

04 0672323842 CH02 3/20/02 9:37 AM Page 49

data to another component. However, in this instance, it simply uses classes in the
JavaMail API (see Day 11, “JavaMail”) to send the customer an e-mail response.

50 Day 2

FIGURE 2.7
Using a servlet to
process an HTML
form.

J2EE Server

JSP

JSP ContainerHTML
Form

HTML
Page

Web Browser

E-mail Client

HTTP
(POST)

Request

HTTP
Response

E-mail

Message
JavaMail

Dynamic HTML Client

Many Web applications use HTML pages, which they generate when they receive a
client request. These dynamic pages typically contain information that is context sensi-
tive. For example, the page may contain a simple time stamp, a banner advertisement, or
information retrieved from a database. With J2EE, you can use a JSP to create dynamic
HTML pages. Figure 2.8 shows how JSPs relate to a Web client.

FIGURE 2.8
A Web-client interact-
ing with a JSP.

J2EE Server

Enterprise
Bean

EJB Container

JSP

JSP Container

Web Browser

HTTP
Request

for
index.jsp

HTTP
Response

HTML
Page

04 0672323842 CH02 3/20/02 9:37 AM Page 50

The J2EE Platform and Roles 51

2

The client makes a HTTP request for the page index.jsp. The JSP engine (on the serv-
er) interprets the tags within the JSP, calls the EJB, the EJB returns a response, and then
the engine returns a page of HTML to the client. The functionality in this model is
encapsulated in the EJB.

Java Applet Client

In case you do not know, an applet is a small GUI-based program that typically executes
within the context of a Web browser. In the sphere of the Internet, a client requests an
HTML page that references a server-side Java class file (the applet). The Web server
responds to the client by returning this file. The applet then executes within the Java
Virtual Machine (JVM) the client browser supplies.

In some respects, applets are an ideal way of providing remote access to J2EE applica-
tions. They are highly portable, run in an environment with strict security controls (the
Java 1.0 Sandbox as a minimum), enjoy wide industry support (for example, Netscape
and Internet Explorer browsers), and offer a rich GUI. However, browsers do not keep
pace with changing specifications; so many browsers only support the deprecated Java
1.0 event model. This may cause you a number of problems, especially when working
with AWT, which underwent a major change in its event model between Java 1.0 and
Java 1.1. One of the best ways you can control the presentation tier is to deploy applets
within a controlled network, such as a corporate intranet. In this instance, you can write
code to work to the limitations of known browsers rather than working to the lowest
common denominator.

Other HTTP Clients

The three previous clients are very desktop browser centric, but there are many other
types of clients that communicate by using HTTP. These clients include mobile devices,
such as cellular phones, smart phones, and PDAs. For example, Figure 2.9 shows a WAP
device calling a JSP. The component-based architecture means that the only change is to
the JSP because WAP devices don’t display HTML. All of the logic in business tier
remains unaffected.

You can also write an application that uses HTTP to communicate and still communicate
with the Web-centric J2EE components.

04 0672323842 CH02 3/20/02 9:37 AM Page 51

Standalone Client
The HTTP clients all used a model that in essence was client—presentation tier—
business tier—integration tier. However, there are other clients that may assume the
responsibilities inherent in some of these tiers. For example, an application can connect
to an EJB via its container, rather than route through a JSP in the presentation tier. Figure
2.10 shows such an example.

52 Day 2

FIGURE 2.9
A WAP device with a
WML browser interact-
ing with a JSP.

J2EE Server

Enterprise
Bean

EJB Container

JSP

JSP Container

WAP Device
with

WML Browser

HTTP
Request

HTTP
Response

WML
Page

Business
Tier

Presentation
Tier

FIGURE 2.10
A standalone client
directly interacting
with an EJB.

J2EE Server
Standalone

Client

Enterprise
Bean

EJB Container

Figure 2.10 shows a standalone client accessing an EJB via its container. In this example,
the client would typically be another EJB. Because the client accesses the business tier, it
becomes responsible for the provision of the presentation tier. Consequently, in this
example, the client EJB can pass the data to a servlet, which will then generate the
appropriate response to its client.

04 0672323842 CH02 3/20/02 9:37 AM Page 52

The J2EE Platform and Roles 53

2

Figure 2.11 shows another scenario where the standalone client bypasses both the pre-
sentation tier and business tier to access enterprise information system resources directly.
Typically, the client uses JDBC to access the resources.

FIGURE 2.11
A standalone client
interacting directly
with an EIS resource.

Client
Application

Enterprise
Information

Service

In this scenario, the client takes responsibility for the presentation tier and business tier.
Interestingly, the client may not be another J2EE client: it might be a single application
that encapsulates all presentation and business logic. If this is the case, the client will not
gain the benefits of enterprise computing, especially scalability, because it is effectively
working on the 2-tier client-server model.

Business to Business
The previous clients and scenarios worked on the premise of connecting to a component
in a different tier—with the exception of the EJB to EJB example. However, many com-
ponents do connect to components within the same level tier as themselves. For example,
consider a small garage where mechanics order parts from a local catalogue via a hand-
held device. Figure 2.12 shows the architecture for the system. As you can see, a JSP
handles their orders by accessing a catalogue via JDBC. With each order for a part, the
JSP decrements the count for that part. When the part count reaches zero (Just-in-Time
stock management), the JSP connects to a JSP at the parts wholesaler and places an
order for more parts.

The previous example showed two JSPs communicating, but this could just as easily be
two servlets or two EJBs. Another interesting development in peer-to-peer communica-
tions such as these is the use of messaging. For instance, the previous example requires
both JSPs to be available at the same time to complete an order. However, using the mes-
saging facilities JMS provides, you may create a system where both JSPs can asynchro-
nously send and receive orders. You can learn a little more about JMS later today and a
lot more on Day 9, “Java Message Service.”

04 0672323842 CH02 3/20/02 9:37 AM Page 53

Non-Java Clients
It is possible to use non-Java clients to access J2EE applications and application compo-
nents. One obvious solution is that non-Java clients can use HTTP to access the services
offered by a servlet or JSP. This is particularly attractive when the servlet or JSP pro-
duces and consumes data-oriented information in XML rather than HTML. This could be
done in the context of exposing the component as a Web Service, which is discussed in
the next section of today’s lesson.

In the case of an EJB, things are a little trickier. However, the RMI-IIOP protocol used to
communicate with EJBs allows them to interoperate with clients written using the
Common Object Request Broker (CORBA) standard. Hence, it is possible to expose an
EJB as a CORBA server that can be used by CORBA clients written in C++ or even
COBOL.

Another alternative is that EJBs can be accessed from a Microsoft COM client using the
J2EE Client Access Services (CAS) COM Bridge or Table Bridge.

Web Services
Web Services are XML-based middleware components that applications access over
HTTP and SOAP. They enjoy industry-wide support and are not a proprietary solution. In
fact, because Web Services use XML and open communication standards, any client that

54 Day 2

FIGURE 2.12
JSP to JSP interaction.

J2EE Server

Enterprise
Bean

EJB Container

Database

J2EE Server

Catalogue

Mechanic’s
Handheld

Device

JSP

JSP Container

JSP

JSP Container

04 0672323842 CH02 3/20/02 9:37 AM Page 54

The J2EE Platform and Roles 55

2

can understand SOAP messages can consume Web Services. J2EE provides a rich frame-
work that facilitates the building, deployment, and consumption of Web Services. You
can learn more about J2EE and Web Services on Days 20 and 21.

Understanding Containers
When you previously installed J2EE, you also installed Sun Microsystems’ reference
implementation of J2EE, which is a J2EE Product. All J2EE products must provide con-
tainers to house J2EE components. The role of the container is to provide a component
with the resources it needs to operate and a runtime within which to execute; yet still
provide a degree of protection (security) to the application host.

Containers provide a number of services for a component. These services include lifecy-
cle management, threading, security, deployment, and communication with other compo-
nents. In addition to these services, a container must provide components with Java com-
patible runtime that conforms to J2SE 1.3.

Different components perform different tasks, so it may come as no surprise that they
require different containers. A Product Provider can supply any of the following contain-
ers:

• Applet container

• Application client container

• JSP container

• Servlet container

• Web container

• EJB container

It was mentioned previously that all containers must supply a J2SE 1.3-compatible run-
time environment. Interestingly, many applet hosts (typically Web browsers) do not sup-
port such a high runtime version. To compensate for this, the J2EE specification states
that an applet container can use a Java plug-in to provide an appropriate environment.

All of these containers must provide the components they house with certain services and
communications protocols. You will learn more about these service and protocols later in
this chapter in the “Understanding the Service Supply to their Components” section.
These containers must all also provide access to certain J2EE APIs; Table 2.2 shows
these APIs.

04 0672323842 CH02 3/20/02 9:37 AM Page 55

TABLE 2.2 J2EE Required Standard Extension APIs

API Applet Application Client Web EJB

JDBC 2.0 Extension N Y Y Y

JTA 1.0 N N Y Y

JNDI 1.2 N Y Y Y

Servlet 2.2 N N Y N

JSP 1.1 N N Y N

EJB 1.1 N Y Y Y

RMI-IIOP 1.0 N Y Y Y

JMS 1.0 N Y Y Y

JavaMail 1.1 N N Y Y

JAF 1.0 N N Y Y

For the sake of simplicity, Table 2.2 does not distinguish between servlet, JSP, and Web
containers. You can consider these three containers as a stack where each builds on the
functionality of the other. At the bottom of the stack is the servlet container, which must
support HTTP; optionally, it might support other protocols. Above this is the JSP con-
tainer, which provides the same functions as the servlet container and an engine to build
servlets from JSP pages. Finally, the Web container provides all the services of the JSP
container and access to J2EE service and communications APIs, which today’s lesson
details next.

Understanding the Services Containers
Supply to Components

Previously, you learned that there are a variety of J2EE containers, and that these con-
tainers house J2EE components and provide methods and protocols that allow compo-
nents to communicate with each other and with platform services. You also learned that a
J2EE server underlies the container. This server is often known as the J2EE Product;
there are other possible J2EE products that you will learn about later today in the “J2EE
Product Provider” section of today’s lesson.

J2EE products must provide components with certain standard services. Yesterday you
were introduced to some of these services; today you will explore them in a little more
detail and see how they work in conjunction with J2EE components.

56 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 56

The J2EE Platform and Roles 57

2

Hypertext Transfer Protocol (HTTP)
A W3C specification defines HTTP 1.0, which is a protocol that allows the exchange of
data of various formats in a widely distributed network. Both JSPs and servlets allow
clients to access a J2EE application through the use of HTTP 1.0. Clients that have a
Java runtime communicate with J2EE applications by using the java.net package,
which is part of J2SE.

The J2EE Specification states that containers need only provide support for
HTTP 1.0. However, in practice, the majority of containers, including those in
the RI, support HTTP 1.1.

Note

HTTP over Secure Sockets Layer (HTTPS)
A Netscape specification defines SSL 3.0, which is a protocol that manages the secure
transfer of data over a network. HTTPS uses SSL 3.0 as a sub-layer to HTTP to provide
secure data transfer over the Internet. In common with HTTP, the JSP and Java Servlet
APIs define the server-side API, and java.net defines the client-side.

Java Database Connectivity (JDBC)
JDBC is an API that allows you to access any tabular data source including relational
databases, spreadsheets, and text files. The API allows you to connect to a database via a
driver and then execute Structured Query Language (SQL) statements against that data-
base. Appendix B, “SQL Reference,” provides an SQL reference. The API consists of
two packages—java.sql (ships with J2SE) and javax.sql (ships with J2EE). The
javax.sql package provides many of the features an enterprise application requires,
such as transaction support and connection pooling.

Day 8, “Transactions and Persistence,” describes JDBC, so today’s lesson provides only
a quick overview of JDBC architecture. Typically, an EJB uses the API, but any other
component can use it, for example a servlet. To connect to a given database, you must
load a JDBC driver for that database. However, in the case of an Open Database
Connectivity (ODBC) data source, you may optionally use a JDBC-ODBC bridge where
no driver exists. After the appropriate driver loads, you can make a connection to the
database and then create and execute SQL statements. If the statement is a query, a
ResultSet is returned, which contains the results of the query. You can then manipulate
these query results.

04 0672323842 CH02 3/20/02 9:37 AM Page 57

Java Transaction API (JTA)
A transaction is an atomic group of operations. For example, a banking application may
debit one account and credit another. The transaction is considered complete when both
the debit and credit are complete. If one operation fails, the other must roll back. A dis-
tributed system makes transaction management complex. In such a system, a transaction
manager must coordinate transactions across the system.

The JTA API allows you to work with transactions independently of the transaction
manager. You work directly with the methods JTA exposes via an instance of
UserTransaction. In a simple scenario, you can use the begin(), commit() and
rollback() methods—which might be familiar SQL commands if you are a database
programmer—to manage the transaction. Day 8 explores JTA and its use with JDBC.

Java Authentication and Authorization Service (JAAS)
Anyone who has an interest in security knows that Java technologies have a rich history
of providing a strong security framework. JAAS is a new supplement to this existing
security framework. It provides both authorization and authentication services that the
Pluggable Authentication Module (PAM) provides. In common with the Java 2 security
framework, JAAS provides access control based on code location and code signers. In
addition, JAAS provides access control to a specific user or group of users.

JAAS allows you to simply swap at runtime between encryption algorithms when
authenticating users. This is because you interact with JAAS through a login context, so
you effectively work with an abstraction of the authentication mechanisms.

58 Day 2

Because JAAS does not actually contain classes that encrypt data, it is not
subject to U.S. export control restrictions. This means that developers out-
side of the U.S. are free to download JAAS.

Note

JAAS is an optional package to J2SE 1.3.x, and it ships with sample authentication mod-
ules that use JNDI, Solaris, and Windows NT. You can download the current version of
JAAS from http://java.sun.com/products/jaas/. You can learn more about using
JAAS with JNDI and J2EE components on Day 15, “Security.”

Java API for XML Parsing (JAXP)
XML is a text-based markup language that describes data. It provides a platform-
independent and language-independent method for exchanging data between applications.

04 0672323842 CH02 3/20/02 9:37 AM Page 58

The J2EE Platform and Roles 59

2

Because XML consists of plain text, it is human-readable. However, you very rarely read
XML: you use an application that implements an XML API to read the data.

The JAXP API allows you to parse XML documents using the Document Object Model
(DOM) or the Simple API for XML (SAX). One very useful feature of JAXP is that you
can swap between XML parsers without making changes to your code. For example, if
speed suddenly becomes very important, you can use the SAX parser because it reads a
very large document in a fraction of the time of the DOM parser. Another useful feature
of JAXP is that it provides support for Extensible Stylesheet Language Transformations
(XSLT). For example, the J2EE Reference Implementation (RI) provides a transforma-
tion engine that supports XSLT. This allows you to dynamically transform an XML doc-
ument into either another XML document, HTML, or plain text.

There are many ways that you might use XML within a J2EE application. For example,
you can store content in XML and then transform the XML using XSLT so that a JSP
can render content to devices that support different markup languages. Another typical
use of XML is in the arena of business-to-business applications, where organizations can
exchange data independently of their system architectures. Finally, one very important
use of XML is within Web Services, which you will learn about on Days 20 and 21.

Java Naming and Directory Interface (JNDI)
JNDI provides an API for working with naming and directory services. A naming service
simply associates names with objects, for example, the Domain Name System (DNS). A
directory service also associates names with objects, but it also provides additional infor-
mation through attributes, for example, a Lightweight Directory Access Protocol (LDAP)
directory.

Although JNDI provides access to a wide array of naming and directory services, each
service must provide a Service Provider. This is similar to JDBC and drivers, but in this
instance, it is a naming or directory service and a Service Provider. For example, an
LDAP directory must provide an LDAP Service Provider, which JNDI hides from you as
a developer.

Whenever you need to access naming or directory services, you can use JNDI. More
specifically, you use JNDI in J2EE in three main instances—to access or register EJBs or
objects in an RMI registry or to access the CORBA Common Object Services (COS)
naming service. You can learn more about JNDI in Day 4.

JavaBeans Activation Framework (JAF)
Typically, you use JAF in the context of JavaBeans (that’s JavaBeans, not Enterprise
JavaBeans!). However, a J2EE product must provide JAF for the JavaMail API to use

04 0672323842 CH02 3/20/02 9:37 AM Page 59

MIME types. JAF allows you to send e-mails that are not simply plain text. Instead, you
can use different MIME types or send attachments. You can learn more about the use of
JAF in the context of JavaMail on Day 11.

JavaMail
The JavaMail API provides classes that allow you to work with e-mail. Specifically, it
allows you to send and receive e-mails by using a wide variety of protocols, including
POP, SMTP, and IMAP. You can create e-mails that conform to a large number of MIME
types, because the API uses JAF to provide support for a number of MIME types. For
example, you can create HTML messages that contain embedded graphics and even have
attachments.

Most Internet applications require the ability to send e-mail messages. You can use this
API together with JAF to send e-mails from a JSP, a servlet, or an EJB. You can learn
more about the API on Day 11.

Java Message Service (JMS)
Messaging is the process of communication between applications or components; it does
not include application to human communications, such as e-mail. The JMS API allows
you to create, read, and store messages.

JMS support two messaging models—point-to-point and publish-subscribe. Point-to-
point messaging is where an application sends a message to a queue (a prearranged desti-
nation for messages), and then a client application collects that message. For example,
leaving a voicemail message is a real-world example of this model. The publish-
subscribe model requires client applications to subscribe to a topic with a message bro-
ker that again acts as a prearranged message destination. When an application sends a
message to the message broker, the message broker immediately forwards the message to
all current subscribers.

You can send and receive JMS messages by using both session and entity beans.
However, you can only do this synchronously; the sender must suspend execution until
the receiver receives the message. Alternatively, you can use a message-driven bean to
send messages asynchronously. You can learn more about message-driven beans on Day
10 and JSM on Day 9.

Java Interface Definition Language (Java IDL)
Java IDL provides a way for you to access and deploy remote objects that comply with
the Common Object Request Broker Architecture (CORBA) defined by the Object
Management Group (OMG). CORBA Interface Definition Language (IDL) provides a

60 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 60

The J2EE Platform and Roles 61

2

language-independent means of defining object interfaces. OMG provides mappings
between various languages and IDL. A client written in any language that has an IDL
binding can access objects you export by using CORBA. For example, a Java client
can consume objects written in other languages, such as C++, C, Smalltalk, COBOL,
and Ada.

In terms of J2EE applications, you can look up CORBA remote objects in the COS nam-
ing service through JNDI. The main reason you would want to use Java IDL, as a Java
developer, is to allow your J2EE application to access legacy systems. For example, you
might have a legacy Integration tier where a COBOL application manages data access.
Java IDL allows an EJB in the business tier to communicate with the COBOL object,
thus negating the need to rewrite the entire backend legacy code.

Remote Method Invocation over Internet Inter-Orb
Protocol (RMI-IIOP)
RMI is a distributed object system that allows Java objects to interact with other Java
objects running in a different virtual machine (usually on a remote host). In practice, you
can access these remote objects almost as if they were local; you simply get a reference
to the remote object and invoke its methods as if it were running in the same virtual
machine. The seamless nature of this access is due, in part, to the fact that RMI is a Java-
only distributed object system that relies on a proprietary transport protocol, namely,
Java Remote Method Protocol (JRMP), to exchange information between client and serv-
er. However, this means that you can only use it to access other Java objects—not non-
Java objects.

The actual process of performing a remote method invocation is similar to that of
CORBA, namely, RMI utilizes client-side stubs and server-side skeletons. A client
invokes a remote method by making a request on the stub, and this forwards to the server
where the skeleton converts the request into an actual method call on the remote object.
Any arguments for the remote method are marshaled by the stub into a serialized form
before they are forwarded to the skeleton, which, in turn, unmarshalls the arguments.
This marshalling allows objects to transport across a network.

Unfortunately, this protocol is not suitable for the type of enterprise-level interactions
required by EJBs, where transaction and security context must be propagated across
remote method calls. To this end, Sun Microsystems created a new implementation of
RMI called RMI-IIOP. This keeps the same semantics as RMI (remote interfaces, passing
serialized objects, and so on) but uses the CORBA Internet Inter-ORB Protocol (IIOP) as
its transport mechanism. IIOP already contains all of the necessary hooks to propagate
security and transaction context, so this new protocol can act as the core transport for
EJBs in the J2EE architecture.

04 0672323842 CH02 3/20/02 9:37 AM Page 61

RMI-IIOP is used by default as the transport mechanism when generating stubs and
skeletons for EJBs. You can also explicitly create RMI-IIOP clients and servers for your
own applications by using flags on the RMI compiler (rmic) to create RMI-IIOP stubs
and skeletons rather than the default JRMP stubs and skeletons.

You can also use RMI-IIOP as a mechanism for exposing your EJB components to
CORBA clients without having to learn IDL. You can specify a flag to the RMI compiler
that gets it to generate CORBA IDL on your behalf. After you have the CORBA IDL,
this can be used together with an alternative language binding to create a client for the
EJB that is written in another language.

Connector Architecture
The J2EE Connector Architecture allows your J2EE application to interact with
Enterprise Information Systems (EIS), such as mainframe transaction processing,
Enterprise Resource Planning (ERP) systems, and legacy non-Java applications. It does
this by allowing EIS vendors to produce a resource adapter that product providers can
plug into their application servers. The J2EE developer can then obtain connections to
these EIS resources in a similar way to obtaining a JDBC connection.

The J2EE Connector Architecture defines a set of contracts that govern the relationship
between the EIS and the application server. These contracts determine the interaction
between server and EIS in terms of the management of connections, transactions, and
security. You can learn more about Connector Architecture on Day 19, “Integrating with
External Resources.”

Introducing Platform Roles
To create, package, and deploy any J2EE application—other than the simplest
application—requires the effort of more than one person or organization. For example, in
the development arena, a team of developers will write the J2EE components and some-
one else will assemble the finished application. In the production environment, someone
will configure the J2EE environment and deploy the application, and yet another person
will monitor the running application and its physical environment. In smaller organiza-
tions, there may be no physical distinction between these roles, but they will still be logi-
cally separate. Based on this premise, it is no surprise that Sun Microsystems suggest a
named team whose responsibility it is to perform these tasks.

This team, together with Product Providers and Tool Providers constitute the J2EE plat-
form roles. It is these roles that this section explores.

62 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 62

The J2EE Platform and Roles 63

2

J2EE Product Provider
A J2EE product must include the component containers and J2EE APIs the J2EE specifi-
cation states; today’s lesson has introduced all of these containers and APIs. Examples of
J2EE products include operating systems, database systems, application servers, and Web
servers. An organization that supplies a J2EE product is known as the J2EE Product
Provider.

The J2EE Product Provider is also responsible for mapping application components to
the network protocols the J2EE specification defines. In addition, the Product Provider
must provide deployment tools for the Deployer and management tools for the System
Administrator. The end of this section provides an explanation of these tools.

The Product Provider is free to provide implementation-specific interfaces that the J2EE
specification does not define. Hence, you will occasionally see a warning in a lesson that
highlights a vendor-specific piece of functionality.

Application Component Provider
As you have already seen, a J2EE application consists of components, but it also may
consist of other resources, such as HTML files or XML files. The Application
Component Provider creates both these resources and components. Almost all organiza-
tions will use several component providers. They may exist in-house, or the organization
may outsource component creation or buy in components. Whichever is the case, special-
ists in the different tiers (presentation, business, and data access) will write the compo-
nents that relate to that tier. For example, a business tier specialist will write EJBs,
whereas a presentation tier expert may write JSPs. Regardless of the Application
Component Provider’s specialist area, the Tools Provider will supply them with tools to
write components.

Application Assembler
After the Application Component Providers write an application, the Application
Assembler assembles the application into a J2EE application. The Application Assembler
packages the application into an EAR file that must conform to the J2EE specification.
Other than assembly, the Application Assembler is responsible for providing instructions
that state the external dependencies of the application. Typically, the Application
Assembler uses tools the Tools Provider or Product Provider provides to perform these
tasks.

04 0672323842 CH02 3/20/02 9:37 AM Page 63

Application Deployer
The Application Deployer is the first person who requires knowledge of the production
environment. This is because he or she must deploy the application into that environ-
ment. Specifically, the Application Deployer must install, configure, and start the execu-
tion of the application. Typically, the Product Provider provides tools that help perform
these tasks.

The installation process is where the Application Deployer moves the application to
the server and installs any classes the container requires to perform its duties. During the
configuration process, the Application Deployer satisfies any external dependencies the
Application Assembler stipulates and configures any local security settings, for example,
modifies a policy file. The final stage, starting execution, is where the Application
Deployer starts the application in readiness to service clients.

Systems Administrator
The Systems Administrator configures and maintains the enterprise network, and moni-
tors and maintains the application the Application Deployer deployed. The Product
Provider supplies tools that assist the Systems Administrator in the monitoring and main-
tenance of the application.

This concludes the list of platform roles that specifically work with the application; only
the Tool Provider remains. Figure 2.13 shows the interactions between each of these
roles and their interactions with the J2EE application.

64 Day 2

FIGURE 2.13
J2EE roles.

Production Environment

Application
Deployer

System
Administrator

Development Environment

Product Provider

Tools Provider

Application
Component

Provider

Application
Assembler

04 0672323842 CH02 3/20/02 9:37 AM Page 64

The J2EE Platform and Roles 65

2

Tool Provider
As you have seen, many of the platform roles use tools the Tool Provider supplies. These
tools assist people with the creation, packaging, deployment, and maintenance of J2EE
applications. Currently, the J2EE specification only defines that the Product Provider
must supply deployment and maintenance tools; it does not stipulate what these tools
should be. Future releases of the specification are likely to provide further guidelines, so
that Tool Providers can supply platform-independent standardized tools sets.

To offer you a typical overview of the tools that Tools Providers and Product Providers
supply, this section concludes with a brief survey of the tools that ship with the J2EE ref-
erence implementation. For use guidance, please refer to the J2EE documentation.

• J2EE Administration Tool—Enables the addition and removal of resources, such as
JDBC drivers and data sources.

• Cleanup Tool—Removes all J2EE applications from the server.

• Cloudscape Server—Starts and stops the Cloudscape relational database.

• Deployment Tool—Enables you to package and deploy J2EE applications.

• J2EE Server—Launches and stops the J2EE server.

• Key Tool—Enables you to generate public and private keys and X.509 certificates.

• Packager—Allows you to package J2EE applications if you are not packaging
them using the deployment tool (see above). You can create EJB JAR, Web WAR,
Application Client JAR, J2EE EAR, and Resource Adapter RAR files.

• Realm Tool—Allows the administration of J2EE users and also the import certifi-
cates.

• Runclient script—Enables you to run a J2EE application client.

• Verifier—Verifies the integrity of EAR, WAR, and JAR files.

Future of J2EE tools
There are 3 Java Specification Requests underway that will affect the future of J2EE
tools:

• JSR 77—A new management model for tools that will provide a single manage-
ment tool to configure the J2EE platform. You can read more about the JSR at
http://www.jcp.org/jsr/detail/077.jsp.

• JSR 88—A description of the APIs that enable the deployment tool. You can read
more about the JSR at http://www.jcp.org/jsr/detail/088.jsp.

04 0672323842 CH02 3/20/02 9:37 AM Page 65

• JSR 127—This defines the architecture that simplifies the creation and mainte-
nance of Java Server application graphical user interfaces. You can read more about
the JSR at http://www.jcp.org/jsr/detail/127.jsp.

Packaging and Deploying J2EE Applications
The installation of a typical desktop application, such as a word processor, is usually a
straightforward affair. The installation program will ask you a few questions about the
functionality you require and where it should install its files. It will also examine parts of
your desktop machine (such as the Windows registry) to discover whether any compo-
nents that it relies on are already installed. Normally, such an installation takes in the
order of a few minutes—half an hour at most.

The installation of a distributed enterprise application is unlike that of a packaged desk-
top application. The installation of a desktop application is reasonably straightforward
because

• The concept of word processing is well understood by most people, so they can
make an appropriate judgment on whether they need particular parts of the package
or not. There is little in the way of personal tailoring involved.

• All of the installation takes place on a single machine. The installation program
knows where to find existing configuration information and where it should install
the different parts of the application.

Compared with this, a distributed enterprise application will require a lot more informa-
tion about the environment in which it is to be installed. This includes, but is not limited
to, the following:

• The location of the servers on which the server-side components will be deployed.
The Web and business components for an application could be distributed across
multiple servers.

• The appropriate level of security must be enforced for the application. The applica-
tion must carry with it information about the security roles it expects and the
access each role has to the functionality of the application. These security roles
must be mapped onto the underlying security principals used in the distributed
environment.

• Components that access data and other resources must be configured to use appro-
priate local data sources.

66 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 66

The J2EE Platform and Roles 67

2

• The names of components and resources must be checked and potentially changed
to avoid clashes with existing applications or to conform to a company-wide nam-
ing standard.

• Web-components must be configured so that they integrate with any existing Web
sites of which they will form a part.

As you can see, this is currently a far more specialist task, requiring knowledge about the
application and the environment in which it is being deployed. The application must
carry with it information about the requirements it has of the environment. The applica-
tion assembler defines these requirements when the application is created. The applica-
tion Deployer must examine these requirements and map them onto the underlying envi-
ronment.

J2EE applications
A J2EE application will consist of the following:

• Zero or more Web components packaged as Web Archives (WAR files)

• Zero or more EJB components packaged as EJB-JAR files

• Zero or more client components packaged as JAR files

• Zero or more connectors packaged as Resource Archives (RAR files)

Naturally, there must be at least one component for there to be an application! The com-
ponents that constitute an application must be packaged together so that they can be
transported and then deployed. To this end, all of the components in a J2EE application
are stored in a particular type of JAR file called an Enterprise Application Archive or
EAR.

Given the previous scenario, it should be clear that a J2EE application needs to carry
with it information about how its different parts interrelate and its requirements of the
environment in which it will be deployed. This information is carried in a series of XML
documents called deployment descriptors. There is an overall application deployment
descriptor that defines application-level requirements. This application deployment
descriptor is also stored in the EAR file.

Each individual component will have its own deployment descriptor that defines its own
configuration and requirements. These component deployment descriptors are carried in
the individual component archives described in the “Breaking Modules Down into
Components” section of today’s lesson. Figure 2.14 shows the structure of an EAR file
and how the application deployment descriptor, the component archives, and the compo-
nent deployment descriptors fit within this structure.

04 0672323842 CH02 3/20/02 9:37 AM Page 67

The application deployment descriptor contains application-wide deployment informa-
tion and can potentially supersede information in individual component deployment
descriptors.

68 Day 2

FIGURE 2.14
Structure of an
Enterprise Archive
(EAR).

Application DD

Container DD

EJB
Modules

Web
Modules

Client
Modules

Resource
Modules

DD

RAR

DD

RAR
RAR

DD

JAR

DD

JAR
JAR

DD

EJB-JAR

DD

EJB-JAR

DD

EJB-JAR

DD

WAR

DD

WAR
WAR

EAR

DD

DD

DD

The EAR file can also contain a container-specific deployment descriptor that
holds information that is useful to the container but falls outside the scope
of the J2EE application deployment descriptor.

Note

The application is split into modules, each of which represents a component. If neces-
sary, a module can contain an additional deployment descriptor to override some or all
settings in the deployment descriptor provided in the component archive file.

Breaking Modules down into Components
As you can see from Figure 2.14, components are represented in an EAR file by compo-
nent archive files. Each module will point to its associated component archive file. Each
type of component archive file is a JAR-format file that contains the component’s classes
and resources together with a component-specific deployment descriptor.

04 0672323842 CH02 3/20/02 9:37 AM Page 68

The J2EE Platform and Roles 69

2

The two most common types of component archive are EJB-JAR files and WAR files.

EJB Component
An EJB-JAR file contains all of the classes that make up an EJB. It also contains any
resource files required by the EJB. The properties of the component are described in its
associated deployment descriptor, called ejb-jar.xml, which is also included in the
EJB-JAR file.

The deployment descriptor described the main class files contained in the EJB-JAR file.
The deployment descriptor specifies which external resources are required by the compo-
nent. It also contains extra information about the security and transaction settings. This
resource and extra information is often referred to as metadata. Figure 2.15 shows a sub-
set of the contents of an EJB deployment descriptor.

FIGURE 2.15
An EJB deployment
descriptor indicates
the main classes in the
EJB-JAR file together
with the component’s
metadata.

Home interface
Remote interface
EJB implementation
Security requirements
Transaction requirements

<container-transaction>
…
<trans-attribute>Required</trans-attribute>
</container-transaction>

<security-role>
<role-name>admin</role-name>
</security-role>

AgencyBean.class

Agency.class

AgencyHome.classDeployment
Descriptor (XML)

specifies

All of the component’s metadata can be altered or replaced by the application assembler
as they bind the component into the application. The application Deployer can also cus-
tomize some of the metadata.

An EJB-JAR file can contain more than one EJB.Note

EJB-JAR files and their deployment descriptors are discussed in more detail on Days 4
and 5. Other aspects of EJB deployment information, such as security and transactions,
are covered later.

04 0672323842 CH02 3/20/02 9:37 AM Page 69

Web Component
Servlets and JSPs can also be packaged together into a component archive file. The
archive file is a JAR-format file that contains the class files, JSP files, and resources
required by the Web component. In this case, the resources can include static HTML files
that form part of the application. This Web Archive (WAR) file also contains a deploy-
ment descriptor that indicates the Web components contained in the WAR.

Just as with the EJB deployment descriptor, the WAR deployment descriptor indicates
the main classes in the WAR file and the resources required by the components.
However, the WAR deployment descriptor also contains Web-specific information, such
as the URLs onto which servlets and JSPs should be mapped, and which is the front page
of the application.

WAR files and their deployment descriptors are discussed in more detail on Day 12,
“Servlets,” and Day 13. Other aspects of WAR deployment information, such as security,
are covered later.

Summary
Today, you looked in more detail at J2EE and the facilities that it provides. You saw how
the different J2EE technologies fit into the 3-tier model, and how it provides component
frameworks for different types of functionality.

You have seen that the EJBs provide a robust, scalable home for business logic and that
servlets (and JSPs) provide a flexible way of delivering application functionality to
clients. There are many different types of client, ranging from simple, markup-based
clients that work over HTTP to sophisticated and powerful clients that use GUIs and
RPC.

You have seen that the creation and deployment of an enterprise application requires
many different roles. You have also seen that an enterprise application is assembled from
many different parts, and that it must carry with it information about how all of those
parts fit together.

Q&A
Q Can a J2EE application be written without using any Enterprise JavaBeans?

A Certainly. You can write a client application that connects to a servlet in a Web
container and have that servlet connect directly to a back-end database. You don’t

70 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 70

The J2EE Platform and Roles 71

2

need to add an EJB. An EJB can add value by providing persistent conversational
state if that is required. It can also provide transactional security and roll back to a
previous state should there be an interruption in the flow of data for any reason.
Therefore, you can use servlets and JSPs on their own if a database is simply read,
but any updates or new records to be added will more safely be done using
Enterprise JavaBeans.

Q What type of EJB should I typically use to encapsulate business logic? And
which type would I use to contain data and its associated operations?

A For pure business logic, you would typically use a session bean (or a message-
driven bean). If the EJB is to represent underlying application data, you would
probably use an entity bean.

Q Why are JSPs generally faster than other server-side scripting environments?

A When a JSP is accessed, it is compiled into Java bytecodes. Every subsequent
access will use the bytecodes rather than processing the page again. This means
that JSPs will run as fast as standard Java classes such as servlets.

Q What are the consequences of producing a J2EE application with vendor spe-
cific APIs?

A The application you produce will become specific to a particular container, server,
or vendor. You will not be able to easily move the application from platform to
platform.

Q How do you package an EJB? What should be in the package?

A An EJB is packaged in an EJB-JAR file. The EJB-JAR file contains the classes for
the EJB, any other resources, and a deployment descriptor that contains EJB meta-
data and describes the external resource requirements of the EJB.

Q What is an EAR file?

A This is an Enterprise Application Resource file that houses the application’s JAR,
WAR, and XML files. The Assembler takes on the responsibility of packaging the
EAR file, while the Deployer authenticates that the file conforms to the J2EE spec-
ification, adds the file to the J2EE server, and deploys the application.

Exercises—Case Study
To help understand the role of each of the technologies in the J2EE specification, a single
case study will be followed throughout the daily exercises. As you work through the 21
days, a functional implementation of a simple enterprise application will be developed.

04 0672323842 CH02 3/20/02 9:37 AM Page 71

The Job Agency
The chosen case study is a simple Job Agency. Jobs are categorized by Location and
Skills required for the job. Customers advertise jobs, and Applicants register their loca-
tion and skills so they can be matched to jobs. Customers and applicants will be notified
of job matches by e-mail.

To illustrate the relationships between the different components in the data model for the
Agency, a traditional database ERD diagram is shown in Figure 2.16.

72 Day 2

FIGURE 2.16
Case Study ERD.

Applicant

login: VARCHAR(16) - PK
name: VARCHAR(64)
email: VARCHAR(64)
location: FK-Location
summary: VARCHAR(512)

ApplicantSkill

applicant: FK-Applicant \PK
skill: FK-Skill /

Skill

name: VARCHAR(16) - PK
description: VARCHAR(64)

JobSkill

job: FK-Job \
customer: FK-Customer >PK
skill: FK-Skill /

Job

ref: VARCHAR(16) \PK
customer: FK-Customer /
description: VARCHAR(512)
location: FK-Location

Matched

applicant: FK-Applicant \
customer: FK-Customer >PK
job: FK-Job /
exact: boolean

Location

name: VARCHAR(16) - PK
description: VARCHAR(64)

Customer

login: VARCHAR(16) - PK
name: VARCHAR(64)
email: VARCHAR(64)
address1: VARCHAR(64)
address2: VARCHAR(64)

04 0672323842 CH02 3/20/02 9:37 AM Page 72

The J2EE Platform and Roles 73

2

Today’s exercise, which is described later, will be to create the database and register it as
a javax.sql.DataSource to the J2EE RI.

The case study has a front office part with the following components:

• Maintaining the location and job lookup tables

• Adding customers and advertising jobs

• Registering job applications

The back office part consists of the following:

• Matching a new job against existing applicants

• Matching a new applicant against existing jobs

• Generating e-mails

Using the Agency Case Study
The example code shown in each day’s lesson will use the Customer functionality (jobs
and invoices) from the case study. At the end of each day’s work, you will be asked to
enhance the case study by adding the Applicant functionality (registering jobs) to the
system. A fully-worked solution for the exercises is provided on the CD-ROM included
with this book, so that you will have a working case study if you choose to omit any
day’s exercise.

Material for many days exercises, particularly JNDI, JavaMail, JMS and Java
Connectors, will primarily use examples and exercises not related to the case
study. The last two days’ work discuss J2EE in the context of the wider con-
text of Web applications and do not refer to the Agency case study.

Note

Table 2.3 shows roughly what will be covered on each day. Don’t worry if some of the
terminology is new to you; all will become clear as you work your way through the
book.

TABLE 2.3 Daily Workout

Day Lesson Exercise

1 Introduce multi-tiered application architectures No exercise

2 Introduce the J2EE platform, technologies and roles Install J2EE RI and case study
database.

3 Using JNDI naming and directory services Write a JNDI namespace
browser.

04 0672323842 CH02 3/20/02 9:37 AM Page 73

4 Using data sources, environment entries, Build and deploy a simple EJB
and EJB references and client application with J2EE

RI.

5 Using Session EJBs to implement business logic Add a Session bean to register
job applicants.

6 Using Entity EJBs to encapsulate access Add Entity beans for the appli
to persistent data cant data and refactor the register

Session bean.

7 Using Container Managed Persistence (CMP) Refactor the applicant Entity
and Container Manage Relationships (CMR) with bean to use CMP.

entity EJBs

8 Adding transaction management to Session and Add transaction management to
Entity EJBs the Applicant processing.

9 Using JMS topics and queues Develop a simple chat room ser-
vice.

10 Using Message-driven beans to implement back Use Message-driven beans to
office functionality match new or changed applicants

to advertised jobs.

11 Adding e-mail capabilities to back office Use e-mail to send matched jobs
functionality to applicants.

12 Developing Web-based applications using servlets Develop a servlet front end to
create a new applicant for the
Agency case study.

13 Developing Web-based applications using Java Use JSPs to register job
Server Pages applicants.

14 Using custom Tag Libraries with JSPs Refactor the register job JSP to
use Tag Libraries.

15 Adding security to restrict access to J2EE Add security to control access to
application functionality and data the job skills data.

16 Understanding XML and writing simple XML Refactor the messages sent to the
documents back office job/applicant match-

ing functionality to use XML.

17 Using XSL to transform XML documents into Transforming an XLD document
different data formats into HTML for viewing in a Web

browser.

74 Day 2

TABLE 2.3 Continued

Day Lesson Exercise

04 0672323842 CH02 3/20/02 9:37 AM Page 74

The J2EE Platform and Roles 75

2

18 Understanding design patterns and recognizing Identify which design patterns
patterns present (and absent) from the case study can be applied to the case study

to improve maintainability.

19 Working with legacy systems using the Identify how the case study could
Connector architecture be linked into a legacy invoicing

system.

20 Exposing J2EE components as Web Services Create a simple Java stock quote
class and expose it as a Web
Service. Create a client to
retrieve the stock quote informa-
tion from the server.

21 Using XML-based registries and asynchronous Create a Web Service JobPortal
Web Services that will take a SOAP message

containing new agency customer
information and return a generat-
ed customer login ID.

By the end of the course, you will have a simple, but working, job agency enterprise
application. The agency will have both a GUI-based front end and a Web-based interface
and will have given you a good grounding in the relative strengths of each J2EE tech-
nologies and how to apply them.

Practice Makes Perfect
Developing J2EE architectures requires two disciplines:

• Good analysis and design skills

• Practical hands-on experience with the J2EE technologies

The first comes with time and experience, but the last few days lessons will help point
you in the right direction to becoming a J2EE designer.

The second discipline comes with practice. If you read this book and attempt all the
exercises, you will learn a lot more than if you just read the book and simply study the
example code shown.

The case study exercises are not complex. They have been designed to take between 30
minutes and 2 hours to complete. The exercises only use information presented and your
existing knowledge: you will need to know something about JDBC, Swing, and HTML,

TABLE 2.3 Continued

Day Lesson Exercise

04 0672323842 CH02 3/20/02 9:37 AM Page 75

but you certainly don’t need to be an expert in these technologies. The book “Teach
Yourself Java in 21 Days” from SAMS Publishing is a good source for improving your
knowledge of JDBC and Swing should you require a little refresher course. More impor-
tantly, the exercises will give you hands-on coding experience using J2EE.

The Case Study Directory on the CD-ROM
On the CD-ROM included with this book, you will find all the Java software required to
develop all of the code shown in this book.

The CD-ROM contains a directory called CaseStudy. All the example code solutions to
the exercises are included in this directory.

There are 21 sub-directories corresponding to each days work. Each day will have one or
more of the following directories:

• Agency The complete Agency case study so far. This includes code from the
examples in the book and the completed exercise if this is based on the case study.

• Examples The code for all the example programs show in the book where these
examples are not part of the case study.

• Exercise Any existing code to be used as a starting point for the exercise.
Typically, this will be the Agency case study, including all the example code in the
book but excluding the code the reader needs to provide as part of the exercise.

• Solution A solution to the set problem if the exercise does not enhance the
Agency case study.

Installing the Case Study Database
The Job Agency case study requires a small database for storing information about cus-
tomers, jobs, applicants, and invoices. A Java program to create the database has been
provided in the Day 2 exercises on the accompanying CD-ROM. The program uses the
Cloudscape database provided with the J2EE RI and can easily be adapted to work with
any JDBC compatible database.

Find the directory on the CD called CaseStudy\Day02\Exercise.

Inside this directory is a Java source file, class file, and two script files:

• CreateAgency.java A source file for a program to create the Agency database
under J2EE RI Cloudscape database.

• CreateAgency.class The compiled Java class file for CreateAgency.java

76 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 76

The J2EE Platform and Roles 77

2

• CreateAgency.bat A Windows NT/2000 batch file to run the application to cre-
ate the database

• CreateAgency.sh Unix/Linux Bourne shell script to run the application to create
the database

To create the Agency database, you will need write permission to the J2EE installation
directory.

Follow the instructions shown earlier in today’s lesson for stopping the Cloudscape and
J2EE, servers and stop these servers if they are currently running. If you have installed
J2EE as suggested, you simply have to enter the following commands from a command
(or shell) window:

j2ee –stop
cloudscape -stop

The Java CreateAgency program provided in the Day 2 exercises will create the neces-
sary database files in a sub-directory called Agency. To create and install the database,
you will need to do the following:

1. Copy all the files from the Day 2 exercises directory CD-ROM to the cloudscape
sub-directory of the J2EE SDK installation directory.

2. Change directories to the cloudscape sub-directory of the J2EE SDK home direc-
tory and then run the appropriate script program as follows:

Under Windows, type
cd %J2EE_HOME%\cloudscape
CreateAgency

Under Linux/Unix, type
cd $J2EE_HOME/cloudscape
./CreateAgency.sh

A new sub-directory called Agency will be created under the current cloudscape
directory.

3. Having created the database, you must now add a data source called Agency to
J2EE (data sources are discussed on Day 4, “Introduction to EJBs”). Run the fol-
lowing command to add the data source (the same command is used for both win-
dows and Linux/Unix):
j2eeadmin -addJdbcDatasource jdbc/Agency
➥jdbc:cloudscape:rmi:Agency;create=true

If you have not included the J2EE bin directory in your program search path, you
will have to run the command as shown below:

04 0672323842 CH02 3/20/02 9:37 AM Page 77

Under Windows, enter the following command:
%J2EE_HOME%\bin\j2eeadmin -addJdbcDatasource
➥jdbc/Agency jdbc:cloudscape:rmi:Agency;create=true

Under Linux/Unix, enter the following command:
$J2EE_HOME/bin/j2eeadmin -addJdbcDatasource
➥jdbc/Agency jdbc:cloudscape:rmi:Agency;create=true

Finally, restart the Cloudscape and J2EE servers as described in the earlier section,
“Starting the J2EE Reference Implementation (RI).” Normally, you would start the J2EE
server and Cloudscape database server in separate windows by using the following com-
mands:

j2ee –verbose
cloudscape -start

If you start the J2EE server as shown with the -verbose option, you will see the diag-
nostic output shown in Listing 2.4 (the line showing the Agency data source configura-
tion is highlighted in bold).

LISTING 2.4 The J2EE Reference Implementation Startup Diagnostics

1: > j2ee -verbose
2: J2EE server listen port: 1050
3: Naming service started:1050
4: Binding DataSource, name = jdbc/DB2, url =

➥jdbc:cloudscape:rmi:CloudscapeDB;create=true
5: Binding DataSource, name = jdbc/DB1, url =

➥jdbc:cloudscape:rmi:CloudscapeDB;create=true
6: Binding DataSource, name = jdbc/Agency, url =

➥jdbc:cloudscape:rmi:Agency;create=true
7: Binding DataSource, name = jdbc/InventoryDB, url =

➥jdbc:cloudscape:rmi:CloudscapeDB;create=true
8: Binding DataSource, name = jdbc/Cloudscape, url =

➥jdbc:cloudscape:rmi:CloudscapeDB;create=true
9: Binding DataSource, name = jdbc/EstoreDB, url =

➥jdbc:cloudscape:rmi:CloudscapeDB;create=true
10: Binding DataSource, name = jdbc/XACloudscape, url = jdbc/XACloudscape__xa
11: Binding DataSource, name = jdbc/XACloudscape__xa,

➥dataSource = COM.cloudscape.core.RemoteXaDataSource@653220
12: Starting JMS service...
13: Initialization complete - waiting for client requests
14: Binding: < JMS Destination : jms/Queue , javax.jms.Queue >
15: Binding: < JMS Destination : jms/firstQueue , javax.jms.Queue >
16: Binding: < JMS Destination : jms/Topic , javax.jms.Topic >
17: Binding: < JMS Cnx Factory :

➥QueueConnectionFactory , Queue , No properties >
18: Binding: < JMS Cnx Factory :

➥jms/QueueConnectionFactory , Queue , No properties >

78 Day 2

04 0672323842 CH02 3/20/02 9:37 AM Page 78

The J2EE Platform and Roles 79

2

19: Binding: < JMS Cnx Factory :
➥TopicConnectionFactory , Topic , No properties >
20: Binding: < JMS Cnx Factory :

➥jms/TopicConnectionFactory , Topic , No properties >
21: Starting web service at port: 8000
22: Starting secure web service at port: 7000
23: J2EE SDK/1.3
24: Starting web service at port: 9191
25: J2EE SDK/1.3
26: J2EE server startup complete.

You will test the Agency database configuration on Day 4 when you learn how to create
and deploy a simple EJB.

Congratulations, you have installed J2EE successfully and completed today’s exercise to
configure the Agency database for use with the other exercises in this book.

LISTING 2.4 Continued

04 0672323842 CH02 3/20/02 9:37 AM Page 79

04 0672323842 CH02 3/20/02 9:37 AM Page 80

DAY 3

WEEK 1

Naming and Directory
Services

The previous days have discussed the background to enterprise computing con-
cepts and introduced J2EE technologies such as EJBs and Servlets. This chap-
ter will show how the Java Naming and Directory Interface (JNDI) supports the
use of many of the J2EE components.

In its simplest form, JNDI is used to find resources (such as EJBs) you have
registered via the J2EE server. Advanced use of JNDI supports sophisticated
storage and retrieval of Java objects and other information.

This day’s work will include

• Using Naming and Directory Services

• JNDI and X.500 names

• Obtaining a JNDI Initial Context

• Binding and looking up names

• Name attributes

• Objects and References

• JNDI events and security

05 0672323842 CH03 3/20/02 9:31 AM Page 81

Naming and Directory Services
A Naming Service provides a mechanism for giving names to objects so that you can
retrieve and use those objects without knowing the location of the object. Objects can be
located on any machine accessible from your network, not necessarily the local workstation.

A real-world example is a phone directory. It stores telephone numbers against names
and addresses. To find someone’s phone number is simply a matter of using his or her
name (and possibly address) to identify the entry in the phone book and obtain the stored
phone number. There are a few complications, such as finding the right phone book to
look in, but it is essentially fairly simple.

Incidentally, naming services have a similar problem to that of finding the right phone
book. This is known as obtaining a context. A name can only be found if you examine
the right context (phone book).

A Directory Service also associates names with objects but provides additional informa-
tion by associating attributes with the objects.

The yellow pages phone directory is a simple form of a directory service. Here, business-
es often include advertisements with additional information such as a list of products
sold, professional qualifications, affiliated organizations, and even location maps for their
premises. These attributes add value to the name entry. A directory service will normally
provide the ability to find entries that have particular attributes or values for attributes.
This is similar to searching the yellow pages phone book for all plumbers running a 24-
hour emergency service within a certain area.

Yellow page style phone books also store names under different categories—for example,
plumbers or lawyers. Categorizing entries can simplify searching for a particular type of
entry. These categorized entries are a form of sub-context within the directory context of
the local phone book.

Why Use a Naming Service?
Naming Services provide an indispensable mechanism for de-coupling the provider of a
service from the consumer of the service. Naming services allow a supplier of a service
to register their service against a name. Users, or clients, of the service need only know
the name of the service to use it.

Think of the phone book once more, and how difficult it would be to find someone’s
phone number without the phone book. Obtaining your friend’s phone number means
going to their home and asking, or waiting until you meet up with them again—which
may be difficult to organize because you can’t phone them to arrange the meeting.

82 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 82

Naming and Directory Services 83

3

The phone book is a directory service. In fact, a phone book is often referred to as a
phone directory. The phone directory service lets you look up a person or company’s
phone book using their name as a key.

At the end of the day, it is very difficult to imagine a world without naming services.

What is JNDI?
JNDI is a Java API that defines an interface to Naming and Directory Services for Java
programs. JNDI is just an API and not, in itself, a Naming and Directory Service. To use
JNDI, an implementation of a Naming and Directory service must be available. JNDI
provides a service-independent interface to the underlying Service Provider implementa-
tion.

Figure 3.1 shows how the JNDI layer interfaces between the Java program and the under-
lying naming services. Additional naming services can be plugged into the JNDI layer by
implementing the Service Provider Interface (SPI) for JNDI.

FIGURE 3.1
JNDI Architecture.

JNDI Service Provider Interface (SPI)

Naming Manager

JNDI Application programming Interface (API)

Java Program

LDAP DNS NDS CORBA RMI NIS

??
?

Common Naming Services
Figure 3.1 shows that JNDI supports several well-known naming services, including the
following:

• Domain Name System (DNS) is the Internet naming service for identifying
machines on a network.

• Novell Directory Services (NDS) from Novell provides information about network
services, such as files and printers. NDS is found primarily in environments where
the main networking software is Novell.

• Network Information Service (NIS) from Sun Microsystems provides system-wide
information about machines, files, users, printers, and networks. NIS is primarily
found on Solaris systems, but Linux and some other Unix platforms support it.

05 0672323842 CH03 3/20/02 9:31 AM Page 83

• Lightweight Directory Access Protocol (LDAP) is the approved standard for an
Internet naming service. LDAP is a true directory service and supports attributes as
well as names for objects. LDAP is fast becoming the de-facto directory service for
the enterprise.

JNDI also supports some more specialized naming systems. For example, CORBA for
distributed component programming and RMI for distributed Java programming.

Although there is no named service provider for Windows Active Directory, it is support-
ed. Windows Active Directory supports an LDAP interface, and you can access it via the
JNDI LDAP Service Provider Interface.

Naming Conventions
Each naming service has its own mechanism for supplying a name. Perhaps the most
familiar naming convention is that of DNS, where every machine connected to the
Internet has a unique name and address. Most readers should recognize the following as
a host name used by DNS:

www.samspublishing.com

In contrast, LDAP names are based on the X.500 standard and use distinguished names
that look like the following fictitious example:

cn=Martin Bond, ou=Authors, o=SAMS, c=us

This format will also be familiar to users of Microsoft’s Active Directory service, whose
naming system is also based on X.500 but uses a forward slash to separate the various
name components:

cn=Martin Bond/ou=Authors/o=SAMS/c=us

These last two naming conventions have similarities in that they are both hierarchically
structured with the most specific name occurring first and the most general name (or
context) occurring last.

JNDI provides classes that support creating and manipulating structured names; but most
programmers will use simple strings that JNDI passes on to the underlying service with
minimal interpretation.

Some JNDI Service Providers may use names that are case sensitive, and some service
providers may not, it all depends on the underlying technology and environment. To
maintain portability of your applications, it is always best to avoid names that differ only
by letter case and also ensure that names are always spelled in a consistent manner.

84 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 84

Naming and Directory Services 85

3

Using JNDI
JNDI is a standard component of JDK 1.3 and is, therefore, also part of J2EE 1.3. JNDI
is also included in J2EE 1.2 and is available as a standard Java extension for JDK 1.2
and earlier.

While developing code, the program’s CLASSPATH must include the location of the JNDI
class libraries. As long as the JAVA_HOME environment variable has been set up, the JNDI
classes will be available to the Java compiler.

Running a JNDI-aware program requires a JNDI service to be running and the classes for
that service to be available to the program. Typically, this requires the CLASSPATH to
include one or more JAR files provided by the JNDI provider or a J2EE server vendor.
For implementation-specific details, see the vendor’s documentation.

By default, running a J2EE server starts a naming service on the same machine. If the
default behavior isn’t required, you must change the J2EE server configuration to use an
existing JNDI server.

Using Sun Microsystems’ J2EE Reference
Implementation
Using JNDI with Sun Microsystems’ J2EE Reference Implementation (RI) is straightfor-
ward. Ensure that

• The J2EE_HOME variable exists

• The CLASSPATH variable includes the j2ee.jar file from the lib directory of the
J2EE home directory

Examples of how to do this both for Windows and for Unix are shown in this section.

J2EE RI for Windows
Under systems running Microsoft Windows NT or 2000, you can set the class path inter-
actively with the following:

Set CLASSPATH=%J2EE_HOME%\lib\j2ee.jar;%CLASSPATH%

Typically, it is better to set the class path as a system-wide environment variable (via the
My Computer properties dialog). A suitable value is as follows:

.;%J2EE_HOME%\lib\j2ee.jar

The class path can also include additional JAR files and directories for other Java compo-
nents.

05 0672323842 CH03 3/20/02 9:31 AM Page 85

It is important to define the current directory (.) in the class path; otherwise, the Java
compiler and runtime systems will not find the classes for the program being developed.

J2EE RI for Linux and Unix
Under Linux and Unix, set the class path with the following:

CLASSPATH=$J2EE_HOME/lib/j2ee.jar:$CLASSPATH

Starting the JNDI Server
Startup the J2EE RI server, as Day 2, “The J2EE Platform and Roles,” described, and the
JNDI server will start at the same time. You start the J2EE server by entering the follow-
ing command from a command-line window:

j2ee –verbose

The J2EE server will run in that window until you close the window down or enter the
following shutdown command from another command-line window:

j2ee -stop

Obtaining an Initial Context
The first step in using the JNDI name service is to get a context in which to add or find
names. The context that represents the entire namespace is called the Initial Context and
is represented by a class called javax.naming.InitialContext and is a sub-class of the
javax.naming.Context class.

A Context object represents a context that you can use to look up objects or add new
objects to the namespace. You can also interrogate the context to get a list of objects
bound to that context.

The javax.naming package contains all the simple JNDI classes. Sub-packages within
the javax.naming package provide additional JNDI functionality, such as directory-
based features like attributes.

The following code creates an initial context using the default JNDI service information:

Context ctx = new InitialContext();

If something goes wrong when creating the initial context, a NamingException is thrown.

Initial Context Naming Exceptions
The runtime system reports errors in using JNDI as a subclass of NamingException. The
exceptions most likely to occur for accessing the initial context are as follows:

86 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 86

Naming and Directory Services 87

3

javax.naming.CommunicationException: Can’t find SerialContextProvider

This exception usually means the JNDI Server is not running, or possibly the JNDI prop-
erties for the server are incorrect (see the next section, “Defining the JNDI Service”).

javax.naming.NoInitialContextException:
➥Need to specify class name in environment or system property, or as an applet
➥parameter, or in an application resource file: java.naming.factory.initial

This exception occurs when the IntialContext class does not have default properties for
the JNDI Service Provider, and the JNDI server properties have not be configured explic-
itly (see the next section, “Defining the JNDI Service”).

javax.naming.NoInitialContextException: Cannot instantiate class: XXX
[Root exception is java.lang.ClassNotFoundException: XXX]

This exception occurs when the class path defined for the JNDI program does not
include the JNDI server classes (see the next section, “Defining the JNDI Service”).

javax.naming.ServiceUnavailableException:
➥Connection refused: no further information
[Root exception is java.net.ConnectException:
➥Connection refused: no further information]

This exception occurs when the JNDI properties for the program fail to match the JNDI
Service Provider currently in use (see the next section, “Defining the JNDI Service”).

Defining the JNDI Service
During program development, it is reasonable to use a JNDI service running on the local
machine that uses the default service provider supplied with the J2EE server. When you
deploy the program, you must make use of the enterprise-wide naming service for your
site. You will need to configure the program to use a specific naming server and not the
default one provided with your test J2EE server.

The parameters that you usually need to define for the JNDI service are as follows:

• JNDI service classname

• Server’s DNS host name

• Socket port number

A particular server vendor’s implementation may require additional parameters.

There are several ways of defining the JNDI service properties for a program, but you
only need to use one of them. You can either

• Add the properties to the JNDI properties file in the Java runtime home directory

• Provide an application resource file for the program

05 0672323842 CH03 3/20/02 9:31 AM Page 87

• Specify command-line parameters to be passed to an application

• Specify parameters to be passed into an applet

• Hard-code the parameters into the program

The last option is the weakest approach, because it restricts the program to working with
one type of JNDI service provider on one specific host.

The first two options are the most suited to production environments. They both require
that you distribute simple text configuration files with the program.

JNDI Properties Files
An application resource file called jndi.properties defines the JNDI service. The
JNDI system automatically reads the application resource files from all components in
the program’s CLASSPATH and from lib/jndi.properties in the Java runtime home
directory (this is the jre sub-directory of the Java JDK home directory).

The following example from Sun Microsystems’ J2EE RI shows a typical jndi.proper-
ties file:

java.naming.factory.initial=com.sun.enterprise.naming.SerialInitContextFactory
java.naming.provider.url=localhost:1099
java.naming.factory.url.pkgs=com.sun.enterprise.naming

Each entry in the property file defines a name value pair. The InitialContext object
uses these properties to determine the JNDI service provider.

The J2EE server vendor usually supplies a sample jndi.properties file defining the
properties that need to be configured with their server. You can find the J2EE RI
jndi.properties file in the lib/classes directory in the J2EE RI installation directory.

Normally, any given JNDI service will require the following named properties:

java.naming.provider.url

This defines the DNS host name of the machine running the JNDI service and the service
port number. This is the only property that the network administrator needs to customize.
The property value is a machine name with an optional colon and port number. By
default, JNDI uses port 1099, and most sites do not change this value. The default server
is usually localhost.

Consider a host called nameserver in the Sams Publishing domain
(samspublishing.com), the full URL including port number for a default JNDI server on
this host would be as follows:

nameserver.samspublishing.com:1099

java.naming.factory.initial

88 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 88

Naming and Directory Services 89

3

You set this property to the classname (including the package) of the Initial Context
Factory for the JNDI Service Provider. This value effectively determines which JNDI
Service Provider you use. To use the default Naming Service supplied with the J2EE RI,
you would specify this property as follows:

java.naming.factory.initial=com.sun.enterprise.naming.SerialInitContextFactory

java.naming.factory.url.pkgs

This property defines prefix package names the InitialContext class uses for finding
other classes JNDI requires. The J2EE RI uses the following value for this property:

java.naming.factory.url.pkgs=com.sun.enterprise.naming

More information on these and other JNDI properties can be found in the API documen-
tation for the Context class and in the JNDI Tutorial from Sun Microsystems.

The simplest way to define the JNDI Service Provider is to configure every client’s Java
home directory to include the necessary JNDI properties. This approach suits an intranet
where all machines are centrally managed.

Another approach is to include a suitable JNDI properties file with the client program
and distribute everything as a JAR file (program class files and the jndi.properties
file). This suits Web-based intranets or extranets, where applets are used or where you
can distribute the client JAR file to users.

Application Properties
Using the -D option, you can supply the JNDI properties on the java command line of an
application. This has the disadvantage of requiring long command lines that are hard to
remember and easy to mistype. A way around this problem is for you to provide script
files to run the application on the target platforms; typically, you will supply batch files
for Windows and shell scripts for Linux and Unix.

The following is an example of a command line that defines the JNDI factory classes and
server:

java
➥-D

java.naming.factory.initial=com.sun.enterprise.naming.SerialInitContextFactory
➥–D java.naming.provider.url=localhost:1099 MyClass

Providing a jndi.properties file in the application JAR file is a cleaner solution than
providing command-line parameters. However, using command-line parameters makes
the JNDI properties more apparent when customizing the application for a local site. It is
easy to overlook a jndi.properties file in a JAR file.

05 0672323842 CH03 3/20/02 9:31 AM Page 89

Applet Parameters
An applet can accept the JNDI properties as parameters, for example

<applet code=”MyApplet.class” width=”640” height=”480”>
<param name=”java.naming.factory.initial”

value= “com.sun.enterprise.naming.SerialInitContextFactory” >
<param name=”java.naming.provider.url”

“value= localhost:1099”>
</applet>

Using parameters with the applet HTML file makes the JNDI properties more apparent
when customizing the applet for a local site. A jndi.properties file in the jar file is
easily overlooked.

Hard-Coded Properties
The least desirable way to specify the JNDI properties is via hard-coded values in the
program. Hard coding the properties means including the JNDI classnames and the serv-
er name in the source code. This is undesirable because it means that should the network
architecture change, you must edit, recompile, and redistribute the program. Obviously,
you want to avoid this maintenance overhead if you can. The network architecture may
change if the JNDI service moves to a different server or you install a new JNDI Service
Provider.

The mechanism for defining the service in code is via a hash table of properties passed
into the InitialContext constructor:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.enterprise.naming.SerialInitContextFactory”);
env.put(Context. PROVIDER_URL,

“localhost:1099”);
Context ctx = new InitialContext(env);

Notice how the code uses symbolic constants from the Context class rather than using
strings representing the properties (such as “java.naming.factory.initial”). This
approach makes the code more portable should the property names change in future ver-
sions of Java or JNDI.

Binding JNDI Objects
After the initial JNDI context has been obtained, a program can look up existing objects
and bind new objects to the context.

When working with EJBs, the main JNDI activity is to look up existing bound objects;
the J2EE server does most of the binding of the objects automatically.

90 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 90

Naming and Directory Services 91

3

Because this section discusses the binding of objects, you can skip it if your primary pur-
pose for using JNDI is to obtain EJB and other references within a J2EE application.

Binding Objects
Binding an object means adding a name to the JNDI service and associating that name
with a Java object. The name and object are bound to a context. Listing 3.1 shows how a
text message can be bound to the name sams/book.

LISTING 3.1 Full Text of JNDIBind.java

1: import javax.naming.*;
2: public class JNDIBind
3: {
4: private final static String JNDI = “sams/book”;
5:
6: public static void main(String[] args) {
7: try {
8: Context ic = new InitialContext();
9: ic.bind(JNDI,”Teach Yourself J2EE in 21 Days”);
10: System.out.println(“Bound “+JNDI);
11: }
12: catch (NamingException ex) {
13: System.err.println(ex);
14: System.exit(1);
15: }
16: }
17: }

The object to be bound must implement the Serializable interface so that the name
server can store a copy of the object.

The Context.bind() method will fail with a NameAlreadyBoundException (which
extends NamingException) if an object is already bound to that name. Another subclass
of NamingException is thrown if there is some other form of error, such as an invalid
name. Remember that different Service Providers may have different naming conven-
tions.

Binding Problems
A Service Provider may not support binding of all types of objects. If the service cannot
bind a particular object, it will throw an exception.

Using the default naming service for J2EE RI that uses a transient CORBA naming ser-
vice, the class of the object must be in the CLASSPATH used by the J2EE RI JNDI server.

For now, this means using standard J2SE and J2EE classes or configuring the J2EE RI
services to include your class files. The recommended approach is to edit the user

05 0672323842 CH03 3/20/02 9:31 AM Page 91

configuration file (userconfig.sh or userconfig.bat) in the bin directory of the J2EE
RI home directory, and add the required class directories or JAR files to the J2EE_CLASS-
PATH variable defined in the configuration file.

An alternative is to use a Web Service to dynamically upload the required class files.
Dynamic uploading of class files is dicussed in the “Loading Classes from a Code Base”
section, later in this chapter.

Some Naming Services (such as LDAP) may use security features to ensure that only
authorized programs can bind new objects. The bind() method can also fail if it violates
any security features of the underlying naming service. The “Security” section of today’s
lesson covers this in more detail.

Name Persistence
A bound object normally remains in the namespace until it is unbound. If the bound
name remains across server restarts, it is said to be persistent. Commercial servers, such
as NDS, Active Directory, and LDAP, are persistent name servers and store the bound
names and ancilliary information on disk (typically in a database).

The default naming service for Sun Microsystems’ J2EE RI is a transient service; it
reloads bound objects from configuration files in the SDK home directory whenever it is
restarted. This naming service will not retain objects bound with the Context.bind()
method across server restarts.

Rebinding Objects
You can use the rebind() method to solve the problem of bind() failing if a name is
already bound. For example,

ic.rebind(“sams/book”,”Teach Yourself J2EE in 21 Days”);

The code unbinds any existing object bound to that name and binds the new object in its
place.

Using rebind() is a good design technique when a programmer is sure the name will not
be in use by another component. The alternative is to explicitly unbind the old name first
if it is in use as discussed in the next section on “Unbinding Objects.”

Unbinding Objects
You can remove an object from a namespace by using the Context.unbind() method. A
program uses this method when it is closing down and needs to remove its advertised
service because a bound name is not automatically unbound when the program shuts
down.

92 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 92

Naming and Directory Services 93

3

Another common use for unbind() is to test if a name is already in use and unbind the
old object before binding a new object. The advantage of using unbind() in preference
to rebind() is that you can verify that the object to be unbound is at least of the same
type as the new object to be bound.

String JNDI = “sams/book”;
try {

Object o = ic.lookup(JNDI);
if (o instanceof String)

ic.unbind (JNDI);
}
catch (NameNotFoundException ex) {}
ic.bind(JNDI,”Teach Yourself J2EE in 21 Days”);

This example rebinds a string bound to the name sams/book, but will fail with a
NameAlreadyBoundException if the name is bound to another class of object. This is a
better design approach than that of using the rebind() method.

Renaming Objects
You can rename objects using Context.rename() by specifying the old name and then
the new name as parameters. The new name must specify a name in the same context as
the old name. An object must be bound to the old name, and the new name must not
have a bound object; otherwise, a NamingException is thrown.

ic.rename(“sams/book”,”sams/teachyourself”);

JNDI Name Lookup
The most common use of JNDI is to look up objects that have been bound to a name. To
do this, you require two items of information:

• The JNDI name

• The class of the bound object

With this information in hand, object lookup is the simple matter of using the
Context.lookup() method to find the object and then to cast that object to the required
class.

Listing 3.2 shows a simple program to look up the name sams/book that was bound by
the program in Listing 3.1.

LISTING 3.2 Full Text of JNDILookup.java

1: import javax.naming.*;
2: public class JNDILookup

05 0672323842 CH03 3/20/02 9:31 AM Page 93

3: {
4: private final static String JNDI = “sams/book”;
5: public static void main(String[] args) {
6: try {
7: Context ic = new InitialContext();
8: String name = (String)ic.lookup(JNDI);
9: System.out.println(JNDI+”=”+name);
10: }
11: catch (NamingException ex) {
12: System.err.println(ex);
13: System.exit(1);
14: }
15: catch (ClassCastException ex) {
16: System.err.println(ex);
17: System.exit(1);
18: }
19: }
20: }

You can run the JNDIBind program in Listing 3.1 and then run this JNDILookup program
to print out the value of the string bound against sams/book.

94 Day 3

LISTING 3.2 Continued

When casting an object that the lookup() method returns, that object’s
class must be in the client program’s class path. If this is not the case, the
program throws an exception.

Note

Changing Contexts
The example name sams/book used in Listings 3.1 and 3.2 is an example of a Composite
Name. If you need to look up many names in the same context of a composite name
(names of the form sams/...), it is better to change to sub-context and look up the sim-
ple name within that context.

With this information in hand, the sub-context is a name entry just like any other name,
and you look it up in just the same way. The retrieved object is another Context object.
Listing 3.3 shows code that retrieves a name from a sub-context.

LISTING 3.3 Full Text of JNDILookupSAMS.java

1: import javax.naming.*;
2: public class JNDILookupSAMS
3: {

05 0672323842 CH03 3/20/02 9:31 AM Page 94

Naming and Directory Services 95

3

4: public static void main(String[] args) {
5: try {
6: Context ic = new InitialContext();
7: Context ctx = (Context)ic.lookup(“sams”);
8: String name = (String)ctx.lookup(“book”);
9: System.out.println(name);
10: }
11: catch (NamingException ex) {
12: System.err.println(ex);
13: System.exit(1);
14: }
15: catch (ClassCastException ex) {
16: System.err.println(ex);
17: System.exit(1);
18: }
19: }
20: }

Narrowing RMI-IIOP Objects
There is only one additional twist to the lookup tale, and that is when dealing with RMI
over IIOP objects.

The implementation of J2EE requires the use of RMI-IIOP to implement the remote
interfaces to EJB components. Consequently, when a lookup is for an EJB name (more
on this on Day 4, “Introduction to EJBs”), you cannot cast the returned object to the
required class; instead, you must narrow it.

RMI-IIOP uses a portable remote object to encapsulate information about the real remote
object. A portable remote object contains information about the real bound object in a
portable format that can be interogated by the recipient to find the real remote object.
The process of obtaining the real object from the portable remote object is called nar-
rowing.

You use the PortableRemoteObject.narrow() method in the javax.rmi package to nar-
row a protable remote object to obtain the actual remote object. The narrow() method
takes two parameters:

• The object to narrow

• A java.lang.Class object defining the real remote object’s class

Listing 3.4 previews the discussion on Day 4 about EJB objects, but also serves to illus-
trate the use of the narrow() method.

LISTING 3.3 Continued

05 0672323842 CH03 3/20/02 9:31 AM Page 95

LISTING 3.4 Narrowing an EJB Home Object

1: InitialContext ic = new InitialContext();
2: Object lookup = ic.lookup(“java:comp/env/ejb/Agency”);
3: AgencyHome home = (AgencyHome)

➥PortableRemoteObject.narrow(lookup, AgencyHome.class);

If your primary purpose for understanding JNDI is to enable the lookup and use of EJBs
and other J2EE technologies (such as JDBC data sources and Message queues), you can
skip the rest of this day’s material and return to it at a later date.

Contexts
Contexts provide a hierarchical structure to JNDI names, and composite names group
together related names. The initial context provides a top-level view of the namespace
and any sub-contexts reflect the hierarchical composite name structure.

Listing Contexts
The namespace represents contexts as names, and you can look these up just like any
other name. You can obtain a listing of the names in a context by using Context.list().
This method provides a list of name and class bindings as a
javax.naming.NamingEnumeration, where each element in the enumeration is a
javax.naming.NameClassPair object. Listing 3.5 shows a simple program to list the
names and classes for the example sams sub context.

LISTING 3.5 Full Text of JNDIListSAMS.java

1: import javax.naming.*;
2: public class JNDIListSAMS
3: {
4: public static void main(String[] args)
5: {
6: try {
7: Context ctx = new InitialContext();
8: NamingEnumeration list = ctx.list(“sams”);
9: while (list.hasMore()) {
10: NameClassPair item = (NameClassPair)list.next();
11: String cl = item.getClassName();
12: String name = item.getName();
13: System.out.println(cl+” - “+name);
14: }
15: }
16: catch (NamingException ex) {
17: System.out.println (ex);
18: System.exit(1);

96 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 96

Naming and Directory Services 97

3

19: }
20: }
21: }

You must run the JNDIBind program from Listing 3.1 before running this program; oth-
erwise, the “sams” sub context will not exist. Running the program in Listing 3.5 will
produce a single line of output:

java.lang.String – book

The parameter to the list() method defines the name of the context to list. If this is the
empty string, the method lists the current context.

If the initial context of the J2EE RI namespace is listed, you must have the J2EE RI
classes in your search path; otherwise, you will get an org.omg.CORBA.BAD_PARAM excep-
tion caused by another CORBA exception:

org.omg.CORBA.MARSHAL: Unable to read value from underlying bridge :
➥ Serializable readObject method failed internally

➥ minor code: 1398079699 completed: Maybe

Don’t believe the completed: Maybe tagged on to the end of the error message. It didn’t
complete.

The easiest solution to this problem is to run the setenv script in the bin directory of
J2EE RI. This script creates a variable CPATH that you can use as the CLASSPATH for run-
ning J2EE RI client programs.

Under Windows use

%J2EE_HOME%\bin\setenv
java –classpath .;%CPATH% JNDIList

Under Linux and Unix use

$J2EE_HOME/bin/setenv
java –classpath .:$CPATH JNDIList

The CD-ROM accompanying this book includes the JNDIList program, which is the
same as the program in Listing 3.5 but without the parameter to the list() method.

The list() method returns the name and the bound object’s classname, but not the
object itself. It is a lightweight interface designed for browsing the namespace.

A second method, called Context.listBindings(), retrieves the object itself. The
listBindings() method returns a NamingEnumeration, where each element is of type

LISTING 3.5 Continued

05 0672323842 CH03 3/20/02 9:31 AM Page 97

javax.naming.Binding. Access methods in the Binding class support retrieval of the
information of the bound object. Listing 3.6 shows a simple recursive tree-walking pro-
gram that is a useful diagnostic tool for examining JNDI namespaces.

LISTING 3.6 Full Text of JNDITree.java

1: import javax.naming.*;
2: public class JNDITree
3: {
4: public static void main(String[] args) {
5: Context ctx=null;
6: try {
7: ctx = new InitialContext();
8: listContext (ctx,””);
9: }
10: catch (NamingException ex) {
11: System.err.println (ex);
12: System.exit(1);
13: }
14: }
15:
16: private static void listContext (Context ctx, String indent) {
17: try {
18: NamingEnumeration list = ctx.listBindings(“”);
19: while (list.hasMore()) {
20: Binding item = (Binding)list.next();
21: String className = item.getClassName();
22: String name = item.getName();
23: System.out.println(indent+className+” “+name);
24: Object o = item.getObject();
25: if (o instanceof javax.naming.Context)
26: listContext ((Context)o,indent+” “);
27: }
28: }
29: catch (NamingException ex) {
30: System.err.println (“List error: “+ex);
31: }
32: }
33: }

Creating and Destroying Contexts
Binding a composite name will automatically create any intermediate sub-contexts
required to bind the name. Binding the name com/sams/publishing/book/j2ee in 21
days creates the following sub-contexts if they don’t already exist:

com
com/sams
com/sams/publishing
com/sams/publishing/book

98 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 98

Naming and Directory Services 99

3

You can explicitly create contexts with the Context.createSubcontext() method. The
single method parameter is the name of the context. If this is a composite name, all inter-
mediate contexts must already exist. The createSubContext() method will throw a
NameAlreadyBoundException if the name already exists.

Contrary to the API documentation, the J2EE RI naming service will auto-
matically create any intermediate contexts.

Note

Listing 3.7 shows a simple program for creating arbitrary contexts.

LISTING 3.7 Full Text of JNDICreate.java

1: import javax.naming.*;
2: public class JNDICreate
3: {
4: public static void main(String[] args) {
5: try {
6: if (args.length != 1) {
7: System.out.println (“Usage: JNDICreate context”);
8: System.exit(1);
9: }
10: Context ic = new InitialContext();
11: ic.createSubcontext(args[0]);
12: }
13: catch (NamingException ex) {
14: System.err.println(ex);
15: System.exit(1);
16: }
17: }
18: }

The Context.destroySubcontext() method can destroy contexts. Again, the single
method parameter is the name of the context. The context does not have to be empty,
because the method will remove from the namespace any bound names and sub-contexts
with the destroyed context.

Listing 3.8 shows a simple program for deleting arbitrary contexts.

Use this program with caution, because destroying the wrong context will render your
J2EE server unusable. If you are using the J2EE RI, restarting the J2EE server can recti-
fy a mistake; this might not be the case with other servers.

05 0672323842 CH03 3/20/02 9:31 AM Page 99

LISTING 3.8 Full Text of JNDIDestroy.java

1: import javax.naming.*;
2: public class JNDIDestroy
3: {
4: public static void main(String[] args) {
5: try {
6: if (args.length != 1) {
7: System.out.println (“Usage: JNDIDestroy context”);
8: System.exit(1);
9: }
10: Context ic = new InitialContext();
11: ic.destroySubcontext(args[0]);
12: }
13: catch (NamingException ex) {
14: System.err.println(ex);
15: System.exit(1);
16: }
17: }
18: }

The destroyContext() method can throw a NameNotFoundException if the name
doesn’t exist and a NotContextException if the bound name is not a context.

More on JNDI Names
JNDI has to support different naming conventions for different Service Providers in the
most transparent manner possible. Generally, programmers will specify JNDI names as
strings, but a little understanding of how JNDI interprets bound names will help circum-
vent many simple problems that can occur when using names.

Special Characters
JNDI applies minimal interpretation to names specified as String objects. JNDI uses the
forward slash character (/) as a name separator to provide a simple name hierarchy
called a Composite Name. It is conventional for these composite names to be used to
group related names (such as plumbers in the phone book). As an example, JDBC data
sources take names of jdbc/XXX and EJBs the form ejb/XXX. While this is only a con-
vention, it does help separate different sorts of named objects within the JNDI name
space.

Composite and Compound Names
Composite names can span different naming systems. An LDAP name can combine with
a file system name to get a composite name:

cn=Martin Bond, ou=Authors, o=SAMS, c=us/agency/agency.ldif

100 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 100

Naming and Directory Services 101

3

Here a filename (agency/agency.ldif) is appended to an LDAP name. How JNDI inter-
prets this is up to the individual Service Provider.

Incidentally, JNDI calls structured names like the DNS and LDAP compound names.
JNDI does not interpret compound names, but simply passes them through to the Service
Provider.

Besides forward slash (/), JNDI also treats backslash (\), single quote (‘), and double
quote (“) characters as special. If a compound name or a component of a name contains
any of these characters, they must be escaped using the backslash character (\).

If the underlying Service Provider uses the forward slash as a name separator (for exam-
ple, the CORBA name service), there appears to be a conflict between JNDI and the
Service Provider. In practice, there is unlikely to be a problem because JNDI recognizes
two sorts of name separation—weak and strong. JNDI always passes the entire name to
the Service provider. A strong name separation implementation (such as LDAP or DNS)
simply processes the first part of the composite name and returns the remainder to the
JNDI Naming Manager to pass on to other name services. A weak name separation
implementation will simply process the entire composite name.The COSNaming server
used in the J2EE RI uses weak separation, as does the RMIRegistry naming service.

For those programmers who need to do more that use names to look up and bind objects,
JNDI provides several classes for manipulating and parsing composite and compound
names. The JNDI name support classes in the javax.naming package are Name,
CompositeName, and CompoundName.

URLs
In certain contexts, JNDI recognizes a URL (Uniform Resource Locator). The primary
use of URLs is to identify the JNDI server usually through the
java.naming.provider.url property, as shown in the following:

java.naming.provider.url=ldap://localhost:389

You can also specify a URL as a parameter to the lookup() and bind() methods in the
Context class. For example,

Context ic = new InitialContext();
Object obj = ic.lookup(“ldap://localhost:389/cn=Winston,dc=my-domain,dc=com”);

This overrides the default context and forces JNDI to perform the lookup against the
specified server. You need to take care with this approach, because the class path must
contain the necessary Service Provider classes, and these must be able to process the
request bind or lookup operation. In practice, this means that the URL must use the same
Service Provider classes as the initial context.

05 0672323842 CH03 3/20/02 9:31 AM Page 101

Attributes
Attributes are a feature of a Directory service and are not available with simple name
servers. Typically, you use attributes with an LDAP server. The J2EE RI JNDI server is a
CORBA name server, and it does not support attributes.

An attribute is additional information stored with a name. Storing full name, address,
phone number, and e-mail with a person’s name is a common use of a directory service.
NDS uses attributes to control access to shared network drives and to configure a user’s
login environment.

A directory service stores attributes as values against a keyword (LDAP calls them IDs).
Directory services usually support searching for names (objects) that have certain attrib-
utes defined (or not defined). Searching often supports looking for names with certain
attributes that have a specific value (often wildcard pattern matching is supported). A
simple search of a personnel database under an LDAP server might be to find all names
whose surname is Washington.

LDAP uses a schema system to control which attributes an object must define and those
that it may define. Any attributes that you add or delete must not break the schema’s
requirements. LDAP servers may be able to disable schema checking, but this is usually
a bad idea because the schema was created for a purpose.

If you want to see the capabilities of attributes, you must have access to a directory serv-
er. The rest of this section is based on using an LDAP Directory Server.

Overview of LDAP X.500 Names
LDAP names conform to the X.500 standard that requires a hierarchical namespace. A
Distinguished Name (DN) unambiguously identifies each entry in the directory. The DN
consists of the concatenation of the names from the root of the directory tree down to the
specific entry.

X.500 focuses on the interoperability of different directory services rather than specify-
ing how a directory service should define the DN. Consequently, different implementa-
tions of X.500 can each use a different syntax for representing object names (as shown
earlier when we compared LDAP and Microsoft Active Directory names).

The official specification for the X.500 Directory Service is available from the
International Telecommunications Union (ITU) Web site at
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-

X.500-199708-S.

LDAP uses a comma-separated list of names with the names specified from the lowest
entry up the tree to the higher entries.

102 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 102

Naming and Directory Services 103

3

Names consist of name and value pairs with the names typically being those in the fol-
lowing list. Each name has a short code and a full name; it is usual to only use the short
code because the Distinguished Names are fairly long.

• c (countryName)—ISO two letter code for county such as us, uk, and so forth.

• o (organizationName)—Organization or company name, such as samspublishing

• ou (organizationUnitName)—Organizational unit, typically a division or depart-
ment within an organization

• l (localityName)—Typically defines a location within an organizational unit

• cn (commonName)—Common name (sometimes called personal name), usually the
name of the user or client

• dc (domainComponent)—A component part of a domain name (such as DNS
names)

• uid (userid)—Typically represents a login name

An example LDAP DN looks like the following:

cn=Martin Bond, ou=Authors, o=SAMS, c=us

This will be a familiar structure if you work with digital certificates whose names con-
form to the X.509 standard.

Obtaining an LDAP Server
Using an LDAP Directory Service requires the JNDI properties to specify the JNDI
Service provider from Sun Microsystems and to have an LDAP server running.

The J2EE RI does not include an LDAP server, so you will have to obtain one from else-
where. Only certain operating systems provide LDAP servers. Windows NT, 2000, and
XP users will have to purchase the enterprise (or server) editions of the operating system,
which are typically significantly more expense than the usual desktop or professional
editions. Sun Microsystems’ Solaris 8 Operating Environment includes an LDAP server.

Linux and Unix users can download and install the OpenLDAP implementation, which is
an open source server available free of charge for personal use. The Open LDAP server
can be downloaded from http://www.openldap.org/software/download/.

Users of Microsoft Windows will have to make other arrangements as OpenLDAP is not
available for the platform. If an Active Directory server is accessible on the network or
you use the Enterprise (or Server) edition of the Operating System, this is a simple solu-
tion. Otherwise, Windows users are well advised to find a spare PC and install Linux on
that and use OpenLDAP.

05 0672323842 CH03 3/20/02 9:31 AM Page 103

Using OpenLDAP
Given that many users experimenting with LDAP will probably use OpenLDAP on a
Linux server, a brief digression on configuring Linux/LDAP for the programs in the rest
of this section is useful. Other users must adapt the configuration for their own LDAP
servers.

104 Day 3

Interestingly, with today’s low cost of hardware, it may be cheaper for the
home user to purchase a second system to run Linux rather then purchase
the additional license required to run the Enterprise (or Server) versions of
Windows NT/2000/XP.

Note

You only need to install Open LDAP if you want to evaluate the directory
service features of JNDI and do not have access to a suitable directory ser-
vice on your network. The following discussion of LDAP is not necessary for
your understanding and use of J2EE.

Note

The rest of this sub-section assumes that you have some knowledge of Linux and
OpenLDAP (at the very least, that you have successfully installed OpenLDAP on a Unix
server). The following OpenLDAP dicussion assumes that you have installed OpenLDAP
in the default location of /usr/local (for example OpenLDAP v2.0.15 will be in the
directory /usr/local/openldap- 2.0.15).

If you build and install OpenLDAP according to the supplied instructions, the process
results in an empty LDAP directory namespace. The following steps will populate that
namespace with a few sample entries. Make sure the slapd (LDAP) server is not running
before making the following changes (if you have just installed OpenLDAP then slapd
will not be running).

If you install OpenLDAP 2.0 with the recommended Berkeley database, it creates a
default empty database with the DN suffix of dc=my-domain,dc=com.

To create a new DN suffix of o=Agency,c=US, you must add the following lines to the
end of the slapd configuration file (/usr/local/etc/openldap/slapd.conf):

database ldbm
suffix “o=Agency,c=US”
directory /usr/local/var/openldap-ldbm
rootdn “cn=Manager,o=Agency,c=US”
rootpw secret
index objectclass eq
index cn,sn pres,eq,sub,subany

05 0672323842 CH03 3/20/02 9:31 AM Page 104

Naming and Directory Services 105

3

Having defined the DN, you must add some sample data to the database. Listing 3.9
shows a configuration file for populating the database with sample data for use with the
example programs shown in this section.

LISTING 3.9 Full Text of agency.ldif

1: dn: o=Agency,c=us
2: objectclass: top
3: objectclass: organization
4: o: Agency
5: description: Job Agency
6:
7: dn: ou=Customers,o=Agency,c=us
8: objectclass: top
9: objectclass: organizationalUnit
10: ou: Customers
11:
12: dn: cn=All Customers,ou=Customers,o=Agency,c=us
13: objectclass: top
14: objectclass: groupofnames
15: member: cn=Winston,ou=Customers,o=Agency,c=us
16: member: cn=George,ou=Customers,o=Agency,c=us
17: cn: Customers
18:
19: dn: cn=Manager,o=Agency,c=us
20: objectclass: top
21: objectclass: person
22: cn: Manager
23: sn: Manager
24:
25: dn: cn=George,ou=Customers,o=Agency,c=us
26: objectclass: top
27: objectclass: person
28: cn: George
29: cn: George Washington
30: description: President
31: sn: Washington
32:
33: dn: cn=Abraham,ou=Customers,o=Agency,c=us
34: objectclass: top
35: objectclass: person
36: cn: Abraham
37: cn: Abraham Lincoln
38: description: President
39: sn: Lincoln
40:
41: dn: cn=Winston,ou=Customers,o=Agency,c=us
42: objectclass: top
43: objectclass: person

05 0672323842 CH03 3/20/02 9:31 AM Page 105

44: cn: Winston
45: cn: Winston Churchill
46: description: Prime Minister
47: sn: Churchill

Copy this file to the Linux server and call it agency.ldif. Ensure that the slapd LDAP
server is not running and, using the following slapdadd commandto install the sample
names in the OpenLDAP configuration:

slapadd -b “o=Agency,c=US” –l agency.ldif

You can check the database configuration by using the slapcat command as follows:

slapcat | more

If you make a mistake or want to change the database configuration, you must delete the
existing entries (slapadd will not replace an entry that already exists in the database).
You can delete the existing OpenLDAP database by removing all of the files in the data-
base directory specified in the slapd.conf configuration file. The following command
will delete the default ldbm database used by slapd:

rm /usr/local/var/openldap-ldbm/*

You can now use slapadd to create the new database as shown previously.

You can start the slapd (OpenLDAP) server using the following command:

/usr/local/openldap-2.0.15/services/slapd/slapd –d 1

This will run the server in debug mode with diagnostic messages being displayed to the
screen.

In the next section, you will test your LDAP server setup. You will find that the
OpenLDAP database now has three entries for the Customer Organizational Unit:

cn=Abraham,ou=Customers,o=Agency,c=us
cn=George,ou=Customers,o=Agency,c=us
cn=Winston,ou=Customers,o=Agency,c=us

You must leave the slapd server running while you evaluate the examples shown in the
rest of this section. When you want to stop the server, simply use Ctrl+C to interrupt the
server or use the kill command to send the server a terminate signal.

Configuring JNDI to use LDAP
After an LDAP server is available for use, you must configure JNDI to use that server.
This requires that you to obtain a JNDI Service Provider for LDAP (this isn’t part of the
LDAP server) and configure the JNDI properties accordingly.

106 Day 3

LISTING 3.9 Continued

05 0672323842 CH03 3/20/02 9:31 AM Page 106

Naming and Directory Services 107

3

JDK1.3 and J2EE RI 1.3 include an LDAP Service Provider from Sun Microsystems and
all you have to do to use LDAP is to configure the JNDI properties to use the LDAP ser-
vice. The simplest way to do this is to create an empty text file in the current directory
called jndi.properties and add the following lines to this file.

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://localhost:389

If the LDAP server is not running on the current machine, replace the name localhost
with the name or IP address of the actual LDAP server. Port number 389 is the default
LDAP port number, and you can omit it if LDAP is running on the default port (or
replace it by the actual port number if a non-standard port is being used).

Testing the LDAP Server
Before looking at attributes, it is worth checking that the LDAP server is up and running
with the sample data. Verify that you can look up one of these sample names by using
the simple JNDILoopAny script shown in Listing 3.10. The code reads the JNDI name
from the command-line arguments.

LISTING 3.10 Full Text of JNDILookupAny.java

1: import javax.naming.*;
2: public class JNDILookupAny
3: {
4:
5: public static void main(String[] args) {
6: if (args.length != 1) {
7: System.err.println (“Usage: JNDILookupAny JNDIname”);
8: System.exit(1);
9: }
10: try {
11: Context ic = new InitialContext();
12: Object o = ic.lookup(args[0]);
13: System.out.println(args[0]+”=”+o);
14: }
15: catch (NamingException ex) {
16: System.err.println(ex);
17: System.exit(1);
18: }
19: catch (ClassCastException ex) {
20: System.err.println(ex);
21: System.exit(1);
22: }
23: }
24: }

05 0672323842 CH03 3/20/02 9:31 AM Page 107

Run the following command to check access to the LDAP server.

java JNDILookupAny “cn=Manager, o=Agency,c=us “

This will display an entry similar to the following:

ou=Customers,o=Agency,c=US=com.sun.jndi.ldap.LdapCtx@42719c

If the test doesn’t work, you must check your local LDAP configuration. The most likely
problem will relate to security. You may need to provide security credentials to the
LDAP server. The “Security” section at the end of today’s lesson briefly covers this.

Obtaining a Directory Context
Attributes are only supported by Directory Services and cannot be accessed through the
ordinary Context object. Instead, you must use a javax.naming.directory.DirContext
class. The DirContext is a sub-class of Context, and you can use it in place of a
Context when dealing with a Directory Service where you require directory functionality
(such as attributes). For example,

DirContext ic = new InitialDirContext();

The javax.naming.directory package contains the other attribute classes discussed
next.

Reading Attributes
Attributes are read from the context just like a name is looked up from the context. The
DirContext.getAttributes() method returns a NamingEnumeration that contains a col-
lection of Attribute objects. Each Attribute has an ID (or key) and a list of values (an
attribute can have more than one value for the same key). Listing 3.11 shows how all the
attributes for an object can be listed.

LISTING 3.11 Full Text of JNDIAttributes.java

1: import javax.naming.*;
2: import javax.naming.directory.*;
3: public class JNDIAttributes
4: {
5: public static void main(String[] args) {
6: if (args.length != 1) {
7: System.err.println (“Usage: JNDIAttributes JNDIname”);
8: System.exit(1);
9: }
10: try {
11: DirContext ctx = new InitialDirContext();
12: Attributes attrs = ctx.getAttributes(args[0]);

108 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 108

Naming and Directory Services 109

3

13: NamingEnumeration ae = attrs.getAll();
14: while (ae.hasMore()) {
15: Attribute attr = (Attribute)ae.next();
16: System.out.println(“ attribute: “ + attr.getID());
17: NamingEnumeration e = attr.getAll();
18: while (e.hasMore())
19: System.out.println(“ value: “ + e.next());
20: }
21: System.out.println(“END of attributes for “+args[0]);
22: }
23: catch (NamingException ex) {
24: System.out.println (ex);
25: System.exit(1);
26: }
27: }
28: }

Running this program against the sample data produces the following result:

> java JNDIAttributes “cn=George,ou=Customers,o=Agency,c=us”
attribute: description
value: President

attribute: objectClass
value: person

attribute: sn
value: Washington

attribute: cn
value: George
value: George Washington

END of attributes for cn=George,ou=Customers,o=Agency,c=us

A second form of the getAttributes() method allows you to provide an array of
attribute names, and it only returns the values for those attributes. It is not an error to
query an attribute that isn’t defined; it simply doesn’t return a value for that attribute.
The following fragment shows how to find the cn and sn attributes for a name:

String[] IDs = {“sn”, “cn”};
Attributes attrs = ctx.getAttributes(“cn=George,ou=Customers,o=Agency,c=us”,IDs);

Searching for Objects
A powerful and useful feature of attributes is the ability for you to search for names that
have specific attributes or names that have attributes of a particular value.

You use the Context.search() method to search for names. There are several over-
loaded forms of this method, all of which require a DN to define the context in the name

LISTING 3.11 Continued

05 0672323842 CH03 3/20/02 9:31 AM Page 109

tree where the search should begin. The simplest form of search() takes a second para-
meter that is an Attributes object that contains a list of attributes to find. Each attribute
can be just the name or the name and a value for that attribute.

Listing 3.12 shows a simple program to find all names that have a surname (sn) defined
and a description of President.

LISTING 3.12 Full Text of JNDISearch.java

1: import javax.naming.*;
2: import javax.naming.directory.*;
3: public class JNDISearch
4: {
5: private final static String JNDI = “ou=Customers,o=Agency,c=us”;
6:
7: public static void main(String[] args) {
8: try {
9: DirContext ctx = new InitialDirContext();
10: // create case insensitive search attributes
11: Attributes match = new BasicAttributes(true);
12: match.put(new BasicAttribute(“sn”));
13: match.put(new BasicAttribute(“description”,”president”));
14: NamingEnumeration enum = ctx.search(JNDI, match);
15: while (enum.hasMore()) {
16: SearchResult res = (SearchResult)enum.next();
17: System.out.println(res.getName()+”,”+JNDI);
18: }
19: }
20: catch (NamingException ex) {
21: System.out.println (ex);
22: System.exit(1);
23: }
24: }
25: }

The search() method returns a NamingEnumeration containing objects of class
SearchResult (a sub-class of NameClassPair discussed earlier). The SearchResult
encapsulates information about the names found. The example program simply prints out
the names (the names in the SearchResult object are relative to the context that was
searched).

Running the program in Listing 3.12 will return the following values from the sample data:

cn=George,ou=Customers,o=Agency,c=us
cn=Abraham,ou=Customers,o=Agency,c=us

The SearchResult class also has a getAttributes() method that returns the attributes
for the found name. The simple search shown in Listing 3.12 returns all of the name’s
attributes.

110 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 110

Naming and Directory Services 111

3

A second form of the search() method takes a third parameter that is an array of String
objects specifying the attributes for the method to return. The following code fragment
shows how to search and return just the surname and common name attributes:

NamingEnumeration enum = ctx.search(JNDI, match, new String[]{“sn”,”cn”});

Another form of the search() method takes a String parameter specifying a search filter.
The filter uses a simple prefix notation for combining attributes and values. The JNDI
API documentation and the JNDI Tutorial from Sun Microsystems provides full details
of the search filter syntax. Listing 3.13 shows a search for names with a description or
President or Prime Minister.

LISTING 3.13 Full Text of JNDIFilter.java

1: import javax.naming.*;
2: import javax.naming.directory.*;
3: public class JNDIFilter
4: {
5: private final static String JNDI = “ou=Customers,o=Agency,c=us”;
6:
7: public static void main(String[] args) {
8: try {
9: DirContext ctx = new InitialDirContext();
10: SearchControls sc = new SearchControls();
11: String filter =

➥”(|(description=President)(description=Prime Minister))”;
12: NamingEnumeration enum = ctx.search(JNDI, filter, sc);
13: while (enum.hasMore()) {
14: SearchResult res = (SearchResult)enum.next();
15: System.out.println(res.getName()+”,”+JNDI);
16: }
17: }
18: catch (NamingException ex) {
19: System.out.println (ex);
20: System.exit(1);
21: }
22: }
23: }

You can use the javax.naming.directory.SearchControls argument required by
search() to

• Specify which attributes the method returns (the default is all attributes)

• Define the scope of the search, such as the depth of tree to search down to

• Limit the results to a maximum number of names

• Limit the amount of time for the search

05 0672323842 CH03 3/20/02 9:31 AM Page 111

Running the program in Listing 3.13 with the sample data produces the following output:

cn=George,ou=Customers,o=Agency,c=us
cn=abraham,ou=Customers,o=Agency,c=us
cn=Winston,ou=Customers,o=Agency,c=us

Manipulating Attributes
The DirContext. ModifyAttributes() method supports the addition, modification, and
deletion of attributes for a name. To manipulate an attribute, the program must have write
permission to entries in the LDAP name server. On a live system, the program must sup-
ply valid user credentials when obtaining the initial context (see the “Security” section
later in this lesson). If you attempt to modify a name’s attributes without the requisite
permissions, a javax.naming.NoPermissionException is thrown.

If you are using the OpenLDAP server purely for evaluating JNDI, you can easily change
the permissions so that all users have write permission. Find the slapd configuration file
(by default, this is /usr/local/etc/openladap/slapd.conf) and replace the following
line:

access to * by * read

with

access to * by * write

Stop and restart the slapd server for this change to take effect.

You can manipulate attributes in one of two ways. The first, and most functional, is to
create an array of javax.naming.directory.ModificationItem objects. Each entry in
the array specifies an attribute ID and an operation (one of
DirContext.REPLACE_ATTRIBUTE, DirContext.ADD_ATTRIBUTE, and
DirContext.REMOVE_ATTRIBUTE). To modify or add a new attribute, the
ModifyAttributes() method requires an additional parameter for the value of the
attribute.

Listing 3.14 shows how the entry for Abraham can update the description attribute and
add a new seeAlso attribute.

LISTING 3.14 Full Text of JNDIModify.java

1: import javax.naming.*;
2: import javax.naming.directory.*;
3: public class JNDIModify
4: {
5: private final static String JNDI =

➥”cn=Abraham,ou=Customers,o=Agency,c=us”;

112 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 112

Naming and Directory Services 113

3

6:
7: public static void main(String[] args) {
8: try {
9: DirContext ctx = new InitialDirContext();
10: SearchControls sc = new SearchControls();
11: ModificationItem[] mods = new ModificationItem[2];
12: mods[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
13: new BasicAttribute(“description”, “Assasinated

President”));
14: mods[1] = new ModificationItem(DirContext.ADD_ATTRIBUTE,
15: new BasicAttribute(“seeAlso”,

➥”cn=George,ou=Customers,o=Agency,c=us”));
16: ctx.modifyAttributes(JNDI, mods);
17: }
18: catch (NamingException ex) {
19: System.out.println (ex);
20: System.exit(1);
21: }
22: }
23: }

After running this program, you can view the changes by using the JNDIAttributes pro-
gram shown in listing 3.11.

> java JNDIAttributes “cn=abraham,ou=Customers,o=Agency,c=us”
attribute: seeAlso
value: cn=George,ou=Customers,o=Agency,c=us

attribute: description
value: Assasinated President

attribute: objectClass
value: top
value: person

attribute: sn
value: Lincoln

attribute: cn
value: Abraham
value: Abraham Lincoln

END of attributes for cn=abraham,ou=Customers,o=Agency,c=us

The second method for manipulating attributes is to define the operation and an
Attributes list of Attribute objects to be manipulated (with values if appropriate). The
next code fragment shows how to delete the seeAlso entry just added (which probably
should have referred to John F. Kennedy and not George Washington).

Attributes attrs = new BasicAttributes(“seeAlso”,null);
ctx.modifyAttributes(JNDI, DirContext.REMOVE_ATTRIBUTE, attrs);

LISTING 3.14 Continued

05 0672323842 CH03 3/20/02 9:31 AM Page 113

The next example shows how to change the description back to President.

Attributes attrs = new BasicAttributes(“description”,”President”);
ctx.modifyAttributes(JNDI, DirContext.REPLACE_ATTRIBUTE, attrs);

More on Objects
The early part of today’s lesson covered binding objects into a JNDI namespace. To
recap, a bound object must implement the Serializable interface, and the object’s class
file must be available to the JNDI server.

The obvious means of making an object’s class file available to the JNDI server is to set
the server’s class path to include the necessary directory or JAR file. However, this isn’t
always convenient, and the JNDI specification recognizes this situation and supports
dynamic loading of classes when using a directory service.

Loading Classes from a Code Base
Provided the JNDI Service Provider is a Directory Service and that service supports
Internet RFC 2713, the JNDI server can obtain necessary class files dynamically from
any HTTP server.

RFC2713 defines an interoperable way of storing Java objects in an LDAP server. By
defining how Java objects are stored and retrieved, the JNDI Naming Manager in Sun
Microsystems’ LDAP Service Provider can retrieve Java objects from the directory server
and recreate them on the client’s system.

You must configure the LDAP server to support the Java Schema defined in RFC2713. If
you are using the OpenLDAP server, as previously configured in the “Attributes” section,
supporting the Java Schema is a relatively simple change to the configuration:

1. Stop the OpenLDAP slapd daemon.

2. Edit the slapd configuration file (/usr/local/etc/openldap/slad.conf). After
the existing line starting with include, add the following line:

include /usr/local/etc/openldap/schema/java.schema

3. Save the file and restart the OpenLDAP server.

Defining a Code Base
From a programming point of view, Java class files must be made available via a Web
server. A javaCodebase attribute supplies the details of the Web server location when
binding the object into the JNDI directory namespace.

The following example uses the Sun Microsystems’ LDAP Service Provider and an
LDAP server, as discussed in the “Attributes” section earlier in today’s lesson.

114 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 114

Naming and Directory Services 115

3

This example also requires an HTTP server to be running. Starting up the J2EE RI server
will also start an HTTP server on port 8000. The J2EE RI stores its HTTP pages in the
public_html directory in the J2EE RI home directory.

Listing 3.15 shows a simple class representing a book.

LISTING 3.15 Full Text of Book.java

1: import java.io.*;
2: public class Book implements Serializable
3: {
4: String title;
5: public Book(String title) {
6: this. title = title;
7: }
8: public String toString() {
9: return title;
10: }
11: }

A Web server must make the book.class file available for download for the Sun
Microsystems’ LDAP Service provider to bind and look up Book objects. It is conven-
tional to store downloadable class files in a separate sub-directory under the HTTP
server’s home directory. You normally call this sub-directory classes.

Use the following commands to copy the book.class file to the J2EE RI Web server. In
both cases, you require appropriate permission to write to the J2EE RI home directory.

Under Windows

mkdir %J2EE_HOME%\public_html\classes
copy Book.class %J2EE_HOME%\public_html\classes

Under Linux and Unix

mkdir $J2EE_HOME/public_html/classes
cp Book.class $J2EE_HOME/public_html/classes

With the class files in place, a Book object can be bound to the LDAP namespace as
Listing 3.16 shows. The code uses the javaCodebase attribute to specify the URL of the
directory containing the Java class files and not the class file itself.

LISTING 3.16 Full Text of JNDICodebase.java

1: import javax.naming.*;
2: import javax.naming.directory.*;
3: public class JNDICodebase
4: {

05 0672323842 CH03 3/20/02 9:31 AM Page 115

5: private final static String JNDI = “cn=book,o=Agency,c=us”;
6: private final static String codeURL =

➥”http://localhost:8000/classes”;
7:
8: public static void main(String[] args) {
9: try {
10: DirContext ic = new InitialDirContext();
11: Book book = new Book(“Teach Yourself J2EE in 21 Days”);
12: Attributes attrs = new BasicAttributes();
13: attrs.put(“javaCodebase”, codeURL);
14: attrs.put(“cn”, “book”);
15: ic.rebind(JNDI, book, attrs);
16: System.out.println(“Bound “+JNDI);
17: }
18: catch (NamingException ex) {
19: System.err.println(ex);
20: System.exit(1);
21: }
22: }
23: }

Note that the example uses the code base URL of localhost:8000, which is required
because the J2EE web server uses a non-standard HTTP port (the standard HTTP port
is 80).

116 Day 3

LISTING 3.16 Continued

The http.port entry in the web.properties file in the J2EE RI config directory
defines the default port for the Web server.

Note

With the name registered and the HTTP server running, the client can look up the bound
object without having the Book class file in the search path. The Sun Microsystems’
LDAP Service Provider automatically loads the class file. Listing 3.17 shows a simple
client program.

LISTING 3.17 Full Text of JNDILookupBook.java

1: import javax.naming.*;
2: public class JNDILookupBook
3: {
4: private final static String JNDI = “cn=book, o=Agency,c=us “;
5:
6: public static void main(String[] args) {
7: try {

05 0672323842 CH03 3/20/02 9:31 AM Page 116

Naming and Directory Services 117

3

8: Context ic = new InitialContext();
9: Book book = (Book)ic.lookup(JNDI);
10: System.out.println(JNDI+”=”+book);
11: }
12: catch (NamingException ex) {
13: System.err.println(ex);
14: System.exit(1);
15: }
16: catch (ClassCastException ex) {
17: System.err.println(ex);
18: System.exit(1);
19: }
20: }
21: }

References
Sometimes, storing a serialized copy of an object in the Directory Service is inappropri-
ate. Perhaps the object is too large or you must instantiate it dynamically because its con-
struction depends on information that can vary from one client to another.

JNDI references provide a mechanism for storing an object by reference rather than by
value. This mechanism only works if the underlying JNDI Service Provider supports
Referenceable objects. The LDAP Service Provider from Sun Microsystems supports
Referenceable objects.

Without going into too much detail, a reference to an object requires that a Factory class
is available to build the object from the information the reference stores. From a design
perspective, this requires two related classes:

• The Object class that must implement the javax.naming.Referenceable interface

• A Factory class that can create the required objects

The Referenceable interface requires an object to implement the getReference()
method, which returns a Reference object. The Reference object defines the name of
the class referred to and a Factory class that can be used to build the referenced object.
Listing 3.18 shows a simple Book reference class.

LISTING 3.18 Full Text of BookRef.java

1: import java.io.*;
2: import javax.naming.*;
3: public class BookRef implements Referenceable
4: {

LISTING 3.17 Continued

05 0672323842 CH03 3/20/02 9:31 AM Page 117

5: String title;
6: public BookRef(String title) {
7: this.title = title;
8: }
9: public String toString() {
10: return title;
11: }
12: public Reference getReference() throws NamingException {
13: return new Reference(
14: BookRef.class.getName(),
15: new StringRefAddr(“book”, title),
16: BookFactory.class.getName(),
17: null);
18: }
19: }

The second parameter to the Reference constructor uniquely defines the object. This
requires a key to define the address type of the object (in this case, a String set to the
value book) and a value for this specific object (in this case, the book’s title). When the
object is reconstructed, this address type and value will pass to the Factory object.

The Factory class must implement either javax.naming.spi.ObjectFactory or
javax.naming.spi.DirObjectFactory, depending whether you use a Name Service
or a Directory Service. Both classes require the Factory class to implement a
getObjectInstance() method for creating reference objects. Listing 3.19 shows the
BookFactory class used in the BookRef class shown in Listing 3.16.

LISTING 3.19 Full Text of BookFactory.java

1: import javax.naming.*;
2: import javax.naming.spi.*;
3: import java.util.Hashtable;
4: public class BookFactory implements ObjectFactory {
5: public Object getObjectInstance(Object obj, Name name,
6: Context ctx, Hashtable env) throws Exception {
7: if (obj instanceof Reference) {
8: Reference ref = (Reference)obj;
9: if (ref.getClassName().equals(BookRef.class.getName())) {
10: RefAddr addr = ref.get(“book”);
11: if (addr != null) {
12: return new BookRef((String)addr.getContent());
13: }
14: }
15: }
16: return null;
17: }
18: }

118 Day 3

LISTING 3.18 Continued

05 0672323842 CH03 3/20/02 9:31 AM Page 118

Naming and Directory Services 119

3

The factory getObjectInstance() method checks that it is passed a Reference object
and then checks that the class of the reference is a BookRef. If both of these conditions
are true, the factory uses the address type book to look up the value of the object and
then uses this to create a new BookRef object.

As far as name binding and object lookup are concerned, the client is unaware of the use
of references. Listings 3.20 and 3.21 show how your code can use the BookRef class.

LISTING 3.20 Full Text of JNDIBindBookRef.java

1: import javax.naming.*;
2: import javax.naming.directory.*;
3: public class JNDIBindBookRef
4: {
5: private final static String JNDI = “ book”;
6:
7: public static void main(String[] args) {
8: try {
9: DirContext ic = new InitialDirContext();
10: BookRef book = new BookRef(“Teach Yourself J2EE in 21 Days”);
11: Attributes attrs = new BasicAttributes();
12: attrs.put(“cn”, “book”);
13: ic.rebind(JNDI,book,attrs);
14: System.out.println(“Bound BookRef “+JNDI);
15: }
16: catch (NamingException ex) {
17: System.err.println(ex);
18: System.exit(1);
19: }
20: }
21: }

LISTING 3.21 Full Text of JNDILookupBookRef.java

1: import javax.naming.*;
2: import javax.naming.directory.*;
3: public class JNDILookupBookRef
4: {
5: private final static String JNDI = “book”;
6:
7: public static void main(String[] args) {
8: try {
9: DirContext ic = new InitialDirContext();
10: BookRef name = (BookRef)ic.lookup(JNDI);
11: System.out.println(JNDI+”=”+name);
12: }
13: catch (NamingException ex) {
14: System.err.println(ex);

05 0672323842 CH03 3/20/02 9:31 AM Page 119

15: System.exit(1);
16: }
17: catch (ClassCastException ex) {
18: System.err.println(ex);
19: System.exit(1);
20: }
21: }
22: }

What Else Can JNDI Do?
JNDI is a large subject, and some of the previous discussion has been quite brief (there is
a lot more to attributes, searching, and references than has been shown). Today, the addi-
tional features, such as naming events and security, have been presented in a very super-
ficial manner.

JNDI Events
JNDI supports an event model similar to the event listeners in the Java AWT and Swing
classes. However, the underlying JNDI Service Provider must also provide support for
the event model for a client to register event handlers.

The javax.naming.event package supports two types of JNDI event listener (both are
sub-classes of NamingListener):

• NamespaceChangeListener reports on changes to the namespace objects that are
added, removed, or renamed.

• ObjectChangeListener reports on changes to an object when its binding is
replaced or attributes are added, removed, or replaced.

Both interfaces define appropriate methods that are called when changes occur in the
JNDI namespace. A javax.naming.event.NamingEvent object is passed to the listener
method to define:

• The type of event (for example, name added or object changed)

• The name binding before the event occurred

• The name binding after the event occurred

You use the EventContext.addNamingListener() method to register a NamingListener
object against a context. Adding and removing a listener requires the context to imple-
ment the EventContext (or EventDirContext for Directory Services). The code to look
up and register a NamingListener is similar to that shown in Listing 3.22 (please use the
API documentation for further details):

120 Day 3

LISTING 3.21 Continued

05 0672323842 CH03 3/20/02 9:31 AM Page 120

Naming and Directory Services 121

3

LISTING 3.22 Sample Code to Add a NamingListener

1: Context ic = new InitialContext();
2: EventContext ctx = (EventContext) ic.lookup(“sams”);
3:
4: NamingListener listener = new MyNamingListener();
5:
6: ctx.addNamingListener(“book”, EventContext.ONELEVEL_SCOPE, listener);

Listing 3.22 registers a listener against the sams context and listens for events on the
book name. Depending on the underlying Service Provider, the book name need not exist
when you register the listener.

You can register a NamingListener to listen for several objects either by listening on a
context (rather than an object) or by using attribute filters to specify the required objects.

JNDI event handling provides an effective means for monitoring changes to a namespace
to maintain up-to-date information about the registered objects.

Security
JNDI security depends on the underlying Service Provider. Simple services, such as RMI
and the CORBA name service (both of which the J2EE RI implementation supplies), do
not support security. These services allow any client to perform any operation.

In a production environment, security is paramount to ensuring the integrity of the data
in the JNDI server. Most live J2EE implementations will make use of LDAP to provide a
naming service that supports security.

LDAP security is based on three categories:

• Anonymous—No security information is provided.

• Simple—The client provides a clear text name and password.

• Simple Authentication and Security Layer (SASL)—The client and server negotiate
an authentication system based on a challenge and response protocol that conforms
to RFC2222.

If the client does not supply any security information (as in all the examples shown
today), the client is treated as an anonymous client.

The following JNDI properties provide security information:

• java.naming.security.authentication is set to a String to define the authenti-
cation mechanism used (one of none, simple, or the name of an SASL authentica-
tion system supported by the LDAP server).

• java.naming.security.principal is set to the fully qualified domain name of the
client to authenticate.

05 0672323842 CH03 3/20/02 9:31 AM Page 121

• java.naming.security.credentials is a password or encrypted data (such as a
digital certificate) that the implementation uses to authenticate the client.

If you do not define any of these properties, the implementation uses anonymous
(java.naming.security.authentication=none) authentication.

You can use a JNDI properties file to supply client authentication information, but more
usually you code the information within the client program. Usually, your application
must obtain the client authentication dynamically.

If you use strong (not simple or anonymous) authentication, the java.naming.securi-
ty.authentication value can consist of a space-separated list of authentication mecha-
nisms. Depending on the LDAP service provider, JNDI can support the following
authentication schemes:

• External—Allows JNDI to use any authentication system. The client must define a
callback mechanism for JNDI to hook into the client’s authentication mechanism.

• GSSAPI (Kerberos v5)—A well-known, token-based security mechanism.

• Digest MD5—Uses the Java Cryptography Extension (JCE) to support client
authentication using the MD5 encryption algorithm, which has no known decryp-
tion technique.

Day 15, “Security,” discuses the whole topic of J2EE and JNDI security.

Summary
JNDI provides a uniform API to an underlying naming or driectory service. A Naming
Service provides a means of storing simple information against a name so the informa-
tion can be retrieved using the name as a key. A Directory Service stores additional
attribute information, as well as values against a name. Directory Services use attributes
to categorize names so that powerful searching of the directory tree structure can be sup-
ported.

JNDI supports any naming service provided a Service Provider implementation is avail-
able for the service. Standard services supported by JNDI include the following:

• Lightweight Directory Access Protocol (LDAP)

• Novel Directory Services (NDS)

• CORBA

• Active Directory is supported via its LDAP interface

122 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 122

Naming and Directory Services 123

3

Using JNDI from within a Java program is a simple matter of creating a context and
looking up names within that context. The Context class supports naming services, and
the DirContext class supports directory services.

After a context has been defined, the lookup() method is used to retrieve the object
stored against a name. The bind() and rebind() methods are used to add or changes
bound objects, and the unbind() method is used to remove a bound object.

Within J2EE, JNDI is used to advertise components such as the following:

• EJBs

• Data sources (databases)

• JMS message queues and topics

Q&A
Q Why is a Name Service so important?

A Without JNDI, it would be a lot harder to provide services such as those imple-
mented using J2EE objects like data sources, message queues, and EJBs. Each ven-
dor would choose its own mechanism for defining how a client program should
gain access to the J2EE objects. Some might do this by distributing configuration
files, others by using TCP/IP broadcast network packets. Using a Name Service
provides a consistent means of providing network services in a portable and
platform-independent manner. Not only that, you can move an implementation of a
service from one machine to another. In this instance, the server simply updates the
Name Service entry to reflect its new location, and the whole process is transparent
to the client.

Q Why is JNDI so large? Surely all I need to do is map a name onto a Java
object?

A If all you want to do is support J2EE objects, JNDI could be as simple as a name
to object mapping service. But Sun Microsystems designed JNDI to interoperate
with established Directory Services, such as NDS, LDAP (Active Directory), and
DNS. By providing Java programming support for these services, the designers of
JNDI have ensured it will not be used as a proprietary product with J2EE servers,
but as a general interface to fully -functional directory services. This design philos-
ophy also provides programmers with a mechanism for developing interfaces to
NDS and LDAP in Java rather than some other language, such as C++ or C#.

05 0672323842 CH03 3/20/02 9:31 AM Page 123

Exercise
You have been shown a simple program to display a JNDI namespace as a command line
program (JNDITree.java in Listing 3.6). Today’s exercise is to write a GUI version of
this program using the Swing JTree class.If you already know Swing, you can use
JNDITree.java as a guide for your program and go ahead and write your own JNDI
browser.

If you do not know Swing, the exercise directory for Day 3 on the accompanying CD-
ROM includes a template program called JNDIBrowser.java for you to enhance. The
JNDIBrowser program handles all of the Swing initialization, all you have to do is get a
list of the names in the JNDI namespace and create a new
javax.swing.tree.DefaultMutableTreeNode representing the name and add this to the
JTree. When you add a name that is also a context, you need to add all the names in this
sub-context.

Comments have been added to the JNDIBrowser.java file to show you where to add
your code.

Don’t worry if this sounds complex—it isn’t. You only have to write about 12 lines of
code (most of which you can adapt from JNDITree.java).

Before you rush off and write your first piece of Java code for this book, remember that
you need to set up your CLASSPATH to include the J2EE Reference Implementation classes
using the setenv script, as discussed in today’s lesson. You can run the supplied solution
using the following commands.

Under Windows, use

%J2EE_HOME%\bin\setenv
java –classpath .;%CPATH% JNDIBrowser

Under Linux and Unix, use

$J2EE_HOME/bin/setenv
java –classpath .:$CPATH JNDIBrowser

If you complete this exercise or simply run the provided solution, you will see that the
JNDI names are listed in the order they were added to the context. As a second exercise,
change your program to display the names in alphabetical order. The solution called
JNDIBrowserSort.java program shows how this can be achieved using the
java.util.TreeMap class.

You will find these programs useful for browsing the JNDI namespace when you are
developing J2EE applications.

124 Day 3

05 0672323842 CH03 3/20/02 9:31 AM Page 124

DAY 4

WEEK 1

Introduction to EJBs
J2EE provides different types of components for different purposes. Today, you
will start to look at one of the principal types of component in J2EE—
Enterprise JavaBeans (EJBs).

The study of EJBs is continued on Day 5, “Session EJBs,”, Day 6, “Entity
EJBs”, Day 7, “CMP and EJB QL”, Day 8, “Transactions and Persistence”, and
Day 10, “Message-Driven Beans”. As you can see, there is a lot to learn about
EJBs, so today serves as a first step on the road to all of this EJB knowledge.

Today, you will

• Examine the different types of EJB available

• Take a look at how EJBs are applied

• Explore the structure of one of the EJBs that forms part of the case study
to see how the different parts fit together

• Deploy and use some of the EJBs from the case study

• Write a simple client for an EJB

First, you need to understand why you would use EJBs.

06 0672323842 CH04 3/20/02 9:25 AM Page 125

What Is an EJB?
In a typical J2EE application, Enterprise JavaBeans (EJBs) contain the application’s busi-
ness logic and live business data. Although it is possible to use standard Java objects to
contain your business logic and business data, using EJBs addresses many of the issues
you would find by using simple Java objects, such as scalability, lifecycle management,
and state management.

Beans, Clients, Containers, and Servers
An EJB is essentially a managed component that is created, controlled, and destroyed by
the J2EE container in which it lives. This control allows the container to control the
number of EJBs currently in existence and the resources they are using, such as memory
and database connections. Each container will maintain a pool of EJB instances that are
ready to be assigned to a client. When a client no longer needs an EJB, the EJB instance
will be returned to the pool and all of its resources will be released. At times of heavy
load, even EJB instances that are still in use by clients will be returned to the pool so
they can service other clients. When the original client makes another request of its EJB,
the container will reconstitute the original EJB instance to service the request. This pool-
ing and recycling of EJB instances means that a few EJB instances, and the resources
they use, can be shared between many clients. This maximizes the scalability of the EJB-
based application. The EJB lifecycle is discussed further on Days 5 and 6.

The client that uses the EJB instance does not need to know about all of this work by the
container. As far as the client is concerned, it is talking to a remote component that sup-
ports defined business methods. How those methods are implemented and any magic per-
formed by the container, such as just-in-time instantiation of that specific component
instance, are entirely transparent to the client part of the application.

The EJB benefits from certain services provided by the container, such as automatic
security, automatic transactions, lifecycle management, and so on. To do this, the EJB
must conform to certain rules and implement an appropriate interface that allows the
container to manage the component. The EJB is packaged with configuration information
that indicates the component’s requirements, such as transaction and security require-
ments. The container will then use this information to perform authentication and control
transactions on behalf of the component—the component does not have to contain code
to perform such tasks.

The primary purpose of the container is to control and provide services for the EJBs it
contains. When it needs to use some underlying functionality, such as creating a transac-
tion on behalf of a bean, it uses the facilities of the underlying EJB server. The EJB
server is the base set of services on top of which the container runs. Different types of

126 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 126

Introduction to EJBs 127

4

EJB will run in different containers, but many different EJB containers can run on a sin-
gle EJB server. EJB servers are generally delivered as part of a J2EE-compliant applica-
tion server (examples include BEA WebLogic and IBM WebSphere). You will install and
run the application server, which will provide the underlying services required of an EJB
server and will host EJB containers.

The EJB Landscape
As you have seen, the J2EE Blueprints (http://java.sun.com/blueprints/enter-
prise/index.html) define a target architecture for a typical J2EE-based application. In
this architecture, EJBs live in the middle tier and are used by other application compo-
nents that live in the presentation tier. Although it is possible that both of these logical
tiers will reside on the same computer, it is most likely that they will reside on different
machines. This means that an EJB will usually have to be made available to remote
clients.

To offer services to remote clients, EJBs will export their services as RMI remote
interfaces. RMI allows you to define distributed interfaces in Java. There are certain
caveats on doing this, not only at the implementation level (such as declaring that
RemoteExceptions may be thrown when calling a method on an EJB) but also at the
design level. Designing remote interfaces is a skill in itself, which will be explored as
you progress through topics in this book, such as EJBs and J2EE Patterns.

Because they must use an RMI-based interface to access the functionality of the EJB, the
clients of an EJB must have some programming functionality. This means that they are
typically either “thick” clients that provide a GUI interface or Web-server components
that deliver HTML interfaces to “thin” clients. The different types of client are explored
in more detail shortly.

In the other direction, EJBs themselves will make use of data sources, such as databases
and mainframe systems, to perform the required business logic. Access to such data and
services can be through a JDBC database connection, a J2EE Connector, another EJB, or
a dedicated server or class of some form.

Discovering EJBs
While it is quite easy to draw pictures of a 3-tier system containing boxes labelled
“EJB,” it is important to identify what application functionality should go into an EJB.

At the start of application development, regardless of the precise development process
used (Rational Unified Process (RUP), eXtreme Programming (XP), and so on), there is
generally some analysis that delivers a Unified Modelling Language (UML) domain
model (this identifies the main elements of the business problem to be solved). This can

06 0672323842 CH04 3/20/02 9:25 AM Page 127

then form the basis of a solution model where the business concepts are mapped into
appropriate design-level artefacts, such as components. This is where EJBs come into the
design.

The UML model will consist of a set of classes and packages that represent single or
grouped business concepts. A class or package can be implemented as an EJB. Generally,
only larger individual classes will become EJBs in themselves, because EJBs are intend-
ed to be fairly coarse-grained components that incorporate a reasonably large amount of
functionality and/or data.

There are generally two types of functionality discovered during analysis—data manipu-
lation and business process flow. The application model will usually contain data-based
classes such as Customer or Product. These classes will be manipulated by other classes
or roles that represent business processes, such as Purchaser or CustomerManager. There
are different types of EJB that can be applied to these different requirements.

Types of EJB
There are three different types of EJB that are suited to different purposes:

• Session EJB—A Session EJB is useful for mapping business process flow (or
equivalent application concepts). There are two sub-types of Session EJB —
stateless and stateful— that are discussed in more detail on Day 5. Session EJBs
commonly represent “pure” functionality that is created as it is needed.

• Entity EJB—An Entity EJB maps a combination of data (or equivalent application
concept) and associated functionality. Entity EJBs are usually based on an underly-
ing data store and will be created based on that data within it.

• Message-driven EJB—A Message-driven EJB is very similar in concept to a
Session EJB, but is only activated when an asynchronous message arrives.

As an application designer, you should choose the most appropriate type of EJB based
on the task to be accomplished.

Common Uses of EJBs
So, given all of this, where would you commonly encounter EJBs and in what roles?
Well, the following are some examples:

• In a Web-centric application, the EJBs will provide the business logic that sits
behind the Web-oriented components, such as servlets and JSPs. If a Web-oriented
application requires a high level of scalability or maintainability, use of EJBs can
help to deliver this.

128 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 128

Introduction to EJBs 129

4

• Thick client applications, such as Swing applications, will use EJBs in a similar
way to Web-centric applications. To share business logic in a natural way between
different types of client applications, EJBs can be used to house that business logic.

• Business-to-business (B2B) e-commerce applications can also take advantage of
EJBs. Because B2B e-commerce frequently revolves around the integration of
business processes, EJBs provide an ideal place to house the business process
logic. They can also provide a link between the Web technologies frequently used
to deliver B2B and the business systems behind.

• Enterprise Application Integration (EAI) applications can incorporate EJBs to
house processing and mapping between different applications. Again, this is an
encapsulation of the business logic that is needed when transferring data between
applications (in this case, in-house applications).

These are all high-level views on how EJBs are applied. There are various other EJB-
specific patterns and idioms that can be applied when implementing EJB-based solutions.
These are discussed more on Day 18, “Patterns.”

Given this context, common types of EJB client include the following:

• A servlet or JSP that provides an HTML-based interface for a browser client

• Another EJB that can delegate certain of its own tasks or can work in combination
with other EJBs to achieve its own goals

• A Java/Swing application that provides a front-end for the business processes
encapsulated in the EJB

• A CORBA application that takes advantage of the EJB’s business logic

• An applet that takes advantage of the business logic in a remote EJB so that this
business logic does not need to be downloaded to the client

These are common ways that EJBs are applied. What benefits does the use of EJBs give
to you as a developer?

Why Use EJBs?
Despite the recommendations of the J2EE Blueprints, the use of EJBs is not mandatory.
You can build very successful applications using servlets, JSPs or standalone Java appli-
cations.

As a general rule of thumb, if an application is small in scope and is not required to be
highly scalable, you can use J2EE components, such as servlets, together with direct
JDBC connectivity to build it. However, as the application complexity grows or the num-
ber of concurrent users increases, the use of EJBs makes it much easier to partition and
scale the application. In this case, using EJBs gives you some significant advantages.

06 0672323842 CH04 3/20/02 9:25 AM Page 129

Hiding Complexity
Early middleware environments, such as “raw” CORBA, require the application develop-
er to write a lot of code that interacts with the CORBA environment and facilitates the
connectivity and registration process. Such code can be likened to the plumbing that
pipes water around a house. It needs to be there but, as the user of a sink or shower, you
do not want to be intimately involved with it. In J2EE application terms, business devel-
opers want to write business code, not “plumbing” code. The EJB model tries to reduce
such interaction to a minimum by using the following mechanisms:

• Each bean conforms to a defined lifecycle and set of rules. This provides a distinct
boundary between system code and application code.

• Declarative attributes allow a developer to specify, say, the transactional behavior
of the component without having to write code to control such functionality.

• The deployment information provided with the deployable J2EE application pro-
vides information about the relationships between multiple EJBs and also defines
the resources required by an EJB.

Separation of Business Logic from UI and Data Access
One of the key facets of applying EJBs is that they allow business functionality to be
developed and then deployed independently of the presentational layer. You might, for
example, create an application with a user interface built using Java’s Swing API. This
application might then provide access to some business functionality for the employees
working on the company’s internal network. If the underlying business functionality is
implemented using EJBs, a different user interface could take its place without having to
redevelop the entire application. A Web-based interface that used servlets would make
the application available from the Internet without having to change a single line of code
in the business functionality. Figure 4.1 is a UML component diagram that shows this.
(More information on UML can be found in Appendix A, “An Introduction to UML,” on
the accompanying CD-ROM.)

It can sometimes be difficult to distinguish between the functionality that an application
provides and the user interface that is used to invoke that functionality. This is not unex-
pected because many common applications—such as a word-processor—are single-tier;
the presentational logic and the business functionality are a single entity. On the other
hand, consider programming a video recorder. Most modern video recorders can be pro-
grammed either directly on the console or through a remote control unit. Either user
interface will accomplish the task of recording your favorite TV show, but there is only a
single “application.”

130 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 130

Introduction to EJBs 131

4

Consider another example. In most supermarkets, a cashier is responsible for scanning
the items in your shopping cart and then requesting a payment for the total. However,
some supermarkets also offer a trust system, whereby the customer scans the items with
a mobile scanner as they place the item into the shopping cart. To pay for the goods in
the shopping cart, the customer simply swipes his or her own card, and then leaves with
the goods. Again, there is a single application (to purchase shopping items) but two dif-
ferent interfaces—the cashier’s till and the customer’s mobile scanner.

To implement a distributed application using EJBs, make sure you have distinguished
between the user interface and the underlying business function. The EJB itself is con-
cerned only with the latter of these.

Container Services
The container provides various services for the EJB to relieve the developer from having
to implement such services, namely

• Distribution via proxies—The container will generate a client-side stub and server-
side skeleton for the EJB. The stub and skeleton will use RMI over IIOP to com-
municate.

• Lifecycle management—Bean initialization, state management, and destruction is
driven by the container, all the developer must do is implement the appropriate
methods.

• Naming and registration—The EJB container and server will provide the EJB with
access to naming services. These services are used by local and remote clients to
look up the EJB and by the EJB itself to look up resources it may need.

• Transaction management—Declarative transactions provide a means for the devel-
oper to easily delegate the creation and control of transactions to the container.

• Security and access control—Again, declarative security provides a means for the
developer to easily delegate the enforcement of security to the container.

FIGURE 4.1
An application imple-
mented using EJBs can
have more than one
user interface.

«swing»
user interface

«session EJB»
business functionality

«database»
persistence layer

«servlet»
user interface

06 0672323842 CH04 3/20/02 9:25 AM Page 131

• Persistence (if you want)—Using the Entity EJB’s container-managed persistence
mechanism, state can be saved and restored without having to write a single line of
code.

All of these container services are covered in more detail as the book progresses.

Now that you know why you would want to use an EJB and how to apply it, you can
examine the inner workings of an EJB to understand how all the parts fit together.

What’s in an EJB?
So far, you have been presented with a “black box” view of an EJB; it provides business
functionality via an RMI remote interface, and it cooperates with its container to perform
its duties. To understand, use, and ultimately write EJBs, you will need to know more in
concrete terms about the Java programming artefacts that make up an EJB. In other
words, what’s in one?

The Business Interface
The primary purpose of an EJB is to deliver business or application logic. To this end,
the bean developer will define or derive the business operations required of the bean and
will formalize them in an RMI remote interface. This is referred to as the bean’s business
or remote interface as opposed to the home interface you will look at in a moment.

132 Day 4

You may see references to local EJB interfaces and wonder how these relate
to the current discussion. Don’t worry about local interfaces for the
moment; they are covered on Day 6 when you examine entity EJBs.

Note

The actual methods defined on the remote interface will depend on the purpose of the
bean, but there are certain general rules concerning the interface:

• As with any RMI-based interface, each method must be declared as throwing
java.rmi.RemoteException in addition to any business-oriented exceptions. This
allows the RMI subsystem to signal network-related errors to the client.

• RMI rules also apply to parameters and return values, so any types used must
either be primitive, Serializable, or Remote.

• The interface must declare that it extends the javax.ejb.EJBObject interface. This
provides a handful of basic methods that you will encounter as you progress.

06 0672323842 CH04 3/20/02 9:25 AM Page 132

Introduction to EJBs 133

4

The issue regarding object parameters and return values is worth considering for a
moment. When you pass a parameter into a local method call, a reference to the original
object is provided to be used within the method. Any changes to the state of the object
are seen by all users of that object because they are sharing the same object. Also, there
is no need to create a copy of the object—only a reference is passed.

On the other hand, when using RMI remote methods, objects that are serializable (imple-
ment the Serializable interface) are passed by value, whereas objects that are remote
(that is, EJBs) are passed by reference. Pass by value means that a copy of the object is
sent. This has several implications. First, users of a serializable object passed across a
remote interface will no longer share the same object. Also, there may now be some per-
formance costs associated with invoking a method through a bean’s remote interface. Not
only is there the cost of the network call, but also there is the cost of making a copy of
the object so that it can be sent across the network. Most of the time, it will be serializ-
able objects that are passed.

You can see an example of an EJB remote interface in Listing 4.1—in this case, the one
for the Agency EJB used in the case study.

LISTING 4.1 Remote Interface for the Agency EJB

package agency;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public interface Agency extends EJBObject
{

String getAgencyName() throws RemoteException;

Collection findAllApplicants()
throws RemoteException;

void createApplicant(String login, String name, String email)
throws RemoteException, DuplicateException, CreateException;

void deleteApplicant (String login)

Failure to conform to the rules about extending javax.ejb.EJBObject
and throwing RemoteException will cause the interface to be rejected by
tools that manipulate EJBs. Additionally, if you use parameter or return
types that do not conform to the rules, your bean will compile and even
deploy, but will fail with runtime errors.

Caution

06 0672323842 CH04 3/20/02 9:25 AM Page 133

throws RemoteException, NotFoundException;

Collection findAllCustomers() throws RemoteException;
void createCustomer(String login, String name, String email)
throws RemoteException, DuplicateException, CreateException;

void deleteCustomer (String login)
throws RemoteException, NotFoundException;

Collection getLocations()
throws RemoteException;

void addLocation(String name)
throws RemoteException, DuplicateException;

void removeLocation(String code)
throws RemoteException, NotFoundException;

Collection getSkills()
throws RemoteException;

void addSkill(String name)
throws RemoteException, DuplicateException;

void removeSkill(String name)
throws RemoteException, NotFoundException;

List select(String table)
throws RemoteException;

}

The interface lives in a package called agency, which will be common to all the classes
that comprise the EJB. The definition imports java.rmi.* and javax.ejb.* for
RemoteException and EJBObject, respectively. The rest of the interface is much as you
would expect from any remote Java interface—in this case, passing Strings and return-
ing serializable Collections.

Notice that all the methods must be declared as throwing RemoteException. This means
that the client will have to handle potential exceptions that may arise from the underlying
distribution mechanism. However, your application will probably want to employ excep-
tions itself to indicate application-level errors. These exceptions should be declared as
part of the remote interface, as shown by the use of NotFoundException and
DuplicateException in the Agency interface.

The Business Logic
After an interface is defined, there is the none-too-trivial task of implementing the busi-
ness logic behind it. The business logic for an EJB will live in a class referred to as the
bean. The bean consists of two parts:

134 Day 4

LISTING 4.1 Continued

06 0672323842 CH04 3/20/02 9:25 AM Page 134

Introduction to EJBs 135

4

• The business logic itself, including implementations of the methods defined in the
remote interface

• A set of methods that allow the container to manage the bean’s lifecycle.

Drilling down into these areas reveals more about the structure of an EJB.

Implementing the Business Interface
The first thing to note is that the bean itself does not implement the remote interface pre-
viously defined. This may seem slightly bizarre at first sight, because the equivalent RMI
server would have to implement the associated remote interface. However, there is a very
good reason for this.

As you will see later, it is possible to ask the container to apply services, such as access
control, on behalf of the EJB simply by setting attributes in the EJB configuration infor-
mation. To do this, the container must have some way of intercepting the method call
from the client. When it receives such a method call, the container can then decide if any
extra services need to be applied before forwarding the method call on to the bean itself.
Sticking with the security example, the container would examine security information
configured for the EJB before deciding whether to forward the method call to the bean or
to reject it. The details about access control are covered on Day 15, “Security,” but you
can see that it is necessary to interpose between the client and the bean to “automagical-
ly” deliver such services.

The interception is performed by a server-side object called the EJBObject (not to be
confused with the interface of the same name). The EJBObject acts as a server-side
proxy for the bean itself, and it is the EJBObject that actually implements the EJB’s
remote interface. Figure 4.2 shows the relationship between the client, the bean, and the
EJBObject.

As shown in Figure 4.2, the client calls the business methods on the EJBObject imple-
mentation. The EJBObject applies the required extra services and then forwards the
method calls on to the bean itself. The EJBObject is separate from the RMI stub and
skeleton that provide the remote procedure call capability.

Although the bean itself must contain these elements, note that it is possi-
ble, indeed common, for non-trivial beans to delegate some or all of their
business functionality to other, helper, classes.

Note

06 0672323842 CH04 3/20/02 9:25 AM Page 135

So, your bean must implement the business methods defined in the remote interface. The
container uses the method signatures defined in the interface, together with the Java
reflection API, to find the appropriate methods on the bean, so you must ensure that you
use the correct method signatures. Despite this, the bean should not implement the
remote interface itself (the reasons for this are discussed later). However, if you are using
a developer tool that supports the creation of EJBs, it will generally generate empty
methods for you to populate. Listing 4.2 contains the outlines of the business methods in
the example AgencyBean.

LISTING 4.2 Business Method Implementation Signatures for the AgencyBean

package agency;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
// Remaining imports removed for clarity

public class AgencyBean implements SessionBean
{

public String getAgencyName() {
// Code removed for clarity

}

public Collection findAllApplicants() {
// Code removed for clarity

}

public void createApplicant(String login, String name, String email)
throws DuplicateException, CreateException {
// Code removed for clarity

}

136 Day 4

FIGURE 4.2
The EJBObject acts as
a server-side proxy for
the bean itself.

Security and
transactions

Classes marked with 1 implement
the EJB’s remote interface

Home
RMI
Stub

Bean
RMI

Stub1

Home
RMI

Skeleton

Bean
RMI

Skeleton

Client

EJB Home
Implementation

EJB
Object1

Bean

Location
transparency

06 0672323842 CH04 3/20/02 9:25 AM Page 136

Introduction to EJBs 137

4

public void deleteApplicant (String login)
throws NotFoundException {
// Code removed for clarity

}

public Collection findAllCustomers() {
// Code removed for clarity

}

public void createCustomer(String login, String name, String email)
throws DuplicateException, CreateException {
// Code removed for clarity

}

public void deleteCustomer (String login) throws NotFoundException {
// Code removed for clarity

}

public Collection getLocations() {
// Code removed for clarity

}

public void addLocation(String name) throws DuplicateException {
// Code removed for clarity

}

public void removeLocation(String code) throws NotFoundException {
// Code removed for clarity

}

public Collection getSkills() {
// Code removed for clarity

}

public void addSkill (String name) throws DuplicateException {
// Code removed for clarity

}

public void removeSkill (String name) throws NotFoundException {
// Code removed for clarity

}

public List select(String table) {
// Code removed for clarity

}

// Remaining methods removed for clarity
}

LISTING 4.2 Continued

06 0672323842 CH04 3/20/02 9:25 AM Page 137

The detail of the method implementations have been removed for clarity, because the
main area of interest here is how the method signatures match up with those on the
remote interface. The contents of the methods are largely the creation and dispatch of
JDBC statements and handling the results from the queries.

Note that the bean does not implement the Agency interface. You can also see that vari-
ous of the methods, such as addSkill(), declare that they throw an application-specific
exception—in this case, DuplicateException.

138 Day 4

Providing Lifecycle Hooks
Remember that the intention of the EJB environment is that you will spend most of your
time writing business logic rather than network and database “plumbing.” Beyond writ-
ing the business logic, the only additional thing the bean writer needs to do is to provide
lifecycle “hooks” that allow the container to manage the bean.

Each of the different types of EJB discussed earlier has a slightly different lifecycle, but
the common parts are as follows:

• Bean creation and initialization

• Bean destruction and removal

• The saving and restoring of the bean’s internal state (if applicable)

The details associated with each type of bean lifecycle will be discussed as they are cov-
ered. For now, all you need to know is that

• An EJB will implement one or more lifecycle interfaces depending on its type. The
interfaces (SessionBean, EntityBean, MessageDrivenBean, and
SessionSynchronization) are defined in the javax.ejb package.

• The lifecycle methods will generally begin with ejb so that they can be easily dis-
tinguished from the business methods around them, for example, ejbCreate().

Listing 4.3 contains the lifecycle methods in the example AgencyBean.

Note that your bean methods will only throw business exceptions or stan-
dard Java exceptions. They should not throw java.rmi.RemoteException,
because such exceptions should only be generated by the RMI subsystem.

Note

06 0672323842 CH04 3/20/02 9:25 AM Page 138

Introduction to EJBs 139

4

LISTING 4.3 Lifecycle Methods on the AgencyBean

package agency;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
// Remaining imports removed for clarity

public class AgencyBean implements SessionBean
{

private DataSource dataSource;
private String name = “”;

private void error (String msg, Exception ex) {
String s = “AgencyBean: “ + msg + “\n” + ex;
System.out.println(s);
throw new EJBException(s);

}

public void ejbCreate () throws CreateException {
try {

InitialContext ic = new InitialContext();
dataSource = (DataSource)ic.lookup(“java:comp/env/jdbc/Agency”);
name = (String)ic.lookup(“java:comp/env/AgencyName”);

}
catch (NamingException ex) {

error(“Error connecting to java:comp/env/Agency:”, ex);
}

}

public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbRemove() {
dataSource = null;

}

private SessionContext ctx;

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;

}

// Remaining methods removed for clarity
}

06 0672323842 CH04 3/20/02 9:25 AM Page 139

As you can see, the example AgencyBean implements the SessionBean interface. This
means that it must implement the ejbCreate(), ejbRemove(), ejbActivate(),
ejbPassivate(), and setSessionContext() methods. The ejbCreate() method takes
on the role of constructor in that most of the bean initialization will take place in there.
The context passed in setSessionContext() provides a way for the bean to communi-
cate with the container.

This concludes the examination of the bean internals for the time being. You will discov-
er more as you learn about the specific types of EJB later.

Factory Information
For an EJB to be used by a client, the client must create a new instance or discover an
existing one. Finding and gaining access to the services of a traditional remote server is
relatively simple. Such a server will tend to start when the machine boots, reside in a
well-know location, and carry on running until the machine shuts down. However, EJBs
are far more dynamic than that. It is the ability to dynamically create and reuse beans
that provides the scalability inherent in the EJB model.

To facilitate the creation and discovery of EJBs, each type of EJB provides a home inter-
face. The bean developer will provide an EJB home interface that acts as a factory for
that particular EJB. A home interface will extend the javax.ejb.EJBHome interface and
will contain the necessary methods identified by the bean developer that allow a client to
create, find, or remove EJBs.

There are two ways for a client to get hold of the EJB itself, depending on the type of
EJB (Session, Entity, or Message-driven) and the way it is intended to be used. The EJB
Home interface can contain one or more create() methods to create a new instance of
an EJB. So, for example, you will create a new instance of a Session bean before using
it. On the other hand, when you interact with Entity EJBs, you will frequently find exist-
ing EJBs using one or more findXXX() methods. The home interface may or may not
allow you to remove the bean, depending on bean type and usage.

Listing 4.4 shows the home interface for the example Agency EJB.

LISTING 4.4 Home Interface for the Agency Bean

package agency;

import java.rmi.*;
import javax.ejb.*;

public interface AgencyHome extends EJBHome
{

140 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 140

Introduction to EJBs 141

4

Agency create () throws RemoteException, CreateException;
}

Because the Agency EJB is just a simple wrapper around some JDBC-based functionality
and does not maintain any business state, all that is required is a simple creation
method—create(). This maps onto the ejbCreate() seen in Listing 4.3. The client will
call create() to create an instance of the Agency bean.

The code underlying the home interface will work with the container to create, populate,
and destroy EJBs as requested by the client. The effects of the method calls will vary
depending on the type of EJB being manipulated. As a result, a request to remove a
Session EJB will just result in the EJB being thrown away, while the same request on an
Entity EJB may cause underlying data to be removed. The types and effects of different
home interface methods are discussed in more detail on subsequent days.

Bean Metadata
The final piece of the EJB jigsaw lies in the provision of configuration information, or
metadata, for the EJB. This provides a way of communicating the EJB’s requirements
and structure to the container. If an EJB is to be successfully deployed, the container will
have to be provided with extra information, including

• An identifier or name for the EJB that can be used to look it up.

• The bean type (Session, Entity, or Message-driven).

• Which class is the EJB’s remote interface. This interface will typically just be
named according to the EJB’s functionality, for example, Agency or BankTeller.

• Which class is the EJB’s home interface. The name for an EJB’s home interface
will typically be derived from its remote interface name. So, for example, the
Agency EJB has a home interface called AgencyHome. However, because this is a
convention rather than being mandatory, the metadata explicitly indicates the name
of the home interface.

• Which class is the bean itself. Again, the name for the bean will typically be
derived from the associated remote interface name. So, for example, the Agency
bean is called AgencyBean. However, because this is a convention rather than being
mandatory, the metadata explicitly indicates the name of the bean.

• Any name/value pairs to be provided as part of the bean’s environment.

• Information about any external resources required by the EJB, such as database
connections or other EJBs.

LISTING 4.4 Continued

06 0672323842 CH04 3/20/02 9:25 AM Page 141

All of this essential information is bundled into a deployment descriptor that accompa-
nies the EJB classes. As you might expect, given its recent rise as the most ubiquitous
way to define data, the deployment descriptor is defined as an XML document. The
deployment descriptor is discussed in more detail soon when examining the packaging of
an EJB.

In addition to the essential information, the deployment descriptor can also carry other
metadata that you will encounter as you progress:

• Declarative attributes for security and transactions

• Structural information bean relationships and dependencies

• Persistence mapping (if applicable)

You are now nearing the conclusion of this whistle-stop tour of the structure of an EJB.
After you have examined how an EJB is created and packaged, you will be ready to
deploy and use one.

How Do I Create an EJB?
You will create specific types of EJB as you progress through the book. However, the
creation of EJBs follows the same steps and principals for all types of EJB.

The Creation Mechanism
As you may have gathered from the previous discussion on EJB contents, the EJB devel-
oper must go through the following cycle:

1. Design and define the business interface. This may involve mapping from a UML
model of the solution into Java.

2. Decide on a bean type appropriate to the task in hand. Entity, Session, and
Message-driven beans all have their own pros and cons. If you choose to use a
Session bean, another question is whether to use a stateful Session bean or a state-
less Session bean. Choice of the appropriate type is discussed in more detail on
Days 5, 6, 7, and 10.

3. Decide which home interface methods are appropriate for the bean type and define
the home interface for the EJB.

4. Create (or generate) a “boilerplate” bean with correct lifecycle methods.

5. Create your business logic by filling out the business methods.

6. Fill out lifecycle methods to control creation, destruction and to manage state (if
applicable).

142 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 142

Introduction to EJBs 143

4

If your EJB classes are written correctly, all that remains is to wrap them up as a deploy-
able unit. However, there are certain caveats you should bear in mind while creating your
bean.

Caveats on Code Creation
Due to the managed nature of the bean lifecycle, the EJB container imposes certain
restrictions on the bean including:

• EJBs cannot perform file I/O. If you need to log messages or access files, you must
find an alternative mechanism.

• EJBs are not allowed to start threads. All threading is controlled by the container.

• EJBs cannot call native methods.

• EJBs cannot use static member variables.

• There is no GUI available to an EJB, so it must not attempt to use AWT or JFC
components.

• An EJB cannot act as a network server, listening for inbound connections.

• An EJB should not attempt to create classloaders or change factories for artifacts,
such as sockets.

• An EJB should not return this from a method. Although not strictly a restriction
(the container will not prevent you from doing it), it is identified as being a very
bad practice. This relates to the earlier discussion that a bean should not implement
its associated remote interface. This would potentially give a client a direct remote
reference to the bean rather than the EJBObject. Instead, the bean should query its
EJB context for a reference to its associated EJBObject and return that to the caller.

For a full list of restrictions, see section 24.1.2 of the EJB 2.0 specification (available
online at http://java.sun.com/products/ejb/docs.html).

Create the Deployable Component
One alternative definition of a component is “a unit of deployment.” Following this
theme, a component should

• Contain all the information required to deploy it, above and beyond the classes.
This is the metadata discussed earlier.

• Be bound up in such a way that it can easily be transported and deployed without
losing any parts along the way.

Consequently, after the classes and interfaces for an EJB have been created, the follow-
ing steps must be performed:

06 0672323842 CH04 3/20/02 9:25 AM Page 143

1. Capture the EJB’s metadata in a universally understood format. This takes the form
of an XML-based deployment descriptor (DD).

2. Bundle the classes and deployment descriptor up in a deployable format, namely a
JAR file.

The Deployment Descriptor
The EJB specification defines a standard format of an XML deployment descriptor docu-
ment that can house EJB metadata. The exact format of a deployment descriptor is usual-
ly hidden behind tools that manipulate them on your behalf. However, it is worth exam-
ining some of the contents of a deployment descriptor to see how the EJB fits together
and how extra information and metadata is provided.

Listing 4.5 shows the deployment descriptor for the example Agency EJB.

LISTING 4.5 Agency Bean EJB Deployment Descriptor

1: <?xml version=”1.0” encoding=”UTF-8”?>
2:
3: <!DOCTYPE ejb-jar PUBLIC

➥ ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
➥ ‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
4:
5: <ejb-jar>
6: <display-name>Simple</display-name>
7: <enterprise-beans>
8: <session>
9: <display-name>Agency</display-name>
10: <ejb-name>Agency</ejb-name>
11: <home>agency.AgencyHome</home>
12: <remote>agency.Agency</remote>
13: <ejb-class>agency.AgencyBean</ejb-class>
14: <session-type>Stateless</session-type>
15: <transaction-type>Bean</transaction-type>
16: <env-entry>
17: <env-entry-name>AgencyName</env-entry-name>
18: <env-entry-type>java.lang.String</env-entry-type>
19: <env-entry-value>J2EE in 21 Days Job Agency</env-entry-value>
20: </env-entry>
21: <security-identity>
22: <description></description>
23: <use-caller-identity></use-caller-identity>
24: </security-identity>
25: <resource-ref>
26: <res-ref-name>jdbc/Agency</res-ref-name>
27: <res-type>javax.sql.DataSource</res-type>
28: <res-auth>Container</res-auth>
29: <res-sharing-scope>Shareable</res-sharing-scope>

144 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 144

Introduction to EJBs 145

4

30: </resource-ref>
31: </session>
32: </enterprise-beans>
33: </ejb-jar>

The essential parts of the deployment descriptor in Listing 4.5 are

• The <session> tag delimits the definition of the Agency EJB and indicates that it is
a Session EJB (lines 8 and 31).

• The <ejb-name> tag defines the name of the EJB, in this case Agency (line 10).

• The home and remote interface types (as defined by their fully-qualified class file-
names) are specified by the <home> and <remote> tags, respectively (lines 11–12).
The type of the bean itself is defined by the <ejb-class> tag (line 13).

In addition, two other parts are of particular note at this point in time:

• An environment entry is defined between lines 16 and 20 by using the <env-

entry> tag. This indicates that a String property called AgencyName should be
made available to the bean. The value of the property is J2EE in 21 Days Job
Agency. The environment defined in the deployment descriptor is made available
through JNDI under the name java:comp/env. In this case, the agency name can
be retrieved by looking up the name java:comp/env/AgencyName. This lookup can
be seen in the ejbCreate() method of Listing 4.3.

• An external resource is defined in lines 25–30 using the <resource-ref> tag. This
defines that a DataSource should be made available to this EJB under the name
jdbc/Agency. As with the environment entry for the agency name, this resource is
made available through JNDI under java:comp/env, so the EJB can retrieve the
DataSource by looking up the name java:comp/env/jdbc/Agency. Again, this
lookup can be seen in the ejbCreate() method of Listing 4.3.

LISTING 4.5 Continued

It is important to realize that the name used for a <resource-ref> is only a
logical name. In other words, it is just a text string used by a component to
reference an external resource. In theory, the resource name used by the EJB
to refer to the data source could be anything (foo, for example) as long as it
ties in with the information in the deployment descriptor. However, by con-
vention, such names are kept in line with the name you would expect to use
under JNDI. As a result, in this example, the data source resource is referred
to by the bean as jdbc/Agency and will be registered under JNDI with the
same name.

Note

06 0672323842 CH04 3/20/02 9:25 AM Page 145

All of the EJB classes and the deployment descriptor should then be bundled up in a JAR
file. The deployment descriptor should be named ejb-jar.xml. If there are multiple
EJBs packaged in the same JAR file, the deployment descriptor will have multiple EJB
definitions in it. This JAR file is then termed an EJB-JAR file to denote its payload. The
JAR file itself can be called anything (within reason) and has a .jar file extension.

The EJB-JAR file can also contain any extra resources required by the EJB, such as
application-specific configuration information that does not fit in a deployment descrip-
tor environment entry.

Enterprise Applications
Although the EJB-JAR file is now complete, it must form part of an application to serve
a useful purpose. J2EE defines that enterprise applications can be built from components
(Web, EJB, and application components). The key is how to define the relationships
between the different parts of the application—there must be some way of plugging
things together.

The answer is that there must be a description of the application itself, which compo-
nents it uses, how those components relate to each other, and which specific resources
they use. This is the information provided by the Application Assembler and Deployer
roles.

To provide this information to the target J2EE platform, another level of deployment
descriptor is used —the J2EE deployment descriptor. The J2EE deployment descriptor
provides the following:

• A list of the components in the application

• Security role information

• Web root information for Web components

This information is stored in an XML file called application.xml. All of the constituent
component JAR files (such as EJB-JARs) and the J2EE deployment descriptor are then
bundled up in another JAR file, this time called an Enterprise Archive (EAR) file, which
has a .ear extension. The contents of the J2EE deployment descriptor will be covered in
more detail as you examine the different parts of the example enterprise application.

Is the application now ready to deploy? Unfortunately, the answer is “Not quite yet.” The
J2EE deployment descriptor does not cover information about how to map the applica-
tion onto a specific J2EE application server, specifically

146 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 146

Introduction to EJBs 147

4

• The JNDI name under which the application server will make the EJB available. In
the case of the Agency bean, this would mean that an entry was required to map the
bean name of Agency to the JNDI name under which the EJB is registered, for
example, ejb/Agency.

• Information about how the security roles defined map to underlying security princi-
pals (this is covered on Day 15).

So, yet another XML-based deployment descriptor is required to contain this informa-
tion, this time an application server-specific one. This file contains extra mapping infor-
mation, as previously described, and also any other container-specific information
required for a smooth deployment in that environment. This extra deployment descriptor
is also stored in the EAR file, ready to be accessed when the application is deployed.

How Do I Deploy an EJB?
After an EJB is packaged, it can be deployed in an appropriate J2EE server. There is no
limit to the number of times an EJB can be deployed as a part of different applications.

Remember that J2EE defines a separate role for the application deployer. It may be that
for particular installations, databases, or other resource names need to be changed to
match the local environment. When configuring the application, the deployer can alter
this EJB or enterprise application metadata.

Plugging into the Container
When an EJB is deployed into a particular EJB container, the EJB must be plugged into
that container. To do this, an EJBObject must be generated based on the EJB’s remote
interface. This EJBObject will be specific to that EJB container and will contain code
that allows it to interface with that container to access security and transaction informa-
tion. The container will examine the metadata supplied with the EJB to determine what
type of security and transaction code is required in the EJBObject.

The container will also generate the home interface implementation so that calls to cre-
ate, find, and destroy EJB instances are delegated to container-defined methods.

The container will examine the EJB and enterprise application metadata and hook up
resource references. It will also provide an environment for the application components.

The specific deployment descriptor for the J2EE Reference Implementation
(RI) server is called sun-j2ee-ri.xml.

Note

06 0672323842 CH04 3/20/02 9:25 AM Page 147

Finally, the container will register the home interface of the EJB with JNDI. This allows
other application components to create and find EJBs of this type.

Performing the Deployment
As mentioned previously, when deploying an EJB or enterprise application, the applica-
tion developer taking on the J2EE role of deployer can choose to alter certain of the
metadata relating to the configuration of the application. Although this can be done man-
ually, it is usually done through a GUI tool to make things easier and to keep things con-
sistent.

After the EJB has been deployed, any subsequent changes to its functionality will mean
that the EJB must be re-deployed. If the enterprise application or EJB is no longer need-
ed, it should be undeployed from the container.

How Do I Use an EJB?
Given that EJBs are middle-tier business components, they are of little use without a
client to drive them. As mentioned earlier, those clients can be Web components, stand-
alone Java clients, or other EJBs.

Regardless of the type of client, using an EJB requires the same set of steps—namely,
discovery, retrieval, use, and disposal. These steps are covered in the next three sections.

Discovery
To create or find an EJB, the client must call the appropriate method on the EJB’s home
interface. Consequently, the first step for the client is to get hold of a remote reference to
the home interface. On Day 3, you looked at naming services and how these can be used
to register information in a distributed environment. In a J2EE environment, such a nam-
ing service is accessible through JNDI and can be used to store references to EJB home
interfaces.

The EJB container will have registered the home interface using the JNDI name specified
during deployment (as part of the deployment descriptor). This is the name that the client
should use to look up the home interface. Recall from the EJB deployment descriptor
shown in Listing 4.5 that the EJB name specified was Agency. When deploying the EJB,
the deployer has a chance to set the JNDI name by which clients will find this EJB. In
this case, you would expect the deployer to simply set a JNDI name of ejb/Agency so
that the client could find the home interface by looking up java:comp/env/ejb/Agency.
The following code shows the initial lookup required:

148 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 148

Introduction to EJBs 149

4

try
{
InitialContext ic = new InitialContext();
Object lookup = ic.lookup(“java:comp/env/ejb/Agency”);

AgencyHome home =
(AgencyHome)PortableRemoteObject.narrow(lookup, AgencyHome.class);

...
}
catch (NamingException ex) { /* Handle it */ }
catch (ClassCastException ex) { /* Handle it */ }

As you can see, because the reference returned from JNDI is just an object, you must
narrow it to the home interface type you expect—in this case, AgencyHome. If there are
any problems with the JNDI access or if the wrong object type is returned, a
NamingException or ClassCastException will be thrown.

There is no magic here. The object returned by the JNDI is simply an RMI remote object
stub. This stub represents the home interface remote object created by the container when
the EJB was deployed. This can be seen in Figure 4.2.

Now that you have a reference to the home interface, you can create the EJB you want to
use.

Retrieval and Use
You can now call the create() method you saw defined on the AgencyHome interface in
Listing 4.4 as follows:

try
{
...
Agency agency = home.create();
System.out.println(“Welcome to: “ + agency.getAgencyName());
...

}
catch (RemoteException ex) { /* Handle it */ }
catch (CreateException ex) { /* Handle it */ }

The create() method returns a remote reference to the newly-created EJB. If there are
any problems with the EJB creation or the remote connection, a CreateException or
RemoteException will be thrown. CreateException is defined in the javax.ejb pack-
age, and RemoteException is defined in the java.rmi package, so remember to import
these packages at the top of your client class.

Now that you have a reference to an EJB, you can call its methods. The previous code
sample shows the getAgencyName() method being called on the returned Agency refer-
ence. Again, whenever you call a remote method that is defined in an EJB remote inter-
face, you must be prepared to handle RemoteExceptions.

06 0672323842 CH04 3/20/02 9:25 AM Page 149

Disposing of the EJB
You have now created and used an EJB. What happens now? Well, if you no longer need
the EJB, you can get rid of it in exactly the same way that you would get rid of a local
Java object or a remote Java object defined using RMI—by setting its reference to null
as follows:

// No longer need the agency EJB instance
agency = null;

When the local RMI runtime detects that the remote object no longer has any local refer-
ences, it will trigger remote garbage collection for that object, which means that its
remote reference will time out. This will result in the object being de-referenced at the
server-side. In the case of the simple Agency bean (a stateless Session bean), this will
cause the bean to be destroyed.

Although it is possible to use the remove() method to get rid of the EJB, you would not
normally use this for such a simple bean. Use of this method is discussed in more detail
on Days 5 and 6.

Running the Client
You are now in a position to write a simple application client for the Agency EJB. After
you have written it, you will want to compile and run it.

Before compiling your client, you should ensure that you have j2ee.jar on your class-
path. This JAR file lives in the lib directory under J2EE_HOME. If you are using an enter-
prise IDE, you may find that all the relevant classes are already in your classpath.

To compile and run the client, you will need the following:

• The J2EE classes. These must be accessible through the classpath.

• Access to the EJB’s home and remote interface class files via the classpath.

• RMI stubs for the home and remote interfaces. These can either be installed on the
local classpath or downloaded dynamically from the EJB server.

150 Day 4

You will see later that some types of EJB are found rather than created. In
this case, all steps are the same except that the create() method is replaced
by the appropriate finder method and find-related exceptions must be han-
dled. You still end up with a remote reference to an EJB. All of this is cov-
ered later when Entity EJBs are discussed on Day 6.

Note

06 0672323842 CH04 3/20/02 9:25 AM Page 150

Introduction to EJBs 151

4

• If the client does not have the JNDI name of the EJB compiled in, you may want
to provide this on the command line or through a system property.

When you deploy the EJB, you should be able to ask the container for a client JAR file.
This client JAR file will contain all of the classes and interfaces needed to compile the
client (as defined in the previous bulleted list). You should add this client JAR file to
your classpath when compiling your client.

In theory, this should be it. However, you will find that any form of security definition on
the server will require you to authenticate yourself before you can run the application. In
this case, you must explicitly use the client container to provide the required security
mechanism.

The client container is called runclient under the J2EE RI.Note

Deploying and Using an EJB in the J2EE
Reference Implementation

You should now be in a position to write and test an EJB client. However, before you can
do that, you must deploy an EJB that it can use. In this section, you will look at how to
deploy an EJB in the J2EE Reference Implementation (RI) and how to then use it from a
simple client.

The J2EE on which your EJB is deployed will provide a complete server-side environ-
ment. It houses any EJBs, runs a Web Server for JSP/servlets, runs a naming server for
storing component location information, and provides database access. All J2EE-
compliant application servers will do this—even a non-commercial version, such as the
J2EE RI. The RI also provides you with a ready-to-use database so you do not have to
concern yourself with hooking up to an existing database or installing a separate one.

To deploy and test your EJBs (and servlets/JSPs later), you only need a single machine.
Both the J2EE client and the J2EE server (and its EJBs, servlets and JSPs) can run on the
same machine. No connection to the Internet is required. The J2EE RI is available on
multiple platforms (Win32, Solaris, and Linux) and should be consistent across these
platforms, so that J2EE applications created on one platform can be deployed on another.

If you encounter problems at any stage, try referring to the troubleshooting section just
before today’s Summary.

06 0672323842 CH04 3/20/02 9:25 AM Page 151

Opening the Case Study EAR File
To deploy and manipulate EJBs under the RI, you will use a graphic tool called deploy-
tool. Before you start using this, you will need to do two things:

1. Ensure that you have created and configured your database environment as
described on Day 2.

2. Start the J2EE RI runtime environment and the associated Cloudscape database. To
do this, run the cloudscape and j2ee scripts/batch files found in the bin directory
under J2EE_HOME as follows:
cloudscape -start
j2ee -verbose

The use of the -verbose flag for J2EE is not strictly necessary, but you may find it
useful to help you understand what the J2EE server does when it starts up.

Now you are ready to run the deploytool. Again, this is a script/batch file found in the
bin directory under J2EE_HOME. When you run it, the GUI screen will appear as shown in
Figure 4.3.

You should now be able to open the initial agency enterprise archive provided in the JAR
subdirectory of the Day 4 exercise code on the CD-ROM (agency.ear). Do this through
the menus by selecting File, Open and then browsing for the file in the subsequent Open
Object dialog box. Select the EAR file and click the Open Object button. The agency
application will now be displayed in the list of applications, as shown in Figure 4.4.

All of the code for the Agency EJB that is contained in the Agency application can be
found in the agency subdirectory of the src directory under the Day 4 Exercise part of
the CD-ROM.

Now that the enterprise application is loaded in deploytool, you can examine its set-
tings.

152 Day 4

Before running any of the tools described in this section, you will need to
set the J2EE_HOME environment variable to the location on your hard drive
where you deployed the J2EE reference implementation. You should also
add the bin directory below J2EE_HOME to your executable search path
(%PATH% under Windows or $path under Unix/Linux) so that you can run J2EE
tools and batch files from the command line.

Note

06 0672323842 CH04 3/20/02 9:25 AM Page 152

Introduction to EJBs 153

4

FIGURE 4.3
The initial screen
shown by deploytool.

FIGURE 4.4
The Agency application
has now been loaded
by deploytool.

06 0672323842 CH04 3/20/02 9:25 AM Page 153

Examining the Case Study Application
You can use deploytool to examine and alter deployment descriptor information for the
application and, if necessary, for individual components, such as EJBs.

If you select the JNDI Names tab for the agency application, you will see information
about the resources that the application exports and consumes. This is largely based on
information defined in the application deployment descriptor and the container-specific
deployment descriptor described earlier in the “Enterprise Applications” section.

In Figure 4.5, you can see in the Application box that there is a single EJB in this initial
form of the application. That EJB can be referenced through JNDI using the name
ejb/Agency.

154 Day 4

FIGURE 4.5
deploytool displays
the JNDI information
from the Agency appli-
cation deployment
descriptor.

In the References box, you can see that two of the components in the application use
external resources. First, you can see that the component named Agency (the EJB) uses a
resource called jdbc/Agency that is registered under JNDI as jdbc/Agency.

The References box also indicates that the application client, SimpleClient, references
the Agency EJB by using the name ejb/Agency that appears under JNDI as ejb/Agency.

06 0672323842 CH04 3/20/02 9:25 AM Page 154

Introduction to EJBs 155

4

You can also examine the settings of the EJB through deploytool. Click the icon next to
the Simple JAR file symbol to show the EJBs contained in the Simple EJB-JAR file.
There is a single EJB in the JAR file called Agency. If you select the Agency EJB, you
will see the properties defined in the deployment descriptor for that EJB. Select the
Resource Refs tab to see what external resources this EJB uses, as shown in Figure 4.6.

FIGURE 4.6
You can examine the
deployment descriptor
information for a sin-
gle EJB, such as the
external resources it
expects.

Figure 4.6 shows that the Agency EJB expects one resource called jdbc/Agency that is of
type javax.sql.Datasource. This is the EJB deployment descriptor information you
saw in Listing 4.5.

Figure 4.7 shows the environment entries for the Agency EJB. If you want to alter the
AgencyName defined there, you can just double-click the Value field and type in an alter-
native name. If you make any changes to the configuration of the application or any of its
components, the suffix (changed) will be added to the application name in the title bar.

06 0672323842 CH04 3/20/02 9:25 AM Page 155

Deploying the Case Study Application
You can deploy the server-side components of the agency application (in this case, a sin-
gle EJB) using deploytool. To deploy them, select the agency application item (indicat-
ed by a blue diamond under the Applications folder in the explorer area on the left
side), and select Tools, Deploy from the deploytool menu. This will display the initial
deployment screen shown in Figure 4.8.

As you can see from Figure 4.8, the default target host is localhost. This is fine, pre-
suming that your copy of the J2EE RI is running on the local machine. If not, you should
Cancel and add the appropriate server name through the File, Add Server menu item
before proceeding.

The other point to note for this screen is that it allows you to obtain a client JAR file.
Recall that this client JAR file will contain all of the classes required by a client of the
application being deployed. A pre-prepared client JAR file is provided in the jar subdi-
rectory of the Day 4 exercise code on the CD-ROM (agencyClient.jar), but you will
need to obtain a client JAR file for any new applications or components you deploy. If
you check the Return Client Jar box, you can browse and select an appropriate location
to store the returned JAR file.

156 Day 4

FIGURE 4.7
Environment entries
can be viewed or edit-
ed through
deploytool.

06 0672323842 CH04 3/20/02 9:25 AM Page 156

Introduction to EJBs 157

4

Click Next to move on to the JNDI Names screen. This gives the deployer another chance
to provide server-specific deployment information. Note that this is the same information
you saw earlier when examining the application’s JNDI information. For now, just click
the Next button. At the last screen, click Finish to deploy the application to the selected
server.

The progress of the deployment is shown in a separate window, as seen in Figure 4.9.
The blue and green bars are progress bars that will increase as the deployment proceeds.
Click OK when the deployment is complete.

When you are done, the agency enterprise application should have been deployed, as
shown in Figure 4.10. To view the applications deployed on a server, expand the Servers
folder in the explorer area on the left side and then expand the particular server, such as
localhost.

FIGURE 4.8
You can select a server
on which to deploy an
enterprise application.

If you are deploying the agency application on an other machine (not
localhost), you should not use the pre-provided agencyClient.jar file.
Instead, select the option to return the client JAR file and add this JAR to
the classpath when you run the client later.

Caution

06 0672323842 CH04 3/20/02 9:25 AM Page 157

Testing the Case Study Application
After you have successfully deployed the server-side components of the application
under the J2EE RI, you can run the test client to check that everything is okay.

158 Day 4

FIGURE 4.9
deploytool will show
you the progress of the
deployment.

FIGURE 4.10
You can list the appli-
cations deployed on a
server.

06 0672323842 CH04 3/20/02 9:25 AM Page 158

Introduction to EJBs 159

4

The test client, client.SimpleClient, is provided pre-compiled in the classes subdi-
rectory. To run this, use the script/batch file runSimple that can be found in the run sub-
directory. When you run the client, you will need to provide a username and password.
Use the username guest with a password of guest123. Your interaction with the client
should look something like the following:

Initiating login ...
Username = null
Enter Username:guest
Enter Password:guest123
Binding name:`java:comp/env/ejb/Agency`
Welcome to: J2EE in 21 Days Job Agency
Customer list: J2EE in 21 Days Job Agency
abraham
alfred
george
winston
Unbinding name:`java:comp/env/ejb/Agency`

If you are not able to run this test, refer to the “Troubleshooting the Case Study
Application,” section next.

As you can see, this has used the Agency EJB to list all of the customers in the job
agency database. The code for the client is provided in the client sub-directory of the
src directory. If you examine it, you will see that it is identical to the code shown earlier,
but with some extra code to invoke the customer listing methods on the EJB and display
the results.

If you examine the runSimple script/batch file, you will see that it uses the runclient
utility provided by the J2EE RI as follows:

runclient -client agency.ear -name SimpleClient -textauth

The precise command line used will differ between platforms to define the
location of the agency EAR file using the correct direction of slashes (back-
slash or forwardslash). However, this makes no difference in how the com-
mand works.

Note

This runs the client application directly from the EAR file without having to unpack it.
The command line specifies that the client is called SimpleClient and that it lives in the
agency.ear archive. It also specifies that simple, text-based authentication should be
used between the client and the server.

06 0672323842 CH04 3/20/02 9:25 AM Page 159

The other thing to note in the script/batch file is that the environment variable APPCPATH
is set before runclient is called. The runclient utility uses this environment variable to
find the client JAR file for the application (in this case, it points to agencyClient.jar).
This information will be needed at runtime, not only because the EJB’s interface class
files are needed, but also because it also contains RMI stubs that are targeted at the cor-
rect server and deployment information that is used to map resource names to the target
server’s JNDI names.

Should you need to re-compile the client, or to compile your own client, you will need to
add this client JAR file to your classpath.

160 Day 4

Initial Naming Context for the Client

When creating a JNDI InitialContext, the client runtime must get hold of information
regarding the content of this initial context. In the case of runclient, it will find map-
pings in the deployment descriptors contained in the client JAR file. These mappings will
be used to set up the initial context for the client. Consequently, when the client gets a
new initial context and looks up java:comp/env/ejb/Agency, for example, the local nam-
ing service runtime will be able to use the pre-provided mapping information to match
this text string to the appropriate JNDI name.

Other application servers may use different mechanisms to set up this initial context, such
as passing a Properties object to the naming runtime containing the appropriate infor-
mation.

Troubleshooting the Case Study Application
If you have problems running the case study application, check out the following possi-
ble issues:

• Have you started the J2EE RI (j2ee -verbose)? Make sure by locating its console
window or looking for it in the list of processes or applications on your machine.

• Have you started the cloudscape database (cloudscape -start)? Try running the
initial database test at the end of Day 2 to ensure that the data is present and that
the database server is running.

• Have you deployed the EJBs? By opening the EAR file, you are simply loading the
enterprise application into the deploytool environment. You must explicitly deploy
the application to the server you are using through the Tools, Deploy menu.

• Have you set the classpath correctly for your client? The client will need access
to the J2EE libraries in order to run.

06 0672323842 CH04 3/20/02 9:25 AM Page 160

Introduction to EJBs 161

4

• Try re-creating the client JAR file when you deploy the J2EE application to your
server. Make sure that this client JAR file is on the classpath when you compile
and run the client application.

• Check the J2EE RI console window to see if exceptions or errors are shown there.

• Check the J2EE log files under the logs directory in J2EE_HOME. There is a directo-
ry below logs that is named after the machine on which the server is running.
Below this, there are two nested j2ee directories. In the lower of these, you will
find various log files that you can examine for errors.

If you still have problems and you suspect that there is a problem with the configuration
of your J2EE RI, you can either re-install the RI or you could try deleting the server-
specific repository directory and then re-starting your server. You will lose all of your
deployed J2EE applications, but you may find this easier than re-installing. Under the
J2EE_HOME directory, you will find a directory called repository, and below this there
will be a directory named after the server on which you are running this instance of
the RI (for example, if your hostname is “fred”, there will be a fred directory below
repository). Stop the J2EE RI, remove the directory that is named after your server, and
then start the J2EE RI again.

Summary
Today, you have seen common ways that EJBs are used in applications and why you
would want to use them. You have seen that an EJB will have a home interface, a busi-
ness or remote interface, and an implementation. You have seen how the EJB container
will provide much of the underlying code to support the EJB, and that it relies on
detailed deployment information that defines the EJB’s requirements.

You have also seen that a J2EE application consists of components and deployment
information and how the server-side part of such an application can be deployed. You
have seen a client that is able to use such server-side components and the code required
to write such a client.

Q&A
Q How many Java classes and interfaces must I write to create an EJB?

A The EJB writer must define a remote (or business) interface, a home interface, and
the bean implementation itself.

06 0672323842 CH04 3/20/02 9:25 AM Page 161

Q Why does an EJB run inside a container?

A The container provides many services to the EJB, including distribution, lifecycle,
naming/registration, transaction management, security/authentication, and persis-
tence. If the container did not exist, you would have to write all the code to interact
with these services yourself.

Q What issues surround passing an object as part of a remote method call?

A To be passed as an argument or return type, an object must be either serializable or
remote. If it is neither of these, an error will occur at runtime. If an object is
defined as serializable, a new copy will be created and passed/returned. This can
add to the overhead of making the method call, but it is a very useful tool when
trying to cut down the amount of network traffic between clients and EJBs (as you
will see later on Day 18).

Q Most of the deployment descriptor information is straightforward, but what is
the difference between a <resource-ref> and an <env-entry>, and what sort
of information is contained in each type of entry?

A A <resource-ref> is part of a deployment descriptor that defines an external
resource used by a J2EE component. The <resource-ref> will define a name and
type for a resource together with other information for the container. The informa-
tion in a <resource-ref> is really for the container rather than for the EJB itself.
To access a resource defined in a <resource-ref>, you would use JNDI to look up
its name java:comp/env/jdbc/Agency.

On the other hand, an <env-entry> contains information that is intended for the
EJB itself rather than the container. It will define a name, a class type and a value.
The contents of <env-entry> elements are usually strings. Again, you would use
JNDI to look up its name, java:comp/env/AgencyName.

Exercises
The intention of this day is for you to familiarise yourself with the EJB environment and
the use of EJBs. To ensure that you are comfortable with these areas, you should attempt
the following tasks.

1. If you have not already done so, follow the steps to deploy the example Agency
EJB from the Day 4 Exercise directory on the CD-ROM.

2. Examine the information displayed by deploytool and make sure that you can
identify where the resource reference for the Agency JDBC connection is set,
where the environment reference for the agency name is set, and where the JNDI
name of the Agency EJB itself is set.

162 Day 4

06 0672323842 CH04 3/20/02 9:25 AM Page 162

Introduction to EJBs 163

4

3. Use the runSimple script/batch file provided under the Day 4 Exercise directory
on the CD-ROM to run the test client. Make sure that this client runs without
errors and successfully lists all the customers in the agency database.

4. Without referring to the example client (but referring to the material you have cov-
ered today), create your own simple test client for the Agency EJB from scratch.
This should just consist of a command-line client that creates an instance of an
Agency EJB and asks it for its name.

5. Try changing the name under which the EJB is registered in JNDI using deploy-
tool. Change the JNDI name used by your client to find the Agency EJB and make
sure that it still works.

06 0672323842 CH04 3/20/02 9:25 AM Page 163

06 0672323842 CH04 3/20/02 9:25 AM Page 164

DAY 5

WEEK 1

Session EJBs
On Day 4, “Introduction to EJBs,” you learned that business functionality can
be implemented using Session beans, and you deployed a simple Session bean
into the EJB container. Today, you will learn

• The uses of Session beans in more detail

• The different Session bean types and how to specify, implement, and
deploy both stateless and stateful Session beans

• About common practices and idioms when using Session beans

Overview
Session beans are a key technology within the J2EE platform because they
allow business functionality to be developed and then deployed independently
of the presentational layer.

For example, you might create an application with a user interface built using
Java’s Swing API. This application might then provide access to some business
functionality for the employees working on the company’s internal network.

07 0672323842 CH05 3/20/02 9:36 AM Page 165

If the underlying business functionality is implemented as Session beans, a different user
interface could take its place without having to redevelop the entire application. A Web-
based interface would make the application available from the Internet at a single stroke.

There are two types of Session beans, and a couple of analogies help explain the differ-
ences between them. You almost certainly will have used the so-called wizards—helpers
to guide you through some task—in any modern word-processing program or IDE. A
wizard encapsulates a conversation between you the user and the application running on
the computer. The steps in that conversation are dictated by the Next and the Back but-
tons. The wizard remembers the answers from one page, and these sometimes dictate the
choices for the next. When you are done, you select the Finish button and the wizard
goes away and does its stuff.

The wizard is analogous to a stateful Session bean. The wizard remembers the answers
from each page, or put another way, it remembers the state of the conversation. It also
provides some service, as characterized by the Finish button. This is precisely what a
stateful session bean does.

Here is another analogy, this time with databases. You may well have had cause to write
stored procedures. These are named routines (methods and functions) that are written in
a database vendor’s version of the SQL language (for example, PL/SQL for Oracle and
Transact-SQL for Microsoft SQL Server) and stored in the database. They provide a way
to implement business rules on the database.

To invoke a stored procedure, a client-side application needs to know just the name of
the stored procedure and the parameters it requires. No knowledge of the underlying
database schema is needed, so to call a stored procedure called find_jobs_by_
advertiser written in Transact-SQL, the client would use the following:

exec find_jobs_by_advertiser “winston”

Behind the scenes, this would probably run a query against the Job table, but the impor-
tant thing is that the client does not need to know this detail.

A stored procedure is analogous to a stateless Session bean. The stored procedure just
provides a service and can be invoked by any client. You may be wondering why have
Session beans at all if stored procedures—which are a tried-and-trusted technology—
already solve the problem. But Session beans do have a number of advantages.
Implementing stateful conversations is cumbersome using stored procedures, but trivial
with Session beans. Also, stored procedures are written in some database vendor’s pro-
prietary dialect of SQL, so they are not portable across RDBMS. Session beans are, of
course, written in Java, so they will be portable across any compliant EJB container.

Session beans provide a service to a client application. In other words, Session beans are
an extension of a client’s business functionality into the middle tier.

166 Day 5

07 0672323842 CH05 3/20/02 9:36 AM Page 166

Session EJBs 167

5

The javax.ejb Package for Session Beans
Now it is time to add a little more detail. EJBs are written by implementing various inter-
faces of the javax.ejb package. Some of these are implemented by the bean itself. In
other words, this is the code that you, the developer must write. Others are implemented
either directly by the EJB container or are implemented by classes generated by the tools
provided by your EJB container vendor, such as the J2EE RI.

Figure 5.1 shows a UML class diagram of the interfaces in javax.ejb that support
Session beans.

Central to the EJB architecture are the javax.ejb.EJBHome and javax.ejb.EJBObject
interfaces, common to both Session beans and Entity beans. These both extend the
java.rmi.Remote interface, meaning that the classes that implement them (not shown)
are available through RMI stubs across the network.

The javax.ejb.EJBLocalHome and javax.ejb.EJBLocalObject interfaces are local
equivalents, and the classes that implement these are accessible only locally (that is, by
clients that reside within the same EJB container itself). Because local interfaces are
most often used with Entity beans, and also because there’s plenty for you to learn about
today already, there’s no major discussion of them until tomorrow.

The Unified Modeling Language offers a number of useful diagrams to help
specify an application, one of which is the use case diagram (see Appendix
A, “An Introduction to UML,” found on the CD-ROM accompanying this
book, for further details).

Each use case represents an item of business functionality that is required to
fulfill an end-user’s goal. However, while use case diagrams indicate the sys-
tem boundary of the application being developed, the use cases themselves
typically say nothing about the actual look-and-feel of the system. In other
words, the presentational layer or user interface is not directly specified.

It is quite possible to directly relate UML use cases to Session beans. A given
use case specifies an item of business functionality, while the Session bean
implements that functionality. Neither are concerned with the detail of how
that functionality is presented to the user.

This direct correspondence of the logical design (as characterized here in
UML use cases) to the physical implementation (in this case, Session beans) is
one of the reasons that the J2EE platform is so appealing, quickly allowing
designs to be realized into working code.

Note

07 0672323842 CH05 3/20/02 9:36 AM Page 167

The javax.ejb.EJBContext interface provides access to the home interfaces and, as you
can see from its method list, also provides security and transaction control. The
javax.ejb.SessionContext subclass is used only by Session beans and provides a refer-
ence to the bean’s EJBObject, that is, its interface for remote clients. Every EJB must
have a remote interface (or a local interface, discussed on Day 6, “Entity EJBs”).

The javax.ejb.HomeHandle and javax.ejb.Handle interfaces provide a mechanism to
serialize a reference to either a home or a remote interface for use later. This capability is
not often used, so isn’t discussed further.

The Session bean itself implements the javax.ejb.SessionBean interface that defines
the bean’s lifecycle methods and has an implementation for all of the methods defined in
the remote or the home interface.

Stateless Session Bean Lifecycle
You already know that there are two different types of bean—stateful and stateless.
You’ll be learning about both types today, first, the simpler stateless bean. The Agency
bean from the case study will be used for the example code.

168 Day 5

FIGURE 5.1
The javax.ejb pack-
age defines remote and
local interfaces, as
well as an interface for
the Session bean itself
to implement.

interface
java.rmi.Remote

! interface
EnterpriseBean

interface
EJBMetaData

getEJBHome
getHomeInterfaceClass
getRemoteInterfaceClass
getPrimaryKeyClass
isSession
isStatelessSession

interface
EJBHome

remove
remove
getEJBMetaData
getHomeHandle

interface
EJBContext

getEJBHome
getEJBLocalHome
getEnvironment
getCallerIdentity
getCallerPrincipal
isCallerInRole
isCallerInRole
getUserTransaction
setRollbackOnly
getRollbackOnly

interface
SessionContext

getEJBLocalObject
getEJBObject interface

SessionBean

setSessionContext
ejbRemove
ejbActivate
ejbPassivate

interface
EJBObject

getEJBHome
getPrimaryKey
remove
getHandle
isIdentical

interface
EJBLocalObject

getEJBLocalHome
getPrimaryKey
remove
isIdentical

interface
EJBLocalHome

remove

interface
HomeHandle

getEJBHome

interface
Handle

getEJBObject

07 0672323842 CH05 3/20/02 9:36 AM Page 168

Session EJBs 169

5

Stateless beans hold no state for any particular client, but they do have a lifecycle—and
thus different states—imposed on them by the EJB architecture. Specifically, these are
the interactions between the bean and the container in which it has been deployed.

This is a recurrent theme throughout the EJB architecture, so it is important to fully
understand it. The methods you define in your bean will be invoked either by its client or
by the EJB container itself. Specifically, the methods invoked by the client will be those
defined in the remote interface, whereas the methods invoked by the container are those
defined by the javax.ejb.SessionBean interface. The bean must also provide methods
that correspond to the create method of the bean’s home interface.

Figure 5.2 shows the SessionBean interface and its super-interfaces.

FIGURE 5.2
The javax.ejb.
SessionBean interface
defines certain lifecy-
cle methods that must
be implemented by
Session beans.

interface
java.io.Serializable

!

interface
SessionBean

+setSessionContext(sessioncontext:SessionContext):void
+ejbRemove():void
+ejbActivate():void
+ejbPassivate():void

interface
EnterpriseBean

In the case study, the AgencyBean class indicates that it is a Session bean implementation
by implementing this interface:

package agency;

import javax.ejb.*;
// some import statements omitted

public class AgencyBean implements SessionBean
{

// code omitted
}

07 0672323842 CH05 3/20/02 9:36 AM Page 169

The lifecycle for Session beans, as perceived by the Session bean and as likely to be
enacted by the EJB container, is as shown in the UML state chart diagram in Figure 5.3.

170 Day 5

FIGURE 5.3
Stateless Session beans
have a lifecycle man-
aged by the EJB con-
tainer.

Context Set

Bound to client

Pooled

[pool too small]/
setSessionContext

[context set]/ejbCreate

create^ejbobject.new()

[surplus]/ejbRemove

[method completes]

business method

remove^ejbobject.finalize()

[business method invoked]

The lifecycle is as follows:

• If the EJB container requires an instance of the stateless Session bean (for exam-
ple, because the pool of instances is too small), it instantiates the bean and then
calls the lifecycle method setSessionContext(). This provides the bean with a
reference to a SessionContext object, providing access to its security and transac-
tion context.

• Immediately after the context has been set, the container will call ejbCreate().
This means that the bean is now ready to have methods invoked. Note that the
ejbCreate() method is not part of the SessionBean interface, but nevertheless
must be declared in the bean.

• When a client invokes a business method, it is delegated by the bean’s EJBObject
proxy to the bean itself. During this time, the bean is temporarily bound to the
client. When the method completes, the bean is available to be called again.

The binding of the bean to the client lasts only as long as the method takes to execute, so
it will typically be just a few milliseconds. The EJB specification specifies this approach
so that the bean developer does not need to worry about making the bean thread-safe.

07 0672323842 CH05 3/20/02 9:36 AM Page 170

Session EJBs 171

5

To support the case where two (or more) clients need to invoke the service of some state-
less Session bean at the same time, most EJB containers hold a pool of Session beans. In
general, the pool will never be larger than the maximum number of concurrent clients. If
a container decides that the pool is too large or that some Session bean instances are sur-
plus, it will call the bean’s ejbRemove() method.

As you will see on Day 12, “Servlets,” servlets have similarities with stateless
Session beans. However, in the servlet specification, they are defined to
work in precisely the opposite way; by default, a servlet must be thread-
safe, and there is only one instance of it.

Note

If the client calls create() or remove(), the bean itself is not necessarily affected.
However, the client’s reference to the bean will be initialized (or destroyed). The client is
not aware of the complexities of this lifecycle, so the client’s perception of a stateless
bean is somewhat simpler, as shown in Figure 5.4.

FIGURE 5.4
The client’s perception
of the bean’s lifecycle
is simple. Context Set

Ready

create/ejbCreate

deploy/setSessionContext

remove/ejbRemove

business method

From the client’s perspective, the bean is simply instantiated when the client calls
create() on the bean’s home interface, and is removed when the bean calls remove() on
the bean itself.

07 0672323842 CH05 3/20/02 9:36 AM Page 171

Figures 5.3 and 5.4 show how the methods of the SessionBean interface are invoked
through the bean’s lifecycle. You will have noticed that the ejbActivate() and
ejbPassivate() methods are not mentioned; this is because these methods are only
called for stateful Session beans, a topic covered later today. However, given that these
methods are in the SessionBean interface, they do require an implementation. For state-
less Session beans, this implementation will be empty.

The implementation of the lifecycle methods is covered later today in the “Implementing
a Stateless Session Bean” section.

Specifying a Stateless Session Bean
As you will by now have gathered, the responsibilities of Session beans (and indeed,
Entity beans) are specified through its remote and home interfaces. These are what the
EJB container makes available to the remote clients.

To define a home interface for a stateless Session bean, extend javax.ejb.EJBHome. To
define a remote interface, extend javax.ejb.EJBObject. Because both EJBHome and
EJBObject extend the java.rmi.Remote interface, the rules for remote objects (in the
Java sense of the word) must be followed.

The following is the home interface for the Agency session bean. If it looks familiar, it
should be—you saw this for the first time just yesterday.

172 Day 5

The EJB specification does not attempt to prescribe too closely the imple-
mentation of EJB containers, and correctly focuses instead on their specifica-
tion. Unfortunately, it does not always identify the only realistic implemen-
tation.

For example, the EJB specification suggests that the EJB container is at liber-
ty to adopt any appropriate pooling policy for Session beans. In Figure 5.3,
you saw the state chart for a container using an eager instantiation policy,
pre-instantiating beans before they are necessarily used. However, the fact
that beans can throw CreateException exceptions from their ejbCreate()
method seems to imply that only a lazy instantiation policy—instantiating
beans only as they are required—could be used.

In fact, it is the case that some EJB containers do not maintain a pool of
Session bean references and, instead, simply instantiate beans as required. In
other words, the actual lifecycle for the bean matches that perceived by the
client. While this might seem a wasteful approach, in fact it is not; modern
JVMs are becoming so efficient that maintaining a pool of beans is more
expensive than simply instantiating beans as needed.

Note

07 0672323842 CH05 3/20/02 9:36 AM Page 172

Session EJBs 173

5

package agency;

import java.rmi.*;
import javax.ejb.*;
public interface AgencyHome extends EJBHome
{

Agency create() throws RemoteException, CreateException;
}

The AgencyHome interface defines a single no-arg method called create(). This method
returns an Agency, which is the remote interface for the Agency bean. Because this
remote interface is remote (that is, extends java.rmi.Remote), what the client that calls
this interface will receive is a reference to the remote Agency object. In other words, the
client will obtain an RMI stub to the Agency.

The EJB specification requires that stateless Session beans must define this single no-arg
version of the create() method. The bean can perform any initialization it requires
there. The create() method throws java.rmi.RemoteException, as required for remote
objects, and also throws javax.ejb.CreateException. This is an exception that the bean
can throw to indicate that it was unable to initialize itself correctly.

The create() method in the home interface implies a corresponding ejbCreate()
method in the bean class itself. This delegation to a method with an ejb prefix is preva-
lent throughout the EJB specification, so you will become quite familiar with it over the
next few days. The corresponding code in the AgencyBean class is as follows:

package agency;

// some import statements omitted
import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public class AgencyBean implements SessionBean
{

public void ejbCreate() throws CreateException {
// implementation omitted

}

// code omitted
}

Note that the ejbCreate() method also takes no arguments because the argument list
must match. The throws clause includes javax.ejb.CreateException, because that was
defined in the home interface, but does not include java.rmi.RemoteException. This is
because the bean itself is not remote; it is the code generated by the vendor’s deploy-
ments tools that is remote. The EJB specification requires also that ejbCreate() method
returns void.

07 0672323842 CH05 3/20/02 9:36 AM Page 173

Listing 5.1 shows the remote interface for the Agency session bean. Again, you saw this
yesterday:

LISTING 5.1 Remote Interface for the Stateless Agency Bean

1: package agency;
2:
3: import java.rmi.*;
4: import java.util.*;
5: import javax.ejb.*;
6:
7: public interface Agency extends EJBObject
8: {
9: String getAgencyName() throws RemoteException;
10:
11: Collection findAllApplicants() throws RemoteException;
12: void createApplicant(String login, String name, String email)
13: throws RemoteException, DuplicateException, CreateException;
14: void deleteApplicant (String login)

➥throws RemoteException, NotFoundException;
15:
16: Collection findAllCustomers() throws RemoteException;
17: void createCustomer(String login, String name, String email)
18: throws RemoteException, DuplicateException, CreateException;
19: void deleteCustomer(String login)

➥throws RemoteException, NotFoundException;
20:
21: Collection getLocations() throws RemoteException;
22: void addLocation(String name)

➥throws RemoteException, DuplicateException;
23: void removeLocation(String code)

➥throws RemoteException, NotFoundException;
24:
25: Collection getSkills() throws RemoteException;
26: void addSkill(String name)

➥throws RemoteException, DuplicateException;
27: void removeSkill(String name)

➥throws RemoteException, NotFoundException;
28:
29: List select(String table) throws RemoteException;
30: }

You can see that the Agency Session bean provides a number of sets of functionality, man-
aging applicants, customers, locations, and skills. These services manipulate data within
the database, but there is no underlying state for the bean itself. In each case, the methods
throw java.rmi.RemoteException as required and also throw various other exceptions.
The DuplicateException and NotFoundException are user-defined exception classes that
simply extend java.lang.Exception. You encountered these classes yesterday.

174 Day 5

07 0672323842 CH05 3/20/02 9:36 AM Page 174

Session EJBs 175

5

For each of these methods in the remote interface, there is a corresponding method in
the Session bean. As was noted before, this is not because the bean has implemented the
remote interface (it hasn’t) but because the EJB specification requires it so that the
EJBObject proxy (the vendor-generated implementation of the remote interface) can del-
egate to the bean. The business methods for the AgencyBean have the same signature as
those in the remote interface, with the exception that they do not throw
java.rmi.RemoteException. Those are the steps to specifying a stateless Session bean’s
interface. Indeed, as you will see later today and tomorrow, specifying the interface of
stateful Session beans and of Entity beans follows along very similar lines. In the next
section, “Implementing a Stateless Session Bean,” you will see the implementation of
some of these methods.

Implementing a Stateless Session Bean
Implementing a Session bean involves providing an implementation for the methods of
the javax.ejb.SessionBean, corresponding methods for each method in the home inter-
face, and a method for each method in the remote interface.

Implementing javax.ejb.SessionBean
The implementation of the methods of the SessionBean interface is often boilerplate. The
setSessionContext() method usually just saves the supplied SessionContext object:

private SessionContext ctx;
public void setSessionContext(SessionContext ctx) {

this.ctx = ctx;
}

Although ejbRemove() method is part of the SessionBean interface, you’ll learn about
its implementation in the next section. As already noted, for a stateless Session bean, the
ejbActivate() and ejbPassivate() methods should have a null implementation:

public void ejbActivate() { }
public void ejbPassivate() { }

Implementing the Home Interface Methods
The home interface has a single method create(). The ejbCreate() method in the bean
corresponds to this method. It makes sense to look up JNDI references in the
ejbCreate() method and store them in instance variables. This is shown in Listing 5.2.

LISTING 5.2 AgencyBean.ejbCreate() Method

1: private DataSource dataSource;
2: private String name = “”;
3: public void ejbCreate () throws CreateException {

07 0672323842 CH05 3/20/02 9:36 AM Page 175

4: InitialContext ic = null;
5: try {
6: ic = new InitialContext();
7: dataSource = (DataSource)ic.lookup(“java:comp/env/jdbc/Agency”);
8: }
9: catch (NamingException ex) {
10: error(“Error connecting to java:comp/env/jdbc/Agency:”,ex);
11: return;
12: }
13: try {
14: name = (String)ic.lookup(“java:comp/env/AgencyName”);
15: }
16: catch (NamingException ex) {
17: error(“Error looking up java:comp/env/AgencyName:”,ex);
18: }
19: }

176 Day 5

LISTING 5.2 Continued

On Day 18, “Patterns,” you will learn about a design pattern that simplifies
JNDI lookups. It can also speed up your beans; some EJB containers are not
particularly efficient at obtaining references from within JNDI.

Tip

In this case, the ejbCreate() method makes two lookups from JNDI; the first is to
obtain a DataSource (you will see how this is used shortly) and the other is to obtain
environment configuration information—that is, the name of the agency—from the
deployment descriptor. You will learn about the deployment descriptor in the following
section.

Incidentally, this is a good place to note that stateless Session bean does not mean that
the bean has no state; just that it has no state that is specific to any given client. In the
case of the Agency bean, it caches a DataSource and its name in instance variables.

The home interface inherits a remove(Object o) from EJBHome. This corresponds to the
ejbRemove() method of the bean. The implementation is pretty simple; it should just
reset state:

public void ejbRemove(){
dataSource = null;

}

07 0672323842 CH05 3/20/02 9:36 AM Page 176

Session EJBs 177

5

Implementing the Remote Interface Methods
The remaining methods correspond to the business methods defined in the remote inter-
face. The Agency session bean manipulates the data in the Applicant, Customer,
Location, and Skill tables, providing methods to return all the data in a table, to insert
a new item, or to delete an existing item. When deleting rows, rows in dependent tables
are also removed.

The methods that manipulate the database all require a java.sql.Connection to submit
SQL to the database. In regular “fat client” applications, the idiom is to create a database
connection at application startup and to close the connection only when the user quits the
application. This idiom exists because making database connections is expensive in per-
formance terms. When writing EJBs, however, the idiom is the precise opposite. You
should obtain the database connection just before it is needed, and close it as soon as
your processing is complete. In other words, “acquire late, release early.” This is because
the EJB container has already made the database connections and holds them in a pool.
When your bean obtains its connection, it is simply being “leased” one from the pool for
a period of time. When the connection is “closed,” in reality it is simply returned back to
the pool to be used again.

The getLocations() method shows this principle clearly, as shown in Listing 5.3.

LISTING 5.3 AgencyBean.getLocations() Method

1: public Collection getLocations() {
2: Connection con = null;
3: PreparedStatement stmt = null;
4: ResultSet rs = null;
5: try {
6: con = dataSource.getConnection();
7: stmt = con.prepareStatement(“SELECT name FROM Location”);
8: rs = stmt.executeQuery();
9:

The ejbRemove() method is mandated by the EJB specification in three dif-
ferent ways! It appears in the SessionBean interface, and it is required as
the method corresponding to the home method of remove(Object) (inherit-
ed from javax.ejb.EJBHome) and is also required as the method correspond-
ing to the remote method of remove() (inherited from
javax.ejb.EJBObject). It is covered here because it fits best along side the
coverage of ejbCreate().

Note

07 0672323842 CH05 3/20/02 9:36 AM Page 177

10: Collection col = new TreeSet();
11: while (rs.next()) {
12: col.add(rs.getString(1));
13: }
14:
15: return col;
16: }
17: catch (SQLException e) {
18: error(“Error getting Location list”,e);
19: }
20: finally {
21: closeConnection(con, stmt, rs);
22: }
23: return null;
24: }
25: private void closeConnection (Connection con,
26: PreparedStatement stmt, ResultSet rslt) {
27: if (rslt != null) {
28: try {
29: rslt.close();
30: }
31: catch (SQLException e) {}
32: }
33: if (stmt != null) {
34: try {
35: stmt.close();
36: }
37: catch (SQLException e) {}
38: }
39: if (con != null) {
40: try {
41: con.close();
42: }
43: catch (SQLException e) {}
44: }
45: }

In this method, you can see the DataSource object obtained in the ejbCreate() method
in use. The Connection object is obtained from this DataSource object. Another advan-
tage of this approach is that the user and password information does not need to be
embedded within the code; rather, it is set up by the deployer who configures the
DataSource using vendor-specific tools. As you remember from Day 2, “The J2EE
Platform and Roles,” in the J2EE RI, the DataSource object is configured by editing the
resource.properties file in the %J2EE_HOME%\config directory.

The other business methods all access the database in a similar manner.

178 Day 5

LISTING 5.3 Continued

07 0672323842 CH05 3/20/02 9:36 AM Page 178

Session EJBs 179

5

Exceptions
Your bean needs to be able to indicate when it hits an exception. The EJB specification
lays out certain rules as to the types of exceptions your bean can throw, because the
client does not call your bean directly. For remote clients, there is also the possibility of
network problems.

The EJB specification categorizes exceptions as either application exceptions or system
exceptions. These correspond quite closely to the regular Java categories of checked
exceptions and runtime exceptions.

Figure 5.5 shows the exceptions in the javax.ejb package, indicating which are applica-
tion and which are system exceptions.

FIGURE 5.5
Exceptions are either
system exceptions or
application exceptions.

EJBException

+EJBException()
+EJBException(message:String)
+EJBException(ex:Exception)
+EJBException(message:String,ex:Exception)
+getCausedByException():Exception
+getMessage():String
+printStackTrace(ps:PrintStream):void
+printStackTrace():void
+printStackTrace(pw:PrintWriter):void

-causeException:Exception

java.lang.RuntimeException

NoSuchEntityException AccessLocalException

java.lang.Exception

java.io.IOException

FinderException RemoveException

ObjectNotFoundException

CreateException

DuplicateKeyException

NoSuchObjectLocalException

java.rmi.RemoteException

System
Exceptions

Application
Exceptions

0..1

caused by

!
!

!

!

So, what do these categorizations mean? If a bean throws an application exception, the
EJB container will propagate this back to the application client. As you shall see on Day
8, “Transactions and Persistence,” any ongoing transaction is not terminated by an appli-
cation exception. In other words, the semantics of an application exception are pretty
similar to a checked exception; generally, the client can recover if desired.

However, if a bean throws a system exception, that indicates a severe problem that will
not be recoverable by the client. For example, if the bean has been incorrectly deployed
such that the database connection fails, there is very little that the client can do about it.

07 0672323842 CH05 3/20/02 9:36 AM Page 179

In such a case, the EJB container will take steps to terminate any ongoing transaction
because it is unlikely to complete. Moreover, the EJB container will discard the bean
instance that threw the exception. In other words, there is no need to code any clean up
logic in your bean after having thrown a system exception.

Although all runtime exceptions are classified as EJB system exceptions, the
javax.ejb.EJBException is a RuntimeException provided for your use. This class
allows the underlying cause to be wrapped through one of its constructors. The error()
helper method in AgencyBean does precisely this:

private void error (String msg, Exception ex) {
String s = “AgencyBean: “+msg + “\n” + ex;
System.out.println(s);
throw new EJBException(s,ex);

}

In Figure 5.5, you can see that there is one checked exception, namely
java.rmi.RemoteException, that is classified as an EJB system exception rather than as
an EJB application exception. Your bean code should never throw this exception; instead,
it is reserved for the EJB container itself to throw. If your bean has hit a system excep-
tion, it should throw an EJBException rather than RemoteException.

Configuring and Deploying a Stateless
Session Bean

With the code compiled, the next step is to deploy the bean onto the EJB container.

As you learned yesterday, EJBs are designed to be portable across EJB containers, and
the configuration information that defines the bean’s name, interfaces, class(es), charac-
teristics, dependencies, and so on is stored in an XML document called a deployment
descriptor. This is provided along with the bean code itself.

As you appreciate from Day 2, there are several EJB roles involved in building the
deployment descriptor. The bean provider specifies the information about a given bean
(“intra-bean” configuration information, if you like), and the application assembler speci-
fies the information about all the beans in an application (“inter-bean” configuration
information). When both the bean deployer and application assembler have specified
their information, the deployment descriptor is complete.

However, that’s not the end of the story, because the deployment descriptor does not
define every piece of configuration information necessary to deploy a bean. In effect, the
deployment descriptor defines only the logical relationships and dependencies between
the beans. There will also be additional configuration information that maps the logical

180 Day 5

07 0672323842 CH05 3/20/02 9:36 AM Page 180

Session EJBs 181

5

dependencies of the deployment descriptor to the physical environment. Performing this
mapping is the role of the deployer.

EJB container vendors are free to capture this additional mapping in any way they want,
although most use auxiliary deployment descriptors, again usually XML documents. In
the case of the J2EE RI, the auxiliary deployment descriptors are indeed XML docu-
ments. The EJB specification explicitly disallows vendors from storing their auxiliary
mapping information in the standard deployment descriptor itself.

Thus, to port an EJB from one EJB container to another, all that should be required is to
recreate an auxiliary deployment descriptor. In other words, the deployer has to redeploy
the application, but the bean provider and the application assembler should not have to
get involved.

Because manipulating XML documents can be somewhat error prone, most EJB contain-
er vendors provide graphical tools to do the work. As you saw yesterday, this is the
deploytool GUI in the case of the J2EE RI. Unfortunately, many such tools do not dis-
tinguish between information that is being saved in the standard deployment descriptor
and that which is being saved in the vendor’s own auxiliary deployment descriptors.
Also, many tools do not explicitly support the EJB architecture’s concept of roles, mak-
ing it possible for a bean provider to start specifying information that might more cor-
rectly be decided only by the application assembler or even the deployer. The J2EE RI
deploytool is guilty on both counts.

Because you may not be using J2EE RI in your own projects, this section presents the
task of deployment by looking at both the J2EE RI deploytool and also the underlying
XML deployment descriptor. Having a firm understanding as to how these relate should
make it much easier for you to deploy if you aim to deploy to some other EJB container.
It also has to be said that understanding the XML deployment descriptor makes the
deploytool GUI easier to comprehend.

Using deploytool
This section shows how to deploy the Day 5 version of the case study application to the J2EE
RI. It’s best if you follow along (but if you’re on a train, just read the text and make do).

As usual, start up the Cloudscape RDBMS and J2EE RI using two console windows.
Then, start up a third console window and start deploytool.

By choosing File, Open, load up the day05\Examples\agency.ear enterprise application
archive. This defines two groups of Session beans—Agency and Advertise. Their con-
tents have already been configured to contain the appropriate code. Click either of these
in the explorer on the left side of the deploytool GUI and their contents will be shown
on the right side. Note that for both of these beans, some supporting classes (application
exception classes) also constitute part of the bean.

07 0672323842 CH05 3/20/02 9:36 AM Page 181

To deploy the Session beans, select the Examples item (under the Applications folder in
the explorer area on the left side) and choose the Tools, Deploy menu option. Click Next
twice and then click Finish.

As you saw yesterday, the deployment descriptor holds configuration information. This is
accessible within deploytool as follows. Select the Agency element from the explorer,
and then choose Tools, Descriptor Viewer from the menu. This will display the XML
deployment descriptor for all of the beans in that EJB JAR file (in this case, just the one
Agency bean). Figure 5.6 shows this screen.

182 Day 5

FIGURE 5.6
The deploytool lets
you view the underly-
ing deployment
descriptor.

In the following sections, you’ll see how this information is structured and built up.

Structural Elements
XML documents provide a mechanism to store data in a hierarchical format, and are
similar in style to HTML documents. You shouldn’t have too much trouble following the
coming discussion, but if you want to do some additional background reading, skip for-
ward to Day 16, “Integrating XML with J2EE,” which covers XML documents in more
detail.

The format of the EJB deployment descriptor is defined by a document type definition
(DTD) file called ejb-jar_2_0.dtd in the %J2EE_HOME%\lib\dtds\ directory. The root
of an EJB deployment descriptor is the ejb-jar element, whose definition is as follows:

07 0672323842 CH05 3/20/02 9:36 AM Page 182

Session EJBs 183

5

<!ELEMENT ejb-jar (description?, display-name?, small-icon?, large-icon?,
enterprise-beans, relationships?, assembly-descriptor?, ejb-client-jar?)>

This indicates that an ejb-jar element may (the ? sign suffix) contain one each of a
description, display-name, small-icon, large-icon, relationships, assembly-
descriptor and ejb-client-jar elements, and must (no suffix) contain one
enterprise-beans element.

The enterprise-beans element’s definition is as follows:

<!ELEMENT enterprise-beans (session | entity | message-driven)+>

This states that an enterprise-beans element consists of one or many (the + sign suffix)
elements that are either session, entity, or message-driven elements. In other words,
the enterprise-beans element contains one or more session, entity, or message-
driven elements. You will learn about the session element shortly.

In Figure 5.6, you can see this structure in the deployment descriptor, and you can also
see the same hierarchy in deploytool’s explorer pane on the left side of the explorer.
The Advertise ejb-jar element consists of two beans.

Presentational Elements
In many of the definitions within the DTD, you will see the display-name,
description, small-icon, and large-icon elements defined. These are used by vendor
deployment tools when managing your beans, so you will certainly want to define a
display-name to distinguish the beans in the tool’s GUI. Whether you choose to provide
the remaining elements is up to you. Their presence is primarily so that third- party com-
panies can develop EJBs to sell as “off-the-shelf” business logic components.

In Figure 5.6, you can see that the display-name element for the two groups of EJB
JARs have been set to Advertise and Agency. This is shown in the explorer on the left
side of deploytool GUI. It is also presented as the (read-only) JAR Display Name on
the right side when the Advertise node is selected. There doesn’t appear to be any good
reason why this is read-only in deploytool, that’s just the way the tool works.

If you wanted to add another EJB to the enterprise application, (using the File, New,
Enterprise Bean menu option) it would either be in an existing ejb-jar or a new ejb-
jar could be defined. When choosing the second option, the display-name for your new
collection of EJBs can be specified. This is shown in Figure 5.7.

07 0672323842 CH05 3/20/02 9:36 AM Page 183

For your own custom applications, it really is up to you whether you choose to use one
ejb-jar or several. In the case study example, the latter has been used. Certainly, if you
wanted to use some off-the-shelf component EJBs bought from a third-party vendor, the
EJBs will already have been bundled into an EJB JAR file. To add these to your enter-
prise application, you would use File, Add to Application, EJB JAR menu option. When
the selected JAR file is read, the display-name element from the associated XML
deployment descriptor would then be used.

Session Element
The configuration information for Session beans is defined—not surprisingly—in the
session element of the DTD. Its definition is as follows:

<!ELEMENT session (description?, display-name?, small-icon?, large-icon?,
ejb-name, home?, remote?, local-home?, local?, ejb-class,
session-type, transaction-type,
env-entry*,
ejb-ref*, ejb-local-ref*,
security-role-ref*, security-identity?,
resource-ref*,
resource-env-ref*)>

This indicates that a session element may contain the presentational elements just dis-
cussed, and also will consist of a number of other mandatory and optional elements. The
mandatory elements are as follows:

184 Day 5

FIGURE 5.7
The deploytool allows
EJBs to be defined in
either their own ejb-
jar (with attendant
deployment descriptor)
or in an existing ejb-
jar.

07 0672323842 CH05 3/20/02 9:36 AM Page 184

Session EJBs 185

5

• The ejb-name element is the mandatory logical name for the EJB. This must be
unique within all the EJBs defined within the ejb-jar element.

• The home, remote, local-home, and local elements define the remote and local
interfaces for the bean. They are all marked as being optional, although the specifi-
cation also requires that either the home and remote and/or the local-home and
local elements are defined. As was noted previously, you’ll be learning about local
interfaces in detail tomorrow.

• The ejb-class element defines the class that has the bean’s actual implementation.

• The session-type element indicates whether the bean is stateless or stateful.

• The transaction-type element indicates how the EJB container should manage
transactions. You will be learning about this in detail on Day 8, so until then, just
specifying that transactions are Required will be sufficient.

This information is available graphically in deploytool. Select the Agency Session bean
in the explorer pane (under Agency ejb-jar). You should see something similar to that
shown in Figure 5.8.

FIGURE 5.8
The deploytool repre-
sents the underlying
deployment descriptor
graphically.

You should be able to see a pretty close resemblance between the information portrayed
in deploytool and the mandatory information required by the underlying deployment
descriptor. The only mandatory item not shown is transaction-type; that is on the
Transactions tab of the GUI.

07 0672323842 CH05 3/20/02 9:36 AM Page 185

The (fragment of the) underlying deployment descriptor for the Agency bean that is rep-
resented in Figure 5.8 is as follows:

<session>
<display-name>AgencyBean</display-name>
<ejb-name>AgencyBean</ejb-name>
<home>agency.AgencyHome</home>
<remote>agency.Agency</remote>
<ejb-class>agency.AgencyBean</ejb-class>
<session-type>Stateless</session-type>

… lines omitted …
</session>

This should tie in with the code that was presented earlier today.

Thus far, you have only seen the EJB standard deployment descriptor, but there is also
the vendor-specific deployment descriptor for J2EE. The structure of this auxiliary
deployment descriptor is defined by %J2EE_HOME%\lib\dtds\sun-j2ee-ri_1_3.dtd, but
it is not so necessary to learn its structure in detail because it all vendor specific, and
deploytool allows it to be configured through its GUI.

The auxiliary information in this descriptor maps the logical names to the physical run-
time environment. For the Session bean itself, a mapping is required from its logical
ejb-name to its JNDI name. The following fragment from the auxiliary deployment
descriptor shows this:

<j2ee-ri-specific-information>
// lines omitted
<enterprise-beans>

// code omitted
<ejb>

<ejb-name>AgencyBean</ejb-name>
<jndi-name>ejb/Agency</jndi-name>

Figure 5.9 shows how deploytool portrays this information. Figure 5.9 also shows the
JNDI mappings for references; you will learn about these shortly.

The remaining optional items of the EJB deployment descriptor (env-entry, resource-
ref, and so on) also correspond to the different tabs of the deploytool window shown in
Figure 5.8. These each indicate different types of dependencies that the bean may have
with its runtime environment. The following sections discuss each in turn.

186 Day 5

07 0672323842 CH05 3/20/02 9:36 AM Page 186

Session EJBs 187

5

Environment Entries
Environment entries allow general configuration information—as might be found in a
.ini file or in the Windows Registry—to be made available to the bean. Such entries
are represented by the env-entry element in the deployment description and—not
surprisingly—are configured on the Env. Entries tab within deploytool.

The Agency bean uses an environment entry to look up its name. The relevant code is in
the ejbCreate() method:

InitialContext ic = new InitialContext();
// code omitted
name = (String)ic.lookup(“java:comp/env/AgencyName”);

The EJB specification requires that the EJB container makes the environment entries
available under the well-defined context of java:comp/env. Therefore, this is needed in
the JNDI lookup. However, this prefix is not required in the deployment descriptor itself.

The DTD defines the env-entry element as follows:

<!ELEMENT env-entry (description?, env-entry-name, env-entry-type, env-entry-

value?)>

FIGURE 5.9
Behind the scenes,
deploytool stores the
JNDI mappings to an
auxiliary vendor-
specific deployment
descriptor.

07 0672323842 CH05 3/20/02 9:36 AM Page 187

The type of the environment entry (String, Integer, and so on) is indicated through the
env-entry-type element. The actual value (env-entry-value) is optional, meaning that
the bean provider/application assembler does not need to define it. If the actual value
isn’t specified by these roles, the deployer will need to define the value.

Figure 5.10 shows this information being configured within deploytool.

188 Day 5

FIGURE 5.10
Environment entries
can be managed
graphically by deploy-
tool.

In the underlying deployment descriptor for the Agency bean, this corresponds to

<env-entry>
<env-entry-name>AgencyName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>J2EE in 21 Days Job Agency</env-entry-value>

</env-entry>

To re-emphasize, note that the entry name is AgencyName, not
java:comp/env/AgencyName.

EJB References
Declaring EJB references for an EJB indicates that the bean being deployed depends on
other EJBs. Generally speaking, when there are inter-bean dependencies, both the depen-
dent and dependee will have been written by the same bean provider. However, there will
be cases when this isn’t so. The issue then arises that the dependent EJB may not know
the deployed name of the EJB upon which it depends.

07 0672323842 CH05 3/20/02 9:36 AM Page 188

Session EJBs 189

5

For example, a vendor might provide some sort of business-oriented bean (perhaps an
Invoice EJB) that can optionally perform logging through a Logging EJB. The same
vendor might well provide an implementation of a Logging EJB, but would also allow
for application assemblers to use some other EJB that implements the appropriate home
and remote interfaces. In this way, the application assembler could ensure that all logging
from beans within its application was consistent.

Now the Invoice EJB will have a reference to a Logging EJB in its JNDI lookup. This
might be something like the following:

InitialContext ic = new InitialContext();
Object lookup = ic.lookup(“ejb/Logger”);
LoggerHome home = (AgencyHome)PortableRemoteObject.narrow(lookup,
LoggerHome.class);
Logger logger = home.create();

The “ejb/Logger” string is hard-coded into the Invoice EJB source code and cannot be
changed by the application assembler or by the deployer. This is what is sometimes
referred to as the coded name or coded entry. However, the deployment descriptor allows
this logical name to be associated with an actual physical name through the ejb-ref ele-
ments.

The following is the ejb-ref element, as defined by the DTD:

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home, remote, ejb-

link?)>

The ejb-ref-name element is the coded name—ejb/Logger in the previous example.
The names of the home and remote interfaces must be specified. Finally, the ejb-link
element specifies the actual ejb-name of the EJB that implements these interfaces. This
is a way for the application assembler to constrain the reference in the dependent EJB to
a particular EJB within the enterprise application.

In the Day 5 version of the case study, there are no EJB references between EJBs (you
will see some such references between EJBs tomorrow), but there are EJB references
from the clients and the EJBs. These are shown in Figure 5.11.

When EJB references are defined, they must also be mapped to the physical environment.
Figure 5.9 showed the mapping of EJBs and of references to JNDI names. These are shown
in the bottom half of the window of Figure 5.9. As an experiment, try temporarily creating
a EJB (remote) reference between the beans themselves, and then return to the JNDI tab in
deploytool (as shown in Figure 5.9). Here, the deployer should indicate the JNDI name
for the EJB that implements the remote interfaces. As required by the EJB specification,
deploytool validates that the JNDI name that is mapped by the deployer to the EJB refer-
ence is compatible with any ejb-link that may have been specified by the application
assembler. When you have finished experimenting, you should delete these EJB references.

07 0672323842 CH05 3/20/02 9:36 AM Page 189

Resource References
Yesterday, you learned that the EJB container allows DataSources to be obtained via
JNDI. Within the deployment descriptor, a resource reference is used to define that
dependency of the EJB. The term resource reference is used instead of database refer-
ence because an EJB can depend on data resources other than databases. It could also
depend on an e-mail session (Day 11, “JavaMail”), on a URL, on a message topic or
queue factory (Day 10, “Message-Driven Beans”), or on a general resource as defined by
the Connector architecture (Day 19, “Integrating with External Resources”).

The Agency bean has a dependency on a DataSource reference that it refers to as
jdbc/Agency. This can be seen in the ejbCreate() method of the AgencyBean code. As
with the environment entries, note that resource reference has been bound by the EJB
container under the context java:comp/env:

InitialContext ic = new InitialContext();
dataSource = (DataSource)ic.lookup(“java:comp/env/jdbc/Agency”);

Resource references are defined in the DTD as follows:

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-auth, res-

sharing-scope?)>

Going through these in turn

• The res-ref-name element is the coded name of the referenced resource.

• The res-type element is the fully-qualified interface or class name of the resource.

190 Day 5

FIGURE 5.11
There are EJB refer-
ences from the clients
to the EJBs.

07 0672323842 CH05 3/20/02 9:36 AM Page 190

Session EJBs 191

5

• The res-auth element indicates whether the container will provide the authentica-
tion information (username and password) or the application itself. In other words,
it indicates which overloaded version of DataSource.getConnection() will be
called—the one where username and password are supplied (Application authenti-
cation) or where they are not (Container authentication).

• The res-sharing-scope element indicates whether this resource can be shared
among beans (the default) or whether a separate resource will be set up for this
bean’s exclusive use.

So, in the deployment descriptor for the Agency bean, you will see the following:

<resource-ref>
<res-ref-name>jdbc/Agency</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

This information is also shown in deploytool, as shown in Figure 5.12.

FIGURE 5.12
Resource references
can be managed
graphically by deploy-
tool.

Again, resource references must be mapped to physical resources. You defined the physical
resources for the case study on Day 2, when you edited the resource.properties file
within %J2EE_HOME%\config. The entries that are relevant to this discussion are as follows:

jdbcDataSource.5.name=jdbc/Agency
jdbcDataSource.5.url=jdbc:cloudscape:rmi:Agency

07 0672323842 CH05 3/20/02 9:36 AM Page 191

This instructs J2EE RI to create a DataSource using a URL of
jdbc:cloudscape:rmi:Agency and bind it into JNDI with a name of jdbc/Agency.

From the deployment descriptor, you can see that the declared resource reference in the
AgencyBean Session bean code is jdbc/Agency and is also mapped to a JNDI name of
jdbc/Agency. The fact that the logical and physical names are the same string strings can
be a source of confusion; the point is that both are needed. Moreover, the logical
resource reference could have been anything at all, so long as it is the same string that
appears in the code, in the standard ejb-jar.xml deployment descriptor and the vendor-
specific auxiliary deployment descriptor.

The mapping between these two names is performed on the JNDI tab of deploytool, as
shown in Figure 5.9. You should be able to see there that, for example, the resource refer-
ence in the Agency bean called jdbc/Agency maps onto the JNDI name of jdbc/Agency.
The auxiliary deployment descriptor has the following entries:

<j2ee-ri-specific-information>
// lines omitted
<enterprise-beans>

// lines omitted
<ejb>

<ejb-name>AgencyBean</ejb-name>
// lines omitted
<resource-ref>

<res-ref-name>jdbc/Agency</res-ref-name>
<jndi-name>jdbc/Agency</jndi-name>

</resource-ref>
</ejb>
// remaining lines omitted

Resource Environment References
Resource environment reference entries allow access to so-called “administered objects.”
In J2EE RI, this means JMS queues or JMS topics. In future versions of J2EE, other
administered objects may well be specified.

Resource references and resource environment references sound very similar, and,
indeed, they are related. However, a resource reference is access to some sort of factory
object, used to manufacture (variously) database connections, URLs, JMS sessions, and
so on. On the other hand, an administered object must be defined up-front by an adminis-
trator and is persistent. The EJB specification doesn’t define RDBMS tables as adminis-
tered objects, but it might well have. If it had, a resource reference would be to a data-
base connection, and a resource environment reference might be to a table on the data-
base to which you have connected.

The DTD defines resource environment references as follows:

<!ELEMENT resource-env-ref (
description?, resource-env-ref-name, resource-env-ref-type)>

192 Day 5

07 0672323842 CH05 3/20/02 9:36 AM Page 192

Session EJBs 193

5

The resource-env-ref-name is the name of the reference in the code, less the
java:comp/env prefix, and the resource-env-ref-type is either javax.jms.Queue or
javax.jms.Topic.

The Agency session bean does not have any dependencies on resource environment refer-
ences, so there is no screen shot of the deploytool. However, you will be using resource
environment references on Day 10 when you work with the Java Messaging Service and
Message-driven beans. But (again) as an experiment, try adding an resource environment
reference on the Resource Env. Refs tab. On the JNDI tab (as shown in Figure 5.9), you
should be able to indicate the JNDI name for the administered object. When you have
finished experimenting, delete the resource environment reference.

Deploying the Enterprise Application
The enterprise application can be deployed from deploytool by using the Tools, Deploy
menu option. This causes the bean’s code components to be compiled and the proxy and
home interfaces to be generated and then packaged up into an ejb-jar using information
from the underlying deployment descriptor and auxiliary deployment descriptor. Finally,
the package is deployed across the network to the J2EE RI.

Once deployed, you can run your application. To do this, use
day05\agency\run\runAll.

Stateful Session Bean Lifecycle
Now that you have learned how to specify, implement, and deploy stateless Session
beans, it is time to look at stateful Session beans. As you shall see, there are many simi-
larities (especially with regard to the deployment), but the lifecycle is different and war-
rants close attention.

The client’s view of the lifecycle of a stateful Session bean is identical to that of a state-
less Session bean and, in truth, more closely matches the actual lifecycle as managed by
the container. Figure 5.13 shows this lifecycle.

From the client’s perspective, the bean is simply instantiated when the client calls
create() on the bean’s home interface, and it’s removed when the bean calls remove()
on the bean itself.

The bean’s viewpoint of its lifecycle is as shown in Figure 5.14.

The principle difference between stateful and stateless Session beans is the duration of
the time that the bean is bound to the client. With a stateless Session bean, the duration
was only as long as the time needed to execute the business method. With a stateful
Session bean, however, the bean stays bound until the client releases it. In this way, there
is a quite close correspondence between the client’s and the bean’s perspectives.

07 0672323842 CH05 3/20/02 9:36 AM Page 193

When the client calls create() on the home interface, a Session bean instance is
obtained. Most EJB containers maintain a pool of unbound Session bean instances, so
any unused instance will be chosen. This is then bound to the client. The client can call
business methods on the bean, and because the bean will remain bound, these can legiti-
mately save to instance variables the state pertaining to the client. When the client is
done with the bean, it calls remove() which releases the bean back to the pool of
unbound instances.

194 Day 5

FIGURE 5.13
The client’s view of the
lifecycle of stateful
beans is identical to
that of stateless
Session beans.

Context Set

Ready

create/ejbCreate

deploy/setSessionContext

remove/ejbRemove

business method

FIGURE 5.14
A stateful Session
bean’s view of its life-
cycle includes passiva-
tion and timeouts.

Bound to client

Pooled

Passivated

create/ejbCreate

remove/ejbRemove

pool too small/setSessionContext

[too many active]
/ejbPassivate

[surplus][timeout]

business method[business method or remove
invoked]/ejbActivate

Ready

07 0672323842 CH05 3/20/02 9:36 AM Page 194

Session EJBs 195

5

The EJB specification uses the analogy of a shopping cart, and it is easy to see that
this is a natural fit. In such a case, the client would obtain a shopping cart bean using
create(), call methods such as addItem(), removeItem(), and checkout(), and then
release the bean using remove().

If there are many concurrent clients, the amount of memory to manage all of the clients’
state can become significant. Moreover, there is nothing to prevent a client from acquir-
ing a bean, and then not using it—an abandoned shopping cart in the aisles, if you like.
The EJB specification addresses these issues by defining the notions of passivation and
of timeouts. Passivation allows the EJB container to release the memory used by a bean,
first writing out its internal state to some secondary storage. This is transparent to the
bean’s client; when the bean is next used, the EJB container first activates the bean. How
the EJB container actually implements passivation is not specified, but the specification
does require that the Session bean is serializable, so many implementations will take this
route and serialize the bean to a file. If a bean is not used for longer than its timeout, it
can be timed out and its memory released.

Perhaps surprisingly, the EJB specification does not define how the timeout
for a Session bean reference is specified. Section 7.6.3 of the specification
indicates clearly that its definition is specific to the EJB container. Usually,
the information will be captured in a vendor deployment tool and stored in
an auxiliary deployment descriptor.

Equally, the EJB specification does not indicate how the EJB container should
decide when to passivate beans (though it does suggest that a “least recent-
ly used” strategy can be employed, see section 7.6).

Note

Figure 5.14 showed the bean’s viewpoint of its lifecycle, but the actual lifecycle as man-
aged by the EJB container is likely to be different again. After all, the whole point of
passivation is to reduce the number of bean instances; if the bean was merely “put to
sleep,” that wouldn’t have been accomplished, so Figure 5.15 shows the actual lifecycle
used by many EJB container implementations.

When the EJB container passivates a bean, its state is written out to secondary storage.
The bean instance is then destroyed. If a client whose bean instance has been passivated
invokes a method, the EJB container first re-instantiates the bean by deserializing it from
secondary storage. The business method is then invoked.

07 0672323842 CH05 3/20/02 9:36 AM Page 195

Specifying a Stateful Session Bean
Specifying a stateful Session bean is similar to specifying a stateless Session bean. The
remote interface defines access to the bean by remote clients, and every method of the
remote interface must throw an RemoteException. The primary difference (from a speci-
fication viewpoint) is that there can be multiple create() methods in the home interface.

You will recall that a stateless Session bean allows only for a single create() method in
the home interface, and this corresponds to the ejbCreate() method of the bean itself.
For a stateful Session bean, the create() method can be overloaded, so that the stateful
bean can be given some initial state. From the client’s viewpoint, this is somewhat analo-
gous to invoking a constructor on the bean.

For example, the Advertise bean in the case study is stateful. It represents an advertiser
of job positions. The home interface for this bean is as follows:

package agency;

import java.rmi.*;
import javax.ejb.*;

public interface AdvertiseHome extends EJBHome

196 Day 5

FIGURE 5.15
The actual lifecycle of
stateful Session beans
as managed by the
EJB container is some-
what more complex.

Pooled

Bound to client

Passivating

do/'write out state to secondary storage'

Activating

do/'restore state from secondary storage'

create/ejbCreate

remove/ejbRemove

[pool too small]
/setSessionContext

[too many active]
/ejbPassivate

[business method
invoked && !
timed out]

[surplus]

[timeout]

[state written]

business method

[state restored]/ejbActivate

07 0672323842 CH05 3/20/02 9:36 AM Page 196

Session EJBs 197

5

{
Advertise create (String login) throws RemoteException, CreateException;

}

Obviously, the create() method has a corresponding ejbCreate() method in the
AdvertiseBean class itself. This ejbCreate() method must instantiate the bean with any
appropriate state, as shown in listing 5.4.

LISTING 5.4 AdvertiseBean.ejbCreate() Method

1: package agency;
2: // imports omitted
3:
4: public class AdvertiseBean implements SessionBean
5: {
6: private String login;
7: private String name;
8: private String email;
9: private String[] address;
10: private Collection jobs = new TreeSet();
11:
12: public void ejbCreate (String login) throws CreateException {
13: this.login = login;
14:
15: // database detail not shown
16: name = …;
17: email = …;
18: address[0] = …;
19: address[1] = …;
20: jobs = new TreeSet();
21: while(…) {
22: jobs.add(…);
23: }
24: }
25: }

Alternatively, the EJB specification allows for methods named createXXX() to be
defined in the home interface, with corresponding methods ejbCreateXXX(). These
methods can take parameters if required. Whether you choose to use this facility or just
use regular overloaded versions of create()/ejbCreate() is up to you.

Other than this one change of being able to pass in state in the create() method, there
really is little difference in the specification of a stateful bean compared to that of a state-
less Session bean. The remote interface of the stateful Advertise Session bean is shown
in Listing 5.5.

07 0672323842 CH05 3/20/02 9:36 AM Page 197

LISTING 5.5 The Remote Interface for the Stateful Advertise Bean

1: package agency;
2:
3: import java.rmi.*;
4: import javax.ejb.*;
5:
6: public interface Advertise extends EJBObject
7: {
8: void updateDetails (String name, String email, String[] Address)

➥throws RemoteException;
9: String getName() throws RemoteException;
10: String getEmail() throws RemoteException;
11: String[] getAddress() throws RemoteException;
12: String[] getJobs() throws RemoteException;
13:
14: void createJob (String ref) throws RemoteException,

➥DuplicateException, CreateException;
15: void deleteJob (String ref) throws RemoteException, NotFoundException;
16: }

The ejbCreate() method from the home interface supplies the information to the bean
so that it can retrieve the data about the advertiser from the database. The remote inter-
face allows this information to be accessed and be updated.

Implementing a Stateful Session Bean
When implementing a stateful Session bean, there are a number of issues that you must
keep in mind. They are discussed in this section.

Passivation
Unlike stateless Session beans, stateful Session beans are at liberty to store client-
specific state information in instance variables. However, because your bean may be pas-
sivated, any instance variables you define must be either primitives, references to serial-
izable objects, or—failing that—be transient.

Of course, any transient variables will be reset to null if the bean is passivated and
then re-activated, so your implementation will need to deal with this. Classes that are not
serializable often depend in some way on the environment, such as an open
java.net.Socket, so that your bean can act as a network client to some service. The
general approach to dealing with this is to store other data that is serializable in instance
variables during the ejbPassivate() method. Then, the non-serializable reference can
be re-instantiated in the ejbActivate() method using this other data.

198 Day 5

07 0672323842 CH05 3/20/02 9:36 AM Page 198

Session EJBs 199

5

For example, in the case of a Socket, your bean could hold a String and an int repre-
senting the hostname and the port number of the socket. The instance variables and
ejbActivate() method could would be something like the following:

import java.net.*;
// code omitted.

private transient Socket clientSocket;
private String socketHost;
private int socketPort;
public void ejbActivate() {

this.clientSocket = new Socket(socketHost, socketPort);
}

Although your Session bean must itself be serializable, it is not necessary to explicitly
implement the java.io.Serializable interface. This is because the
javax.ejb.SessionBean interface extends from Serializable (by way of its super-
interface, javax.ejb.EnterpriseBean).

Given that passivation causes quite a few implementation headaches, some
commentators have asked why the EJB specification goes to such lengths to
define a passivation mechanism. After all, operating systems are very good
at paging memory to disk, and this is all that the “secondary storage” is
really accomplishing.

These are good questions, with no ready answers. But if you would rather
have the operating system do the work and keep your beans simple, just
configure your beans with a very high passivation threshold.

Tip

You may be wondering how to handle passivation in a stateful Session bean that has a
reference to a home or remote interface of another EJB, a javax.sql.DataSource or
some other resource connection factory. After all, none of these references may be serial-
izable. Luckily, though, the EJB specification puts the onus for worrying about these ref-
erences on the EJB container (section 7.4.1). In other words, your bean is at liberty to
hold references to any of these types of objects, and you don’t need to care whether they
are serializable. Of course, most EJB container vendors are likely to comply with this
part of the specification by making sure that these objects are serializable.

Timeouts
Another difference between stateful and stateless Session beans is that stateful Session
beans may timeout. If a bean is timed out, the client’s reference is no longer valid, and any
further invocations on that reference will result in a java.rmi.NoSuchObjectException for
remote clients.

07 0672323842 CH05 3/20/02 9:36 AM Page 199

You should note from Figure 5.14 that if a bean times out, its ejbRemove() method will
not be called. This means that you shouldn’t adopt a convention of acquiring external
resources in ejbCreate() with a view to releasing them in ejbRemove(). Even releasing
the resources in ejbPassivate() is not enough, because a bean can be timed out even
from its ready state.

200 Day 5

Don’t confuse passivation and timeout. An EJB container might implement
passivation using an LRU strategy and allow a bean timeout to be specified
in seconds. If the EJB container is not busy, a bean will not be passivated
according to the LRU strategy, but it may hit its timeout nevertheless.

Caution

Chaining State
It is generally a bad idea to have more than one stateful Session bean involved in any
conversation, because no matter which way you cut it, there’s always the chance that one
of them will time out, preventing the other from completing.

To see this, suppose the client calls stateful Session A, which, in turn, uses the services
of stateful Session B. There are two cases—the timeout of A is larger than that of B, or
the timeout is less than that of B. Taking each in turn

• Suppose that the timeout of Session bean A is 30 minutes and that of Session bean
B is 20 minutes. The client makes a call on A at time t1=0, which then calls B. If
the client calls A at time t2 = t1 + 25 minutes, A’s call to B will fail because B will
have timed out.

• Suppose now that the timeout of Session bean A is 20 minutes, and that of Session
bean B is 30 minutes. The client makes a call on A at time t1=0, which then calls
B. The client then calls A again at time t2 = t1 + 19 minutes, although for this call,
A does not need to call B to service the request. If the client calls A again at time
t3 = t2 + 19 minutes = t1 + 38 minutes, A’s call to B will fail because B was last
invoked more than 30 minutes ago and will have timed out.

A similar problem can occur with session beans and servlets; this is discussed on Day 12.

Configuring and Deploying a Stateful
Session Bean

Configuring and deploying a stateful Session bean is just the same as deploying a state-
less Session bean. The only difference is that the session-type element in the deploy-
ment descriptor will be set to Stateful.

07 0672323842 CH05 3/20/02 9:37 AM Page 200

Session EJBs 201

5

Client’s View
Yesterday, you saw how to use JNDI to obtain a reference to a Session bean home and
how to obtain a Session bean by calling the appropriate create() method. Now that you
have a full understanding of how Session beans work, there are a few other points that
are worth appreciating.

First, if your client has a reference to a stateless Session bean, although it should call
remove() when it is finished with the EJB, this method call doesn’t actually do particu-
larly much. In particular, it won’t release any bean resources itself, as shown clearly by
the state chart diagrams in Figure 5.3. What this will do is allow the EJB container to
remove the EJBObject proxy for the bean.

Conversely, calling create() for a stateless Session bean doesn’t necessarily cause
ejbCreate() to be called on the underlying bean, although the client will have a refer-
ence to an EJBObject after making this call.

One benefit of stateless beans over stateful is that they are more resilient. That is, if the
client invokes a method on a stateless bean and it throws an exception, the client can still
use their reference to try again. The client does not need to discard the reference and
obtain a new one from the home interface. This is because, behind the scene, the EJB
container will have discarded the bean that threw the exception, but can simply select
another bean from the pool to service the client’s retry attempt. This is safe to do because
the stateless Session beans have no state. Of course, it is possible that the retry attempt
might fail; it would depend on the underlying cause of the exception.

In contrast, if a stateful Session bean throws an exception, the client must obtain a new
Session bean reference and start its conversation over again. This is because the EJB con-
tainer will have discarded the Session bean that threw the exception, discarding all the
client’s conversational state in the process.

Sometimes, a client may end up having two references to a Session bean. It may have
obtained them both from other method calls, for example. More precisely, the client will
have two RMI stubs to Session beans. If the client wants to determine whether these two
stubs refer to the same Session bean, it should not call the equals() method. This almost
certainly will not return true. Instead, the client should call isIdentical(EJBObject) on
the reference. This indicates whether both stubs refer to the same Session bean. Note that
two references to the same stateless Session bean will always return true, because—at
least conceptually—there is only a single instance (see EJB specification, section 7.5.6).

Earlier today, you saw the different types of exceptions that a bean can throw. If a bean
throws an application exception, the EJB container will propagate it back to the client. If
the bean throws an EJBException (representing a system exception), the EJB container
will throw a java.rmi.RemoteException in turn.

07 0672323842 CH05 3/20/02 9:37 AM Page 201

For the client, any RemoteException represents a severe problem. It doesn’t really matter
to the client if the RemoteException has arisen because of a network problem or because
of a problem with a bean. Either way, it will be unable to recover the problem.

Table 5.1 lists the system exceptions shown in Figure 5.5 and indicates how each is
raised and thrown. As you will see, the majority are raised when the EJB container itself
has detected a problem with either transactions or security. You will learn more about
transactions on Day 8, and more about security a week later on Day 15, “Security.”

TABLE 5.1 System Exceptions Are Thrown in a Variety of Situations

What Event Client Receives

Any bean Throws javax.ejb.EJBException java.rmi.

(or any subclass) RemoteException

BMP Entity bean Throws NoSuchEntityException java.rmi.NoSuchObject

Exception

Container When client invokes method on a java.rmi.NoSuchObject

reference to a Session bean that no Exception

longer exists

When client calls a method without javax.transaction.

a transaction context TransactionRequired

Exception

When client has insufficient security access java.rmi.

AccessException

When transaction needs to be rolled back javax.transaction.

TransactionRolledBack

Exception

If you are wondering what BMP Entity beans are, the phrase is an abbreviation of “bean-
managed persistence Entity beans.” You’ll be learning about those tomorrow.

Patterns and Idioms
You now know all the important theory behind writing Session beans, but it’s always
helpful to have one or two real-world insights into how to write them in practice.
Patterns (or more fully, “design patterns”) are documented pearls of wisdom. Idioms are
much the same thing, although they tend to be more lower-level and code-oriented.

On Day 18, many of the design patterns discussed piecemeal throughout the book will be
brought together to see how they apply to all aspects to the J2EE environment. Some of

202 Day 5

07 0672323842 CH05 3/20/02 9:37 AM Page 202

Session EJBs 203

5

those given here will be presented more fully. But for now, there are patterns and idioms
specific to writing session EJBs. Reading this section might save you some time.

Business Interface
One of the peculiarities of the EJB architecture is that there is no direct link between the
defined remote interface and the bean that provides the implementation. For example, the
remote interface Advertise is not implemented by AdvertiseBean. However, no link is
needed because the EJB specification declares that it is the vendor’s deployment tools
that are responsible for ensuring that every method defined in the remote interface has a
corresponding method in the bean, and that the required methods for the home interfaces
also exist.

However, this means that any mismatches between the interface and the bean’s imple-
mentation will be picked up not during compilation, but during deployment. From a
practical point of view, this can make debugging the problem harder. After all, you are
probably accomplished at reading compile errors and figuring out what the cause of the
problem is. But you won’t (at least initially) be familiar with the errors that the vendor’s
deployment tool throws up when it announces that your bean does not comply with the
EJB specification.

One idiom that solves this is to create an additional interface that defines just the busi-
ness methods. This interface is sometimes called the business interface. Then, the bean
implements the business interface, while the remote interface for the bean extends that
business interface.

This hasn’t been done in the case study, so as not to complicate and confuse. However, it
would be simple enough to introduce a business interface. Figure 5.16 shows a UML
class diagram that illustrates this for the Advertise bean.

With this idiom, if there is a mismatch between the interface and the bean, it will be
picked up during compile time.

There is just one subtlety of which you must be aware. When applying this technique to
the remote interface of a bean, the methods in the business interface must all throw
java.rmi.RemoteException. This is because the vendor-generated EJBObject for the
remote interface must follow the rules of remote objects, so that every one of its public
methods throws the RemoteException. This applies also to the inherited methods of the
business interface. The AdvertiseBus interface is shown in Listing 5.6.

07 0672323842 CH05 3/20/02 9:37 AM Page 203

LISTING 5.6 AdvertiseBus Interface

1: package agency;
2: import javax.ejb.*;
3: import java.rmi.RemoteException;
4:
5: public interface AdvertiseBus {
6: void updateDetails (String name, String email, String[] address)

➥ throws RemoteException;
7: String getName() throws RemoteException;
8: String getEmail() throws RemoteException;
9: String[] getAddress() throws RemoteException;
10: String[] getJobs() throws RemoteException;
11: void createJob (String ref) throws RemoteException,

➥ DuplicateException, CreateException;
12: void deleteJob (String ref)

➥throws java.rmi.RemoteException, NotFoundException;
13: }

Adapter
As you write your EJBs, you will quickly find yourself writing reams of “boilerplate”
code. For example, the setSessionContext() method almost always just saves the

204 Day 5

FIGURE 5.16
Defining a business
interface means that
the bean can imple-
ment that interface.

com.mycompany.agency.AdvertiseBean
com.mycompany.agency.Advertise

com.mycompany.agency.AdvertiseHome

dataSource
login
name
email
address
jobs
ctx

loadJobList
error
closeConnection
ejbPassivate
ejbActivate
ejbRemove
setSessionContext

ejbCreate

updateDetails
getLogin
getName
getEmail
getAddress
getJobs
createJob
deleteJob

interface
com.mycompany.agency.Advertise

interface
com.mycompany.agency.AdvertiseHome

create

interface
AdvertiseBus

updateDetails
getName
getEmail
getAddress
getJobs
createJob
deleteJob

interface
SessionBean

interface
EJBHome

interface
EJBObject

interface
java.rmi.Remote !

07 0672323842 CH05 3/20/02 9:37 AM Page 204

Session EJBs 205

5

session context to an instance variable. The ejbActivate() and ejbPassivate() meth-
ods often do nothing at all.

If you have written any GUI applications using AWT or Swing, you almost certainly will
have used the various Adapter classes in the java.awt.event package. For example, the
java.awt.event.WindowAdapter class provides empty implementations of the seven
methods in the java.awt.event.WindowListener interface.

Adapter classes can also provide common default functionality. For example, the
AbstractList class acts as an adapter to the List interface in the java.util package,
providing the majority of the implementation required. Although the List interface
defines 25 methods in total, the AbstractList class implements all but two of them.

Creating an adapter for your Session beans can save you time in the long run. You can
provide default implementations for many of the lifecycle methods, and can also provide
additional methods. For example, you might decide to provide a log() method that will
forward any log messages to some remote URL or to a logging database.

Coarse-Grained
Remote Session beans should offer coarse-grained services. In other words, the services
offered by a remote Session bean should do large(-ish) chunks of work. The overhead of
the network to use these beans then becomes much less significant.

There are a number of approaches for arranging this. One approach is to create value
object classes. These are serializable objects that encapsulate enough information for the
Session bean to provide some service. The client populates these value objects and then
sends them across the wire as part of the remote method call. The Session bean then
interrogates its copy of the value object to accomplish its work. You will learn about the
value object pattern and some related patterns more fully on Day 18.

The value object idea as described is to encapsulate enough data in an object such that
the Session bean can do a reasonable chunk of work, but the responsibility for figuring
out what that chunk of work is still resides with the Session bean. A natural extension to
this concept is to place that responsibility into the value object itself. In effect, the value
object represents the action or command to be invoked. Indeed, the name of this design
pattern is the Command design pattern.

Gotchas
As you start to implement your own Session beans, there’s bound to be a couple of
aspects that will trip you up. The following quick checklist of such “gotchas” should
keep you on the straight-and-narrow:

07 0672323842 CH05 3/20/02 9:37 AM Page 205

• When you look up resources from JNDI, you should use a string of the form
java:comp/env/XXX. However, in the deployment descriptor, only the XXX is need-
ed; the java:comp/env prefix is implicit.

• Perhaps obvious, but don’t use ejb as a prefix for naming your business methods.
Names of that format are reserved for the EJB architecture callback methods.

• Don’t implement the remote interface in your bean! If you do so, your bean could
inadvertently return itself (Java keyword this) as a return type. If a client starts
invoking methods on this reference, it will bypass all of the EJB container’s trans-
action and security control that is managed within the EJBObject proxy to the
bean. Instead, use the business interface idiom mentioned earlier today.

• The EJBObject interface defines a getPrimaryKey() method; the EJBHome inter-
face defines a remove(Object primaryKey) method. Attempting to call either of
these for a Session bean will immediately throw a RemoteException, so don’t do
it. They are there only for Entity beans, discussed tomorrow.

• You’ll learn more about transactions on Day 8, but for now, remember that you
should not perform work that updates a database in the ejbCreate or ejbRemove
method, or indeed the other ejbXXX() lifecycle methods. This is because the trans-
action context is undefined. See section 7.5.7 of the EJB specification for more
details.

• Don’t try to have a Session bean call itself through its own EJBObject; it won’t
work. This is prevented so that the bean developer does not need to worry about
multiple threads. In other words, Session beans are non-reentrant. Of course, your
bean can call methods on itself directly through its implicit this reference.

• An ejbCreate() is required for stateless Session beans. It isn’t in the
javax.ejb.SessionBean interface because stateful Session beans won’t necessari-
ly have a no-arg create() method.

Summary
You’ve covered a lot of ground today. You’ve learned that there are stateless and stateful
Session beans, and each has their own lifecycle. You’ve seen in detail how to specify a
Session bean by defining its home and remote interfaces and how to implement a bean
by providing corresponding implementations for the methods in the home and remote
interfaces, as well as how to implement the lifecycle methods as defined in the
javax.ejb.SessionBean interface.

You’ve also learned in detail how the deployment descriptor provides configuration
information describing the bean’s characteristics and dependencies to the EJB container.

206 Day 5

07 0672323842 CH05 3/20/02 9:37 AM Page 206

Session EJBs 207

5

Additionally, you’ve seen that those dependencies are logical dependencies that must be
mapped by the EJB deployer role to the physical resources defined through vendor-
specific auxiliary deployment descriptor.

Finally, you’ve learned about some common techniques, design patterns, and idioms that
can simplify your coding and that represent best practice.

Q&A
Q What sort of state can stateless Session beans have?

A Somewhat surprisingly, stateless Session beans can store state, but it must be inde-
pendent of the client.

Q What is the prefix that will appear in all JNDI lookups?

A The java:comp/env context is guaranteed to exist in an J2EE environment.

Q How are EJB system exceptions different from regular Java exceptions?

A RemoteExceptions can be caused by network problems, which, in the context of
distributed J2EE enterprise applications, represent a system-level rather than
application-level exception.

Q How is the timeout for a stateful Session bean defined?

A Surprisingly, the mechanism for specifying the timeout interval for a stateful
Session bean is not mandated in the EJB specification.

Exercises
The exercise starts with a version of Day 5’s job agency case study that already provides
a number of beans:

• There is a stateless Agency bean that returns lists of all applications, customers,
locations and skills in the database.

• There is a stateful Advertise bean that allows advertisers (of jobs) to update their
name, e-mail, and address, and to manage the jobs they have posted to the job
agency.

• There is a stateful AdvertiseJob bean that represents an advertised job. This
allows the description, location, and required skills to be maintained.

However, it does not define any bean for the potential job applicants at this point. What
is required is a Register bean that allows applicants to register themselves with the job
agency. The exercise is to implement the RegisterBean, define this new bean within the
supplied agency.ear enterprise application, configure the bean, deploy your bean to the
J2EE RI, and finally test with either RegisterClient or AllClients (supplied).

07 0672323842 CH05 3/20/02 9:37 AM Page 207

Under the day05\exercise directory, you will find a number of subdirectories, including
the following:

• src The source code for the EJBs and clients.

• classes Directory to hold the compiled classes; empty.

• build Batch scripts (for Windows and Unix) to compile the source into the class-
es directory. The scripts are named compileXXX.

• jar Holds agency.ear—the agency enterprise application. Also holds
agencyClient.jar, the client-side JAR file optionally generated when deploying
EAR. This directory also holds some intermediary JAR files that are used only to
create the previous two JAR files.

• run Batch scripts (for Windows and Unix) to run the JARs. Use the files in the
jar directory.

The Register and RegisterHome interfaces have been provided for you, under the src
directory. For example, the Register interface is as follows:

package agency;

import java.rmi.*;
import javax.ejb.*;

public interface Register extends EJBObject
{
void updateDetails (String name, String email,

➥ String location, String summary, String[] skills)
➥ throws RemoteException;

String getLogin() throws RemoteException;
String getName() throws RemoteException;
String getEmail() throws RemoteException;
String getLocation() throws RemoteException;
String getSummary() throws RemoteException;
String[] getSkills() throws RemoteException;

}

Today’s exercise is to implement the RegisterBean, configure an appropriate deploy-
ment descriptor, deploy your bean to the J2EE RI, and then test with the
RegisterClient. The bean will need to be stateful.

If you need some pointers as to how to go about this, read on.

1. Create a RegisterBean.java file and place this in day05\exercise\src\agency.

2. Implement RegisterBean to support the Register and RegisterHome interfaces
supplied. Base your implementation on that of AdvertiseBean, if you want.

208 Day 5

07 0672323842 CH05 3/20/02 9:37 AM Page 208

Session EJBs 209

5

3. Compile the RegisterBean code and the other interfaces, using the
build\compileAgencySessionEjbs script. Note that this expects the JAVA_HOME
and J2EE_HOME environment variables to be set.

4. In deploytool, open up the existing enterprise application
(day05\exercise\jar\agency.ear). Then, add the your Register bean to the
existing Agency ejb-jar by using File, New, Enterprise Bean. Specify the contents
to include all the required class files.

5. Configure the deployment descriptor for the RegisterBean appropriately. The bean
will need to be stateful. You will need to specify resource references and JNDI
names for the RegisterBean; bind the bean to a name of ejb/Register.

6. For the RegisterClient application client, configure the EJB reference appropri-
ately. This has a coded name of java:comp/env/ejb/Register to refer to the
RegisterBean.

7. Deploy your bean by selecting it and using Tools, Deploy. As you do this, you will
need to define the appropriate JNDI mappings (mapping the logical EJB references
to the physical runtime environment). Request a client JAR file to be created,
called agencyClient.jar, to reside in the JAR directory.

8. To test out your bean, compile AllClients using the
build\buildAllClientsClient script. Then run the client using run\runAll.

You may also have noticed that in the build directory there are several other scripts apart
from those to compile the source. In fact, these can be used to recreate the agency.ear
file using the deployment descriptors held in the dd directory. You will be learning more
about this approach tomorrow. For now, all that you need to know is that the agency.ear
file can be created automatically by running the bat\buildall script. It requires that the
RegisterBean class exist to run successfully. You can then use deploytool to manually
define and configure the RegisterBean within the EAR.

The solution to the exercise is under day05\agency.

07 0672323842 CH05 3/20/02 9:37 AM Page 209

07 0672323842 CH05 3/20/02 9:37 AM Page 210

DAY 6

WEEK 1

Entity EJBs
Yesterday, you learned about Session beans, and how they provide a service to
a specific client.

The major topics that you will be covering today are

• How Entity beans represent domain objects, providing services that can
be used by all clients

• Two types of Entity beans—bean-managed persistence (BMP) and
container-managed persistence (CMP)

• How EJBs can provide a local interface in addition to their remote inter-
face

• Specifying, implementing, configuring, and deploying BMP Entity beans

• Configuring and deploying EJBs from the command line rather than
using a GUI

Overview
When building IT systems, the functionality required of the application must
be specified and the business objects within the domain must be identified.

08 0672323842 CH06 3/20/02 9:30 AM Page 211

In “traditional” client/server systems, the application’s functionality can be implemented
in the front-end application or perhaps using database stored procedures, and the domain
objects are usually tables within an RDBMS. In building an EJB-based system, the appli-
cation’s functionality corresponds to Session beans, and the domain objects correspond
to Entity beans.

You learned yesterday that Session beans take on the responsibility of implementing the
application’s business functionality. There will still be a presentation layer to display the
state of those Session beans, but its detail is unimportant in the larger scheme of things.

In the same way, Entity beans take on the responsibility of representing the domain data.
There will still a persistent data store to manage the data, almost certainly an RDBMS,
but the Entity beans abstract out and hide the detail of the persistence mechanism.

The N-tier Architecture Revisited
On the very first day, you were introduced to n-tier architectures, with the business logic
residing in its own tier. With an EJB-based system, both Session and Entity beans are
objects, so the business logic could be reside in either of them. In practice, the business
logic will be split over both, but to make the correct decision, it is worthwhile analyzing
what is meant by that phrase “business logic.”

Business logic refers to the collection of rules, constraints, procedures and practices put
in place by the business users to conduct their business. Some of the rules and con-
straints cannot be changed by the business, due to the domain in which the business is
performed. For example, there could be legal constraints and obligations. The procedures
and practices represent the (one particular) way in which business users have chosen to
conduct business.

Rules and constraints generally apply across all applications. In other words, it doesn’t
matter what the business is trying to accomplish, they will still need to comply with such
rules and constraints. This sort of business logic is best implemented through Entity
beans, because Entity beans are domain objects that can be reused in many different
applications.

In the business world, procedures and practices are usually the expression of some sort of
application, so Session beans are the best vehicle to implement this type of business
logic. Indeed, introducing computerized systems often changes these procedures and
practices (hopefully for the better, sometimes for the worse) because computers make
available new ways of accomplishing tasks.

• Session beans should have the business logic of a specific application—in other
words, application logic. The functionality provided should allow the user to
accomplish some goal.

212 Day 6

08 0672323842 CH06 3/20/02 9:30 AM Page 212

Entity EJBs 213

6

• Entity beans represent domain objects and should have business logic that is
applicable for all applications—in other words, domain logic. Usually, this logic
will be expressed in terms of rules and constraints.

If there is any doubt as to where the functionality should be placed, it is safer to place it
with the Session bean. It can always be moved later if it is found to be truly re-usable
across applications.

Figure 6.1 shows a UML component diagram to illustrate that there are at least four logi-
cal layers in an EJB-based system. Normally, at least some of these layers will be on the
same physical tier.

FIGURE 6.1
EJBs separate out
business logic into
application and
domain logic.

«session EJB»
application logic

«entity EJB»
domain logic

«database»
persistence layer

«session EJB»
application logic

«swing»
user interface

«servlet»
user interface

«servlet»
user interface

Comparison with RDBMS Technology
It’s natural to compare Entity beans with relational databases, because there is a signifi-
cant overlap in the objectives of both technologies.

If you like to think in client/server terms, you could think of Session beans as being an
extension of the “client”, and Entity beans as being an extension of the “server”. It’s
important to realize that many clients can share a given Entity bean instance at the same
time, just as many database clients can read some row from a database table at the same
time.

You can also think of Entity beans as a high-performance data cache. Most RDBMS’
store data pages or blocks in a cache so that the most commonly used rows in tables can
be read directly from memory rather than from disk. Although the EJB specification does
not require it, many EJB containers adopt a strategy such that Entity beans are also
cached, so the data that they represent can also be read directly from memory. The
advantage of the Entity bean cache over an RDBMS’ data cache is that the Entity beans
already have semantic meaning and can be used directly. In contrast, data read from an
RDBMS’ data cache needs to be reconstituted in some way before it can be used.

08 0672323842 CH06 3/20/02 9:30 AM Page 213

Identifying Entities
At their simplest, Entity beans can correspond to nothing more complex than a row in a
database; any data that might reasonably be expected to exist in a relational database
table is a candidate. This makes examples of Entity beans easy to come by:

• A Customer Entity bean would correspond to a row in a customer table keyed by
customer_num. The list of contact phone numbers for that Customer (in a
customer_phone_number detail table keyed on (customer_num, phone_num) would
also be part of the Customer Entity bean.

• An Invoice Entity bean might correspond to data in the order and order_detail
tables.

• An Employee Entity bean could be persisted in an employee table. The employee’s
salary history might also be part of the Entity bean.

Identifying entities can be made easier if a proper discipline is adopted with relational
modeling of the database. Of course, many databases just evolve over time as developers
add tables to support new requirements. Ideally, though, there should be a logical data-
base model and a physical database model. The former is usually captured as an Entity
relationship diagram (ERD) with entities, attributes, and relationships. Relational data-
base theory defines a process called normalization and different normal forms that aim to
eliminate data redundancy. It is this stage at which the normalization rules are applied, to
get to third normal form (at least).

214 Day 6

This isn’t a book on relational database design, but here’s a cute phrase that
you can use to get you to third normal form: “every non-key attribute
depends upon the key, the whole key, and nothing but the key (so help me
Codd!).” If you are wondering who Codd is, that’s Dr. Codd who in the early
1970s laid down the mathematical foundations for relational theory.

Tip

Converting a logical database model to a physical model is in many ways mechanical.
Every entity becomes a table, every attribute becomes a column, and every relationship is
expressed through a foreign key column in the “child” table.

These entities identified in logical data modeling are the very same concepts that should
be expressed as Entity beans. Moreover, one of the key “deliverables” from performing
relational analysis is the selection of the primary key—the attribute or attributes that
uniquely identify an instance. Entity beans also require a primary key to be defined,
and this is manifested either as an existing class (such as java.lang.String or
java.lang.Integer) or a custom-written class for those cases where the key is composite.

08 0672323842 CH06 3/20/02 9:30 AM Page 214

Entity EJBs 215

6

The name often given to such primary key classes is something like BeanPK, although it can
be anything. You can think of the primary key as some object that identifies the bean.

The requirement of a primary key class to identify Entity beans has led to
criticism —in particular, by vendors of object-oriented DBMS—that the tech-
nology is not particularly object-oriented. In an OODBMS, the object does
not need a primary key identifier; it is identified simply by its reference.

Note

Nevertheless, there are some differences between relational entities and Entity beans.
Whereas relational modeling requires that the data is normalized, object modeling places
no such constraints. Indeed, not even first normal form (where every attribute is scalar)
needs to be honored. For example, a Customer Entity bean might have a vector attribute
called phoneNumbers, with a corresponding accessor method getPhoneNumbers() that
returns a java.util.List. In a physical data model, there would need to be a separate
table to hold these phone numbers.

Even with a solid logical data model to guide you, selecting Entity beans is not necessar-
ily straightforward. In particular, choosing the granularity of the entities can be problem-
atic. With the customer example given earlier, the customer_phone table doesn’t really
seem significant enough to be an Entity. It’s just the way in which vector attributes have
to be modeled in relational databases. But what of the invoices? After all, invoices are
sent to customers, and any given invoice relates only to the orders placed by a single cus-
tomer. So perhaps invoices should be considered as just vector attributes of customers,
with a getInvoices() accessor method? On the other hand, many modelers would argue
that the concept of Invoice is significant enough in itself—with its own state, behavior,
and lifecycle—to warrant being represented as its own Entity bean.

Specifying the interfaces should help you decide which is the correct approach. If the
invoice entity really is significant, you will find that the customer’s interface will be bloated
with lots of invoice-related methods. At this point, you can tease the two entity objects apart.

If you read old text books on EJB design, you will find that the traditional
(pre EJB 2.0) advice for Entity beans is that they should be coarse-grained—
in other words, that data from several tables correspond to a single entity.
This advice arose because of a combination of factors relating to pre EJB 2.0
Entity beans, one in particular being that Entity beans had to be remote
(implement the java.rmi.Remote interface).

These factors are no longer true, so the advice is out of date. Fine-grained
Entity beans are perfectly feasible for an EJB container that supports the EJB
2.0 specification.

Caution

08 0672323842 CH06 3/20/02 9:30 AM Page 215

The javax.ejb Package for Entity Beans
Yesterday, you saw the interfaces and classes in the javax.ejb package that related to
Session beans. Figure 6.2 shows the interfaces and classes relevant to Entity beans.

216 Day 6

FIGURE 6.2
The javax.ejb inter-
faces and classes per-
taining to Entity beans.

interface
java.rmi.Remote

! interface
EnterpriseBean

interface
EJBMetaData

getEJBHome
getHomeInterfaceClass
getRemoteInterfaceClass
getPrimaryKeyClass
isSession
isStatelessSession

interface
EJBHome

remove
remove
getEJBMetaData
getHomeHandle

interface
EJBContext

getEJBHome
getEJBLocalHome
getEnvironment
getCallerIdentity
getCallerPrincipal
isCallerInRole
isCallerInRole
getUserTransaction
setRollbackOnly
getRollbackOnly

interface
EntityContext

getEJBLocalObject
getEJBObject
getPrimaryKey

interface
EntityBean

setEntityContext
unsetEntityContext
ejbRemove
ejbActivate
ejbPassivate
ejbLoad
ejbStore

interface
EJBObject

getEJBHome
getPrimaryKey
remove
getHandle
isIdentical

interface
EJBLocalObject

getEJBLocalHome
getPrimaryKey
remove
isIdentical

interface
EJBLocalHome

remove

interface
HomeHandle

getEJBHome

interface
Handle

getEJBObject

As you can see, many of the supporting classes are common, which is good news
because that means there’s less to learn. The principle differences are as follows:

• The Entity bean implements javax.ejb.EntityBean rather than
javax.ejb.SessionBean, so there is a different lifecycle.

• The Entity bean is initialized with an EntityContext rather than a
SessionContext. An EntityContext exposes a primary key to the Entity bean, a
concept not applicable to Session beans.

Other details of the javax.ejb interfaces are the same as for Session beans. Briefly,
the home and remote interfaces for the Entity bean are defined by extending EJBHome
and EJBObject, respectively, and the local-home and local interfaces by extending
EJBLocalHome and EJBLocalObject. You will be learning more about local inter-
faces later today, because they are highly relevant to implementing Entity beans.

08 0672323842 CH06 3/20/02 9:30 AM Page 216

Entity EJBs 217

6

The EJBMetaData class provides access to the constituent parts of the Entity bean com-
ponent, and the Handle and HomeHandle interfaces provide the ability to serialize a refer-
ence to a remote bean or home and then to re-instantiate this instance by deserializing
the handle. None of these interfaces is discussed further.

Entity Bean Types
Entity beans represent shared persistent data stored in an RDBMS or other persistent
data store. If the data store is relational, the responsibility for actually performing the
JDBC can be placed either with the bean itself or with the EJB container.

The term for the former is bean-managed persistence (BMP), and for the latter it is
container-managed persistence (CMP).

The EJB specification is very much oriented around relational data stores.
Certainly, container-managed persistence can only be performed through
JDBC javax.sql.DataSource objects, and JDBC is based around ANSI SQL 92.

If using bean-managed persistence, any API can be used to save the bean’s
state to a persistent data store, but even then, the methods that the bean is
required to provide, such as findByPrimaryKey(), still have a relational
nature to them.

Note

Container-managed persistence was part of the EJB 1.1 specification (the predecessor to
the current EJB 2.0), but attracted much criticism in that release. However, it has been
radically overhauled in EJB 2.0, and now works in a fundamentally different way. This is
so much so that the deployment descriptor even has the cmp-version element to indicate
whether the Entity bean has been written under the 1.1 or 2.0 contract. Tomorrow, you
will learn more about CMP 2.0. For the rest of today, however, you will be focusing on
BMP. That way, you’ll have a pleasant surprise when you realize how much of the cod-
ing can be automated using CMP.

Remote Versus Local Interfaces
One of the most significant improvements in the EJB 2.0 specification over previous ver-
sions is the inclusion of local interfaces as well as remote interfaces.

All beans that you have seen on previous days have provided only a remote interface.
That is, both their home and remote interfaces have extended from javax.ejb.EJBHome
and javax.ejbEJBObject, both of which, in turn, extend the java.rmi.Remote interface.

08 0672323842 CH06 3/20/02 9:30 AM Page 217

This ability to invoke methods on a bean without regard for its location is crucial for
Session beans, but for Entity beans it is less useful, even positively harmful. Very often, a
client must deal with many Entity beans to transact some piece of work, and if each of
those Entity beans is remote, this will incur substantial network traffic. There is also the
cost of cloning any serializable objects to enforce the required “pass-by-value” semantics.

Even more frustratingly, the client of the Entity bean may well be a Session bean.
Indeed, it is generally considered bad practice to use anything other than a Session bean
to interact with Entity beans. More often than not, this Session bean will be co-located
(running in the same JVM) as the Entity beans that it is using. The EJB container is
obligated to make all Session-to-Entity bean calls via the network and to clone all serial-
izable objects, just because the Entity beans are remote.

By now, you probably have guessed what local interfaces are. They are alternative non-
remote interfaces that the Entity bean can specify. Again, the home and proxy idea is
used, with the home interface being extended from javax.ejb.EJBLocalHome and the
proxy for the bean extending from javax.ejb.EJBLocalObject. Otherwise though, these
are regular Java interfaces, and the normal “pass by reference” semantics for objects
passed across these interfaces apply.

218 Day 6

“Pass by reference” is a simpler way of saying “object references are passed
by value.”

Note

An Entity bean can provide a regular home/remote interface, or it can provide a local-
home/local interface. Indeed, there is nothing to prevent an Entity bean from offering
both interfaces, although any clients using the remote interface would incur the perfor-
mance costs already noted. Local interfaces are not specific to Entity beans either;
Session beans can also provide local interfaces. For Session beans (especially stateless
Session beans), there might well be reason to offer both a remote and a local interface. In
general, it would be expected for the two interfaces to offer the same sorts of capabilities,
although there is nothing in the EJB specification that enforces this.

Figure 6.3 shows the two sets of interfaces that a bean can provide.

In both cases, the EJB home/local-home and proxy objects take responsibility for securi-
ty (Day 15, “Security”) and transactions (Day 8, “Transactions and Persistence”), while
home/remote interfaces also make the physical location of the bean transparent to the
remote client.

Local interfaces are more than just a performance boost for EJBs though, they are the
cornerstone on which container-managed persistence and also container-managed rela-
tionships (CMR) are founded. You will learn about these in detail tomorrow.

08 0672323842 CH06 3/20/02 9:30 AM Page 218

Entity EJBs 219

6

In the case study and examples for today and tomorrow, you will see that the Entity
beans define only a local interface.

BMP Entity Bean Lifecycle
The lifecycle of both BMP and CMP Entity beans is dictated by the EntityBean inter-
face that the bean must implement. This is shown in Figure 6.4.

FIGURE 6.3
EJBs can have local
and remote interfaces.

bean

remote
stub

local
client

home

remote

local
home

local

location
transparency

security and
transactions

home
stub

remote
stub

FIGURE 6.4
The
javax.ejb.Entity-

Bean interface defines
certain lifecycle meth-
ods that must be imple-
mented by Entity
beans.

interface
java.io.Serializable

!

interface
EntityBean

+setEntityContext(entitycontext:EntityContext):void
+unsetEntityContext():void
+ejbRemove():void
+ejbActivate():void
+ejbPassivate():void
+ejbLoad():void
+ejbStore():void

interface
EnterpriseBean

08 0672323842 CH06 3/20/02 9:30 AM Page 219

However, although the method names are the same, the obligations of BMP versus CMP
Entity beans for each of those methods are different. This section discusses just those
lifecycle methods for BMP Entity beans. The Job Entity bean from the case study will be
predominantly be used for example code.

To start with, the Entity bean must implement the javax.ejb.EntityBean interface, as
demonstrated with the JobBean class:

package data;

// imports omitted
import javax.ejb.*;

public class JobBean implements EntityBean
{

// implementation omitted
}

The lifecycle as perceived by the Entity bean and as managed by the container is as
shown in Figure 6.5.

220 Day 6

FIGURE 6.5
The
javax.ejb.EntityBean

lifecycle allows Entity
beans to be pooled.

Pooled

Cached

Creating

exit/^ejbLocalObject.new()

/ejbActivate

/ejbCreate

/ejbPostCreate

/ejbRemove

/ejbPassivate

[pool too large]
/unsetEntityContext

[pool too small]
/setEntityContext

ejbLoad
/'business method'
ejbStore

/ejbFindAll
/ejbFindByPrimaryKey

The lifecycle is as follows:

• If the EJB container requires an instance of an Entity bean (for example, if the pool
is too small), it will instantiate the bean instance and call its setEntityContext()
method.

08 0672323842 CH06 3/20/02 9:30 AM Page 220

Entity EJBs 221

6

• Pooled instances can service finder methods to locate data within the persistent
data store that represents existing beans. More on these finder methods shortly.

• A bean can be associated with an EJBLocalObject proxy (or EJBObject proxy if
the remote interface is in use) in one of two ways.

First, it can be activated by the container via ejbActivate(). The proxy for the
bean exists but has no associated bean. This could occur if the bean had previously
been passivated and a business method has now been invoked on the proxy. It
could also occur if the bean’s proxy was just returned as the result of a finder
method.

Alternatively, the client may be requesting to create an Entity bean via
ejbCreate() and then ejbPostCreate(). This usually means that the correspond-
ing data has been inserted into the persistent data store.

• When the bean has been associated with its proxy, business methods can be
invoked on it. Before the business method is delegated by the proxy to the bean,
the ejbLoad() lifecycle method will be called, indicating that the bean should re-
load its state from the persistent data store. Immediately after the business method
has completed, the ejbStore() method is called, indicating that the bean should
update the persistent data store with any change in its state.

• Beans can return to the pooled state in one of two ways.

First, they can be passivated via ejbPassivate(). There is usually little to be done
in the lifecycle, because the bean’s state will already have been saved to the persis-
tent data store during the earlier ejbStore() method. So passivation simply means
that the link from the EJBLocalObject proxy to the bean has been severed.

Alternatively, the client may be requesting to remove the create bean via
ejbRemove(). This usually means that the corresponding data in the persistent data
store has been deleted.

• Finally, if the EJB container wants, it can reduce the size of its pool by first calling
unsetEntityContext().

Most commercial EJB containers provide mechanisms to suppress unneces-
sary ejbLoad() and ejbStore() calls. None of these mechanisms are in the
EJB specification, however.

Note

Unlike Session beans, there is no binding of the Entity beans to a specific client; the
bean can be shared by all clients.

08 0672323842 CH06 3/20/02 9:30 AM Page 221

As Figure 6.5 indicated, there are two methods called during the creation of a bean. The
ejbCreate() method is called prior to the EJBLocalObject proxy being made available,
the ejbPostCreate() method is called after the proxy is available. This is shown in the
sequence diagram in Figure 6.6.

222 Day 6

FIGURE 6.6
Both the ejbCreate()
and ejbPostCreate()
lifecycle methods are
called when an Entity
bean is created.

1.3: set local object

1.4.1:[if required] getEJBLocalObject():EJBLocalObject

1.4: ejbPostCreate(ref, customer):void

1: create(ref, customer):JobLocal

jobHome

JobHomeImpl

1.1: pk:=ejbCreate(ref, customer):JobPk

1.2: proxy:=<constructor>(pk)

jobBean

JobBean

ctx

EntityContext

jobProxy

JobImpl

1.2.1: set primary key

localClient

Under BMP, the bean has several tasks to perform when its ejbCreate() method is
called. It should:

• Calculate the value of its primary key (if not passed in as an argument).

• Persist itself to a data store. For a RDBMS, this will most likely be in the form of
an SQL INSERT statement or statements.

• Save the supplied arguments and its primary key to fields.

• Return the primary key.

As Figure 6.6 shows, the returned primary key is passed to the bean’s proxy, and the
proxy continues to hold that primary key, even if the bean is subsequently passivated.
The proxy for the bean is also associated with the context object of the bean.

You can see that the EJBLocalObject proxy holds onto the primary key for
the bean. This allows the bean to be transparently re-loaded if it is passivat-
ed. However, because the EJB container is using primary keys for lookups, it
also means the EJB does not allow primary keys to be modified by the appli-
cation; they must be immutable.

Caution

08 0672323842 CH06 3/20/02 9:30 AM Page 222

Entity EJBs 223

6

The ejbRemove() method is the opposite of the ejbCreate() method; it removes a
bean’s data from the persistent data store. The implementation of ejbCreate() and
ejbRemove() is given in the “Implementing javax.ejb.EntityBean” section later today.

That takes care of creating and removing beans, but what about when a bean is queried
or updated? The most significant of the Entity bean lifecycle methods are the ejbLoad()
and ejbStore()methods. Together, these methods ensure that the Entity bean is kept in
sync with the persistent data store. The ejbLoad() method is called immediately prior to
any business method (so that a query access the most up-to-date data). The ejbStore()
is called after the business method completes (so that if the method updated the bean’s
state, this is reflected in the persistent data store). Figure 6.7 shows this as a UML
sequence diagram.

FIGURE 6.7
The ejbLoad() and
ejbStore() methods
keep the bean in sync
with the persistent data
store.

1.2.1: select … where PK = …

DatabaseDriver

1.4.1: update … where PK = …

jobBean

JobBean

2:[if required] ejbPassivate():void

1.3: businessMethod

1.4: ejbStore():void

1: businessMethod
1.1:[if passivated] ejbActivate():void

1.2: ejbLoad():void

EjbContainer jobProxy

JobImpl
localClient

Again, the actual implementation for these methods is given in the “Implementing
javax.ejb.EntityBean” section later today.

As you will recall, Session beans have ejbActivate() and ejbPassivate() methods,
and so do Entity beans. If the EJB container wants to reduce the number of bean
instances, it can passivate the bean. This is only ever done after an ejbStore(), so the
data represented by the bean is not lost. Also, the proxy for the bean continues to hold
the bean’s primary key, meaning that if the client interacts with the bean (through the
proxy) in the future, the appropriate data can be loaded from the persistent data store.
Generally, then, there is little or nothing to be done when an Entity bean is passivated or
activated.

08 0672323842 CH06 3/20/02 9:30 AM Page 223

These lifecycle methods allow new beans (and data in the persistent data store) to be cre-
ated or removed and updating existing beans, but what about actually finding beans that
already exist? In other words, in JDBC terms, you have seen the lifecycle methods that
correspond to SQL INSERT, DELETE, and UPDATE statements, but what of an SQL SELECT
statement? Well, this is accomplished by the finder methods. The EJB specification
requires at least one finder method, whose name must be ejbFindByPrimaryKey(), and
allows other finder methods, whose names must begin ejbFind. These methods have cor-
responding methods in the local-home interface, so you’ll be learning about them shortly
as part of specifying and implementing the bean.

One obvious question arises, “When the client invokes the finder method on the home
interface, which bean actually performs the ejbFindXxx() method?” The answer is perhaps
a little unexpected; any unused (that is, pooled) bean will be used by the EJB container.

Learning all these lifecycle methods for both Entity and Session beans can be somewhat
overwhelming at first, made all the more complicated because some method names
appear for both bean types but imply different responsibilities. To clarify matters, Table
6.1 compares the two sets of lifecycle methods and identifies those responsibilities.

TABLE 6.1 Responsibilities of Session and Entity Beans Sit in Different Lifecycle Methods

Lifecycle Method Session Bean Entity Bean

setXxxContext() Set context Set context

unsetXxxContext() N/A Unset context

ejbFindByPrimaryKey() N/A Acquire reference to proxy

ejbCreate() Acquire reference to proxy a) Insert data to persistent data store
b) Acquire reference to proxy

ejbPostCreate() N/A Access proxy if necessary

ejbActivate() a) Loaded from (temporary) Obtain environmental resources
data store
b) Obtain environmental
resources

ejbPassivate() a) Saved to (temporary) Release environmental resources
data store;
b) Release environmental
resources

ejbLoad() N/A Load from (persistent) data store

ejbStore() N/A Save to (persistent) data store

ejbRemove() Release reference to proxy a) Delete data from persistent data
store
b) Release reference to proxy

224 Day 6

08 0672323842 CH06 3/20/02 9:30 AM Page 224

Entity EJBs 225

6

Specifying a BMP Entity Bean
Following the pattern of Session beans, specifying an Entity bean involves defining the
local-home and the local interface:

• The local-home interface extends javax.ejb.EJBLocalHome.

• The local interface extends javax.ejb.EJBLocalObject.

A discussion on each of these interfaces follows.

Local-Home Interface
Listing 6.1 shows the complete JobLocalHome interface as an example.

LISTING 6.1 JobLocalHome Interface

1: package data;
2:
3: import java.rmi.*;
4: import java.util.*;
5: import javax.ejb.*;
6:
7: public interface JobLocalHome extends EJBLocalHome
8: {
9: JobLocal create (String ref, String customer) throws CreateException;
10: JobLocal findByPrimaryKey(JobPK key) throws FinderException;
11: Collection findByCustomer(String customer) throws FinderException;
12: Collection findByLocation(String location) throws FinderException;
13: void deleteByCustomer(String customer);
14: }

Each of these methods has a corresponding method in the bean class itself. Taking the
JobBean code as an example:

• The create(String ref, String customer) method in JobBean corresponds to
ejbCreate(String ref, String customer) in the JobLocalHome interface.

• The ejbFindByPrimaryKey(String name) method in JobBean corresponds to
findByPrimaryKey(String name) in the JobLocalHome interface.

• The ejbFindByCustomer(String customer) method in JobBean corresponds to
findbyCustomer(String customer) in the JobLocalHome interface.

• The ejbHomeDeleteByCustomer(String customer) in JobBean corresponds to
deleteByCustomer(String customer) in the JobLocalHome interface.

08 0672323842 CH06 3/20/02 9:30 AM Page 225

This seems straight-forward enough, but note that the return types for the bean’s
ejbCreate() and ejbFindXxx() methods are different from the return types of the meth-
ods in the local-home interface. Specifically, while the bean returns (to the EJB contain-
er) either primary key objects or Collections of primary key objects, the local-home
interface methods return (to the client) either local proxies (that is, instances of objects
that implement the JobLocal interface, for the example) or Collections of such.

Create and Remove Methods
The list of exceptions thrown by the local-home methods and the bean’s corresponding
methods should match in each case. For the createXXX() method, the list should be the
union of the exceptions thrown by both ejbCreateXXX() and ejbPostCreateXXX(). If a
home and a remote interface are being provided for the Entity bean, the
java.rmi.RemoteException must be declared for the methods of the home interface.

As well as the create() method, the local-home interface inherits a remove(Object o)
method from javax.ejb.EJBLocalHome. This corresponds to the ejbRemove() lifecycle
method of the bean itself.

Finder Methods
Finder methods in the bean return either a single primary key (if a single bean matches
the underlying query) or a java.util.Collection of primary keys (if there is more than
one matching bean). The ejbFindByPrimaryKey() method is always required to be one
of the bean’s methods, although it is not part of the EntityBean interface. This is
because the argument type and return type will depend upon the bean.

226 Day 6

Note that for home methods discussed shortly, the convention is to append
ejbHome, not just ejb, to the bean’s method name.Note

It is also possible for finder methods to return java.util.Enumerations. This
dates from EJB 1.0 before the Java Collections API was introduced in J2SE
1.2 and should not be used.

Note

Obviously, to specify the findByPrimaryKey() method, the primary key of the Entity
bean must have been identified. As was noted earlier today, if persisting to an RDBMS,
identifying the primary key is probably quite easy, because the primary key will corre-
spond to the columns of the primary key of the underlying RDBMS table. A custom-
developed primary key class is needed when two or more fields identify the bean; other-
wise, the type of the single field of the bean that represents the key is used.

08 0672323842 CH06 3/20/02 9:30 AM Page 226

Entity EJBs 227

6

Custom Primary Key Classes
As noted earlier, the primary key can be either a field of the bean (in which case, the pri-
mary key class is just the class of that field) or can be a custom-developed class. The lat-
ter is required if more than one field is needed to identify the bean (and can be used even
for single field keys).

For the JobBean, the primary key is a combination of the customer and the job reference
(the customer and ref fields, respectively). Because the primary key is composite, a cus-
tom primary key class is needed; this is the JobPK class.

Custom primary key classes are required to follow a number of rules. Specifically

• The class must implement java.io.Serializable or java.io.Externalizable.

• The values of the class must all be primitives or be references to objects that, in
turn, are serializable.

• The equals() method and the hashCode() methods must be implemented.

• There must be a no-arg constructor (there can also be other constructors that take
arguments, but they would only be provided for convenience).

In other words, the class must be what is sometimes referred to as a value type.

If a single field of the bean is used as the primary key, that field must not be
a primitive type (such as an int or long). Primary key fields must be actual
classes, such as a java.lang.String. Furthermore, the EJB specification does
not allow primary keys to change once assigned, so it is best if the class cho-
sen is immutable.

Note

At least conceptually, value types are immutable (there should be no setter
methods; they cannot be changed). The requirement for a no-arg construc-
tor does prevent this from actually being the case.

Note

Listing 6.2 shows the JobPK primary key class.

LISTING 6.2 JobPK Class Identifies a Job

1: package data;
2:
3: import java.io.*;
4: import javax.ejb.*;
5:

08 0672323842 CH06 3/20/02 9:31 AM Page 227

6: public class JobPK implements Serializable {
7: public String ref;
8: public String customer;
9:
10: public JobPK() {
11: }
12: public JobPK(String ref, String customer) {
13: this.ref = ref;
14: this.customer = customer;
15: }
16:
17: public String getRef() {
18: return ref;
19: }
20: public String getCustomer() {
21: return customer;
22: }
23:
24: public boolean equals(Object obj) {
25: if (obj instanceof JobPK) {
26: JobPK pk = (JobPK)obj;
27: return (pk.ref.equals(ref) && pk.customer.equals(customer));
28: }
29: return false;
30: }
31: public int hashCode() {
32: return (ref.hashCode() ^ customer.hashCode());
33: }
34: public String toString() {
35: return “JobPK: ref=\”” + ref + “\”, customer=\”” +

➥ customer + “\””;

36: }
37: }

Note that the ref and customer fields have public visibility. This is a requirement of the
EJB specification. Each field must correspond—in name and type—to one of the fields
of the bean itself. This might seem like a strange requirement, but is needed by the EJB
container to manage CMP beans.

To implement the equals() method, test that all fields of the object have the same value
as the fields in the provided object. For primitive values, the regular == operator should
be used, but for object references, the equals() method must be called.

To implement the hashCode() method, generate an int value that is based entirely and
deterministically on the value of the fields, such that

if A.equals(B) then A.hashCode() == B.hashCode().

228 Day 6

LISTING 6.2 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 228

Entity EJBs 229

6

There are a couple of ways to accomplish this. A quick way to do this is to convert all
the values of the primary key class’ fields to Strings, concatenate them to a single
String, and then invoke the hashCode() on this resultant string. Alternatively, the
hashCode() values for all of the fields could be or’d together using the ^ operator. At
runtime, this will execute more quickly than the concatenation approach, but it does
mean that the distribution of hashcodes may be less good for primary keys with many
fields. This is the approach used in Listing 6.2.

Creating these primary key classes can be somewhat tedious. But remember
that if there is a single (non-primitive) field in the bean that identifies that
bean, this can be used instead.

Failing that, a single primary key class can be used for multiple beans. For
example, you could create a IntPK class that just encapsulates an int primi-
tive value.

Tip

Home Methods
In addition to finder, create, and remove methods, it is also possible to define home
methods within the local-home interface. These are arbitrary methods that are expected
to perform some business-type functionality related to the set of beans. In other words,
they are an EJB equivalent of Java class methods (defined with the static keyword).

Some common uses for home methods include defining a batch operation to be per-
formed on all bean instances (such as decreasing the price of all catalogue items for a
sale), or various utility methods, such as formatting a bean’s state for a toString()
method.

One question that sometimes arises is whether all database updates should
be performed through Entity bean methods. One example given for a home
method of a bean would be to decrease the price of all catalogue items for
a sale. Iterating over perhaps 10,000 catalogue items and invoking
setPrice(getPrice() * 0.9) is clearly going to cause massive amounts of
SQL hitting the back-end RDBMS (or equivalent persistent data store).

In J2SE programs, a simple update, such as

UPDATE catalogue
set price = price * 0.9

is clearly the way to go. The ejbLoad() lifecycle method will ensure that any
catalog item Entity bean will re-sync its state with the RDBMS.

Caution

08 0672323842 CH06 3/20/02 9:31 AM Page 229

Local Interface
Just as for Session beans with their remote interfaces, the local interface defines the
capabilities of the Entity bean. Because first and foremost an Entity bean represents data,
it is entirely to be expected that many of the methods exposed through the local interface
will be simple getter and setter methods. Listing 6.3 shows the local interface for the Job
bean.

LISTING 6.3 JobLocal Interface

1: package data;
2:
3: import java.rmi.*;
4: import javax.ejb.*;
5:
6: public interface JobLocal extends EJBLocalObject
7: {
8: String getRef();
9: String getCustomer();
10: CustomerLocal getCustomerObj(); // derived
11:
12: void setDescription(String description);
13: String getDescription();
14:
15: void setLocation(LocationLocal location);
16: LocationLocal getLocation();
17:
18: Collection getSkills();
19: void setSkills(Collection skills);
20: }

Note that the setLocation() method accepts a LocationLocal reference rather than,
say, a String containing the name of a location. In other words, the Job bean is defining
its relationships to other beans, in this case the Location bean directly, effectively
enforcing referential integrity. The client of the Job Entity bean is thus required to supply
a valid location or none at all.

This is not to say that Entity beans cannot provide further processing. An example often
quoted might be for a SavingsAccountBean. This might provide withdraw() and
deposit() methods. The withdraw() method might well ensure that the balance can
never go below zero. The bean might also provide an applyInterest() method, but it
almost certainly would not provide a setBalance() method (if only!).

Each of these methods has a corresponding method in the bean itself, and the exceptions
list matches exactly. The implementation is shown in the “Implementing the Local-
Interface Methods” section later today.

230 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 230

Entity EJBs 231

6

Implementing a BMP Entity Bean
Implementing an Entity bean involves providing an implementation for the methods of
the javax.ejb.EntityBean, corresponding methods for each method in the local-home
interface, and a method for each method in the local interface.

Implementing javax.ejb.EntityBean
The setEntityContext() method is a good place to perform JNDI lookups, for example
to acquire a JDBC DataSource reference. Listing 6.4 shows how this is done for the
JobBean code.

LISTING 6.4 JobBean.setEntityContext() Method

1: package data;
2:
3: import javax.ejb.*;
4: import javax.naming.*;
5: import javax.sql.*;
6: // imports omitted
7:
8: public class JobBean implements EntityBean
9: {
10: public void setEntityContext(EntityContext ctx) {
11: this.ctx = ctx;
12: InitialContext ic = null;
13: try {
14: ic = new InitialContext();
15: dataSource = (DataSource)

➥ic.lookup(“java:comp/env/jdbc/Agency”);
16: skillHome = (SkillLocalHome)

➥ic.lookup(“java:comp/env/ejb/SkillLocal”);
17: locationHome = (LocationLocalHome)

➥ic.lookup(“java:comp/env/ejb/LocationLocal”);
18: customerHome = (CustomerLocalHome)

➥ic.lookup(“java:comp/env/ejb/CustomerLocal”);
19: }
20: catch (NamingException ex) {
21: error(“Error looking up depended EJB or resource”,ex);
22: return;
23: }
24: }
25:

Actually, such an SavingsAccountBean might well provide a setBalance()
method, but would restrict access to administrators. You will learn more
about security on Day 15, “Security.”

Note

08 0672323842 CH06 3/20/02 9:31 AM Page 231

26: private Context ctx;
27: private DataSource dataSource
28:
29: // code omitted
30: }

The unsetEntityContext() method (not shown) usually just sets these fields to null.

The ejbLoad() and ejbStore() methods are responsible for synchronizing the bean’s
state with the persistent data store. Listing 6.5 shows these methods for JobBean.

LISTING 6.5 JobBean’s ejbLoad() and ejbStore() Methods

1: package data;
2:
3: import javax.ejb.*;
4: import java.sql.*;
5: // imports omitted
6:
7: public class JobBean implements EntityBean
8: {
9: public void ejbLoad(){
10: JobPK key = (JobPK)ctx.getPrimaryKey();
11: Connection con = null;
12: PreparedStatement stmt = null;
13: ResultSet rs = null;
14: try {
15: con = dataSource.getConnection();
16: stmt = con.prepareStatement(

➥”SELECT description,location
➥ FROM Job
➥ WHERE ref = ? AND customer = ?”);

17: stmt.setString(1, key.getRef());
18: stmt.setString(2, key.getCustomer());
19: rs = stmt.executeQuery();
20: if (!rs.next()) {
21: error(“No data found in ejbLoad for “ + key, null);
22: }
23: this.ref = key.getRef();
24: this.customer = key.getCustomer();
25: this.customerObj =

➥customerHome.findByPrimaryKey(this.customer); // derived
26: this.description = rs.getString(1);
27: String locationName = rs.getString(2);
28: this.location = (locationName != null) ?

➥locationHome.findByPrimaryKey(locationName) : null;
29: // load skills

232 Day 6

LISTING 6.4 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 232

Entity EJBs 233

6

30: stmt = con.prepareStatement(
➥”SELECT job, customer, skill
➥ FROM JobSkill
➥ WHERE job = ? AND customer = ?
➥ ORDER BY skill”);

31: stmt.setString(1, ref);
32: stmt.setString(2, customerObj.getLogin());
33: rs = stmt.executeQuery();
34: List skillNameList = new ArrayList();
35: while (rs.next()) {
36: skillNameList.add(rs.getString(3));
37: }
38: this.skills = skillHome.lookup(skillNameList);
39: }
40: catch (SQLException e) {
41: error(“Error in ejbLoad for “ + key, e);
42: }
43: catch (FinderException e) {
44: error(“Error in ejbLoad (invalid customer or location) for “

➥+ key, e);
45: }
46: finally {
47: closeConnection(con, stmt, rs);
48: }
49: }
50:
51: public void ejbStore(){
52: Connection con = null;
53: PreparedStatement stmt = null;
54: try {
55: con = dataSource.getConnection();
56: stmt = con.prepareStatement(

➥”UPDATE Job
➥ SET description = ?, location = ?
➥ WHERE ref = ? AND customer = ?”);

57: stmt.setString(1, description);
58: if (location != null) {
59: stmt.setString(2, location.getName());
60: } else {
61: stmt.setNull(2, java.sql.Types.VARCHAR);
62: }
63: stmt.setString(3, ref);
64: stmt.setString(4, customerObj.getLogin());
65: stmt.executeUpdate();
66: // delete all skills
67: stmt = con.prepareStatement(

➥”DELETE FROM JobSkill
➥ WHERE job = ? and customer = ?”);

LISTING 6.5 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 233

68: stmt.setString(1, ref);
69: stmt.setString(2, customerObj.getLogin());
70: stmt.executeUpdate();
71: // add back in all skills
72: for (Iterator iter = getSkills().iterator(); iter.hasNext();){
73: SkillLocal skill = (SkillLocal)iter.next();
74: stmt = con.prepareStatement(

➥”INSERT INTO JobSkill (job,customer,skill)
➥ VALUES (?,?,?)”);

75: stmt.setString(1, ref);
76: stmt.setString(2, customerObj.getLogin());
77: stmt.setString(3, skill.getName());
78: stmt.executeUpdate();
79: }
80: }
81: catch (SQLException e) {
82: error(“Error in ejbStore for “ + ref + “,” + customer, e);
83: }
84: finally {
85: closeConnection(con, stmt, null);
86: }
87: }
88: // code omitted
89: }

In the ejbLoad() method, the JobBean must load its state from both the Job and
JobSkill tables, using the data in the JobSkill table to populate the skills field. In the
ejbStore() method, the equivalent updates to the Job and JobSkill tables occur.

Of course, there is the chance that when the bean comes to save itself, the data could have
been removed. This would happen if some user manually deleted the data; there is nothing
in the EJB specification to require that an Entity bean “locks” the underlying data. In such
a case, the bean should throw a javax.ejb.NoSuchEntityException; in turn, this will be
returned to the client as some type of java.rmi.RemoteException. This was mentioned
briefly yesterday, so look back to refresh your memory if needed. And remember, you will
be learning more about exception handling and transactions on Day 8.

234 Day 6

LISTING 6.5 Continued

To keep the case study as small and understandable as possible, the error
handling in JobBean is slightly simplified. In Listing 6.5, the code will throw
an EJBException (rather than NoSuchEntityException) from
ejbLoad() if the data has been removed. In ejbStore(), it doesn’t actual-
ly check to see if any rows were updated, so no exception would be thrown.

Note

08 0672323842 CH06 3/20/02 9:31 AM Page 234

Entity EJBs 235

6

More complex beans can perform other processing within the ejbLoad() and
ejbStore() methods. For example, the data might be stored in some denormalized form
in a relational database, perhaps for performance reasons. The ejbStore() method
would store the data in this de-normalized form, while the ejbLoad() methods would
effectively be able to re-normalize the data on-the-fly. The client need not be aware of
these persistence issues.

Another idea: these methods could be used to handle text more effectively. The EJB
specification suggests compressing and decompressing text, but they could also perhaps
do searches for keywords within the text, and then redundantly store these keywords sep-
arately, or the data might be converted into XML format.

As noted earlier today, there is usually very little or nothing to be done when an Entity
bean is passivated or activated. Listing 6.6 shows this.

LISTING 6.6 JobBean’s ejbActivate() and ejbPassivate() Methods

1: package data;
2:
3: import javax.ejb.*;
4: // imports omitted
5:
6: public class JobBean implements EntityBean
7: {
8: public void ejbPassivate(){
9: ref = null;
10: customer = null;
11: customerObj = null;
12: description = null;
13: location = null;
14: }
15:
16: public void ejbActivate(){
17: }
18:
19: // code omitted
20: }

Implementing the Local-Home Interface Methods
The implementation of ejbCreate() and ejbPostCreate() for the JobBean is shown in
Listing 6.7.

LISTING 6.7 JobBean’s ejbCreate() and ejbPostCreate() Methods

1: package data;
2:

08 0672323842 CH06 3/20/02 9:31 AM Page 235

3: import javax.ejb.*;
4: import javax.sql.*;
5: // imports omitted
6:
7: public class JobBean implements EntityBean
8: {
9: private String ref;
10: private String customer;
11: private String description;
12: private LocationLocal location;
13: private CustomerLocal customerObj; // derived
14: private List skills; // vector field; list of SkillLocal ref’s.
15:
16: public String ejbCreate (String ref, String customer)

➥throws CreateException {
17: // validate customer login is valid.
18: try {
19: customerObj = customerHome.findByPrimaryKey(customer);
20: } catch (FinderException ex) {
21: error(“Invalid customer.”, ex);
22: }
23: JobPK key = new JobPK(ref, customer);
24: try {
25: ejbFindByPrimaryKey(key);
26: throw new CreateException(“Duplicate job name: “ + key);
27: }
28: catch (FinderException ex) { }
29: Connection con = null;
30: PreparedStatement stmt = null;
31: try {
32: con = dataSource.getConnection();
33: stmt = con.prepareStatement(

➥”INSERT INTO Job (ref,customer)
➥ VALUES (?,?)”);

34: stmt.setString(1, ref);
35: stmt.setString(2, customerObj.getLogin());
36: stmt.executeUpdate();
37: }
38: catch (SQLException e) {
39: error(“Error creating job “ + key, e);
40: }
41: finally {
42: closeConnection(con, stmt, null);
43: }
44: this.ref = ref;
45: this.customer = customer;
46: this.description = description;
47: this.location = null;
48: this.skills = new ArrayList();

236 Day 6

LISTING 6.7 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 236

Entity EJBs 237

6

49: return key;
50: }
51:
52: public void ejbPostCreate (String name, String description) {}
53: }

This particular implementation validates that the customer exists (jobs are identified by
customer and by a unique reference), and it also makes sure that the full primary key
does not already exist in the database. If it does, the BMP bean throws a
CreateException. If it doesn’t (represented by the ejbFindByPrimaryKey() call throw-
ing a FinderException), the method continues.

An alternative implementation would have been to place a unique index on the Job table
within the RDBMS and then to catch the SQLException that might be thrown if a dupli-
cate is attempted to be inserted.

LISTING 6.7 Continued

There is a race condition here. It’s possible that another user could insert a
record between the check for duplicates and the actual SQL INSERT. The
ejbCreate() method is called within a transaction; changing the RDBMS
isolation level (in a manner specified by the EJB container) would eliminate
this risk, although deadlocks could then occur.

Caution

Note that the skills field is set to an empty ArrayList. This holds a list of SkillLocal
references, this being the local interface to the Skill bean. Of course, for a newly creat-
ed Job bean, this list is empty. The decision for the skills field to hold references to
SkillLocal objects rather than, say, just Strings holding the skill names, was taken
advisedly. If the skill name is used (that is, the primary key of a skill), finding informa-
tion about the skill would require extra steps. Perhaps more compellingly, this is also the
approach taken for CMP beans and container-managed relationships, discussed in detail
tomorrow.

Also noteworthy is the customerObj field. The Job, when created, is passed just a
String containing the customer’s name. In other words, this is a primary key to a cus-
tomer. The customerObj field contains a reference to the parent customer bean itself by
way of its CustomerLocal reference.

Both the skills and the customerObj fields illustrate (for want of a better phrase) bean-
managed relationships. For the skills field, this is a many-to-many relationship, from
Job to Skill. For the customerObj field, this is a many-to-one relationship from Job to
Customer.

08 0672323842 CH06 3/20/02 9:31 AM Page 237

As for the stateful Session beans that you learned about yesterday, the ejbCreate() and
ejbPostCreate() methods both correspond to a single method called create() in the
bean’s local-home interface. The list of arguments must correspond. Again, as for
Session beans, it is possible for there to be more than one create method with different
sets of arguments, or indeed the createXXX() method naming convention can be used
instead of overloading the method name of create().

The ejbRemove() method is the opposite of the ejbCreate() method; it removes a
bean’s data from the persistent data store. Its implementation for JobBean is shown in
Listing 6.8.

LISTING 6.8 JobBean’s ejbRemove() Method

1: package data;
2:
3: import javax.ejb.*;
4: import javax.naming.*;
5: // imports omitted
6:
7: public class JobBean implements EntityBean
8: {
9: public void ejbRemove(){
10: JobPK key = (JobPK)ctx.getPrimaryKey();
11: Connection con = null;
12: PreparedStatement stmt1 = null;
13: PreparedStatement stmt2 = null;
14: try {
15: con = dataSource.getConnection();
16: stmt1 = con.prepareStatement(

➥”DELETE FROM JobSkill
➥ WHERE job = ? and customer = ?”);

17: stmt1.setString(1, ref);
18: stmt1.setString(2, customerObj.getLogin());
19: stmt2 = con.prepareStatement(

➥”DELETE FROM Job
➥ WHERE ref = ? and customer = ?”);

20: stmt2.setString(1, ref);
21: stmt2.setString(2, customerObj.getLogin());
22: stmt1.executeUpdate();
23: stmt2.executeUpdate();
24: }
25: catch (SQLException e) {
26: error(“Error removing job “ + key, e);
27: }
28: finally {
29: closeConnection(con, stmt1, null);
30: closeConnection(con, stmt2, null);
31: }
32: ref = null;

238 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 238

Entity EJBs 239

6

33: customer = null;
34: customerObj = null;
35: description = null;
36: location = null;
37: }
38: // code omitted
39: }

Each of the finder methods of the local-home interface must have a corresponding
method in the bean. By way of example, Listing 6.9 shows two of the (three) finder
methods for the JobBean.

LISTING 6.9 JobBean’s Finder Methods

1: package data;
2:
3: import javax.ejb.*;
4: import java.sql.*;
5: import java.util.*;
6: // imports omitted
7:
8: public class JobBean implements EntityBean
9: {
10: public JobPK ejbFindByPrimaryKey(JobPK key) throws FinderException {
11: Connection con = null;
12: PreparedStatement stmt = null;
13: ResultSet rs = null;
14: try {
15: con = dataSource.getConnection();
16: stmt = con.prepareStatement(

➥”SELECT ref
➥ FROM Job
➥ WHERE ref = ? AND customer = ?”);

17: stmt.setString(1, key.getRef());
18: stmt.setString(2, key.getCustomer());
19: rs = stmt.executeQuery();
20: if (!rs.next()) {
21: throw new FinderException(“Unknown job: “ + key);
22: }
23: return key;
24: }
25: catch (SQLException e) {
26: error(“Error in findByPrimaryKey for “ + key, e);
27: }
28: finally {
29: closeConnection(con, stmt, rs);
30: }
31: return null;

LISTING 6.8 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 239

32: }
33:
34: public Collection ejbFindByCustomer(String customer)

➥throws FinderException {
35: Connection con = null;
36: PreparedStatement stmt = null;
37: ResultSet rs = null;
38: try {
39: con = dataSource.getConnection();
40: stmt = con.prepareStatement(

➥”SELECT ref, customer
➥ FROM Job
➥ WHERE customer = ?
➥ ORDER BY ref”);

41: stmt.setString(1, customer);
42: rs = stmt.executeQuery();
43: Collection col = new ArrayList();
44: while (rs.next()) {
45: String nextRef = rs.getString(1);
46: String nextCustomer = rs.getString(2);
47: // validate customer exists
48: CustomerLocal nextCustomerObj =

➥customerHome.findByPrimaryKey(nextCustomer);
49: col.add(new JobPK(nextRef, nextCustomerObj.getLogin()));
50: }
51: return col;
52: }
53: catch (SQLException e) {
54: error(“Error in findByCustomer: “ + customer, e);
55: }
56: catch (FinderException e) {
57: error(“Error in findByCustomer, invalid customer: “ +

➥customer, e);
58: }
59: finally {
60: closeConnection(con, stmt, rs);
61: }
62: return null;
63: }
64:
65: // code omitted
66: }

The implementation of the ejbFindByPrimaryKey() method might seem somewhat
unusual; it receives a primary key, and then returns it. Of course, what it has done as well
is to have validated that an entity exists for the given primary key; if there were none, a
javax.ejb.ObjectNotFoundException would be thrown. The implementation of
ejbFindByCustomer() is straightforward enough.

240 Day 6

LISTING 6.9 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 240

Entity EJBs 241

6

The Job bean defines a home method, namely deleteByCustomer(), and the
corresponding method in the JobBean class is ejbHomeDeleteByCustomer(), as shown
in Listing 6.10.

LISTING 6.10 JobBean.ejbHomeDeleteByCustomer() Home Method

1: package data;
2:
3: import javax.ejb.*;
4: import java.sql.*;
5: import java.util.*;
6: // imports omitted
7:
8: public class JobBean implements EntityBean
9: {
10: public void ejbHomeDeleteByCustomer(String customer) {
11: Connection con = null;
12: PreparedStatement stmt2 = null;
13: PreparedStatement stmt1 = null;
14: try {
15: con = dataSource.getConnection();
16: stmt1 = con.prepareStatement(

➥”DELETE FROM JobSkill
➥ WHERE customer = ?”);

17: stmt2 = con.prepareStatement(
➥”DELETE FROM Job
➥ WHERE customer = ?”);

18: stmt1.setString(1, customer);
19: stmt2.setString(1, customer);
20: stmt1.executeUpdate();
21: stmt2.executeUpdate();
22: }
23: catch (SQLException e) {
24: error(“Error removing all jobs for “ + customer, e);
25: }
26: finally {
27: closeConnection(con, stmt1, null);
28: closeConnection(con, stmt2, null);
29: }
30: }
31: // code omitted
32: }

Implementing the Local Interface Methods
Each of the methods in the local interface has a corresponding method in the bean itself.
The corresponding methods for JobBean are shown in Listing 6.11.

08 0672323842 CH06 3/20/02 9:31 AM Page 241

LISTING 6.11 Business Methods of JobBean Correspond to the Methods of the Local
Interface

1: package data;
2:
3: import java.rmi.*;
4: import javax.ejb.*;
5: // imports omitted
6:
7: public class JobBean implements EntityBean
8: {
9: public String getRef() {
10: return ref;
11: }
12: public String getCustomer() {
13: return customer;
14: }
15: public CustomerLocal getCustomerObj() {
16: return customerObj;
17: }
18: public String getDescription() {
19: return description;
20: }
21: public void setDescription(String description) {
22: this.description = description;
23: }
24: public LocationLocal getLocation() {
25: return location;
26: }
27: public void setLocation(LocationLocal location) {
28: this.location = location;
29: }
30: /** returns (copy of) skills */
31: public Collection getSkills() {
32: return new ArrayList(skills);
33: }
34: public void setSkills(Collection skills) {
35: // just validate that the collection holds references to

➥SkillLocal’s
36: for (Iterator iter = getSkills().iterator(); iter.hasNext();) {
37: SkillLocal skill = (SkillLocal)iter.next();
38: }
39: // replace the list of skills with that defined.
40: this.skills = new ArrayList(skills);
41: }
42: // code omitted
43: }

The getSkills() and setSkills() methods bear closer inspection. The getSkills()
method returns a copy of the local skills field because, otherwise, the client could

242 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 242

Entity EJBs 243

6

change the contents of the skills field without the JobBean knowing. This isn’t an issue
that would have arisen if the interface to JobBean was remote, because a copy would
automatically have been created. Turning to the setSkills() method, this checks to
make sure that the new collection of skills supplied is a list of SkillLocal references.
This is analogous to the setLocation() method that was discussed; the Job Entity bean
is enforcing referential integrity with the Skill Entity bean.

Generating IDs
Sometimes an Entity bean already has a field (or fields) that represent the primary key,
but at other times, the set of fields required may just be too large. Alternatively, the obvi-
ous primary key may not be stable in the sense that its value could change over the life-
time of an entity—something prohibited by the EJB specification. For example, choosing
a (lastname, firstname) as a means of identifying an employee may fail if a female
employee gets married and chooses to adopt her husband’s surname.

In these cases, it is common to introduce an artificial key, sometimes known as a surro-
gate key. You will be familiar with these if you have ever been allocated a customer num-
ber when shopping online. Your social security number, library card number, driver’s
license, and so on may well be just a pretty meaningless jumble of numbers and letters,
but they are guaranteed to be unique and stable. These are all surrogate keys.

With BMP Entity beans, the responsibility for generating these ID values is yours, the
bean provider. Whether numbers and letters or just numbers are used is up to you,
although just numbers are often used in an ascending sequence (that is, 1, 2, 3, and so
on). If you adopt this strategy, you could calculate the values by calling a stateless
Session bean—a number fountain, if you will. A home method could perhaps encapsu-
late the lookup of this NumberFountainBean.

The implementation of such a NumberFountainBean can take many forms. There will
need to be some persistent record of the maximum allocated number in the series, so a
method such as getNextNumber(“MyBean”) could return a value by performing an appro-
priate piece of SQL against a table held in an RDBMS:

begin tran

update number_fountain
set max_value = max_value + 1
where bean_name = “MyBean”

select max_value
from number_fountain
where bean_name = “MyBean”

commit

08 0672323842 CH06 3/20/02 9:31 AM Page 243

One disadvantage with this approach is that the NumberFountainBean—or rather, the
underlying database table—can become a bottleneck. A number of strategies have been
developed to reduce this. One is to make the getNextNumber() method occur in a differ-
ent transaction from the rest of the work. You will learn more about transactions on Day
8; for now, it is just necessary to know that while this will increase throughput, there is
the risk of gaps occurring in the sequence.

If non-contiguous sequences are acceptable, even better throughput can be achieved by
implementing a stateless Session bean that caches values in memory. Thus, rather than
incrementing the maximum value by 1, it can increment by a larger number, perhaps by
100. Only every 100th call actually performs an SQL update, and the other 99 times, the
number is allocated from memory. Of course, if the system crashes or power fails, there
could be quite a large gap.

A final enhancement that improves scalability further and also improves resilience is to
arrange for there to be a number of beans, each with a range of values. For example,
these might be allocated using a high-order byte/low-order bytes arrangement.

244 Day 6

Countries that allocate car license plates by state or by district are effectively
using this approach.

Note

One advantage of implementing a Session bean, such as NumberFountainBean, is that it
isolates the dependency on the persistent data store that is holding the maximum value.
Also, the SQL to determine the next available number is easily ported across RDBMS.
On the other hand, many organizations use only a single RDBMS, so such portability is
not needed. In these cases, the RDBMS may have built-in support for allocating monoto-
nically increasing numeric values, and this can be used directly. For example, SEQUENCEs
can be used in Oracle, while both Microsoft SQL Server and Sybase provide so-called
identity columns and the @@identity global variable. So, for BMP Entity beans, another
way to obtain the next value is to perform the SQL INSERT, obtaining the value from the
back-end RDBMS. Note that most of these tools have the same scalability issues as the
home-grown NumberFountainBean, and most also provide optimizations that can result
in gaps in the series.

There is an alternative to using numbers for ID values, namely to generate a value that
must be unique. On Windows PCs, you may well have seen strings in the format

{32F8CA14-087C-4908-B7C4-6757FE7E90AB}

In case you are wondering, this was found by delving into the Windows Registry and
(apparently) represents the FormatGUID for .AVI files (whatever that means!). The point

08 0672323842 CH06 3/20/02 9:31 AM Page 244

Entity EJBs 245

6

is that it is—to all intents and purposes—guaranteed to be unique. In the case of GUIDs,
it is unique because it is based on the MAC address of the ethernet card of the PC, plus
the time.

Clearly, other algorithms can be created, and a quick search on the Web should throw up
some commercial products and free software from which to select. For example, one
algorithm generates values unique to the millisecond, the machine, the object creating the
ID, and the top-most method of the call stack.

Granularity Revisited
A recurrent theme when developing Entity beans is in selecting an appropriate granulari-
ty for the bean. Prior to EJB 2.0, Entity beans could only provide a remote interface,
which meant that a relatively coarse grained interface was required to minimize the
client-to-bean network traffic. Indeed, this is still the recommendation made for Session
beans in EJB 2.0 that have a remote interface.

With EJB 2.0, Entity beans can have a local interface, meaning that the cost of interac-
tion with the client becomes minimal. If the cost of interaction of the Entity bean to the
persistent data store is not too high, fine-grained Entity beans are quite possible. This
may be true, either because the EJB container can optimize the database access in some
way (true only for CMP Entity beans) or if the data store resides on the same computer
as the EJB container and, ideally, within the same JVM process space.

Running a persistent data store in the same process space as the EJB contain-
er is quite possible; a number of pure Java RDBMS—including Cloudscape,
the database bundled with the J2EE RI—provide an “embedded mode.”

Note

Under BMP however, the advice is generally not to use fine-grained Entity beans, princi-
pally because the EJB container will be unable to perform any database access optimiza-
tion. Choosing the granularity is then best determined by focusing on the identity and
lifecycle on the candidate Entity beans. Hence, order and order-detail should be a single
Order bean, but customer and order, while related, should be kept separate.

In the case study, you will find that the Job bean writes to both the Job table and also the
JobSkill table (to record the skill(s) needed to perform the job).

Beware Those Finder Methods!
As you now have learned, Entity beans can be created, removed, and found through their
home interface. While these all seem straightforward enough operations, there’s danger

08 0672323842 CH06 3/20/02 9:31 AM Page 245

lurking in the last of these; finder methods can cripple the performance of your applica-
tion if used incorrectly.

This probably doesn’t seem obvious, but if you consider the interplay between the EJB
container (implementing the local-home interface) and the bean itself, it becomes easier
to see:

• The local-home interface’s findManyByXxx() method is called. For the purposes
of this discussion, this finder method returns a Collection.

• The local-home interface delegates to a pooled bean, calling its
ejbFindManyByXxx() method. This performs an SQL SELECT statement (or the
equivalent), and returns back a Collection of primary keys to the local-home
interface.

• The local-home interface instantiates a Collection the same size as was obtained
from the bean and populates it with local proxies. Each local proxy is assigned a
primary key.

So far so good, the client receives a Collection of proxies. Suppose now that the client
iterates over this collection, calling some getter method getXxx().

• The client calls getXxx() on the first proxy in its Collection. The proxy holds a
primary key, but there is no corresponding bean actually associated with the proxy.
Therefore, the EJB container activates a bean from the pool, calls its ejbLoad()
lifecycle method, and then finally delegates the getXxx() business method. After
that method has completed, the ejbStore() method is called.

• This process continues for all of the proxies in the collection.

You can probably see the problem; the persistent data store will be hit numerous times.
First, it will be hit as a result of the ejbFindManyByXxx() method; this will return a thin
column of primary key values. Then, because ejbLoad() is called for each bean, the rest
of the data for that row is returned. This is shown in Figure 6.8.

Consequently, if 20 primary keys were returned by the bean following the initial
ejbFindManyByXxx(), the network would be transversed 21 times, and the database will
be hit in all 41 times—once for the initial SELECT and two times each for each of the
beans.

There are a number of techniques that can eliminate this overhead, each with pros and
cons:

• The most obvious solution is to not use finder methods that return Collections of
many beans. Instead, use stateless Session beans that perform a direct SQL SELECT
query against the database, iterate over the ResultSet, and return back a
Collection of serializable value objects that mirror the data contained in the actual
entity. This technique is called the Fast-lane Reader.

246 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 246

Entity EJBs 247

6

• Another technique that can be used is to alter the definition of the primary key
class. As well as holding the key information that identifies the bean in the data-
base, it also holds the rest of the bean’s data as well. When the original finder bean
returns the Collection of primary keys, the primary keys are held by the local
proxies. When the beans are activated, they can obtain their state from the proxy by
using entityContext.getLocalObject().getPrimaryKey(). This technique has
been dubbed the fat key pattern, for obvious reasons.

• Last, you may be able to remove the performance hit by porting the bean to use
container managed persistence. Because under CMP the EJB container is responsi-
ble for all access to the persistent data store, many will obtain all the required
information from the data store during the first findManyByXxx method call, and
then eagerly instantiate beans using this information. You will be learning more
about CMP tomorrow.

Incidentally, Figure 6.8 shows a graphic illustration of why Entity beans should, in gener-
al, define only a local interface—not a remote interface. If the client were remote rather
than local, the total network calls for a finder method returning references to 20 beans
would be double the original figure, namely 42! Moreover, every subsequent business
method invocation (call to getYYY() for example) would inflict a further 20 network calls.

EJB Container Performance Tuning
Many organizations are wary of using Entity beans because of the performance costs that
are associated with it. You have already seen the performance issues arising from using
finder methods, but even ignoring this, any business method to an Entity bean will
require two database calls—one resulting from the ejbLoad() that precedes the business
method and one from the ejbStore() to save the bean’s new state back to the data store.

FIGURE 6.8
Finder methods can
result in poor perfor-
mance under BMP.

local
client

1. findManyBy local
home

2. ejbFindManyBy

3. select
where…

6. select…

4. getXXX
[for each local proxy]

9. update…8. ejbStore

7. getXXX
5. ejbLoad

bean

bean

PK1

PKn

.

.

.

local1

PK1

localn

PKn

.

.

.

08 0672323842 CH06 3/20/02 9:31 AM Page 247

Of course, these database calls may be unnecessary. If a bean hasn’t been passivated
since the last business call, the ejbLoad() need not do anything, provided that nothing
has updated the data store through non-EJB mechanisms. Also, if the business method
called did not change the state of the bean the ejbStore() has nothing to do also.

Another scenario is where a bean is interacted with several times as part of a transaction.
You will be learning more about transactions on Day 8, so for now, just appreciate that
when a bean is modified through the course of a transaction, either all of its changes in
state or none of them need to be persisted. In other words, there is only really the
requirement to call ejbStore() just once at the end of the transaction.

Taking these points together, the amount of network traffic from the EJB container to the
persistent data store can be substantially reduced, down to the levels that might be
expected in a hand-written J2SE client/server application. Although not part of the EJB
specification, many EJB containers provide proprietary mechanisms to prevent unneces-
sary ejbLoad() or ejbStore() calls. Of course, the use of these mechanisms will make
your bean harder to port to another EJB container, but you may well put up with the
inconvenience for the performance gains realized. Indeed, if you are in the process of
evaluating EJB containers, as many companies are, you may even have placed these fea-
tures on your requirements list.

Configuring and Deploying a BMP
Entity Bean

Yesterday, you learned how to deploy Session beans by creating ejb-jar files with their
own deployment descriptor and including the ejb-jar into an enterprise application.
Deploying Entity beans is done in precisely the same way, by creating ejb-jar files that
contain the Entity bean classes, with appropriate entries in the deployment descriptor.
This deployment descriptor is the same deployment descriptor as for Session beans. As
you saw yesterday, the root element of this deployment descriptor is the ejb-jar ele-
ment:

<!ELEMENT ejb-jar (description?, display-name?, small-icon?, large-icon?,
enterprise-beans, relationships?, assembly-descriptor?, ejb-client-jar?)>

Looking at the enterprise-beans element, this is defined as follows:

<!ELEMENT enterprise-beans (session | entity | message-driven)+>

The deployment descriptor can contain Session, Entity, and/or Message-driven beans. Or
put another way, Session beans and Entity beans can be placed in the same ejb-jar if
required.

248 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 248

Entity EJBs 249

6

Entity Element
The entity element of the DTD is defined as follows:

<!ELEMENT entity (description?, display-name?, small-icon?, large-icon?,
ejb-name, home?, remote?, local-home?, local?, ejb-class,
persistence-type,
prim-key-class,
reentrant,
cmp-version?, abstract-schema-name?,
cmp-field*, primkey-field?,
env-entry*,
ejb-ref*, ejb-local-ref*,
security-role-ref*, security-identity?,
resource-ref*,
resource-env-ref*,
query*)>

Many of the elements referred by the entity element are also used by the session ele-
ment, and were discussed yesterday:

• Presentational elements—description, display-name, small-icon, and large-
icon.

• Elements describing the components of the bean—ejb-name, home, remote, local-
home, local, and ejb-class elements. The local-home and local elements just
name the interfaces that extend javax.ejb.EJBLocalHome and
javax.ejb.EJBLocal, respectively.

• Elements referring to the environment and other resources—env-entry, ejb-ref,
ejb-local-ref, resource-ref, and resource-env-ref.

The remaining elements are specific to Entity beans:

• persistence-type Set to Bean for bean-managed persistence or Container for
container-managed persistence. For the purposes of today, this will be set to Bean.

• prim-key-class This mandatory element indicates the name of the primary key
class. This will be a custom developed class for beans that have primary keys
(JobPK for Job bean) but may be a regular class (java.lang.String) for others
(for example, the Location bean).

• cmp-version, abstract-schema-name, cmp-field, prim-key-field, query
These are used only for CMP beans and are covered tomorrow.

• reentrant Set to true for reentrant Entity beans, or false for non reentrant
beans. It’s safer to mark Entity beans as non reentrant.

• security-role-ref, security-identity You will learn more about security on
Day 15.

08 0672323842 CH06 3/20/02 9:31 AM Page 249

Listing 6.12 shows the deployment descriptor for the Job bean.

LISTING 6.12 entity Element Descriptor for the Job Bean

1: <entity>
2: <display-name>JobBean</display-name>
3: <ejb-name>JobBean</ejb-name>
4: <local-home>data.JobLocalHome</local-home>
5: <local>data.JobLocal</local>
6: <ejb-class>data.JobBean</ejb-class>
7: <persistence-type>Bean</persistence-type>
8: <prim-key-class>data.JobPK</prim-key-class>
9: <reentrant>False</reentrant>
10: <ejb-local-ref>
11: <ejb-ref-name>ejb/SkillLocal</ejb-ref-name>
12: <ejb-ref-type>Entity</ejb-ref-type>
13: <local-home>data.SkillLocalHome</local-home>
14: <local>data.SkillLocal</local>
15: <ejb-link>data_entity_ejbs.jar#SkillBean</ejb-link>
16: </ejb-local-ref>
17: <ejb-local-ref>
18: <ejb-ref-name>ejb/LocationLocal</ejb-ref-name>
19: <ejb-ref-type>Entity</ejb-ref-type>
20: <local-home>data.LocationLocalHome</local-home>
21: <local>data.LocationLocal</local>
22: <ejb-link>data_entity_ejbs.jar#LocationBean</ejb-link>
23: </ejb-local-ref>
24: <ejb-local-ref>
25: <ejb-ref-name>ejb/CustomerLocal</ejb-ref-name>
26: <ejb-ref-type>Entity</ejb-ref-type>
27: <local-home>data.CustomerLocalHome</local-home>
28: <local>data.CustomerLocal</local>
29: <ejb-link>data_entity_ejbs.jar#CustomerBean</ejb-link>
30: </ejb-local-ref>
31: <security-identity>
32: <description></description>
33: <use-caller-identity></use-caller-identity>
34: </security-identity>
35: <resource-ref>
36: <res-ref-name>jdbc/Agency</res-ref-name>
37: <res-type>javax.sql.DataSource</res-type>
38: <res-auth>Container</res-auth>
39: <res-sharing-scope>Shareable</res-sharing-scope>
40: </resource-ref>
41: </entity>

Note the resource-ref dependency on jdbc/Agency, just as you saw for Session beans
that make JDBC calls. The res-ref-name is the coded name jdbc/Agency that appears
in the setEntityContext() method of LocationBean. This logical reference is mapped

250 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 250

Entity EJBs 251

6

to the physical resource through the auxiliary deployment descriptor agency_ea-sun-
j2ee-ri.xml. There are also ejb-ref dependencies on various other beans; these are
ultimately used to manage the relationships with the Location, Skill, and Customer
beans.

All of this information can be seen through the J2EE RI deploytool GUI, as shown in
Figure 6.9.

FIGURE 6.9
The deploytool GUI
displays deployment
descriptor information
graphically.

Good though the deploytool GUI is, sometimes a command-line interface is required.
For example, you might want to automatically compile and then re-deploy your enter-
prise application in a project as part of a nightly build. Luckily, the deploytool also pro-
vides a command-line interface, so today you will deploy the Entity beans using this
mechanism.

Under day06\agency, the directory structure has been organized into a number of subdi-
rectories, as shown in Table 6.2.

TABLE 6.2 Directory Structure under day06\agency

Subdirectory Contents

build a) buildAll, which calls most of the other scripts in this directory, except
b) deploy, which deploys the enterprise application.

src Java source for the client, agency, and data packages.

08 0672323842 CH06 3/20/02 9:31 AM Page 251

dd Standard XML deployment descriptors for the EJBs, for the enterprise applica-
tion, and for the application clients. This directory also contains auxiliary
deployment descriptors used by the J2EE RI to map the logical references in
the standard deployment descriptors to the physical runtime environment man-
aged by the J2EE RI container.

classes Compiled Java classes. The various compile* scripts in the build directory
compile into this directory.

jar ejb-jar and ear (Enterprise Application) archives. Generated by the various
build* scripts in the build directory.

run The scripts to run the various clients.

To deploy the enterprise application, start Cloudscape and the J2EE RI, and then type

> cd day06\agency\build
> buildAll
> deploy

It’s as simple as that!

One of the benefits of this approach is that bean developers, application assemblers and
deployers who are familiar with the standard EJB deployment descriptors can modify the
bean’s deployment configuration by simply editing the XML deployment descriptors
directly—without having to get to grips with the J2EE RI GUI. Moreover, some of the
names automatically assigned by the deploytool GUI, such as the names of the ejb-jar
files themselves, can be given more descriptive names. Consequently, the ejb-jar that
contains the Entity beans is called data_entity_ejbs.jar and its deployment descriptor
is called data_entity_ejbs_ejb-jar.xml.

If you look in the dd directory (or in the deploytool GUI as shown in Figure 6.9), you
can see that the case study separates out the Session beans and the Entity beans into two
different ejb-jars. The Agency ejb-jar contains the same set of Session beans that you
saw yesterday (although their implementation is different as you shall see shortly, they
now delegate to the Entity beans), while the Data ejb-jar has the new BMP Entity
beans. How you choose to organize your enterprise application is up to you.

Client’s View
You’ve now learned how to specify, implement, and deploy BMP Entity beans, but how
are they used? As you can probably imagine, the steps to obtain a reference to an Entity
bean are similar to that for Session beans:

252 Day 6

TABLE 6.2 Continued

Subdirectory Contents

08 0672323842 CH06 3/20/02 9:31 AM Page 252

Entity EJBs 253

6

1. Look up the home interface for the Entity bean from JNDI.

2. To create a new entity instance, use the relevant home.create() method.

3. To locate an existing entity instance, use home.findByPrimaryKey() if the primary
key is known, or some other home.findXxx() finder method to obtain a
Collection of matching entities.

4. For the returned local proxy to the Entity bean, invoke the business methods
defined in the local interface of the bean.

The javax.ejb.EJBLocalObject interface also defines a number of other methods that
can be called by the client, and it is worth discussing the semantics of these briefly:

• The getPrimaryKey() method of EJBLocalObject returns the primary key that
identifies the bean.

Note that because EJBLocalObject is also the super-interface for Session
bean interfaces, this method can also be called when the client has a refer-
ence to the local proxy of a Session bean. However, because primary keys do
not make sense for Session beans, an EJBException will always be thrown.

Caution

• If an Entity bean has both a local and a remote interface, and then
EJBObject.getPrimaryKey() (from the remote proxy) and
EJBLocalObject.getPrimaryKey() (from the local proxy) will both return objects
that are equal (according to the definition the primary key’s definition of
equals()).

• The isIdentical() method can be used instead of comparing primary key classes
to determine if two bean references refer to the same Entity bean. In other words,
bean1.isIdentical(bean2) returns true if and only if
bean1.getPrimaryKey().equals(bean2.getPrimaryKey()).

One scenario that can occur is that a client can have a reference to an Entity bean, and
then the bean could be deleted by some other client. This could occur either by an EJB
application client that invokes remove() on the same Entity bean, or it could be a non-
EJB client that deletes the data directly from the underlying persistent data store. Either
way, the original client will not be notified of this, and won’t detect this situation until it
next invokes a method on the Entity bean. In this case, the client will receive a
javax.ejb.NoSuchObjectLocalException (a subclass of javax.ejb.EJBException, in
turn a subclass of java.lang.RuntimeException) if accessing the Entity bean through
its local interface.

08 0672323842 CH06 3/20/02 9:31 AM Page 253

The javax.ejb.NoSuchObjectLocalException caught by local clients is analogous to
the java.rmi.NoSuchObjectException that would be caught if accessing the Entity bean
through its remote interface. Table 6.3 shows the table from yesterday detailing various
other exceptions, supplemented with the exception classes received by local clients.

TABLE 6.3 System Exceptions Are Thrown in a Variety of Situations

Local Client Remote Client
What Event Receives Receives

Any bean Throws javax.ejb. javax.ejb. java.rmi.
EJBException (or any subclass) EJBException RemoteException

(or subclass)

BMP Entity Throws NoSuchEntityException javax.ejb. java.rmi.
bean NoSuchEntity NoSuchObject

Exception Exception

Container When client invokes method on javax.ejb. java.rmi.

a reference to a bean that no NoSuchObject NoSuchObject

longer exists LocalException Exception

When client calls a method javax.ejb. javax.transaction.

without a transaction context TransactionRequired TransactionRequired

LocalException Exception

When client has insufficient javax.ejb. java.rmi.

security access AccessLocal AccessException

Exception

When transaction needs to be javax.ejb. javax.transaction.

rolled back TransactionRolled TransactionRolled

Back LocalException Back Exception

As you can see, the EJB Specification makes some attempt at a naming standard so that
the models are as similar as possible for local and remote clients.

Session Beans Revisited
The case study for today has the same set of Session beans as yesterday, and their inter-
faces are the same. However, their implementation is quite different, because they dele-
gate all database interactions to the Entity bean layer.

254 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 254

Entity EJBs 255

6

As an example, Listing 6.13 shows the original updateDetails() method in the stateful
AdvertiseJob bean. The AdvertiseJob bean provides services for managing jobs.

LISTING 6.13 AdvertiseJobBean.updateDetails() Without an Entity Bean Layer

1: package agency;
2:
3: import java.util.*;
4: import javax.ejb.*;
5: import java.sql.*;
6: // imports omitted
7:
8: public class AdvertiseJobBean extends SessionBean
9: {
10: public void updateDetails(String description,

➥String location, String[] skills) {
11: if (skills == null) {
12: skills = new String[0];
13: }
14: Connection con = null;
15: PreparedStatement stmt = null;
16: try {
17: con = dataSource.getConnection();
18: stmt = con.prepareStatement(

➥”UPDATE JOB
➥ SET description = ?, location = ?
➥ WHERE ref = ? AND customer = ?”);

19: stmt.setString(1, description);
20: stmt.setString(2, location);
21: stmt.setString(3, ref);
22: stmt.setString(4, customer);
23: stmt.executeUpdate();
24: stmt = con.prepareStatement(

➥”DELETE FROM JobSkill
➥ WHERE job = ? AND customer = ?”);

25: stmt.setString(1, ref);
26: stmt.setString(2, customer);
27: stmt.executeUpdate();
28: stmt = con.prepareStatement(

➥”INSERT INTO JobSkill (job, customer, skill)
➥ VALUES (?, ?, ?)”);

29: for (int i = 0; i < skills.length; i++) {
30: stmt.setString(1, ref);
31: stmt.setString(2, customer);
32: stmt.setString(3, skills[i]);
33: stmt.executeUpdate();
34: }
35: this.description = description;
36: this.location = location;

08 0672323842 CH06 3/20/02 9:31 AM Page 255

37: this.skills.clear();
38: for (int i = 0; i < skills.length; i++)
39: this.skills.add(skills[i]);
40: }
41: catch (SQLException e) {
42: error(“Error updating job “ + ref + “ for “ + customer, e);
43: }
44: finally {
45: closeConnection(con, stmt, null);
46: }
47: }
48: }

Listing 6.14 shows the updated version, delegating the hard work to the Job bean:

LISTING 6.14 AdvertiseJobBean.updateDetails() with an Entity Bean Layer

1: package agency;
2:
3: import java.util.*;
4: import javax.ejb.*;
5: import data.*;
6: // imports omitted
7:
8: public class AdvertiseJobBean extends SessionBean
9: {
10: private JobLocal job;
11: public void updateDetails(String description,

➥String locationName, String[] skillNames) {
12: if (skillNames == null) {
13: skillNames = new String[0];
14: }
15: List skillList;
16: try {
17: skillList = skillHome.lookup(Arrays.asList(skillNames));
18: } catch (FinderException ex) {
19: error(“Invalid skill”, ex); // throws an exception
20: return;
21: }
22: LocationLocal location = null;
23: if (locationName != null) {
24: try {
25: location = locationHome.findByPrimaryKey(locationName);
26: } catch (FinderException ex) {
27: error(“Invalid location”, ex); // throws an exception
28: return;
29: }
30: }

256 Day 6

LISTING 6.13 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 256

Entity EJBs 257

6

31: job.setDescription(description);
32: job.setLocation(location);
33: job.setSkills(skillList);
34: }
35: // code omitted
36: }

The updated version is much more object-oriented; the knowledge of the database
schema has been encapsulated where it rightfully belongs—in the Entity bean layer.

All this means that the AdvertiseJob bean no longer has any dependencies on the
jdbc/Agency DataSource. On the other hand, it does now have dependencies on several
of the Entity beans. These are defined using ejb-local-ref elements in the deployment
descriptor. The relevant portion of the AdvertiseJob deployment descriptor
(agency_session_ejbs_ejb-jar.xml file in the dd directory) is shown in Listing 6.15:

LISTING 6.15 AdvertiseJob Bean’s Reference to the Entity Beans

1: <ejb-local-ref>
2: <ejb-ref-name>ejb/SkillLocal</ejb-ref-name>
3: <ejb-ref-type>Entity</ejb-ref-type>
4: <local-home>data.SkillLocalHome</local-home>
5: <local>data.SkillLocal</local>
6: <ejb-link>data_entity_ejbs.jar#SkillBean</ejb-link>
7: </ejb-local-ref>
8: <ejb-local-ref>
9: <ejb-ref-name>ejb/LocationLocal</ejb-ref-name>
10: <ejb-ref-type>Entity</ejb-ref-type>
11: <local-home>data.LocationLocalHome</local-home>
12: <local>data.LocationLocal</local>
13: <ejb-link>data_entity_ejbs.jar#LocationBean</ejb-link>
14: </ejb-local-ref>
15: <ejb-local-ref>
16: <ejb-ref-name>ejb/JobLocal</ejb-ref-name>
17: <ejb-ref-type>Entity</ejb-ref-type>
18: <local-home>data.JobLocalHome</local-home>
19: <local>data.JobLocal</local>
20: <ejb-link>data_entity_ejbs.jar#JobBean</ejb-link>
21: </ejb-local-ref>
22: <ejb-local-ref>
23: <ejb-ref-name>ejb/CustomerLocal</ejb-ref-name>
24: <ejb-ref-type>Entity</ejb-ref-type>
25: <local-home>data.CustomerLocalHome</local-home>
26: <local>data.JobLocal</local>
27: <ejb-link>data_entity_ejbs.jar#CustomerBean</ejb-link>
28: </ejb-local-ref>

LISTING 6.14 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 257

Note the ejb-link reference, which names the bean that implements the required inter-
faces. This notation is used rather than a JNDI name because JNDI can (potentially) refer
to remote EJBs, whereas local EJBs must—by definition—be deployed on the same
server.

Patterns and Idioms
Yesterday, you saw some patterns and idioms that apply to writing Session beans. In this
section, you will see some more that relate to BMP Entity beans and local interfaces. If
you are impatient to get onto the exercise, feel free to skip this section and revisit later.

Interfaces, Façades, and State
This is a pattern that relates mostly to Session beans, but is discussed today rather than
yesterday because it uses local interfaces.

While Session beans can provide both a remote and a local interface, you’ll only want to
provide one or the other more often than not. Generally, you should aim to have a small
number of Session beans that offer a remote interface, and the remainder will be local
“helper” beans. In design pattern terms, the remote Session beans create a Façade. This
pattern is discussed more fully on Day 18, “Patterns.”

The Façade beans will likely be stateful. Certainly, the helper beans should not be state-
ful, because chaining stateful objects is poor design, as noted yesterday.

Use Local Interfaces for Entity Beans
Entity beans should only ever be accessed through a local interface, and there are some
very good reasons for this.

First, accessing Entity beans through a remote interface implies network traffic and the
cost of cloning serializable objects. When the client runs in the same JVM as the Entity
bean, a local interface eliminates cost.

This ties in with the previous discussion on Session bean interfaces and façades. Session
beans provide a remote interface to the enterprise application, so Session beans should
act as a front-end to Entity beans. Some people think of this as the verb/noun
paradigm—the Session beans are the verbs (the doing end of the application) and the
Entity beans are the nouns (the reusable business objects within some domain). Defining
only local interfaces to Entity beans effectively enforces this pattern.

Second, finder methods of Entity beans—already expensive to use—become even more
so when the client is remote. This was remarked on earlier today.

258 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 258

Entity EJBs 259

6

Lastly, and perhaps most significantly, local interfaces are the cornerstone of container-
managed relationships (CMR)—part and parcel of container-managed persistence. You’ll
be learning all about this tomorrow. If you build your BMP beans using local interfaces,
you provide a migration path to implementing those beans using CMP in the future.

Dependent Value Classes
Under BMP, the Entity bean’s state can be represented in any way that is appropriate.
Moreover, the bean can persist this state, in any way it wants.

Sometimes, a bean’s state will be simple enough (that is, just a set of scalar fields) that it
will correspond to a row in an RDBMS table. More often though, some of those fields
will be vector, and they might even include some complex data, such as a map or photo
and so on.

One simple solution to persisting such objects is to ensure that the fields of the bean are
either scalar primitives or are a reference to a serializable object, an instance of what are
sometimes called dependent value classes. The structure of that object can be as complex
as needed, so long as it is serializable. The scalar fields are stored in regular columns in
the RDBMS table, and the serializable object is stored as a binary large object (BLOB).

For example, the Job bean is mapped to both the Job and JobSkill table in the case
study, accessing both in its ejbLoad() and ejbStore() methods. The JobBean.skills
field is a List of SkillLocal references.

An alternative design would be to store the skills list as a BLOB in the database. The
Job table would be redefined to be something like the following:

create table Job
(ref varchar(16),
customer varchar(16),
description varchar(512),
location varchar(16),
skills long varbinary -- store a BLOB in Cloudscape
)

There is then a one-to-one mapping between an instance of the Job Entity bean and a
row in the Job table. One slight complication is that because the JobBean.skills field
contains references to SkillLocal references, which are not necessarily serializable, the
skills variable would not be serializable either. So, in the ejbStore() method, a List
of skill names (that is, primary key to each SkillLocal) would be created and saved to
the database. This List of skill names is the “dependent value class.”

stmt = con.prepareStatement(
➥”UPDATE Job
➥ SET description = ?, location = ?, skills = ?
➥ WHERE ref = ? AND customer = ?”);

08 0672323842 CH06 3/20/02 9:31 AM Page 259

stmt.setString(1, description);
if (location != null) {

stmt.setString(2, location.getName());
} else {

stmt.setNull(2, java.sql.Types.VARCHAR);
}

List skillNameList = new ArrayList();
for(Iterator iter = this.skills.iterator();) {

skillNameList.add(((SkillLocal)iter.next()).getName());
}
stmt.setBlob(3, skillNameList);

stmt.setString(4, ref);
stmt.setString(5, customerObj.getLogin());
stmt.executeUpdate();

Conversely, in the ejbLoad(), the List of skill names would be converted back to a List
of SkillLocal references. The SELECT statement would be as follows:

stmt = con.prepareStatement(
“SELECT description,location,skills FROM Job WHERE ref = ? AND customer = ?”);

and the processing of the result set would be

this.description = rs.getString(1);

String locationName = rs.getString(2);
this.location = (locationName != null)?
➥locationHome.findByPrimaryKey(locationName):null;

List skillNameList = (List)rs.getBlob(3);
this.skills = skillHome.lookup(skillNameList);

The skillHome.lookup() home method of the Skill bean does the actual conversion
from name to SkillLocal. (In fact, this method is actually used in JobBean’s ejbLoad()
method, so you can check out the code yourself).

This approach can substantially reduce the coding effort, although you should also be
aware of some of the downsides:

• First, the BLOB field is effectively atomic; even if just a small piece of information is
changed (for example, a new skill is added), and then entire BLOB must be replaced.

• Furthermore, information previously easily accessible can now only be accessed
through a single route. In the previous example, the data that was previously in the
JobSkill table is now buried within the Job.skills field. It is no longer possible
to perform an efficient SQL SELECT to find out which jobs require a certain skill.
Instead, such a query will involve instantiating and then querying every Job bean
instance.

260 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 260

Entity EJBs 261

6

• Last, the data in the persistent data store is stored in Java’s own serializable format.
While this is a well-defined structure, it nevertheless makes it non-trivial for non-
Java clients to access this data.

It is possible to serialize Java classes in a custom-defined manner (for exam-
ple, as an XML string) by either providing a readObject() and
writeObject() method or by implementing java.io.Externalizable and
implementing readExternal() and writeExternal() methods. However,
such an approach would probably involve more development effort than
had been saved by using a BLOB to store the dependent value class.

Note

Because dependent value classes are serializable, it is also possible to use them as the
return types of accessor methods (getters and setters) of the interface. Indeed, prior to the
introduction of local interfaces in EJB 2.0, this was a recommended pattern to minimize
network traffic across the Entity bean’s remote interface. However, provided that only
local interfaces are provided (and especially if using CMP), there is nothing wrong with
providing fine-grained access to the values of the Entity bean. In effect, this design pat-
tern has been deprecated with EJB 2.0.

Self-Encapsulate Fields
In the case study BMP beans, the private fields that represent state are accessed directly
within methods. For example, the following is a fragment of the JobBean.ejbCreate()
method:

public JobPK ejbCreate (String ref, String customer) throws CreateException {

// database access code omitted

this.ref = ref;
this.customer = customer;
this.description = description;
this.location = null;
this.skills = new ArrayList();

// further code omitted
}

Some OO proponents argue that all access to fields should be through getter and setter
accessor methods, even for other methods of the class. In other words, the principle of
encapsulation should be applied everywhere. Using such an approach, the ejbCreate()
method would be as follows:

08 0672323842 CH06 3/20/02 9:31 AM Page 261

public JobPK ejbCreate (String ref, String customer) throws CreateException {

// database access code omitted

setRef(ref);
setCustomer(customer);
setDescription(description);
setLocation(null);
setSkills(new ArrayList());

// further code omitted
}

Some people find this overly dogmatic, and, indeed, the code in the case study takes the
more direct approach. However, you may want to consider self-encapsulation because it
makes BMP beans easier to convert to CMP. As you will see tomorrow, all accessing to
the Entity bean’s state must be through accessor methods.

Don’t Use Enumeration for Finders
The EJB 1.0 specification was introduced before J2SE 1.2, so the specification allowed
finder methods that returned many instances to return java.util.Enumeration
instances. For backward compatibility, the EJB 2.0 specification still supports this, but
you should always use java.util.Collection as the return type for finder methods
returning more than one Entity bean instance.

Acquire Late, Release Early
In conventional J2SE programs, the idiom usually is to connect to the database at the
start of the program when the user logs in, and only disconnect when the user logs out.
Holding onto the open database connection while the user logs in substantially improves
performance; database connections are relatively expensive to obtain. So, for J2SE pro-
grams, the mantra is “Acquire early, release late.”

With J2EE programs, things are inverted. The database connection should be obtained
just before it is required, and closed immediately after it has been used. In other words,
“Acquire late, release early.” This is shown in the Job bean, as shown in Listing 6.16.

LISTING 6.16 Acquire Late, Release Early, as Shown in JobBean

1: package data;
2:
3: import javax.ejb.*;
4: import java.sql.*;
5: // imports omitted
6:

262 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 262

Entity EJBs 263

6

7: public class JobBean implements EntityBean
8:
9: public void ejbLoad() {
10: JobPK key = (JobPK)ctx.getPrimaryKey();
11: Connection con = null;
12: PreparedStatement stmt = null;
13: ResultSet rs = null;
14: try {
15: con = dataSource.getConnection();
16: stmt = con.prepareStatement(…);
17:
18: // SQL code omitted
19:
20: }
21: catch (SQLException e) {
22: error(“Error in ejbLoad for “ + key, e);
23: }
24: catch (FinderException e) {
25: error(“Error in ejbLoad (invalid customer or location) for “

➥ + key, e);
26: }
27: finally {
28: closeConnection(con, stmt, rs);
29: }
30: }
31: // code omitted
32: }

The reason that this works is because the database connection is obtained from a
javax.sql.DataSource (line 15) in a J2EE environment, rather than using the
java.sql.DriverManager.getConnection() method. Obtaining connections from
DataSources is not expensive in performance terms because they are logical connections,
not physical connections. When such a connection is obtained, it is merely obtained from
a connection pool, and when it is “closed,” it is simply returned back to the connection
pool.

Indeed, using the J2SE idiom of acquire early, release late (for example, by obtaining a
connection in setEntityContext() and releasing it in unsetEntityContext()) can
adversely affect performance, because every instantiated bean would have its own data-
base connection. This may well reduce application throughput because the memory
resources of both the EJB container and the database server would be increased to handle
many open database connections. In comparison, the J2EE idiom means that the number
of database connections open is no more than the number of methods concurrently exe-
cuting.

LISTING 6.16 Continued

08 0672323842 CH06 3/20/02 9:31 AM Page 263

Business Interface Revisited
Yesterday, you learned about the business interface idiom, whereby the business methods
are pulled out into a separate interface such that the bean itself can implement this inter-
face. This principle can equally be applied to Entity beans using local interfaces, as
shown in Figure 6.10.

264 Day 6

FIGURE 6.10
Business interfaces can
be applied to Entity
beans with local inter-
faces.

interface
data.JobLocal

interface
data.JobLocalHome

create
findByPrimaryKey
findByCustomer
findByLocation
deleteByCustomer

data.JobBean

getRef
getCustomer
getCustomerObj
getDescription
setDescription
getLocation
setLocation
getSkills
setSkills

interface
EJBLocalObject

getEJBLocalHome
getPrimaryKey
remove
isIdentical

interface
data.JobBus

getRef
getCustomer
getCustomerObj
setDescription
getDescription
setLocation
getLocation
getSkills
setSkills

interface
EJBLocalHome

remove

attributes, EJB lifecycle methods
and private helper methods
have been hidden.

There is one difference when applying this technique to beans that only have local inter-
faces; there is no longer any need for the methods of the business interface to throw
RemoteException, because the local interface of the bean (JobLocal in Figure 6.10) is
not itself remote. Even so, the bean still does not implement its local interface because
the methods of the EJBLocalObject interface are there to be implemented by the local
proxy object, not by the bean.

Gotchas
The following is a quick checklist of “gotchas” to help you with your implementation:

• Primary keys must be immutable. In other words, it is not possible to change the
value of a primary key for an entity once assigned (see EJB specification, section
10.3.5).

Of course, there is nothing to prevent you from directly changing the data in the
underlying persistent data store (for example, with an SQL UPDATE statement). But
you will need to do this with the EJB container offline or otherwise at rest.

08 0672323842 CH06 3/20/02 9:31 AM Page 264

Entity EJBs 265

6

• Sometimes, Entity beans interact with non-data store resources. An example might
be a client java.net.Socket or perhaps a subscription to a JMS topic (covered
more on Days 9, “Java Messaging Service,” and Day 10, “Message-Driven
Beans”). These resources will need to be acquired in both ejbActivate() (for an
existing bean) and also for ejbCreate() (if the bean has just been created).

Similarly, resources should be released in both ejbPassivate() and ejbRemove().
This is because a bean being deleted will not be passivated first.

• Finder methods can return Collections, but they can’t return Lists, Sets, or Maps.
However, this capability is planned for future versions of the EJB specification.

• If you have two bean references, note that the value of bean1.equals(bean2) is
unspecified, and that bean1 == bean2 is also unspecified. Moreover, hashCode()
may differ for two references to the same underlying EJB. (All of these points are
made in the EJB specification, section 9.8.)

The correct way to compare bean identity is to use bean.isIdentical() or to use
the equals() method on the primary key classes.

• Beware of a reliance on pass-by-reference side-effects when using local interfaces.
Such a reliance would compromise portability.

Summary
Another long day, but you now have lots of good new material under your belt. You’ve
learned that Entity beans represent persistent domain data with corresponding domain
(not application) logic. You’ve seen that the constituent parts of Entity beans are pretty
much the same as Session beans, though Entity beans also require a primary key class
that must be custom-developed if the key is composite.

You’ve also learned that there are two different ways to implement Entity beans, either
using bean-managed persistence, whereby the persistence code (JDBC, for example)
resides within the bean code, or using container-managed persistence. You now know the
lifecycle for BMP beans and how to implement such beans.

You saw that the EJB specification allows local interfaces to be defined for EJBs, as well
as or instead of remote interfaces, and saw several good reasons why Entity beans should
always use local interfaces.

Onto deployment, you now know that the J2EE RI allows EJBs can be deployed using a
command line interface. A deeper understanding of the XML deployment descriptor is
needed, but the process for deployment is (arguably) more portable and faster.

Finally, you’ve learned numerous design techniques, patterns, and idioms that should set
you up for designing and implementing Entity beans effectively.

08 0672323842 CH06 3/20/02 9:31 AM Page 265

Q&A
Q What do Entity beans represent?

A Entity beans represent persistent data that can be accessed and shared by many
clients over time.

Q What are the two types of Entity beans?

A The two types of Entity beans are BMP and CMP.

Q Why are local interfaces preferable to remote interfaces for Entity beans?

A Local interfaces perform better because there is no network traffic when calling a
bean through its local interface, and there is also no need to clone serializable
objects. They are also the basis for CMP.

Q How does a BMP Entity bean know what its primary key is?

A It can be passed as an argument of ejbCreate(), it could be generated by the
RDBMS, it could be generated by some other bean, or it might be generated as a
pseudo-random value using an algorithm that guarantees uniqueness.

Q Which two methods should the primary key class implement?

A The primary key class should implement the hashCode() and equals() methods.

Exercises
The exercise starts with a version of today’s case study that has a complete set of Session
beans, but an incomplete set of Entity beans. Where there is no Entity bean, the Session
bean performs direct SQL. The state of affairs is shown in Table 6.4.

TABLE 6.4 Case Study Session and Entity Beans

Session Functional Implementation/
Bean Area Functions Delegation

Agency Applicants create, delete, find all Direct SQL

Customers create, delete, find all Customer bean

Locations add, get details, get plural, remove Location bean

Skills add, get details, get plural, remove Skill bean

Advertise Job create, delete, get plural Job bean

Customer get details, update Customer bean

AdvertiseJob Job get details, update Skill bean, Location bean

Register Applicant get details, update Direct SQL

266 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 266

Entity EJBs 267

6

The exercise is to implement an Applicant Entity bean and to update the Agency and
Register Session beans to use this new Entity bean.

The Applicant bean should map itself to the Applicant and ApplicantSkill tables and
define the following fields:

• login This is the primary key for the Applicant Entity bean.

• name Simple scalar field.

• email Simple scalar field.

• summary Simple scalar field.

• location Should be a reference to a LocationLocal to ensure referential integrity.

• skills Should be a collection of SkillLocal references to ensure referential
integrity.

You should find that the structure of your new bean shares many similarities with the Job
Entity bean. One difference will be the primary key. The Job bean required a JobPK
because it had a composite primary key. For your Applicant bean, you should not need
to develop a custom primary key class because applicants will be identified simply by
their login—a simple String.

The ApplicantLocalHome and ApplicantLocal interfaces have already been provided;
note their similarity to JobLocalHome and JobLocal.

The directory structure of day06\exercise is the same as yesterday:

• src The source code for the EJBs and clients.

• classes Directory to hold the compiled classes; empty.

• dd Holds XML deployment descriptors.

• build Batch scripts (for Windows and UNIX) to compile the source and to build
the EAR files into the jar directory.

• jar Holds agency.ear: the agency enterprise application. Also holds
agencyClient.jar, the client-side JAR file optionally generated when deploy
EAR. This directory also holds some intermediary JAR files that are used only to
create the previous two jar files.

• run Batch scripts (for Windows and UNIX) to run the JARs. Use the files in the
jar directory.

In the detailed steps that follow, note one difference from yesterday is that today you
will be defining and configuring the EJB as part of the enterprise application by directly
editing the XML deployment descriptors in the dd directory. If you feel uneasy about
doing this, there is nothing to prevent you from making the changes through the GUI.

08 0672323842 CH06 3/20/02 9:31 AM Page 267

Do note, however, that the build scripts that create the agency.ear file do require that the
ApplicantBean.java source exists (even if its implementation is incomplete).

The steps you should follow are:

1. Locate the ApplicantBean.java file within day06\exercise\src\data. This
should have an empty implementation.

2. Implement ApplicantBean to support the Applicant and ApplicantLocalHome
interfaces supplied. Base your implementation on JobBean, if you want.

3. Next, modify the AgencyBean Session bean. The findAllApplicants(),
createApplicant(), and deleteApplicant() methods should instead delegate to
ApplicantHome.

4. Now update the RegisterBean Session bean. In its ejbCreate() method, it should
obtain a reference to an underlying Applicant Entity bean. Each of the business
methods should then delegate to this applicant. If you want something to work
from, look at the approach adopted by the AdvertiseJob Session bean, delegating
to an instance of Job Entity bean.

5. Update the data_entity_ejbs_ejb-jar.xml deployment descriptor in the dd
directory; again, cloning and adapting the Job bean entries will be a good start.

6. Update the agency_session_ejbs_ejb-jar.xml deployment descriptor to indicate
the new dependencies of the Agency and Register Session beans. Both will
depend on ApplicantLocal; you should also find that Register depends on
SkillLocal and LocationLocal (to call the business methods of Applicant).

7. The buildDataEntityEjbs script already references ApplicantBean, so there is no
need to change it. This causes your classes to be added to the resultant
data_entity_ejbs.jar ejb-jar file.

8. Now, build the jar\agency.ear enterprise application by using build\buildAll.
Load the resultant EAR file into deploytool, and check that the EJB is correctly
defined. If it is not, either make the appropriate changes and run buildAll or make
the changes through the deploytool GUI itself. Then, save the deployment
descriptors into the dd directory.

9. Your agency.ear file is not quite ready to deploy, because the vendor-specific
mapping information has not yet been specified. This is most easily generated by
deploying the enterprise application from deploytool. The wizard that then
appears will ensure that you have the opportunity to indicate any missing informa-
tion. Then, test by using the AllClients client, invoked using the run\runAll
script.

268 Day 6

08 0672323842 CH06 3/20/02 9:31 AM Page 268

Entity EJBs 269

6

10. Optionally, you may want to save the auxiliary deployment descriptor to
dd\agency_ea-sun-j2ee-ri.xml. If you do this, you will be able to build and
deploy the application directly from the command line using build\buildAll and
build\deploy, respectively. However, to obtain the auxiliary deployment descrip-
tor, you will need to manually load the agency.ear file (from the previous step)
into WinZip or equivalent and extract the auxiliary deployment descriptor; the
deploytool GUI does not provide any direct mechanism.

Good luck. A working example can be found in day06\agency (with a correct auxiliary
deployment descriptor).

08 0672323842 CH06 3/20/02 9:31 AM Page 269

08 0672323842 CH06 3/20/02 9:31 AM Page 270

DAY 7

WEEK 1

CMP and EJB QL
Yesterday, you learned how to specify, implement, and deploy bean-managed
persistence (BMP) Entity beans. Today, you will learn

• How to specify, implement, configure and deploy CMP Entity beans

• How to use EJB Query Language (EJB QL)

• How to define relationships between CMP Entity beans

Overview of Container-Managed
Persistence

The EJB specification provides for two different ways of implementing Entity
beans. The first approach, covered yesterday, is for the bean provider to embed
the persistence logic within the bean itself—hence the name bean-managed per-
sistence or BMP. The second is for the container vendor to provide that logic,
either generated by the EJB container vendor’s deployment tools or as part of
the EJB container itself. Entity beans built this way are called CMP Entity
beans.

09 0672323842 CH07 3/20/02 12:20 PM Page 271

272 Day 7

The “anatomy” of CMP Entity beans is very much the same as BMP Entity beans:

• They have a local-home (or remote home) interface that defines the create meth-
ods, the finder methods, optional home methods, and a remove method.

• They have a local (or remote) interface that defines the business methods of the
bean.

• Obviously, they have the bean class itself that implements methods corresponding
to the previously mentioned interfaces, and implements the lifecycle methods
inherited from javax.ejb.EntityBean.

• Finally, they may have a primary key class (and must have one if the primary key
is composite).

However, there are some differences. The responsibilities of the bean in the lifecycle
methods are different, because there is no longer any requirement to persist the bean’s
state. This raises the question as to when the state is persisted by the container, because it
could be done either before the lifecycle method is called or after. There are changes in
the interactions between the container and the bean, as you will see.

Another significant difference is the finder methods. Under BMP, the bean provider
writes the appropriate finder methods that interact with the persistent data store. Under
CMP, the container will do this work, so there is no longer any need to implement the
finder methods in the bean. However, the bean provider must still specify the nature of
the query to be performed to obtain the correct data from the data store. This is done
using EJB Query Language (EJB QL), appearing in the bean’s deployment descriptor.
EJB QL shares many similarities with ANSI SQL 92, so you should not have too many
difficulties picking it up.

CMP Entity beans have always been part of the EJB specification, first in EJB
1.0 and then with some minor refinements in EJB 1.1. The changes to CMP
Entity beans in EJB 2.0 are substantial—so substantial, in fact, that CMP 1.1
Entity beans are not forward compatible with EJB 2.0.

To deal with this, the EJB specification actually provides two different ways
to write CMP Entity beans. The first is the legacy 1.1 approach; beans that
are written this way indicate it using an entry in their deployment descrip-
tor. The second is using the new and far more powerful approach intro-
duced in EJB 2.0.

Today, you will be learning only about the new EJB 2.0 approach.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 272

CMP and EJB QL 273

7

Just as tables in relational databases have relationships, so too do Entity beans. You saw
this yesterday with the relationship between the Job bean, which had relationships with
the Skill, Location, and Customer beans. Under BMP, the bean provider must write the
code that maintains all of these relationships explicitly. If CMP is used, these relation-
ships can be declaratively defined using container-managed relationships, or CMR.
Again, the declarations of these associations are in the bean’s deployment descriptor.

Relationships between Entity beans are intrinsically fine-grained. For example, a many-
to-many relationship between Job and Skill (indicating which skills are needed for
such-and-such a job) would involve dealing with many (job,skill) tuples in the case
study stored in the JobSkill table. You know that Entity beans can have either a local or
a remote interface, and that it’s good practice to only ever interact with an Entity bean
through its local interface because this reduces network traffic. Because the performance
cost of maintaining a fine-grained relationship across the network would be too severe,
the EJB specification requires that container-manager relationships between Entity beans
are defined only through local interfaces. Indeed, one of the primary reasons for the
introduction of local interfaces in the EJB specification was to make CMR feasible.

N-tier Architecture (Revisited Again) and CMP Fields
CMP has an impact on the n-tier architecture that you seen have on several previous
days. Figure 7.1 shows an update of a figure that you saw yesterday.

FIGURE 7.1
CMP Entity beans are
split into two compo-
nents.

«entity EJB»
domain logic

«bean provider»
CMP bean

«session EJB»
application logic

«database»
persistence layer

«session EJB»
application logic

«swing»
user interface

«servlet»
user interface

«servlet»
user interface

«EJB container»
CMP implementation

There are still four tiers to the architecture—namely, the interface, application, domain,
and persistence layers. However, with CMP, the Entity beans split into two components.
The first component is provided by you, the bean provider. This defines the bean’s
local-home and local interfaces, but the implementation of the bean itself is incomplete.

09 0672323842 CH07 3/20/02 12:20 PM Page 273

It provides a full implementation of the business methods, but there is no implementation
of the accessor methods for the bean’s state. Indeed, you will see that the methods are
marked as abstract. The concrete implementation of the CMP bean is completed by
the EJB container provider. This component has dependencies on both the bean
provider’s bean, and—of course—on the persistence layer. The first dependency is
because the concrete implementation uses the bean provider’s abstract bean class as its
superclass; in other words, it extends from the CMP bean. The second dependency is
because the implementation of the bean performs appropriate data store calls.

You may recognize this design as an instance of the Template design pattern. The
abstract CMP bean provided by the bean provider is a template, defining certain manda-
tory “hook” methods—namely, the accessor methods. The implementation of these
hooks is provided by the EJB container in terms of the concrete CMP implementation.

Listing 7.1 shows this for the Job Entity bean. This bean defines a pair of accessor meth-
ods (the getter and setter) for each of its fields—ref, customer, description, location,
and skills.

LISTING 7.1 The JobBean’s Fields Are Implied by the Presence of These Abstract Accessor
Methods

1: package data;
2:
3: import javax.ejb.*;
4: // imports omitted
5:
6: public abstract class JobBean implements EntityBean {
7:
8: public abstract void setRef(String ref);
9: public abstract String getRef();
10:
11: public abstract void setCustomer(String customer);
12: public abstract String getCustomer();
13:
14: public abstract String getDescription();
15: public abstract void setDescription(String description);
16:
17: public abstract LocationLocal getLocation();
18: public abstract void setLocation(LocationLocal location);
19:
20: public abstract Collection getSkills();

274 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 274

CMP and EJB QL 275

7

21: public abstract void setSkills(Collection skills);
22:
23: // code omitted
24: }

Each of these accessors is implemented by the concrete CMP implementation. The actual
instance variables are effectively part of the subclass’ implementation, ultimately popu-
lated from the persistent data store.

LISTING 7.1 Continued

This naming scheme throws up a very curious restriction, specifically that
cmp-fields must not start with a capital letter. Thus, customer and even
cUSTOMER are valid names, but CUSTOMER would not be. This is because the
methods capitalize the cmp-fields, and one cannot capitalize a capital!

Caution

Another way of thinking about this design is in terms of vertical delegation. The Session
beans can call the accessor methods on methods defined in the superclass, but the actual
method that is invoked is the implementation defined in the subclass. The superclass
CMP bean “delegates” vertically down to its subclass CMP implementation.

This design gives several advantages. One immediate advantage of this pattern is that it
gives the EJB container (through the concrete bean implementation) much more control
over populating the bean’s state, without compromising good OO principles. For exam-
ple, it is up to the EJB container whether it chooses to obtain all of the bean’s state when
the bean is activated or created (eager loading), or whether it chooses to fetch the bean’s
state from the persistent data store as and when needed (lazy loading). Indeed, the con-
crete implementation may adopt some half-way house, eagerly loading all the scalar data
pertaining to the bean but lazily loading data corresponding to bean relationships.
Indeed, this advantage is pointed out in the EJB specification (section 10.4.2.1).

Another advantage is that the EJB container only need persist the bean’s state to the data
store when the bean’s state has changed. The concrete implementation can keep track of
the before-and-after versions of the bean’s state and compare them to see if any have
changed as the result of a business method invocation. If a read-only accessor method (a
“getter” method) is called, there would be no change in state and so the concrete imple-
mentation need not perform an unnecessary update to the data store. Taking this on one
further stage, when the bean’s state is changed, the EJB container need only update those
fields that have changed and can ignore fields that have not changed. This reduces net-
work traffic between the EJB container and the persistent data store.

09 0672323842 CH07 3/20/02 12:20 PM Page 275

One final advantage worth mentioning is that some value-add services, such as optimistic
locking, can be implemented by EJB container vendors more straight-forwardly.

A Quick Word about the Case Study Database
As you go through the remaining topics for today, you may well want to load up and run
the case study code. Before you can do this, the Agency database needs to be modified to
support CMP. This is because the J2EE RI container generates its own SQL schema to
store the Entity beans’ data.

Figure 7.2 shows the revised schema for the case study, as generated by the J2EE RI
container.

276 Day 7

FIGURE 7.2
The case study data-
base schema changes
under CMP.

login

CustomerBeanTable

address1
address2
email
name

name

LocationBeanTable

description

name

SkillBeanTable

description

login

ApplicantBeanTable

email
name
summary

ref
customer CustomerBeanTable.login(FK)

JobBeanTable

description

_JobBean_ref JobBeanTable.ref(FK)
_JobBean_customer JobBeanTable.customer(FK)

JobBean_location_LocationBean_Table

_LocationBean_name LocationBeanTable.name(FK)

_ApplicantBean_login ApplicantBeanTable.login(FK)

ApplicantBean_location_LocationBean_Table

_LocationBean_name LocationBeanTable.name(FK)

_JobBean_ref JobBeanTable.ref(FK)
_JobBean_customer JobBeanTable.customer(FK)
_SkillBean_name SkillBeanTable.name(FK)

JobBean_skills_SkillBean_Table

_SkillBean_name SkillBeanTable.name(FK)
_ApplicantBean_login ApplicantBeanTable.login(FK)

ApplicantBean_skills_SkillBean_Table

advertises

requires

location for workplace forat

needed for capabilities of

Z Z
works at

has

The J2EE RI container can automatically create this schema when the Entity beans are
deployed. However, because there is example data in the case study database, it is easier
to run the provided utility to “upgrade” the database to support CMP. The Agency
Session bean queries the Cloudscape RDBMS tables directly. To ensure that this contin-
ues to work, the utility also creates SQL views with the names of the old tables
(JobSkill and so on) against the new tables.

09 0672323842 CH07 3/20/02 12:20 PM Page 276

CMP and EJB QL 277

7

The steps for converting the database to support CMP are as follows:

1. Shut down Cloudscape if it is running.

2. Back up the current (pre day 7) version of the Agency database, under
%J2EE_HOME%\cloudscape.

Under Windows, you can do this using copy and paste, or from the command line
type:
> cd %J2EE_HOME%\cloudscape
> xcopy Agency bmpAgency /I /E

Under Unix, you can do this using the following:
$ cd $J2EE_HOME/cloudscape
$ cp –r Agency bmpAgency

3. Restart Cloudscape.

4. Under the case study day07\Database directory, run the batch
CreateCMPAgency.bat (Windows) or CreateCMPAgency.sh (Unix). This calls
CreateCMPAgency.java (already compiled for you) which, in turn, creates the pre-
vious tables, populates the tables with the same sample data, and creates the views
for backward compatibility.

5. When you have done this, you may want to shut down Cloudscape and then back-
up the CMP version of the database to a directory called cmpAgency, using similar
commands to those in step 2. That way, you can easily switch between the two
different schemas. To reinstate either version, just delete the Agency directory and
then copy back either the bmpAgency or cmpAgency using xcopy (Windows) or
cp -r (Unix).

CMP Entity Bean Lifecycle
The lifecycle for CMP Entity beans is substantially the same as BMP Entity beans,
reflected in an almost identical diagram (see Figure 7.3).

This diagram differs from the lifecycle you saw yesterday in that there are no
ejbFindXxx() methods for pooled beans. This is not to say that pooled CMP Entity
beans do not perform finder methods; they do. However, the EJB container generates the
actual code that performs this. There will be a finder method in the bean’s local-home
interface, but not necessarily an equivalent ejbFindXxx() method in the bean itself (and
certainly not in the code written by the bean provider).

09 0672323842 CH07 3/20/02 12:20 PM Page 277

Yesterday, you saw the responsibilities of the bean provider for each of these lifecycle
methods for the Job bean when implemented using BMP. The implementation is some-
what simpler when using CMP, as shown next.

As for BMP Entity beans, the setEntityContext() and unsetEntityContext() meth-
ods must be implemented to look up any required resources (although the resources are
likely to be different than those needed for BMP; in particular, the JDBC DataSource
should not be needed).

Under BMP, the ejbCreate() method was responsible for persisting the newly created
bean’s state to the persistent data store. Under CMP, the ejbCreate() method does not
need to do this, but does still need to set the bean’s fields to the parameters passed in.
This can include generating a unique primary key value.

278 Day 7

FIGURE 7.3
The
javax.ejb.EntityBean

lifecycle for CMP
Entity beans.

Pooled

Cached

Creating

exit/^ejbLocalObject.new()

/ejbActivate

/ejbCreate

/ejbPostCreate

/ejbRemove

/ejbPassivate

[pool too large]
/unsetEntityContext

[pool too small]
/setEntityContext

ejbLoad
/“business method”
ejbStore

Where the implementation of the finder methods is will depend on the EJB
container. It does seem likely that many vendors will choose to place the
finder logic in the bean’s concrete implementation. An advantage of this
approach (for the EJB container vendor) is that the rest of the EJB container
need not differentiate between BMP and CMP Entity beans.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 278

CMP and EJB QL 279

7

The BMP version of ejbRemove() was responsible for physically removing the bean’s
state from the data store. The CMP version does not need to do this (and later on, you’ll
see that this method actually has a null implementation).

Nevertheless, sometimes there may be occasions when work needs to be done in the
ejbRemove() method. For example, you could imagine an Entity bean that has some sub-
scribers interested in observing its changing state. One such Entity bean might be a head-
line news item publicized from Reuters. When this Entity bean is finally removed, it
would notify those subscribers of the event.

On a more mundane level, the bean might want to prevent the delete from occurring if,
for example, some referential integrity constraint would be violated by the bean being
removed. In such cases, you need to know that the ejbRemove() is called before the con-
tainer actually removes the data.

Next are the ejbLoad() and ejbStore() methods. Under BMP, these methods for the
Job bean were substantial, because they had to read/write the bean’s state to both the Job
and JobSkill tables. Under CMP, unless there is any derived data to be maintained,
these methods could well have an empty implementation.

The ejbActivate() and ejbPassivate() methods for a CMP Entity bean are pretty
much identical to their implementations for a BMP Entity bean; after all, these methods
have nothing to do with the persistent data store.

If you’ve been mentally (or manually) comparing this section with the previous section
yesterday, you’ll note that yesterday there was discussion on the finder methods. There is
no such discussion here because the finder methods will be generated automatically.
However, as the bean provider, you will need to indicate to the container the semantics of
the finder queries. To do that, you must be familiar with EJB QL. But to understand EJB
QL queries of any complexity, you need first to understand container-managed relation-
ships. CMR is discussed in the next section, followed then by EJB QL.

Container-Managed Relationships
Container-managed relationships (CMR) might possibly sound pretty daunting, and cer-
tainly from the EJB container vendor’s perspective, there could be some fairly complex
activity happening behind the scenes. However, from the bean provider’s perspective
(that is, you), they are fairly straightforward and easy to use.

CMRs are defined declaratively through the deployment descriptor, underneath the
relationships element. Therefore, container-managed relationships can only be defined
between Entity beans that reside within the same local relationship scope (EJB specification,

09 0672323842 CH07 3/20/02 12:20 PM Page 279

section 10.3.2). What this means in practice is that beans that have relationships must be
deployed in the same ejb-jar file. You will be learning more about actually declaring
CMRs later today, in “Configuring a CMP Entity Bean.”

280 Day 7

The restriction that CMR can only be defined between EJBs deployed in the
same ejb-jar file could possibly create problems. Some organizations main-
tain static reference data globally and replicate that data locally. This works
because such data is often updated relatively infrequently.

By its nature, reference data is referenced (!), so one would expect relation-
ships from domain-specific Entity beans up to cross-organizational reference
beans. However, if the reference Entity beans are deployed separately from
the domain-specific Entity beans (as would be likely), no such relationships
can be assigned.

Note

Relationship Types
CMR allows three different types of relationships to be defined between Entity beans:

• One-to-one

• One-to-many

• Many-to-many

The first two relationship types are to be expected, but the last is perhaps more unexpect-
ed if you are used to using RDBMS. In relational theory, it is not possible to create a
many-to-many relationship directly; instead, a link (or association) table is required.
Indeed, such a table can be seen directly in the BMP version of the case study database;
the many-to-many link between jobs and skills is captured in the JobSkill table.
However, the EJB specification allows many-to-many links to be defined directly for
Entity beans, an immediate simplification over the RDBMS approach.

Of course, most EJB containers—the J2EE RI included—will persist to RDBMS,
so will require a link table in the physical schema. Indeed, the J2EE RI uses a
link table even for one-to-many associations. You can see this if you look
back to Figure 7.2. For example, the one-to-many link from Job to Location
is captured through the snappily named
JobBean_location_LocationBean_Table table.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 280

CMP and EJB QL 281

7

These relationship types actually refer to the maximum cardinality (also sometimes
called multiplicity) of the related beans in the relationship. That is, saying that there is “a
one-to-many relationship between Location and Job” is shorthand for “the maximum
number of Locations that a Job can be related to is one, and the maximum number of
Jobs that a Location can be related to is many.” There is also the question of minimum
cardinality. In other words, is it necessary for a Job to be related to any Location (or can
it be related to none)? Equally, must a Location have any Job related to it?

The EJB specification answers this question implicitly by always allowing a minimum
cardinality of zero. Hence, “one-to-many” also allows for none-to-many, one-to-none,
one-to-many, and (trivially) none-to-none.

There are sometimes situations when a minimum cardinality of none is not acceptable.
For example, it might be the case that a Job must always relate to a Location. (Actually,
for the case study, this is not enforced except in principle). In these cases, it is up to the
bean to do the appropriate validation. In other words, the Job bean would only define a
create() method that accepted a Location bean reference, and if it provided a
setLocation() accessor method in its interface, it would ensure that the supplied
Location reference was not null.

A related question is, “What happens if a bean is removed?” Suppose that the Job bean
relates to a Location, and the Location bean is deleted. The Job bean will be left with a
null reference. In relational terms, this is sometimes called a cascade null.

Suppose (again) that every Job must always relate to a non-null Location. There are a
number of options:

• The first, somewhat radical, option is to remove the related Job beans—in other
words, perform a cascade delete. CMR supports this directly (it is specified
through the deployment descriptor) and will remove each Job bean in turn.

• Second, the application can prevent the removal of the foreign key Location bean
from occurring. This would be done by implementing an appropriate check in the
ejbRemove() lifecycle method.

• Another alternative would be to reassign every impacted Job bean to some new
Location. Again, the ejbRemove() method would need to do this work.

The second option is probably the most likely, so you should take care to do this type of
minimum cardinality analysis to make sure that you do not unwittingly end up with
beans that have null relationships when the semantics of the problem domain prohibit
this from occurring.

09 0672323842 CH07 3/20/02 12:20 PM Page 281

Navigability
In addition to specifying multiplicity of the relationships, CMR also allows the naviga-
bility of the relationship to be defined. The navigability is either unidirectional or bidi-
rectional.

Navigability is defined by indicating the name of the field that references the related
bean. For example, in a many-to-one relationship between the Job and Location beans,
indicating a field of location for the Job bean means that there is navigability from Job
to Location. There may not necessarily be navigability in the opposite direction; that
would depend on whether the Location bean defines a field called jobs.

282 Day 7

While the case study does not require bi-directional navigability either from
Location to Job or from Skill to Job, it does define navigability neverthe-
less. Otherwise, the code generated by the J2EE RI 1.3 deployment tools
(somewhat unfortunately) does not compile—not something to inspire con-
fidence!

Caution

The term “field” (or more properly, cmr-field) used here indicates the accessor methods
for the virtual fields defined in the CMP superclass and implemented by the EJB contain-
er. The next section looks at these methods in more detail.

cmr-fields
By way of example, the location cmr-field for the Job bean has accessor methods of
getLocation() and setLocation(), and the skills cmr-field has the accessor meth-
ods getSkills() and setSkills(). The return type of these methods depend on the
multiplicity of the relationship.

The relationship from Job to Location is many-to-one, so the methods that correspond to
the location cmr-field are as follows:

public abstract LocationLocal getLocation();
public abstract void setLocation(LocationLocal location);

09 0672323842 CH07 3/20/02 12:20 PM Page 282

CMP and EJB QL 283

7

For single-valued cmr-fields, the return type for the getter and the parameter to the set-
ter is the local interface of the related bean (LocationLocal in this case). Yesterday, it
was noted that local interfaces are the cornerstone of container-managed relationships;
this shows why. Remote interfaces cannot be used in CMR.

The same restriction on naming that applies to cmp-fields also applies to
cmr-fields: the name must not start with a capital letter.

Tip

The Job bean also has a relationship with the Skill bean, this time many-to-many. Thus,
the skills cmr-field corresponds to the following methods:

public abstract java.util.Collection getSkills();
public abstract void setSkills(java.util.Collection skills);

This is a multi-valued cmr-field because a collection of values is returned, not just a
single value. The collection returned here is a java.util.Collection of references to
the local interface of the related bean (SkillLocal in this case). The EJB specification
also allows for java.util.Sets to be returned. The EJB specification does not currently
allow Lists or Maps to be returned from multi-valued cmr-fields, but does hint that they
may be added in the future.

Note that the fields of a bean are either regular cmp-fields or they are cmr-fields (or
they are just regular instance variables, not managed by the container at all). Put another
way, cmp-fields cannot be defined that have references to other beans as their argument
or return type; such fields must be defined as cmr-fields.

This isn’t recommended, but there is nothing in principle to prevent an
Entity bean with only a remote interface from having relationships with
other Entity beans. However, the target Entity beans must themselves have a
local interface, and the relationship will be unidirectional. The absence of a
local interface in the source Entity bean prevents the related Entity beans
navigating back to the Entity bean.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 283

Not only do the methods corresponding to the cmr-field return and accept only local
and not remote interfaces to beans, they also cannot appear in the remote interface of the
bean. This is not really surprising. After all, the return types and arguments to the meth-
ods corresponding to the cmr-field take only local interfaces of remote beans, so the
client of the bean invoking the cmr-field methods must be local. You saw yesterday that
there are very good reasons why remote interfaces are bad news for Entity beans; this is
another reason not to provide a remote interface.

284 Day 7

Composite Primary Keys and Relationships

The Job Entity bean has a relationship with both the Location bean and the Customer
bean. The getCustomer() method returns the name of a customer as a String, whereas
the getLocation() method returns a reference to a LocationLocal. In other words, the
former returns the name (the primary key) to a bean, and the latter returns the bean
itself. So why the difference?

The reason is that the customer field is part of the primary key for the Job bean, and
appears in JobPK. Every public field in JobPK must have a corresponding field in the bean
itself.

If the JobPK class defined its customer field to be a reference to a CustomerLocal, the
JobPK class could not be guaranteed to be serializable.

This shows up a very subtle area, not highlighted at all in the EJB specification. In the
case study, there is a relationship between Customer and Job, in that Jobs are identified
by Customer. In other words, the primary key of Job contains the primary key of the
Customer that “owns” that Job.

The case study does not define the one-to-many relationship between Customer and Job.
If this had been done, a virtual field and corresponding accessor methods
({get/set}CustomerObj() methods) would need to have been defined. The problem that
would then have arisen, however, is that potentially the name of the customer returned
by getCustomer() may not correspond to the actual customer returned by
getCustomerObj().

In commercial EJB containers, this problem can be resolved by mapping both the
getCustomer() and getCustomerObj() methods to the same physical data in the persistent
data store (the customer column in the Job table). This prevents them from getting out
of step (although even here, the EJB container would need to make the customerObj
field read-only because allowing it to be changed would implicitly change the primary
key of the Job bean).

However, the J2EE RI container does not make the mapping of the Entity beans data to
the physical schema explicit. While it might be possible to modify the implied mapping,
it would be unclear (from an education standpoint) what was being done. For this rea-
son, the case study does not define the Customer/Job relationship. This is why, for exam-
ple, the customerObj field is derived from the customer field, and is looked up in the
JobBean’s ejbLoad() method.

09 0672323842 CH07 3/20/02 12:20 PM Page 284

CMP and EJB QL 285

7

Table 7.1 compares the use of cmp-fields and cmr-fields in interfaces.

TABLE 7.1 cmp-fields and cmr-fields and Interfaces

Feature cmp-field cmr-field

Can appear in local Yes Yes
interface

Can appear in remote Yes No
interface Not recommended though;

Entity beans should be
accessed via remote clients.

Can accept as parameters No Yes
and return local references cmp-fields deal only with
to beans primitives (or serializable

objects).

Can accept as parameters No No
and return remote references cmp-fields deal only with Container managed relationships
to beans primitives (or serializable are defined only through local

objects). interfaces of beans.

The EJB specification also requires that the Collection returned by a cmr-field method
is only used in the same transaction context. You will be learning more about transactions
tomorrow, but for now, just consider the following scenario. A Session bean could invoke
a multi-valued cmr-field’s getter method and receive back a Collection. It could then
hold onto this Collection for a few seconds, minutes, days, or months. It might also
remove and add elements to this Collection. If the client then calls the setter method for
the bean, there are no guarantees that either the Collection hasn’t been changed by
some other client of the entity bean (the so-called lost update problem) or that the ele-
ments in the originally returned collection are still valid (the repeatable read problem).
The EJB specification’s insistence that collections are only manipulated within a transac-
tion solves these problems, primarily because transactions both prevent the items in the
Collection from being removed, and ensure that new items will remain valid.

The other reason that cmr-field methods cannot appear in the remote
interface is to prevent untoward network traffic. The performance cost of
transporting large collections of references across the wire (even assuming
those references were serializable) would be overwhelming.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 285

Manipulating Relationships
In the context of an RDBMS, relationships between tables can be manipulated in several
ways. Consider, for example, the case study (with the schema used in Day 6, “Entity
EJBs”). The Job and Skill tables are in a many-to-many relationship, resolved through
the JobSkill link table, and the Job and Location table have a many-to-one relation-
ship, implemented through the location column acting as a foreign key in the Job table.

To change a many-to-many relationship means adding or removing entries from the
appropriate link table. In the example, this means adding or removing (job, skill)
tuples from the JobSkill table.

To change a many-to-one relationship means changing the value of the foreign key col-
umn. In the example, this means changing the value of the location column in the Job
table.

Manipulating relationships between Entity beans is somewhat different. As you have
seen, the setter method for a multi-valued cmr-field (such as setSkills()) takes an
entire Collection of items. And for many-to-one relationships (with the appropriate nav-
igability), the relationship can be modified from the “parent” end, just as much as from
the “child” end.

Moreover, for multi-valued cmr-fields, the collection of beans referenced by the rela-
tionship can be modified just by using the usual add() or remove() methods of the
java.util.Collection interface.

The EJB specification lays out in some detail the semantics of various actions that
impact relationships between Entity beans. Many of these are straightforward and act as
expected, but a few deserve special comment.

Figure 7.4 shows an example configuration of Location and Job beans, and indicates the
relationships before and after executing:

loc1.getJobs().add(job21)

The relationships indicated {new} are created as a result of this action, while the relation-
ships indicated {destroyed} disappear. (This rather elegant notation is an enhancement
to UML, described by deSouza and Wills’ Catalysis Method.)

Initially, loc1 is associated with job11 through job1n, and similarly, loc2 is associated with
job21 through job2n. You can see that as a result of the action, the job21 bean is added to
the collection of jobs associated with the loc1 location. However, perhaps less obviously,
the job21 bean is also removed from the collection of jobs associated with the loc2 location.
This is because there is a one-to-many relationship between Location and Job, so the job21
bean cannot have a relationship with both loc1 and loc2 at the same time.

286 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 286

CMP and EJB QL 287

7

Note that the collection of jobs associated with loc1 changes, even though the
setJobs() method of Location is not called! At least, these are the semantics laid out by
the EJB specification, but it would be wise to check that your own EJB container correct-
ly implements this. (The J2EE RI server does implement this correctly.)

The java.util.Collection interface defines the addAll() method as well as the add()
method, and this is also supported for CMR collections. This takes a collection of ele-
ments rather than a single element. For one-to-many associations, the addAll() has the
same semantics as add() in that any child elements (the Job bean in the example) that
are added to some collection will also be removed from the collection where they
resided.

The diagram in Figure 7.4 holds good for either unidirectional relationships with naviga-
bility from Location to Job, and for bi-directional relationships.

Figure 7.5 shows the “opposite” case of removing a bean from a collection, having exe-
cuted

loc1.getJobs().remove(job1n)

FIGURE 7.4
Before and after object
diagram for
loc1.getJobs().add

(job21).

job1.1

job1.2loc1 loc2

job1.n

job2.1

job2.2

job2.n

(new)

{destroyed}

FIGURE 7.5
Before and after object
diagram for
loc1.getJobs().

remove(job1n).

job1.1

job1.2loc1 loc2

job1.n

job2.1

job2.2

job2.n{destroyed}

09 0672323842 CH07 3/20/02 12:20 PM Page 287

Initially, loc1 is associated with job11 through job1n, and similarly, loc2 is associated
with job21 through job2n. As you can see, after executing this action, the job1n bean is
no longer associated with any Location bean. Earlier today, it was noted that the EJB
specification always allows a minimum multiplicity of zero, and this is what has
occurred here. Suppose though that every Job should always be related to a Location—
that is, a minimum multiplicity of one. Given that the job’s location is being set to null
indirectly (by calling remove() on the returned Collection from the getJobs()
method), there is no easy way to enforce this business rule.

The only available solution is to not make the getJobs() method available in the inter-
face of the bean. You could provide another method, perhaps named getJobsCopy(), that
returns a copy of the Collection and make it clear that adding or removing beans to this
Collection will not influence the relationship itself. Even better, the Collection could
be made immutable. The following is a possible implementation for this method (assum-
ing java.util.* is imported):

public Collection getJobsCopy() {
List jobs = new ArrayList();
for(Iterator iter = getJobs().iterator(); iter.hasNext();) {

jobs.add(iter.next());
}
return Collections.unmodifiableList(jobs);

}

Incidentally, another way of removing elements from the collection returned by a getter
method is to do so using an Iterator. Indeed, changing the contents of a Collection,
either directly by using remove() or indirectly, such as by the use of add() as described
in figure 7.4, will invalidate any Iterators instantiated from that Collection. In any
case, the following would disassociate the loc1 location from all of its jobs:

for(Iterator iter = loc1.getJobs().iterator(); iter.hasNext();) {
iter.next();
iter.remove();

}

The diagram in Figure 7.5 again holds good for either unidirectional relationships with
navigability from Location to Job and for bi-directional relationships.

The case study does not define any one-to-one relationships between beans, so imagine
that there is an Employee bean that has a one-to-one relationship with Job. This could
perhaps represent the Employee of the Advertiser who originally placed the Job advert.

In any case, Figure 7.6 shows the object diagram having executed

job1.setEmployee(job2.getEmployee())

288 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 288

CMP and EJB QL 289

7

Initially, job1 has a relationship with emp1, and job2 has a relationship with emp2. After
the action, emp1 has no relationship with any Job, job2 has no relationship with any
Employee, and job1 has a relationship with emp2.

This seems quite straightforward, but again, a minimum multiplicity of zero is needed. If
either every Employee must always relate to a Job, or if every Job must always relate to
an Employee, there is no method where this application validation can be performed. The
Job bean’s setEmployee() method might look like a good candidate, until you realize
that this method is abstract and is generated entirely by the beans’ subclass.

The solution, again, must be to not expose the setter method in the interface of the bean.
Instead, a method, such as setEmployeeField(), could be provided. Its implementation,
for the case where every Job must relate to an Employee (though not every Employee
need have a relationship with a Job), might be as follows:

public void setEmployeeField(EmployeeLocal newEmployee) {
if (newEmployee.getJob() != null) {

throw new IllegalArgumentException(
➥”New employee must not already be related to a job”);

}
setEmployee(newEmployee);

}

As you can see, this implementation requires that the supplied employee is not related to
a job. (If it were, that job would, in turn, need to be assigned a new employee not related
to any job, and so on.)

FIGURE 7.6
Before and after object
diagram for
job1.setEmployee(

job2.getEmployee()).

emp1job1 job2emp2{destroyed}

{new}

{destroyed}

Clearly, this technique is good wherever some application-level validation is
required. For example, if a bean had a cmp-field called phoneNumber, the
format of the supplied number could be checked.

Note

The diagram in Figure 7.6 holds good for unidirectional relationships with navigability
from Job to Employee and for bi-directional relationships.

09 0672323842 CH07 3/20/02 12:20 PM Page 289

Figure 7.7 returns to the relationship between the Location and Job beans, this time
showing the object diagrams having executed

loc1.setJobs(loc2.getJobs())

290 Day 7

FIGURE 7.7
Before and after object
diagram for
loc1.setJobs(loc2.

getJobs()).

job1.1

job1.2loc1 loc2

job1.n

job2.1

job2.2

job2.n

{new}

{new}

{destroyed}

{destroyed}{destroyed}

{destroyed}

{destroyed}

{destroyed}

{new}

Again, initially loc1 is associated with job11 through job1n, and similarly, loc2 is asso-
ciated with job21 through job2n. After the action has completed, the Collection of jobs
previously associated to loc2 are associated to loc1. The loc2 bean itself, and the
Collection of jobs previously associated with loc1, no longer have any associations.

The discussion for the diagram in Figure 7.7 follows similar lines to that for the previous
diagram in Figure 7.6. Specifically, handling minimum cardinality of one for either Job
or Location will require the setJobs() method to be removed from the interface of the
bean. Instead, a method, such as setJobsField(), should be exposed that will do the
validation and then delegate to setJobs().

It’s also worth remarking that behind the scenes, the EJB container is having to perform
some significant updates to the persistent data store. Assuming an RDBMS physical
schema of Location and Job tables with a foreign key in the Job table, the foreign key
for job11 through job1n would need to be set to null, and the foreign key for job21
through job2n updated to be loc1.

You saw earlier today that the actual physical schema used by J2EE RI actual-
ly has a separate link table called JobBean_location_LocationBean_Table
that holds the foreign key. For the J2EE RI to implement this action, it would
need to delete all the rows in this table for loc1 and loc2, and then re-
insert new rows corresponding to the (loc1, job21)… (loc1, job2n)

tuples.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 290

CMP and EJB QL 291

7

If you were to design a bean with multi-valued relationships without using CMR, you
might well have provided methods such as addSkill() and removeSkill(). As you now
appreciate, CMR itself does not require or provide such methods, relying instead on a
single setter method for the cmr-field.

Of course, there is nothing to prevent providing methods, such as addSkill() and
removeSkill(), in the bean itself. Indeed, as you have seen, there are good reasons why
the setSkills() method might not appear in the local interface to the bean; providing
just addSkill() and removeSkill() in the interface would provide an (arguably) more
natural interface to the bean while also allowing the bean to perform any application-
specific validation.

Finally in this section, note that it is illegal to call the setter method of a multi-valued
cmr-field with null; a java.lang.IllegalArgumentException will be thrown by the
EJB container if this is attempted. In the example, to indicate that a job has no skills
associated with it, an empty collection (for example,
java.util.Collection.EMPTY_LIST) must be passed as the argument to setSkills().

EJB QL
By now, you should have a good idea as to how a bean’s CMP fields and CMR fields are
managed and persisted by the EJB container. However, there is still one area that you
covered yesterday when you were learning about BMP Entity beans that has not yet been
touched on today, and that is how to specify finder methods. For this, you need to know
something about the EJB Query Language, or EJB QL.

EJB QL was introduced in the EJB 2.0 specification to make beans more portable across
EJB containers. Previously, each EJB container vendor created their own proprietary
mechanism for specifying the semantics of finder methods. This is no longer the case.

As a language, EJB QL is based on ANSI SQL, which you have seen embedded within
the case study code (for example, on Day 5, “Session EJBs” and Day 6, “Entity EJBs”).
EJB QL also bears some similarity with the Object Constraint Language (OCL), part of
UML. Familiarity with ANSI SQL (and ideally OCL too) will see you well on the way to
picking up EJB QL.

Select Methods
The EJB 2.0 specification also introduces another concept that also uses EJB QL queries,
namely that of select methods. These are like finder methods in that their purpose is to
return data from the persistent data store, but there are also some important differences.
Table 7.2 is an expanded version of the comparison that appears in the EJB specification.

09 0672323842 CH07 3/20/02 12:20 PM Page 291

TABLE 7.2 Finder and Select Methods Compared

Feature Finder Method Select Method

Can be defined for CMP Yes Yes
Entity beans

Can be defined for BMP Yes No
Entity beans

Semantics specified using Yes Yes
EJB QL query, implementation
generated by container

Appears in local-home (home) Yes No
interfaces This is the way in which

formal arguments are specified.

Abstract method signature in No Yes
bean class This is the way in which the

formal arguments are speci-
fied.

Returns local (remote) Yes Yes
references to bean Local references are returned if By default, local references

specified on local-home interface, are returned, but remote
remote references if specified on references can be returned if
home interface. indicated in the deployment

descriptor (the result-type-
mapping element).

Returns any cmp-field or No Yes
cmr-field A different syntax of EJB QL

query is used.

Returns java.util.Collections Yes Yes
of references

Returns java.util.Sets of No Yes
references Duplicates can be eliminated

using the distinct keyword in
the EJB QL query.

Returns java.util. Yes No
Enumerations of references This is to support legacy EJB 1.x

beans; do not use.

Called on pooled beans Yes Yes
The EJB container selects an If being called from a home
unused bean to perform the query. method.

292 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 292

CMP and EJB QL 293

7

Called on activated beans No Yes
If being called from a business
method, this allows the under-
lying query to be logically
scoped (for example, based on
the primary key), if needed.

Own transaction context can Yes No
be specified Because the select method

does not appear in the inter-
faces, no transaction context
can be defined. Instead, the
context of the calling method
is used.

You’ll be learning how to write select methods later, as part of specifying and imple-
menting CMP beans.

Syntax and Examples
The EJB Specification formally defines the syntax of EJB QL queries using Bacchus
Normal Form (BNF). This can be somewhat heavy going to wade through, but is com-
prehensive. This section introduces EJB QL using BNF, with annotations and examples
along the way.

An EJB QL query is defined as follows:

EJB QL ::= select_clause from_clause [where_clause]

This says that a query consists of a select_clause and a from_clause, and optionally a
where_clause. Immediately, you can see the similarity with ANSI SQL.

In ANSI SQL, you may recall that the columns listed in the SELECT clause relate to the
tables identified in the FROM clause. So in exploring EJB QL, it makes sense to look at
the from_clause before the select_clause; after all, both are needed for any well-
formed EJB QL query.

from_clause

The from_clause is defined as follows:

from_clause ::= FROM identification_variable_declaration
➥[, identification_variable_declaration]*

TABLE 7.2 Continued

Feature Finder Method Select Method

09 0672323842 CH07 3/20/02 12:20 PM Page 293

This says that in an EJB QL query, the from_clause consists of one or more identifi-
cation_variable_declaration clauses. This corresponds to ANSI SQL where there are
one or more tables/views listed in a SQL FROM clause. The
identification_variable_declaration clause is then defined as follows:

identification_variable_declaration ::=
➥{range_variable_declaration | collection_member_declaration}
➥[AS] identification_variable

where

range_variable_declaration ::= abstract_schema_name

and

collection_member_declaration ::= IN (collection_valued_path_expression)
collection_valued_path_expression ::=

➥identification_variable.
➥[single_valued_cmr_field.]*
➥collection_valued_cmr_field

In other words, each item in the from_clause either is just an abstract_schema_name, or
is an expression of the form IN (o.abc.def.xyz). The abstract_schema_name is proba-
bly the easier expression to understand. Each CMP Entity bean has a corresponding
abstract_schema_name, ultimately declared in the deployment descriptor. So in ANSI
SQL terms, this is very similar to just listing the “table” that corresponds to the bean.

The IN (o.abc.def.xyz) expression is similar to an OCL expression. Here o refers is
the identication_variable assigned by the previous AS phrase. In other words, it corre-
sponds to some abstract_schema_name (that is, bean) also in the from_clause. The abc
and def are single_value_cmr_fields. In other words, these are fields of the o bean
that return a single element. The abc is a field of o, returning a reference to a bean, and
def is a field of this reference that has a field xyz. This xyz field, in turn, returns a
Collection or List of some other data (a bean or otherwise).

That’s pretty heavy, so some examples from the case study may clarify things. Assuming
that the Job bean has an abstract schema name called Job, that the Customer bean has an
abstract schema name called Customer, and so on.

FROM Job AS j

sets up an identification_variable called j that refers to the Job schema. The com-
parison with ANSI SQL is obvious; the syntax is the same.

FROM Job AS j, IN (j.skills) AS s

sets up the j identification_variable as before and also an
identification_variable called s that refers to each of the skills related to the Job
bean in turn.

294 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 294

CMP and EJB QL 295

7

Comparing this to ANSI SQL, this most likely would correspond to

FROM Job AS j
INNER JOIN JobSkill AS s

ON s.customer = j.customer
AND s.ref = j.ref

or if you prefer the old-fashioned way:

FROM Job AS j, JobSkill AS s
WHERE s.customer = j.customer
AND s.ref = j.ref

The following is another example:

FROM Job AS j, IN (j.location.jobs) AS k

sets up the j identification_variable as before and also an identification_vari-
able called k that refers to all of the jobs that have the same location as the original job.
To see this, note that j.location returns a reference to the Location bean for the Job,
and then that j.location.jobs returns the Collection of Jobs for that Location. Of
course, this Collection will include the original job, but it will include others as well.

Comparing this to ANSI SQL, you can see that this is a self-join:

FROM Job AS j
INNER JOIN Job AS k

ON j.location = k.location

or in the old money:

FROM Job AS j, Job AS k
WHERE j.location = k.location

select_clause

The select_clause is defined as follows:

select_clause ::= SELECT [DISTINCT] {single_valued_path_expression |
➥OBJECT (identification_variable)}

The easy case is the SELECT OBJECT(o) style of the select_clause, where o is an
identication_variable defined by the from_clause. (You see now why the
from_clause was presented first.) This returns all the data from the data store required to
instantiate a bean. In ANSI SQL terms, you might think of it as an intelligent SELECT *
FROM

All finder methods must use the SELECT OBJECT(o) style, where the objects returned are
of the schema associated with the bean for which the finder is being specified. The other
style of the select_clause, using a single_valued_path_expression is for use only by
select methods that you were introduced to briefly earlier. (More on these to follow.)

09 0672323842 CH07 3/20/02 12:20 PM Page 295

The following are some examples from the case study.

SELECT OBJECT(j)
FROM Job as j

will return all jobs. If the JobLocalHome interface defined a finder method called
findAll(), this would be the corresponding EJB QL query.

The next example

SELECT DISTINCT OBJECT(s)
FROM Job as j, IN (j.skills) as s

will return back all skills used by any job. Because some skills will be required by more
than one job, the DISTINCT keyword is used to eliminate duplicates. This EJB QL query
might perhaps be associated with a finder method called findAllRequiredSkills() on
the SkillLocalHome interface.

The other style of the select_clause uses a single_valued_path_expression. This is
defined as follows:

single_valued_path_expression ::=
➥{single_valued_navigation | identification_variable}
➥.cmp_field | single_valued_navigation

where a single_valued_navigation is

single_valued_navigation ::= identification_variable.[single_valued_cmr_field.]*
➥single_valued_cmr_field

Taking these definitions together, a single_valued_path_expression is effectively just
a chain of (none or many) single_valued_cmr_fields (cmr-fields returning a refer-
ence to a single bean, and not a collection), eventually finishing with a cmp-field.

In the following examples

SELECT DISTINCT j.location.name
FROM Job as j

location is the cmr-field of the Job schema (identified by j), and name is the cmp-
field of the bean referenced by the cmr-field (a Location bean, obviously).

This returns the names of the locations where there are jobs. Comparing this to ANSI
SQL, you can see that EJB QL is actually simpler (because of its use of the OCL-like
path expressions to navigate between beans):

SELECT DISTINCT l.name
FROM Job as j INNER JOIN Location as l ON j.location = l.location

However, the following is not allowed:

SELECT DISTINCT j.skills.name
FROM Job as j

296 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 296

CMP and EJB QL 297

7

This is because the skills cmr-field of Job returns a collection of skills, not a single
skill. The correct way to phrase this query is as follows:

SELECT DISTINCT s.name
FROM Job as j, IN (j.skills) AS s

You might like to think of the s identification variable as an iterator over the collection
of skills returned by the skills cmr-field.

Note that the select_clause in EJB QL can only ever return a single item of informa-
tion, so the following also is not allowed:

SELECT DISTINCT j.location.name, j.location.description
FROM Job as j

where_clause

The where_clause is optional in an EJB QL query, but will be present in the majority of
cases. It is defined in BNF as follows:

where_clause ::= WHERE conditional_expression

conditional_expression ::=
➥conditional_term | conditional_expression OR conditional_term

conditional_term ::=
➥conditional_factor | conditional_term AND conditional_factor

conditional_factor ::=
➥[NOT] conditional_test

This just says that clauses can be combined using the usual AND, OR, and NOT. Much of
the rest of the formal BNF definitions for the where_clause also makes somewhat heavy
work of some fairly straightforward concepts, so to paraphrase,

• conditional_tests can involve =, >, <, >=, <=, and <> operators. These apply vari-
ously to numbers and datetimes (all operators), and strings, Booleans, and Entity
beans (the = and <> operators). You will recall that Entity beans are considered
identical if their primary keys are equal.

• Comparisons can involve input parameters, where these correspond to the argu-
ments of the finder or select method. More on this topic shortly.

• Arithmetic expressions can use the BETWEEN...AND operator, just as in ANSI SQL.

• String expressions can be compared against lists using the IN operator and against
patterns using the LIKE operator. These also exist within ANSI SQL. Unlike Java,
string literals should appear in single quotes.

• The IS NOT NULL operator exists to determine if an object is null. Again, this syn-
tax is borrowed from ANSI SQL.

09 0672323842 CH07 3/20/02 12:20 PM Page 297

There are some more operators to EJB QL and some built-in functions, but first, some
examples using these operators are in order.

SELECT OBJECT(c)
FROM Customer AS c
WHERE c.name LIKE “J%”

This will find all customers whose name begins with the letter J. Note that the ANSI
SQL wildcards (% to match none or many characters, _ to match precisely one character)
are used.

The following

SELECT OBJECT(j)
FROM Jobs AS j
WHERE j.location IS NULL

will find all jobs where the location has not been specified.

SELECT l.description
FROM Location AS l
WHERE l.name IN (“London”, “Washington”)

returns the descriptions of the locations named London and Washington.

The where_clause can also include input parameters. These parameters correspond to
the arguments of the finder or the select method, as defined in the local-home interface
or bean, respectively.

For example, the Job bean declares the following finder method in the JobLocalHome
interface:

Collection findByCustomer(String customer);

The EJB QL query for this finder method is as follows:

SELECT OBJECT(j)
FROM Job AS j
WHERE j.customer = ?1

?1 acts as a placeholder, with the 1 indicating that the first argument of the finder
method (the customer string) be implicitly bound to this input parameter. Unlike
JDBC SQL strings, the number is required because the binding is implicit, not explicit.

298 Day 7

ANSI SQL supports the concept of nullable primitives (ints and so on),
whereas Java and EJB QL do not. However, nullable primitives can be simu-
lated by using wrapper classes as cmp-fields and using these in EJB QL
expressions.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 298

CMP and EJB QL 299

7

It is also needed in the cases where a single argument is used more than once in the
query. For example, consider the following finder method:

Collection findLocationsNamedOrNamedShorterThan(String name);

This might have an EJB QL query of

SELECT OBJECT(l)
FROM Location AS l
WHERE l.name = ?1
OR LENGTH(l.name) < LENGTH(?1)

This example uses the built-in function LENGTH that returns the length of a String. In any
case, this rather peculiar finder method will find those locations that have the exact
name, and will also return any name whose length is strictly shorter than the supplied
name. You can see that the ?1 placeholder appears more than once because the name
argument needs to be bound to the query in two places.

EJB QL defines just a few more built-in functions. The functions that return a string are
CONCAT and SUBSTRING. The functions that return a number are LENGTH, ABS, SQRT, and
LOCATE. This last is effectively the same as String.indexOf(String str, int
fromIndex).

EJB QL defines two final operators—IS [NOT] EMPTY and [NOT] MEMBER OF. Neither of
these have any direct equivalents in ANSI SQL, but both do have equivalents in OCL.

The IS [NOT] EMPTY operator can is similar to the isEmpty operator of OCL. It can be
used to determine whether a collection returned by a cmr-field is empty. For example,

SELECT OBJECT(s)
FROM Skill AS s
WHERE s.jobs IS EMPTY

will return all those skills that are not marked as required by any job. This might be the
query for a finder method on the SkillLocalHome interface, called something like
findNotNeededSkills().

In fact, this type of query can be expressed in ANSI SQL, though it does require a sub-
query:

SELECT s.*
FROM Skill AS s
WHERE NOT EXISTS

(SELECT *
FROM JobSkill AS j
WHERE s.skill = j.skill)

09 0672323842 CH07 3/20/02 12:20 PM Page 299

The [NOT] MEMBER OF operator is similar to the include operator of OCL. Consider the
following finder method on the JobLocalHome interface:

Collection findJobsRequiringSkill(SkillLocal skill);

The EJB QL query for this would be

SELECT OBJECT(j)
FROM Job AS j
WHERE ?1 MEMBER OF j.skills

Again, this can be expressed in ANSI SQL, but only using a subquery:

SELECT j.*
FROM Job AS j
WHERE EXISTS

(SELECT *
FROM JobSkill AS s
WHERE j.customer = s.customer
AND j.ref = s.ref
AND s.skill = ?1)

Further Notes
You may have heard of the “OO/relational impedance mismatch.” This is that to deal
with objects, each must be instantiated and then a message sent to it. On the other hand,
relational theory deals with sets of elements sharing some common attribute; to identify
these elements without instantiating them effectively breaks encapsulation.

EJB QL does a pretty reasonable job of reconciling these concerns. By allowing queries
to be expressed in a set-oriented syntax, the EJB container can easily map these to ANSI
SQL when the persistent data store is an RDBMS. On the other hand, the generated
implementations of finder methods return only objects or Collections of objects.

Nevertheless, EJB QL does have some limitations. For example, when constructing an
EJB QL query, only declared relationships between beans can be followed. It is not pos-
sible to join arbitrary fields together (as it is in ANSI SQL). For example, those
Customers who are also Applicants could not be identified using a condition such as
Applicant.name = Customer.name.

There are a number of other cases where EJB QL is not (yet) as powerful as ANSI SQL.
For example, EJB QL does not support grouping and aggregating, ordering, subqueries,
and unions. Expect these features to be added as EJB QL matures. Also, even though
EJB QL does not directly support subqueries, one might not be needed anyway thanks to
the IS [NOT] EMPTY and [NOT] MEMBER OF operators.

300 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 300

CMP and EJB QL 301

7

Specifying a CMP Entity Bean
Specifying a CMP Entity bean is identical to specifying a BMP Entity bean; it consists
of defining the local-home interface and the local interface. This makes sense; after all,
to the user of the bean, it should not matter whether the bean is implemented internally
using CMP or BMP.

The Local-Home Interface
For completeness, Listing 7.2 is the local-home interface of the Job bean.

LISTING 7.2 JobLocalHome Interface

1: package data;
2:
3: import java.rmi.*;
4: import java.util.*;
5: import javax.ejb.*;
6:
7: public interface JobLocalHome extends EJBLocalHome
8: {
9: JobLocal create (String ref, String customer) throws CreateException;
10: JobLocal findByPrimaryKey(JobPK key) throws FinderException;
11: Collection findByCustomer(String customer) throws FinderException;
12: Collection findByLocation(String location) throws FinderException;
13: void deleteByCustomer(String customer);
14: }

The Local Interface
Listing 7.3 shows the local interface for the Job bean; it, too, is unchanged from the
BMP version.

LISTING 7.3 JobLocal Interface

1: package data;
2:
3: import java.rmi.*;
4: import javax.ejb.*;
5: import java.util.*;
6:
7: public interface JobLocal extends EJBLocalObject
8: {
9: String getRef();
10: String getCustomer();
11: CustomerLocal getCustomerObj(); // derived
12:
13: void setDescription(String description);

09 0672323842 CH07 3/20/02 12:20 PM Page 301

14: String getDescription();
15:
16: void setLocation(LocationLocal location);
17: LocationLocal getLocation();
18:
19: Collection getSkills();
20: void setSkills(Collection skills);
21: }

Implementing a CMP Entity Bean
Just as for BMP Entity beans, implementing a CMP Entity bean involves providing an
implementation for the methods of the javax.ejb.EntityBean, corresponding methods
for each method in the home interface, and a method for each method in the remote
interface.

Implementing javax.ejb.EntityBean
Under BMP, the setEntityContext() method was used to look up various bean home
interfaces from JNDI, and the JDBC DataSource called java:comp/env/jdbc/Agency
was also obtained. Because most of these relationships are now managed by the contain-
er, only a couple of home interfaces now need to be obtained, and there is no require-
ment to look up the DataSource. Listing 7.4 shows this.

LISTING 7.4 The JobBean’s setEntityContext() and unsetEntityContext() Methods

1: package data;
2:
3: import javax.ejb.*;
4: import javax.naming.*;
5: // imports omitted
6:
7: public abstract class JobBean implements EntityBean {
8:
9: private EntityContext ctx;
10:
11: public void setEntityContext(EntityContext ctx) {
12: this.ctx = ctx;
13: InitialContext ic = null;
14: try {
15: ic = new InitialContext();
16: customerHome = (CustomerLocalHome)

➥ic.lookup(“java:comp/env/ejb/CustomerLocal”);
17: jobHome = (JobLocalHome)

➥ic.lookup(“java:comp/env/ejb/JobLocal”);

302 Day 7

LISTING 7.3 Continued

09 0672323842 CH07 3/20/02 12:20 PM Page 302

CMP and EJB QL 303

7

18: }
19: catch (NamingException ex) {
20: error(“Error looking up depended EJB or resource”, ex);
21: return;
22: }
23: }
24:
25: public void unsetEntityContext() {
26: this.ctx = null;
27: customerHome = null;
28: jobHome = null;
29: }
30:
31: // code omitted
32: }

The lookup of the CustomerHome home interface is required because the relationship
from Customer to Job is maintained by the bean.

The lookup of the JobHome home interface is required only because the
ctx.getLocalHome() method returns NULL for the J2EE RI 1.3. This would appear to be
a bug. The ejbHomeDeleteByCustomer() home method actually uses the bean’s own
home interface.

As noted previously, under CMP, the ejbLoad() and ejbStore() methods often have
empty implementations. If there is derived data to be maintained, it should be managed
here. Indeed, the JobBean class does need to do this, as shown in Listing 7.5.

LISTING 7.5 The JobBean’s ejbLoad() and ejbStore() Methods

1: package data;
2:
3: import javax.ejb.*;
4: import javax.naming.*;
5: // imports omitted
6:
7: public abstract class JobBean implements EntityBean {
8:
9: public void ejbLoad() {
10: JobPK key = (JobPK)ctx.getPrimaryKey();
11:
12: try {
13: this.customerObj =

➥customerHome.findByPrimaryKey(getCustomer());
14: }
15: catch (FinderException e) {
16: error(“Error in ejbLoad (invalid customer) for “ + key, e);

LISTING 7.4 Continued

09 0672323842 CH07 3/20/02 12:20 PM Page 303

17: }
18: }
19:
20: public void ejbStore() { }
21:
22: // code omitted
23: }

The ejbLoad() method is called after the bean’s state has been populated, so the bean’s
state can be read through the accessor methods, if needed.

The findByPrimaryKey() method call on line 13 populates the customerObj field, using
the value of getCustomer() accessor method. It’s worth appreciating that getCustomer()
returns just a String. In other words, this is the name (actually, the primary key) of a cus-
tomer. To save business methods having to continually look up the actual customer that
corresponds to this customer name, the ejbLoad() method does it once.

You can see that the ejbStore() method is trivial—there is nothing to do.

The ejbActivate() and ejbPassivate() methods have nothing to do with data stores, so
their implementation is unchanged from the BMP version. This is shown in Listing 7.6.

LISTING 7.6 The JobBean’s ejbActivate() and ejbPassivate() Methods

1: package data;
2:
3: import javax.ejb.*;
4: // imports omitted
5:
6: public abstract class JobBean implements EntityBean {
7:
8: public void ejbPassivate() {
9: setRef(null);
10: setCustomer(null);
11: customerObj = null;

304 Day 7

LISTING 7.5 Continued

09 0672323842 CH07 3/20/02 12:20 PM Page 304

CMP and EJB QL 305

7

12: setDescription(null);
13: setLocation(null);
14: }
15:
16: public void ejbActivate() { }
17:
18: // code omitted
19: }

Implementing the Local-Home Interface Methods
The methods of the local-home interface are implemented partly in code and partly
through the provision of an appropriate EJB QL query. This section shows the queries
that correspond to the finder methods in the home interface; the next section (configuring
a CMP Entity bean) shows how to take those EJB QL strings and put them into the cor-
rect part of the deployment descriptor.

Create and Remove Methods
Listing 7.7 shows the ejbCreate() method for Job bean under CMP.

LISTING 7.7 The JobBean’s ejbCreate() Method

1: package data;
2:
3: import javax.ejb.*;
4: // imports omitted
5:
6: public abstract class JobBean implements EntityBean {
7:
8: public JobPK ejbCreate(String ref, String customer)

➥throws CreateException {
9: // validate customer login is valid.
10: try {
11: customerObj = customerHome.findByPrimaryKey(customer);
12: } catch (FinderException ex) {
13: error(“Invalid customer.”, ex);
14: }
15:
16: JobPK key = new JobPK(ref,customerObj.getLogin());
17: // for BMP, there was a workaround here,

➥namely to call ejbFindByPrimaryKey
18: // under CMP, cannot call since doesn’t exist.
19: // instead, use jobHome interface ...
20: try {

LISTING 7.6 Continued

09 0672323842 CH07 3/20/02 12:20 PM Page 305

21: jobHome.findByPrimaryKey(key);
22: throw new CreateException(“Duplicate job name: “+key);
23: }
24: catch (FinderException ex) {}
25:
26: setRef(ref);
27: setCustomer(customer);
28: setDescription(null);
29: setLocation(null);
30: return null;
31: }
32:
33: // code omitted

34: }

Note the use of accessor methods (the “setter” methods) to save the bean’s state. This
contrasts with the BMP equivalent where the fields were written to directly (for example,
this.ref = ref).

The implementation of this method would have been even shorter if the
findByPrimaryKey() call checking for duplicates had been omitted. Indeed, if an
RDBMS is being used as the persistent data store (as it is for the case study), there is
likely to be a unique index on the primary key on the appropriate table, meaning that any
attempt to INSERT a duplicate would be detected.

306 Day 7

LISTING 7.7 Continued

Strictly, the appropriate exception to throw here is a
DuplicateKeyException, not a CreateException. However, the EJB
specification does not mandate this. Moreover, the specification even allows
that the EJB container can defer any interaction with the persistent data
store until the end of the transaction, and is not clear in this circumstance
what type of exception should be raised.

As the EJB specification continues to mature, it will more fully define expect-
ed exceptions in different situations. Until then, beware that—regardless of
the hype—moving from one EJB container to another may well throw up
differences that will necessitate changes in your application.

Caution

The ejbCreate() method is called first, and then the container’s concrete implementa-
tion persists the bean’s state, and then the bean’s ejbPostCreate() method is called.

09 0672323842 CH07 3/20/02 12:20 PM Page 306

CMP and EJB QL 307

7

Under CMP, the bean should return null from the ejbCreate() method. This compares
to returning the actual primary key under BMP. Put another way, it doesn’t matter what
your method returns, it will be ignored. The reason for this is that the EJB container can
access the information that constitutes the primary key anyway, by virtue of the cmp-
fields.

The technical reason that the EJB container requires that CMP Entity beans
return null is so that EJB container vendors can implement CMP by effective-
ly subclassing the CMP bean and creating a BMP Entity bean (so far as the
rest of the EJB container is concerned). Indeed, if you look at the generated
code, this is precisely what the J2EE RI container does:

package data;

public final class JobBean_PM extends JobBean implements
com.sun.ejb.PersistentInstance {

public data.JobPK ejbCreate(java.lang.String param0,
java.lang.String param1) throws javax.ejb.CreateException {
com.sun.ejb.Partition partition =
com.sun.ejb.PersistenceUtils.getPartition(this);

partition.beforeEjbCreate(this);
super.ejbCreate(param0, param1);
return (data.JobPK) partition.afterEjbCreate(this);

}

// code omitted

}

You can see the call to super.ejbCreate(). The return type is ignored, but
the subclass’ ejbCreate() does return a primary key to the rest of the EJB
container.

Note

The ejbRemove()method for the Job bean is shown in Listing 7.8.

LISTING 7.8 The JobBean’s ejbRemove() Methods

1: package data;
2:
3: import javax.ejb.*;
4: // imports omitted
5:
6: public abstract class JobBean implements EntityBean {
7:
8: public void ejbRemove() { }

09 0672323842 CH07 3/20/02 12:20 PM Page 307

9:
10: // code omitted
11: }

As you can see, the implementation of ejbRemove() is trivial—there is nothing to do.
Nevertheless, an implementation is required.

308 Day 7

LISTING 7.8 Continued

The BMP version of ejbRemove() for Job bean reset all the fields to null.
Strictly speaking, there was no direct requirement for doing this, because
when the bean instance is next used from the pool, its ejbLoad() will
(should) populate all fields.

When implementing CMP Entity beans, you absolutely must not reset the
fields to null. Doing so will cause the EJB container to throw an exception,
because the bean’s state is required so that the container can remove the
correct data from the persistent data store.

Caution

Finder Methods
The implementation of the finder methods is by formulating appropriate EJB QL queries.
The JobLocalHome interface defines three finder methods—findByPrimaryKey(),
findByCustomer(), and findByLocation().

The first bit of good news is that there is no need to define an EJB QL query for the
findByPrimaryKey() method at all. You will recall that the primkey-class element is
used in the deployment descriptor to indicate to the EJB container the class (either cus-
tom or pre-existing) that represents the primary key of the Entity bean. When there is a
custom primary key class, the EJB container can use the structure of that class to figure
out how to implement this method.

If there is no custom primary key class, an additional piece of information is required in
the deployment descriptor—namely, the primkey-field element. This nominates the
(single) cmp-field that represents the primary key for the bean.

If you are using a custom primary key class (such as JobPK), you do need to ensure that
its public fields correspond exactly in name and type to a subset of the cmp-fields of the
bean. The JobPK class is shown in Listing 7.9.

09 0672323842 CH07 3/20/02 12:20 PM Page 308

CMP and EJB QL 309

7

LISTING 7.9 JobPK Class

1: package data;
2:
3: import java.io.*;
4: import javax.ejb.*;
5:
6: public class JobPK implements Serializable
7: {
8: public String ref;
9: public String customer;
10:
11: public JobPK() {
12: }
13: public JobPK(String ref, String customer) {
14: this.ref = ref;
15: this.customer = customer;
16: }
17:
18: public String getRef() {
19: return ref;
20: }
21: public String getCustomer() {
22: return customer;
23: }
24:
25: // code omitted
26: }

The EJB container will match the ref and customer fields with getRef()/setRef() and
getCustomer()/setCustomer() accessor methods for the cmp-fields. You can see here
that the fields in the primary key class must be declared to have public visibility.

Moving onto the other finder methods, the findByCustomer() method has the following
signature in the local-home interface:

Collection findByCustomer(String customer) throws FinderException;

The EJB QL query for this is as follows:

SELECT OBJECT(j)
FROM Job AS j
WHERE j.customer = ?1

The other finder method is findByLocation(), whose signature is as follows:

Collection findByLocation(String location) throws FinderException;

09 0672323842 CH07 3/20/02 12:20 PM Page 309

The EJB QL query for this is as follows:

SELECT OBJECT(;)
FROM Job AS ;
WHERE ;.location.name = ?1

Home Methods
The last method in the local-home interface is the home method deleteByCustomer().
This is used by clients when removing a customer; all of its jobs must also be removed.
You’ve already seen the implementation of this home method under BMP, using SQL to
delete from the Job and JobSkill tables. Under CMP, the implementation is somewhat
more object-oriented, as shown in Listing 7.10.

LISTING 7.10 JobBean’s ejbHomeDeleteByCustomer() Method

1: package data;
2:
3: import java.rmi.*;
4: import java.util.*;
5: import javax.ejb.*;
6: // imports omitted
7:
8: public abstract class JobBean implements EntityBean {
9:
10: public void ejbHomeDeleteByCustomer(String customer) {
11: try {
12: Collection col = this.jobHome.findByCustomer(customer);
13: for (Iterator iter = col.iterator(); iter.hasNext();) {
14: JobLocal job = (JobLocal)iter.next();
15: // remove job from collection
16: iter.remove();
17: // remove job itself
18: job.remove();
19: }
20: }
21: catch (FinderException e) {
22: error(“Error removing all jobs for “ + customer, e);
23: }
24: // needed because of the explicit job.remove()
25: catch (RemoveException e) {
26: error(“Error explicitly removing job for “ + customer, e);
27: }
28:
29: }
30: // code omitted
31:
32: }

310 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 310

CMP and EJB QL 311

7

The method calls the bean’s own findByCustomer() method, which returns a collection
of jobs for the customer. It then iterates over these jobs and removes them one-by-one.

The jobHome field holds a reference to the bean’s own home interface. In
principle, the entityContext.getEJBHome() method could have been called,
but the J2EE RI 1.3 container seems always to return null.

Caution

If there had been no suitable finder method, this would have been a prime case for using
a select method. The select method would be declared in the JobBean class as follows:

package data;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
// imports omitted

public abstract class JobBean implements EntityBean {

public abstract Collection ejbSelectByCustomer(String customer);

// code omitted
}

The EJB QL query would be identical to that of the finder method. The only other differ-
ence would be in how the method was called. Rather than invoking the finder method
through the home interface, the ejbSelect method could be called directly. So, in the
ejbHomeDeleteByCustomer() method, the line

Collection col = this.jobHome.findByCustomer(customer);

would be replaced with

Collection col = this.ejbSelectByCustomer(customer);

In fact, the BMP and CMP implementations are not quite comparable; the CMP implemen-
tation is a little more robust. As was mentioned earlier, the BMP version of this method just
deleted the appropriate rows from the Job and JobSkill table (turn back to yesterday’s
chapter to see this, if needed). This means that the Job bean’s ejbRemove() method is
never called; there is no opportunity for the bean to perform clean-up processing.

09 0672323842 CH07 3/20/02 12:20 PM Page 311

A related issue is that if a client happens to have a reference to a Job for the Customer
being deleted, they won’t find out that the Job has been removed until they attempt to
access that Job again. At that point, the client will receive a
java.rmi.NoSuchObjectException. But note that this isn’t a problem just with BMP;
the same behavior will occur for CMP also.

Implementing the Local Interface Methods
Looking back at the JobLocal interface back in Listing 7.3, you can see that many of the
methods in the local interface simply expose the bean’s cmp-fields or cmr-fields to its
clients. Of course, there is no implementation for these methods because they are imple-
mented by the EJB container’s deployment tools. Therefore, all that is required is to copy
the methods over from the local interface and mark them abstract. If you cast your eyes
back all the way to Listing 7.1, you’ll see that this is precisely what was done.

The only method in the JobLocal interface that does not correspond to an accessor
method for a cmp-field or cmr-field is the getCustomerObj() method. Its implementa-
tion is shown in Listing 7.11.

312 Day 7

An alternative design again might have been to define a cascade delete
relationship from Customer through to Job. The EJB Specification does
require that ejbRemove() is called on every bean being deleted as a result of
the cascade, so the net result is similar to the CMP implementation.

However, as has been remarked earlier, setting up a (cascade delete) rela-
tionship for Customer and Job is not easy when using the J2EE RI, because it
does not easily support relationships between beans when one bean is iden-
tified by another (part of the primary key is also a foreign key).

Note

A cascade delete relationship might be preferable to the CMP implementa-
tion. A naïve EJB container implementation would work the same way as
the hand-coded CMP implementation, explicitly deleting each and every
child bean one-by-one. The performance hit could be substantial.

A more sophisticated EJB container implementation ought to be able to call
ejbRemove() for each bean, but then delete all of the child beans using a
single call to the persistent data store; in other words, combining the best of
the BMP and CMP approaches.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 312

CMP and EJB QL 313

7

LISTING 7.11 JobBean’s getCustomerObj() Method

1: package data;
2:
3: import javax.ejb.*;
4: // imports omitted
5:
6: public abstract class JobBean implements EntityBean {
7: private CustomerLocal customerObj; // derived
8: public CustomerLocal getCustomerObj() {
9: return customerObj;
10: }
11: // code omitted
12: }

Pretty straightforward, though of course the hard work is done in ejbLoad() (Listing 7.5)
and ejbCreate() (Listing 7.7). Recall that the customerObj field holds the actual refer-
ence to the “parent” Customer for the Job and is derived from the customer cmp-field

that holds merely the name of the Customer. Because the customer cmp-field makes up
part of the primary key, it is immutable, and so is the customerObj field—hence, no
setCustomerObj() method.

Configuring a CMP Entity Bean
As you now appreciate, a substantial part of the implementation effort for CMP Entity
beans is simply completing the deployment descriptor correctly.

This will always involve completing the entity element of the deployment descriptor,
either manually or using a GUI tool such as deploytool. If the CMP Entity has
container-managed relationships, these too must be specified under the relationships
element of the deployment descriptor.

The entity Element
To remind you, the structure of the deployment descriptor is as follows:

<!ELEMENT ejb-jar (description?, display-name?, small-icon?, large-icon?,
enterprise-beans, relationships?, assembly-descriptor?, ejb-client-jar?)>

Here you can see the relationships element, with

<!ELEMENT enterprise-beans (session | entity | message-driven)+>

09 0672323842 CH07 3/20/02 12:20 PM Page 313

and the entity element defined as

<!ELEMENT entity (description?, display-name?, small-icon?, large-icon?,
ejb-name, home?, remote?, local-home?, local?, ejb-class,
persistence-type,
prim-key-class,
reentrant,
cmp-version?, abstract-schema-name?,
cmp-field*, primkey-field?,
env-entry*,
ejb-ref*, ejb-local-ref*,
security-role-ref*, security-identity?,
resource-ref*,
resource-env-ref*,
query*)>

Looking first at the entity element, much of it will be unchanged. What needs to be
specified for a CMP entity are

• cmp-version Always set to 2.0. The value 1.1 is supported only for legacy CMP
Entity beans written to the EJB 1.1 specification.

• abstract-schema-name Any unique name, this defines the name used to identify
the bean in EJB QL queries. It makes sense to base this on the name of the bean.
In the case study, the JobBean bean has a schema with the name of Job.

• cmp-field One for each cmp-field (but not cmr-fields). In the Job bean, the
cmp-fields are ref, customer, and description. The location and skills fields
are cmr-fields representing relations to the Location and Skill beans respective-
ly, and so do not appear.

• primkey-field This optional field is used when the primkey-class element
does not identify a custom primary key class. It is not specified for the Job bean,
but for the Location bean, for example, it is specified and is set to name.

• query Defines an EJB QL query, associating it with a finder or select method.

Listing 7.12 shows the entity element for the Job bean.

LISTING 7.12 Job Bean’s entity Element

1: <entity>
2: <display-name>JobBean</display-name>
3: <ejb-name>JobBean</ejb-name>
4: <local-home>data.JobLocalHome</local-home>
5: <local>data.JobLocal</local>
6: <ejb-class>data.JobBean</ejb-class>
7: <persistence-type>Container</persistence-type>

314 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 314

CMP and EJB QL 315

7

8: <prim-key-class>data.JobPK</prim-key-class>
9: <reentrant>False</reentrant>
10: <cmp-version>2.x</cmp-version>
11: <abstract-schema-name>Job</abstract-schema-name>
12: <cmp-field>
13: <description>no description</description>
14: <field-name>ref</field-name>
15: </cmp-field>
16: <cmp-field>
17: <description>no description</description>
18: <field-name>description</field-name>
19: </cmp-field>
20: <cmp-field>
21: <description>no description</description>
22: <field-name>customer</field-name>
23: </cmp-field>
24: <ejb-local-ref>
25: <ejb-ref-name>ejb/CustomerLocal</ejb-ref-name>
26: <ejb-ref-type>Entity</ejb-ref-type>
27: <local-home>CustomerLocalHome</local-home>
28: <local>CustomerLocal</local>
29: <ejb-link>data_entity_ejbs.jar#CustomerBean</ejb-link>
30: </ejb-local-ref>
31: <!-- shouldn’t be needed, but

➥ctx.getEJBHome() returns null in J2EE RI -->
32: <ejb-local-ref>
33: <ejb-ref-name>ejb/JobLocal</ejb-ref-name>
34: <ejb-ref-type>Entity</ejb-ref-type>
35: <local-home>JobLocalHome</local-home>
36: <local>JobLocal</local>
37: <ejb-link>data_entity_ejbs.jar#JobBean</ejb-link>
38: </ejb-local-ref>
39: <security-identity>
40: <description></description>
41: <use-caller-identity></use-caller-identity>
42: </security-identity>
43: <query>
44: <description></description>
45: <query-method>
46: <method-name>findByCustomer</method-name>
47: <method-params>
48: <method-param>java.lang.String</method-param>
49: </method-params>
50: </query-method>
51: <ejb-ql>SELECT OBJECT(j)
52: FROM Job AS j
53: WHERE j.customer = ?1</ejb-ql>
54: </query>

LISTING 7.12 Continued

09 0672323842 CH07 3/20/02 12:20 PM Page 315

55: <query>
56: <description></description>
57: <query-method>
58: <method-name>findByLocation</method-name>
59: <method-params>
60: <method-param>java.lang.String</method-param>
61: </method-params>
62: </query-method>
63: <ejb-ql>SELECT OBJECT(o)
64: FROM Job o
65: WHERE o.location.name = ?1</ejb-ql>
66: </query>
67: </entity>

The definition of the query element is as follows:

<!ELEMENT query (description?, query-method, result-type-mapping?, ejb-ql)>

You can see from the listing that the query-method element just identifies the name of
the finder or select method. Note that if a finder method is being identified, it is the name
appearing in the local-home (or home) interface; that is, without the ejb prefix. On the
other hand, if a select method is being identified, there will be an ejb prefix, because
select methods never appear in the interfaces of the bean.

The result-type-mapping element applies only if the method identified by query-
method has identified a select method, and only then if the EJB QL string returns Entity
bean references (that is, if the SELECT [DISTINCT] OBJECT(x) style of select_clause
has been used). The allowable values are Local and Remote, indicating whether the
clause should return references through the local or remote interfaces. Obviously, if spec-
ified, the bean must provide an interface of the appropriate type; if not specified, the
bean must provide a local interface, because this is the implied value for the result-
type-mapping element.

Of course, all of this deployment information can be entered graphically using the
deploytool. Figure 7.8 shows some of the equivalent information for Listing 7.12.

316 Day 7

LISTING 7.12 Continued

FIGURE 7.8
deploytool lets CMP
deployment informa-
tion be defined through
a GUI.

09 0672323842 CH07 3/20/02 12:20 PM Page 316

CMP and EJB QL 317

7

The relationships Element
The relationships element is defined in the EJB 2.0 DTD as follows:

<!ELEMENT relationships (description?, ejb-relation+)>

That is, it consists of one or more ejb-relation elements. These in turn are defined as

<!ELEMENT ejb-relation (description?, ejb-relation-name?,
ejb-relationship-role, ejb-relationship-role)>

which is a somewhat curious definition: an optional description, an optional name, and
then precisely two ejb-relationship-role elements. Each of these identifies the role
that some bean is playing with respect to the relationship.

It is possible that the same bean appears in both roles to model recursive
relationships.

Note

The ejb-relationship-role element is defined as follows:

<!ELEMENT ejb-relationship-role (description?, ejb-relationship-role-name?,
multiplicity, cascade-delete?, relationship-role-source, cmr-field?)>

with

<!ELEMENT relationship-role-source (description?, ejb-name)>

You can see that the relationship-role-source element merely identifies an Entity
bean by name. This element’s name is perhaps somewhat misleading, because it is nei-
ther a “source” nor (for that matter) a target within the relationship. The navigability of
the relationship comes from the presence (or not) of the cmr-field element. Of course,
at least one of the ejb-relationship-role elements must have a cmr-field specified,
and if both do, the relationship is bi-directional.

The choices for the multiplicity element are either One or Many. There will be two such
elements in the complete ejb-relation element, so this is what gives one-to-one, one-
to-many, many-to-one, or many-to-many.

There is also an optional cascade-delete element. Perhaps non-intuitively, this is placed
on the “child” (multiplicity = many) side of a relationship.

Finally, the cmr-field is defined as follows:

<!ELEMENT cmr-field (description?, cmr-field-name, cmr-field-type?)>

09 0672323842 CH07 3/20/02 12:20 PM Page 317

The cmr-field-name element just names the cmr-field (for example, skills or loca-
tion for the Job bean). The cmr-field-type element is needed only for multi-valued
cmr-fields (for example, skills for the Job bean) and indicates whether the return type
is a java.util.Collection or java.util.Set.

318 Day 7

Do not confuse this return type with the allowable return types for select
methods. These are unrelated areas that just happen to have the same
allowable return types.

Caution

Okay! Time for an example or two from the case study to see if all that theory makes
sense.

Listing 7.13 shows the ejb-relation element defining the one-to-many relationship
between the Location bean and the Job bean.

LISTING 7.13 The Location/Job Relationship

1: <ejb-relation>
2: <ejb-relation-name></ejb-relation-name>
3: <ejb-relationship-role>
4: <ejb-relationship-role-name>JobBean</ejb-relationship-role-name>
5: <multiplicity>Many</multiplicity>
6: <relationship-role-source>
7: <ejb-name>JobBean</ejb-name>
8: </relationship-role-source>
9: <cmr-field>
10: <cmr-field-name>location</cmr-field-name>
11: </cmr-field>
12: </ejb-relationship-role>
13: <ejb-relationship-role>
14: <ejb-relationship-role-name>

➥ LocationBean
➥</ejb-relationship-role-name>

15: <multiplicity>One</multiplicity>
16: <relationship-role-source>
17: <ejb-name>LocationBean</ejb-name>
18: </relationship-role-source>
19: <cmr-field>
20: <cmr-field-name>jobs</cmr-field-name>
21: <cmr-field-type>java.util.Collection</cmr-field-type>
22: </cmr-field>
23: </ejb-relationship-role>
24: </ejb-relation>

Figure 7.9 shows this relationship overlaid onto the implied abstract schema.

09 0672323842 CH07 3/20/02 12:20 PM Page 318

CMP and EJB QL 319

7

Another example; Listing 7.14 shows the ejb-relation element defining the many-to-
many relationship between the Job bean and the Skill bean.

LISTING 7.14 The Job/Skill Relationship

1: <ejb-relation>
2: <ejb-relation-name></ejb-relation-name>
3: <ejb-relationship-role>
4: <ejb-relationship-role-name>JobBean</ejb-relationship-role-name>
5: <multiplicity>Many</multiplicity>
6: <relationship-role-source>
7: <ejb-name>JobBean</ejb-name>
8: </relationship-role-source>
9: <cmr-field>
10: <cmr-field-name>skills</cmr-field-name>
11: <cmr-field-type>java.util.Collection</cmr-field-type>
12: </cmr-field>
13: </ejb-relationship-role>
14: <ejb-relationship-role>
15: <ejb-relationship-role-name>

➥ SkillBean
➥</ejb-relationship-role-name>

16: <multiplicity>Many</multiplicity>

FIGURE 7.9
The ejb-relation
element describes the
characteristics of a
one-to-many relation-
ship in the abstract
schema.

name

Location

description

customer
ref

Job

description
location Location.name(FK)

name

Skill

description

requires

jobs

jobs

location

location for

skills

<ejb-relation-role>
 <ejb-relationsip-role-name>
 <multiplicity>
 <relationship-role-source>/<ejb-name>
 <cmr-field>/<cmr-field-name>
</ejb-relation-role>

<ejb-relation-role>
 <ejb-relationsip-role-name>
 <multiplicity>
 <relationship-role-source>/<ejb-name>
 <cmr-field>/<cmr-field-name>
</ejb-relation-role>

09 0672323842 CH07 3/20/02 12:20 PM Page 319

17: <relationship-role-source>
18: <ejb-name>SkillBean</ejb-name>
19: </relationship-role-source>
20: <cmr-field>
21: <cmr-field-name>jobs</cmr-field-name>
22: <cmr-field-type>java.util.Collection</cmr-field-type>
23: </cmr-field>
24: </ejb-relationship-role>
25: </ejb-relation>

Figure 7.10 shows these elements overlaid onto the abstract schema.

320 Day 7

LISTING 7.14 Continued

FIGURE 7.10
The ejb-relation
element describes the
characteristics of a
many-to-many rela-
tionship in the abstract
schema.

name

Location

description

customer
ref

Job

description
location Location.name(FK)

name

Skill

description

requires

jobs

jobs

location

location for

skills

<ejb-relation-role>
 <ejb-relationsip-role-name>
 <multiplicity>
 <relationship-role-source>/<ejb-name>
 <cmr-field>/<cmr-field-name>
</ejb-relation-role>

<ejb-relation-role>
 <ejb-relationsip-role-name>
 <multiplicity>
 <relationship-role-source>/<ejb-name>
 <cmr-field>/<cmr-field-name>
</ejb-relation-role>

As always, configuring these deployment descriptor elements can be done either by edit-
ing the deployment descriptors directly or by using the deploytool. Figure 7.11 shows
the deploytool for the Job/Skill relationship.

To actually deploy the enterprise application, use the buildAll and deploy batch scripts
in the day07\build directory, or use buildAll to assemble the enterprise application and
deploy from deploytool.

09 0672323842 CH07 3/20/02 12:20 PM Page 320

CMP and EJB QL 321

7

Over the last three days, you have seen Session beans, BMP Entity beans and CMP
Entity beans deployed using both the graphical deploytool and then using batch scripts.
Clearly, the information held in those deployment descriptors is valuable and should be
under source code control. Moreover, the mechanism for building and deploying enter-
prise applications should be able to use that information rather than recreate it from
scratch. This suggests that, for the production environment, the graphical deploytool
should be used only for deploying enterprise applications and for configuring J2EE RI
servers.

On the other hand, in the development environment, it can be an error-prone task to
attempt to write XML deployment descriptors from scratch. If a valid deployment
descriptor already exists, modifying it (to add a new ejb-ref element or something simi-
lar) can often be accomplished, but larger changes (such as adding a completely new
bean) will be more difficult without much practice. Here, deploytool comes into its own
to modify the enterprise application as required (or indeed, to create an enterprise appli-
cation from scratch).

When you are happy that the beans and clients in your enterprise application are correct-
ly configured, deploytool allows the XML deployment descriptor to be saved, for
checking into source code control. This is shown in Figure 7.12.

FIGURE 7.11
deploytool can be
used to configure rela-
tionships through its
GUI.

FIGURE 7.12
deploytool allows
deployment descriptors
to be saved as XML
files.

09 0672323842 CH07 3/20/02 12:20 PM Page 321

The Tools, Descriptor Viewer menu option brings up a dialog box displaying the XML
deployment descriptor; from there, the data can be saved as a file. This menu option is
context sensitive, so what it shows will depend on the node selected in the explorer on
the left pane in the GUI. The descriptor viewer dialog should be brought up for each
node under the enterprise application node, and for the enterprise application node itself.
In the case study, this means for each of the clients, for the data Entity EJBs, for the
agency Session EJBs, and for the agency application node.

Deploying a CMP Entity Bean
The enterprise application can be deployed either from the command line (deploy script
in the build directory) or using deploytool itself.

However, before an enterprise application containing CMP Entity beans can be deployed,
the default SQL must be generated by using the Deployment Settings dialog box. This
is performed once for each CMP Entity bean, as shown in Figure 7.13.

322 Day 7

FIGURE 7.13
deploytool allows
SQL to create the
database schema to be
generated.

You can see from the figure that J2EE RI generates default SQL. It allows the SQL query
for the finder and select methods to be tuned, and also (the container methods radio
button) allows the actual SQL to create the tables, insert rows, and so on to be modified
also. The case study does not change any of this default SQL.

Right at the beginning of today’s chapter, it was noted that the schema of
the database for the case study had changed from that of Day 6. If one want-
ed to use the exact schema from Day 6, it could have been entered here.

Note

09 0672323842 CH07 3/20/02 12:20 PM Page 322

CMP and EJB QL 323

7

Also, the dialog allows the underlying tables to be created and deleted on deploy/unde-
ploy. This obviously isn’t appropriate for a production environment, because it would
delete any data already there. It also is not appropriate for the case study, because there is
example data.

The CreateCMPAgency script (provided in the day07\Database directory) cre-
ates exactly the same schema as that generated by default by J2EE RI. It also
populates that schema with the same data as in Day 6 and creates views for
backwards compatibility.

Note

You will recall that the auxiliary deployment descriptor agency_ea-sun-j2ee-ri.xml
contains all the mappings of the logical dependencies of the EJBs to the physical runtime
environment. This includes all of the SQL specified in Figure 7.13.

It was noted earlier that when creating a new CMP Entity bean, it is often easiest to load
the enterprise application into deploytool and then save the XML deployment descriptor
using the Tools, Descriptor Viewer menu option/dialog. Unfortunately, deploytool does
not provide any easy way to write out the auxiliary deployment descriptor, and it is
required for the command line approach. The buildAll script calls the addJ2eeRiToEar
script that does precisely this.

The only real option is to save the agency.ear file once modified, and then use a tool,
such as WinZip, to load up the EAR file. The auxiliary deployment descriptor can be
extracted from that.

Patterns and Idioms
This section presents some patterns and idioms that relate to CMP Entity beans. You’ll
recognize some of the points made here; they were made earlier in the “Container
Managed Relationships” section.

Normalize/Denormalize Data in ejbLoad()/ejbStore()
Under CMP, the ejbLoad() and ejbStore() methods don’t have very much (or indeed
anything) to do; the interactions with the persistent data store are done by the EJB con-
tainer.

However, it may be that the physical schema of the persistent data store (especially if
that persistent data store is an RDBMS) does not correspond exactly with the logical
schema of the Entity bean.

09 0672323842 CH07 3/20/02 12:20 PM Page 323

For example, the Applicant table defines two columns—address1 and address2.
However, at least conceptually, the Applicant Entity bean has a vector field of address,
of type String[]; there could be many lines in the address (and it’s just that the physi-
cal schema of the persistent data store constrains the size of this vector to 2):

Santa Claus
No. 1 Grotto Square (line 1)
Christmas Town (line 2)
North Pole (line 3)
The World (line 4)
Earth (line 5)
The Solar System (line 6, and so on …)

Because the ejbLoad() method is called after the EJB container has loaded the data, it
may renormalize the data. In other words, the data in the two cmp-fields of address1
and address2 can be converted into the String[] address field. The bean’s clients’ view
(as presented by the methods of the local interface) is that the address field is a vector.

Conversely, the ejbStore() method, called just before the EJB container updates the
data, can denormalize the data. In other words, the data in the address vector field can
be “posted” back to the address1 and address2 cmp-fields.

Don’t Expose cmp-fields
Although the EJB specification allows cmp-fields to be exposed in the local (or remote)
interface of a CMP Entity bean, there are problems with doing so. Because the setter
method that corresponds to the field is generated by the EJB container, it is not possible
to perform any application-level validation.

Instead, it is better to create a shadow setter method, have it do any validation, and then
delegate to the actual cmp-field setter method.

You may also want to create a shadow getter method. This would allow you symmetry in
the names of the methods, and you could also perhaps do some caching of values or
other application-level logic.

As an example, instead of exposing the getter and setter methods for the description
cmp-field of the Job bean, you might have a local interface of

package data;

import javax.ejb.*;
// imports omitted

public interface JobLocal extends EJBLocalObject {
String getDescriptionField();
void setDescriptionField(String description);

324 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 324

CMP and EJB QL 325

7

// code omitted
}

with a corresponding implementation of

package data;

import javax.ejb.*;
// imports omitted

public abstract class JobBean implements EntityBean {
public String getDescriptionField() {

// any application logic here
return getDescription();

}
public void setDescriptionField(String description) {

// any application logic and validation here
setDescription(description);

}
public abstract String getDescription();
public abstract void setDescription(String description);

}

Don’t Expose cmr-fields
Although the EJB specification allows cmr-fields to be exposed in the local interface of
a CMP Entity bean, it may be best not to. There are two reasons why exposing the cmr-
field causes problems, both related to the returned collection from the getter method of
a cmr-field:

• The first is that this returned collection is mutable. A client can change of the
Entity bean’s relationships with other beans by manipulating this collection. In
other words, the bean’s state is changed without it being aware.

• The second is that the returned collection becomes invalid when the transaction
context changes. This is actually good that this is so, but it is a subtle point, and
some developers might not appreciate it if less than familiar with EJB transactions
(making debugging their application somewhat tricky).

An alternative to exposing the setter method of a cmr-field would be for the bean to
offer alternative methods, such as addXxx() and removeXxx(), on the bean itself and
have these call the setter method. An alternative to exposing the getter method would be
to expose a shadow method called something like getXxxCopy(). This would create a
copy of the collection. The method name suggests to the client that they will not be able
to change the relationships of the bean. Indeed, the returned collection could even be
made immutable.

09 0672323842 CH07 3/20/02 12:20 PM Page 325

As an example, instead of exposing the getter and setter methods for the skills
cmp-field of the Job bean, you might have a local interface of

package data;

import javax.ejb.*;
import java.util.*;
// imports omitted

public interface JobLocal extends EJBLocalObject {
Collection getSkillsCopy();
void addSkill(SkillLocal skill);
void removeSkill(SkillLocal skill);
// code omitted

}

with a corresponding implementation of

package data;

import javax.ejb.*;
import java.util.*;
// imports omitted

public abstract class JobBean implements EntityBean {
public Collection getSkillsCopy() {

List skills = new ArrayList();
for(Iterator iter = getSkills().iterator(); iter.hasNext();) {

skills.add(iter.next());
}
return Collections.unmodifiableList(skills);

}
public void addSkill(SkillLocal skill) {

getSkills().add(skill);
}
public void removeSkill(SkillLocal skill) {

getSkills().remove(skill);
}
public abstract Collection getSkills();
public abstract void setSkills(Collection skills);
// code omitted

}

Enforce Referential Integrity Through the Bean’s
Interface
Entity beans represent the domain layer in the n-tier architecture, and Entity beans have rela-
tionships among themselves. If a method in a bean’s interface has an argument of some bean
(usually for a relationship), this bean should be defined via the local reference rather than by
its primary key. In other words, referential integrity is effectively enforced; the client guaran-
tees that the bean exists, because it passes through an actual reference to that bean.

326 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 326

CMP and EJB QL 327

7

This idiom is honored implicitly for CMP Entity beans that expose their cmr-fields. For
CMP Entity beans that provide shadow methods (as discussed earlier), these shadow
methods should still deal with local references to the related beans, rather than identify-
ing the related bean by its primary key.

This idiom applies equally to BMP Entity beans. Indeed, if BMP Entity beans
are written to follow this idiom, it becomes that much easier to convert
them to CMP.

Note

Use Select Methods to Implement Home Methods
Select methods can only be called by a bean itself, so they act as helper methods. A com-
mon place where they are often used is in implementing home methods.

For example, the Job bean could have provided a home interface to count the number of
jobs advertised. This could have been implemented as follows:

package data;
import javax.ejb.*;
// imports omitted

public interface JobLocal extends EJBLocalObject {
int countJobs();
// code omitted

}

with a corresponding implementation of

package data;

import javax.ejb.*;
import java.util.*;
// imports omitted

public abstract class JobBean implements EntityBean {
public int ejbHomeCountJobs() {

int count = 0;
for (Iterator iter = ejbSelectAllJobs().iterator(); iter.hasNext();) {

iter.next(); count++;
}
return count;

}
public abstract Collection ejbSelectAllJobs();
// code omitted

}

09 0672323842 CH07 3/20/02 12:20 PM Page 327

The ejbSelectAllJobs() EJB QL query string would be simply

SELECT OBJECT(j)
FROM Jobs AS j

328 Day 7

EJB QL does not (yet) support a SELECT COUNT(*) syntax, so this is the only
way of performing counts (other than resorting to direct access to the data
store).

Note

Gotchas
The following is a quick checklist of “gotchas” to help you with your implementation:

• If the primary key is composite, a custom primary key class must be defined. The
fields of this class must be public and must correspond in name and type to cmp-
fields of the bean class.

• cmp-field and cmr-field fields must begin with a lowercase letter, (so that it can
be capitalized in the corresponding getter and setter method names).

• If a collection is returned from a cmr-field’s getter method, it must not be modi-
fied other than through Iterator.remove() (see EJB specification, section
10.3.6.1).

• Collections returned by getter methods cannot be used outside of the transaction
context in which they were materialized.

• If a bean has no relationships, the Collection returned by the cmr-field’s getter
method will be empty, it will not be null. Conversely, if calling a cmr-field’s set-
ter method, null cannot be used; instead an empty collection (such as
Collections.EMPTY_LIST) must be passed in.

• EJB QL strings are in single quotes!!!

• EJB QL strings define placeholders as ?1, ?2, and so on (rather than the JDBC syn-
tax of just ?). This allows the arguments of the corresponding finder or select
method to be bound in more than once.

• When comparing strings in EJB QL, the strings must be identical to be equal. (This
is different from SQL where trailing whitespace is usually ignored.)

• An EJB QL empty string is ‘’ (0 characters). Some RDBMS treat this as a null
string, so beware! (See EJB Specification, section 11.2.9.)

09 0672323842 CH07 3/20/02 12:20 PM Page 328

CMP and EJB QL 329

7

Summary
Well done! In three days (Days 5, 6, and 7), you’ve covered pretty much everything you
need to know about writing EJBs. There’s a little mopping up of relatively minor issues
tomorrow, but you now well and truly have the essentials under your belt.

Today you saw how the n-tier architecture is subtly revised again, with the responsibility
for persistence delegated downwards (into subclasses) to the EJB container-generated
subclasses of the CMP Entity bean. You also learned that the lifecycle for CMP Entity
beans is substantially the same as BMP Entity beans and, in general, there is less coding
to be done in the lifecycle methods (ejbCreate(), ejbLoad(), ejbStore(), and
ejbRemove()).

You now know that cmp-fields are defined in the deployment descriptor and correspond
to primitive and to Serializable objects. They are represented in the CMP bean class as
abstract getter and setter methods. You also know that cmr-fields work very much the
same way but deal with references to the local interfaces of other Entity beans (or collec-
tions thereof). This is what makes local interfaces the basis of container-managed rela-
tionships.

Finally, you saw how to construct EJB QL queries and how to relate them to both finder
methods and to the helper select methods.

Q&A
Q What does CMP stand for?

A CMP stands for Container Managed Persistence.

Q Can the getter and setter methods of cmp-fields and cmr-fields appear in the
bean’s interfaces?

A cmp-field methods can appear in any interface; cmr-field methods can appear
only in local interfaces.

Q What keywords or features of ANSI SQL does EJB QL not (yet) support?

A The keywords and features EJB QL doesn’t support include count(*), union,
group by, order by (among others).

Q How are the parameters of a select method defined?

A The select method is written as a public method in the form ejbSelect() in the
class itself.

09 0672323842 CH07 3/20/02 12:20 PM Page 329

Q How is navigability defined in the deployment descriptor?

A The presence of the cmr-field element indicates navigability.

Exercises
The job agency case study defines a complete set of Session beans, and Entity beans. All
of the Entity beans except the Applicant bean are implemented using CMP; the
Applicant bean has been implemented using BMP. The exercise is to implement an
Applicant Entity bean to use CMP. The source code and deployment descriptors can be
found under day07\exercise, and the directory structure is the same as yesterday.

In more detail, the fields of the Applicant bean need to be converted into either cmp-
fields or cmr-fields:

• login This is the primary key for the Applicant Entity bean and will be a cmp-
field.

• name cmp-field

• email cmp-field

• summary cmp-field

• location cmr-field to the Location bean. There will be a one-to-many relation-
ship between Location to Applicant.

• skills cmr-field to the Skill bean. There will be a many-to-many relationship
between the Applicant and Skill beans.

You should find that the Job CMP Entity bean acts as a good model for your new version
of the Applicant bean. One difference is in the primary key. The Job bean required a
JobPK because it had a composite primary key. For your Applicant bean, there is no cus-
tom primary key, so you will need to nominate the login cmp-field as its primary key
using the primkey-field element in the deployment descriptor. Another related differ-
ence is that the Job bean has to deal with ensuring that its customer cmp-field is a valid
identifier for a Customer. Your Applicant bean will not have this complication.

There should be no need to change the Agency and Register Session beans that call the
Applicant bean, because it is only the internal implementation that is changing, not the
interfaces.

The steps you should perform are as follows:

1. If you didn’t do so earlier today, convert the Agency database to its CMP version.
The steps to do this were described in the “A Quick Word about the Case Study
Database” section.

330 Day 7

09 0672323842 CH07 3/20/02 12:20 PM Page 330

CMP and EJB QL 331

7

2. Re-acquaint yourself with the ApplicantLocalHome and ApplicantLocal inter-
faces. However, these will not need to be changed.

3. Update the ApplicantBean class; base this on JobBean.

4. The CMR relationships that will be built will be bi-directional. This is needed
because, otherwise, the code generated by the J2EE RI fails to compile. So, in each
of LocationBean and SkillBean, uncomment the getApplicants() and
setApplicants() methods. Note that these have not been exposed in the respective
interfaces.

5. Build the enterprise application (agency.ear in the jar directory) and then load it
into deploytool. Delete the Applicant bean from the enterprise application, and
then add it in again into the data_entity_ejbs ejb-jar. As you add it, you can
specify that it is a CMP bean.

6. Specify the appropriate cmp-fields for the new bean.

7. Add a many-to-many relationship from Applicant to Skill. Make the relationship
bi-directional.

8. Add a many-to-one relationship from Applicant to Location. Make the relation-
ship bi-directional.

9. Use the deploytool’s Descriptor Viewer dialog to save the XML deployment
descriptor.

10. Now deploy the enterprise application (from the deploytool GUI), providing the
necessary auxiliary deployment information in the wizard that is displayed. Test
your program by using the AllClients client, run with run\runAll.

11. Optionally, use WinZip or equivalent to extract the auxiliary deployment descriptor
and save as dd\agency_ea-sun-j2ee-ri.xml from the agency.ear file previously
generated. Then re-build and deploy using build\buildAll and build\deploy.

Good luck. A working example can be found in day07\agency.

09 0672323842 CH07 3/20/02 12:20 PM Page 331

09 0672323842 CH07 3/20/02 12:20 PM Page 332

Developing J2EE
Applications

8 Transactions and Persistence

9 Java Messaging Service

10 Message-Driven Beans

11 JavaMail

12 Servlets

13 JavaServer Pages

14 JSP Tag Libraries

WEEK 2 8

9

10

11

12

13

14

10 0672323842 Week2 3/20/02 9:27 AM Page 333

10 0672323842 Week2 3/20/02 9:27 AM Page 334

DAY 8

WEEK 2

Transactions and
Persistence

You have spent the last three days covering EJBs in detail. In particular, you
learned how to specify, implement, configure and deploy container-managed
persistence (CMP) Entity beans. Along with BMP Entity beans (Day 6, “Entity
EJBs”) and Session beans (Day 5, “Session EJBs”), you now have a good
appreciation of the EJB technology.

EJBs have been called transactional middle-tier components. Until now, you
haven’t had to worry too much about transactions in an EJB context because
they are reasonably transparent. In fact, you have been using container-
managed transaction demarcation. However, for those cases where you require
explicit control, EJB provides two solutions. You can write beans that manage
their own transactions—bean managed transaction demarcation—or you can
also extend the lifecycle of Session beans to give them visibility of the transac-
tion demarcations. You will be learning about this today.

11 0672323842 CH08 3/20/02 9:29 AM Page 335

You spent Day 6 and Day 7, “CMP and EJB QL,” comparing the two different persis-
tence approaches offered by EJB in the guise of BMP and CMP Entity beans. The BMP
Entity beans were implemented using JDBC, but that is only one of a number of tech-
nologies offered by J2EE and Java in general. Today, you will learn

• How to manage transactions explicitly in EJBs

• How transactions are managed “behind the scenes” in an EJB environment

• Some other persistence technologies other than JDBC—specifically, SQLj and
JDO

Overview of Transactions
If you’ve used RDBMS before, or completed a Computer Studies course or read any
other J2EE book, you’ve probably read a section like this one already. But read on any-
way, if only to be acquainted with some of the J2EE terminology that is used in this
arena.

A transaction is an atomic unit of work:

• Atomic unit means indivisible—either every step within the transaction completes
or none of them do.

• Work here usually means some modification to data within a persistent data store.
In RDBMS terms, this means one or more INSERT, UPDATE, or DELETEs. However,
strictly speaking, it also applies to reading of data through SELECT statements.

For a persistent data store to support transactions, it must pass the so-called “ACID” test:

• Atomic—The transaction is indivisible; the data store must ensure this is true.

• Consistent—The data store goes from one consistent point to another. Before the
transaction, the data store is consistent; afterwards, it is still consistent.

The age-old example is of transferring money between bank accounts. This will
involve two UPDATEs, one decrementing the balance of account #1 and the other
incrementing the balance of account #2. If only one UPDATE occurs, the transaction
is not atomic, and the data store is no longer in a consistent state.

• Isolation—The data store gives the illusion that the transaction is being performed
in isolation. Enterprise applications have many concurrent users who are all per-
forming transactions at the same time, so behind the scenes, the data store uses tech-
niques, such as locks, to serialize access to the contended data where necessary.

• Durability—If a transaction completes, any changes made to the data as a result of
that transaction must be durable. In other words, if the power were to fail a mil-
lisecond after the transaction has completed, the change must still be there when
power is reconnected.

336 Day 8

11 0672323842 CH08 3/20/02 9:29 AM Page 336

Transactions and Persistence 337

8
Many data stores use transaction logs to address this requirement. The transaction
log holds a journal of changes made to the actual data. When the transaction com-
pletes, the log is written to disk, although the actual data need not be.

If you are a Windows user, you may know that Windows NT, 2000 and XP
support a filesystem type called NTFS. This replaces the FAT and FAT32
filesystem types used in Windows 95, 98, and ME.

Microsoft often say that NTFS is more reliable, although slightly slower than
FAT/FAT32. This is because NTFS has a built-in transaction log, whereas
FAT/FAT32 does not.

Note

Many data stores allow transactions to be started explicitly using a syntax such as the
following:

begin transaction t1

where t1 is the (optional) name transaction. Transactions are completed using either
commit (make changes permanent) or rollback (undo all changes made in the transac-
tion, and revert all data back to the state before the transaction began). Many data stores
will use

commit transaction t1

and

rollback transaction t1

Some data stores support the concept of nested transactions, whereby (for a
single user) one transaction can be started while another transaction is still
in progress. In other words, two begin transactions can be submitted with-
out a commit or rollback between them.

However, the EJB specification and many others support only flat transac-
tions, whereby one transaction must be completed before another is begun
(see EJB specification, section 17.1.2). Consequently, nested transactions are
not considered further.

Note

To conclude this short introduction, consider the fragment of SQL shown in Listing 8.1.
It transfers $50 from account #20457 to account #19834.

11 0672323842 CH08 3/20/02 9:29 AM Page 337

LISTING 8.1 Example Fragment of SQL to Transfer Money Between Accounts

1: begin transaction transfer_money
2:
3: update account
4: set balance = balance - 50
5: where account_id = 20457
6:
7: update account
8: set balance = balance + 50
9: where account_id = 19834
10:
11: commit transaction transfer_money

In effect, there are two different types of commands:

• Lines 1 and 11 demarcate the transaction.

• Lines 3–5 and 7–9 modify data.

A conventional RDBMS processes all of the SQL in Listing 8.1, but it is performing two
different roles in doing so. To understand and process the transaction demarcation com-
mands, it is acting as a transaction manager. To understand and process the remaining
lines, it is acting as a resource manager.

In the EJB specification, these two responsibilities are split. In principle, you can think
of the EJB container as acting as the transaction manager, and the persistent data store
acting only as the resource manager. The term transaction coordinator is sometimes used
instead of transaction manager because there could be more than one resource whose
transactions are being coordinated.

Splitting the responsibilities of transaction management and resource management has
two consequences. For the bean provider, it means that to start a transaction, the bean
must interact both with the EJB container and with the persistent data store. The former
interaction is largely implicit because it is configured through the deployment descriptor
(and as you know, the latter interaction is implicit if CMP Entity beans are used). The
other consequence is that, for the persistent data store, it must defer all transaction con-
trol responsibility up to the EJB container. Behind the scenes, there is some quite sophis-
ticated communication going on; you’ll learn a little about this activity later on today.

Container-Managed Transaction Demarcation
You’ve spent the last three days writing and deploying EJBs without really having to
worry too much about transactions. This isn’t to say that there have been no transactions
in use; far from it. Every interaction with the database performed in the case study has

338 Day 8

11 0672323842 CH08 3/20/02 9:29 AM Page 338

Transactions and Persistence 339

8
involved transactions. However, the Session and Entity beans deployed have used con-
tainer manager transaction demarcation (here referred to as CMTD, though the abbrevi-
ation isn’t used in the EJB specification). Information in the deployment descriptor indi-
cates when the EJB container should start and commit transactions.

Figure 8.1 shows a diagram that you saw first on Day 6.

FIGURE 8.1
The EJB proxy objects
implement transaction
(and security) control.

bean

remote
client

local
client

home

remote

local
home

local

location
transparency

security and
transactions

home
stub

remote
stub

This shows how the EJB proxy objects (those implementing the javax.ejb.EJBObject
or javax.ejb.EJBLocalObject interfaces) implement the transaction semantics. This is
one of the reasons that a bean must never implement its own remote interface. To do so
would mean that it could unwittingly return a reference to itself as a Remote interface,
subverting any security and transaction checks performed by its proxy.

Listing 8.2 shows a fragment of the deployment descriptor for the AdvertiseJob Session
bean from Day 7.

LISTING 8.2 Deployment Descriptor for AdvertiseJob Session Bean

1: <ejb-jar>
2: <display-name>Agency</display-name>
3: <enterprise-beans>
4: <session>
5: <display-name>AdvertiseJobBean</display-name>
6: … lines omitted …
7: <transaction-type>Container</transaction-type>
8: … lines omitted …
9: </session>
10: </enterprise-beans>
11: <assembly-descriptor>
12: <container-transaction>

11 0672323842 CH08 3/20/02 9:29 AM Page 339

13: <method>
14: <ejb-name>AdvertiseJobBean</ejb-name>
15: <method-intf>Remote</method-intf>
16: <method-name>updateDetails</method-name>
17: <method-params>
18: <method-param>java.lang.String</method-param>
19: <method-param>java.lang.String</method-param>
20: <method-param>java.lang.String[]</method-param>
21: </method-params>
22: </method>
23: <trans-attribute>Required</trans-attribute>
24: </container-transaction>
25: … lines omitted …
26: </assembly-descriptor>
27: </ejb-jar>

As you have seen over the last three days, the enterprise-beans element consists of
session or entity elements. The session element has a transaction-type element which,
under CMTD, should have the value of Container. For entity elements, the transaction-
type is not specified because entity beans must always be deployed using CMTD, so it is
implicit.

Each method of the remote interface must be present in a container-transaction ele-
ment. The same is true of the methods in the home interface. The relevant DTD defini-
tions that govern the structure of the deployment descriptor are as follows:

<!ELEMENT ejb-jar (description?, display-name?, small-icon?, large-icon?,
enterprise-beans, relationships?, assembly-descriptor?, ejb-client-jar?)>

The assembly-descriptor element is defined as follows:

<!ELEMENT assembly-descriptor (security-role*, method-permission*,
➥container-transaction*, exclude-list?)>

You can see here that assembly-descriptor element is all about providing the informa-
tion used to create the EJB proxy objects. The security-role, method-permission, and
exclude-list elements are security related, and the container-transaction element
obviously defines transaction-related information.

The security-related elements of the assembly-descriptor element are not considered
further here. However, the container-transaction element is relevant to the discussion.
It is defined in the DTD as follows:

<!ELEMENT container-transaction (description?, method+, trans-attribute)>

and the method element is defined as

<!ELEMENT method (description?, ejb-name, method-intf?,
➥method-name, method-params?)>

340 Day 8

LISTING 8.2 Continued

11 0672323842 CH08 3/20/02 9:29 AM Page 340

Transactions and Persistence 341

8
So, a container-transaction element identifies one or more methods. The method ele-
ment identifies a method in the home or remote interface; the method-intf element is
only needed in those rare occasions when there happens to be a method of the same
name in both the home and remote interfaces. The method-name must be specified,
although the value of * can be used as a convenient shortcut to indicate all methods. The
method-params element is optional and is used to distinguish between overloaded ver-
sions of the same method name. If not specified, the method element identifies all over-
loaded versions of the method with the specified name.

Finally, the bit that really matters. The trans-attribute element indicates the transaction-
al characteristics to be enforced when the specified method is invoked. A transaction may
or may not be in progress; in the terminology of the EJB specification, there may or may
not be a current valid transactional context. When a method is invoked, the EJB container
needs to know what should occur. For example, if there is no transaction in progress, is one
needed to execute the method? Should a transaction be started automatically if there isn’t
one? Perhaps a transaction can be started even if another one is in progress? And so on.
There are six possible values; their semantics are shown in Table 8.1.

TABLE 8.1 Different CMTD Semantics Are Indicated by the trans-attribute Element

trans-

attribute Meaning Notes

NotSupported Method accesses a resource manager that The EJB architecture does
does not support an external transaction not specify the transactional
coordinator. Any current transaction context semantics of the method.
will be suspended for the duration of the method.

Required A transaction context is guaranteed. The Commonly used.
current transaction context will be used
if present; otherwise, one will be created.

Supports Use valid transaction context if available (acts Acts as either Required or
like Required). Otherwise, use unspecified NotSupported. This makes
transaction context (acts like NotSupported). the Supports a highly dubi-

ous choice. The method
must guarantee to work in
the same way whether or
not there is a transaction
context available.

RequiresNew A new transaction context will be created. Any Can reduce contention (for
existing valid transaction context will be example, for a bean that
suspended for the duration of the method. generates unique IDs or for

a bean that writes to a log).

11 0672323842 CH08 3/20/02 9:29 AM Page 341

Mandatory A valid transaction context must exist; an Useful for helper beans’
exception will be thrown by the EJB container methods, designed to be
otherwise. The transaction context will be used. called only from another

bean.

Never There must be no current transaction context. Acts as NotSupported.
An exception will be thrown by the EJB
container otherwise. The method invokes with
an unspecified transaction context.

For Entity beans, only the Required, RequiresNew, and Mandatory trans-attribute val-
ues are recommended. The problem with NotSupported, Never, and (if invoked with no
current transaction context) Supports is that, in addition to performing the business
method, the EJB container must also perform the ejbLoad() and ejbStore() methods.
These will be performed with the same transactional context as the business method,
which is to say, with no transactional context. What might happen then is somewhat unde-
fined, as the EJB specification is at pains to point out. Indeed, it goes so far as to list (in
section 17.6.5) four or five different ways in which the EJB container might decide to act.

342 Day 8

TABLE 8.1 Continued

trans-

attribute Meaning Notes

Never use NotSupported, Never, or Supports as trans-attribute val-
ues with Entity beans.

Caution

As usual, the deploytool GUI can also be used to configure the information within the
deployment descriptor, as shown in Figure 8.2.

You are likely to find that the vast majority of your beans’ methods will use the
Required trans-attribute value. Indeed, this is the value that has been used in the case
study over previous days.

Although CMTD means that the EJB container automatically starts, suspends, and com-
pletes transactions, this is not to say that the beans themselves cannot influence the trans-
actions. After all, if an Entity bean hits an error condition that means that the transaction
should be aborted, it needs some way to indicate this to the EJB container. As an exam-
ple, consider the hackneyed example of withdrawing money from a bank account. If the
balance would go into the red, (or perhaps more likely, beyond an overdraft limit), the
Entity bean that represents the account would want to indicate that the transaction should
be aborted.

11 0672323842 CH08 3/20/02 9:29 AM Page 342

Transactions and Persistence 343

8

To do this, the bean can use two transaction-related methods provided by its EJBContext.
In the case of a Session bean, this will be the javax.ejb.SessionContext passed in
through the setSessionContext() method, and for an Entity bean, this will be the
javax.ejb.EntityContext passed in through setEntityContext(). To remind you,
Figure 8.3 shows a UML class diagram illustrating the methods provided by these inter-
faces.

FIGURE 8.2
deploytool lets CMT
characteristics be
defined on a per-
method basis.

It’s interesting to compare the XML deployment descriptor approach to
using deploytool. The deployment descriptor places the security- and
transaction-related information in the assembly-descriptor element, away
from the definition of the beans themselves (which reside under the enter-
prise-beans element). This is interesting in its own right, because it ties
back to the different EJB roles you learned about back on Day 2, “The J2EE
Platform and Roles.” The intention is that the bean provider completes just
the information in the enterprise-beans element, while the application
assembler completes the information under the assembly-descriptor. This
allows an EJB component to be used in different applications, with different
transaction and security requirements.

In contrast, the deploytool does not differentiate between the two roles;
the transaction (and security) information are just two of the seven tabs on
the right side of the GUI, providing information about the selected EJB; the
other five tabs pertain to information found under the enterprise-beans
element.

Note

11 0672323842 CH08 3/20/02 9:29 AM Page 343

To cause the transaction to be aborted, the CMTD bean can call setRollbackOnly().
This instructs the EJB container to prevent the transaction from being committed. The
bean cannot rollback the transaction directly, because the transaction itself is “owned” by
the EJB container, not the bean. The getRollbackOnly() method obviously just indi-
cates whether the transaction has been marked for rollback.

There is one other transaction-related method in EJBContext, namely
getUserTransaction(). However, this cannot be called by a CMTD bean, and any
attempt to do so will result in the EJB container throwing a
java.lang.IllegalStateException.

344 Day 8

FIGURE 8.3
The EJBContext pro-
vides access to the cur-
rent transaction.

interface
EJBContext

+getEJBHome():EJBHome
+getEJBLocalHome():EJBLocalHome
+getEnvironment():Properties
+getCallerIdentity():Identity
+getCallerPrincipal():Principal
+IsCallerInRole(Identity:Identity):boolean
+IsCallerInRole(s:String):boolean
+getUserTransaction():UserTransaction
+setRollbackOnly():void
+getRollbackOnly():boolean

interface
EntityContext

+getEJBLocalObject():EJBLocalO
+getEJBObject():EJBObject
+getPrimaryKey():Object
+setEJBLocalObject(pO:EJBObje

interface
SessionContext

+getEJBLocalObject():EJBLocalO
+getEJBObject():EJBObject

interface
javax.transaction.UserTransaction

+begin():void
+commit():void
+getStatus():int
+rollback():void
+setRollbackOnly():void
+setTransactionTimeout(:int):void !

interface
javax.transaction.Status

+STATUS_ACTIVE:int
+STATUS_MARKED_ROLLBACK:int
+STATUS_PREPARED:int
+STATUS_COMMITTED:int
+STATUS_ROLLEDBACK:int
+STATUS_UNKNOWN:int
+STATUS_NO_TRANSACTION:int
+STATUS_PREPARING:int
+STATUS_COMMITTING:int
+STATUS_ROLLING_BACK:int

!

The remaining methods in EJBContext provide access to the home inter-
face(s) of the bean (getEJBHome() and getEJBLocalHome()) and to the securi-
ty context (getCallerPrincipal(), isCallerInRole(String)). The other
methods have been deprecated.

Note

One last point relating to CMTD beans—they must not make use of any resource manag-
er-specific transaction management methods that would interfere with the EJB contain-
er’s own management of the transaction context. Consequently, a BMP Entity bean can-
not call commit(), setAutoCommit(), and so on a java.sql.Connection object.

If your bean does need more fine-grained control over transactions, the bean must be
deployed using bean-managed transaction demarcation. This is discussed next.

11 0672323842 CH08 3/20/02 9:29 AM Page 344

Transactions and Persistence 345

8
Bean Managed Transaction Demarcation

If an EJB is deployed using bean managed transaction demarcation (here referred to as
BMTD, though this abbreviation isn’t used in the EJB specification itself), the EJB con-
tainer allows the bean to obtain a reference to a javax.transaction.UserTransaction
object using the EJBContext. You can see this in Figure 8.3.

Motivation and Restrictions
An EJB might need to be deployed under BMTD if the conditions on which a transaction
is started depend on some programmatic condition. It could be that one method starts the
transaction and another method completes the transaction.

However, the cases where BMTD is needed are few and far between. Indeed, they are so
rare that the EJB specification limits BMTD to Session beans. Entity beans can only be
deployed with CMTD. This makes sense because Entity beans represent persistent trans-
actional data; the transaction context should be as deterministic as possible.

Moreover, if a stateless Session bean starts a transaction, it must also commit that trans-
action before the method completes. After all, the stateless Session bean will have no
memory of the client that just invoked its method after that method completes, so one
cannot expect that the transaction context is somehow miraculously preserved. If you
write a BMTD stateless Session bean that does not commit its own transaction, the EJB
container will rollback the transaction and throw an exception back to the client
(java.rmi.RemoteException for remote clients, or javax.ejb.EJBException for local).

Indeed, even with stateful Session beans, there is a restriction. Any current transaction in
progress when the BMTD Session bean is called will be suspended by the EJB container,
not propagated to the BMTD bean. It is possible that, from the bean’s perspective, there
is a current transaction, but that would refer to any transaction not committed when a
method on that bean was last called.

Using the Java Transaction API
When a Session bean is deployed under BMTD, there is an implementation choice as to
how it should manage its transactions. If interacting solely with an RDBMS, the Session
bean can manage the transactions directly through the JDBC API. Alternatively, it can
use the Java Transaction API, defined by the classes and interfaces in the javax.trans-
action and the javax.transaction.xa packages. The latter is to be preferred, if only
because transactional access to Java Messaging Service resources (you’ll be learning
more about these tomorrow and the day after) can only be performed through the JTA
API. Equally, servlets can also use the JTA API.

11 0672323842 CH08 3/20/02 9:29 AM Page 345

For a Session bean to start a transaction, it should first call the getUserTransaction()
method of its SessionContext. You’ll recall that this was the method that throws an
exception under CMTD, but it is the centerpiece of transaction control under BMTD.

Obtaining a UserTransaction does not mean that a transaction has been started. Rather,
it must be started using the begin() method. The transaction can then be completed
using either the commit() or the rollback() method. The current status can also be
obtained using getStatus(). This returns an int whose meaning is defined by the
constants in the javax.transaction.Status interface. Some of the most common status
values are shown in Table 8.2.

TABLE 8.2 Some of the Constants Defined in javax.transaction.Status

Constant Meaning Typical actions

STATUS_NO_TRANSACTION No transaction is active. tran.begin() to start new
transaction.

STATUS_ACTIVE A transaction is active and can Use resource manager.
be used. tran.commit() to commit

tran.rollback() to rollback

STATUS_MARKED_ROLLBACK A transaction is active, but has tran.rollback()

been marked for rollback. Any
attempt to commit it will result
in a javax.transaction.
RollbackException being thrown.

346 Day 8

The Java 2 Platform Enterprise Edition Specification, the document that
defines the interoperability of all the technologies that make up the J2EE plat-
form, only discusses transaction interoperability in the context of the JTA API.

If nothing else, the semantics of intermixing JDBC and JTA calls are not
exhaustively defined, so this should be avoided to minimize chances of
portability problems if moving to a different vendor’s EJB container.

Note

There are more constants in the Status interface than those listed in Table
8.2. Later today, (in the “Transactions: Behind the Scenes” section), you’ll be
learning about some of the “under-the-covers” mechanics of transaction
management; the full list is presented there.

Note

Listing 8.3 shows a possible implementation for the updateDetails() method of
AdvertiseJob bean using BMTD.

11 0672323842 CH08 3/20/02 9:29 AM Page 346

Transactions and Persistence 347

8
LISTING 8.3 BMTD Implementation of AdvertiseJobBean.updateDetails()

1: package agency;
2:
3: import javax.ejb.*;
4: import javax.transaction.*;
5: // imports omitted
6:
7: public class AdvertiseJobBean extends SessionBean {
8: public void updateDetails (String description,

➥String locationName, String[] skillNames) {
9:
10: int initialTranStatus = beginTransactionIfRequired();
11:
12: if (skillNames == null) {
13: skillNames = new String[0];
14: }
15: List skillList;
16: try {
17: skillList = skillHome.lookup(Arrays.asList(skillNames));
18: } catch(FinderException ex) {
19: error(“Invalid skill”, ex, initialTranStatus);

➥ // throws an exception
20: return;
21: }
22:
23: LocationLocal location=null;
24: if (locationName != null) {
25: try {
26: location = locationHome.findByPrimaryKey(locationName);
27: } catch(FinderException ex) {
28: error(“Invalid location”, ex, initialTranStatus);

➥ // throws an exception
29: return;
30: }
31: }
32:
33: job.setDescription(description);
34: job.setLocation(location);
35: job.setSkills(skillList);
36:
37: completeTransactionIfRequired(initialTranStatus);
38: }
39:
40: private int beginTransactionIfRequired() {
41:
42: UserTransaction tran = this.ctx.getUserTransaction();
43: // start a new transaction if needed, else just use existing.
44: // (simulates trans-attribute of REQUIRED)
45: int initialTranStatus;

11 0672323842 CH08 3/20/02 9:29 AM Page 347

46: try {
47: initialTranStatus = tran.getStatus();
48: switch(initialTranStatus) {
49: case Status.STATUS_ACTIVE:
50: // just use
51: break;
52: case Status.STATUS_NO_TRANSACTION:
53: // create
54: try {
55: tran.begin();
56: } catch(NotSupportedException ex) {
57: // shouldn’t happen (only thrown if asking for nested exception
58: // and is not supported by the resource manager; not attempting
59: // to do this here).
60: throw new EJBException(

➥ “Unable to begin transaction”, ex);
61: }
62: break;
63:
64: // code omitted; other Status’ covered later
65:
66: default:
67: throw new EJBException(
68: “Transaction status invalid, status = “ +

➥ statusAsString(initialTranStatus));
69: }
70: } catch(SystemException ex) {
71: throw new EJBException(“Unable to begin transaction”, ex);
72: }
73:
74: return initialTranStatus;
75: }
76:
77: /**
78: * expects initialTranStatus to be either

➥ STATUS_NO_TRANSACTION or STATUS_ACTIVE;
79: * semantics undefined otherwise
80: */
81: private void completeTransactionIfRequired(int initialTranStatus) {
82:
83: UserTransaction tran = this.ctx.getUserTransaction();
84:
85: // if transaction was started, then commit / rollback as needed.
86: // (simulates trans-attribute of REQUIRED)
87: if (initialTranStatus == Status.STATUS_NO_TRANSACTION) {
88: try {
89: if (tran.getStatus() == Status.STATUS_MARKED_ROLLBACK) {
90: tran.rollback();

348 Day 8

LISTING 8.3 Continued

11 0672323842 CH08 3/20/02 9:29 AM Page 348

Transactions and Persistence 349

891: } else {
92: tran.commit();
93: }
94: } catch(Exception ex) {
95: throw new EJBException(

➥ “Unable to complete transaction”, ex);
96: }
97: }
98: }
99: }

The two helper methods, beginTransactionIfRequired() and
completeTransactionIfRequired(), isolate the actual transaction management code, so
it can be reused across different methods.

Deploying a BMTD Bean
Of course, when deploying a bean under BMTD, the deployment descriptor should indi-
cate a transaction-type element of Bean, and you will not need any container-
transaction elements under the application-assembly element. Figure 8.4 shows
deploytool for the AdvertiseJob bean, indicating this fact.

LISTING 8.3 Continued

FIGURE 8.4
BMTD is indicated
through the deploy-
ment descriptor, as
shown in deploytool.

11 0672323842 CH08 3/20/02 9:29 AM Page 349

Incidentally, if a BMTD Session bean calls getRollbackOnly() or setRollbackOnly()
on its SessionContext, the EJB container will throw a
java.lang.IllegalStateException. This is reasonable; if a BMTD has access to the
UserTransaction object, it has no need for these methods. Instead, it can call the
getStatus() method of UserTransaction, and explicitly call rollback() if needed.

Client-Demarcated Transactions
As well as Session beans managing their own transactions, it is also possible for clients
to initiate the transaction and have it propagate through to the EJBs. Here, “client” means
either an application client written using the Swing GUI (such as you have seen in the
case study), or it could equally refer to a Web-based client implemented using servlets
and JSPs.

For either of these clients, the EJB architecture requires that a UserTransaction context
can be obtained via JNDI, bound under the name of java:comp/UserTransaction. So
the code fragment shown in Listing 8.4 will do the trick.

LISTING 8.4 Obtaining a UserTransaction Object from JNDI

1: // assuming:
2: // import javax.naming.*;
3: // import javax.transaction.*;
4: InitialContext ctx = new InitialContext();
5: UserTransaction tran = (UserTransaction)

➥ctx.lookup(“java:comp/UserTransaction”);
6: tran.begin();
7: // call session and entity beans
8: tran.commit();

That said, if you find yourself needing to use client-demarcated transactions, you should
look at your application design and see if you are happy with it. After all, Session beans
(are meant to) represent the application logic of your application, and this should surely
include defining the transactional boundaries of changes to persistent data. Application
clients should only provide a presentational interface to your application.

If that philosophical argument does not appeal, perhaps this might. A rogue client could
be coded such that it begins a transaction, interacts with (and therefore ties up) various
resources, such as Entity beans, and then not commit. This could seriously impact the
performance of your application.

Exceptions Revisited
On Days 5 and 6, you learned the appropriate exceptions for your EJB to throw. In
summary

350 Day 8

11 0672323842 CH08 3/20/02 9:29 AM Page 350

Transactions and Persistence 351

8
• To throw an application-level exception (indicating that a possibly recoverable con-

dition has arisen), throw any checked exception (excluding
java.rmi.RemoteException).

• To throw a system-level exception (indicating that a non-recoverable severe condi-
tion has arisen), throw any java.lang.RuntimeException (usually a subclass of
javax.ejb.EJBException).

If an application-level exception is thrown by a bean, it is up to that bean whether the
current transaction is affected or not. If the bean takes no action other than raising its
exception, the current transaction will be unaffected. The exception will simply propa-
gate back to the calling client.

However, CMTD beans may decide to mark the current transaction for rollback, meaning
that the “owner” of the transaction (the EJB container or some BMTD bean) will be
unable to commit that transaction.

If a BMTD bean hits an error condition, it has a choice. Because it “owns” the transac-
tion, it can simply do a rollback. Alternatively, it might elect to keep the transaction
active.

If a system-level exception is thrown by a bean, this does have consequences for any cur-
rent transaction. If any bean throws a system exception, the EJB container will mark the
current transaction for rollback. If that bean happens to be a CMTD bean, and the EJB
container started a transaction just before invoking the CMTD method (as a result of a
Required or RequiresNew trans-attribute), the EJB container will actually rollback
that transaction.

To summarize,

• An application-level exception may or may not leave the current transaction active;
use getStatus() or getRollbackOnly() to find out.

• A system-level exception will either mark the current transaction for rollback or
even do the rollback.

One last thing on transactions and exceptions. Most of the exceptions in javax.ejb
(CreateException, RemoveException, and so on) are application exceptions. Some of
these, especially with CMP Entity beans, are raised by the EJB container itself. Rather
unhappily, the EJB specification does not mandate whether these application exceptions
should mark any current transaction for rollback (see section 10.5.8). Instead, it just indi-
cates that the getStatus() or getRollbackOnly() methods should be used to determine
the status of the current transaction. In practical terms, what this means is that different
EJB containers could have different implementations, compromising portability.

11 0672323842 CH08 3/20/02 9:29 AM Page 351

Extended Stateful Session Bean Lifecycle
Occasionally, there is a need for a stateful Session bean to have visibility as to the
progress of the underlying transaction. Specifically, a bean might need to know

• Has the transaction started?

• Is the transaction about to complete?

• Did the transaction complete successfully or was it rolled back?

For example, consider the age-old example of a ShoppingCart bean. In its purchase()
method, it is likely to modify its internal state. Perhaps it holds its contents in a
java.util.List called currentContents. On purchase(), it might move the contents
of currentContents to another java.util.List called recentlyBought.

Suppose, then, that the transaction that actually modifies the persistent data store fails to
complete. Maybe the shopper doesn’t have enough limit left on his or her credit card.
Because Session beans are not transactional, the ShoppingCart bean needs to know that
it should reset its internal state back to the beginning of the transaction. In other words, it
needs to move the contents of the recentlyBought list back over to currentContents.

Obviously, there is no issue for stateful Session beans deployed under BMTD, because
they are the owner of the transaction anyway and know when the tran.begin() and
tran.commit() methods will be invoked. But for CMTD Session beans, there is an issue.

The EJB specification addresses this by extending the lifecycle of the bean. If a stateful
Session bean implements the javax.ejb.SessionSynchronization interface, three addi-
tional lifecycle methods are defined and will be called at the appropriate points:

• afterBegin() The transaction has just begun.

• beforeCompletion() The transaction is about to be committed.

• afterCompletion(boolean) The transaction has completed. The boolean argu-
ment has the value true to indicate that the transaction was committed, or false to
indicate that the transaction was rolled back.

Figure 8.5 is a reworking of Figure 5.14 that you saw back on Day 5. It shows the state-
ful Session bean’s view of its lifecycle. (The client’s view and the actual lifecycle man-
aged by the EJB container are unchanged).

352 Day 8

11 0672323842 CH08 3/20/02 9:29 AM Page 352

Transactions and Persistence 353

8

One common pattern for using this interface is to use the afterBegin() method to load
any data from the data store (perhaps in the form of Entity beans), and then use the
beforeCompletion() method to write any cached data that may have changed. One
immediate application might be with respect to multi-valued cmr-fields. You will recall
from yesterday that collections returned by the getter method of a cmr-field are valid
only for the duration of a transaction. These two methods scope the duration that such a
returned collection can be used.

There are analogies here also with SQL, where the afterBegin() corresponds to a
SELECT … WITH HOLDLOCK statement, and beforeCompletion() corresponds to the
UPDATE statements.

If the SessionSynchronization interface is implemented by a Session bean, the only
allowable values for the trans-attribute element in its deployment descriptor are
Required, RequiresNew, or Mandatory. This is because these are the only attributes that
can guarantee the presence of a transaction.

FIGURE 8.5
The Session
Synchronization

interface gives the
stateful Session bean
visibility to the trans-
actions managed under
CMTD.

Bound to client

Pooled

Passivated

create/ejbCreate

remove/ejbRemove

pool too small/setSessionContext

[too many active]
/ejbPassivate

[surplus][timeout]

non-TX business method

rollback/afterCompletion(false)[called in xactn]/afterBegin

TX business method

[business method or remove
invoked]/ejbActivate

commit/beforeCompletion
afterCompletion(true)

Ready

Ready in xact

11 0672323842 CH08 3/20/02 9:29 AM Page 353

Transactions: Behind the Scenes
The EJB specification starts off by listing nine goals. The second of these reads as
follows:

“The Enterprise JavaBeans architecture will make it easy to write applications:
Application developers will not have to understand low-level transaction and state
management details, multi-threading, connection pooling, and other complex low-
level APIs.”

The EJB specification (downloadable from
http://java.sun.com/products/ejb/index.html) largely succeeds in addressing this
goal—as a developer, you really do not need much knowledge about how transactions
are managed. The fact that this book only covers transactions today is testament to that.

Nevertheless, like most technical topics, it can be helpful to have an insight as to what is
going on “behind the scenes.” But if you want to skip this material and make a shorter
day of it, please do so. You can always re-read at a later date if you find yourself wanting
to know more.

Transaction Managers, Resource Managers, and 2PC
You already know about the terms resource manager and transaction manager (or trans-
action coordinator). In most EJB applications, an RDBMS will take the place of a
resource manager, and the EJB container itself will be the transaction manager.

This division of responsibilities is required because in an EJB architecture, the data used
by Session beans or represented by Entity beans may reside in more than one persistent
data store. For example, one Entity bean might map onto an Oracle RDBMS, and anoth-
er Entity bean may map onto a Sybase RDBMS, as shown in Figure 8.6. (The numbers
will be explained shortly.)

354 Day 8

FIGURE 8.6
The J2EE platform
separates resources
and transaction man-
agers.

transaction manager

3.

4.

2.

1.

5.

6. 7.

Syb

Ora

local
client

session
bean

entity
bean

entity
bean

11 0672323842 CH08 3/20/02 9:29 AM Page 354

Transactions and Persistence 355

8
Leaving the transaction management responsibilities with the RDBMSs is not suitable.
Doing so would mean that each RDBMS would have its own transaction. If the first
transaction succeeded but the second transaction failed, the logical data set represented
by the Entity beans would no longer be consistent. The “C” of the ACID test would be
broken.

Another case where only a single transaction is required is when interacting with JMS
queues or topics. You can imagine that a queue might implement a To Do list. A task on
the To Do list might be “invoice customer A for $20,” involving an update to an
RDBMS. If the task is removed from the To Do list as one transaction, and the update to
the RDBMS performed as another transaction, there is again the possibility that the sec-
ond transaction fails. In other words, the task is removed from the To Do list, but no
invoice is raised.

The two phase commit protocol (more commonly called just 2PC) is the mechanism by
which the transaction manager (EJB container) interacts with each of the resource man-
agers (RDBMS or JMS queues and topics). In the EJB environment, it works as follows
(the numbers correspond to the steps in Figure 8.6):

1. The transaction manager within the EJB container creates a new transaction as
needed. Generally, this will be when a Session bean’s method is invoked.

If the Session bean has been deployed under CMTD, the bean’s proxy will make
this request to the transaction manager. If the Session bean is deployed under
BMTD, the bean itself will effectively make this request.

2. The Session bean interacts with Entity beans. The current transaction will be prop-
agated through to them (assuming they are deployed with Required or Mandatory
value for their trans-attribute element).

3. In turn, the Entity beans interact with the RDBMSs through an XA-compliant
java.sql.Connection. “XA-compliant” means supporting the two phase commit
protocol (or 2PC); more on this shortly. If the Entity bean is BMP, the interaction
with the RDBMS will be done by the bean itself; if the bean is CMP, the interac-
tion will be by the generated subclass. Either way, it amounts to the same thing.

4. Each of the XA-compliant Connections registers itself with the EJB’s transaction
manager. More correctly, a javax.transaction.xa.XAResource representing and
associated with the Connection is registered as part of the current javax.transac-
tion.Transaction.

5. When all method calls to the Entity beans have been made, the Session bean indi-
cates to the transaction manager that the transaction should be committed.

11 0672323842 CH08 3/20/02 9:29 AM Page 355

6. The transaction manager performs the first “prepare” phase of the commit. It iter-
ates over each of the XAResources that constitute the transaction and requests con-
firmation that they are ready to be committed. In turn, the XAResource just dele-
gates this request to its corresponding XA-compliant java.sql.Connection.

7. When all resources have indicated that they are prepared, the transaction manager
performs the second “commit” phase. It again iterates over each of the
XAResources and requests them to commit.

The JTA API
An XA-compliant java.sql.Connection, as previously described, is one that provides
the ability to return an XAResource for registering with the current transaction. The XA
protocol is an industry standard, defined by the X/Open group, to allow a transactional
resource manager to participate in a global transaction controlled by an external transac-
tion manager. The JTA API is effectively a mapping into Java of this XA protocol.

In fact, the java.sql.Connection interface does not mandate XA-compliance, so the
previous description was a slight simplification. Instead, XA-compliance is provided by
classes and interfaces in the javax.sql package, part of the J2EE platform. Some of the
more relevant classes of java.sql, javax.sql, javax.transaction, and javax.trans-
action.xa are shown in Figure 8.7.

356 Day 8

FIGURE 8.7
The javax.sql and
javax.transaction

packages together pro-
vide support for 2PC
against RDBMSs.

interface
javax.sql.DataSource

getConnection

interface
…ConnectionPoolDataSource

getPooledConnection

interface
javax.sql.XADataSource

getXAConnection

interface
…PooledConnection

getConnection
close

interface
…sql.XAConnection

getXAResource

interface
javax.transaction.xa.Xid

interface
javax.transaction.UserTransaction

begin
commit
rollback
setRollbackOnly
getStatus
setTransactionTimeout

interface
javax.transaction.TransactionManager

begin
commit
getStatus
getTransaction
resume
rollback
setRollbackOnly
setTransactionTimeout
suspend

interface
javax.transaction.Transaction

commit
delistResource
enlistResource
getStatus
registerSynchronization
rollback
setRollbackOnly

interface
javax.transaction.xa.XAResource

commit
end
forget
getTransactionTimeout
isSameRM
prepare
recover
rollback
setTransactionTimeout
start

Some methods and
variables not shown

Delisted resources
are not removed from
this collection

0..*

java.sql.DriverManager

getConnection
!

interface
java.sql.Connection

createStatement
prepareStatement
prepareCall
close !

As you know, the java.sql.Connection interface represents a connection to an
RDBMS. In J2SE applications, java.sql.DriverManager can be used to create a con-
nection. Under J2EE, a javax.sql.DataSource object is used.

11 0672323842 CH08 3/20/02 9:29 AM Page 356

Transactions and Persistence 357

8
In J2EE enterprise applications, reusing connections through some sort of connection
pool is critical to ensuring performance and scalability. Many implementations of
DataSource provide built-in connection pooling. The connection returned by
DataSource.getConnection() is effectively a logical connection temporarily associated
with an underlying physical connection. When the close() method on the logical con-
nection called, the underlying physical connection is not closed but is, instead, returned
to a connection pool.

J2EE also offers another approach for RDBMS vendors to provide connection pooling,
through the javax.sql.ConnectionPoolDataSource interface. This returns
PooledConnections that are physical connections to the database. In turn, they provide a
getConnection() method that returns a logical connection that wraps them, so the final
effect is much the same as before.

If you want, you can think of the getConnection() method of
PooledConnection as leasing the connection from the pool. The close()
method releases the PooledConnection back into the pool to be used again.

Tip

Closely related to ConnectionPoolDataSource is the javax.sql.XADataSource, which
returns javax.sql.XAConnections. This is a sub-interface of PooledConnection, so it
works in the same way, providing the getConnection() to return a logical
java.sql.Connection that wraps it. However, it also provides the getXAResource()
method that returns a javax.transaction.xa.XAResource. Consequently, the
XAConnection acts as a bridge between the resource manager’s notion of connection and
the transaction manager’s notion of resource.

A J2EE-compliant resource manager must be able to support each of these three different
DataSource interfaces (XADataSource, ConnectionPoolDataSource, and DataSource
itself).

The J2EE RI deploytool can be used to configure XADataSources against Cloudscape
by using the Tools, Server Configuration menu option. Alternatively, the
resource.properties file under %J2EE_HOME%\config can be edited directly. The dialog
box and required entries are shown in Figure 8.8. (You’ll also need to remove the previ-
ous definition of jdbc/Agency, listed under DataSources/Standard node of the
Explorer).

11 0672323842 CH08 3/20/02 9:29 AM Page 357

As you saw earlier today, the EJB application’s interface into the EJB container’s trans-
action manager implementation is solely through the
javax.transaction.UserTransaction interface. Indeed, there is no direct way to access
the javax.transaction.TransactionManager object or the
javax.transaction.Transaction object that corresponds to the UserTransaction
(though obviously they are available to the EJB container itself).

358 Day 8

FIGURE 8.8
deploytool can be used to
configure
XADataSources.

Some EJB containers make the Transaction and TransactionManager inter-
faces available—through JNDI. As ever, using these value-add features will
compromise application portability.

Tip

Figure 8.9 shows an object instance diagram to indicate (some of) the objects that might
be instantiated to represent the scenario shown back in Figure 8.6.

In practice, there probably would not be two objects for the XAConnection and
XAResource interfaces (oraConn/oraRes and sybConn/sybRes in the diagram). More like-
ly, an RDBMS vendor would implement a concrete class that implements both of these
two interfaces. The JTA API describes such a class as the ResourceAdapter.
Consequently, each transaction managed by the EJB container’s transaction manager will
have a collection of ResourceAdapters, each also being a physical connection to some
resource manager. Indeed, if you have used the Adapter design pattern, you’ll recognize
that the ResourceAdapter is well named, combining two orthogonal interfaces into a sin-
gle instance.

11 0672323842 CH08 3/20/02 9:29 AM Page 358

Transactions and Persistence 359

8

What If It Goes Wrong?
You’ve seen how the 2PC protocol is intended to work. However, the whole point of 2PC
is to ensure transactional consistency, even in the event of an unexpected failure. So,
what happens when it goes wrong?

There are two cases to deal with. First, it could be that a resource manager enlisted into
the transaction may no longer be available when the application (in an EJB context, the
Session bean or its proxy) decides to commit. It could be that the network has failed
since the original interaction with the Entity bean that represents some data residing on
that resource manager.

In this first case, the prepare phase of the 2PC protocol fails. Because the transaction
manager has been unable to get an acknowledgement within its timeout, it will roll back
the transaction. When the resource manager that failed is restarted, it will (as part of its
so-called recovery process) automatically roll back any work done as a part of the trans-
action.

In the second case, a resource manager becomes unavailable after it has acknowledged
the prepare, but before the commit phase. This rare case causes more problems because
the transaction manager may already have sent the commit message to some other
resource managers. Nevertheless, the transaction manager will continue to send the com-
mit message to all other resource managers.

When the resource manager that failed is restarted, it will detect that it had acknowl-
edged a prepare. It then contacts the transaction manager to determine whether the trans-
action was actually committed or was rolled back. It then performs the same (commit or
rollback) as part of its recovery process.

FIGURE 8.9
An object instance dia-
gram showing
XAConnections and
XAResources.

«uses»

ctxA:EJBContext

ctxB:EJBContext

:TransactionManager :Transaction

:UserTransaction

oraConn:XAConnection

oraPhysConn:Connection

sybConn:XAConnection

oraRes:XAResource

sybRes:XAResource

sybPhysConn:Connection

beanA

beanB

proxyA

proxyB

delegate

delegate

«uses»

«creates»

«creates»

delegate

11 0672323842 CH08 3/20/02 9:29 AM Page 359

The prepare phase is more than the transaction manager checking that all resource man-
agers are still available. It is also possible for resource managers to unilaterally decide to
abort a transaction for some reason. When this happens, the transaction manager will
send a rollback message to all participating resource managers, rather than a commit.

360 Day 8

If you have done any JavaBean programming, some of this will be starting
to sound familiar. The java.beans.VetoableChangeSupport class works in a
very similar way.

Tip

In addition to failures of the prepare or the commit phase of the 2PC, there are also occa-
sional cases when a resource manager may take a so-called heuristic decision that could
be in conflict with the semantics of the transaction. For example, a resource manager
could have a policy that, once prepared, it will commit if the transaction manager has not
confirmed the outcome (commit or rollback) within a certain period. One reason that a
resource manager might do this would be to free up resources.

If a heuristic decision is made, it is the responsibility of the resource manager to remem-
ber this decision. In an RDBMS, this is often stored in some sort of system table. Put
bluntly, this information is required to allow the administrator to correct any issues with
the data if the heuristic decision went against the transaction’s actual outcome. You might
have noted that the XAResource interface defines a forget() method; this allows the
resource manager to finally forget that a heuristic decision was made.

This probably all sounds pretty arcane, but is needed if you want to understand the full
set of status values defined by the javax.transaction.Status interface. You’ll recall
that a subset of these was presented in Table 8.2. Table 8.3 shows all of the constants.

TABLE 8.3 All of the Constants Defined in javax.transaction.Status

Constant Meaning Typical Actions

STATUS_ No transaction is active. tran.begin() to start new transaction.
NO_TRANSACTION

STATUS_ACTIVE A transaction is active and can be used. Use resource manager.
tran.commit() to commit.
tran.rollback() to rollback.

STATUS_MARKED_ A transaction is active, but has been tran.rollback()

ROLLBACK marked for rollback. Any attempt to
commit it will result in a javax.
transaction.RollbackException

being thrown.

11 0672323842 CH08 3/20/02 9:29 AM Page 360

Transactions and Persistence 361

8
STATUS_PREPARED A transaction is active, and is in the Nothing; wait for transaction to

process of being committed. The first complete.
“prepare” phase of the 2PC protocol
has completed.

STATUS_ A transaction is active, and is in the
PREPARING process of being committed. The first

“prepare” phase of the 2PC protocol is
in progress.

STATUS_ A transaction is active, and is in the
COMMITTING process of being committed. The second

“commit” phase of the 2PC protocol is
in progress.

STATUS_ A transaction is active, and is in the
ROLLING_BACK process of being rolled back.

STATUS_ The previous transaction has committed, Use administrative tool to forget
COMMITTED but there is likely to be some heuristic heuristics after checking data is valid

data available (otherwise, the status in resource.
returned would have been tran.begin() to start new transaction,
STATUS_NO_TRANSACTION). but heuristic data may be lost.

STATUS_ The previous transaction has rolled back,
ROLLEDBACK but there is likely to be some heuristic

data available (otherwise, the status
returned would have been
STATUS_NO_TRANSACTION).

STATUS_UNKNOWN This is a transient status. Subsequent Wait.
calls will resolve to another status.

JTA Versus JTS
There are two Java APIs relating to transactions:

• The Java Transaction API (JTA)—(Already introduced) The JTA classes and inter-
faces reside in the javax.transaction and javax.transaction.xa packages.

• The Java Transaction Services API (JTS)—This is a Java mapping for the OMG’s
Object Transaction Service v1.1 to interoperate with CORBA ORB/TS standard
interfaces. This includes on-the-wire propagation of transactions over CORBA’s
IIOP network protocol. The JTS classes and interfaces reside in the javax.jts
package.

TABLE 8.3 Continued

Constant Meaning Typical Actions

11 0672323842 CH08 3/20/02 9:29 AM Page 361

For its part, the JTS specification (downloadable from http://java.sun.com/prod-
ucts/jts/index.html) mandates that any compliant Transaction Manager implementa-
tion must also provide complete support for the JTA API, so you can think of JTS as the
“back-end” of JTA. Some Java APIs (such as JDBC and JNDI) use the terms API and
SPI, where API is the application developer’s programming interface, and SPI is support-
ing the service-provider’s interface. For example, a JDBC driver written by Oracle Corp.
would be an implementation of the JDBC SPI. Using this terminology, JTS is the SPI
portion of JTA.

The EJB specification mandates that the EJB container must provide access to the JTA
API, so some vendors will do this by implementing JTS. Such vendors can then offer
transaction propagation between EJBs that reside on different EJB servers, because both
such servers will effectively appear as CORBA servers implementing OTS. Figure 8.10
shows this.

362 Day 8

FIGURE 8.10
JTS support means
transactions can be
propagated between
EJB servers. transaction manager

Ora
local
client

session
bean

entity
bean

transaction manager

Syb
entity
bean

Obviously, both EJB servers need to support JTS, but they need not be implemented by
the same EJB container vendor. The transaction manager on the called EJB server is
enlisted as a resource of the transaction manager on the calling EJB server.

While the EJB specification mandates JTA support, it does not mandate that JTS be used
to realize this support. In other words, the EJB container is free to provide any imple-
mentation of the interfaces in JTA, but it need not support the additional requirements
(principally CORBA interoperability) that make up the JTS API. Some vendors—perhaps
those from a database or a Web application background—may implement JTA entirely
“within” their EJB container and offer no CORBA interoperability services. On the other
hand, the EJB specification also indicates that if an EJB container vendor does elect to
provide transactional propagation, it must do so by supporting OTS.

11 0672323842 CH08 3/20/02 9:29 AM Page 362

Transactions and Persistence 363

8

Some EJB container vendors will also be vendors of CORBA products, and so are likely
to implement JTA just by implementing JTS.

Overview of Persistence Technologies
The second main topic for today is to discuss persistence options and look at some of the
Java technologies available in this space. At this point, you might be thinking that this is
a moot point; after all, you learned yesterday and on Day 6 how to develop Entity beans,
so what else is there to address?

In response to that question, consider the following two points. First, you used JDBC to
implement BMP Entity beans on Day 6. However, there are other technologies that may
involve less work and could even lend themselves to code generation, or indeed, support
persistence transparently. Second, many J2EE applications will not use EJBs. There are
many successful J2EE enterprise applications built only with servlets, JSPs, and data
access code. Moreover, commercial EJB containers can be costly to purchase, and this
might also be a consideration for your organization.

The three technologies that you will learn more about are as follows:

• JDBC—This is the most mature of the Java persistence technologies. There have
been multiple versions over the last few years (sometimes renamed along the way),
which can be confusing.

The JDBC API itself is not covered, because it is presumed that you are or have
become familiar with it.

• SQLj—This is actually three specifications that combine Java and SQL, either
client-side or within the RDBMS. Some aspects of SQLj are supported through
JDBC (v2.0 and later).

At the time of writing, SQLj was being developed by a consortium of companies
that includes Sun, Oracle, IBM, and Sybase. You can learn more at
http://www.sqlj.org.

In fact, if the vendor elects to support transactional propagation, the EJB
specification requires support for OTS v1.2 (see for example section 19.6.1.1).
Strictly speaking, JTS 1.0 is a Java mapping only for OTS v1.1, so JTS 1.0 sup-
port does not in itself fully address the requirements of the EJB specifica-
tion.

If the area of transaction propagation is of particular interest to you, you
should make sure that your EJB container vendor can clarify its position to
you.

Caution

11 0672323842 CH08 3/20/02 9:29 AM Page 363

• Java Data Objects (JDO)—This aims to make persistence transparent, either for
small embedded applications or large scale enterprise applications. This latter
objective means it can either replace or supplement Entity EJBs. (At the time of
writing, this specification was still in draft.)

At the time of writing, JDO was being developed through the Java Community
Process, JSR-000012. You can learn more at http://access1.sun.com/jdo. You
can learn about its relationship with JDBC at
http://java.sun.com/products/jdbc/related.html.

This is by no means a definitive list. Specifically, there is nothing to prevent you from
using a vendor-specific API to persist your data, as is used by most OODBMS vendors.
While OODBMSs are not as mainstream nor as prevalent as RDBMSs, they have many
advocates who argue vociferously that the best place to store objects is in an object-
based database. Examples of OODBMS products include (in no particular order) O2,
Objectivity, ObjectStore, Versant, FastObjects (previously POET), Persistence, Jasmine,
Gemstone, and ozone. From a J2EE perspective, many of the OODBMS vendors have re-
branded their products to be EJB application servers, while others have positioned their
technology to provide a simple way to implement persistence (within a BMP Entity
bean).

Yet another alternative is to use an object/relational mapping product. In a sense, these
tools combine the familiarity of RDBMS with the intuitiveness of objects. The informa-
tion that maps the object instances to the relational schema is usually held in a tool-
specific repository of some sort, similar in concept to the information provided in a CMP
Entity bean’s deployment descriptor, although typically much more complex and sophis-
ticated. These O/R mapping products usually have sophisticated caching algorithms (for
example, predictively loading related persistent data) that can radically speed up perfor-
mance. On the other hand, one downside is that there is a learning curve to effectively
configure and maintain the mapping data; sometimes professional assistance is needed.
There are a number of O/R products around, including (in no particular order) TopLink,
CocoBase, JavaBlend, JRelay, OJB, DBGen, JDX, and ObjectDriver.

Whether you can use any of these technologies may depend on the standards and con-
straints in your organization. Certainly, the vendors of OODBMS and O/R mapping
products claim substantial decreases in the time taken to develop code.

364 Day 8

As you will see shortly, one of the implicit objectives of JDO is to create a
standard Java API for OODBMS and O/R mapping products. This may well
cause these products to be adopted by a wider audience.

Note

11 0672323842 CH08 3/20/02 9:29 AM Page 364

Transactions and Persistence 365

8
On the other hand, another consideration for you is the requirement for EJB container
vendors to support CMP 2.0. You may find that some EJB vendors address this require-
ment simply by cross-licensing one of the more established O/R mapping tools. This is
arguably the best of both worlds; you have access to a mature O/R mapping technology,
but configured using an industry-standard EJB deployment descriptor.

JDBC
In the beginning, there was JDBC v1.0. Although initially introduced as an addendum to
JDK 1.02, it was standardized as part of JDK 1.1 as the classes and interfaces that make up
the java.sql package. It remains an integral part of J2SE 1.3. In an effort to unravel
JDBC’s family tree, Table 8.4 lists the versions of JDBC, J2SE (previously JDK), and J2EE.

TABLE 8.4 JDBC Versions

JDBC J2SE (JDK) J2EE Package Significant Features/Notes

JDBC 1.0 JDK 1.1 N/A java.sql DriverManager, Connection, Statement,
ResultSet

Note: Formalized in JDBC 1.2 Spec.

JDBC 2.1 J2SE 1.2 J2EE 1.2 java.sql Scrollable and updateable ResultSets
Core API J2EE 1.3 Batch updates

SQL1999 data types (BLOB, CLOB, ARRAY,
Structured Type, REF)
Mapping SQL UDTs to Java classes
Direct storing of Java objects
Note: When first introduced, was called the
JDBC 2.0 Core API, not 2.1.

JDBC 2.0 J2EE 1.2 javax.sql DataSource, ConnectionPoolDataSource,
Optional J2EE 1.3 XADataSource

Package JNDI support
Rowsets
Note: When first introduced, was called the
JDBC 2.0 Standard Extension API.

JDBC 3.0 J2SE 1.4 J2EE 1.4 java.sql Unifies JDBC 2.1 Core API and
javax.sql JDBC 2.0 Optional Package

More thorough support for SQL1999 data
types
DATALINK/URL data type (external data)
Savepoint support
Retrieval of auto-generated keys
Multiple open result sets
Define relationship to Connector architecture
Numerous other minor enhancements

11 0672323842 CH08 3/20/02 9:29 AM Page 365

The JDBC 2.1 Core API is included in J2SE 1.2 and also in J2EE 1.2 and J2EE 1.3 plat-
forms. J2EE 1.2 and J2EE 1.3 also require the JDBC 2.0 Optional Package. If all these
different versions aren’t confusing enough, you may occasionally see documentation that
refers to the “JDBC 2.0 API.” This refers to the combination of (what is now called) the
JDBC 2.1 Core API and JDBC 2.0 Optional Package. So, J2EE 1.2 and 1.3 effectively
mandate the JDBC 2.0 API.

However, sanity is about to break out! At the time of writing, JDBC 3.0 was just coming
out of draft, to be part of J2SE 1.4. This unifies both the Core API and the optional
package. Given than J2SE 1.4 will include JDBC 3.0, it will also implicitly be part of
J2EE 1.4.

One notable feature about JDBC 3.0 is that it consolidates support for SQL1999
advanced data types. Support for these was introduced in JDBC 2.1 Core API, when
SQL1999 was still in draft and was called SQL3. Now that SQL1999 is a ratified stan-
dard, JDBC 3.0 has added some features that were, by necessity, previously omitted.

You can learn more about JDBC 3.0 (and download its specification) at
http://java.sun.com/products/jdbc/index.html.

The advanced data types defined by SQL1999 are as follows:

• BLOBs are binary large objects. These can literally store anything, such as a JPEG
image, a recording, a Java serialized object, and so on. BLOBs are transparently
accessed using SQL Locators. The BLOB data isn’t stored along with the rest of the
row; instead, a pointer is held. While this marginally slows down access, it means
that BLOBs can have very large size limits (2Gb or more).

The JDBC ResultSet.getBlob() method and the Blob interface provide access to
data stored in BLOB columns.

• CLOBs are character large objects, similar to BLOBs except that the data is treated as
characters; as a result, conversion of data between locales is performed. CLOBs are
also transparently accessed via SQL Locators.

The JDBC ResultSet.getClob() method and the Clob interface provide access to
data stored in CLOB columns.

• SQL structured types are a mechanism to allow user-defined data types to be
defined. They are somewhat similar to a class in Java that has only public fields.
The following SQL1999 command defines a structured type called XY_POINT:

CREATE TYPE XY_POINT AS (X FLOAT, Y FLOAT) NOT FINAL

SQL1999 allows columns to be defined of these types, and also allows tables to be
defined consisting of instances of these types. Defining a table from a structure
type is done using SQL syntax such as the following:

366 Day 8

11 0672323842 CH08 3/20/02 9:29 AM Page 366

Transactions and Persistence 367

8
CREATE TABLE SCATTER_GRAPH OF XY_POINT (REF OID IS SYSTEM GENERATED);

The OID is an identifier to a row in this table. The JDBC ResultSet.getObject()
method and the Struct interface provide access to data stored in structured type
columns (not structured type tables). To simplify implementation, custom map-
pings can be defined to convert the data of the SQL structured type to a Java class.
This is somewhat akin to implementing the java.io.Externalizable interface for
the target Java class; java.sql.SQLData interface is the actual interface that must
be implemented.

• ARRAYs provide the ability to store vector data. In the case study, the Applicant
table defines two columns—address1 and address2. Using SQL1999 types, these
could instead be defined to be a single ARRAY column. Usually ARRAYs are accessed
via SQL Locators, although it is possible for the data to be stored along with the
rest of the data on the row.

The JDBC ResultSet.getArray() method and the Array interface provide access
to data stored in ARRAY columns.

• REFs are a persistent pointer to an instance of a SQL structured type, defined when
a table is created from an SQL structured type. You might think of them as an
SQL1999 equivalent to a foreign key.

The JDBC ResultSet.getRef() method and the Ref interface provide access to
the SQL REF. This reference can be used to access data held in a table defined to
be of a structured type (such as SCATTER_GRAPH). This is the way that data stored in
structured type tables can be accessed.

These data types may be unfamiliar to you; after all, many RDBMS do not support them
yet. However, JDBC 3.0 includes support for these data types because the JDBC specifi-
cation authors expect RDBMS support for them will have become widespread within the
next five years or so.

That said, there is some overlap in intent between SQL1999 data types and the objectives
of SQLj. If SQLj proves more popular (because it is rooted more on Java technology
rather than SQL), it could be that Java’s popularity may decelerate the adoption of
SQL1999 data types. Only time will tell. So, high time to look at this next technology,
SQLj.

SQLj
The SQLj initiative defines three ways to combine Java and SQL:

• SQLj Part 0 defines a mechanism for embedding SQL calls within Java code. The
SQL is converted into JDBC calls by using a preprocessor.

11 0672323842 CH08 3/20/02 9:29 AM Page 367

• SQLj Part 1 inverts this, placing Java within SQL. It defines extensions to the SQL
syntax to allow Java static methods to be called either as if they were SQL stored
procedures or as user-defined functions within SQL statements.

• SQLj Part 2 also places Java within SQL, but here defining a mechanism for Java
classes to be used to define SQL types. This allows table columns to be defined as
a type of a Java class; a Java object instance can thus be stored directly in the col-
umn.

The SQLj Part 0 has already been adopted as an ANSI and ISO standard (ANSI ref:
X3.135.10-1998, ISO/IEC ref: 9075-10:2000), “Information Technology—Database
Languages—SQL—Part 10: Object Language Bindings (SQL/OLB).” If you see a refer-
ence to ANSI SQL Part 10, it just means SQLj Part 0.

The other parts have not yet been adopted by ANSI or ISO/IEC, but are being approved
through NCITS, the (U.S.) National Committee for Information Technology Standards.
Most of the NCITS standardization activities result in national (ANSI) or international
(ISO/IEC) standards. SQLj Part 1 is also known as NCITS 331.1; SQLj Part 2 is NCITS
331.2.

The following sections look at each of these in turn.

SQLj Part 0
SQLj Part 0 is probably the most straightforward for database vendors to implement,
because it an entirely a client-side technology. The developer, rather than writing a regu-
lar Java class whose file has a .java suffix, writes a hybrid class instead that has embed-
ded SQL commands within it. Such a class resides in a file with a .sqlj suffix. A pre-
processor (SQLj calls it a translator) converts the embedded SQL commands into JDBC
equivalents, resulting in a .java file that can be compiled in the usual way. The sqlj
translator also creates a set of serialized .ser profile files that hold information about the
embedded SQL.

368 Day 8

On a historical note, EJB 1.0 used .ser files to hold deployment descriptor
information (as you know, XML files are now used instead). SQLj Part 0 was
initially specified at around the same time as EJB 1.0 (1998 or so), so it is
interesting to speculate if it were being specified now whether it would use
XML files to hold this supplementary information.

Note

After the generated .java and .ser files have been created, they can be compiled and
packaged up into an EJB JAR file in the usual way. The .ser profile files simply need to
be part of the ejb-jar. This overall process is shown in Figure 8.11.

11 0672323842 CH08 3/20/02 9:29 AM Page 368

Transactions and Persistence 369

8

The sqlj translator can optionally also check the embedded SQL against a target data-
base to make sure that it is syntactically correct (that all tables, columns, and so on that
are referenced do exist).

Listing 8.5 shows the BMP version of the ejbLoad() method for the Job Entity bean
(from Day 7), written using JDBC.

LISTING 8.5 JDBC Version of ejbLoad() for BMP Job Bean

1: public void ejbLoad(){
2: JobPK key= (JobPK)ctx.getPrimaryKey();
3: Connection con = null;
4: PreparedStatement stmt = null;
5: ResultSet rs = null;
6: try {
7: con = dataSource.getConnection();
8: stmt = con.prepareStatement(
9: “SELECT description,location

➥FROM Job
➥WHERE ref = ?
➥AND customer = ?”);

10:
11: stmt.setString(1, key.getRef());
12: stmt.setString(2, key.getCustomer());
13: rs = stmt.executeQuery();
14:

FIGURE 8.11
SQLj Part 0 uses a
translator to convert
SQLj commands into
JDBC.

JobBean.sqlj Deployment
Descriptors

Job.java

.ser
profiles

JobBean.javasqlj
translator

Job*.class

javac
complier

JobBean.jar

packager

11 0672323842 CH08 3/20/02 9:29 AM Page 369

15: if (!rs.next()) {
16: error(“No data found in ejbLoad for “+key,null);
17: }
18: this.ref = key.getRef();
19: this.customer = key.getCustomer();
20: this.customerObj =

➥customerHome.findByPrimaryKey(this.customer); // derived
21: this.description = rs.getString(1);
22: String locationName = rs.getString(2);
23: this.location =

➥(locationName != null)?
➥locationHome.findByPrimaryKey(locationName):null;

24:
25: // load skills
26: stmt = con.prepareStatement(
27: “SELECT job, customer, skill

➥FROM JobSkill
➥WHERE job = ?
➥AND customer = ?
➥ORDER BY skill”);

28:
29: stmt.setString(1, ref);
30: stmt.setString(2, customerObj.getLogin());
31: rs = stmt.executeQuery();
32:
33: List skillNameList = new ArrayList();
34: while (rs.next()) {
35: skillNameList.add(rs.getString(3));
36: }
37:
38: this.skills = skillHome.lookup(skillNameList);
39: }
40: catch (SQLException e) {
41: error(“Error in ejbLoad for “+key,e);
42: }
43: catch (FinderException e) {
44: error(“Error in ejbLoad (invalid customer or location) for “+

➥key,e);
45: }
46: finally {
47: closeConnection(con, stmt, rs);
48: }
49: }

Listing 8.6 shows the same method, implemented using SQLj embedded SQL syntax.

370 Day 8

LISTING 8.5 Continued

11 0672323842 CH08 3/20/02 9:29 AM Page 370

Transactions and Persistence 371

8
LISTING 8.6 SQLj Version of ejbLoad() for BMP Job Bean

1: // assuming
2: // import sqlj.runtime.*;
3:
4: public void ejbLoad(){
5: JobPK key= (JobPK)ctx.getPrimaryKey();
6:
7: #sql context CustomConnectionContext;
8: CustomConnectionContext conCtx;
9: try {
10: con = dataSource.getConnection();
11: conCtx = new CustomConnectionContext(con);
12: #sql [conCtx]
13: { SELECT description,location
14: INTO :this.description, :this.locationName
15: FROM Job WHERE ref = :(key.getRef())
16: AND customer = :(key.getCustomer()) };
17:
18: this.ref = key.getRef();
19: this.customer = key.getCustomer();
20: this.customerObj =

➥customerHome.findByPrimaryKey(this.customer); // derived
21: this.location =

➥(locationName != null)?
➥locationHome.findByPrimaryKey(locationName):null;

22:
23: // load skills
24: #sql iterator SkillIterator

➥(String job, String customer, String skill);
25: SkillIterator skillIter =
26: #sql [conCtx]
27: { SELECT job, customer, skill
28: FROM JobSkill
29: WHERE job = :this.ref
30: AND customer = :(customerObj.getLogin())
31: ORDER BY skill };
32:
33: List skillNameList = new ArrayList();
34: while (skillIter.next()) {
35: skillNameList.add(skillIter.skill());
36: }
37: skillIter.close();
38:
39: this.skills = skillHome.lookup(skillNameList);
40: }
41: catch (SQLException e) {
42: error(“Error in ejbLoad for “+key,e);
43: }
44: catch (FinderException e) {

11 0672323842 CH08 3/20/02 9:29 AM Page 371

45: error(“Error in ejbLoad (invalid customer or location) for “+
➥key,e);

46: }
47: finally {
48: conCtx.close(ConnectionContext.KEEP_CONNECTION);
49: closeConnection(con, null, null);
50: }
51: }

You can see that SQLj binds host variables (that is, Java instance or local variables) or
return values of expressions to the SQL statement using a : prefix. You can see this in
the first SQL statement (loading from the Job table) where two function expressions are
used in the WHERE clause. Host variables can also be written to through the INTO clause.
Again, in the first SQL statement, the INTO clause is used to populate the location and
description host variables. Contrast the use of the INTO clause with the JDBC equiva-
lent that has to iterate over a java.sql.ResultSet.

The second SQL statement is a query against the JobSkill table, and multiple rows are
expected this time. A typesafe iterator, SkillIterator, is defined and is used to traverse
the returned rows.

Connection information can be specified in SQLj in a variety of ways. The normal
approach is to embed the connection information into the aforementioned .ser profile
files, replacing the J2SE java.sql.DriverManager approach. Obviously, this isn’t
appropriate in a J2EE environment, because only logical connections should be acquired
via javax.sql.DataSource.

One solution is to use an explicit connection context to define the connection that the
SQL will be executed under. In Listing 8.6, the line

#sql context CustomConnectionContext;

defines CustomConnectionContext as a user-defined class, extending
sqlj.runtime.ConnectionContext and with a constructor accepting a
java.sql.Connection. The line

CustomConnectionContext conCtx;

defines a reference conCtx of this class, and

con = dataSource.getConnection();
conCtx = new CustomConnectionContext(con);

instantiates an object of this class. The conCtx is used within the subsequent #sql calls.

372 Day 8

LISTING 8.6 Continued

11 0672323842 CH08 3/20/02 9:30 AM Page 372

Transactions and Persistence 373

8
You may find that your vendor’s SQLj implementation offers the ability to make a
CustomConnectionContext the default context. Part of the SQLj Part 0 specification
includes the concept of customizing profiles to a specific runtime environment, similar to
the notion of adding the auxiliary deployment descriptor for EJBs. Your customizer may
allow you to indicate that the default ConnectionContext is one that is “J2EE-aware.”
This would avoid the need for any of the connection context code given in Listing 8.6.

SQLj Part 1
Whereas SQLj Part 0 embedded SQL within Java, the SQLj Part 1 specification inverts
this and puts the Java within SQL. More properly, it allows Java static methods to be
called as if they were SQL stored procedures. It also allows Java static methods to act as
user-defined functions called from within SQL statements (such as SELECT or UPDATE).

What this means is that, whereas SQLj Part 0 addresses Java and SQL for client-side
code, SQLj Part 1 puts Java and SQL together in the server. Put another way, SQLj Part
1 can only be supported by RDBMS vendors that provide the capability to install this
functionality.

There are two main mechanisms by which RDBMS vendors can support SQLj
Part 1. Many vendors have long provided the ability to hook user-defined
functions into the RDBMS, where those functions are written using C or
some other 3GL. Some such vendors offer SQLj Part 1 support by converting
the Java static methods into corresponding C code and then uploading.

Alternatively, the RDBMS vendor can actually implement a JVM that runs
within the RDBMS itself. When the Java static method is called, the SQL
“engine” within the RDBMS passes over control to the JVM to evaluate the
result.

Note

As an example, consider the Applicant table from the case study. This table records
each applicant’s address in the address1 and address2 columns. For the sake of illustra-
tion, imagine that it also has the state, zip, and country columns.

If the Job agency users want to do a mailshot, they will need to print some labels. The
labels need to combine the information of the name, address1, address2, state, zip,
and country columns, with a newline between each, also dealing with the case where
some of these columns are null. Listing 8.7 defines a utility class that will format the
label string appropriately.

11 0672323842 CH08 3/20/02 9:30 AM Page 373

LISTING 8.7 Static Methods Can Be Invoked as SQL UDFs

1: public class Utils {
2: public static String labelString(
3: String name, String address1, String address2,
4 String state, String zip, String country) {
5: StringBuffer label = new StringBuffer(name);
6: if (address1 != null) {
7: label.append(“\n”); label.append(address1);
8: }
9: if (address2 != null) {
10: label.append(“\n”); label.append(address2);
11: }
12: if (state != null) {
13: label.append(“\n”); label.append(state);
14: }
15: if (zip != null) {
16: label.append(“\n”); label.append(zip);
17: }
18: if (country != null) {
19: label.append(“\n”); label.append(country);
20: }
21: return label.toString();
22: }
23: }

This class would be compiled as usual and bundled up into a JAR file, say utils.jar.
SQLj defines the following mechanism for installing classes as JAR files:

sqlj.install_jar (‘file:utils.jar’, utils_jar’)

This gives the name utils_jar to the JAR file utils.jar. Each RDBMS vendor will
provide a tool that implements this mechanism.

With the code installed, the following defines the user-defined function label_for to be
the Utils.labelString() method:

create function label_for(
name varchar, address1 varchar, address2 varchar,

state char(2), zip char(9) country varchar)
returns varchar
language java
parameter style java
external name ‘utils_jar:Utils.labelString’;

Finally, the following SQL can be executed:

SELECT label_for(name, address1, address2, state, zip, country)
FROM Applicant

374 Day 8

11 0672323842 CH08 3/20/02 9:30 AM Page 374

Transactions and Persistence 375

8
Using a function alias means that access to this function can be granted or revoked as
needed by using the SQL grant execute command. Additionally, SQLj specifies that
security can be associated with the actual JAR file using grant usage on utils_jar
to some_user.

Some RDBMS vendors have relaxed the requirement to define function aliases and sim-
ply allow the Java static method to be called directly:

SELECT Utils.labelString(name, address1, address2,
state, zip, country) AS label

FROM Applicant

One of the major RDBMS vendors (Sybase) allows Java UDFs to read/write
BLOB (image) and CLOB (text) columns as java.io.InputStream and
java.io.Readers, respectively. So, given a table of

create table letter
(letter_id int,

letter_text text)

and a static method such as

public class TextUtils {
public static int length(java.io.Reader reader) {

int size = 0, read;
char[] buf = new char[1024];
while((read = reader.read(buf)) != -1) {

size += read;
}
return size;

}
}

then SQL such as the following can be submitted:

SELECT letter_id, TextUtils.length(text)
FROM letters

Clearly, this opens up a lot of possibilities. Rather than just counting the
number of characters in the CLOB column, the Java method could search,
apply regular expressions, run AWK scripts, or parse XML.

Indeed, the RDBMS vendor has developed an XML query engine implement-
ed in precisely this fashion. As a result, developers can store XML files as
CLOBs and process them within the RDBMS server itself.

Note

SQLj Part 1 also allows stored procedures to be defined as an alias for Java static meth-
ods. So, a Java client making a JDBC call such as the following

CallableStatement stmt = con.prepareCall(“{ call some_such_procedure ?, ?}”;
stmt.execute();

11 0672323842 CH08 3/20/02 9:30 AM Page 375

is actually invoking a Java static method aliased to some_such_procedure. This is almost
like performing a Java RMI call, except over a database network connection.

Such “Java stored procedures” can (somewhat arbitrarily) be split into two types—those
that have embedded SQL calls implemented using JDBC or SQLj and those that do not.

Java stored procedures that do not have embedded SQL often perform some sort of com-
plex computation that is not easily expressed in SQL. As a somewhat contrived example,
Listing 8.8 shows a reworked version of the Utils.labelString method that allows it to
be called as a stored procedure.

LISTING 8.8 Static Methods Can Be Invoked as SQL Stored Procedures

1: public class Utils {
2: public static String labelString(
3: String name, String address1, String address2,
4: String state, String zip, String country,
5: String[] returnLabel) {
6: StringBuffer label = new StringBuffer(name);
7: if (address1 != null) {
8: label.append(“\n”); label.append(address1);
9: }
10: if (address2 != null) {
11: label.append(“\n”); label.append(address2);
12: }
13: if (state != null) {
14: label.append(“\n”); label.append(state);
15: }
16: if (zip != null) {
17: label.append(“\n”); label.append(zip);
18: }
19: if (country != null) {
20: label.append(“\n”); label.append(country);
21: }
22: returnLabel[0] = label.toString();
23: }
24: // code omitted
25: }

The stored procedure definition for this method is as follows:

create procedure label_it
(in name varchar, in address1 varchar, in address2 varchar,
in state char(2), in zip char(9), in country varchar,

out returnLabel varchar)
language java
parameter style java
external name ‘utils_jar;Utils.labelString’;

376 Day 8

11 0672323842 CH08 3/20/02 9:30 AM Page 376

Transactions and Persistence 377

8
The following code will work to invoke this stored procedure from JDBC:

CallableStatement stmt = con.prepareCall (
➥”{call label_it ?, ?, ?, ?, ?, ?, ? }”);

stmt.setParameter(1, someName);
stmt.setParameter(2, someAddress1);
stmt.setParameter(3, someAddress2);
stmt.setParameter(4, someState);
stmt.setParameter(5, someZip);
stmt.setParameter(6, someCountry);
String theReturnedLabel;
stmt.registerOutParameter(7, Types.VARCHAR);
stmt.setParameter(7, theReturnedLabel);
stmt.execute ();

You may have noticed in Listing 8.8 the peculiar fact that the output parameter,
returnLabel, is defined to be an array of Strings, rather than just a String. This is no
mistake; the method needs to be able to change the value of the parameter. The array
passed in has precisely one element, the initial value of the returnLabel, and can be
changed.

If you are a C or C++ programmer, you might recognize this as the Java
equivalent of “pointer to a pointer.”

Tip

You can probably think of some less contrived examples yourself.

The other type of Java stored procedure is that which does have embedded SQL. Here,
you get the peculiar situation of a Java client calling SQL, which maps to Java calling
SQL. This brings to mind concentric rings of Java and SQL, as shown in Figure 8.12.

FIGURE 8.12
SQL embedded within
Java, embedded
within SQL, embedded
within Java…

SQL

Java static method

SQL Stored Proc

Java client

11 0672323842 CH08 3/20/02 9:30 AM Page 377

The outermost ring is a Java client (Session bean, CMP Entity bean, servlet, and so on).
The inner three rings are server-side, running within the RDBMS. The Java client
invokes an SQL stored procedure, in turn aliased to a Java static method that then makes
SQL calls.

For the Java stored procedure to query the database, it must have a JDBC connection.
SQLj defines the URL string of jdbc:default:connection to be used as the parameter
to java.sql.DriverManager.getConnection().

Not only can Java static methods query the database, they can also return the results.
This is done by allowing ResultSets to be returned as parameters, in a manner similar to
the returnLabel that you saw earlier.

This second style of Java stored procedure is really just the re-location of a client-side
application. In other words, with appropriate modifications to the mechanism to obtain
the connection, the code could equally run in a regular Java client. Put another way, there
is no difference in the amount of JDBC or embedded SQL code that must be written. As
a result, it can seem that as a technology, this is a curiosity—nothing more. However,
that would be overlooking the important point that running Java client-side code within
the RDBMS itself means that there is no network traffic. Many batch processing jobs
involve downloading large chunks of data, performing complex processing, and then
uploading the results. Using Java stored procedures, all of this work can be done without
incurring any costly network traffic at all.

By making Java static methods executable within the RDBMS, SQLj Part 1 offers some
quite powerful functionality. It is a wonderful demonstration of Java’s oft-quoted “write
once, run anywhere” ability.

SQLj Part 2
The last part of SQLj is possibly the most interesting of all. SQLj Part 2 allows Java
classes to be defined as SQL abstract data types.

You will probably recall from the earlier discussion on SQL1999 advanced data types
that there is overlap between SQL1999 and SQLj Part 2. The most obvious overlap is
that Java classes can be used instead of SQL structured types.

Listing 8.9 shows a class that represents all the states of a Job bean. This includes also
the (names of the) job’s skills and the (name of the) job’s location.

378 Day 8

11 0672323842 CH08 3/20/02 9:30 AM Page 378

Transactions and Persistence 379

8
LISTING 8.9 The JobData Class Represents All the State of a Job Bean

1: package data;
2: public class JobData implements java.io.Serializable {
3: public final static long serialVersionUID = 1;
4: private String ref, customer, description, locationName;
5: private String[] skillNames;
6: public JobData(String ref, String customer,

➥String description,
➥String locationName,
➥String[] skillNames) {

7: this.ref = ref;
8: this.customer = customer;
9: this.description = description;
10: this.locationName = locationName;
11: if (skillNames = null) { skillNames = new String[0]; }
12: this.skillNames = new String[skillNames.length];
13: System.arraycopy(skillNames, 0,

➥this.skillNames, 0, skillNames.length);
14: }
15: public String getRef() { return ref; }
16: public String getCustomer() { return customer; }
17: public String getDescription() { return description; }
18: public String getLocationName() { return locationName; }
19: public String[] getSkillNames() {
20: String[] skillNames = new String[this.skillNames.length];
21: System.arraycopy(this.skillNames, 0,

➥skillNames, 0, skillNames.length);
22: return skillNames;
23: }
24: public int getNumberOfSkills() { return this.skillNames.length; }
25: }

The class implements java.io.Serializable and defines serialVersionUID to provide
forward compatibility with future versions of the class.

This class can be bundled into a JAR and installed into the RDBMS, just as for SQLj
Part 1. This time though, a user-defined type can be created from the Java class, using an
extension of the SQL1999 CREATE TYPE syntax:

CREATE TYPE JobType EXTERNAL NAME ‘data.JobData’ LANGUAGE java;

This example is incomplete because SQLj Part 2 is still in development. Some RDBMS
vendors that have supported SQLj Part 2 have used alternative approaches. For example,
the Cloudscape RDBMS uses the following syntax:

CREATE CLASS ALIAS JobType FOR data.JobData;

11 0672323842 CH08 3/20/02 9:30 AM Page 379

Even then, this is an optional step in Cloudscape, as it is for the Sybase RDBMS. That is,
the fully-qualified Java classname can just be used directly as a column type.
Consequently, the following could be used to define the Job table:

CREATE TABLE Job
(

job data.JobData
)

Each row in the table will hold a serialized instance of the data.JobData class.
Performance-wise, this would be prohibitively expensive to access unless the RDBMS
vendor has implemented a JVM within the RDBMS. If they have done this though, the
cost of deserializing and serializing the objects is not expensive. The RDBMS has sud-
denly become an ORDBMS (object/relational database).

When the data in the table is actually a Java object, suddenly SQL queries become a lot
more exciting:

SELECT job>>getCustomer(), avg(job>>getNumberOfSkills())
FROM Job
GROUP BY job>>getCustomer()

This query will find the average number of skills needed for all of the jobs placed by a
customer.

380 Day 8

The following query also works:

SELECT job
FROM Job
WHERE job>>getNumberOfSkills() > 2

The calling client’s JDBC is simplicity itself:

ResultSet rs = stmt.execute(
➥”SELECT job FROM Job WHERE job>>getNumberOfSkills() > 2”);
while (rs.next()) {

JobData job = (JobData)rs.getObject(1);
}

In SQLj Part 2, the >> operator replaces the conventional . notation.Note

11 0672323842 CH08 3/20/02 9:30 AM Page 380

Transactions and Persistence 381

8

Turning back to the SQL1999 data types, you can probably see that Java classes can be
used in lieu of a BLOB, CLOB, or ARRAY, as well as be replaced SQL structured types (for
columns). The following is another definition of the Job table, this time showing skills
as a vector attribute:

CREATE TABLE Job
(

customer VARCHAR,
ref VARCHAR,
description VARCHAR,
location VARCHAR,
skills java.util.List

)

One could then imagine the following query:

SELECT customer, ref
FROM Job
WHERE skills>>contains(“Cigar trimmer”)

Although this is slightly off-topic, it is worth noting that SQLj Part 2 trans-
parently supports super- and sub-types. One could define a subclass of
JobData and store instances of it within the Job table. Moreover, any over-
ridden methods would be called polymorphically. This feature alone could
radically simplify many database schemas.

Tip

The Cloudscape RDBMS goes even further, providing implicit mapping of
regular SQL types (such as VARCHAR) to their Java equivalents (such as
java.lang.String). Hence, the following query would be valid within
Cloudscape:

SELECT customer>>substring(0,2)>>concat(ref)>>length()
FROM Job
WHERE customer>>startsWith(“XYZ”)

Note

Of the SQL1999 data types, only the REF data type has no direct equivalent in SQLj.
Indeed, if you go back to the first alternate definition of the Job table (defined in terms
of the data.JobData class), you can see that the job object has the name of the location,
not a reference to the location. If one were to put this in EJB terms, one might say that
JobData holds the primary key to the job’s location, not a reference to LocationLocal.

11 0672323842 CH08 3/20/02 9:30 AM Page 381

There are some other issues that you should be aware of:

• First is that, given the actual data is held as a Java serialized object, non-Java data-
base clients will not be able to read that data.

Possible fixes for this issue are to

• Write code to read the (well-defined) Java serialization stream

• Implement java.io.Externalizable and provide custom methods to write
the state in some other format (XML, perhaps?)

• Second, the RDBMS’ query optimizer cannot index on the return value of method
calls. For example, looking back at the WHERE clause of one of the previous exam-
ples (WHERE job>>getNumberOfSkills() > 2), this can only be performed by
deserializing every object and invoking the getNumberOfSkills() method.

One possible fix is to redundantly store the required information in a regular col-
umn, and maintain it using triggers. The query then uses this derived column.

382 Day 8

True OODBMS do allow indexes to be defined on the return values of read-
only methods.

Note

• Last, this is new technology, so it will need to mature before organizations are
ready to trust their valuable data to it.

How does SQLj (parts 1 and 2) fit with EJB and the J2EE platform? Well, the support in
SQLj Part 2 certainly makes implementing BMP Entity beans pretty straightforward,
provided care is taken with relationships:

• If a BMP Entity bean is the parent of a one-to-many composite association, there is
nothing to prevent that bean from simply persisting the dependent child data and
dispensing with the child table in the RDBMS.

• Many-to-one associations, where the bean is a child, are more complex. In general,
only the foreign key value should be persisted in the bean. This does incur extra
cost for looking up the actual parent data. (There is an exception to this, in the spe-
cial case where the parent is immutable. Then, the parent’s data can safely be
stored in the bean itself.)

• Many-to-many associations can be treated like one-to-many associations, but only
if the data that is held is the foreign key value to the other table, and also provided
that the many-to-many link does not need to be traversed in both ways.

11 0672323842 CH08 3/20/02 9:30 AM Page 382

Transactions and Persistence 383

8
One of the previous examples stored the job skills as a java.util.List of
Strings, which seems elegant, but to identify which jobs require the “Cigar trim-
mer” skill necessitates instantiating every job instance; in other words, always
coming at the Job/Skill association from the Job side.

Even with these provisos, one could imagine that it would be relatively easy (given a
modern IDE or UML modeling tool) to automatically generate SQLj implementation
code for BMP Entity beans.

On the other hand, the ability to deploy Java code that runs within the RDBMS itself
(using either SQLj Part 1 or Part 2) somewhat muddies the architectural water. You are
by now intimately familiar with the n-tier architecture model. But, if Java can run in the
RDBMS, why need do you have a middle tier at all? This is a question that you are prob-
ably best advised to answer yourself. You may take the view that as long as you know
which logical layer your Java code belongs to, it may not matter which physical tier
(Web server, EJB application server, Java-enabled RDBMS server) you choose to deploy
it to.

JDO
The last persistence technology that you will be looking at, Java Data Objects (JDO),
aims high and it aims low. That is, it is intended both for use within embedded devices
(J2ME) but also for use within J2EE environments. In a J2EE environment, JDO can
either supplement or supplant Entity EJBs; if supplementing Entity EJBs, the application
of JDO may be hidden if CMP is being employed (that is, the EJB vendor uses JDO but
the bean provider is unaware of this), or it can be used by the bean provider directly if
BMP is in use.

JDO is the most recent of the Java persistent technologies and, at the time of writing, its
specification was still in draft with only an incomplete reference implementation.
Moreover, as a technology it seems to be running in parallel with the various Java plat-
form editions (J2ME, J2SE, and J2EE), and there appear to be no clear indications within
which platform it will eventually reside. Nevertheless, JDO has raised some significant
interest as an API, especially for vendors of OODBMS and O/R mapping tools. Indeed,
the JDO expert group includes representatives from Versant, Poet, Object Design, and
Gemstone, among others. Because JDO completely hides the details of the data store
internals, it is also suitable to access ERP systems; some ERP vendors (such as SAP)
have committed to adopting it.

11 0672323842 CH08 3/20/02 9:30 AM Page 383

The overriding objective of JDO is to provide persistence transparency. In other words,
the objects that are to be persisted—so-called persistent-capable objects—do not need to
include any logic to make them persistent. Contrast this with EJB Entity beans that need
to implement ejbLoad() and ejbStore(), or with EJB Session beans (and for that matter
servlets) that require reams of JDBC or SQLj calls. The only classes that need to use the
JDO interfaces and classes are those that manage the lifecycle of persistent objects.

As an example of transparent persistence, consider that persistent-capable objects can
also have references to other objects. Assuming that the field that holds this reference has
been marked as being persistent, these referenced classes will then also be made persis-
tent. This is sometimes called “persistence by reachability.” Again, contrast this to EJB,
where a relationship between beans required complex configuration in the EJB deploy-
ment descriptor, moreover being constrained to relate through the EJB’s local interface.

384 Day 8

One way to think of JDO is as a vendor-neutral Java API to OODBMS and
O/R mapping tools, just as JDBC provides a vendor-neutral Java API to
RDBMS.

Tip

It is perhaps a little misleading to claim that JDO does not need relation-
ships between classes to be defined. Rather, it is not within the scope of JDO
to be concerned about this. A JDO implementation provided by an OODBMS
vendor will work in a different way than one provided by an O/R mapping
tool vendor. Any mapping or other configuration information that might
need to be done is performed entirely with vendor-specific tools.

Earlier, JDO was compared to JDBC. JDBC provides a standard API, but leaves
RDBMS vendors at liberty to implement their own data store and network
protocols. Equally, JDO provides just an API and does not get involved in the
internals. This makes JDO applications portable across JDO implementations,
but obviously requires any vendor-specific configuration to be re-applied.

Note

JDO Concepts
JDO’s approach to object persistence revolves around the concept of a cache. This cache
belongs to a client, rather than the server; the objects in the cache are not shared among
all clients. In a J2EE environment, a stateful Session bean would usually be a client;
each active Session bean would have its own cache. At any given time, the cache that
holds the objects is associated with at most one connection and at most one transaction.

11 0672323842 CH08 3/20/02 9:30 AM Page 384

Transactions and Persistence 385

8
Over time, that cache can be used with different transactions, and, for that matter, with
different connections.

The JDO interface that controls the client’s cache is javax.jdo.PersistenceManager. In
a J2EE environment, an instance of this interface is obtained from a
javax.jdo.PersistenceManagerFactory that, in turn, is obtained via JNDI. The JDO
specification describes how the J2EE Connector architecture is used to actually configure
a PersistenceManagerFactory into JNDI; you’ll be learning something about this on
Day 19, “Integrating with External Resources.” All you need to appreciate for now is that
a JDO vendor (an OODBMS vendor, O/R mapping tool vendor, or ERP vendor) will
have implemented the appropriate J2EE Connector interfaces such that a
PersistenceManagerFactory will be available for you to look up.

JDO also integrates with XA, meaning that distributed transactions across
multiple JDO implementations, and indeed RDBMS data stores, are
supported.

Note

JDO defines two main ways in which the cache can be used. All JDO implementations
must support so-called data store transactions and can optionally support optimistic
transactions:

• When a persistent-capable object is in a cache through a data store transaction, it
effectively prevents any other user from holding this object in his or her cache.

It is almost as if the object is “checked out” to the user’s cache, a little like check-
ing out code from a source code control system. It remains there for that user’s
exclusive use (to be read or modified) until he or she indicates that the transaction
is complete. Any other user who wants to use the object must wait until the origi-
nal user’s transaction has completed.

You may perhaps recognize this approach; it is often called pessimistic locking.

• Although not mandatory within the JDO specification, most JDO implementations
suitable for use within a J2EE environment will also support optimistic locking.

Here, it is possible for a persistent-capable object to reside in two different users’
caches at the same time. As long as each only reads the data from the object, there
are no issues (hence, “optimistic”).

If one user modifies the data and commits their optimistic transaction, the new
state of the object will be transparently written back to the data store. The other
user does not necessarily know about this (though he or she can request to refresh
the object instance if needed).

11 0672323842 CH08 3/20/02 9:30 AM Page 385

Of course, issues do arise when both users modify the data. In this case, the first
user to commit his or her transaction will succeed. When the second user attempts
to commit his or her transaction, the PersistenceManager will throw a
javax.jdo.JDOUserException, detailing that the state of the object has been
changed by some other user since it was first instantiated in the cache.

From the data store’s perspective, the optimistic transaction approach actually involves
two data store transactions. The first is short-lived, lasting long enough just to read the
data from the data store. The second will happen some time later (perhaps seconds, min-
utes, or longer) and again will be short-lived. During this second data store transaction,
the persistent data will be updated with the modified data taken from the committing
user’s cache.

The JDO specification also defines the notion of JDO identity. There are three different
ways for a JDO vendor to implement JDO identity, depending on the underlying technol-
ogy:

• For JDO implementations based on an O/R mapping tool, JDO identity basically
corresponds to the primary key as defined in the RDBMS. The JDO specification
terms this application identity or primary key identity.

• For JDO implementations based on an OODBMS, JDO identity corresponds to the
object ID as assigned by the OODBMS itself. The JDO specification calls this data
store identity.

• The final JDO identity type is perhaps likely to be least often used; it is simply
called non-data store identity. This relates to objects unique within the JVM, but
that are only ever written to (not read from) a data store (entries in a log file, for
example).

The term application (primary key) identity is used for RDBMS-based identity because it
is effectively the application itself that defines the semantics of the primary key. This has
echoes in EJB where you, as the bean developer, are required to implement a primary
key class or identify the primary key field. The RDBMS data store is expected to enforce
the notion of identity through the use of unique indexes.

JDO identity is not the same as Java object identity, because in a single JVM, there could
be many active PersistenceManagers; if optimistic transactions are used, multiple Java
objects could be instantiated all with the same JDO identity. However, JDO identity does
have some correspondence to Java’s notion of equality (that is, where two objects are
considered the same if equals() returns true). In particular, JDO requires that persis-
tence-capable objects implement equals() in such a way that it returns true if and only
if the JDO identity is the same. Unsurprisingly, this is exactly the requirement that EJB
imposes on primary keys.

386 Day 8

11 0672323842 CH08 3/20/02 9:30 AM Page 386

Transactions and Persistence 387

8

For any given persistence-capable object, only one of these different types of JDO identi-
ty applies. The JDO deployment descriptor (described briefly later) identifies the type of
JDO identity in use.

javax.jdo Classes and Interfaces
The JDO API is defined by classes and interfaces in the javax.jdo package. Some of the
interfaces are intended to be implemented by the JDO vendor and some by the applica-
tion developer (but more on this in a moment). Figure 8.13 shows the main classes of the
javax.jdo package.

The javax.jdo.PersistenceManagerFactory, javax.jdo.PersistenceManager,
javax.jdo.StateManager, and javax.jdo.Transaction interfaces are all implemented
by the JDO vendor. The PersistenceManagerFactory has already been discussed. The
PersistenceManager is the most important interface, because it provides the methods to
control the lifecycle of the persistence-capable objects. Relating this back to EJB, you
might think of it as combining the functions of the EJB container and of an EJB’s home
interface. The PersistenceManager also provides access to the current
javax.jdo.Transaction. This allows the application developer to demarcate the transac-
tion boundaries. In a J2EE environment, a CMTD EJB does not need to call the methods
of this interface because the EJB container will do this work. If a BMTD Session bean is
being developed to use JDO, the bean developer can use either the
javax.jdo.Transaction or the javax.transaction.UserTransaction interface. The
former is usually to be preferred however, because this allows a single
PersistenceManager to be used across multiple transactions. If a UserTransaction is
used, a PersistenceManager must be acquired for each and every transaction. Finally,
the StateManager is used internally by the JDO implementation to keep track of changes
to persistence-capable objects.

JDO is very clear about identity, recognizing that more than one object
instance may be instantiated for a single instance in the data store. In con-
trast, EJB is quite casual in this regard. Indeed, the EJB specification explicitly
states that EJB containers have latitude to, for example, implement precisely
one Entity bean per instance in the data store (option A, section 10.5.9) or
to have multiple instances (option C).

Such latitude is surprising. Option A effectively means that Entity beans
reside in a server-side cache. One consequence of this is that deadlocks must
be handled in the EJB container. Meanwhile, option C effectively means that
Entity beans reside in a client-side cache; any deadlocks arising are handled
in the data store.

Note

11 0672323842 CH08 3/20/02 9:30 AM Page 387

Of the two remaining interfaces shown in Figure 8.13, the
javax.jdo.PersistenceCapable interface is implemented by the application developer.
Hang on though! Isn’t JDO meant to support transparent persistence? Doesn’t that mean
that there should be no requirement for the application classes to implement any sort of
interface at all? Well, yes…and no. It is true that the persistence-capable classes devel-
oped by the application developer neither need to call the classes in javax.jdo, nor do
they need to implement any of the interfaces in javax.jdo. However, before a persistent-
capable class can be deployed into a JDO Implementation, it must be “enhanced.” An
enhancer is a tool provided by the JDO vendor that manipulates the byte code of the
compiled application classes. The resulting enhanced byte code represents a version of
the application class that does implement the PersistenceCapable interface.

This whole process possibly sounds somewhat peculiar, but compare it to the approach
used in EJB for CMP Entity beans. As you recall, the bean developer creates an abstract
class with abstract getter and setter methods for each of the cmp-fields. The EJB con-
tainer vendor’s deployment tools then generate an implementation for those methods and
create the database access code. The enhancement process effectively does the equivalent
of the first of these two tasks and also imbues the application class with a reference to a
StateManager instance. The StateManager itself takes on the job of database access and
persistence.

388 Day 8

FIGURE 8.13
The significant classes
and interfaces of the
javax.jdo package.

com.vendor.SMImpl

interface
…PersistenceManagerFactor

getPersistenceManager
setConnectionFactory
getConnectionFactory
setMultithreaded
getMultithreaded
setOptimistic
getOptimistic
setRetainValues
getRetainValues
setNontransactionalRead
getNontransactionalRead
setNontransactionalWrite
getNontransactionalWrite
setIgnoreCache
getIgnoreCache
getMaxPool
setMaxPool
getMinPool
setMinPool
getMsWait
setMsWait
getProperties
supportedOptions

interface
…jdo.InstanceCallbacks

jdoPostLoad
jdoPreStore
jdoPreClear
jdoPreDelete

interface
…jdo.PersistenceCapable

READ_WRITE_OK
LOAD_REQUIRED
READ_OK
CHECK_WRITE
MEDIATE_WRITE
CHECK_READ_WRITE
MEDIATE_READ_WRITE

jdoGetPersistenceManager
jdoReplaceStateManager
jdoProvideField
jdoProvideFields
jdoReplaceField
jdoReplaceFields
jdoReplaceFlags
jdoCopyFields
jdoMakeDirty
jdoGetObjectId
jdoGetTransactionalObjectId
jdoIsDirty
jdoIsTransactional
jdoIsPersistent
jdoIsNew
jdoIsDeleted
jdoNewInstance
jdoNewInstance
jdoNewObjectIdInstance
jdoCopyKeyFieldsToObjectId
jdoCopyKeyFieldsToObjectId

+ObjectIdFieldManager

com.vendor.PMFactoryImpl

interface
javax.jdo.Transaction

begin
commit
rollback
isActive
setNontransactionalRead
getNontransactionalRead
setNontransactionalWrite
getNontransactionalWrite
setRetainValues
getRetainValues
setOptimistic
getOptimistic
setSynchronization
getSynchronization
getPersistenceManager

interface
javax.jdo.StateManager

com.vendor.TranImpl

com.mycompany.ApplicationObject com.mycompany.PersistenceAwareAppObject

interface
…jdo.PersistenceManager

isClosed
close
currentTransaction
evict
evictAll
refresh
refreshAll
newQuery
getExtent
newSCOInstance
newCollectionInstance
newMapInstance
getObjectById
getObjectId
getTransactionalObjectId
makePersistent
makePersistentAll
deletePersistent
deletePersistentAll
makeTransient
makeTransientAll
makeTransientAll
makeTransactional
makeTransactionalAll
makeNontransactional
makeNontransactionalAll
setUserObject
getUserObject
getPersistenceManagerFactory
getObjectIdClass
setMultithreaded
getMultithreaded
setIgnoreCache
getIgnoreCache

com.vendor.PMImpl
«creates»

0..*
1

1

11 0672323842 CH08 3/20/02 9:30 AM Page 388

Transactions and Persistence 389

8
The final interface, shown in Figure 8.13, is the InstanceCallbacks interface. The appli-
cation developer can choose to implement this or not. If implemented, the methods give
the application class visibility as to the transaction boundaries. You may have spotted that
this is pretty similar to EJB’s optional SessionSynchronization interface.

Time for some code! Listing 8.10 shows the basic steps to create a new persistence-
capable Customer.

LISTING 8.10 Using JDO to Create a New Customer

1: // import javax.jdo.*;
2: // import javax.naming.*;
3:
4: Context ctx = new InitialContext();
5: PersistenceManagerFactory pmf = (PersistenceManagerFactory)
6: ctx.lookup(“java:comp/env/jdo/SomePersistenceManagerFactory”;
7: PersistenceManager pm = pmf.getPersistenceManager();
8:
9: Transaction txn = pm.currentTransaction();
10: txn.begin();
11: Customer customer = new Customer(login, address1, address2, email, name);
12: pm.makePersistent(customer);
13: txn.commit();

That’s honestly all there is to it! Customer is just a regular Java class that has been run
through the JDO Enhancer.

Queries
As well as being able to create new objects, JDO also provides the facility to find exist-
ing objects. This is not surprising; after all, the home interface offers the finder methods
as well as the create methods in EJB.

Rather than defining a declarative language, such as SQL or EJBQL, JDO uses a Java
API approach. Figure 8.14 shows the classes and interfaces of javax.jdo that allow
queries to be performed.

The PersistenceManager.newQuery() method will instantiate a javax.jdo.Query
object. The set of candidate objects to be returned by the query is then configured using
the setCandidates() method. This is overridden to accept either a
java.util.Collection or a javax.jdo.Extent (more on Extent shortly). A filter can
also be defined using setFilter(), as can parameters to the filter. Variables are used to
declare iterators over multi-valued collection fields.

11 0672323842 CH08 3/20/02 9:30 AM Page 389

The Extent interface is principally used to identify all instances of some specified class
in the persistent data store. Conceptually, this could be a very large set of objects, so
commercial JDO implementations are not expected to fully materialize the set. Indeed,
the JDO specification explicitly requires that JDO implementations must not cause an
out-of-memory error when instantiating an Extent. The java.util.Iterator returned
by the iterator() method must be able to iterate over all instances if needed, but notice
that other methods of the java.util.Collection (such as contains() and isEmpty())
are not present in the Extent interface. In practice, the Extent and Query implementa-
tions will be closely coupled to provide efficient ways to identify the qualifying
persistence-capable objects.

As an example, Listing 8.11 shows two queries. The first identifies all jobs that have a
customer of “winston”; the second finds all jobs that require “Cigar Trimmer” as a
skill.

LISTING 8.11 Using JDO to Search for Jobs that Meet Some Criteria

1: // import javax.jdo.*;
2: // import javax.naming.*;
3:
4: Context ctx = new InitialContext();

390 Day 8

FIGURE 8.14
Classes and interfaces
that support JDO
queries.

interface
…jdo.PersistenceManager

newQuery
getExtent
getObjectById

interface
javax.jdo.Extent

iterator
hasSubclasses
getCandidateClass
getPersistenceManager
closeAll
close

interface
javax.jdo.Query

setClass
setCandidates
setFilter
declareImports
declareParameters
declareVariables
setOrdering
setIgnoreCache
getIgnoreCache
compile
execute
executeWithMap
executeWithArray
getPersistenceManager
close
closeAll

interface
…jdo.PersistenceCapable

com.vendor.PMImpl

com.vendor.QueryImpl

com.vendor.ExtentImpl

Not all methods
shown.

Conceptually, all
Persistence Capable
objects are
partitioned into
extents by class.

1 1

0..*

0..1

0..*

0..* inExistence

active 0..*

finds

<{java.lang.Class}>
«creates»

candidates

11 0672323842 CH08 3/20/02 9:30 AM Page 390

Transactions and Persistence 391

85: PersistenceManagerFactory pmf = (PersistenceManagerFactory)
6: ctx.lookup(“java:comp/env/jdo/SomePersistenceManagerFactory”;
7: PersistenceManager pm = pmf.getPersistenceManager();
8:
9: Transaction txn = pm.currentTransaction();
10: txn.begin();
11:
12: // query #1: all jobs that have a customer of “winston”.
13: Query query1 = pm.newQuery();
14: query1.setClass(Job.class);
15: Extent candidateJobs = pm.getExtent(Job.class, false);
16: query1.setCandidates(candidateJobs);
17: query1.declareParameters(“String nameParam”);
18: query1.setFilter(“customer == nameParam “);
19: Collection query1Res = (Collection) query.execute(“Winston”);
20: for(Iterator iter = query1Res.iterator(); iter.hasNext();) {
21: Job job = (Job)iter.next();
22: System.out.println(job.getRef());
23: }
24:
25: // query #2: all jobs that require “Cigar Trimmer” as a skill
26: Query query2 = pm.newQuery(Job.class, candidateJobs);
27: query2.declareVariables(“Skill eachSkill”);
28: query2.setFilter(

➥”skills.contains(eachSkill) &&
➥eachSkill.name == \”Cigar Trimmer\””);

29: Collection query2Res = (Collection) query.execute();
30: for(Iterator iter = query2Res.iterator(); iter.hasNext();) {
31: Job job = (Job)iter.next();
32: System.out.println(job.getRef());
33: }
34: txn.commit();

Other Features
There is much more in JDO than there is room to cover here. Some aspects worth a brief
mention include the following:

• Deployment descriptors—A deployment descriptor is used for each persistence-
capable application class. This identifies the fields that are persistent rather than
transient, the JDO identity type, and other information required for the JDO
enhancer.

• Second Class Objects (SCOs)—These are similar in concept to dependent value
classes in EJBs, in that they are persistent only by virtue of being reachable from
First Class Objects (all objects previous discussed have been First Class Objects).
In particular, they do not have a JDO identity. If an SCO is modified, it must
explicitly notify its containing First Class Object.

LISTING 8.11 Continued

11 0672323842 CH08 3/20/02 9:30 AM Page 391

The JDO specification identifies various classes in the JDK library packages that
are first- or second-class, or that are not persistable at all (for example,
java.net.Socket).

• Lifecycle—Persistent-capable objects go through different stages of their lifecycle.
For example, when an object is first instantiated, it is in the transient state. When
the PersistenceManager.makePersistent() method is called, the object transi-
tions to persistent-new state. One state, hollow, is very similar to the EJB notion of
a passivated Entity bean.

• Transient transactional objects—These are persistent-capable objects acting in a
manner akin to a ShoppingCart Session bean whose implementation supports auto-
matic transaction recovery (implementing javax.ejb.SessionSynchronization).

Gotchas
The following are some “gotchas” to help you with your implementation:

• If writing CMTD Session beans, resource manager transaction methods (such as
connection.commit()) must not be used.

• The ejbCreate() and ejbRemove() lifecycle methods for Session beans (and
Message-driven beans) are performed with unspecified transaction context.

• The collection returned by the getter method for a cmr-field cannot be used outside
of the transaction in which it was materialized (see EJB specification, section
10.3.8).

• If using a SQLj Part 0 compiler, make sure that the vendor offers adequate support
for the generated code to run within the J2EE environment.

• If using SQLj Part 1 or Part 2, be sure to do some performance benchmarking first.
This is a new technology and JVM-enabled features within the RDBMS are highly
unlikely to perform as well as raw SQL.

• If the javax.transaction.UserTransaction interface is used for transaction
demarcation within BMTD Session beans that are using JDO for persistence, the
javax.jdo.PersistenceManager must be acquired after the transaction has been
started.

Moreover, the PersistenceManager cannot be used after the transaction has com-
plete. It is better to use the javax.jdo.Transaction that does not require a new
PersistenceManager for each new transaction.

• One for you to revisit after Day 9, “Java Messaging Service,” and Day 10,
“Message-Driven Beans”—the JMS request/reply paradigm cannot be used for
transacted sessions (see EJB specification, section 17.3.5).

392 Day 8

11 0672323842 CH08 3/20/02 9:30 AM Page 392

Transactions and Persistence 393

8
Summary

Curious day, today. If you’ve skipped over all the sections that discuss technologies that
aren’t appropriate to you, you might still be feeling pretty fresh. On the other hand, if
you’ve been trying to wrap your head around all these new and peculiar concepts, you
could be completely worn out.

Anyway, today you’ve learned that EJB containers support container-managed transac-
tion demarcation, but that your Session beans can take control using bean-managed
transaction demarcation if needed. Behind the scenes, there are some complex goings on
with the XA interfaces to support distributed transactions, using 2PC and XA-aware data
store connections, such as javax.sql.XADataSource.

JDBC is the de-facto way for implementing persistence of Java objects, and JDBC 3.0
unifies the various classes and interfaces in the java.sql and javax.sql packages.
JDBC 2.1 and 3.0 have fleshed out support for the most relevant features of SQL1999,
specifically advanced data types.

The SQLj initiative addresses both client-side integration of SQL and Java (part 0) and
server-side (that is, RDBMS) integration (parts 1 and 2). SQLj part 0 is more succinct
than JDBC, but is not particularly well tailored to the J2EE environment, because for the
most part, it pre-dates it. SQLj parts 1 and 2 offer some opportunities to radically change
the way that databases are used, with SQLj part 2 operating in much the same space as
the SQL1999 advanced data types.

JDO is a new specification that aims to make Java persistence totally transparent. It is a
natural fit for OODBMS and O/R mapping tool vendors and also works as a front-end to
ERP systems. JDO primarily focuses on the API into the client-side cache of persistent
objects, leaving much of the back-end configuration to the JDO implementation vendors.

Q&A
Q Why would it be pointless to deploy the getter of a multi-valued cmr-field

using the RequiresNew transaction attribute?

A This would be pointless because the returned collection cannot be used outside of
the transaction in which it was materialized.

Q What happens to the current transaction when an EJB throws an application
exception?

A The bean may or may not mark the transaction for rollback; consult the bean’s doc-
umentation.

11 0672323842 CH08 3/20/02 9:30 AM Page 393

Q When using SQLj Part 2, why should the Java class acting as an abstract data
type define a static variable serialVersionUID?

A To provide forward compatibility with future versions of the class.

Exercises
A nice short exercise for you today.

The starting point for the exercise is a version of the today’s case study that uses the
BMTD for the AdvertiseJob bean. Convert the Register bean (that deals with appli-
cants) to use BMTD rather than CMTD. The code to work on is under day08\exercise.

The steps you should perform are as follows:

1. Make sure that you are still using the CMP version of the Agency database.
Although you won’t be changing them, the Entity EJBs for the exercise are the
CMP versions from yesterday.

2. Update the implementation of the various methods of RegisterBean class, basing
it on AdvertiseJobBean. You will probably find it helpful to copy over the 3 helper
methods (beginTransactionIfRequired(), statusAsString(), and
completeTransactionIfRequired()).

3. Modify the dd\agency_session_ejbs-ejb-jar.xml deployment descriptor, chang-
ing RegisterBean to use transaction-type of Bean. You can also remove the
RegisterBean’s container-transaction elements under the assembly-
descriptor element because they will no longer be needed.

4. Build the enterprise application (agency.ear in the jar directory) and then load it
into deploytool. Deploy and complete any information missing from the wizard.

5. Test your program using the AllClients client, run with run\runAll.

The solution is in day08\agency.

394 Day 8

11 0672323842 CH08 3/20/02 9:30 AM Page 394

DAY 9

WEEK 2

Java Message Service
So far, you have learned about two types of EJB—Entity Beans and Session
Beans. Before introducing you to the third type—Message Beans (to be cov-
ered on Day 10, “Message-Driven Beans”), we will take a look at the purpose
and use of messaging within enterprise applications, the Java Message Service’s
API (JMS), and its place within J2EE.

Messaging
Many enterprise applications are built from separate software components.
These components can reside on the same system or in a distributed or multi-
tiered environment on several Java Virtual Machines.

Some method of communication is almost always required between the compo-
nents in large systems. It is often a requirement that this communication should
also be loosely coupled or asynchronous. In asynchronous communication, the
sender sends the message and continues execution without waiting for a reply,
and the receiver can retrieve the message at any time after it has been sent. In a
loosely coupled system, the sender does not need to necessarily know who the
recipient is; the communication itself may or may not be asynchronous. This

12 0672323842 CH09 3/20/02 9:23 AM Page 395

communication between software components is called messaging.

Without support for a messaging system, the programmer would typically use a sockets
interface for inter-application communication. With sockets, both the sender and receiver
need to agree on the socket address, and both applications need to be running at the same
time. Likewise, if Remote Method Invocation (RMI) is used, the sender (or calling appli-
cation) needs to know about the receiver’s (or remote application’s) methods. With mes-
saging, the sender and receiver only have to agree on the message format and where to
send it. The sender and receiver do not need to know anything about each other, nor do
they both need to exist at the same time.

Messaging should be used in preference to a tightly coupled API such as RMI when
some or all of the following conditions exist:

• The components interfaces are not known or not published.

• Not all of the components will be running at the same time.

• A sender needs to communicate with multiple receivers.

• No response is required.

Messaging should not be confused with electronic mail (e-mail). E-mail is used to com-
municate between people, whereas messaging is the mechanism used to communicate
between applications.

Messaging is used in various environments and many applications; it is not unique to
J2EE. A well-known example of a messaging service is IBM’s MQ Series. While there
are numerous messaging APIs, the only one supported by J2EE is JMS.

Message Passing
There are several models of message passing, but JMS only supports two—point-to-point
and publish/subscribe. Both of these are known as a push models. The sender of the mes-
sage is the active initiator, and the receiver is a passive consumer.

With point-to-point, the sender and receiver agree on a message destination, also known
as a queue. The sender leaves the message and the receiver picks up the message at any
time thereafter. The message remains in the queue until the receiver removes it. The fol-
lowing are some real-life examples of point-to-point communication:

• Sending a fax

• Dropping letters at a hotel desk to be picked up later by a hotel guest

• Leaving a voice mail message

Figure 9.1 illustrates point-to-point messaging.

396 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 396

Java Message Service 397

9

With the publish/subscribe model, the sender, now called a publisher, again sends mes-
sages to an agreed destination. The destination is, by convention, known as a topic and
this time there may be many receivers and these are called subscribers. Messages are
immediately delivered to all current subscribers and are deleted when all the subscribers
have received the message. Figure 9.2 portrays the publish/subscribe messaging model.

FIGURE 9.1
Point-to-point
messaging model. Message

Message

Message

Message

Queue

Point-to-Point

Receiver

Sender
sends message
to queue

Consumes message
and sends acknowledgement

FIGURE 9.2
Publish/Subscribe
messaging model.

Topic

Publish/Subscribe

Subscriber

Publisher
publishes message
to topic

Consumes message
and sends acknowledgement

Subscriber

Consumes message
and sends acknowledgement

Subscriber

Consumes message
and sends acknowledgement

Within JMS, these models are called message domains. Code examples and further
details on the JMS implementation of these message domains are presented in the next
section.

Java Message Service API
The JMS API is a Message-Oriented Middleware (MOM) API. It was designed by a col-
laboration of several companies, including Sun Microsystems and IBM. Version 1 of the
API was released in August, 1998. The purpose of JMS is to enable applications to trans-
mit and receive messages in an asynchronous and reliable way. The JMS API also

12 0672323842 CH09 3/20/02 9:23 AM Page 397

defines interfaces to allow applications written using JMS to communicate with other
messaging APIs.

The JMS designers’ aims were as follows:

• To minimize the messaging concepts that a programmer needs to understand

• Provide communication that is loosely coupled, asynchronous, and reliable

• Have a consistent API that is independent of the JMS provider

• Maximize the portability of JMS applications

The JMS API provides messaging that is

• Loosely coupled—The sender and receiver may have no information about each
other or the mechanisms used to process messages.

• Asynchronous—Receivers do not request messages. Messages can be delivered as
they arrive. The sender does not wait for reply.

• Reliable—A message is sent and received once and only once.

Note the JMS API does not specify how to control the privacy and integrity of messages.
The type and level of message security is left to the JMS providers and is configured by
administers not by J2EE clients.

JMS and J2EE
Prior to J2EE 1.3, it was not necessary to implement the JMS API. From version 1.3, the
JMS API became an integral part of the J2EE requirements.

Support for JMS within the J2EE platform provides the following functionality and fea-
tures:

• Message beans for the sending and receiving of asynchronous messages (message
beans are covered on Day 10)

• Support for distributed transactions

• Concurrent consumption of messages

An additional goal is to provide loosely coupled, reliable, asynchronous communication
with legacy systems.

398 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 398

Java Message Service 399

9

Programmatically, JMS can be considered to be a container-managed resource, similar to
a JDBC connection. Application clients, EJBs, and Web components can all utilize the
JMS API to send and receive messages. Note, however, that Applets are not required to
support JMS.

The addition of the JMS API to J2EE simplifies enterprise software development and
provides access to existing Enterprise Information Systems (EIS) and other legacy sys-
tems.

JMS API Architecture
Before launching into the JMS API programming model, there are some details of the
JMS API architecture that need to be covered. Table 9.1 contains a list of the J2EE com-
ponents that are found in a JMS application.

TABLE 9.1 JMS Components

Component Description

JMS Provider This is the messaging system that implements the JMS API interfaces and
provides certain control features. All J2EE implementations from J2EE
1.3 and later must include a JMS provider.

JMS Clients System components or programs that send or receive messages.

Messaging Domains JMS supports both the point-to-point and publish/subscribe message
domains. Both must be implemented in J2EE 1.3 and later.

Messages These are the objects used to communicate between JMS clients.

Queues Used to hold messages in the point-to-point domain.

Topics Used to hold messages in the publish/subscribe domain.

Administered Objects These are pre-configured JMS objects used to create connections with a
JMS Provider (a connection factory) or to specify the target or source of
messages (queues or topics).

Connection A client’s active connection to the JMS provider.

Session One or more sessions can be created for each connection. Used to create
senders and receivers and administer transactions.

Native Clients Clients that use a non-JMS messaging API.

Figure 9.3 is a UML activity diagram of how the components fit together in a JMS appli-
cation.

12 0672323842 CH09 3/20/02 9:23 AM Page 399

Message Domains
JMS supports two types of message domains—point-to-point and publish/subscribe, giv-
ing application developers both choice and flexibility in message handling.

JMS Point-to-Point Messaging Domain
With point-to-point messaging the application is built around message queues, with a
one-to-one relationship between a sender and a receiver. Each sender addresses the mes-
sage to, and the receiver removes messages from, a queue. Many receivers can access the
same queue, but only the first to pick up the message will receive it. The sender may set
an expiration time on a message, after which it will be deleted from the queue.

There is no mechanism to send a message to a particular receiver. If this one-to-one rela-
tionship is required, the message must be sent to a queue that has only one receiver.

400 Day 9

FIGURE 9.3
JMS application com-
ponents.

send Message

create Sender/
Publisher

create Session

create
Connection

create Message

Message
Generator

JNDIJMS

lookup
Connection

Factory

lookup Queue/
Topic

No more
messages

More
messages

12 0672323842 CH09 3/20/02 9:23 AM Page 400

Java Message Service 401

9

A JMS point-to-point message domain has the following characteristics:

• Each message is produced by the sender and consumed by one and only one
receiver.

• Messages are either consumed by the receiver or they time out and are deleted by
the JMS provider.

• Receivers can consume the message any time after it has been sent.

• The receiver does not need to exist when the message is produced.

• The receiver cannot request a message.

• The receiver must acknowledge receipt of the message.

The JMS API does not allow a single message to be sent to multiple queues. If you need
to send a message to multiple receivers, you should consider using the publish/subscribe
message domain.

JMS Publish/Subscribe Messaging Domain
The JMS publish/subscribe messaging domain has a completely different delivery model
from point-to-point. With the publish/subscribe model, senders post messages to a topic;
many receivers can register interest in a topic by subscribing to it.

Messages in a topic are distributed to all subscribers and only exist in the topic for as
long as this process takes. A receiver can only receive messages posted after it has sub-
scribed to a topic, and the receiver must be active at the time the message is posted to
receive it. This introduces a timing dependency between the sender and the receivers that
is not present in point-to-point messaging.

To circumvent this timing dependency, the JMS API allows receivers to create durable
subscriptions. Durable subscriptions will be covered in more detail in the section titled
“Creating Durable Subscriptions,” later on in this chapter.

A JMS publish/subscribe message domain has the following characteristics:

• Each message is produced by a publisher and consumed by zero or more sub-
scribers.

• Messages are immediately distributed to the existing subscribers.

• Subscribers must exist at the time the message is published to receive the message.

• Durable subscriptions can be used to allow subscribers to receive messages pub-
lished to a topic when the subscriber was inactive.

• The subscriber must acknowledge receipt of the message.

Table 9.2 lists the JMS objects in the point-to-point domain.

12 0672323842 CH09 3/20/02 9:23 AM Page 401

TABLE 9.2 Components in the JMS Point-to-Point Message Domain

Component Description

QueueConnectionFactory Administered object used to create an object that implements the
QueueConnection interface

QueueConnection Active connection to a JMS provider

QueueSession Provides methods for creating objects that implement the
QueueSender QueueReceiver or QueueBrowser interfaces

QueueSender Used by a client to send a message to a queue

QueueReceiver Used to receive messages sent to a queue

Queue Encapsulates the JMS provider queue name

QueueBrowser Used to look at messages on a queue without removing them

Developing JMS Applications Using JBoss1
Shortly, you will be developing a simple JMS application. As with all the code examples
in this book, the application will be developed using J2EE RI. Although J2EE RI pro-
vides a good environment for learning about JMS, it is not intended to support commer-
cial applications. Before developing this JMS application, there will be a short digression
to show the JMS features available with JBoss.

JBoss is in an open-source implementation of J2EE developed by the JBoss Group.
JBoss is available to download for free from www.jboss.org.

JMS Implementation in JBoss
JBoss contains a JMS provider called JBossMQ. JBossMQ is fully JMS API-compliant
and can be used for standalone JMS clients. JBossMQ has a number of configuration
files, the most important of which is called jboss.jcml. This file resides under the JBoss
installation in the conf/default directory. To create a message application in Jboss, you
first have to read or edit this file to

1. Look up the names of the available connection factories

2. Add destinations (queues and topics)

Additionally, you can optionally add client identifiers (JBossMQ users) to the jbossmq-
state.xml file (also in conf/default) for authentication. The purpose and use of
authentication is to associate a client connection and its objects with a state maintained
by the JMS provider. At the current time, the only state defined is that required to sup-
port durable subscriptions.

402 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 402

Java Message Service 403

9

Administered Objects
Connection factories and destinations are the administered objects that are configured by
the JMS administrator.

Connection Factory

The purpose of a connection factory is to encapsulate connection configuration. Clients
use a pre-configured connection factory to create connections to the JMS provider.

JBoss includes several different connection factories with varying characteristics, as
shown in Table 9.3.

TABLE 9.3 Connection Factories Provided in JBoss

JNDI Name Description

ConnectionFactory The default factory. A fast two-way socket-based communi-
cation protocol.

XAConnectionFactory Also a fast two-way socket based protocol that also has sup-
port for XA transactions.

RMIConnectionFactory Uses RMI to implement communication mechanism.

RMIXAConnectionFactory Uses RMI and also has support for XA transactions.

java:/ConnectionFactory Very fast in-VM protocol that does not use sockets. Available
when the client is in the same virtual machine as JBossMQ.

java:/XAConnectionFactory Fast in-VM protocol that also. supports XA transactions.

UILConnectionFactory Protocol multiplexed over one socket. Used when going
through firewalls or when the client is not able to look up the
server IP address correctly.

UILXAConnectionFactory Same as UILConnectionFactory but also has support for XA
transactions.

You should choose the connection factory appropriate for your application. The default
connection factory in JBossMQ is ConnectionFactory, which is implemented over a
two-way, socket-based communication protocol.

Note that other JMS providers may have different connection factories with different
characteristics and different names.

Destinations

Destinations define the address parameters for queues and topics. New queue and topic
destinations are added to the jboss.jcml file with the following:

12 0672323842 CH09 3/20/02 9:23 AM Page 403

<mbean code=”org.jboss.mq.server.TopicManager”
➥ name=”JBossMQ:service=Topic,name=YourTopicName”/>
<mbean code=”org.jboss.mq.server.QueueManager”
➥ name=”JBossMQ:service=Queue,name=YourQueueName”/>

You have now finished looking at JBoss. The following examples illustrate how to con-
nect to queues and topics using J2EE RI.

Programming a JMS Application Using
J2EE RI

In this section, you will develop a simple point-to-point application that sends and
receives a text message. Although this code has not been written for any one particular
JMS implementation, you will need to be aware that the mechanism for setting up the
administered objects is implementation specific. Also, the JNDI names may be different
for different J2EE environments.

J2EE RI Connection Factories
With the J2EE RI, you will use the default connection factory objects, named
jms/QueueConnectionFactory and jms/TopicConnectionFactory.

Adding Destinations in J2EE RI
J2EE RI provides a command-line program called j2eeadmin to list, create, modify, and
delete queues and topics. There is also a screen in the J2EE RI Application Deploy Tool
that provides an interface to j2eeadmin for the same purpose.

Creating a Queue in J2EE RI
The point-to-point application uses a queue for communication. To create a queue do the
following:

1. Ensure that J2EE server is running.

2. Use j2eeadmin or deploytool to create the queue.

Create a Queue Using j2eeadmin
To see the existing queues and topics, use the following:

j2eeadmin –listJMSDestination

The J2EE RI has a default queue predefined—jms/Queue.

404 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 404

Java Message Service 405

9

To add a queue called jms/firstQueue, use the following:

j2eeadmin –addJMSDestination jms/firstQueue queue

The j2eeadmin command works silently, so to check that your queue has been created,
run J2eeadmin -listJMSDestination once more. Figure 9.4 demonstrates the use of
these two commands to create a queue called jms/firstQueue (this is the queue you will
use in your first example).

FIGURE 9.4
Using j2eeadmin to
add a JMS queue to
J2EE RI.

Create a Queue Using deploytool
You can also use deploytool to list and add queues. Start up deploytool and select Server
Configuration from the Tools menu, as shown in Figure 9.5.

FIGURE 9.5
Using deploytool to
configure installation.

12 0672323842 CH09 3/20/02 9:23 AM Page 405

This will bring up the Configure Installation screen. Select JMS Destinations in the
panel on left to display the screen in Figure 9.6.

406 Day 9

FIGURE 9.6
Adding JMS destina-
tion in deploytool.

Click the Add button in the panel at bottom right titled JMS Queue Destinations and add
a new queue called jms/firstQueue.

Point-to-Point Messaging Example
You are now in a position to start coding. For all the following code examples, you will
need to import the javax.jms package. This contains all the classes for creating connec-
tions, sessions, queues, and topics.

To send a JMS message, a number of steps must first be performed to obtain a connec-
tion factory, establish a session, and create a QueueSender object. Although the example
is in the point-to-point message domain, the same steps are required for publish/sub-
scribe topics.

The following steps show how to create a queue used later to send a simple text message.

1. Obtain the JNDI initial context.

Context context = new InitialContext();

2. Contact the JMS provider, obtain a JMS connection from the appropriate
ConnectionFactory, and create a connection for a queue. The following code uses
a connection factory registered against the default JNDI name
jms/QueueConnectionFactory.
QueueConnectionFactory queueFactory =
➥ (QueueConnectionFactory)context.lookup(“jms/QueueConnectionFactory”);
QueueConnection queueConnection = queueFactory.createQueueConnection();

12 0672323842 CH09 3/20/02 9:23 AM Page 406

Java Message Service 407

9

The createQueueConnection() method throws a JMSException if the JMS
provider fails to create the queue connection due to some internal error.

3. Establish a QueueSession for this connection. In this case, the QueueSession has
transactions set to false (transactions are covered later) and AUTO ACKNOWLEDGE of
receipt of messages. This will throw a JMSException if the QueueConnection
object fails to create a session.
QueueSession queueSession = queueConnection.createQueueSession(false,
➥ Session.AUTO_ACKNOWLEDGE);

Although sent messages are not acknowledged, a session can be used to
receive messages created by its own connection. This is why an
Acknowledge mode must be specified on a session, even if the queue is only
used to send messages.

Note

4. Obtain the queue destination using its JNDI name as defined using j2eeadmin or
deploytool. The lookup() method can throw a NamingException if the name is
not found.

queue = (Queue)context.lookup("jms/firstQueue");

5. Finally, create a queue sender that will be used to send messages. This will throw a
JMSException if the session fails to create a sender, and an
InvalidDestinationException if an invalid queue is specified.

QueueSender queueSender = queueSession.createSender(queue);

Note how the connection factory hides all the implementation details of the connection
from the client. It does the hard work of creating resources, handling authentication, and
supporting concurrent use.

Now you have a queue that is ready to send messages. But before that, you need to know
a little more about JMS messages.

JMS Messages
JMS messages consist of three parts:

• A header—Used to identify messages, set priority and expiration, and so on and to
route messages.

• Properties—Used to add additional information in addition to the message header.

• Message body—There are five message body forms defined in JMS—
BytesMessage, MapMessage, ObjectMessage, StreamMessage, and TextMessage.

Note that only the header is a required component of a message; the other two parts,
including the body, are optional.

12 0672323842 CH09 3/20/02 9:23 AM Page 407

Message Header Fields
The JMS message header contains a number of fields that are generated by the JMS
provider when the message is sent. These include the following:

• JMSMessageID A unique identifier

• JMSDestination Represents the queue or topic to which the message is sent

• JMSRedelivered Set when the message has been resent for some reason

The following three header fields are available for the client to set:

• JMSType A string that can be used to identify the contents of a message

• JMSCorrelationID Used to link one message with another, typically used to link
responses to requests

• JMSReplyTo Used to define where responses should be sent

Other header fields may be set by the client but can be overridden by the JMS provider
with figures set by an administrator:

• JMSDeliveryMode This can be either PERSISTENT or NON_PERSISTENT (the default
is PERSISTENT).

• JMSPriority Providers recognize priorities between 0 and 9, with 9 being the
highest (default is 4). Note that there is no guarantee that higher priority messages
will be delivered before lower priority ones.

• JMSTimestamp This contains the time the message was sent to the JMS provider
by the application. Note that this is not the time the message is actually transmitted
by the JMS provider to the receivers.

• JMSExpiration An expiration time

Each header field has associated setter and getter methods that are fully described on the
JMS API documentation.

Message Properties
As you have seen, there is not a great deal of scope for clients to add information to JMS
header fields, but additionally JMS messages can incorporate properties. These are
name/value pairs defined by the client.

Property values can be boolean, byte, short, int, long, float, double, or String and
are defined using the appropriate Message.setProperty method. For example:

message.setStringProperty (“Type”, “Java”);

sets the message object’s property called “Type” to the string “Java”. A corresponding
getProperty method is used to retrieve a message’s property by name. The
getPropertyNames() can be used if the names are not known.

408 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 408

Java Message Service 409

9

The prefix JMSX is used for JMS-defined properties. Inclusion of these JMSX properties
are optional; refer to your JMS provider documentation to determine what properties are
supported in your JMS implementation.

JMS Body Types
JMS supports five types of message body. Each is defined by its own message interface.
Each type is only briefly described in Table 9.4. Refer to the JMS API for more informa-
tion on the message body types.

TABLE 9.4 JMS Message Body Types

Message Body Type Message Contents

BytesMessage Un-interpreted byte stream.

MapMessage Name/value pairs

ObjectMessage Serializable Java object

StreamMessage Stream of Java primitives

TextMessage Java String

Creating a Message
For the example given here, the default header properties will be used. Also, to keep this
example straightforward, a TextMessage body will be used (this is also the most com-
mon message body type). A TextMessage object extends the Message interface and is
used to send a message containing a String object.

A text message body is created using the createTextMessage() method in the
QueueSession object.

TextMessage message = queueSession.createTextMessage(String);

The content of the a text message is added with message.setText():

String msg = “some text”;
message.setText(msg);

Having created a message, you are ready to send it.

Sending a Message
A message must be sent to a queue QueueSender object as follows:

queueSender.send(queue, message);

It’s as simple as that.

12 0672323842 CH09 3/20/02 9:23 AM Page 409

Closing the Connection
Connections are relatively heavyweight JMS objects, and you should always release the
resources explicitly rather than depending on the garbage collector. The sender, the ses-
sion, and the connection should all be closed when no more messages need to be sent.

queueSender.close();
queueSession.close();
queueConnection.close();

With the J2EE RI implementation, prior to releasing the QueueSender object, you must
send a empty message to indicate no more messages will be sent. To do this, add the fol-
lowing line before the QueueSender object is closed.

queueSender.send(queueSession.createMessage());

410 Day 9

This code may not be required in other JMS implementations.Note

Send JMS Text Message Example
The code for the entire point-to-point sender example is shown in Listing 9.1.

LISTING 9.1 Complete Listing for Point-to-Point Queue Sender

1: import javax.naming.*;
2: import javax.jms.*;
3:
4: public class PTPSender {
5: private QueueConnection queueConnection;
6: private QueueSession queueSession;
7: private QueueSender queueSender;
8: private Queue queue;
9:
10: public static void main(String[] args) {
11: try {
12: PTPSender sender = new PTPSender();
13:
14: System.out.println (“Sending message Hello World”);
15: sender.sendMessage(“Hello World”);
16: sender.close();
17: } catch(Exception ex) {
18: System.err.println(“Exception in PTPSender: “ + ex);
19: }

12 0672323842 CH09 3/20/02 9:23 AM Page 410

Java Message Service 411

9

20: }
21:
22: public PTPSender() throws JMSException, NamingException {
23: Context context = new InitialContext();
24: QueueConnectionFactory queueFactory =

➥ (QueueConnectionFactory)context.lookup(“jms/QueueConnectionFactory”);
25: queueConnection = queueFactory.createQueueConnection();
26: queueSession = queueConnection.createQueueSession(false,

➥ Session.AUTO_ACKNOWLEDGE);
27: queue = (Queue)context.lookup(“jms/firstQueue”);
28: queueSender = queueSession.createSender(queue);
29: }
30:
31: public void sendMessage(String msg) throws JMSException {
32: TextMessage message = queueSession.createTextMessage();
33: message.setText(msg);
34: queueSender.send(message);
35: }
36:
37: public void close() throws JMSException {
38: //Send a non-text control message indicating end of messages
39: queueSender.send(queueSession.createMessage());
40: queueSender.close();
41: queueSession.close();
42: queueConnection.close();
43: }
44:}

To send messages to the queue, run this program from the command line. The next
example program will retrieve messages from that same queue for display onscreen.

Consuming Messages
There are two ways of consuming queued messages with JMS.

• Synchronously—An explicit call to the receive() method.

• Asynchronously—By registering an object that implements the MessageListener
interface. The JMS provider invokes the onMessage() method in this object each
time there is a message queued at the destination.

Figure 9.7 is a UML sequence diagram showing the difference between synchronous and
asynchronous message consumption.

LISTING 9.1 Continued

12 0672323842 CH09 3/20/02 9:23 AM Page 411

The following example will demonstrate how to receive a message from a queue using a
synchronous call.

Simple Synchronous Receiver Example
The code for a simple synchronous receiver is very similar to that of the sender method
already presented. There are two differences in constructing the QueueReceiver object.

The first one is obvious; a QueueReceiver is created instead of a QueueSender. Like
createSender(), the createReceiver() method throws a JMSException if the session
fails to create a receiver, and an InvalidDestinationException if an invalid queue is
specified.

The second difference is that this time there is a call to the connection’s start() method,
which starts (or restarts) delivery of incoming messages for this receiver. Calling start()
twice has no detrimental effect. It also has no effect on the connection’s ability to send
messages. The start() method may throw a JMSException if an internal error occurs. A
receiver can use Connection.stop() to temporarily suspend delivery of messages.

The message is received using the synchronous receive() method, as shown next. This
may throw a JMSException.

Message msgBody =queueReceiver.receive();
if (msgBody instanceof TextMessage) {

String text = ((TextMessage) msgBody).getText();
}

412 Day 9

FIGURE 9.7
Synchronous and asyn-
chronous message con-
sumption.

client :Receiver

receive()

setMessageListener(this)

onMessage(Message)

Message

next message
arrives

method call
blocks until
message
arrives

Synchronous

Asynchronous

12 0672323842 CH09 3/20/02 9:23 AM Page 412

Java Message Service 413

9

If there is no message in the queue, the receive() method blocks until a message is
available. There are two alternative versions of the receive() method:

• receiveNoWait() Retrieves the next message available, or returns null if one is
not immediately available

• receive(long timeout) Retrieves the next message produced within the period
of the timeout

Receive JMS Text Message Example
The code for the entire point-to-point receiver example is shown in Listing 9.2.

LISTING 9.2 Complete code for Point-to-Point Queue Receiver

1: import javax.naming.*;
2: import javax.jms.*;
3:
4: public class PTPReceiver {
5:
6: private QueueConnection queueConnection;
7: private QueueSession queueSession;
8: private QueueReceiver queueReceiver;
9: private Queue queue;
10:
11: public static void main(String[] args) {
12: try {
13: PTPReceiver receiver = new PTPReceiver();
14: System.out.println (“Receiver running”);
15: String textMsg = receiver.consumeMessage();
16: if (textMsg != null)
17: System.out.println (“Received: “ + textMsg);
18: receiver.close();
19: }
20: catch(Exception ex) {
21: System.err.println(“Exception in PTPReceiver: “ + ex);
22: }
23: }
24:
25: public PTPReceiver() throws JMSException, NamingException {
26: Context context = new InitialContext();
27: QueueConnectionFactory queueFactory =

➥ (QueueConnectionFactory)context.lookup(“jms/QueueConnectionFactory”);
28: queueConnection = queueFactory.createQueueConnection();
29: queueSession = queueConnection.createQueueSession(false,

➥ Session.AUTO_ACKNOWLEDGE);
30: queue = (Queue)context.lookup(“jms/firstQueue”);
31: queueReceiver = queueSession.createReceiver(queue);
32: queueConnection.start();
33: }

12 0672323842 CH09 3/20/02 9:23 AM Page 413

34:
35: public String consumeMessage () throws JMSException {
36: String text = null;
37: Message msgBody = queueReceiver.receive();
38: if (msgBody instanceof TextMessage) {
39: text = ((TextMessage) msgBody).getText();
40: }
41: return text;
42: }
43:
44: public void close() throws JMSException {
45: queueReceiver.close();
46: queueSession.close();
47: queueConnection.close();
48: }
49: }

Run this program from the command line. If you have previously used PTPSender to put
messages in the queue, these will now be displayed.

Asynchronous Messaging
For many applications, the synchronous mechanism is not suitable and an asynchronous
technique is required. To implement this in JMS, you need to register an object that
implements the MessageListener interface. The JMS provider invokes this object’s
onMessage() each time a message is available at the destination.

The receiver example will now be extended to support asynchronous messaging. Because
this is a simple example, the listener is implemented in the same class.

public class PTPListener implements MessageListener {

The message listener is registered with a specific QueueReceiver by using the
setMessageListener() method before calling the connection’s start() method. The
following extra line is required in the constructor:

queueReceiver.setMessageListener(this);

Messages might be missed if you call start() before you register the message listener.

To actually receive the messages, the MessageListener interface provides a single
onMessage() method. The JMS provider calls your implementation of this method when
it has a message to deliver. The following is an example onMessage() method:

public void onMessage(Message message) {
try {

if (message instanceof TextMessage) {

414 Day 9

LISTING 9.2 Continued

12 0672323842 CH09 3/20/02 9:23 AM Page 414

Java Message Service 415

9

String text = ((TextMessage) message).getText();
System.out.println(“Received: “ + text);

}
}
catch(JMSException ex) {

System.err.println(“Exception in OnMessage: “ + ex);
}

}

The onMessage() method should handle all exceptions. If onMessage() throws an excep-
tion, the signature will be altered and, therefore, not recognized.

In the main() method, the QueueReceiver object is initialized as before, but this time
there is no call to a synchronous receive() method.

public static void main(String[] args) {
System.out.println (“Listener running”);
try {

PTPListener receiver = new PTPListener();
Thread.currentThread().sleep(2000);
receiver.close();

}
catch(Exception ex) {

System.err.println(“Exception in PTPListener: “ + ex);
}

}

A sleep has been placed in the main body to allow time for messages to be handled.

Normally, the main() method would sleep for a long period or do other processing and
therefore requires some way to determine when message processing is finished.
Typically, a shutdown message is sent or the user interface is used to close the applica-
tion. For brevity, this code is not included here.

Asynchronous Exception Handling
If you register an ExceptionListener with a connection, your application will be asyn-
chronously informed of problems. If a client only consumes a message, this may be the
only way it can be informed that the connection has failed.

The JMS provider will call the listener’s onException() method, passing it a
JMSException describing the problem.

The Publish/Subscribe Message Domain
So far, you have seen how to create a simple point-to-point application with a single
sender and receiver. Now you will build a simple bulletin board application to demon-
strate the features of the publish/subscribe model.

12 0672323842 CH09 3/20/02 9:23 AM Page 415

For this example, a TopicPublisher will be produced that creates messages and publish-
es them to a bulletin board. A single TopicSubscriber will asynchronously listen for
messages. The messages will be printed to the screen—one at time—in the order they
were received. The program then exits.

Remember that, unlike messages in a queue, messages in a topic are immediately distrib-
uted to all subscribers. As a result, the timing of the publisher and the subscriber
becomes important. Apart from this, the publisher/subscriber code is very similar to the
sender/receiver code. In fact, the publisher code is a copy of the previous sender code
with all references to Queue<object> changed to Topic<object>.

Table 9.5 lists the JMS objects in the publish/subscribe domain.

TABLE 9.5 Components in the JMS Publish/Subscribe Message Domain

Component Description

TopicConnectionFactory Administered object used to create an object that implements the
TopicConnection interface

TopicConnection Active connection to a JMS provider

TopicSession Provides methods for creating objects that implement the
TopicPublisher and TopicSubscriber interfaces

TopicPublisher Used by a client to publish a message to a topic

TopicSubscriber Used to receive messages sent to a topic

Durable TopicSubscriber Used to receive messages published when the subscriber is inactive

Topic Encapsulates the JMS provider topic name

Because subscribers only receive messages when they are active, it would be nice to be
able to test for active subscribers before publishing to a topic. Unfortunately, this is not
possible.

Publish/Subscribe Messaging Example
Now, you will build a simple bulletin board application. For this example, the bulletin
board publisher program will generate 10 simple messages. The subscriber will be a
Swing application that will display the messages as they arrive.

The bulletin board used a topic called jms/bulletinBoard. This must be created using
the Configure Installation screen in deploytool or using j2eeadmin as follows:

j2eeadmin –addJMSDestination jms/bulletinBoard topic

416 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 416

Java Message Service 417

9

Bulletin Board Publisher
The same mechanism is used to create a topic as a queue, so Listing 9.3 should appear
very similar to that in the point-to-point receiver example, except that all references to a
queue are replaced with topic.

LISTING 9.3 Bulletin Board Publisher Program

1: import javax.naming.*;
2: import javax.jms.*;
3:
4: public class BulletinBoardPublisher {
5: private TopicConnection topicConnection;
6: private TopicSession topicSession;
7: private TopicPublisher bulletinBoardPublisher;
8: private Topic bulletinBoard;
9:
10: public static void main(String[] args) {
11: try {
12: BulletinBoardPublisher publisher = new

BulletinBoardPublisher(“TopicConnectionFactory”,”jms/bulletinBoard”);
13:
14: System.out.println (“Publisher is up and running”);
15:
16: for (int i = 0; i < 10; i++) {
17: String bulletin = “Bulletin Board Message number: “ + i;
18: System.out.println (bulletin);
19: publisher.publishMessage(bulletin);
20: }
21: publisher.close();
22: } catch(Exception ex) {
23: System.err.println(“Exception in BulletinBoardPublisher: “ +

ex);
24: }
25: }
26:
27: public BulletinBoardPublisher(String JNDIconnectionFactory,

➥ String JNDItopic) throws JMSException, NamingException {
28: Context context = new InitialContext();
29: TopicConnectionFactory topicFactory = (TopicConnectionFactory)con-

text.lookup(JNDIconnectionFactory);
30: topicConnection = topicFactory.createTopicConnection();
31: topicSession = topicConnection.createTopicSession(false,

➥ Session.AUTO_ACKNOWLEDGE);
32: bulletinBoard = (Topic)context.lookup(JNDItopic);
33: bulletinBoardPublisher =

➥ topicSession.createPublisher(bulletinBoard);
34: }
35:

12 0672323842 CH09 3/20/02 9:23 AM Page 417

36: public void publishMessage(String msg) throws JMSException {
37: TextMessage message = topicSession.createTextMessage();
38: message.setText(msg);
39: bulletinBoardPublisher.publish(message);
40: }
41:
42: public void close() throws JMSException {
43: bulletinBoardPublisher.close();
44: topicSession.close();
45: topicConnection.close();
46: }
47: }

Run this program from the command line. This will check that this program runs okay,
but remember that messages published to topics are not persistent. For the subscriber
program to pick up the messages, you will need to run this program again while the sub-
scriber is running.

Bulletin Board Subscriber
The subscriber is a Swing application that outputs the bulletins as they arrive (see Listing
9.4).

Remember that for this program to receive the bulletins, it must be running when they
are published.

LISTING 9.4 Bulletin Board Subscriber Program

1: import javax.naming.*;
2: import javax.jms.*;
3: import java.io.*;
4: import javax.swing.*;
5: import java.awt.*;
6: import java.awt.event.*;
7: public class BulletinBoardSubscriber extends JFrame

➥ implements MessageListener {
8: private TopicConnection topicConnection;
9: private TopicSession topicSession;
10: private TopicSubscriber bulletinBoardSubscriber;
11: private Topic bulletinBoard;
12: private JTextArea textArea = new JTextArea(4,32);
13:
14: public static void main(String[] args) {
15: try {
16: final BulletinBoardSubscriber subscriber = new

➥ BulletinBoardSubscriber(“jms/TopicConnectionFactory”,”jms/bulletinBoard”);

418 Day 9

LISTING 9.3 Continued

12 0672323842 CH09 3/20/02 9:23 AM Page 418

Java Message Service 419

9

17: subscriber.addWindowListener(new WindowAdapter() {
18: public void windowClosing(WindowEvent ev) {
19: try {
20: subscriber.close();
21: } catch(Exception ex) {
22: System.err.println(“Exception in

➥ BulletinBoardSubscriber: “ + ex);
23: }
24: subscriber.dispose();
25: System.exit(0);
26: }
27: });
28: subscriber.setSize(500,400);
29: subscriber.setVisible(true);
30: } catch(Exception ex) {
31: System.err.println(“Exception in BulletinBoardSubscriber: “

➥ + ex);
32: }
33: }
34:
35: public BulletinBoardSubscriber(String JNDIconnectionFactory,

➥ String JNDItopic) throws JMSException, NamingException {
36: super (JNDIconnectionFactory+”:”+JNDItopic);
37: getContentPane().add(new JScrollPane(textArea));
38: Context context = new InitialContext();
39: TopicConnectionFactory topicFactory = (TopicConnectionFactory)con-

text.lookup(JNDIconnectionFactory);
40: topicConnection = topicFactory.createTopicConnection();
41: topicSession = topicConnection.createTopicSession(false,

➥ Session.AUTO_ACKNOWLEDGE);
42: bulletinBoard = (Topic)context.lookup(JNDItopic);
43: bulletinBoardSubscriber =

➥ topicSession.createSubscriber(bulletinBoard);
44: bulletinBoardSubscriber.setMessageListener(this);
45: topicConnection.start();
46: }
47:
48: public void onMessage(Message message) {
49: try {
50: if (message instanceof TextMessage) {
51: String bulletin = ((TextMessage) message).getText();
52: String text = textArea.getText();
53: textArea.setText(text+”\n”+bulletin);
54: }
55: } catch(JMSException ex) {
56: System.err.println(“Exception in

➥ BulletinBoardSubscriber:OnMessage: “ + ex);
57: }

LISTING 9.4 Continued

12 0672323842 CH09 3/20/02 9:23 AM Page 419

58: }
59:
60:
61: public void close() throws JMSException {
62: bulletinBoardSubscriber.close();
63: topicSession.close();
64: topicConnection.close();
65: }
66: }

When you run this program from the command line, a small window will appear. Any
messages published to the bulletin board topic while the program is running will appear
in this window.

Creating Durable Subscriptions
When you run the bulletin board example, you will have seen that you need to get the
timing right and that the subscriber can miss bulletins if it is not running when they are
sent. This is because the TopicSession.createSubscriber() method creates a non-
durable subscriber. A non-durable subscriber can only receive messages that are pub-
lished while it is active.

To get around this restriction, the JMS API provides a
TopicSession.createDurableSubscriber() method. With a durable subscription, the
JMS provider stores the messages published to the topic, just as it would store messages
sent to a queue.

Figure 9.8 shows diagrammatically how messages are consumed with non-durable and
durable subscriptions when the subscriber is inactive during the period when messages
are published.

To create a durable subscription, you must associate a connection factory with a defined
user and use this factory to create the connection. You will be shown how to create users
on day 15, “Security,” but for now, you can use the user guest that has been set up for you.

Use the following command to associate a connection factory with the user guest:

j2eeadmin -addJmsFactory jms/DurableTopic topic -props clientID=guest

or you can add the factory using the Configure Installation screen in install tool. Select
Connection Factories in the panel on the left. Add the new factory, jms/DurableTopic, to
the panel on the top right and add ClientID as the Property Name with Value of guest in
the panel at bottom right.

420 Day 9

LISTING 9.4 Continued

12 0672323842 CH09 3/20/02 9:23 AM Page 420

Java Message Service 421

9

After using this connection factory to create the connection and session, you call the
createDurableSubscriber method with two arguments, the topic and the subscription
ID string that specifies the name of the subscription:

String subID = “DurableBulletins”;
TopicSubscriber topicSubscriber =
➥ topicSession.createDurableSubscriber(bulletinBoard, subID);

Messages are then read from the topic as normal. To temporarily stop receiving mes-
sages, you simply close the subscriber.

topicSubscriber.close();

Messages are now stored by the JMS provider until the subscription is reactivated with
another call to createDurableSubscriber() with the same subscription ID.

A subscriber can permanently stop receiving messages by unsubscribing a durable sub-
scription with the unsubscribe() method. You first need to close the subscriber.

topicSubscriber.close();
topicSession.unsubscribe(subID);

If you make these changes to the bulletin board subscriber program, you will not initially
notice any difference in operation. The distinction becomes apparent if you close the sub-
scriber program and run the publisher. Now when you start up the durable subscriber
once more, you will receive messages sent to the bulletin board while the program was
not running.

FIGURE 9.8
Non-durable and
durable subscriptions.

Msg
1

Msg
2

Msg
3

Msg
4

Msg
5

Msg
6

Publisher

Non-durable Subscription

Msg
1

Msg
2

Msg
5

Msg
6

Messages
received

Subscriber active active

Msg
1

Msg
2

Msg
3

Msg
4

Msg
5

Msg
6

Publisher

Durable Subscription

Msg
1

Msg
2

Msg
3

Msg
5

Msg
4

Msg
6

Messages
received

Subscriber active active

12 0672323842 CH09 3/20/02 9:23 AM Page 421

Additional JMS Features
The following sections cover some additional features available in JMS. Not all the fea-
tures of JMS are covered, and you should refer to the JMS API specification for more
information.

Message Selectors
So far, you have received all the messages sent. The JMS API provides support for filter-
ing received messages. This is accomplished by using a message selector. The
createReceiver and the two forms of createSubscriber (durable and nondurable)
methods all have a signature that allows a message selector to be specified.

The message selector is a string containing an SQL conditional expression. Only mes-
sage header values and properties can be specified in the message selector. Sadly, it is
not possible to filter messages on the basis of the contents of the message body.

String highPriority = “JMSPriority = ‘9’ AND topic = ‘Java’”;
bulletinBoardSubscriber = topicSession.createSubscriber(bulletinBoard,
➥ highPriority, false);

This selector will ensure that only priority nine messages are received. Note here that
topic is a property of the message that has been created and set by the sender.

Notice that for this form of the createSubscriber the parameters are as follows:

TopicSession.createSubscriber(topic, messageSelector, noLocal);

You need to set the noLocal parameter to specify whether you want to receive messages
created by your own connection. Set noLocal to false to prevent the delivery of mes-
sages created by the subscriber’s own connection.

Session Acknowledgement Modes
In the examples given so far, auto acknowledgement has been used to send the acknowl-
edgement automatically as soon as the message is received. This has the advantage of
removing the burden of acknowledging messages from you, but it has the disadvantage
that if your application fails before the message is processed, the message may be lost.
After a message is acknowledged, the JMS provider will never redeliver it.

Deferring acknowledgement until after you have processed the message will protect
against loss of data. To do this, the session must be created with client acknowledge-
ment.

queueConnection.createQueueSession(false, Session.CLIENT_ACKNOWLEDGE);

422 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 422

Java Message Service 423

9

Now when the message is received, no acknowledgement will be sent automatically. It is
up to you to ensure that the message is acknowledged at some later point.

message = (TextMessage) queueReceiver.receive();
// process the message
message.acknowledge();

If you do not acknowledge the message, it may be resent.

A third acknowledgement mode, DUPS_OK_ACKNOWLEDGE, can be used when the delivery
of duplicates can be tolerated. This is a form of AUTO_ACKNOWLEDGE that has the advan-
tage of reducing the session overhead spent preventing the delivery of duplicate mes-
sages.

Message Persistence
The default JMS delivery mode for a message is PERSISTENT. This ensures that the mes-
sage will be delivered, even if the JMS provider fails or is shut down.

A second delivery mode, NON_PERSISTENT, can be used where guaranteed delivery is not
required. A NON_PERSISTENT message has the lowest overhead because the JMS provider
does not need to copy the message to a stable storage medium. JMS still guarantees to
deliver a NON_PERSISTENT message at most once (but maybe not at all). Nonpersistent
messages should be used when:

• Performance is important and reliability is not

• Messages can be lost with no effect on system functionality

Persistent and non-persistent messages can be delivered to the same destination.

Transactions
Often, acknowledgement of single messages is not enough to ensure the integrity of an
application. Think of a banking system where two messages are sent to debit an amount
from one account and credit the same amount to another. If only one of the messages is
received, there will be a problem. A transaction is required where a number of operations
involving many messages forms an atomic piece of work.

In JMS, you can specify that a session is transacted when a session queue or topic is cre-
ated:

createQueueSession(boolean transacted, int acknowledgeMode)
createTopicSession(boolean transacted, int acknowledgeMode)

In a transacted session, several sends and receives are grouped together in a single trans-
action. The JMS API provides Session.commit() to acknowledge all the messages in a
transaction and Session.rollback() to discard all messages. After a rollback, the mes-
sages will be redelivered unless they have expired.

12 0672323842 CH09 3/20/02 9:23 AM Page 423

To create a transacted queue session, set the transacted parameter to true, as shown in
the following:

topicSession = topicConnection.createTopicSession(true, 0);

For transacted sessions, the acknowledgeMode parameter is ignored. The previous code
sets this parameter to 0 to make this fact explicit.

There is no explicit transaction start. The contents of a transaction are simply those mes-
sages that have been produced and consumed during the current session, either since the
session was created or since the last commit(). After a commit() or rollback(), a new
transaction is started.

424 Day 9

Because the commit() and rollback() methods are associated with a session,
it is not possible to mix messages from queues and topics in the same trans-
action.

Note

The following example shows a simple transaction involving two messages.

queueSession = queueConnection.createQueueSession(true, 0);
Queue bank1Queue = (Queue)context.lookup(“queue/FirstUSA”);
Queue bank2Queue = (Queue)context.lookup(“queue/ArabBank”);
bank1QueueSender = queueSession.createSender(bank1Queue);
bank2QueueSender = queueSession.createSender(bank2Queue);
// .. application processing to create debit and credit messages
try {

bank1QueueSender.send(bank1Queue, debitMsg);
bank2QueueSender.send(bank2Queue, creditMsg);
queueSession.commit();

} catch(JMSException ex) {
System.err.println(“Exception in bank transaction:” + ex);
queueSession.rollback();

}

Where a receiver handles atomic actions sent in multiple messages, it should similarly
only commit when all the messages have been received and processed.

XA support

A JMS provider may provide support for distributed transaction using the X/Open XA
resource interface. This is performed by utilizing the Java Transaction API (JTA). JTA
was covered on Day 8, “Transactions and Persistence”. XA support is optional; refer to
your JMS provider documentation to see if XA support is provided.

12 0672323842 CH09 3/20/02 9:23 AM Page 424

Java Message Service 425

9

Multithreading
Not all the objects in JMS support concurrent use. The JMS API only specifies that the
following objects can be shared by across multiple threads

• Connection Factories

• Connections

• Destinations

Many threads in the same client may share these objects, whereas the following:

• Sessions

• Message Producers

• Message Consumers

can only be accessed by one thread at a time. The restriction on single-threaded sessions
reduces the complexity required by the JMS provider to support transactions.

Session concurrency can be implemented within a multithreaded client by creating multi-
ple sessions.

Introduction to XML
Among the five message body types supported in the JMS API, the TextMessage type
was included on the presumption that String messages will be used extensively. The rea-
son for this presumption is the increasing use of the Extensible Markup Language
(XML) for inter-application communication.

What Is XML and Why Would You Use It?
XML is a structured text-based language consisting of tags that are used to describe a
document’s structure and meaning. It does not say anything about the visual representa-
tion of the document.

XML is non-proprietary. It is also easy for both computers and people to understand.
Consequently, it is an extremely useful format for the interchange of data between differ-
ent applications. By defining not only the content but also the structure of the data, XML
is ideally suited to manipulating arbitrary data structures.

There are many good reasons for using XML, but one of the most significant is its ability
to adapt to changes in the data. Because of this, senders and receivers do not need to
agree on a common data format ahead of time.

12 0672323842 CH09 3/20/02 9:23 AM Page 425

The following is an example of XML:

<person>
<name>

<firstname>Winston</firstname>
<surname>Churchill</surname>

</name>
<birth>

<date month=’November’ day=’30’ year=’1874’</date>
<place>Bleinham Palace, England</place>

</birth>
<death>

<date> month=’January’ day=’24’ year=’1965’</date>
<buried>Bladon, Oxfordshire, </buried>

</death>
</person>

Even with no knowledge of XML, it is easy to work out what this example is describing;
and herein lies much of the power of XML.

XML will be covered in more detail on Day 16, “ Integrating XML with J2EE” and an
overview is provided in Appendix C, “An Overview of XML,” on the CD-ROM.

Summary
Today, you have had an introduction to JMS messaging, the concept of message produc-
ers and consumers, and explored the two supported message domains—point-to-point
and publish/subscribe. This has necessarily been an overview of JMS. More information
should be obtained from the latest JMS specification and API. Also, refer to the docu-
mentation for your JMS provider to determine what features beyond those described here
are supported.

You have also been given a brief introduction to XML and seen how it can be used to
communicate with other applications.

Tomorrow, you will utilize your JMS knowledge gained today while examining the third
type of EJB—Message-driven beans.

Q&A
Q What type of JMS message domain should be used to send a message to a

single receiver?

A A point-to-point domain is the appropriate choice in this scenario.

426 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 426

Java Message Service 427

9

Q What type of JMS message domain should be used to send a message to many
receivers at the same time?

A To send to many receivers, the publish/subscribe message domain is the best
choice.

Q What is the difference between JMSHeader fields and JMSProperty fields?

A JMS header fields are defined in the JMS API and are mainly set by the JMS
provider. JMS property fields are used by clients to add additional header informa-
tion to a message.

Q Does JMS guarantee to deliver a message in the point-to-point domain?

A Messages in the point-to-point domain are PERSISTENT by default and will be
delivered unless they have a timeout that has expired. Point-to-point messages can
be set to NON_PERSISTENT, in which case, the message may be lost if a provider
fails.

Q When should I use a durable subscription?

A Durable subscriptions should be used when a subscriber needs to receive messages
from a topic when it is inactive.

Exercise
To extend your knowledge of the subjects covered today, try the following exercises.

1. Create a chat room application. Participants provide their name and can send mes-
sages to any topic (hint: use a JMS property to define the topic). Participants may
read messages posted by all other participants or filter by topic. You may use pre-
defined topic names.

To assist you in this task, three Java files have been provided in the exercise sub-direc-
tory for Day 9 on the accompanying CD-ROM.

The Chat.java and ChatDisplay.java files are complete and need not be edited. These
files provide the Swing code to enter and display the chat room messages onscreen.

The TopicServer.java is a starting point for you to further develop the chat server. The
initial code simply uses the callback method addMessage to bounce the message back to
the screen. The addMessage method uses the interface defined in ChatDisplay.java.

You will need to edit this file to replace this callback with code to publish the message to
a topic. You then need to add a subscriber that consumes messages from this topic and
displays them onscreen.

12 0672323842 CH09 3/20/02 9:23 AM Page 427

Add a property called From to the message and set it to the from parameter passed in.
This will then be displayed in the chat room window.

A completed TopicServer is included in the solutions sub-directory of Day 9 of the
case study.

428 Day 9

12 0672323842 CH09 3/20/02 9:23 AM Page 428

DAY 10

WEEK 2

Message-Driven Beans
So far, you have looked at two types of Enterprise Java Bean (EJB)—the
Session bean and the Entity bean. Today you will consider the third and final
EJB, the Message-driven bean. Topics that are covered are as follows:

• Similarities and differences with Entity and Session beans

• The life-cycle of a Message-driven bean

• Writing a Message-driven bean

Prior to the EJB 2.0 specification, it was only possible to support asynchronous
message passing by writing an external Java program that acted as a listener. A
listener is a program whose sole purpose is to wait for data to arrive, for exam-
ple, a socket server program that “listens” on a socket and perform some action
when it detects client connections. The listener was then able to invoke methods
on a session or entity bean. All EJB method calls had to be synchronous and
initiated by the client. This approach had the disadvantage that the message was
received outside of the server, so it could not be part of an EJB transaction.

With the release of J2EE 1.3, you can use Message-driven beans to combine the
functionality of EJBs with the Java Message Service (JMS).

13 0672323842 CH10 3/20/02 9:28 AM Page 429

Although JMS was covered in detail on Day 9, “Java Message Service,” the following is
a quick recap of its main features:

• JMS is a Java API that specifies how applications can create, send, receive, and
read messages.

• JMS enables communication that is both asynchronous and reliable, while mini-
mizing the amount of knowledge and programming that is required.

• The implementation of the JMS API is provided by a number of vendors who are
known as JMS providers.

• Message queues are associated with the point-to-point message domain. Messages
in a queue are persistent but can only be consumed by one receiver.

• Topics allow a message to be sent to more then one receiver (called a subscriber).
Messages are not persistent; they are immediately delivered to all existing sub-
scribers.

What Are Message-Driven Beans?
Message-driven beans are generally constructed to be message consumers, although they
can, like any other EJB, also be used to create and send messages. A Message-driven
bean lives entirely within the container, it has no security context of its own. When the
bean is deployed, it is associated with a particular queue or topic, and is invoked by the
container when a message arrives for that queue or topic.

The following are the features of a Message-driven bean:

• It is anonymous; that is, it has no client visibility. No state is maintained for the
client.

• All instances of a particular Message-driven bean are equivalent.

• The container can pool instances.

• It does not have a local or remote interface.

• It is invoked asynchronously by the container.

• The bean lives entirely within a container; the container manages its lifecycle and
environment.

These features are discussed in more detail next.

The Message Producer’s View
To the client producing JMS messages, the Message-driven bean is just an anonymous
message consumer. The client need not be aware that the consumer is a Message-driven

430 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 430

Message-Driven Beans 431

10

bean. The client simply sends its messages to a destination, either a queue or a topic, and
the bean handles the message when it arrives. Therefore, the coding of message produc-
ers in an application using Message-driven beans is exactly the same as any JMS applica-
tion; that is, the message must conform to the JMS specification and the destination must
be a Java Naming and Directory Interface (JNDI) registered name. Apart from this, the
message does not have to correspond to any particular format.

It is not necessary for the client to be a Java client application or an EJB to take advan-
tage of Message-driven beans; it can be a Java ServerPagesTM (JSP) component or a
non-J2EE application.

Similarities and Differences with Other EJBs
In some respects, a Message-driven bean is similar to a stateless Session bean. It is a
complete EJB that can encapsulate business logic. An advantage is that the container is
responsible for providing functionality for security, concurrency, transactions, and so
forth. Like a Session or Entity bean, a Message-driven bean has a bean class and XML
deployment descriptor.

The main difference from the other EJBs is that a Message-driven bean cannot be called
directly by the client. For this reason, they do not have Home, Remote, or Local interfaces,
this makes them less prone to misuse by the client.

Unlike Entity and Session beans, Message-driven beans do not have a passive state.
Therefore, they do not implement the ejbActivate() and ejbPassivate() methods.

Although a Message-driven bean is considered to be a stateless object, from
the client’s view, it can and should retain state in its instance variables.
Examples of this are an open database connection and the Home, Local, and
Remote interfaces to other EJBs.

Note

Programming Interfaces in a Message-Driven
Bean

There are a number of constraints on the contents of a Message-driven bean class. In par-
ticular your Message-driven bean class must

• Implement the javax.ejb.MessageDrivenBean interface

• Implement the javax.jms.MessageListener interface

13 0672323842 CH10 3/20/02 9:28 AM Page 431

• Have a single constructor, with no arguments

• Have a single public setMessageDrivenContext(MessageDrivenContext ctx)
method that returns a void

• Have a single public ejbCreate() method with no arguments that returns a void

• Have a single public ejbRemove() method with no arguments that returns a void

• Have a single public onMessage(Message message) method that returns a void

• Not have a finalize() method

The following sections cover these methods in more detail.

Life Cycle of a Message-Driven Bean
The EJB container controls the lifecycle of a Message-driven bean. The Message-driven
bean instance lifecycle has three states, as shown in Figure 10.1:

• Does Not Exist—The Message-driven bean has not been instantiated yet or is
awaiting garbage collection.

• Method Ready Pool—A pool of Message-driven bean instances, similar to the
instance pool used for stateless session beans.

• Processing a message—The Message-driven bean has been instantiated and is han-
dling a message.

432 Day 10

FIGURE 10.1
The Message-driven
bean life cycle.

Message-driven
Bean

setMessageDrivenContext()
ejbCreate()

State: in Method
Ready Pool

do/process
message

onMessage()

13 0672323842 CH10 3/20/02 9:28 AM Page 432

Message-Driven Beans 433

10

After constructing the new instance of the Message-driven bean object, the container
invokes the following methods:

• The bean’s setMessageDrivenContext() method with a reference to its EJB con-
text. The Message-driven bean should store its MessageDrivenContext reference in
an instance field.

• The bean’s ejbCreate() method. The Message-driven bean’s ejbCreate() method
takes no arguments and is invoked only once when the bean is first instantiated.

The Message-Driven Bean Context
The javax.ejb.MessageDrivenContext interface (see the class diagram in Figure 10.2).
provides the Message-driven bean with access to its runtime context. This is similar to
the SessionContext and EntityContext interfaces for Session and Entity beans.

FIGURE 10.2
The
MessageDrivenContext

class diagram.

EJBContext

MessageDrivenContext

getCallerPrincipal()
getEJBHome()
getEJBLocalHome()
getRollbackOnly()
getUserTransaction()
isCallerInRole()
setRollbackOnly()

Note that all the EJBContext methods are available to a Message-driven bean, but
because the Message-driven bean does not have a local or remote interface, calls to
getEJBHome() and getEJBLocalHome() will throw a
java.lang.IllegalStateException.

Because Message-driven beans are anonymous and run within the context of the contain-
er, and the container does not have a client security identity or role, calls to the
getCallerPrincipal() and IsCallerInRole() methods will also cause an
IllegalStateException.

13 0672323842 CH10 3/20/02 9:28 AM Page 433

Creating a Message-Driven Bean
The setMessageDrivenContext() method can throw EJBException if there is a contain-
er or system level error of some kind. See the section called “Handling Exceptions” for
more details. What follows is an example setMessageDrivenContext() method that saves
its EJBContext and JNDI context:

private MessageDrivenContext mdbContext;
private Context jndiContext;
public void setMessageDrivenContext (MessageDrivenContext ctx) {

mdbContext = ctx;
try { jndiContext = new InitialContext();
} catch (NamingException nameEx) {

throw new EJBException(nameEx);
}

}

After calling setMessageDrivenContext(), the container calls the bean’s ejbCreate()
method, which takes no parameters. You could use this method to allocate resources,
such as a datasource, but in practice, this is usually done in the
setMessageDrivenContext() method. Therefore, it is normal to find the ejbCreate()
method empty.

This method is only invoked when the bean instance is first created.

public void ejbCreate () throws CreateException

After the ejbCreate() method has been called, the bean is placed in the method-ready
pool.

Method-Ready Pool
The actual point at which Message-driven bean instances are created and placed in the
method-ready pool is vendor specific. The vendor of an EJB server could design it to
only create Message-driven bean instances when they are required. Alternatively, when
the EJB server is started, a number of instances may be placed in the method-ready pool
awaiting the first message. Additional instances can be added to the pool when the num-
ber of Message-driven beans is insufficient to handle the number of incoming messages.

Therefore, the life of a Message-driven bean instance could be very long and, in this
case, it makes sense to adopt an approach where you retain state (such as an open data-
base connection) across the handling of several messages. However, the container may
create and destroy instances to service every incoming message. If this is the case, this
approach is no longer efficient. Check your vendor’s documentation for details on how
your EJB server handles Message-driven bean instances in the method-ready pool.

434 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 434

Message-Driven Beans 435

10

Message-driven bean instances in the method-ready pool are available to consume
incoming messages. Any available instance can be allocated to a message and, while pro-
cessing the message, this particular bean instance is not available to consume other mes-
sages. A container can handle several messages concurrently by using a separate instance
of the message bean for each message. Each separate instance obtains its own
MessageDrivenContext from the container. After the message has been processed, the
instance is available to consume other messages. Message-driven beans are always
single-threaded objects.

The Demise of the Bean
When the server decides to reduce the total size of the method-ready pool, a bean
instance is removed from the pool and becomes available for garbage collection. At this
point, the bean’s ejbRemove() method is called.

You should use this method to close or deallocate resources stored in instance variables
and set the instance variable to null.

public void ejbRemove()

The EJBException can be thrown by ejbRemove() to indicate a system-level error.

Following ejbRemove(), the bean is dereferenced and no longer available to handle mes-
sages. It will eventually be garbage collected.

The ejbRemove() method may not be called if the Message-driven bean
instance throws an exception. This could result in resource leaks.

Note

A Message-driven bean must not define the finalize method to free up resources: do all
the tidying up in ejbRemove().

Consuming Messages
When a message is received, the container finds a Message-driven bean instance that is
registered for that queue or topic and calls the bean’s onMessage() method.

public void onMessage(Message message)

This method has a single parameter that contains a single JMS message. The message
will have a header, one or more properties (optional), and a message body (consisting of
one of the five JMS message body types). JMS messages were covered in some detail on
Day 9.

13 0672323842 CH10 3/20/02 9:28 AM Page 435

The Message-driven bean must provide a single onMessage() method, and this method
should not throw runtime exceptions. It must not have a throws clause as part of its
method signature. The onMessage() holds the business logic of the bean. You can use
helper methods and other EJBs to process the message.

Remember, Message-driven bean instances are triggered asynchronously; the business
logic within the bean must reflect this. You must never presume any ordering to the mes-
sages received. Even if the system is implemented within the same JVM, the system
vagaries can cause the scheduling of bean instances to be non-deterministic, this means
that you cannot ascertain or control when the bean will run.

Handling Exceptions
The Message-driven bean can encounter various exceptions or errors that prevent it from
successfully completing. The following are examples of such exceptions:

• Failure to obtain a database connection

• A JNDI naming exception

• A RemoteException from invocation of another EJB

• An unexpected RuntimeException

A well-written Message-driven bean should never carelessly throw a RunTimeException.
If a RunTimeException is not caught in onMessage() or any other bean class method, the
container will simply discard the instance (it will transition it to the Does Not Exist
state). In this case, the container will not call the ejbRemove() method, so a badly writ-
ten bean method could cause resource leaks.

Obviously, you need a mechanism to tell the container that you have caught an unrecov-
erable error and die gracefully. To do this, you use exception layering. You catch the
RunTimeException, free up resources, do any other appropriate processing and then
throw an EJBException to the container. The container will then log the error, rollback
any container-managed transactions, and discard the instance.

Because identical Message-driven bean instances are available, from the client perspec-
tive, the message bean continues to exist in the method-ready pool to handle further mes-
sages. Therefore, a single instance failure may not cause any disruption to the system.

Container- and Bean-Managed Transactions
The analysis of container- versus bean-managed transactions was covered as part of Day
8’s material, reread this if you need to recap the benefits of either method of handling
transactions. When designing your Message-driven bean, you must decide whether the

436 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 436

Message-Driven Beans 437

10

bean will demarcate the transactions programmatically (bean managed transactions), or if
the transaction management is to be performed by the container. This is done by setting
the transaction-type in the deployment descriptor.

<transaction-type>Container</transaction-type>

Use container-managed transactions unless you have some other reason for using bean-
managed transactions, such as creating and sending a series of messages.

A Message-driven bean can be designed with either bean-managed transactions or with
container-managed transactions, but both cannot be used in the same bean.

The following methods in the javax.ejb.MessageDrivenContext (all inherited from
javax.ejb.EJBContext) can be used with transactions.

public UserTransaction getUserTransaction() throws

java.lang.IllegalStateException

The UserTransaction interface methods can be used to demarcate transactions.

The getUserTransaction() method can only be called if the Message-driven bean is
using bean-managed transactions. An attempt to use this method from a bean using con-
tainer-managed transactions will cause a java.lang.IllegalStateException to be
thrown.

Both the methods setRollbackOnly() and getRollbackOnly() can only be used with
container-managed transactions. This time, the IllegalStateException will be thrown
if they are utilized in the context of a bean-managed transaction.

public void setRollbackOnly() throws java.lang.IllegalStateException

Typically, you use setRollbackOnly() after an exception or error of some kind to mark
the current transaction to be rolled back.

public boolean getRollbackOnly() throws java.lang.IllegalStateException

The getRollbackOnly() method returns true if the transaction has been marked for roll-
back; otherwise, it returns false. You usually call this method after an exception has
been caught to see if there is any point in continuing working on the current transaction.

Message Acknowledgment
With Message-driven beans, the container handles message acknowledgement. The
default being AUTO_ACKNOWLEDGE.

If you use container-managed transactions, you have no control over the message
acknowledgement; it is done automatically as part of the transaction commit.

13 0672323842 CH10 3/20/02 9:28 AM Page 437

With bean-managed transactions, you can specify DUPS_OK_ACKNOWLEDGE as an alterna-
tive to the default. To do this, set the acknowledge-mode element in the deployment
descriptor. With DUPS_OK_ACKNOWLEDGE set, you can reduce the session overhead spent
preventing delivery of duplicate messages, but only do this if receiving duplicate mes-
sages will not cause a problem with the business logic of your bean.

<transaction-type>Bean</transaction-type>
<acknowledge-mode>Dups-ok-acknowledge</acknowledge-mode>

JMS Message Selectors
JMS message selectors was covered in detail on Day 9. A message selector is a string
containing an SQL conditional expression. Only JMS message header values and mes-
sage properties can be specified in the message selector.

With Message-driven beans, the selector is specified at deployment time.

The message selector is added to the screen in the Deployment Tool (see Figure 10.3). In
the example shown, the bean will handle only messages that have a JMSPriority greater
than the default of 4.

438 Day 10

FIGURE 10.3
Deployment Tool
screen showing the set-
ting of message selec-
tors.

The deployment descriptor is updated to include the message-selector tag.

<message-selector>JMSPriority >4</message-selector>

13 0672323842 CH10 3/20/02 9:28 AM Page 438

Message-Driven Beans 439

10

Writing a Simple Message-Driven Bean
As you work through this section, you will create a Message-driven bean that that simply
prints out the contents of a text message on screen.

So that the Message-driven bean can work asynchronously you will employ the
MessageListener interface. This interface and the associated onMessage() method,
which is invoked each time a message is available at the destination, were fully described
in Day 9.

Implementing the Interfaces
As already stated, all Message-driven beans must implement the MessageDrivenBean and
MessageListener interfaces.

import javax.ejb.*;
import javax.jms.*;
public class MDBPrintMessage implements MessageDrivenBean, MessageListener {
// class body not shown – see listing 10.1
}

Just like the EntityBean and SessionBean interfaces, the MessageDrivenBean interface
extends the javax.ejb.EnterpriseBean interface.

The MessageDrivenBean interface contains only two methods—
setMessageDrivenContext() and ejbRemove(), see the class diagram in Figure 10.4.

FIGURE 10.4
The
MessageDrivenBean

class diagram.

EnterpriseBean

MessageDrivenBean

setMessageDrivenContext()
ejbRemove()

You also need to supply an ejbCreate() method.

In this example, we have no need to create or store resources, and it is so simple that we
will leave all the required methods blank.

13 0672323842 CH10 3/20/02 9:28 AM Page 439

public void setMessageDrivenContext (MessageDrivenContext ctx) {}
public void ejbRemove() {}
public void ejbCreate() {}

The MessageListener interface is where the Message-driven bean carries out the bean’s
business logic. As already stated, it consists of the single method onMessage(). In this
example, we will simply test that the message is a TextMessage and, if it is, print it to
the screen. The full code is shown in Listing 10.1.

LISTING 10.1 Simple Print Message Message-Driven Bean

1: import javax.ejb.*;
2: import javax.jms.*;
3:
4: public class MDBPrintMessage implements MessageDrivenBean, MessageListener {
5:
6: public void setMessageDrivenContext (MessageDrivenContext ctx) {}
7: public void ejbRemove() {}
8: public void ejbCreate() {}
9:
10: public void onMessage(Message message) {
11: try {
12: if (message instanceof TextMessage)
13: {
14: String text = ((TextMessage) message).getText();
15: System.out.println(“Received: “ + text);
16: }
17: } catch(Exception ex) {
18: throw new EJBException(ex);
19: }
20: }
21: }

As you can see, there is no reference in this code to any particular JMS queue or topic.
This means that the bean is not only generic and can be associated with any queue or
topic at deployment time, it can also be associated with several different queues or topics
at the same time.

Running the Example
Before you can see your Message-driven bean working, there are a number of steps still
to go through:

1. Compile the bean.

2. Use j2eeadmin or deploytool to create the message queue.

440 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 440

Message-Driven Beans 441

10

3. Deploy the bean.

4. Create a sender client to create a message.

Creating the Queue
The message bean is associated with a queue or topic at deployment time. This queue
must already exist. To create a queue (or topic), do the following:

1. Ensure that J2EE server is running.

2. Use j2eeadmin or deploytool to create the message queue or a topic.

To see the existing queues and topics, use the following:

j2eeadmin –listJMSDestination

or view the Destinations screen in deploytool. This is found by selecting Server
Configuration from the Tools menu and then the Destinations icon in the left panel.

The J2EE RI has two default queues predefined—jms/Queue and jms/Topic.

To add your queue, use the following:

j2eeadmin –addJMSDestination jms/firstQueue queue

The j2eeadmin command works silently, so to check that your queue has been created,
run J2eeadmin -listJMSDestination once more. Figure 10.5 demonstrates the use of
these two commands to create a queue called jms/firstQueue (this is the queue you will
use in this first example).

Alternatively, you can add the queue in deploytool on the Destinations screen.

FIGURE 10.5
Using j2eeadmin to
add a JMS queue to
the container.

When your bean is deployed, the following will appear in the XML deployment
descriptor.

13 0672323842 CH10 3/20/02 9:28 AM Page 441

<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>

</message-driven-destination>

Deploying the Message-Driven Bean
By this time, you should be familiar with deploying Entity and Session beans. This sec-
tion will only cover in any detail where the process differs for Message-driven beans.

The steps are as follows:

1. Run the deploytool.

2. Create a new application to hold your bean called MDBPrintMessage.

3. Select New Enterprise Bean from the File menu and add the
MDBPrintMessage.class file to the MDBPrintMessage application JAR file.

4. On the next screen, where you choose the type of enterprise bean that you are cre-
ating, select the bean type to be Message-Driven—most of the screen will blank
out at this point.

5. Select MDBPrintMessage from the drop-down list for Enterprise Bean Class. The
Enterprise Bean Name will be filled in automatically (see Figure 10.6).

442 Day 10

FIGURE 10.6
Selecting the Message-
Driven bean.

6. On the next Transaction Management screen, select Container-Managed (see
Figure 10.7).

13 0672323842 CH10 3/20/02 9:28 AM Page 442

Message-Driven Beans 443

10

7. On the Message-Driven Bean Settings, select:

Destination type: queue

Destination: jms/firstQueue

Connection Factory: QueueConnectionFactory

Leave the JMS Message Selector blank (see Figure 10.8).

8. Select Finish.

9. Select the Verifier from the Tools menu. If the Verifier indicates that the bean has
failed a tests.ejb.SecurityIdentityRefs test, this can safely be ignored.
Security roles do not apply to a Message-driven bean because it runs within the
identity of the container.

10. Select Deploy from the Tools menu to bring up the screen shown in Figure 10.9.

11. You will not need the Client Jar, so deselect it.

12. Select Finish and check that the bean has been successfully deployed.

Listing 10.2 shows the XML deployment descriptor that has been created for you.
Highlighted in bold are those items that are of interest to you as a Message-driven bean
writer.

FIGURE 10.7
Selecting Container-
Managed transactions.

13 0672323842 CH10 3/20/02 9:28 AM Page 443

LISTING 10.2 Deployment Descriptor for MDBPrintMessage

1: <?xml version=”1.0” encoding=”UTF-8”?>
2: <!DOCTYPE ejb-jar PUBLIC ‘-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans
3: ➥ 2.0//EN’ ‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
4: <ejb-jar>
5: <display-name>MDBPrintMessage</display-name>

444 Day 10

FIGURE 10.8
Selecting JNDI refer-
ences for Destination
and Connection
Factory.

FIGURE 10.9
Deploying the
MDBPrintMessage

bean.

13 0672323842 CH10 3/20/02 9:28 AM Page 444

Message-Driven Beans 445

10

6: <enterprise-beans>
7: <message-driven>
8: <display-name>MDBPrintMessage</display-name>
9: <ejb-name>MDBPrintMessage</ejb-name>
10: <ejb-class>MDBPrintMessage</ejb-class>
11: <transaction-type>Container</transaction-type>
12: <message-driven-destination>
13: <destination-type>javax.jms.Queue</destination-type>
14: </message-driven-destination>
15: </message-driven>
16: </enterprise-beans>
17: <assembly-descriptor>
18: <container-transaction>
19: <method>
20: <ejb-name>MDBPrintMessage</ejb-name>
21: <method-intf>Bean</method-intf>
22: <method-name>onMessage</method-name>
23: <method-params>
24: <method-param>javax.jms.Message</method-param>
25: </method-params>
26: </method>
27: <trans-attribute>Required</trans-attribute>
28: </container-transaction>
29: </assembly-descriptor>
30: </ejb-jar>

Create a Sender Client to Create a Message
So far, you have created a Message-driven bean that is (as far as you are concerned)
waiting to handle any message sent to the jms/firstQueue queue. All that is left to do is
send a message to that queue and check that your bean is working correctly.

You can use the code or the PTPSender program described in Day 9 to send the message.
This is not an EJB, it is a simple client application, so it does not need to be deployed.
This code has been reproduced in Listing 10.3. for completeness.

LISTING 10.3 Point-to-Point Sender Code to Create and Send a Message to the
jms/firstQueue Queue

1: import javax.naming.*;
2: import javax.jms.*;
3:
4: public class PTPSender {
5:
6: private QueueConnection queueConnection;
7: private QueueSession queueSession;

LISTING 10.2 Continued

13 0672323842 CH10 3/20/02 9:28 AM Page 445

8: private QueueSender queueSender;
9: private Queue queue;
10:
11: private static final String jndiFactory = “QueueConnectionFactory”;
12: private static final String jndiQueue = “jms/firstQueue”;
13:
14: public static void main(String[] args) {
15: try {
16:
17: PTPSender sender = new PTPSender(jndiFactory, jndiQueue);
18: System.out.println (“Sending message to jms/firstQueue”);
19: sender.sendMessage(“Here is a message sent to jms/firstQueue”);
20: sender.close();
21: } catch(Exception ex) {
22: System.err.println(“Exception in PTPSender: “ + ex);
23: }
24: }
25:
26: public PTPSender(String jndiFactory, String jndiQueue)
27: ➥ throws JMSException, NamingException {
28: Context context = new InitialContext();
29: QueueConnectionFactory queueFactory =
30: ➥ (QueueConnectionFactory)context.lookup(jndiFactory);
31: queueConnection = queueFactory.createQueueConnection();
32: queueSession = queueConnection.createQueueSession(false,
33: ➥ Session.AUTO_ACKNOWLEDGE);
34: queue = (Queue)context.lookup(jndiQueue);
35: queueSender = queueSession.createSender(queue);
36: }
37:
38: public void sendMessage(String msg) throws JMSException {
39: TextMessage message = queueSession.createTextMessage();
40: message.setText(msg);
41: queueSender.send(message);
42: }
43:
44: public void close() throws JMSException {
45: //Send a non-text control message indicating end of messages
46: queueSender.send(queueSession.createMessage());
47:
48: queueSender.close();
49: queueSession.close();
50: queueConnection.close();
51: }
52: }

Run the PTPSender program from the command line to put a message in the queue
jms/firstQueue.

446 Day 10

LISTING 10.3 Continued

13 0672323842 CH10 3/20/02 9:28 AM Page 446

Message-Driven Beans 447

10

Check that you see the message:

“Here is a message sent to jms/firstQueue”

Now check that your message bean has received the message. If you started the J2EE RI
with the -verbose switch, you will see the output of the Message-driven bean in the
server window. If not, the output will be in the server log file.

“Received: Here is a message sent to jms/firstQueue “

Developing the Agency Case Study Example
Now you will turn your attention to a more realistic example. You will extend the Agency
case study to utilize a Message-driven bean to match advertised jobs to new applicants as
they register with the system or when an applicant updates his or her skills or location.

The steps are as follows:

1. Write a helper class that creates and sends a message to the jms/applicantQueue
containing the applicant’s login.

2. Amend the Agency and Register Session beans to call this new method when a
new applicant is registered or the applicant’s location or skills are changed.

3. Write a Message-driven bean to

• Consume a message on the jms/applicantQueue

• Look up the applicant’s location and skills information

• Find all the jobs that match the applicant’s location

• For each of these jobs, find those that require the applicant’s skills

• Determine if the applicant has all or just some of the skills

• Store applicant and job matches in the Matched table

4. Create the jms/applicantQueue queue.

5. Deploy the new EJBS; run and test the application.

Step 1—Sender Helper Class
This class contains a constructor for the class and two methods—sendApplicant() and
close().

The constructor takes two parameters, which are strings representing the JNDI names of
the JMS connection factory and the JMS queue.

public MessageSender(String jndiFactory, String jndiQueue)
➥ throws JMSException, NamingException {

13 0672323842 CH10 3/20/02 9:28 AM Page 447

Context context = new InitialContext();
QueueConnectionFactory queueFactory =
➥ (QueueConnectionFactory)context.lookup(jndiFactory);

queueConnection = queueFactory.createQueueConnection();
queueSession = queueConnection.createQueueSession(false,
➥ Session.AUTO_ACKNOWLEDGE);

queue = (Queue)context.lookup(jndiQueue);
queueSender = queueSession.createSender(queue);

}

The sendApplicant() method is called by the Agency Session bean when a new appli-
cant registers with the system and the Register Session bean when an existing applicant
changes his or her location or job skills. It has two parameters—the applicant’s login
string and a Boolean denoting if this is a new applicant.

The close() method is called before the application is terminated. It sends a message
that lets the container know that no more messages will be sent to the queue and frees-up
resources.

The code for the MessageSender in shown in Listing 10.4, it should be very familiar by
now.

LISTING 10.4 MessageSender Helper Class

1: import javax.naming.*;
2: import javax.jms.*;
3:
4: public class MessageSender {
5:
6: private QueueConnection queueConnection;
7: private QueueSession queueSession;
8: private QueueSender queueSender;
9: private Queue queue;
10:
11: public MessageSender(String jndiFactory, String jndiQueue)
12: ➥ throws JMSException, NamingException {
13: Context context = new InitialContext();
14: QueueConnectionFactory queueFactory =
15: ➥ (QueueConnectionFactory)context.lookup(jndiFactory);
16: queueConnection = queueFactory.createQueueConnection();
17: queueSession = queueConnection.createQueueSession(false,
18: ➥ Session.AUTO_ACKNOWLEDGE);
19: queue = (Queue)context.lookup(jndiQueue);
20: queueSender = queueSession.createSender(queue);
21: }
22:
23: public void sendApplicant (String applicant, boolean newApplicant)
24: ➥ throws JMSException {

448 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 448

Message-Driven Beans 449

10

25: TextMessage message = queueSession.createTextMessage();
26: message.setBooleanProperty (“NewApplicant”, newApplicant);
27: message.setText(applicant);
28: queueSender.send(message);
29: }
30:
31: public void close() throws JMSException {
32: //Send a non-text control message indicating end of messages
33: queueSender.send(queueSession.createMessage());
34:
35: queueSender.close();
36: queueSession.close();
37: queueConnection.close();
38: }
39: }

Step 2—Agency and Register Session Bean
The following changes are required to AgencyBean.java and RegisterBean.java to call
the MessageSender.send() method when a new applicant is registered or the applicant’s
location or skills are changed.

1. In both AgencyBean.java and RegisterBean.java create a MessageSender object
in the setSessionContext() method..
private MessageSender messageSender;
public void setSessionContext(SessionContext ctx) {

/* existing code */
messageSender = new MessageSender (
➥ “java:comp/env/jms/QueueConnectionFactory”,
➥ “java:comp/env/jms/applicantQueue”);
}

2. In the AgencyBean.java file, add code to send a message indicating that a new
applicant has registered in the createApplicant() method. The added line is
shown in bold in the following code.
public void createApplicant(String login, String name,
➥ String email) throws DuplicateException, CreateException{

try {
ApplicantLocal applicant =

➥ applicantHome.create(login,name,email);
messageSender.sendApplicant(applicant.getLogin(),true);

}
catch (CreateException e) {

error(“Error adding applicant “+login,e);
}

LISTING 10.4 Continued

13 0672323842 CH10 3/20/02 9:28 AM Page 449

catch (JMSException e) {
error(“Error sending applicant details to message

➥ bean “+login,e);
}

3. In the RegisterBean.java file, change updateDetails() to send a message to
indicate that the applicant’s details have changed. The added lines are shown in
bold in the following code.
public void updateDetails (String name, String email,
➥ String locationName, String summary, String[] skillNames) {

List skillList;
try {

skillList = skillHome.lookup(Arrays.asList(skillNames));
} catch(FinderException ex) {

error(“Invalid skill”, ex); // throws an exception
return;

}

LocationLocal location = null;
if (locationName != null) {

try {
location =

➥ locationHome.findByPrimaryKey(locationName);
} catch(FinderException ex) {

error(“Invalid location”, ex);
return;

}
}
applicant.setName(name);
applicant.setEmail(email);
applicant.setLocation(location);
applicant.setSummary(summary);
applicant.setSkills(skillList);
try {

messageSender.sendApplicant(applicant.getLogin(),false);
}
catch (JMSException ex) {

ctx.setRollbackOnly();
error (“Error sending applicant match message”,ex);

}
}

4. In both AgencyBean.java and RegisterBean.java, add the following to
ejbRemove() to close down the MessageSender.
try {

messageSender.close();
}
catch (JMSException ex) {

450 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 450

Message-Driven Beans 451

10

error(“Error closing down the queue”,ex);
}

5. Compile and deploy this code.

Step 3—The Message-Driven Bean
Although this Message-driven bean is significantly larger than your previous example, it
does essentially the same thing.

This time, you need to obtain the JNDI InitialContext and use it to obtain references
to various Entity beans used in the code.

public void setMessageDrivenContext(MessageDrivenContext ctx) {
InitialContext ic = null;

try {
ic = new InitialContext();
applicantHome = (ApplicantLocalHome)ic.lookup(

➥ “java:comp/env/ejb/ApplicantLocal”);
}
catch (NamingException ex) {

error(“Error connecting to java:comp/env/ejb/ApplicantLocal:”,ex);
}
try {

jobHome = (JobLocalHome)ic.lookup(“java:comp/env/ejb/JobLocal”);
}
catch (NamingException ex) {

error(“Error connecting to java:comp/env/ejb/JobLocal:”,ex);
}
try {

matchedHome = (MatchedLocalHome)ic.lookup(
➥ “java:comp/env/ejb/MatchedLocal”);

}
catch (NamingException ex) {

error(“Error connecting to java:comp/env/ejb/MatchedLocal:”,ex);
}

}

The ejbCreate() method is blank.

public void ejbCreate(){}

The ejbRemove() cleans up by setting all the references to the Entity beans to null.
There are no other resources for you to deallocate.

public void ejbRemove(){
applicantHome = null;
jobHome = null;
matchedHome = null;

}

13 0672323842 CH10 3/20/02 9:28 AM Page 451

The onMessage() method is where you will code the algorithm that matches an applicant
to advertised jobs. First, you check that onMessage() has received the expected text mes-
sage. The message contains the applicant’s login, which is the primary key on the
Applicants table. This primary key is used to obtain the applicant’s location and skills in
subsequent finder methods.

String login = null;
try {

if (!(message instanceof TextMessage)) {
System.out.println(“ApplicantMatch: bad message:” + message.getClass());

return;
}

Now, check if this applicant is a new one or if he or she has amended his or her registra-
tion. If the applicant has changed his or her details, you need to delete the existing
matches stored in the Matched table.

try {
login = ((TextMessage)message).getText();
if (! message.getBooleanProperty(“NewApplicant”)) {

matchedHome.deleteByApplicant(login);
}

}
catch (JMSException ex) {

error (“Error getting JMS property: NewApplicant”,ex);
}

Use the login primary key to find the applicant’s location using the Applicant Entity
bean’s finder method.

try {
ApplicantLocal applicant = applicantHome.findByPrimaryKey(login);
String location = applicant.getLocation().getName();

Next, obtain all the skills that the applicant has registered and store them in an array.

Collection skills = applicant.getSkills();
Collection appSkills = new ArrayList();
Iterator appIt = skills.iterator();
while (appIt.hasNext()) {

SkillLocal as = (SkillLocal)appIt.next();
appSkills.add(as.getName());

}

Now you have all the information you need about the applicant. The next step is to start
matching the jobs. First find the jobs that match the applicant’s location from the Job
bean.

Collection col = jobHome.findByLocation(location);

452 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 452

Message-Driven Beans 453

10

Iterate over this collection finding the skills required for each job.

Iterator jobsIter = col.iterator();
while (jobsIter.hasNext()) {

JobLocal job = (JobLocal)jobsIter.next();
Collection jobSkills = job.getSkills();

Now you have a appSkills array containing the applicant’s skills and a jobSkills col-
lection containing the skills required for the job. The next task is to find how many of
these skills match. This is done by iterating over the jobSkills, and for each jobSkill,
searching the appSkills array for a match. When a match is found, the skillMatch
counter is incremented.

int skillMatch = 0;
Iterator jobSkillIter = jobSkills.iterator();
while (jobSkillIter.hasNext()) {

SkillLocal jobSkill = (SkillLocal)jobSkillIter.next();
if (appSkills.contains(jobSkill.getName()))
skillMatch++;

}

Now see if you have a match. If there was a job skill to match (jobSkills.size() >0)
and the applicant did not have any of them (skillMatch == 0), get the next job (con-
tinue).

if (jobSkills.size() > 0 && skillMatch == 0)
continue;

Otherwise, determine if the applicant has all or just some of the skills.

boolean exact = skillMatch == jobSkills.size();

You are now in a position to update the Matched table. First create the primary key for
this table.

MatchedPK key = new MatchedPK(login,job.getRef(),job.getCustomer());

Now all that is left to do is store the applicant and job details in the Matched table.

try {
matchedHome.create(key.getApplicant(), key.getJob(),
➥ key.getCustomer(), exact);

}
catch (CreateException ex) {System.out.println(
➥ “ApplicantMatch: failed to create matched entry: “+key);

}

That is all there is to the bean apart from the exception handling. The full listing of the
ApplicantMatch Message-driven bean is shown in Listing 10.5.

13 0672323842 CH10 3/20/02 9:28 AM Page 453

LISTING 10.5 Full Listing on ApplicantMatch.java Message-Driven Bean Code

1: package data;
2:
3: import java.util.*;
4: import javax.ejb.*;
5: import javax.jms.*;
6: import javax.naming.*;
7:
8: public class ApplicantMatch implements MessageDrivenBean, MessageListener
9: {
10: private ApplicantLocalHome applicantHome;
11: private JobLocalHome jobHome;
12: private MatchedLocalHome matchedHome;
13:
14: public void onMessage(Message message) {
15: String login = null;
16: if (!(message instanceof TextMessage)) {
17: System.out.println(“ApplicantMatch: bad message:” +
18: ➥ message.getClass());
19: return;
20: }
21: try {
22: login = ((TextMessage)message).getText();
23: if (! message.getBooleanProperty(“NewApplicant”)) {
24: matchedHome.deleteByApplicant(login);
25: }
26: }
27: catch (JMSException ex) {
28: error (“Error getting JMS property: NewApplicant”,ex);
29: }
30: try {
31: ApplicantLocal applicant =

➥applicantHome.findByPrimaryKey(login);
32: String location = applicant.getLocation().getName();
33: Collection skills = applicant.getSkills();
34: Collection appSkills = new ArrayList();
35: Iterator appIt = skills.iterator();
36: while (appIt.hasNext()) {
37: SkillLocal as = (SkillLocal)appIt.next();
38: appSkills.add(as.getName());
39: }
40: Collection col = jobHome.findByLocation(location);
41: Iterator jobsIter = col.iterator();
42: while (jobsIter.hasNext()) {
43: JobLocal job = (JobLocal)jobsIter.next();
44: Collection jobSkills = job.getSkills();
45: int skillMatch = 0;
46: Iterator jobSkillIter = jobSkills.iterator();
47: while (jobSkillIter.hasNext()) {

454 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 454

Message-Driven Beans 455

10

48: SkillLocal jobSkill = (SkillLocal)jobSkillIter.next();
49: if (appSkills.contains(jobSkill.getName()))
50: skillMatch++;
51: }
52: if (jobSkills.size() > 0 && skillMatch == 0)
53: continue;
54: boolean exact = skillMatch == jobSkills.size();
55: MatchedPK key = new MatchedPK(login,job.getRef(),
56: ➥ job.getCustomer());
57: try {
58: matchedHome.create(key.getApplicant(),key.getJob(),
59: ➥ key.getCustomer(), exact);
60: }
61: catch (CreateException ex) {
62: System.out.println(“ApplicantMatch: failed to create
63: ➥ matched entry: “+key);
64: }
65: }
66: }
67: catch (FinderException ex) {
68: System.out.println(“ApplicantMatch: failed to find applicant
69: ➥ data: “+login);
70: }
71: catch (RuntimeException ex) {
72: System.out.println(“ApplicantMatch: “+ex);
73: ex.printStackTrace();
74: throw ex;
75: }
76: }
77:
78: // EJB methods start here
79:
80: public void setMessageDrivenContext(MessageDrivenContext ctx) {
81: InitialContext ic = null;
82: try {
83: ic = new InitialContext();
84: applicantHome = (ApplicantLocalHome)ic.lookup(
85: ➥ “java:comp/env/ejb/ApplicantLocal”);
86: }
87: catch (NamingException ex) {
88: error(“Error connecting to

➥java:comp/env/ejb/ApplicantLocal:”,ex);
89: }
90: try {
91: jobHome =

➥(JobLocalHome)ic.lookup(“java:comp/env/ejb/JobLocal”);
92: }
93: catch (NamingException ex) {

LISTING 10.5 Continued

13 0672323842 CH10 3/20/02 9:28 AM Page 455

94: error(“Error connecting to java:comp/env/ejb/JobLocal:”,ex);
95: }
96: try {
97: matchedHome = (MatchedLocalHome)ic.lookup(
98: ➥ “java:comp/env/ejb/MatchedLocal”);
99: }
100: catch (NamingException ex) {
101: error(“Error connecting to
➥java:comp/env/ejb/MatchedLocal:”,ex);
102: }
103: }
104:
105: public void ejbCreate(){
106: }
107:
108: public void ejbRemove(){
109: applicantHome = null;
110: jobHome = null;
111: matchedHome = null;
112: }
113:
114: private void error (String msg, Exception ex) {
115: String s = “ApplicantMatch: “+msg + “\n” + ex;
116: System.out.println(s);
117: throw new EJBException(s,ex);
118: }

Compile this bean.

Step 4—Create the JMS Queue
Run the J2EE RI and use j2eeadmin to create the JMS queue.

j2eeadmin –addJMSDestination jms/applicantQueue queue

Alternatively, use deploytool and select Destinations from the Configure Installation
screen and add the queue.

Step 5—Deploy the EJBS
Now deploy the ApplicantMatch Message-driven bean. You will need to add the refer-
ences to the following entity beans:

• applicant—Coded name java:comp/env/ejb/ApplicantLocal

• applicantSkill—Coded name java:comp/env/ejb/ApplicantSkillLocal

• job—Coded name java:comp/env/ejb/JobLocal

456 Day 10

LISTING 10.5 Continued

13 0672323842 CH10 3/20/02 9:28 AM Page 456

Message-Driven Beans 457

10

• jobSkill—Coded name java:comp/env/ejb/JobSkillLocal

• matched—Coded name java:comp/env/ejb/MatchedLocal

Step 6—Testing the ApplicantMatch Bean
Run the Agency application using the appropriate runAll batch file for your operating
system. Use the Register screen to add a new applicant, whose location is London and
skills are Cigar Maker.

Use the Tables screen to view the contents of the Matched table and check that a row
has been added for the new applicant with the following details:

• Job—Cigar trimmer

• Customer—winston

• Exact—false

Add another applicant whose location is also London but and whose skills are Cigar
Maker and Critic. Check that this creates a row with the following details in the Matched
table:

• Job—Cigar trimmer

• Customer—winston

• Exact—true

Change the skills for this second applicant. Remove the Cigar Maker and Critic and add
the skill Bodyguard.

Check that the row for this applicant has now been deleted from the Matched table.

If these checks are okay, congratulations! You have successfully deployed the
ApplicantMatch Message-driven bean. Of course, you can add or amend other appli-
cants to find other job matches in the system.

Using Other Architectures
Message-driven beans were designed to operate within the context of JMS implementa-
tions with messages sent by a JMS Server. This does not mean Message-driven beans can
not process messages sent by e-mail, HTTP, FTP, or any other protocol. As long as the
server is able to convert these protocols into a JMS message (simple encapsulation will
normally do), it can be handled by a Message-driven bean.

If the messages are defined in an open, extensible language like XML, unparalleled inter-
operability can be achieved in loosely-coupled systems using a model that is easy to

13 0672323842 CH10 3/20/02 9:28 AM Page 457

understand. This means that Message-driven beans have the potential to become the de-
facto model for handling any message type.

Summary
Today, you have created some simple Message-driven beans and seen how easy it is con-
sume JMS messages. Message-driven beans are a useful addition to the existing entity
and session EJBs, offering a way for you to write asynchronous message consumers. You
have seen how the container manages the life cycle of the bean, its transactions and secu-
rity, so that having deployed your Message-driven beans, you can forget about them.

Q&A
Q What are the major differences between Message-driven beans and Entity or

Session beans?

A Message-driven beans have no client interface; they have no Home, Local, or
Remote interfaces—their methods cannot be called directly. Message-driven beans
exist only to consume JMS messages and are controlled by the container. They are
anonymous and are called asynchronously. They do not have a passive state. They
have no client security context.

Q What are the two interfaces a Message-driven bean must implement?

A The javax.ejb.MessageDrivenBean interface and the
javax.jms.MessageListener interface.

Q What is the Method Ready Pool?

A The Method Ready Pool is the collection of Message-driven bean instances that are
available in the container to consume JMS messages.

Q How can I associate a Message-driven bean with a queue or a topic?

A A queue or topic is associated with a Message-driven bean at deploy time. The
queue or topic must have already been registered with the J2EE system.

Exercise
To extend your knowledge of the Message-driven beans, try the following exercise.

1. Extend the Agency case study. Add a Message-driven bean that receives a message
from the AdvertiseJob Session bean when a new job is advertised. The Message-
driven bean should search through all the applicants to find those suitable to be
considered for the job. To be considered for a job, the applicant must match the
job’s:

458 Day 10

13 0672323842 CH10 3/20/02 9:28 AM Page 458

Message-Driven Beans 459

10

• Location

• At least one skill

If the applicant has all the required skills set exactMatch to true; otherwise,
false.

All applicants that match at least one skill must be added to the Matched table.

Don’t forget to create a JMS queue for the messages (you can’t use the same queue
as the one used in the Applicant example).

Add some new jobs and use the TableClient program to check that rows are being
added to the Matched table (this will only happen if are some applicants that match
the job’s location and skills).

2. Extend your previous solution to update the Matched table when job adverts are
changed. Hint: you can delete the old matched rows and add the applicants that
match the new criteria rather than try to update the rows.

For completeness you should update the Register and Agency beans so that when
a job or customer is removed, all their entries in the Matched table are also
removed. The Matched Entity bean has suitable home methods that support this
functionality.

13 0672323842 CH10 3/20/02 9:28 AM Page 459

13 0672323842 CH10 3/20/02 9:28 AM Page 460

DAY 11

WEEK 2

JavaMail
In Day 9, “Java Message Service,” and Day 10, “Message-Driven Beans,” you
learned about the Java Messaging Service and Message-driven beans. These
technologies allow you to write code that provides application-to-application
communication. Today’s lesson looks at how you can provide application-to-
human communication through the use of e-mail.

Today you learn how e-mail systems work and how the JavaMail API models
these systems. You will then explore the API’s main classes and see how to use
these to provide typical day-to-day e-mail functionality, such as sending attach-
ments and deleting messages. Finally, you will have the opportunity to expand
on the case study you have been developing so that it sends e-mail messages to
people who register with the service.

Today’s lesson covers the following topics:

• Understanding e-mail systems, formats, and protocols

• Creating and sending plain text e-mail messages

• Creating and sending multi-media e-mail messages

• Sending e-mail messages with attachments

14 0672323842 CH11 3/20/02 9:39 AM Page 461

• Retrieving e-mail messages and attachments

• Deleting e-mail messages on the server

• Authenticating users and security

Understanding E-Mail
E-mail is something that most people take for granted without ever really understanding
how it works. If you want to write applications that send and receive e-mail messages, it
is essential to have some understanding of a typical e-mail system environment.

E-mail messages are sent on a client/server basis, but one that is different to that used for
Web pages. Figure 11.1 shows a typical e-mail delivery process. As you can see, both the
sender and recipient act as clients to e-mail servers. The sender creates a message and
this forwards to an e-mail server. The server then uses the Simple Mail Transfer Protocol
(SMTP) to send the message across the Internet to the recipient’s mail box on another e-
mail server. The receiver then uses a retrieval protocol, such as Post Office Protocol
(POP3) or Internet Message Access Protocol (IMAP), to retrieve the message from their
e-mail server.

462 Day 11

FIGURE 11.1
A simple e-mail archi-
tecture.

Message Sender
Message
Recipient

Retrieval
Protocol

Sender’s Mail
Server

Recipient’s Mail
Server

Mailbox

Mailbox

Mailbox

SMTP

The actual e-mail message itself consists of two sections—the header and the body. Mail
headers are name-value pairs that define certain attributes of a particular message, such
as who the sent the message and when the message was sent. The body is the actual e-
mail message. Originally, the message body could only contain ASCII-based text. The
standard 128-character ASCII set and the inability to embed multimedia objects or attach
files meant that e-mail was restrictive. Over the years, there have been a number of ways
to expand the functionality of e-mail. Today, you can use the Multipurpose Internet Mail
Extensions (MIME) format to construct and send content-rich e-mail messages that are

14 0672323842 CH11 3/20/02 9:39 AM Page 462

JavaMail 463

11

not limited by the standard 128-character ASCII set. You will learn more about MIME in
just a moment, but first, today’s lesson will provide you with an overview of some the
commonly used e-mail protocols.

SMTP
Simple Mail Transfer Protocol (SMTP) is the protocol that mail servers use to send mes-
sages to one another. SMTP communication occurs over TCP port 25 using a simple
sequence of four-character client commands and three-digit server responses. It is unlike-
ly that you will ever have to communicate using SMTP directly with a mail server, but it
might interest you to see a typical conversation between a client and a mail server:

HELO madeupdomain.com
250 Hello host127-0-0-1.anotherdomain.com [127.0.0.1]

MAIL FROM: me@anotherdomain.com
250 < me@anotherdomain.com > is syntactically correct

RCPT TO: user@madeupdomain.com
250 < user@madeupdomain.com > is syntactically correct

DATA
354 Enter message, ending with “.” on a line by itself

Hello World!
.

250 OK id=1643UJ-00030Z-00
QUIT

221 closing connection

You can see just how simple the protocol is. The client connects to the server and issues
a HELO command and the server responds with a 250 (OK) response. The client then
issues a MAIL FROM: command and a RCPT TO: command and, in both instances, the
server replies with a 250 response. The client then issues a DATA command and sends a
message. Finally, the server issues a 250 response and the client issues the QUIT com-
mand.

The important thing to note about SMTP is that it is not used to deliver a message direct-
ly to the recipient but, instead, delivers it the recipient’s mail server. This mail server
then forwards the message to the recipient’s mail box—a file or other repository that is
held on the server—and not the recipient’s client machine.

Post Office Protocol 3 (POP3)
POP3 is a protocol that allows message recipients to retrieve e-mail messages stored in a
mailbox on a mail server. The protocol operates on TCP port 110 and, like SMTP, uses a
series of simple requests and responses. Unlike SMTP, users must provide authentication
credentials (username and password) before they can download e-mail messages from
their mail boxes.

14 0672323842 CH11 3/20/02 9:39 AM Page 463

Many e-mail clients use POP3, although the protocol allows quite limited server-side
manipulation of messages. On the server, the user may list, delete, and retrieve e-mail
messages from his or her mail box.

Internet Message Access Protocol (IMAP)
Like POP3, IMAP is an e-mail message retrieval protocol. Also like POP3, it works on a
simple request-response model, but it does operate on a different TCP port—port 143.
The biggest difference between the two protocols is that IMAP transfers a lot of client-
side functionality to the server. For example, you can browse messages’ subjects and
sizes and senders’ addresses before you decide to download the messages to your local
machine. You can also create, delete, and manipulate folders on the server, and move
messages between these folders.

Other Protocols
The three previously mentioned protocols are prevalent current e-mail systems, but there
are other e-mail protocols. Some of these are previous versions of existing protocols. For
example, some machines might still run POP2 servers. Other protocols are variations on
those previously mentioned—for example, IMAP over SSL. Finally, there are a variety of
protocols that provide either specialist functionality or different interpretations on the
popular protocols. For example, the Network News Transport Protocol (NNTP) is the
main protocol clients and servers use with Usenet newsgroups. If you want to learn more
about this protocol, refer to Request for Comments (RFC) 997, which is available at
http://www.rfc.net/rfc997.html.

Multipurpose Internet Mail Extensions (MIME)
The MIME format extends the capabilities of e-mail beyond the 128-character ASCII set
to provide

• Message bodies in character sets other than US-ASCII

• Extensible formats for non-textual message bodies, such as images

• Multipart message bodies (you’ll learn about these later today)

• Header information in character sets other than US-ASCII

• Unlimited message body length

The MIME standard provides a standard way of encoding many different types of data,
such as GIF images and MPEG videos. MIME defines additional message headers that a
client can then use to unpack, decode, and interpret the data the message body contains.
The message body may consist of several body parts including attachments. The

464 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 464

JavaMail 465

11

“Creating Multi-Media E-mails” section of today’s lesson explores MIME in more depth.
You can also find out more about MIME by reading RFCs 2045 through to 2049, which
you can access at http://www.rfc.net/.

Introducing the JavaMail API
As you have seen, e-mail systems have relatively complex architectures and use a selec-
tion of transport protocols. In the past, a developer wanting to send or retrieve e-mail
messages would have to use TCP sockets and, using an appropriate protocol, talk directly
to an e-mail server. As you can imagine, coding such applications was typically involved
and intensive. Alternatively, a developer would have to use a vendor-specific API to
access e-mail functionality, locking their code into one platform or technology. The
JavaMail API changes all of this.

The API provides a generic model of an e-mail system, which allows you to send and
retrieve messages in a platform independent and protocol independent way. In addition,
JavaMail allows you to simply create different types of messages, such as plain text,
those with attachments, or those with mixed binary content. Sun Microsystems’ reference
implementation of JavaMail supports the three most popular e-mail protocols—SMTP,
POP3, and IMAP. Other protocols are available separately, for example, there are third-
party implementations that support IMAP over SSL and NNTP.

Setting up Your Development Environment
If you downloaded and installed the J2EE reference implementation, you are ready to
start exploring the JavaMail API. If you did not install the reference implementation, you
will need to install the JavaMail API and Java Activation Framework (JAF) before you
can start writing code.

Before you download the JavaMail API, ensure that you have J2SE 1.2.X or later correct-
ly installed. You must also install the Java Activation Framework (JAF) because the
JavaMail API requires it. The API requires the framework to handle arbitrary large
blocks of data (you will learn more about this later in today’s lesson). You can download
JAF from http://java.sun.com/products/javabeans/glasgow/jaf.html.

Both JAF and the JavaMail API are written in pure Java, so they will operate
on any platform running JDK 1.1 or later.

Note

14 0672323842 CH11 3/20/02 9:40 AM Page 465

After you have downloaded the framework, installation is straightforward. Simply unzip
the download file and append the location of activation.jar to your class path. To do
this on a Windows platform, issue the following command:

set CLASSPATH=%CLASSPATH%;C:\jaf-VERSION\activation.jar

On a Unix-based system that has a Bourne or Korn shell, use the following:

$CLASSPATH=$CLASSPATH:usr/java/jaf-VERSION
$export $CLASSPATH

You have now installed JAF; now download the JavaMail API from
http://java.sun.com/products/javamail/index.html. When downloaded, the actual
installation of JavaMail is as simple as installing JAF. Simply unzip the download file
and append the location of mail.jar to your class path.

That’s it! You have successfully installed the JavaMail API. You will find a selection of
demonstration applications in the demo directory under the JavaMail installation directo-
ry. In addition, you can find the API documentation in the javadocs directory, which is
also under the installation directory.

Sending a First E-mail
This section introduces you to the core classes you need to send an e-mail message.
Specifically, you will use these classes to write code that accepts a SMTP host and mail
recipient from the command line, and then sends a plain text e-mail to that recipient.

Although the application uses the command line, you can modify the code for use in
other situations if you want. For example, you could modify the code so that it accepts
parameters from another application or presents the user with a desktop or applet GUI
written using Swing or AWT.

Creating a First E-mail
Now that you have set up your development environment, you can write the code that
will send an e-mail message. This application uses classes from the javax.mail package
and the javax.mail.internet package. The javax.mail package provides classes that
model a mail system, for example all mail systems require messages to contain a mes-
sage body. The javax.mail.internet package provides classes that are specific to
Internet mail systems, for example, a class that allows you to manipulate the content type
of a message. This application commences by importing both of these packages and
java.util.Properties, which allows you to set the SMTP host as a system property.

466 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 466

JavaMail 467

11

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;

Because this is a simple application, the main() method contains all the code to collect
user input and send the e-mail message. In this example, the user will pass three parame-
ters to the application via the command line—SMTP host, recipient’s e-mail address, and
sender’s e-mail address:

public class SendMail {
public static void main(String[] args) {

if (args.length!=3) {
System.out.println
➥(“Usage: SendMail SMTPHost ToAddress FromAddress”);

System.exit(1);
}

String smtpHost=args[0];
String to=args[1];
String from = args[2];

Before you can create and send an e-mail message, you must have authenticated access
to a SMTP host. If you are unsure of your SMTP host, either check with your system
administrator or obtain the host address from the configuration of an e-mail application.
To help you identify the host, the naming conventions for hosts means that your SMTP
host is likely to take the form of smtp.host or mail.host. After you identify the SMTP
host, you must make it available as a system property to the JVM. To do this, you must
add the host name to the system properties list:

Properties props = System.getProperties();
props.put(“mail.smtp.host”,smtpHost);

The first line of code gets a Properties object that represents the system properties. The
code then writes a key/value pair to the system properties list. The first argument of the
put() method, mail.smtp.host, is defined by Appendix A of the JavaMail specification.
Table 11.1 shows all of the properties the specification defines.

TABLE 11.1 Mail Environment Properties

Property Description

mail.store.protocol Specifies the default message access protocol. The default value is the
first appropriate protocol in the mail configuration files.

mail.transport. Specifies the default mail transport protocol. The default value is the first
protocol appropriate protocol in the mail configuration files.

14 0672323842 CH11 3/20/02 9:40 AM Page 467

mail.host Specifies the default mail server. The default value is the local machine.

mail.user Specifies the default username used when connecting to the mail server.
The default value is user.name.

mail.protocol.host Specifies the protocol-specific mail server. This property overrides any
value you specify for mail.host. The default value is mail.host.

mail.protocol.user Specifies the protocol-specific username used when connecting to the
mail server. This property overrides the value of mail.user. The default
value is mail.user.

mail.from Specifies the return address of the current user. The default value is
username@host.

mail.debug Specifies whether debug is enabled or disabled. The default value is
false—debug is disabled.

In this example, you overrode the value of mail.protcol.host, which in turn overrides
the value of mail.host.

Now that the code defines a Properties object containing the SMTP host, you create a
mail session. A Session object represents the mail session, and all e-mail functionality
works through this object. The Session object has two private constructors. The first pro-
vides a unique mail session that applications cannot share. To get this type of session you
call the getInstance() method:

Session session = Session.getInstance(props, null);

In this example, the first argument is the Properties object that you previously created.
The second argument, null, is an Authenticator object, which today’s lesson discusses
later in the “Authenticating Users and Security” section. The second constructor also
takes these arguments, but it differs in that it creates a Session object that applications
can share. It is this type of Session your first e-mail application uses:

Session session = Session.getDefaultInstance(props, null);

After you create a Session, you can start creating an e-mail message. The Message class
represents an e-mail message, but it is an abstract class, so you must implement a sub-
class. The JavaMail API defines only one subclass, MimeMessage, that represents a stan-
dard MIME style e-mail message. The class has five constructors, but you will only use
one of these at the moment—the default constructor. This accepts a single parameter—a
Session object:

MimeMessage message = new MimeMessage(session);

468 Day 11

TABLE 11.1 Continued

Property Description

14 0672323842 CH11 3/20/02 9:40 AM Page 468

JavaMail 469

11

This creates an empty MimeMessage object. You must now fill the object with appropriate
attributes and content—in this example, subject, message text, from address, and to
address. The MimeMessage class exposes a large number of methods for getting and set-
tings these attributes. Today, you will explore several of these methods, but for a com-
plete guide, refer to the API documentation. In this example, you first set the text of the
message by using the setText() method:

message.setText(“Hi from the J2EE in 21 Days authors”);

The setText() method not only sets the message’s text, but it also sets the content type
of the message to text/plain. If the content is not of the type text/plain, you must
first use the setContent() method to set the message’s content type—you will learn how
to do this later today in the “Authenticating Users and Security” section. The setText()
method throws an exception of the type MessagingException, which is the base class for
all messaging class exceptions. The majority of the methods associated with the mail
packages throw this exception or one of its subclasses, so inevitably you have to catch
these exceptions.

To set the subject of the message, you use the setSubject() method, which takes a
string representing the subject as a parameter:

message.setSubject(“Hi!”);

The message now requires the addresses of the recipient and sender. To set the sender’s
address, you use the setFrom() method. The method takes a single argument of the type
Address. The Address class represents an address in an e-mail message. The class is
abstract, so you must use one of its subclasses, namely InternetAddress. This class has
four constructors; the one you use takes a single parameter—an e-mail address as a
string:

message.setFrom(new InternetAddress(from));

You provide the recipient’s address to the MimeMessage object in a similar way. But you
must also stipulate to which type of recipient the address relates. The Message class has
one inner class, RecipientType, that defines the type of recipient within an e-mail mes-
sage. The class exposes three fields that relate to the different recipient types:

• BCC—Blind carbon copy recipients

• CC—Carbon copy recipients

• TO—TO recipients

In this application, you only send the message to one recipient, so you use the TO field.
When you set the from address, you used the setFrom() method, and you use the
addRecipient() method to set the To address. The code to set the recipient’s address
appears as follows:

14 0672323842 CH11 3/20/02 9:40 AM Page 469

message.addRecipient(Message.RecipientType.TO,new InternetAddress(to));

You have now created the message, now you must send the message. The Transport
class, which models an e-mail transport system, provides you with the means to send the
message. The class provides two static send() methods that send messages. The first
form takes a Message object and an array of Address objects as arguments. It sends the
message to all the recipients the Address objects define and ignores any addresses the
message defines. The second version of this method takes one parameter—a Message
object. Note that the Message object must define at least one recipient’s address. It is this
method you will now use:

Transport.send(message);

The send() method may throw a MessagingException or a SendFailedException. The
SendFailedException is thrown if the send() method fails to send one or more mes-
sages. The exception traceback includes a list of all the e-mail addresses to which it
could not send messages.

You have now completed the code to send an e-mail. Listing 11.1 shows the complete
code:

LISTING 11.1 SendMail.java Full Listing

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;

public class SendMail {
public static void main(String[] args) {

if (args.length!=3) {
System.out.println(“Usage: SendMail SMTPHost ToAddress

➥FromAddress”);
System.exit(1);

}

String smtpHost = args[0];
String to = args[1];
String from = args[2];

// Get properties object
Properties props = System.getProperties();

// Define SMTP host property
props.put(“mail.smtp.host”,smtpHost);

try {

470 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 470

JavaMail 471

11

// Get a session
Session session = Session.getDefaultInstance(props,null);

// Create a new message object
MimeMessage message = new MimeMessage(session);

// Populate message object
message.setText(“Hi from the J2EE in 21 Days authors.”);
message.setSubject(“Hi!”);
message.setFrom(new InternetAddress(from));

message.addRecipient
➥(Message.RecipientType.TO,new InternetAddress(to));

System.out.println(“Message Sent”);

// Send the message
Transport.send(message);

}
catch (MessagingException me) {

System.err.println(me.getMessage());
}

}
}

To run this application, you must first compile it. Compile it from the command line
using javac as you would for any other Java application. After it compiles, run the appli-
cation by issuing the following command:

java SendMail mail.yourSMTPHost.com toAddress fromAddress

When the program executes, a Message Sent message should display. If the program
fails to execute correctly, check the error messages the JVM displays. The most likely
cause of failure is an incorrect SMTP host or one that is inaccessible from your system.
There are several ways you can check whether the host exists and is visible. For exam-
ple, you can run a trace route to your SMTP host; under Windows (all versions) issue the
following command at the command prompt:

tracert yourSMTPHost

On Unix or Linux systems, use the following:

traceroute yourSMTPHost

If the host does not exist or is inaccessible, you will receive a message indicating that
your trace route program could not resolve the hostname you specified, or on some sys-
tems, the displayed route will suddenly die.

LISTING 11.1 Continued

14 0672323842 CH11 3/20/02 9:40 AM Page 471

Creating Multi-Media E-mails
Most modern e-mail clients have the capability of displaying formatted HTML messages.
Many organizations now prefer to send HTML messages because they provide a richer
viewing experience for the recipient. For example, a HTML message might incorporate
an organization’s logo and format the message’s text so that it adheres to the organiza-
tion’s style preferences (font face, heading colors).

In the following example, HTML is used as the multi-media content. However, there is
no intention to teach you HMTL (if you do not already know it), so the HTML is sup-
plied for you.

The application you will now write is a typical example of an application an organization
might use to send a marketing or informational e-mail to customers or potential cus-
tomers. The application sends a HTML message to the recipient that contains an image
file representing the organization’s logo. To view the formatted output of the message,
you must have an e-mail client that is capable of displaying HTML, such as Netscape
Communicator, Microsoft Outlook, or a Java application that uses Swing JEditorPane.

There are two main ways of creating an HTML message that will display an image when
viewed in an e-mail client. The simplest is when the HTML code references a URL that
points to a publicly visible image location. This approach is simple to code, but does
require that the image remains publicly visible for the potential lifetime of the message.
In addition, it requires the e-mail client either to always have an external connection or
cache a local copy of the images. The second approach is when you integrate the images
into the message. This approach ensures that the recipient always sees the images.
However, it does entail sending larger messages, which places higher loads on your serv-
er and the client’s mail server. Today’s lesson shows you both of these approaches start-
ing with the external reference approach.

Creating the Message: Approach #1
The code for this approach to sending a HTML message is very similar to the code that
sends a plain text message. The start of the code has a few additions. First, the code
imports the java.io package to provide the classes that read the HTML file. Second, the
code declares two extra variables—one defines the content type of the message and the
other names the HTML source file.

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;
import java.io.*;

472 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 472

JavaMail 473

11

public class SendHTMLMail {
public static void main(String[] args) {

if (args.length!=3) {
System.out.println
➥(“Usage: SendHTMLMail SMTPHost ToAddress FromAddress”);

System.exit(1);
}
String smtpHost = args[0];
String to = args[1];
String from = args[2];
String contentType = “text/html”;
String htmlFile = “HTMLSource1.html”;

In common with the plain text message, you create Properties, Session and Message
objects. You also set the subject and sender’s and recipient’s addresses.

Properties props = System.getProperties();
props.put(“mail.smtp.host”,smtpHost);
Session session = Session.getDefaultInstance(props,null);
MimeMessage message = new MimeMessage(session);
message.setSubject(“Hi!”);
message.setFrom(new InternetAddress(from));
message.addRecipient(Message.RecipientType.TO,new InternetAddress(to));

Adding the HTML to the MimeMessage object is the first significant change to the code.
Because the HTML is stored in a file, you must first read the file’s contents. The follow-
ing code does this; as you can see, it simply uses the java.io classes:

String msg=””;
String line=null;
FileReader fr = new FileReader(htmlFile);
BufferedReader br = new BufferedReader(fr);
while ((line=br.readLine())!=null) {

msg+=line;
}

The code that sent a plain text message used the setText() method to set the message
text. In this example, you use another method—setContent(). This method takes two
parameters—an object that represents the message body and a string that defines the
MIME type of the message body. This method allows you to stipulate the MIME type of
the message, whereas the setText() method always applies a MIME type of
text/plain. In the application you are currently building, the setContent() method
takes a first argument of a string (the HTML) and a second argument of a variable with
the value text/html:

message.setContent(msg,contentType);

After you define the message body, you send the message using the send() method of
the Transport class. This is exactly the same approach you took when sending a plain

14 0672323842 CH11 3/20/02 9:40 AM Page 473

text message, so that code fragment isn’t shown here. Instead, Listing 11.2 shows the
complete code for sending a HTML e-mail message.

LISTING 11.2 SendHTMLMail.java Full Listing

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;
import java.io.*;

public class SendHTMLMail {
public static void main(String[] args) {

if (args.length!=3) {
System.out.println
➥(“Usage: SendHTMLMail SMTPHost ToAddress FromAddress”);

System.exit(1);
}

String smtpHost = args[0];
String to = args[1];
String from = args[2];
String contentType = “text/html”;
String htmlFile = “HTMLSource1.html”;

// Get properties object
Properties props = System.getProperties();

// Define SMTP host property
props.put(“mail.smtp.host”,smtpHost);

try {
// Get a session
Session session = Session.getDefaultInstance(props,null);

// Create a new message object
MimeMessage message = new MimeMessage(session);

// Populate message object
message.setSubject(“Hi!”);
message.setFrom(new InternetAddress(from));

message.addRecipient
➥(Message.RecipientType.TO,new InternetAddress(to));

// read the HTML source
String msg=””;
String line=null;
FileReader fr = new FileReader(htmlFile);
BufferedReader br = new BufferedReader(fr);
while ((line=br.readLine())!=null) {

474 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 474

JavaMail 475

11

msg+=line;
}

// Add the content to the message
message.setContent(msg,contentType);

// Send the message
Transport.send(message);

}
catch (MessagingException me) {

System.err.println(me.getMessage());
}
catch (IOException ioe) {

System.err.println(ioe.getMessage());
}

}
}

The Java code for this application is now complete, but you still need the HTML source
file. It is not one of the aims of this book to teach you HTML. However, there are two
important points to note about the HTML source for this example. The first is that the
HTML is regular HTML; you change nothing to include it within an e-mail message.
The second point concerns the image that the message HTML message displays. The
HTML defines an absolute URL to the image file:

http://www.samspublishing.com/images/topnav/logo-bottom.gif

You must use an absolute URL because the message does not include the image itself.
Retaining the image source at a remote location offers some advantages over including
the image within the message:

• Loads—If messages do not include image data, they remain small. This places a
lower load on the mail server, especially in the case of bulk mailings.

• Maintenance—The image source file might be modified or updated and, as long as
the image’s URI remains the same, that modification or update will affect the
already-delivered message.

In contrast, this approach also has disadvantages, because the external image must
always be accessible to the client or the client must cache a copy of the image source. If
the client is unable to do either of these things, the image will not render within the mes-
sage.

LISTING 11.2 Continued

14 0672323842 CH11 3/20/02 9:40 AM Page 475

To run this application, you must first compile it. When compiled, run the application by
issuing the following command:

java SendHTMLMail mail.yourSMTPHost.com toAddress fromAddress

Remember that you must have an e-mail client that is capable of viewing HTML mes-
sages to view the output from this application. Figure 11.2 shows the message sent by
this application:

476 Day 11

FIGURE 11.2
Sample output for
Listing 11.2.

Creating the Message: Approach #2
The second approach to sending a HTML e-mail message with an embedded image
includes the image within the message itself. To create this type of message, you create a
message that consists of multiple parts, where the HTML forms one part and the image a
second part. This type of message is known as a multi-part message, and the next section
of today’s lesson explores these in some detail.

Writing the Code
Like the previous application, the code for this application creates Properties, Session,
and Message objects and sets the message subject, recipient’s address, and sender’s
address. The code only differs in how it creates the message body. For the sake of brevi-
ty, this part of today’s lesson only walks through the code that differs from the previous
application, but you can still see the full code in Listing 11.3.

As a result of creating a multi-part message, there are two small additions to the start of
the code. You must import the javax.activation package (you’ll learn why a little
later) and create one additional variable with a value of the image file location:

14 0672323842 CH11 3/20/02 9:40 AM Page 476

JavaMail 477

11

String imageFile = “sams.gif”;

In the previous application you set the message’s body text by using the setContent()
method, where you supplied a string containing HTML and a MIME type. The following
is the line of code that did this:

message.setContent(msg,contentType);

To create a multi-part message, you must replace this line of code. The new code must
define each of the parts of the message and then associate them with the message. Figure
11.3 shows the process of creating multi-part content.

FIGURE 11.3
Creating a multi-part
message.

MimeBodyPart MimeBodyPart MimeBodyPart

MimeMultipart

MimeMessage

setContent()

addBodyPart()

Figure 11.3 shows that you create BodyPart objects, each of which contains one part of
the message’s body. For example, in this application one part contains HTML and anoth-
er part contains the image data. As you create each BodyPart, you add it to a
MimeMultipart object by using its addBodyPart() method. After you have added all the
BodyPart objects to the MimeMultipart object, you add this object to the MimeMessage
object using its setContent() method. To write this as code, you start by creating a new
BodyPart object:

BodyPart messageBodyPart = new MimeBodyPart();

In this example, the code creates an empty BodyPart object. However, the class offers
two other constructors. The first creates accepts an input stream as an argument. The
input stream is read and parsed, and then becomes the content of the BodyPart object.
The final constructor accepts two arguments—an InternetHeaders object and a byte
array of content. The InternetHeaders object contains the Internet headers that relate to

14 0672323842 CH11 3/20/02 9:40 AM Page 477

the given content. In most instances, you will not directly code the Internet headers; ser-
vice providers primarily use the object.

You must now set the content of this first BodyPart. In this example, the content is the
HTML that you read from a file and assigned to the variable msg. The setContent()
method sets the content of a body part:

messageBodyPart.setContent(msg, contentType);

You may notice that this setContent() method takes the same arguments as the
setContent() method you used with the MimeMessage object. Both the MimeMessage
class and BodyPart class subclass classes, which themselves implement the Part inter-
face. This interface is common to all messages and BodyParts. The purpose of the inter-
face is to define attributes, common to all mail systems, and then provide accessor meth-
ods for these attributes. For example, these attributes include headers and content. For a
complete reference to this interface, refer to the API documentation, which is available
locally in the docs directory under the J2EE installation directory or online at
http://java.sun.com/products/javamail/1.2/docs/javadocs/overview-

summary.html.

Now that you have created the first body part, you must create a MimeMultipart object
and add the body part to it. MimeMultipart has three constructors—the default construc-
tor creates an empty MimeMultipart object. This object has a content type of multi-
part/mixed and is given a unique boundary string that you can access through the
contentType field. The second constructor accepts a DataSource object as an argument,
you’ll learn more about DataSource objects a little later in this section. The final con-
structor accepts a single string that represents a given media subtype. There are a wide
range of possible subtypes, such as digest, encrypted, and related. For further details
about subtypes, refer to RFC 822, which is available at http://rfc.net/rfc822.html.
The related subtype applies to objects that consist of multiple interrelated parts. It
allows you to link these parts to present a single compound object. It is this subtype that
you create with the following:

MimeMultipart multipart = new MimeMultipart(“related”);

Now you must add the body part, which contains the HTML, to the MimeMultipart
object you just created. The MimeMultipart’s addBodyPart() method provides two
ways for adding the body part. The first way takes two arguments—a BodyPart and an
index (int) to position the object. The seconds version of the addBodyPart() methods
simply takes a BodyPart as an argument and then appends this to list of body parts it
currently contains:

478 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 478

JavaMail 479

11

multipart.addBodyPart(messageBodyPart);

Now you must create a new BodyPart object that contains the image and then append
this to the MimeMultipart object. In common with adding the HTML, you first create a
new BodyPart:

messageBodyPart = new MimeBodyPart();

To add the image to the BodyPart object, you use the setDataHandler() method. This
method accepts one argument—a DataHandler object. This object provides a consistent
interface to several different data sources and formats, for example, an image or an input
stream. In this example, the DataHandler object will reference a DataSource object that
encapsulates the image file:

DataSource fds = new FileDataSource(file);
messageBodyPart.setDataHandler(new DataHandler(fds));

The final step before adding this body part to the MimeMultipart object is to set a header
for the part. You need to set the header because your HTML source will reference the
header to include the image within the message rather than reference the image via an
absolute URL. You use the body part’s setHeader() method to set the header:

messageBodyPart.setHeader(“Content-ID”,”image1”);

You can see that the method accepts two parameters. The first parameter is a string that
represents an RFC 822 header value. The second parameter is the header’s value that you
will later reference from the HTML source.

That’s it. You have created the body part that contains the image the message will dis-
play. Now you must add the body part to the MimeMultipart object that you created ear-
lier. You add the body part in exactly the same way you added the first body part (the one
containing the HTML source):

multipart.addBodyPart(messageBodyPart);

If you refer back to Figure 11.3, you can see that you must set the content of the mes-
sage with the MimeMultipart object. As with the previous examples, you use the
setContent() method to do this:

message.setContent(multipart);

The code that sends the message is identical to all the previous examples. Listing 11.3
shows the complete code for this application.

14 0672323842 CH11 3/20/02 9:40 AM Page 479

LISTING 11.3 SendMultiPartMail.java Full Listing

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;
import java.io.*;
import javax.activation.*;

public class SendMultiPartMail {
public static void main(String[] args) {

if (args.length!=3) {
System.out.println
➥(“Usage: SendMultiPartMail SMTPHost ToAddress FromAddress”);

System.exit(1);
}

String smtpHost = args[0];
String to = args[1];
String from = args[2];
String contentType = “text/html”;
String htmlFile = “HTMLSource2.html”;
String imageFile = “sams.gif”;

// Get properties object
Properties props = System.getProperties();

// Define SMTP host property
props.put(“mail.smtp.host”,smtpHost);

try {
// Get a session
Session session = Session.getDefaultInstance(props,null);

// Create a new message object
MimeMessage message = new MimeMessage(session);

// Populate message object
message.setSubject(“Hi!”);
message.setFrom(new InternetAddress(from));

message.addRecipient
➥(Message.RecipientType.TO,new InternetAddress(to));

// read the HTML source
String msg=””;
String line=null;
FileReader fr = new FileReader(htmlFile);
BufferedReader br = new BufferedReader(fr);
while ((line=br.readLine())!=null) {

msg+=line;
}

480 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 480

JavaMail 481

11

// Create your new message part
BodyPart messageBodyPart = new MimeBodyPart();
messageBodyPart.setContent(msg, contentType);

// Create a related multi-part to combine the parts
MimeMultipart multipart = new MimeMultipart(“related”);
multipart.addBodyPart(messageBodyPart);

// Create part for the image
messageBodyPart = new MimeBodyPart();

// Fetch the image and associate to part
DataSource fds = new FileDataSource(imageFile);
messageBodyPart.setDataHandler(new DataHandler(fds));
messageBodyPart.setHeader(“Content-ID”,”image1”);

// Add part to multi-part
multipart.addBodyPart(messageBodyPart);

// Associate multi-part with message
message.setContent(multipart);

// Send the message
Transport.send(message);

}
catch (MessagingException me) {

System.err.println(me.getMessage());
}
catch (IOException ioe) {

System.err.println(ioe.getMessage());
}

}
}

The Java code for this application is now complete, but you still need the HTML code.
The HTML is identical to that used in the previous example with one exception. In the
previous example, you referenced the image with an absolute URL. In this application,
you use a CID (Content ID) URL and the value of the header you set for the body part
that contains the image, for example,

To run this application, you must first compile it. When compiled, run the application by
issuing the following command:

java SendMultiPartMail mail.yourSMTPHost.com toAddress fromAddress

LISTING 11.3 Continued

14 0672323842 CH11 3/20/02 9:40 AM Page 481

The message sent by this application should appear identical to that sent in the previous
application, as shown in Figure 11.2.

Sending E-mails with Attachments
In the previous example, you used MIME multi-part messages to send a HTML message
that displays an image. Another use of MIME is to send message attachments, such as
MPEG videos, JPEG images, and plain text files. In this example, you will create a small
command line application that sends a message with an attached XML file to a named
recipient.

The code for this application is very similar to the previous applications. Today’s lesson
only explores those sections of code that differ from the previous examples, but you can
still find a full listing at the end of this section or on the CD-ROM that accompanies this
book.

This application starts by creating Properties, Session, and MimeMessage objects. It
also adds the message subject, sender’s address, and recipient’s address to the
MimeMessage object. You must then create an empty BodyPart object, using the same
technique as the previous example:

BodyPart messageBodyPart = new MimeBodyPart();

This is the first part of the message. You will create another part in a moment that will
contain the file attachment. Before you do this, use the setText() method you used in
previous examples to set the message’s body text:

messageBodyPart.setText(“Here’s an attachment!”);

Now you must create a new MimeMultipart object to hold the two parts of the message.
In the previous example, you passed an argument of related (the MIME subtype) to the
MimeMultipart constructor. This was because the different body parts connected to form
a compound object, but in this example, the attachment does not integrate with the mes-
sage body. The subtype in this example is multipart/mixed. This subtype is the default
for the constructor, so you do not have to explicitly pass it to the constructor:

Multipart multipart = new MimeMultipart();

Now that you have created the MimeMultipart object, you can add the first of the body
parts to it. Simply use the addBodyPart() method, as you did in the previous application:

multipart.addBodyPart(messageBodyPart);

That is the first part of the message. You must now create the body part that contains the
attachment and add it to the MimeMultipart object. The previous example set a data han-

482 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 482

JavaMail 483

11

dler for the body part; the data handler referenced a DataSource object that encapsulated
an image file. You use exactly the same approach with an attachment:

// Create an empty body part
messageBodyPart = new MimeBodyPart();

// Create a new DataSource, passing it the attachment file
DataSource source = new FileDataSource(fileName);

// Set the data handler
messageBodyPart.setDataHandler(new DataHandler(source));

The final step before adding the body part to the MimeMultipart object is to set the file-
name that associates with this body part. To do this, you use the MimeBodyPart’s
setFileName() method that takes one argument, a string representing the filename. One
other point to note about this method is that it might throw one of three exceptions:
MessagingException, javax.mail.IllegalWriteException (descended from
MessagingException), or java.lang.IllegalStateException. An
IllegalWriteException occurs when the underlying implementation can be modified,
and an IllegalStateException occurs when the body part is obtained from a read only
directory.

// associate the file name
messageBodyPart.setFileName(fileName);
// add body part to MimeMultipart object
multipart.addBodyPart(messageBodyPart);

The remaining code is identical to the previous example. Listing 11.4 shows the com-
plete code for this application.

LISTING 11.4 SendAttachmentMail.java Full Listing

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

public class SendAttachmentMail {
public static void main(String[] args) {

if (args.length!=4) {
System.out.println
➥(“Usage: SendAttachmentMail SMTPHost
➥ToAddress FromAddress AttachmentName”);

System.exit(1);
}

String smtpHost = args[0];
String to = args[1];

14 0672323842 CH11 3/20/02 9:40 AM Page 483

String from = args[2];
String contentType = “text/html”;
String fileName = args[3];

// Get properties object
Properties props = System.getProperties();

// Define SMTP host property
props.put(“mail.smtp.host”,smtpHost);

try {
// Get a session
Session session = Session.getDefaultInstance(props,null);

// Create a new message object
MimeMessage message = new MimeMessage(session);

// Populate message object
message.setSubject(“Hi!”);
message.setFrom(new InternetAddress(from));

message.addRecipient
➥(Message.RecipientType.TO,new InternetAddress(to));

// Create the message body part
BodyPart messageBodyPart = new MimeBodyPart();
messageBodyPart.setText(“Here’s an attachment!”);
Multipart multipart = new MimeMultipart();
multipart.addBodyPart(messageBodyPart);

// Create the attachment body part
messageBodyPart = new MimeBodyPart();
DataSource source = new FileDataSource(fileName);
messageBodyPart.setDataHandler(new DataHandler(source));
messageBodyPart.setFileName(fileName);
multipart.addBodyPart(messageBodyPart);

// Put parts in message
message.setContent(multipart);

// Send the message
Transport.send(message);

}
catch (MessagingException me) {

System.err.println(me.getMessage());
}
catch (IllegalStateException ise) {

System.err.println(ise.getMessage());
}

}
}

484 Day 11

LISTING 11.4 Continued

14 0672323842 CH11 3/20/02 9:40 AM Page 484

JavaMail 485

11

The code for this application is now complete. To run this application, you must first
compile it. When compiled, run the application by issuing the following command:

java SendAttachmentMail mail.yourSMTPHost.com toAddress fromAddress attachment

If you don’t have a file to attach at hand, the CD-ROM accompanying this book contains
a small XML file that is appropriate for this purpose.

Exploring the JavaMail API
So far, today’s lesson has concentrated on sending e-mail messages, but the JavaMail
API provides support for other common e-mail operations, such as retrieving messages
and attachments and deleting messages on the server. The API provides numerous classes
that allow you to perform these types of operations. The remainder of today’s lesson
gives you an introduction to these operations. For a complete reference to the API’s inter-
faces, classes, and methods, refer to the API documentation.

Retrieving Messages
Earlier in today’s lesson, you learned that there are a number of message retrieval proto-
cols, and that most prevalent of these are POP3 and IMAP. The application you are about
to build uses POP3 to retrieve messages from a mail server. Note that because you work
with an abstraction of a mail system, the technique for accessing a mail box with IMAP
is very similar.

Specifically, this application runs from the command line and accepts three parameters—
a host, username, and password. You can see the code that accepts these parameters in
Listing 11.5 at the end of this section. As with all the applications in today’s lesson, you
first create an empty Properties object and a Session object:

Properties props = new Properties();
Session session = Session.getDefaultInstance(props, null);

Figure 11.4 shows the remainder of the process for retrieving messages.

FIGURE 11.4
The message retrieval
process.

Connect to a store
(mailbox) on a

given host with a
given username
and password

Get and open a
specified folder
within the store

Get the messages
from the folder

User-defined
processing of

messages

14 0672323842 CH11 3/20/02 9:40 AM Page 485

The first step in the process is to connect to a store on a given host. To do this, you must
first create a Store object by calling the Session object’s getStore() method. This
method accepts one parameter that specifies the retrieval protocol and returns a Store
that implements this protocol. After you create a Store, you invoke its connect()
method to connect to the remote message store. The connect() method takes three
strings as arguments—host, username, and password.

Store store = session.getStore(“pop3”);
store.connect(host, username, password);

486 Day 11

When you use the JavaMail API to send POP3 credential information, the
information is not encrypted. In fact, the API does not come with built-in
support for credential encryption or the facility to use secure mail transport
protocols, because it only supports IMAP, SMTP, and POP3. However, some
third-party protocol providers do provide support for secure mail protocols,
such as IMAP over SSL/TLS. You can find a list of these providers at
http://java.sun.com/products/javamail.

Note

After you connect to the message store, you open a message folder. To do this, create a
Folder object. The Folder class, like the Store class, is abstract. To create an instance
of the class, you invoke the getFolder() method of the Store object. The method takes
one parameter, the name of the folder as a string. In this example, the folder name is
INBOX:

Folder folder = store.getFolder(“INBOX”);

Now you can open the folder using the open() method of the Folder class. The method
takes one argument that indicates the mode with which to open the folder. Static fields of
the Folder class give the two possible values for the mode, READ_ONLY and READ_WRITE:

folder.open(Folder.READ_ONLY);

To retrieve the messages from the folder, you can either use the Folder’s
getMessage()method or its getMessages() method. The getMessages() method is
overloaded and, as such, there are three versions of this method, each of which returns an
array of Message objects. The first version takes an array of ints and returns the mes-
sages at the indices the ints specifies. The second version takes a start index and an end
index and returns the messages within this range. The final version takes no arguments
and returns all the messages within a folder:

Message messages[] = folder.getMessages();

14 0672323842 CH11 3/20/02 9:40 AM Page 486

JavaMail 487

11

The final step in the message retrieval process is to perform some form of user-defined
processing on the retrieved messages. In this example, the code simply iterates through
the messages printing the subject, sender, time, and then printing the entire message.

for (int i=0; i<messages.length; i++) {
System.out.println(i + “: “
➥+ messages[i].getFrom()[0] + “\t”
➥+ messages[i].getSubject() + “\t”
➥+ messages[i].getSentDate() + “\n\n”);

messages[i].writeTo(System.out);
}

As you can see, the Message class exposes a number of methods that take the form
getITEM(). The API documentation provides a complete list of these methods. The
Message class implements the Part interface, and it is from this that it inherits the
writeTo() method. This method outputs a byte stream to a specified output stream,
which in this example is System.out. It is important to note that the writeTo() method
can throw a java.io.IOException that you must catch.

That is the message retrieval process completed, but to complete the code you must close
the resources it uses. In this example, you must close the Folder and Store objects. To
do this, simply call their close() methods. You must pass the Folder’s close() method
a single Boolean parameter indicating whether to delete (expunge) any messages marked
for deletion within the folder on the server. You will learn how to mark messages for
deletion in the “Deleting Messages” section of today’s lesson.

folder.close(false);
store.close();

Listing 11.5 shows the complete code for this application.

LISTING 11.5 RetrieveMail.java Full Listing

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;
import java.io.*;

public class RetrieveMail {
public static void main(String[] args) {

if (args.length!=3) {
System.out.println
➥(“Usage: RetrieveMail POPHost username password”);

System.exit(1);
}

14 0672323842 CH11 3/20/02 9:40 AM Page 487

String host = args[0];
String username = args[1];
String password = args[2];

try {
// Create empty properties object
Properties props = new Properties();

// Get a session
Session session = Session.getDefaultInstance(props, null);

// Get the store and connect to it
Store store = session.getStore(“pop3”);
store.connect(host, username, password);

// Get folder and open it
Folder folder = store.getFolder(“INBOX”);
folder.open(Folder.READ_ONLY);

// Get messages
Message messages[] = folder.getMessages();

for (int i=0; i<messages.length; i++) {
System.out.println(i + “: “ + messages[i].getFrom()[0]
➥+ “\t” + messages[i].getSubject() + “\t”
➥+ messages[i].getSentDate() + “\n\n”);

messages[i].writeTo(System.out);
}

// Close resources
folder.close(false);
store.close();

}
catch (MessagingException me) {

System.err.println(me.getMessage());
}
catch (IOException ioe) {

System.err.println(ioe.getMessage());
}

}
}

To run the application, compile it and then issue the following command:

java RetrieveMail mailHost username password

488 Day 11

LISTING 11.5 Continued

14 0672323842 CH11 3/20/02 9:40 AM Page 488

JavaMail 489

11

Deleting Messages
In the previous example, you retrieved messages from a mail server without removing
them after retrieval. Of course in a real-world situation, you could not leave messages on
the mail server indefinitely; it would soon become very crowded! Instead, you would
delete messages after retrieving them. To modify the previous example so that messages
are deleted after retrieval is a straightforward process.

Previously, you opened the folder in READ_ONLY mode, but to retrieve and delete mes-
sages you must open the folder in READ_WRITE mode. So simply replace the line of code
that opened the folder with the following line:

folder.open(Folder.READ_WRITE);

Deleting messages involves the use of flags. Messages can support a number of flags that
indicate the state of a message. The Flags.Flag class supplies predefined flags that are
accessible as static fields. Table 11.2 shows these flags and describes their meaning.
Note, however, that just because these flags exist doesn’t mean that all mail servers sup-
port them. In fact, POP3 mail servers typically only support the DELETED flag; IMAP
servers normally support more of the flags. To find out exactly which flags your mail
server supports, you can call the getPermanentFlags() method of a Folder object,
which returns a Flags object that contains all the supported flags.

TABLE 11.2 Predefined Message Flags

Flag Description

ANSWERED The client has replied to the message.

DELETED The message is marked for deletion.

DRAFT The message is a draft.

FLAGGED The client has flagged the message.

RECENT The message has arrived in the folder since it was last opened.

SEEN The message has been retrieved by the client.

USER Indicates that the folder supports user defined flags.

To mark a message for deletion, you use the setFlag() method of the Message object.
The method takes two parameters—a flag and a Boolean indicating the flag’s value. For
example, to mark a message ready for deletion in the previous example, you add the fol-
lowing line to the end of the for loop:

messages[i].setFlag(Flags.Flag.DELETED, true);

14 0672323842 CH11 3/20/02 9:40 AM Page 489

In case you are unsure, the modified for loop would appear as follows:

for (int i=0; i<messages.length; i++) {
System.out.println(i + “: “
➥+ messages[i].getFrom()[0] + “\t” + messages[i].getSubject()
➥+ “\t” + messages[i].getSentDate() + “\n\n”);

messages[i].writeTo(System.out);

// Mark the message for deletion
messages[i].setFlag(Flags.Flag.DELETED, true);

}

To complete the deletion, you must pass the folder’s close() method a Boolean of true.
Passing the value of true ensures that any messages marked for deletion are deleted
(expunged) when the folder closes:

folder.close(true);

That’s it. If you want to view the complete modified listing, you will find it on the CD-
ROM accompanying this book.

Getting Attachments
Retrieving an attachment from a message is a more involved process than simply reading
a normal message. If you remember from earlier, an attachment is a part of a multi-part
message. When you retrieve a message that has an attachment, you must iterate through
the body parts and identify which ones are attachments. After you identify a part as an
attachment, you must write that part’s content to a file.

You cannot simply identify a part as an attachment through its content type, because the
sender of the message part may have intended for it to be displayed inline—like the
HTML message you created earlier. Fortunately, RFC 2183 defines the Content-

Disposition MIME message header. This header allows a message sender to mark body
parts as either inline (displays within the message text) or attached (the part is an attach-
ment). The JavaMail API provides support for this header, as you will soon learn.

The code for this application is based on the RetrieveMail application you wrote earlier.
There are two changes to the code. The first is that it will only retrieve the first message
on the mail server rather than all the messages. The second is that where it iterated
through the messages and performed some basic processing on them (printed parts of the
message), it will now process the individual parts of the message. The revised section
appears as follows:

Message message = folder.getMessage(1);
Multipart multipart = (Multipart)message.getContent();
// Process each part of the message
for (int i=0; i<multipart.getCount(); i++) {

490 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 490

JavaMail 491

11

processPart(multipart.getBodyPart(i));
}

In this application, you iterate through the messages and call a processPart() method
that you will write shortly. The code passes one parameter to the method, a Part object.
The processPart() method checks a body part to determine whether it is an attachment.
In addition, it checks a body part that is identified as an attachment to determine if it has
a filename. If it doesn’t, the method provides a temporary file:

private static void processPart(Part part)
➥throws MessagingException, IOException{

String disposition = part.getDisposition();
String fileName = part.getFileName();
if (disposition.equals(Part.ATTACHMENT)) {

if (fileName == null) {
fileName = File.createTempFile(“attachment”, “.txt”).getName();

}
writeFile(fileName,part.getInputStream());

}
else {

// It’s not an attachment – provide appropriate processing
}

}

The code starts by using the getDisposition() and getFileName() methods, which the
Part interface defines, to get the part’s disposition and filename. If either of these items
does not exist, the methods return null. The code then checks whether the disposition is
of the type ATTACHMENT; the other possible value is INLINE. If the disposition is of the
type ATTACHMENT, the code checks to see if the body part has an associated filename. If it
does not, the code assigns a temporary filename. In both instances, the code calls the
writeFile() method that you will write shortly. If the body part does not have a disposi-
tion type of ATTACHMENT, the code assumes that the body part should be displayed inline.
The premise here is that the disposition will be either INLINE (should display within the
message) or null. If the disposition is null, taking into consideration that this is a multi-
part message, the message sender most likely wanted the part to be displayed inline.

The writeFile() method writes the content of a body part to a file. The method accepts
two parameters—a string filename and an input stream:

private static void writeFile
➥(String fileName, InputStream in) throws IOException {

The method begins by checking that the named file does not already exist; you don’t
want to overwrite a file! The code that does this simply creates a File object and checks
whether it exists. If the file exists, the code alters the filename (through a numeric incre-
ment) and then repeats the previous process:

14 0672323842 CH11 3/20/02 9:40 AM Page 491

File file = new File(fileName);
for (int i=0; file.exists(); i++) {

file = new File(fileName+i);
}

After the code identifies a valid filename, it writes the body part’s content to the file. You
may think that you could use the part’s writeTo() method that you used in a previous
example. You cannot use this method because it doesn’t decode the attachment. Instead,
the code uses familiar java.io classes that allow you to copy the body part’s input
stream onto a file output stream. This approach automatically decodes a variety of encod-
ing formats, including Base-64:

BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(file));

BufferedInputStream bis = new BufferedInputStream(in);
int aByte;
while ((aByte = bis.read()) != -1) {

bos.write(aByte);
}
bos.flush();
bos.close();
bis.close();

}

That’s it. You have written the code to identify an attachment and write it to a file.
Listing 11.6 shows the complete code listing for the RetrieveAttachment application.
To run the application, compile the code and then run it by issuing the following com-
mand:

java RetrieveAttachment host username password

LISTING 11.6 RetrieveAttachment.java Full Listing

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;
import java.io.*;

public class RetrieveAttachment {
public static void main(String[] args) {

if (args.length!=3) {
System.out.println
➥(“Usage: RetrieveAttachment host username password”);

System.exit(1);
}

String host = args[0];
String username = args[1];
String password = args[2];

492 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 492

JavaMail 493

11

try {
Properties props = new Properties();
Session session = Session.getDefaultInstance(props, null);
Store store = session.getStore(“pop3”);
store.connect(host, username, password);
Folder folder = store.getFolder(“INBOX”);
folder.open(Folder.READ_ONLY);
Message message = folder.getMessage(1);
Multipart multipart = (Multipart)message.getContent();

// Process each part of the message
for (int i=0; i<multipart.getCount(); i++) {

processPart(multipart.getBodyPart(i));
}

folder.close(false);
store.close();

}
catch (MessagingException me) {

System.err.println(me.getMessage());
}
catch (IOException ioe) {

System.err.println(ioe.getMessage());
}

}

private static void processPart(Part part)
➥throws MessagingException, IOException{

String disposition = part.getDisposition();
String fileName = part.getFileName();

if (disposition.equals(Part.ATTACHMENT)) {
// It’s an attachment
if (fileName == null) {

// the file name is null, so assign a name
fileName = File.createTempFile(“attachment”, “.txt”).getName();

}
// write the part to a file
writeFile(fileName,part.getInputStream());

}
else {

// the disposition is either INLINE or null
}

}

private static void writeFile
➥(String fileName, InputStream in) throws IOException {

// Do no overwrite existing file
File file = new File(fileName);

LISTING 11.6 Continued

14 0672323842 CH11 3/20/02 9:40 AM Page 493

for (int i=0; file.exists(); i++) {
file = new File(fileName+i);

}
// Write the part to file

BufferedOutputStream bos =
➥new BufferedOutputStream(new FileOutputStream(file));

BufferedInputStream bis = new BufferedInputStream(in);
int aByte;
while ((aByte = bis.read()) != -1) {

bos.write(aByte);
}
bos.flush();
bos.close();
bis.close();

}
}

Authenticating Users and Security
The JavaMail API javax.mail package provides an Authenticator class that allows
access to protected resources, such as a mail box. If you are familiar with the java.net
package, you may be aware of another class with the same name. However, the two
classes are different.

This next application is based on the RetrieveMail application you wrote earlier, so this
section only walks through the code that differs from that application. You can still find a
full listing at the end of this section (Listing 11.7) or on the CD-ROM that accompanies
this book. Previously, you passed the host, username, and password to the Store object’s
connect() method. In contrast, this application will prompt the user for a username and
password, and the host is placed as a system property:

Properties props = new Properties();
props.put(“mail.pop3.host”,host);

You then create a new Authenticator object by using the MyAuthenticator class. This
class is a subclass of Authenticator, which itself is abstract. You will write the
MyAuthenticator class shortly. After you create an Authenticator object, you pass it
together with the Properties object to the getDefaultInstance() method of the
Session class:

Authenticator auth = new MyAuthenticator();
Session session = Session.getDefaultInstance(props, auth);

After you have a Session object, you create a Store object in the same way you did in
the previous applications. You then connect to the store using its connect() method, but

494 Day 11

LISTING 11.6 Continued

14 0672323842 CH11 3/20/02 9:40 AM Page 494

JavaMail 495

11

in this example, you pass no parameters—previously you passed the host, username, and
password. The reason for this is that you have already supplied the information to the
Session object.

Store store = session.getStore(“pop3”);
store.connect();

That is the extent of the changes to the application’s main class. Now you must write the
MyAuthenticator class. This class must define one method,
getPasswordAuthentication(), and return a PasswordAuthentication object. This
object is simply a container for the authentication information and has just one construc-
tor that accepts two strings—a username and a password. The method body in this exam-
ple, which you must implement, simply prompts the user for his or her username and
password.

As mentioned previously, the JavaMail does not directly support secure mail
protocols, but some third-parties do provide this support. As such, it is
important to remember that the PasswordAuthentication object acts only as
a container for credential information, and it does not perform any form of
encryption on the information.

Note

class MyAuthenticator extends Authenticator {
public PasswordAuthentication getPasswordAuthentication() {

String username=null;
String password=null;
try {

BufferedReader in =
➥new BufferedReader(new InputStreamReader(System.in));

System.out.print(“Username? “);
username=in.readLine();
System.out.print(“Password? “);
password=in.readLine();

}
catch (IOException ioe) {

System.err.println(ioe.getMessage());
}
return new PasswordAuthentication(username,password);

}
}

That’s it. Listing 11.7 shows the complete code for this application. To run it, compile
the code and then issue the following command:

java AuthenticateRetrieveMail mail.host

14 0672323842 CH11 3/20/02 9:40 AM Page 495

LISTING 11.7 AuthenticateRetrieveMail.java Full Listing

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;
import java.io.*;

public class AuthenticateRetrieveMail {
public static void main(String[] args) {

if (args.length!=1) {
System.out.println(“Usage: AuthenticateRetrieveMail SMTPHost”);
System.exit(1);

}

String host = args[0];

try {
Properties props = new Properties();

//place the authentication info in
props.put(“mail.pop3.host”,host);

// create an empty authenticator object
Authenticator auth = new MyAuthenticator();

// Get a session - pass auth object
Session session = Session.getDefaultInstance(props, auth);

Store store = session.getStore(“pop3”);

// do not pass any arguments to the connect method
store.connect();

Folder folder = store.getFolder(“INBOX”);
folder.open(Folder.READ_ONLY);
Message messages[] = folder.getMessages();
for (int i=0; i<messages.length; i++) {

System.out.println(i + “: “ + messages[i].getFrom()[0]
➥+ “\t” + messages[i].getSubject() + “\t”
➥+ messages[i].getSentDate() + “\n\n”);

messages[i].writeTo(System.out);
}
folder.close(false);
store.close();

}
catch (MessagingException me) {

System.err.println(me.getMessage());
}
catch (IOException ioe) {

System.err.println(ioe.getMessage());

496 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 496

JavaMail 497

11

}
}

}

class MyAuthenticator extends Authenticator {
public PasswordAuthentication getPasswordAuthentication() {

String username=null;
String password=null;
try {

BufferedReader in =
➥new BufferedReader(new InputStreamReader(System.in));

System.out.print(“Username? “);
username=in.readLine();
System.out.print(“Password? “);
password=in.readLine();

}
catch (IOException ioe) {

System.err.println(ioe.getMessage());
}
return new PasswordAuthentication(username,password);

}
}

Summary
In today’s lesson, you learned all about e-mail systems and the JavaMail API. The lesson
introduced you to the main packages and classes of the API. Building on this, you saw
how to write code that performed a number of day-to-day e-mail tasks, such as sending,
retrieving and deleting messages, authenticating users, and sending and retrieving attach-
ments.

Although today’s example applications ran from the command line, they are all simple to
migrate to fit within J2EE components, such as EJBs, servlets, and JSPs. In addition, you
can quite simply upgrade the user interfaces for these applications so that they used
Swing or AWT components.

Q&A
Q Why does an e-mail system require retrieval protocols?

A When a mail server receives a message, it places it within the recipient’s mail box.
The recipient then connects to the mail server and downloads the message to his or

LISTING 11.7 Continued

14 0672323842 CH11 3/20/02 9:40 AM Page 497

her local machine. The sequence of exchanges between the recipient’s machine and
the mail server use a retrieval protocol, such as POP3 or IMAP.

Q Why do I need to use the Message class’s inner class RecipientType when
adding a recipient to a message?

A There are three types of recipient, TO, CC, and BCC, so you must stipulate the
type of recipient you want to add to a message. The RecipientType class exposes
three static fields that represent the three types of recipients.

Q I want to send a HTML message that includes an embedded image. Why do I
need to create a multi-part MIME message?

A MIME supports different data formats. It allows you to mix these formats, to create
an inline message, by defining messages that consist of multiple body parts. In the
case of a HTML message with inline image, one body part contains the HTML and
the other part contains the image. The e-mail client will then assemble these parts
to create a compound message.

Q Which method would I use to print the content of messages retrieved from a
mail server?

A The Part interface’s writeTo() method allows you to output a bytestream for a
message part. However, any class that uses the method must provide an appropriate
encoding algorithm because the method does not decode a part’s content.

Q I’ve written an application that checks whether messages are flagged as
RECENT. If they are, the application retrieves them from the server. Why does
the application not retrieve any messages from my POP3 server?

A The JavaMail API provides a selection of predefined message flags, but there is no
guarantee that a mail server will support all these flags. Typically, in the case of a
POP3 server, only the DELETED flag is supported, so in this instance, the application
will not find any messages marked as RECENT, and thus will not return any mes-
sages.

Q Why does the MIME Content-Disposition message header mark some mes-
sages as inline and others as attached?

A The Content-Disposition header has two possible values—inline and attached. An
application should use these values to determine how to display a body part’s con-
tent. Specifically, parts marked inline should display within the message, and those
marked attached should be saved to file because they are attachments.

498 Day 11

14 0672323842 CH11 3/20/02 9:40 AM Page 498

JavaMail 499

11

Q I’m writing a servlet that retrieves a user’s message from an IMAP server.
Each user has a unique mail box on the server, how do I ensure that users
only access their personal mail boxes?

A The Authenticator class allows access to protected resources. You can subclass it,
and this subclass can prompt the user for a username and password.

Exercises
1. Write an application that executes from the command line and allows a user to

send an e-mail. The application should prompt the user for his or her mail host and
e-mail address, the recipient’s e-mail address, the message subject, and the mes-
sage content.

2. There are two parts to this final exercise, and both relate to the case study applica-
tion you have been building throughout this book:

• When a customer registers a new job, a message is sent to the Job Match
Message-driven bean. The bean then updates the Matched table with appli-
cants that match that job. Now, write code using the JavaMail API that sends
an e-mail message to the customer informing him or her of all the applicants
that match his or her job specification.

• When a new applicant registers, a message is sent to the Applicant Match
Message-driven bean. The bean updates the Matched table with jobs that
match that applicant. Now, write code using the JavaMail API that sends an
e-mail message to the applicant informing him or her of the jobs to which he
or she is suited.

14 0672323842 CH11 3/20/02 9:40 AM Page 499

14 0672323842 CH11 3/20/02 9:40 AM Page 500

DAY 12

WEEK 2

Servlets
On Day 11, “JavaMail,” you worked on integrating JavaMail into your applica-
tions. This built on the previous chapters that covered the Java Message System
and Message-driven Beans, and you have now completed this book’s coverage
of asynchronous messaging in J2EE.

Today, you will start to work on the new topic area—providing a Web interface
to your application. You will start by using Java servlets with a Web server to
handle HTTP requests. These servlets will generate HTML responses to be dis-
played by using a browser. In today’s lesson, you will learn

• The power of Java servlets and when to use them

• About the supporting technologies HTTP and HTML

• How to create and track HTTP sessions

• How to develop a Web application using servlets, with servlet filtering
and event listening

15 0672323842 CH12 3/20/02 9:34 AM Page 501

The Purpose and Use of Servlets
A servlet is a server-side component. It can be used to extend the functionality of any
Java-enabled server, but most commonly servlets are used to write Web applications in a
Web server, as shown in Figure 12.1. They are often used to create Web pages where the
content is not static. Web pages whose content can change according to input from the
user or other variable data are called dynamic pages. Servlets are particularly suited to
creating dynamic Web pages.

502 Day 12

FIGURE 12.1
Client/server diagram
showing servlets.

Browser requests

Server responses

Web Server:
maps requests

onto web
applications

Client: running a browser

Servlets

HTML pages

Images

Web Application

The following are the key features and benefits of Java servlets:

• The servlet API provides an interface that is tailored for Web applications.

• Servlets are server and platform independent. This makes servlets portable and
reusable.

• Servlets are efficient and scalable.

• Servlets run within the server, so they can delegate certain functions to be per-
formed by the server on its behalf, such as user authentication.

Tailored for Web Applications
A servlet is an instance of a class that implements the javax.servlet.Servlet interface.
However, most servlets extend one of the implementations of this interface—
javax.servlet.GenericServlet or javax.servlet.http.HttpServlet.

15 0672323842 CH12 3/20/02 9:34 AM Page 502

Servlets 503

12

The Servlet interface declares methods that manage the servlet and its communications
with clients. As the servlet developer, you override some or all of these methods to devel-
op your servlet.

Generic servlets have a limited use, so in today’s lesson, we will only discuss the more
useful HttpServlet class. This is an abstract class that is sub-classed to create an HTTP
servlet suitable for a Web site. To accomplish this, an HTTP servlet has access to a
library of HTTP-specific calls.

Server and Platform Independence
Java servlets are highly portable between different operating systems and server imple-
mentations. A servlet written on a Windows-based PC running the J2EE RI can be
deployed on a high-end Unix server without any change at all. For this reason servlets
have been described as “write once, serve everywhere.”

Servlets have no client interface. That means they avoid all the portability issues associ-
ated with different display interfaces. An application on the client (typically a browser)
takes care of the user interface on behalf of the servlet.

Efficient and Scalable
After being loaded, a servlet will generally stay resident in the server’s memory. In most
circumstances, only a single servlet object will be created, and to support concurrent
page accesses this servlet is run multi-threaded. This avoids the overhead of constructing
a new servlet process for every access, saves memory, and makes page access efficient.

Because servlets stay in memory, they can retain references to other Java objects.

For example, if your database server includes sufficient simultaneous connection licens-
es, a database connection can be shared between threads, thereby reducing the overhead
associated with establishing and maintaining the connection.

Multithreading aids efficiency and scalability, but the servlet code must be
written to be re-entrant. This means that the servlet must handle concurrent
access to instance data, and care must be taken to synchronize write access
to shared resources.

Caution

Servlets Integration with the Server
Because a servlet is tightly integrated with the server, it can utilize capabilities of the
server to perform certain actions. It can, for example, use the server’s logging capabili-
ties and get the server to authenticate users.

15 0672323842 CH12 3/20/02 9:34 AM Page 503

Although useful for the servlet programmer, the tight coupling of servlets has a safety
implication for the Web server. To protect itself, the server will often run servlets in a
controlled environment, called a sandbox, that is designed to protect the server from a
malicious or poorly written servlet.

Introduction to HTTP
Before looking at Java servlets in more detail, you will need an understanding of the Web
protocol, HTTP (Hypertext Transfer Protocol), and how a browser interprets HTML
(Hypertext Markup Language) to display a Web page. If you are comfortable with these
topics, feel free to skip to the next section, titled “The Servlet Environment.”

HTTP is a protocol standard specified by the Internet Engineering Task force, and its
current version is available as RFC 2616 available from www.ietf.org.

HTTP Structure
HTTP is a stateless protocol, and this has the advantage that the server does not have the
overhead of tracking client connections. This is completely satisfactory when the primary
use of the Web is to transfer static data. Realistically, most Web applications now require
interaction between the client and the server and state information to be retained between
page requests. Later, you will learn how a servlet can overcome this restriction with the
HTTP protocol by tracking client state using hidden fields or cookies.

HTTP transactions are either a request or a response. Regardless of which type it is, all
HTTP transactions have three parts:

• A single request or response line—A client request line consists of an HTTP
method (usually GET or POST) followed by a document address and the HTTP ver-
sion number being used. For example,

GET /contents.html HTTP/1.1

uses the HTTP GET method to request the document contents.html using HTTP
version 1.1. The response line contains a HTTP status code that indicates whether
the request was successful (understood and satisfied) or if not, why not.

504 Day 12

It may not be possible to take advantage of all server capabilities if you
want your servlet to be portable to other platforms and environments.

Caution

15 0672323842 CH12 3/20/02 9:34 AM Page 504

Servlets 505

12

• The HTTP headers—This is a set of fields used to exchange information between
the client and the server. For example, the following tells the server that the client
will accept the IOS8859.5 and unicode1.1 character sets:

Accept-Charset: iso-8859-5, unicode-1-1

The client uses the headers to tell the server about its configuration and the docu-
ment types it will accept. The server, in turn, uses the header to return information
about the requested document, such as its age and location.

• The HTTP body—The HTTP body is optionally used by the client to send any
additional information (see POST method). The server uses the body to return the
requested document.

Listing 12.1 shows an example GET request. A GET request does not have a body, so there
are only the request line and headers in this example.

LISTING 12.1 An Example HTTP GET Request

1: GET /some/url.html HTTP/1.1
2: Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

➥application/vnd.ms-excel, application/msword, application/vnd.ms-powerpoint,
/

3: Referer: http://www.somewhere.com/search?sourceid=navclient&
➥q=http+request+

4: Accept-Language: en-gb
5: Accept-Encoding: gzip
6: User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)
7: Host: localhost:8000
8: Connection: Keep-Alive

See RFC 2616 (available from www.ietf.org) for the meaning of these header fields and
for more information on HTTP in general.

Uniform Resource Identifiers (URIs)
A Universal Resource Identifier (URI) is also commonly known as a Universal Resource
Locator (URL). URIs are used on the Web to identify documents, images, downloadable
files, services, electronic mailboxes, and other resources.

Using a simple syntax, URIs make use of a variety of naming schemes and access meth-
ods, such as HTTP, FTP, and Internet mail to identify online resources.

The syntax of an HTTP URL is as follows:

http_URL = “http://” host [“:” port] [path]

where

15 0672323842 CH12 3/20/02 9:34 AM Page 505

• host is a legal Internet host domain name or IP address (in dotted-decimal form).

• port is the port number (also known as the socket or service number) to connect to
on the host. The default port number is 80—the TCP/IP port.

• path is the path to the document on the host.

The term URL is more commonly used when referring to the HTTP address string and,
for this reason, URL is the term that will be used for the rest of today’s material.

506 Day 12

Space characters should be avoided in URL’s because they may not be han-
dled correctly on all platforms.

Note

HTTP GET and POST Methods
A Web browser client communicates with the server typically using one of two HTTP
methods—GET or POST. Typically, these methods are used as follows:

• GET is used to request information from the server.

• POST is used to send data to the server.

But as with many things, it is not quite that simple. The GET method can also be used to
pass information in the form of a query string in the URL, and POST can be used for
requests.

The following URL with a query string (the data following the ?) is passed by the GET
method and sets a parameter called day to the value 12 (you will learn more about para-
meters later when you code some real servlets).

http://localhost:8000/j2ee?day=12

Because the query string is added to the end of the URL, information that is sent as part
of a GET request is visible to the client. You will have seen examples of this many times
when browsing the Web, especially when using search engines.

Because a URL can be read and bookmarked, sensitive information (such as a
password, personal details, or credit card numbers) should not be passed this
way.

Caution

15 0672323842 CH12 3/20/02 9:34 AM Page 506

Servlets 507

12

In contrast, the POST method sends its data directly after the HTTP header, in the body of
the message, and does not append data to the URL. For this reason, it is safer to send
sensitive information using POST.

In all other respects, the GET and POST methods can be thought of as the same. They both
interact with the server and can be used to update or change the current Web page and
change server-side properties. In fact, POST methods are often used to send long query
strings that would otherwise overflow the maximum size for a URL. As a servlet devel-
oper, whether to use GET or POST can become a matter of personal choice, as long as you
remember that GET should never be used where the information being sent may be used
to compromise someone’s security or privacy.

Other HTTP Methods
The following HTTP methods are used less often, but are covered here for completeness.

• HEAD This method can be used if the client wants information about a document
but does not want the document to be returned. Following a HEAD request, the serv-
er responds with the HTTP headers only; no HTTP body is sent.

• PUT Requests the server to store the body of the request at a specified URL.

• DELETE Requests the removal of data at a URL.

• OPTIONS Requests information about the communications options available.

• TRACE Used for debugging. The HTTP body is simply returned by the server.

Server Responses
The server sends back a HTTP response to the client that may look something like
Listing 12.2.

LISTING 12.2 HTTP Response

1: HTTP/1.1 200 OK
2: Date: Tue, 20 Nov 2001 09:23:44 GMT
3: Server: Netscape-Enterprise/3.5.1G
4: Last-modified: Mon, 12 Nov 2001 15:31:26 GMT
5: Content-type: text/html
6: Content-length: 2048
7: Page-Completion-Status: Normal

The server sends back a status code as part of the first line of the response followed by
header-fields describing the document. A blank line separates the header from the docu-
ment itself.

15 0672323842 CH12 3/20/02 9:34 AM Page 507

Most of the time, the status code is handled by the browser, but you will, no doubt, be
familiar with one or two that are reported to the end user. In particular, you will have
seen the ubiquitous 404 Not Found error that is sent when the server was unable to find
the requested URL.

To aid in coding (and debugging) your servlets, it is useful to have a knowledge of the
HTTP status codes. Status codes are grouped as shown in Table 12.1.

TABLE 12.1 HTTP Status Code Groups

Code Description

100-199 Information indicating that the request has been received and is
being processed.

200-299 Request was successful.

300-399 Further action is required.

400-499 Request is incomplete.

500-599 Server error has occurred.

Most browsers will deal with most of these status codes silently. The handling of status
codes is browser specific, but some status codes you may see include those shown in
Table 12.2.

TABLE 12.2 HTTP Status Codes

Code Error Description

400 Bad Request The server detected a syntax error in the request.

401 Unauthorized The request did not have the correct authorization.

403 Forbidden The request was denied, reason unknown.

404 Not Found The document was not found.

500 Internal Server Error Usually indicates that part of the server (probably your
servlet) has crashed.

501 Not Implemented The server cannot perform the requested action.

Content Type Headers
As part of the response headers, a content type field is used to indicate the format of the
data that is being sent in the response. The value for this field is in Multipurpose Internet
Mail Extensions (MIME)—also used when attaching documents to e-mail.

508 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 508

Servlets 509

12

Some self-explanatory MIME content types are as follows:

• text/html

• text/plain

• image/gif

• application/pdf

The browser can also specify in the request header the MIME types that it will accept.

Introduction to HTML
HTML is the language of the Web. It is used to encode embedded directions (tags) that
indicate to a Web browser how to display the contents of a document.

The HTML standard is under the authority of the World Wide Web Consortium. Unlike
the HTTP standard that is used consistently across implementations, browser writers
have implemented HTML differently, according to their whim, and have added their own
proprietary HTML extensions (to the point that different versions of the same browser
may handle the same HTML tag differently).

In your servlet code, you are advised to restrict the use of HTML to well-
established tags and features. All the HTML covered here will work in all the
most popular browsers, although you may find the output may look differ-
ent in your favorite.

Tip

An HTML document has a well-defined structure consisting of required and optional
HTML elements.

An HTML element consists of a tag name followed by an optional list of attributes all
enclosed in angle brackets (<...>). Tag names and attributes are not case sensitive and
cannot contain a space, tab, or return character. Most HTML tags come in pairs—a start
tag and an end tag. The end tag is the same as the start tag but has a forward slash char-
acter preceding the tag name. For example, an HTML document begins with <HTML> and
ends with </HTML>.

Tags are nested. This means that you must end the most recent tag before ending a pre-
ceding one. Apart from this restriction, the actual layout is completely free format. An
indented layout can be used to aid readability but is not required.

15 0672323842 CH12 3/20/02 9:34 AM Page 509

Each HTML document has an optional HEAD and a BODY. The HEAD is where you pass
information to the browser about the document; text in the header is not displayed as the
content of the document. The BODY includes the information (tags and text) that defines
the document’s content. A well-formed (if a little basic) HTML document is shown in
Listing 12.3, the output displayed in Microsoft’s Internet Explorer is shown in Figure
12.2.

LISTING 12.3 A Simple HTML Page

1: <HTML>
2: <HEAD>
3: <TITLE>My Very First HTML Document</TITLE>
4: </HEAD>
5: <BODY>
6: <H1>Here is a H1 header</H1>
7: and here is some text – hopefully it looks different from the header
8: </BODY>
9: </HTML>

510 Day 12

FIGURE 12.2
Screen shot of a simple
HTML page.

All tags have a name, and some tags may also have one or more attributes that are used
to add extra information. Attribute values can be case sensitive and should be enclosed in
quotes if they include any space or special characters (if in doubt—quote), both single
and double quotes can be used.

A little confusingly, a few common HTML tags do not normally come in pairs because
the end tag can be omitted. These include , which inserts a graphic image, and

, which causes a line break.

Table 12.3 shows a list of HTML tags and attributes that can be used to format a simple
HTML document. Only tags from this list are used in today’s lesson. This is not a full
list of HTML tags, nor does it show any attributes to the tags. For a definitive list, see
the latest HTML specification available from www.w3.org.

15 0672323842 CH12 3/20/02 9:34 AM Page 510

Servlets 511

12

TABLE 12.3 Summary of Common HTML Tags

TAG Description

<A> Create a hyperlink (HREF attribute).

<BIG> Format the text in a bigger typeface.

<BODY> Enclose the body of the HTML document.

 Start a new row of text.

<BUTTON> Create a button element within a <FORM>

 Change the size, color, or typeface of text.

<FORM> Delimit a form. This is used to send user input.

<Hn> Header text, where n is a number between 1 and 6.

<HEAD> Encloses the document head.

<HTML> Used to delimit the entire HTML document.

 Insert an image.

<INPUT> Create buttons or other elements in a <FORM> used to pass information to the
server.

<OPTION> Define a single option within a <SELECT> list, see <SELECT>.

<P> Start a new paragraph.

<SELECT> Start the <OPTION> list for a multiple-choice menu.

<TABLE> Place text in table format.

<TD> Define the contents of a data cell in a <TABLE>.

<TH> Define the contents of a header cell in a <TABLE>.

<TR> Define a row of cells within a <TABLE>.

<!-- --> Enclose a comment.

Listing 12.4 is an HTML document that illustrates the use of some of these tags. It con-
tains an input form with a button and outputs data in the form of a table.

LISTING 12.4 Simple HTML Form

1: <HTML>
2: <HEAD><TITLE>Simple HTML Form</TITLE></HEAD>
3: <BODY>
4: <H1>Color Selector</H1>
5: <FORM METHOD=GET ACTION=”http://localhost:8000/servlets/processForm”>
6: Please Type in your name here:
7: <INPUT TYPE=TEXT NAME=”name”>
8: <P>Now select the color of your choice</P>

15 0672323842 CH12 3/20/02 9:34 AM Page 511

9: <SELECT NAME=”color” SIZE=1><OPTION>Red<OPTION>Green
➥<OPTION>Blue</SELECT>
10:

11: <INPUT TYPE=SUBMIT>
12:

13: <TABLE BORDER=5 BORDERCOLOR=BLUE CELLPADDING=10>
14: <TR>
15: <TH ALIGN=LEFT>Color</TH><TH ALIGN=LEFT>Description</TH>
16: </TR>
17: <TR>
18: <TD>Red</TD>
19: <TD>Will bring excitement into your life</TD>
20: </TR>
21: <TR>
22: <TD>Green</TD>
23: <TD>Will bring you life giving energy</TD>
24: </TR>
25: <TR>
26: <TD>Blue</TD>
27: <TD>Will bring peace to your world</TD>
28: </TR>
29: </TABLE>
30: </FORM>
31: </BODY>
32: </HTML>

The output of this code in Microsoft’s Internet Explorer version 6 is shown in Figure
12.3. The page will look similar, but not necessarily exactly the same, in other browsers.

512 Day 12

LISTING 12.4 Continued

FIGURE 12.3
Sample HTML page
displayed using
Microsoft’s Internet
Explorer version 6.

15 0672323842 CH12 3/20/02 9:34 AM Page 512

Servlets 513

12

This completes the discussion of HTML; access the latest standard and other documents
on the WC3 Web site (www.w3.org) for more information on the standard.

The Servlet Environment
We now turn our attention to servlets. Servlets are Java classes that can be loaded
dynamically and run by a Java-enabled Web server. The Web server provides support for
servlets with extensions called containers (also known as servlet engines).

Web clients (Web browsers) interact with the servlet using the HTTP request/response
protocol that has been described earlier.

Servlet Containers
The servlet container provides the following services and functionality:

• The network services over which the requests and responses are sent.

• Registers the servlet against one or more URLs.

• Manages the servlet lifecycle.

• Decodes MIME-based requests.

• Constructs MIME-based responses.

• Supports the HTTP protocol (it can also support other protocols).

A servlet container can also enforce security restrictions on the environment, such as
requesting the user to log in to access a Web page.

The Servlet Class Hierarchy
The Servlet API specification is produced by Sun Microsystems Inc., and a copy of the
latest specification can be found on their Web site (developer.java.sun.com).

An HTTP servlet extends the javax.servlet.HttpServlet class, which itself extends
javax.servlet.GenericServlet, as shown in Figure 12.4.

15 0672323842 CH12 3/20/02 9:34 AM Page 513

Simple Servlet Example
You are now in a position to write your first servlet.

In Listing 12.5, you will generate a complete HTML page that displays a simple text
string. This servlet extends the HttpServlet class and overrides the doGet() method.

LISTING 12.5 A Servlet Generating a Complete HTML Page

1: import java.io.*;
2: import javax.servlet.*;
3: import javax.servlet.http.*;
4:
5: public class HTMLPage extends HttpServlet {
6: public void doGet(HttpServletRequest req, HttpServletResponse res)

➥throws IOException {
7: res.setContentType (“text/html”); // the content’s MIME type
8: PrintWriter out = res.getWriter(); // access the output stream
9: out.println (“<HTML>”);
10: out.println (“<HEAD><TITLE>First Servlet</TITLE></HEAD>”);
11: out.println (“<BODY>”);
12: out.println (“<H1>My First Servlet Generated HTML Page</H1>”);
13: out.println (“</BODY>”);

514 Day 12

FIGURE 12.4
Servlet class hierarchy
diagram.

Servlet

init()
destroy()
getServletConfig()
getServletInfo()
service()

GenericServlet

init()
destroy()
log()
getServletConfig()
getServletContext()

getInitParameter()
getInitParameterNames()
getServletInfo()
getServletName()
service()

HttpServlet

doGet()
doPost()
doHead()
doDelete()
doOptions()

doPut()
doTrace()
getLastModified()
service()

15 0672323842 CH12 3/20/02 9:34 AM Page 514

Servlets 515

12

14: out.println (“</HTML>”);
15: }
16: }

When the client browser sends the GET request for this servlet, the server invokes your
doGet() method, passing it the HTTP request in the HttPServletRequest object. The
response is sent back to the client in the HttpServletResponse object.

The HttPServletRequest interface provides access to information about the request, and
its main use is to give access to parameters passed in the URL query string. For this sim-
ple example, the request object does not contain any useful information, so it is not
accessed in this servlet. You will see how to use the HttPServletRequest object in later
examples.

The HttpServletResponse object is used to return data to the client. For this simple
example, the data is sent as the MIME type text/html. The PrintWriter object encodes
the data that is sent to the client.

LISTING 12.5 Continued

A call to the setContentType() method should always be made before
obtaining a PrintWriter object.

Note

Lines 9–14 in Listing 12.5 generate the HTML that the browser will use to display the
page.

After compiling the code, start up the J2EE RI and run deploytool. You will now per-
form the following steps to deploy the servlet.

1. Create a new application called Servlets to store your servlet code.

2. From the File menu, select New, Web Component.

3. On the first input page, choose Create New WAR File in Application. Click the
Edit button and add the HTMLPage class file (it will put the class file in a WEB-INF
directory, why is explained later), as shown in Figure 12.5.

4. On the next page, choose Web component type to be Servlet, as shown in Figure
12.6.

15 0672323842 CH12 3/20/02 9:34 AM Page 515

5. On the next page, select the HTMLPage as the Servlet Class (see Figure 12.7). Take
the defaults for the remainder of the parameters on this screen.

516 Day 12

FIGURE 12.5
deploytool WAR page.

FIGURE 12.6
deploytool Choose
Component Type page.

15 0672323842 CH12 3/20/02 9:34 AM Page 516

Servlets 517

12

6. There are no initialization parameters, so skip the next page.

7. On the next page, New Web Component Wizard—Aliases, add an alias for this
page. Use the same name as the servlet and precede it with a / (/HTMLPage), as
shown in Figure 12.8. The component alias is very important; it is used in the URL
used to access the page. Without it, you will not be able to access your servlet.

FIGURE 12.7
deploytool

Component General
Properties page.

FIGURE 12.8
deploytool Aliases
page.

15 0672323842 CH12 3/20/02 9:34 AM Page 517

8. There is no further configuration to do, so select Finish.

9. As always, select the Tools, Verifier menu to check the application before deploy-
ment. Ignore any warning about a missing context because you will add this in the
next step.

10. To deploy the application, you will need to supply a context root; use /Servlets
(see Figure 12.9).

518 Day 12

FIGURE 12.9
deploytool .WAR
Context Root page.

The context root is used in the URL to find the WAR file. The final URL will be

http://<Web server address>/<Context root>/<Component alias>

For this example, if you have used the names suggested, the URL is as follows:

http://localhost:8000/Servlets/HTMLPage

Now, start up a Web browser. First, type in the URL for the Web server (http://local-
host:8000) and check that server is up and running (see Figure 12.10).

If you have used the Web server before, you may not see this page. If you
have problems starting the Web server, Sun Microsystems has provided an e-
mail address (J2EE-ri-feedback@sun.com), but this is not a commercial
application and a response is not guaranteed.

Note

Now access your servlet using the following URL (see Figure 12.11):

http://localhost:8000/Servlets/HTMLPage.

15 0672323842 CH12 3/20/02 9:34 AM Page 518

Servlets 519

12
Congratulations, you have just produced your first servlet.

Passing Parameter Data to a Servlet
Your first servlet, although it shows the principle of servlets, was not actually a very
good servlet example. As you have probably realized, it could have been written as a sta-
tic HTML page and you could have avoided all the complication of having to compile
and deploy a servlet. The next example will show the power of servlets.

How to Access Parameters
The power of servlets comes into its own when the data is dynamic. Dynamic data can
come from many sources. It can be obtained from an external resource (such as a file,
database, or another Web page) or it can be sent from a HTML form to the server in the
form of parameters.

Parameters are name-value pairs. Parameters are defined in the HTML, for example

<INPUT TYPE=TEXT NAME=”myname”>

FIGURE 12.10
J2EE 1.3 server page.

FIGURE 12.11
HTMLPage servlet.

15 0672323842 CH12 3/20/02 9:34 AM Page 519

places an input text box on the page and any data typed in the input box is associated
with a parameter called myname.

If the form uses a GET method, this parameter will be added to the URL as part of the
query string, as in the following:

http://localhost:8000/Servlets/example?myname=Rupert

In the servlet, you use the HttpServletRequest.getParameter() method to gain access
to parameters. For example, the following line will obtain the value stored in the myname
parameter:

String name = req.getParameter(“myname”);

Servlet Example with Parameters
Youwill now code an application takes information from a simple form and displays it
back to the user. There are two parts to the application:

• VerifyForm A static HTML form that obtains the data from the user (shown in
Listing 12.6).

• VerifyData A servlet that simply sends the entered data back to the client
(shown in Listing 12.7). This is actually quite a common requirement, where the
user is presented with the data just typed into a form to visually verify it before the
application continues processing it.

If you deploy the form, VerifyForm, as part of your Web application, you can use a rela-
tive path to access the servlet “/Servlets/VerifyData” (line 4 of Listing 12.6).
Otherwise, you will need the full path
“http://localhost:8000/Servlets/VerifyData”.

LISTING 12.6 VerifyForm HTML Page to Obtain the Data

1: <HTML>
2: <HEAD><TITLE>Verify Form</TITLE></HEAD>
3: <BODY>
4: <FORM METHOD=GET ACTION=”/Servlets/VerifyData”>
5: <P>Please type in your details:</P>
6: Name:
7: <INPUT TYPE=TEXT NAME=”name”>
8: Telephone No:
9: <INPUT TYPE=TEXT NAME=”tel”>
10: <P>Click on Submit when done</P>
11: <INPUT TYPE=SUBMIT>
12: </FORM>
13: </BODY>
14: </HTML>

520 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 520

Servlets 521

12

When you click the Submit Query button, the text typed in the two input boxes is sent as
a query string to the servlet. The query string is appended at the end of the URL that was
specified as the ACTION attribute (line 4 in Listing 12.6) to the form, as shown in the fol-
lowing:

http://localhost:8000/Servlets/VerifyData?name=Rupert+&tel=123456789

The VerifyData servlet (shown in full in Listing 12.7) uses the getParameter() method
to access these parameters. Deploy this servlet as part of your Servlets application.

LISTING 12.7 VerifyData Servlet with Parameters

1: import java.io.*;
2: import javax.servlet.*;
3: import javax.servlet.http.*;
4:
5: public class VerifyData extends HttpServlet {
6:
7: public void doGet(HttpServletRequest req, HttpServletResponse res)
8: throws IOException {
9: res.setContentType (“text/html”);
10: PrintWriter out = res.getWriter();
11: String name = req.getParameter(“name”);
12: String tel = req.getParameter(“tel”);
13: out.println (“<HTML>”);
14: out.println (“<HEAD><TITLE>Verify Data</TITLE></HEAD>”);
15: out.println (“<BODY>”);
16: out.println (“<H1>Hello “ + name + “ “ + tel + “</H1>”);
17: out.println (“</BODY>”);
18: out.println (“</HTML>”);
19: }
20: }

If everything is correct and you have typed in the data in Figure 12.12, this servlet pro-
duces the output shown in Figure 12.13.

FIGURE 12.12
VerifyForm page.

15 0672323842 CH12 3/20/02 9:34 AM Page 521

Using a POST Request
As already discussed, both the HTTP methods POST and GET can be used to send data to
a servlet. Generally, you need the functionality to be the same if either GET or POST is
used.

The simplest way for a servlet to handle POST requests is to dispatch the request to the
doGet() method. Add the following doPost() method to your servlet:

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

doGet (req, res);
}

Now change your form to use POST instead of GET. To do this, change line 4 of Listing
12.6 to the following:

<FORM METHOD=POST ACTION=”/Servlets/VerifyData”>

You will notice that the parameters are not included as part of the URL this time, but the
output and the effect is exactly the same as when GET was used.

The Servlet Lifecycle
The servlet specification defines the lifecycle of a servlet, this is shown in Figure 12.14,
and the servlet container’s responsibilities. The server is responsible for loading, instanti-
ating, and initializing servlets. But exactly when this happens is not defined, a server
may instantiate all servlets when the servlet engine is started, or instantiation of a servlet
may be delayed until it is needed. The lifespan of a servlet is also non-deterministic. A
server may keep a servlet active for a long time, or the server may remove a servlet when
resources are low.

522 Day 12

FIGURE 12.13
VerifyData page.

15 0672323842 CH12 3/20/02 9:34 AM Page 522

Servlets 523

12

When a servlet is instantiated, the server calls the servlet’s init() method. This is called
once and once only, and should be used to set up servlet resources and initialize servlet
instance variables. A servlet can access its context in the init() method.

The init() method must complete before the servlet can service any requests. The
servlet will not be put into service if the init() method throws a ServletException.

The init() method is defined in the superclass. You only need override this method if
you need to do some initialization for the servlet.

The destroy() method is called by the server when the servlet is removed from service.
Because a server can destroy a servlet at any time, it should be used not only to free
resources but also to save any data or state information that may be required when the
servlet is called again. After a servlet has been initialized, request and response objects
are passed as parameters to the appropriate doXXX() method (see Figure 12.15) of the
servlet interface.

These objects are as follows:

• javax.servlet.http.HttpServletRequest

• javax.servlet.http.HttpServletResponse

FIGURE 12.14
Lifecycle of a servlet.

State: resident
 in memory

do/process
request

init()

destroy()

doGet(), doPost(),…

HttpServlet

15 0672323842 CH12 3/20/02 9:34 AM Page 523

The Servlet Context
The javax.servlet.ServletContext interface provides a set of methods that the servlet
can use to communicate with the Web server. The ServletContext object is contained
within the javax.servlet.ServletConfig object, which is provided to the servlet when
it is first initialized.

Using the ServletContext object, a servlet can perform the following functions:

• Set and store attributes that other servlets in the context can access.

• Log events.

• Obtain URL references to resources.

• Get values assigned to initialization parameters. These are parameters associated
with a servlet, not an individual request.

• Get the MIME type of files.

• Obtain information about the servlet container, such as its name and version.

A servlet context is associated with a Web application and shared by all the servlets with-
in that application.

524 Day 12

FIGURE 12.15
Sequence diagram of
HTTP GET and POST
requests.

:browser :web server :VerifyData
HttpServlet

GET http://localhost:8000/Servlets/VerifyData

POST http://localhost:8000/Servlets/VerifyData

Service ()

Service ()

doGet()

doPost()

15 0672323842 CH12 3/20/02 9:34 AM Page 524

Servlets 525

12

Web Applications
In this section, Web applications will be described in more detail—what happens when
one is created and what is happening behind the scenes when you use the J2EE RI.

Web Application Files and Directory Structure
Web applications are run on a Web server. A Web application is simply a set of static
HTML pages, servlets, support classes, applets, JavaBeans, and any other resource that
bundled together form a complete application. The J2EE RI packages Web applications
for you and stores them in a Web Archive Format (WAR) file so they can be easily distrib-
uted to other Web servers.

The Java Servlets specification defines a structured hierarchy of directories that are used
for deployment and packaging purposes. Using the J2EE RI deploytool, class files and
other configuration files are placed in the directory structure for you. If you use a differ-
ent Web server (such as Jakarta Tomcat), you may need to manually create and place
files in the correct place.

Each Web application has a root called the context path. You entered the context path
when you deployed your servlets. No two applications can have the same context path
because this would cause potential URL conflicts.

The context root is usually mapped onto a physical directory called the document root.
Using the J2EE RI, this directory is found in /public_html under the J2EE installation
directory. This is also where the WAR file is stored, if there is one.

Below the document root is a special directory called WEB-INF. The contents of the WEB-

INF directory are as follows:

• web.xml file—The Web application deployment descriptor

• /classes directory—Used to store the class files for the servlets and utility classes

• /lib directory—Storage area for Java Archive (JAR) files

If the WAR file exists, there will also be a META-INF directory that contains information
useful to Java Archive tools.

For a small application, the directory structure might look like the following:

\images\background.gif
\images\cutout.gif
\index.html
\META-INF\MANIFEST.MF
\servlets.war
\VerifyForm.html

15 0672323842 CH12 3/20/02 9:34 AM Page 525

\WEB-INF\classes\HTMLPage.class
\WEB-INF\classes\VerifyData.class
\WEB-INF\lib\bean.jar
\WEB-INF\web.xml

The Web Application Deployment Descriptor
Listing 12.8 is the deployment descriptor for a simple Web application showing the
major features. This example is based on one given in the Servlets 2.3 specification.

It begins with two tags (<?xml> <!DOCTYPE>) that define the XML document structure.
The remainder of the XML describes the Web application and sets parameters for the
servlets.

LISTING 12.8 Deployment Descriptor for a Simple Web Application

1: <?xml version=”1.0” encoding=”UTF-8”?> 2: <!DOCTYPE web-app
➥PUBLIC ‘-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN’
➥’http://java.sun.com/dtd/web-app_2_3.dtd’> 3: <web-app>

4: <display-name>A Simple Application</display-name>
5: <servlet>
6: <servlet-name>catalog</servlet-name>
7: <servlet-class>CatalogServlet</servlet-class>
8: <init-param>
9: <param-name>catalog</param-name>
10: <param-value>Spring</param-value>
11: </init-param>
12: </servlet>
13: <servlet-mapping>
14: <servlet-name>catalog</servlet-name>
15: <url-pattern>/catalog/*</url-pattern>
16: </servlet-mapping>
17: <session-config>
18: <session-timeout>30</session-timeout>
19: </session-config>
20: <error-page>
21: <error-code>404</error-code>
22: <location>/error404.html</location>
23: </error-page>
24: </web-app>

Table 12.4 contains a short description of the tags used in this deployment descriptor, see
the servlets specification for a more complete list.

526 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 526

Servlets 527

12

TABLE 12.4 XML Tags Used in Listing 12.8

XML Tag Description

DOCTYPE Indicates that this is a deployment descriptor for version 2.3 of
the servlet’s specification.

web-app Root for the deployment descriptor

display-name Short name for application, need not be unique.

servlet-name The official name of the servlet, must be unique.

servlet-class The servlet’s fully-qualified classname.

init-param Initialization parameters available to the servlet. This is followed
by name/value pairs of parameters.

param-name The name of the parameter.

param-value The value for the parameter.

servlet-mapping Used to map a servlet to a URL.

session-config Defines timeout behavior for sessions.

error-page Used to map an HTTP error status code onto a Web resource,
such as an HTML page, that will be displayed instead of the stan-
dard browser error pages (see the “Handling Errors” section later
in the chapter).

If you use the J2EE RI, the deployment descriptor is created for you. If you are using
other Web servers, you may need to manually create the XML for the deployment
descriptor and save it as the web.xml file.

To be validated, the deployment descriptor requires a Document Type Definition (DTD)
file.

The DTD contains the rules for processing the deployment descriptor. If you are com-
fortable with the syntax used in DTDs, the deployment descriptor DTD itself can be
found by following the URL given in the DOCTYPE tag (http://java.sun.com/dtd/web-
app_2_3.dtd). Also see Appendix C, “An Overview of XML,” on the CD-ROM.

For more information on DTDs, see also the Servlet Specification for a full description
of the deployment descriptor DTD file.

If you are writing your own deployment descriptor, you will need to follow the DTD
rules to ensure that it is valid; otherwise, your application will not be deployed.

15 0672323842 CH12 3/20/02 9:34 AM Page 527

Handling Errors
There are a number of possible error or failure conditions that need to be handled by
your servlet. These errors fall into the following two categories:

• HTTP errors

• Servlet exceptions

HTTP Errors
One way of handling HTTP errors in the deployment descriptor has already been briefly
mentioned. By using the XML error-page tag, you can ensure that the client is sent an
application-specific page when it gets an error. You can use this page to send appropriate
information in response to any HTTP error code. The following, for example, replaces
the standard HTTP “404 Not found” error page with one that will have been written for
this application:

<error-page>
<error-code>404</error-code>
<location>/Servlets/error404.html</location>

</error-page>

If the user tries to access a page that is not found on the server, the
/Servlets/error404.html page will be returned to the client. Using the J2EE RI, this
error page redirection can be included in the deployment descriptor by adding an Error
Mapping entry to the File Refs tab for your application (see Figure 12.16).

528 Day 12

FIGURE 12.16
deploytool File Refs
tab.

15 0672323842 CH12 3/20/02 9:34 AM Page 528

Servlets 529

12

Generating HTTP Status Codes
There may be times when it is useful for the servlet to generate its own HTTP status
codes. In an error situation, the servlet can use either of the following methods to set the
HTTP status code

public void HttpServletResponse.sendError(int sc)
public void HttpServletResponse.sendError(int sc, String msg)

The API defines a set of constants that can be used to refer to HTTP status codes. For
example, the error status returned can be set to 404, as in the following:

res.sendError(res.SC_NOT_FOUND);

This will he handled by the server and browser in exactly the same way as any “404 Not
found” error, including using any error-page redirection specified in the deployment
descriptor.

Send Redirect
Another useful thing a servlet can do if an error is detected is to redirect the client to
another URL. This can also be used in obsolete servlets to redirect the client seamlessly
to a new application.

Use HttpServletResponse.sendRedirect(String location) to redirect the response
to the specified location.

The following will redirect the client to another page called
“/Servlets/AnotherHTMLPage”.

res.sendRedirect(“/Servlets/AnotherHTMLPage”);

Servlet Exception Handling
In general, you should take care to catch all servlet-generated exceptions in the servlet
and take appropriate action to inform the client what has happened. If you don’t, instead
of the expected page, the user is likely to see a Java exception stack trace on the screen.
Although you may find the information useful during development, an exception stack
trace sent to the client will leave most users bewildered and worried.

When a fatal exception occurs, there is often nothing to do but tell the client that a seri-
ous error has occurred. The following catch block simply returns a HTTP 503 Service
Unavailable error to the client, along with a suitable error message:

catch (RemoteException ex) {
res.sendError(res. SC_SERVICE_UNAVAILABLE, “Internal communication error”);

}

15 0672323842 CH12 3/20/02 9:34 AM Page 529

In other situations, it might be appropriate to redirect the user to another URL that has a
form that the user can use to report the error:

catch (RemoteException ex) {
res. sendRedirect(“/Servlets/ReportErrorPage”);

}

A servlet can throw a number of exceptions that will be handled by the server. During
initialization or while handling requests, the servlet instance can throw an
UnavailableException or a ServletException. If this happens, the action taken by the
server is implementation specific, but it is likely to return a 503 Service Unavailable
response to the client. In this case, you can still use the error-page tag in the web.xml
file to send the client an appropriate message when the server handles the exception.

Retaining Client and State Information
All but very simple Web applications are likely to require that information of some kind
about the client be retained between different page requests. As has been stated, HTTP is
stateless and does not provide a mechanism to ascertain that a series of requests have
come from the same client.

There are a number of ways of retaining information about clients, such as hidden fields,
cookies, and sessions (all described in this section). Sessions are by far the simplest to
use, but you should be aware that no one method provides a perfect mechanism, and
your servlet may need to be written to support more than one technique.

Using Session Objects
Sessions identify page requests that originate from the same browser during a specified
period of time.

Conveniently, sessions are shared by all the servlets in an application accessed by a
client.

The javax.servlet.http.HttpSession object identifies a session and is obtained using
the HttpServletRequest.getSession() method. The HttpSession object contains the
information shown in Table 12.5. This information can be used to identify the session.

TABLE 12.5 Information Accessed Through HttpSession Objects

Access Method Information

getId() Unique session identifier

getLastAccessedTime() The last time the client sent a request associated with
this session

530 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 530

Servlets 531

12

getCreationTime() The time when this session was created

getMaxInactiveInterval() The maximum time interval, in seconds, that the servlet
container will keep this session open between client
accesses

getAttribute() Objects bound to this session

Behind the scenes, most Web servers implement session tracking using cookies.
Information is stored in the cookie to associate a session identifier with a user. The
explicit use of cookies to do the same thing is described later in this section.

Creating a Session
To create a session, the servlet must first get a HttpSession object for a user. The
HttpServletRequest.getSession() method returns a user’s current session. If there is
no current session, it will create one before returning it.

You must call getSession() before any output is written to the response (that is, before
accessing the PrintWriter, not just before sending any HTML or other data to the
client).

You can use HttpSession.isNew() to determine if a session has been created. The fol-
lowing shows the use of getSession() to return a HttpSession object:

public void doGet (HttpServletRequest req, HttpServletResponse res)
➥throws ServletException, IOException {

HttpSession session = req.getSession();
out = res.getWriter();
if (session.isNew()) {
/* new session created ok */

... }
}

After a session is created, you can start associating objects with the session. The follow-
ing code could be used in a shopping cart application. It checks to see the user already
has a shopping cart in this session. If no cart exists, one is created.

HttpSession session = request.getSession();
ShoppingCart cart = (ShoppingCart)session.getAttribute(“candystore.cart”);
if (cart == null) {

cart = new ShoppingCart();
session.setAttribute(“candystore.cart”, cart);

}

TABLE 12.5 Continued

Access Method Information

15 0672323842 CH12 3/20/02 9:34 AM Page 531

Invalidating a Session
A session can either be manually invalidated or allowed to timeout. The default timeout
period is 1,800 seconds (30 minutes). A servlet can control the period of time between
client requests before the servlet container will invalidate this session with
setMaxInactiveInterval(int seconds). Setting a negative time ensures the session
will never timeout.

A call to the invalidate() method also invalidates a session and unbinds any objects
bound to it. This is a useful thing to do if the user logs out of your application.

Hidden Form Fields
Another way of supporting session tracking is to use hidden form fields. These are fields
on a HTML page that are not seen by the user. To the server, there is no difference
between a hidden field and a non-hidden field. In the browser, hidden fields are not dis-
played.

The following is an example of a hidden field that could be used to record that the user
had read the terms and conditions:

<INPUT TYPE=hidden NAME=”terms” VALUE=”true”>

Hidden fields have several advantages over other session tracking methods:

• They are supported by all the popular browsers.

• They require no special server support.

• They can be used with anonymous clients.

The major disadvantage is they only work for a sequence of dynamically generated
forms, and the technique fails if there is an error before the data is permanently stored
somewhere.

532 Day 12

The user can modify the values stored in hidden fields, so they are not
secure. Do not use hidden fields to hold data that will cause a problem if it
is compromised.

Caution

Cookies
The HttpSession interface and hidden fields provide a simple way to track information
during a single session, but they both have the drawback that they cannot be used to
retain information across multiple browser sessions. To do this, you must create and
manage your own data using cookies.

15 0672323842 CH12 3/20/02 9:34 AM Page 532

Servlets 533

12

You need to be aware that, as a security precaution, a browser can be set up to reject
cookies. In this case, you will need to use an additional and alternative method (hidden
fields or URL rewriting) to track sessions. Also, cookies should not be used when the
information is important or sensitive. Cookies are associated with a browser and can be
stored as text in the file system on the client’s host. Consequently, cookies are

• Not secure because they are easy to edit or replace

• Potentially can be viewed by other users of the same workstation

• Can allow a user to impersonate another user

• Not available if the user changes his or her workstation or browser

Within a single organization, remember that many users can share machines, such as
public access terminals, including part-time or shift workers.

A cookie has a name and a single value, both of which are strings. It may also have
optional attributes, such as a comment, path and domain qualifiers, a maximum age, and
a version number. You need to be aware that browsers vary as to how they handle cookie
attributes, so use them with caution. The browser may also have a limit on the number of
cookies it will handle at any one time and may set a limit on its size.

The cookie information is sent as part of the HTTP response header. If the browser
accepts cookies, it will store the cookie in the file system on the client.

Creating a Cookie
You can use a javax.servlet.http.Cookie object to store information that will remain
persistent across multiple HTTP connections.

Any use of cookies comes with a major health warning. As you will see, they
are easy to forge and, because they are not always handled consistently,
they are inherently unreliable.

Caution

Cookies can be deleted (sometimes automatically by the browser), so your
code should never rely on a cookie being available.

Caution

The servlet sends cookies to the browser by using the
HttpServletResponse.addCookie(Cookie) method.

15 0672323842 CH12 3/20/02 9:34 AM Page 533

Because the cookie is sent as part of the HTTP response header, you must add the cookie
after setting the response content type but before sending the body of the response. This
means a call to res.addCookie(cookie) must be made before sending any HTML or
other data to the client.

The following code creates a new cookie with a unique identifier (code not shown). In
this code fragment, the cookie value is initially left blank and set later using
Cookie.setValue() to store the URL of the page visited by the user (getRequestURI()
returns a string containing the URL from the protocol name up to the query string).

String userID = new UniqueID();
Cookie cookie = new Cookie (userID, null);
....
String cvalue = getRequestURI();
cookie.setValue(cvalue);
res.addCookie(cookie);

By default, a cookie lives only as long as the browser session, so you need to use the
cookie.setMaxAge(interval) method to change the life expectancy of a cookie. A posi-
tive interval sets the number of seconds a cookie will live, which enables you to create
cookies that will survive beyond the browser session. A negative interval causes the
cookie to be destroyed when the browser exits. An interval of zero immediately deletes
the cookie.

Retrieving Cookie Data
Creating a cookie was simple. Retrieving one is not quite as simple. Unfortunately, there
is no way to retrieve a cookie by name. Instead, you must retrieve all the cookies and
then find the one that interests you. This is yet another good reason for not putting sensi-
tive information in your cookie.

To find the value of a cookie, you use the Cookie.getValue() method.

The following code can be used to retrieve a cookie:

Cookie cookie = null;
Cookie cookies[] = req.getCookies();
if (cookies != null) {

int numCookies=cookies.length;
for(int i = 0; i < numCookies; i++) {

cookie = cookies[i];
if (cookie.getName().equals(userID)) {

String cvalue = cookie.getValue();
break;

}
}

}

534 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 534

Servlets 535

12

URL Rewriting
Not all browsers support cookies, and even those that do can be set up to reject cookies.
To get around this problem, your servlet can be set up to use URL rewriting as an alter-
native way of tracking sessions.

With URL rewriting, the server adds extra information dynamically to the URL. Usually,
this information is the session ID (a unique ID associated with a HttpSession object
when it is created).

You can use the HttpServletResponse.encodeURL() method to encode the session ID
within the response as an added parameter. For example

out.println(“<FORM action=’”+res.encodeURL(“/Servlets/HTMLPage”)+”’>”);

adds the session ID to the form’s action URL as follows:

<FORM action=’http://localhost:8000/Servlets/HTMLPage;jsessionid=99B484920067B3’>

When the client will not accept a cookie, the server to track sessions will use URL
rewriting. To ensure that your servlets support servers that use URL rewriting to track
sessions, you must pass all URLs used in your servlet through the encodeURL() method.

Servlet Filtering
Filters are a feature that was introduced in version 2.3 of the servlet specification. A filter
is a special type of servlet that dynamically intercepts requests and responses and trans-
forms the information contained in them. The main advantage of filters is that they can
be added to existing applications without any need for recompilation.

Filters can have several important uses:

• To encapsulate recurring tasks in reusable units

• To format the data sent back to the client

• To provide authorization and blocking of requests

• To provide logging and auditing

A filter can perform filtering tasks on the request, the response, or both.

Programming Filters
A filter is a servlet that also implements the javax.servlet.Filter interface.

Instead of doGet() or doPost(), filter tasks are done in a doFilter() method.

15 0672323842 CH12 3/20/02 9:34 AM Page 535

So that a filter can access initialization parameters, it is passed a FilterConfig object in
its init() method. A filter can access the ServletContext through the FilterConfig
object and thereby load any resources needed for the filtering tasks.

Filters can be connected together in a FilterChain. The servlet container constructs the
filter chain in the order the filters appear in the deployment descriptor.

Because filters are added to an application at deploy time, it is possible to map a filter to
one or more servlets. This is illustrated in Figure 12.17, where the AuthenticateUser fil-
ter is applied to all servlets. The PageCounter is mapped to VerifyData and HTMLPage,
and the EncodeResponse filter only affects requests to the AgencyTable servlet.

536 Day 12

FIGURE 12.17
Servlet filter chain.

GET http://…VerifyData VerifyData
HttpServlet

GET http://…HTMLPage HTMLPage
HttpServlet

GET http://…AgencyTable AgencyTable
HttpServlet

Filter:
AuthenticateUser

Filter:
PageCounter

Filter:
EncodeResponse

After a filter successfully completes its task, it must then call the doFilter() method on
the next filter in the chain. The filter chain object is passed to the filter by the server as a
parameter to the doFilter() method.

public void doFilter(ServletRequest req, ServletResponse res,
➥FilterChain chain) throws IOException, ServletException {

... // filter code
chain.doFilter(req, res); // call the next filter in the chain

}

If it is the last filter in the chain, instead of invoking another filter, the container will
invoke the resource at the end of the chain (a normal servlet). If for some reason the fil-
ter processing fails, and if it is no longer appropriate to continue servicing the request,
there is no need to call doFilter() on the next filter in the chain.

In a filter, you must provide an init(FilterConfig) method.

15 0672323842 CH12 3/20/02 9:34 AM Page 536

Servlets 537

12

This init(FilterConfig) method is called by the Web server when a filter is being
placed into service, and it must complete successfully before the filter can do any filter-
ing work.

The destroy() method is called when a filter is being taken out of service, and gives the
filter an opportunity to clean up any resources.

The use of these methods will be shown in the following example.

Example Auditing Filter
The filter in Listing 12.9 logs the number of times the application is accessed. A similar
technique could be used to intercept requests and authorize the user before calling the
servlet to service the request.

LISTING 12.9 Servlet Filter

1: import java.io.*;
2: import javax.servlet.*;
3: import javax.servlet.http.*;
4:
5: public class AuditFilter extends HttpServlet implements Filter {
6: private FilterConfig filterConfig = null;
7:
8: public void init(FilterConfig filterConfig)
9: throws ServletException {
10: this.filterConfig = filterConfig;
11: }
12:
13: public void destroy() {
14: this.filterConfig = null;
15: }
16:
17: public void doFilter(ServletRequest req, ServletResponse res,

➥FilterChain chain) throws IOException, ServletException {
18: if (filterConfig == null)
19: return;
20: StringBuffer buf = new StringBuffer();
21: buf.append (“The number of hits is: “);
22: synchronized (this) {
23: Integer counter =

➥(Integer)filterConfig.getServletContext().getAttribute(“Counter”);
24: if (counter == null)
25: counter = new Integer(1);
26: else
27: counter = new Integer(counter.intValue() + 1);
28: buf.append (counter.toString());
29: filterConfig.getServletContext().log(buf.toString());

15 0672323842 CH12 3/20/02 9:34 AM Page 537

30: filterConfig.getServletContext().setAttribute(“Counter”,
➥counter);
31: }
32: chain.doFilter(req, res); // call the next filter in the chain
33: }
34: }

Deploying Filters
Programming the filter is (as always) only half the task. Now it has to be configured into
the application. In J2EE RI, this is achieved with the following steps:

1. Add a new Web component to your Servlets application containing the filter class.
On the component page, check the Servlets Filters box to indicate that this is a fil-
ter class (see Figure 12.18). There is no need to give this servlet a component alias
because it is not referenced directly.

538 Day 12

LISTING 12.9 Continued

FIGURE 12.18
deploytool Choose
Component Type—
Servlet Filters.

2. With the Servlets application highlighted in the left window, select the Filter
Mapping tab (see Figure 12.19).

3. Click the Edit Filter List button and add the AuditFilter to the Servlet Filters box
(see Figure 12.20).

15 0672323842 CH12 3/20/02 9:34 AM Page 538

Servlets 539

12

If you view the servlet’s deployment descriptor, you will see the following lines have
been added:

<filter>
<filter-name>AuditFilter</filter-name>
<display-name>AuditFilter</display-name>
<description></description>
<filter-class>AuditFilter</filter-class>

</filter>

FIGURE 12.19
Deploytool Filter
Mapping tab.

FIGURE 12.20
deploytool Servlet
filters.

15 0672323842 CH12 3/20/02 9:34 AM Page 539

4. Now map the filter to the page whose access you want to be logged. In this case,
HTMLPage (see Figure 12.21).

540 Day 12

FIGURE 12.21
deploytool Filter
Mapping.

The following deployment descriptor entry shows the AuditFilter mapped to the
HTMLPage:
<filter-mapping>
<filter-name>AuditFilter</filter-name>
<servlet-name>HTMLPage</servlet-name>

</filter-mapping>

5. Deploy the application.

Now, every time the HTMLPage is accessed, the counter will be incremented and logged.
The log file will be found in your J2EE installation directory under logs\<machine
name>\web.

There will probably be a number of log files in this directory; look for the
one with the latest date on it.

Note

At the end of the log file you should see something like the following:

HTMLPage: init
The number of hits is: 1
The number of hits is: 2
The number of

15 0672323842 CH12 3/20/02 9:34 AM Page 540

Servlets 541

12

Another way to see if the filter is working is to amend the HTMLPage code to output the
counter, as shown in Listing 12.10.

LISTING 12.10 HTMLPage with Counter Added

1: import java.io.*;
2: import javax.servlet.*;
3: import javax.servlet.http.*;
4:
5: public class HTMLPage extends HttpServlet {
6:
7: public void doGet(HttpServletRequest req, HttpServletResponse res)
8: throws ServletException, IOException {
9: res.setContentType (“image/gif”);
10: PrintWriter out = res.getWriter();
11: out.println (“<HTML>”);
12: out.println (“<HEAD><TITLE>Filtered Servlet</TITLE></HEAD>”);
13: out.println (“<BODY>”);
14: out.println (“<H1>A Generated HTML Page with a Filter

attached</H1>”);
15: Integer counter =

➥(Integer)getServletContext().getAttribute(“Counter”);
16: out.println (“<P>This page has been accessed “ +

➥counter + “ times</P>”);
17: out.println (“</BODY>”);
18: out.println (“</HTML>”);
19: }
20: }

This was a very simple example, more sophisticated filters can be used to modify the
request or the response. To do this, you must override the request or response methods by
wrapping the request or response in an object that extends HttpServletRequestWrapper
or HttpServletResponseWrapper. This approach follows the well-known Wrapper or
Decorator pattern technique. Patters will be described in detail on Day 18, “Patterns.”

Event Listening
A servlet can be designated as an event listener. This enables the servlet to be notified
when some external event or change has occurred.

There are a number of listener interfaces that you can implement in your servlet. All the
listener interfaces extend java.util.EventListener.

Table 12.6 provides a list of the listener interfaces.

15 0672323842 CH12 3/20/02 9:34 AM Page 541

TABLE 12.6 Servlet Event Listener Interfaces

Listener Interface Notification

HttpSessionActivationListener When a session is activated or passivated

HttpSessionAttributeListener When a session attribute is added, removed, or replaced

HttpSessionListener When a session is created or destroyed

ServletContextAttributeListener When a servlet context attribute is added, removed, or
replaced

ServletContextListener About changes to servlet context, such as context initial-
ization or the context is to be shut down

The listener classes are often used as a way of tracking sessions within a Web applica-
tion. For example, it is often useful to know whether a session became invalid because
the Web server timed out the session or because a Web component within the application
called the invalidate() method.

In the filter section, we incremented a counter each time the application was accessed.
The servlet filter code had to check that the counter existed before incrementing it. The
following ServletContextListener (see Listing 12.11) sets up the counter when the
context is initialized before any request is processed. The ServletContextListener
interface has two methods:

• contextInitialized() This receives notification that the application is ready to
process requests.

• contextDestroyed() This is notified that the context is about to be shut down.

LISTING 12.11 Servlet Listener to Initialize Counter

1: import javax.servlet.*;
2: import javax.servlet.http.*;
3:
4: public class Listener extends HttpServlet

➥implements ServletContextListener {
5:
6: private ServletContext context = null;
7:
8: public void contextInitialized(ServletContextEvent event) {
9: context = event.getServletContext();
10:
11: Integer counter = new Integer(0);
12: context.setAttribute(“Counter”, counter);
13: context.log(“Created Counter”);
14: }
15:

542 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 542

Servlets 543

12

16: public void contextDestroyed(ServletContextEvent event) {
17: event.getServletContext().removeAttribute(“Counter”);
18: }
19: }

Deploying the Listener
Go through the following steps to deploy the listener class in the Servlets application.

1. Add a new Web component to the Servlets application. On the component page,
check the Event Listeners box to indicate that this is an event listener class (see
Figure 12.22). As with a filter, there is no need to give the listener servlet a compo-
nent alias because it is not called directly.

LISTING 12.11 Continued

FIGURE 12.22
deploytool Choose
Component Type—
Event Listeners.

2. With the Servlets application highlighted in the left window, select the Event
Listeners tab (see Figure 12.23).

3. Add the Listener class to the event listeners (see Figure 12.24).

The following will then be added to the Servlets deployment descriptor:
<listener>

<listener-class>Listener</listener-class>
</listener>

15 0672323842 CH12 3/20/02 9:34 AM Page 543

4. Deploy the application.

Because the listener initializes the counter to 0, and this is guaranteed to be called before
any servlet code, you can now simplify the AuditFilter code and remove the check for
a null counter (see Listing 12.12).

544 Day 12

FIGURE 12.23
deploytool Event
Listeners.

FIGURE 12.24
deploytool Event
Listeners.

15 0672323842 CH12 3/20/02 9:34 AM Page 544

Servlets 545

12

LISTING 12.12 Amended AuditFilter Code Showing New doFilter() Method

1: public void doFilter(ServletRequest req, ServletResponse res,
➥FilterChain chain) throws IOException, ServletException {

2: if (filterConfig == null)
3: return;
4: StringBuffer buf = new StringBuffer();
5: buf.append (“The number of hits is: “);
6: synchronized (this) {
7: Integer counter =

➥(Integer)filterConfig.getServletContext().getAttribute(“Counter”);
8: counter = new Integer(counter.intValue() + 1);
9: buf.append (counter.toString());
10: filterConfig.getServletContext().log(buf.toString());
11: filterConfig.getServletContext().setAttribute(“Counter”, counter);
12: }
13: chain.doFilter(req, res);
14: }

Servlet Threads
In the AuditFilter example, several lines of code were encased in a synchronize block.
This was done to ensure that the counter would be correctly incremented if more than
one access is made to the page at the same time. Without the synchronize block, it is pos-
sible for two (or possibly more) servlet threads to obtain the counter value before it has
been incremented, thereby losing one of the increments. In this case, failing to count one
page hit is not a significant problem. There are other situations where it might be.

Shared resources, such as files and databases, can also present concurrency issues when
accessed by more than one servlet at a time. To avoid concurrency issues, a servlet can
implement the single-thread model.

The servlet init() method is only called once, so concurrency is not a prob-
lem here.

Note

The servlet API specifies that a servlet container must guarantee that no two threads of a
servlet that implements the javax.servlet.SingleThreadModel interface are run con-
currently. This means the container must maintain a pool of servlet instances and dis-
patch each new request to a free servlet; otherwise, only one request at a time can be
handled.

15 0672323842 CH12 3/20/02 9:34 AM Page 545

If you want to make your servlet single threaded to prevent concurrency problems, sim-
ply add the SingleThreadModel interface to the class signature.

public class HTMLPage extends HttpServlet implements SingleThreadModel {

Security and the Servlet Sandbox
A servlet runs within the Web server and, if allowed, can access the file system and net-
work or could even call System.exit() to shutdown the Web server. Giving a servlet this
level of trust is not advisable, and most Web servers run servlets in a sandbox, which
restricts the damage a rogue servlet could potentially cause.

A servlet sandbox is an area where servlets are given restricted access to the server.
Servlets running in the sandbox can be constrained from accessing the file system and
network. This is similar to how Web browsers control applets. The implementation of the
sandbox is server dependent, but a servlet in a sandbox is unlikely to be able to

• Access server files

• Access the network

• Run commands on the server

Agency Case Study
You will now add a servlet to the Agency case study. The servlet sends the contents of
the agency database tables to be displayed by a browser. The rows of the tables are for-
matted as an HTML table.

The servlet first outputs an HTML form on which the user selects the name of a table
from a pull-down list (see Figure 12.25).

After the user clicks the Submit Query button, the servlet displays the contents of this
table on the same page.

AgencyTable Servlet Code
The AgencyTable servlet overrides the init() method to obtain the servlet context along
with the JNDI context for the Agency EJB. The Agency EJB select() method is used in
the doGet() method to obtain the rows of table data from the Agency database.

public void init(){
context = getServletContext();
try {

InitialContext ic = new InitialContext();
Object lookup = ic.lookup(“java:comp/env/ejb/Agency”);

546 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 546

Servlets 547

12

AgencyHome home = (AgencyHome)PortableRemoteObject.narrow(lookup,
➥AgencyHome.class);

agency = home.create();
}

....
}

FIGURE 12.25
AgencyTable form.

The AgencyTable HTML page is generated in the following code.

private final String tables = “<OPTION>Applicant<OPTION>ApplicantSkill
➥<OPTION>Customer<OPTION>Job<OPTION>JobSkill
➥<OPTION>Location<OPTION>Matched<OPTION>Skill”;
...

out.println (“<HTML>”);
out.println (“<HEAD><TITLE>” + agencyName + “ List Tables</TITLE></HEAD>”);
out.println (“<BODY><FONT FACE=ARIAL COLOR=DARKBLUE”);
out.println (“<H1>” + agencyName + “ List Tables</H1>”);
out.println (“<P>Select a table from the list to display the contents</P>”);

out.println (“<FORM>”);
out.println (“<SELECT NAME=\”tableList\” SIZE=1>” + tables + “</SELECT>”);
out.println (“<INPUT TYPE=submit>”);
out.println (“</FORM>”);
out.println (“</BODY>”);
out.println (“</HTML>”);

The String variable tables contains the names of the database tables encoded in a
HTML <OPTION> list.

15 0672323842 CH12 3/20/02 9:34 AM Page 547

The <SELECT> tag defines a parameter called tableList. This parameter is used to pass
the name of the selected table from the form to the servlet.

The following code checks to see if the parameter has been set. If it has, the
outputTable() method is called.

tableName = req.getParameter(“tableList”);
if (tableName != null) {

outputTable(out, tableName, res);

In the outputTable() method, it is the agency.select bean that actually does the work.
It returns a list of all the rows in the table.

java.util.List query; // list of String[], first row = column names
query = agency.select(tableName);

The rows of the table are displayed as an HTML table so the columns line up correctly.
The attributes to the HTML TABLE tag set the border and background colors, and the cell
padding is increased to improve readability. Rows in a table are separated by
<TR>...</TR> tags.

out.println (“<TABLE BORDER=1 BORDERCOLOR=SILVER BGCOLOR=IVORY
➥CELLPADDING=5><TR>”);

The first item in the list is an array containing the names of the columns in the table.
This is output as HTML table header cells.

String[] headerRow = (String[])query.get(0);
for (int i = 0; i < headerRow.length; i++) {

out.println (“<TH ALIGN=LEFT>” + headerRow[i] + “</TH>”);
}
out.println (“</TR>”);

The remainder of the rows of the table are output as HTML table data cells.

for (int i = 1; i < query.size(); i++) {
out.println (“<TR>”);
String[] row = (String[])query.get(i);
for (int r = 0; r < row.length; r++) {

out.println (“<TD>” + row[r] + “</TD>”);
}
out.println (“</TR>”);

}
out.println (“</TABLE>”);

Deploying the AgencyTable Servlet
Use deploytool to add the AgencyTable Servlet as a servlet Web component in the
Agency application. You will need to map the JNDI names used in the code, as shown in
Figure 12.26.

548 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 548

Servlets 549

12

Figure 12.27 shows the output.

FIGURE 12.26
deploytool EJB Refs.

FIGURE 12.27
AgencyTable servlet
output.

15 0672323842 CH12 3/20/02 9:34 AM Page 549

The complete listing of the AgencyTable servlet is provided in Listing 12.13 for com-
pleteness.

LISTING 12.13 AgencyTable Servlet Code

1: import java.io.*;
2: import javax.servlet.*;
3: import javax.servlet.http.*;
4: import agency.*;
5: import javax.naming.*;
6: import java.rmi.*;
7: import javax.rmi.*;
8: import javax.ejb.*;
9:
10: public class AgencyTableServlet extends HttpServlet
11: {
12: private final String tables = “<OPTION>Applicant<OPTION>ApplicantSkill

➥<OPTION>Customer<OPTION>Job<OPTION>JobSkill
➥<OPTION>Location<OPTION>Matched<OPTION>Skill”;
13: private Agency agency;
14: private ServletContext context;
15:
16: public void init(){
17: context = getServletContext();
18: try {
19: InitialContext ic = new InitialContext();
20: Object lookup = ic.lookup(“java:comp/env/ejb/Agency”);
21: AgencyHome home =

➥(AgencyHome)PortableRemoteObject.narrow(lookup, AgencyHome.class);
22: agency = home.create();
23: }
24: catch (NamingException ex) {
25: context.log(“NamingException in AgencyTableServlet.init”, ex);
26: }
27: catch (ClassCastException ex) {
28: context.log(“ClassCastException in AgencyTableServlet.init”,

➥ex);
29: }
30: catch (CreateException ex) {
31: context.log(“CreateException in AgencyTableServlet.init”, ex);
32: }
33: catch (RemoteException ex) {
34: context.log(“RemoteException in AgencyTableServlet.init”, ex);
35: }
36: }
37:
38: public void destroy () {
39: context = null;
40: agency = null;

550 Day 12

15 0672323842 CH12 3/20/02 9:34 AM Page 550

Servlets 551

12

41: }
42:
43: private void outputTable (PrintWriter out, String tableName,

➥HttpServletResponse res) throws RemoteException{
44:
45: java.util.List query; // first row = column names
46: query = agency.select(tableName);
47:
48: out.println (“<P>Listing of “ + tableName +

➥” table</P>”);
49: out.println (“<TABLE BORDER=1 BORDERCOLOR=SILVER BGCOLOR=IVORY

➥CELLPADDING=5><TR>”);
50:
51: String[] headerRow = (String[])query.get(0);
52: for (int i = 0; i < headerRow.length; i++) {
53: out.println (“<TH ALIGN=LEFT>” + headerRow[i] + “</TH>”);
54: }
55: out.println (“</TR>”);
56:
57: for (int i = 1; i < query.size(); i++) {
58: out.println (“<TR>”);
59: String[] row = (String[])query.get(i);
60: for (int r = 0; r < row.length; r++) {
61: out.println (“<TD>” + row[r] + “</TD>”);
62: }
63: out.println (“</TR>”);
64: }
65: out.println (“</TABLE>”);
66: }
67:
68: public void doGet(HttpServletRequest req, HttpServletResponse res)
69: throws IOException {
70: try {
71: String agencyName = agency.getAgencyName();
72: String tableName = null;
73:
74: res.setContentType (“text/html”);
75: PrintWriter out = res.getWriter();
76:
77: // print out form
78: out.println (“<HTML>”);
79: out.println (“<HEAD><TITLE>” + agencyName +

➥” List Tables</TITLE></HEAD>”);
80: out.println (“<BODY><FONT FACE=ARIAL COLOR=DARKBLUE”);
81: out.println (“<H1>” + agencyName +

➥” List Tables</H1>”);
82:
83: tableName = req.getParameter(“tableList”);
84: if (tableName != null) {

LISTING 12.13 Continued

15 0672323842 CH12 3/20/02 9:34 AM Page 551

85: outputTable(out, tableName, res);
86: }
87: out.println (“<P>
Select a table from the list

➥to display the contents</BR></P>”);
88: out.println (“<FORM>”);
89: out.println (“<SELECT NAME=\”tableList\” SIZE=1>” +

➥tables + “</SELECT>”);
90: out.println (“<INPUT TYPE=submit>”);
91: out.println (“</FORM>”);
92:
93: out.println (“</BODY>”);
94: out.println (“</HTML>”);
95: }
96: catch (RemoteException ex) {
97: context.log (“RemoteException in AgencyTableServlet.doGet”,

➥ex);
98: res.sendError (res.SC_INTERNAL_SERVER_ERROR);
99: }
100: }
101: }

Use a browser to access your servlet and check that you can retrieve the data from the
database.

Summary
Today, you have seen how servlets can be employed in a Web application to add dynamic
content to HTML pages. You learned that servlets have no client interface, and the servlet
container controls its lifecycle. Because HTTP is a stateless protocol, servlets have to use
external means to retain information between page accesses. Cookies are one method,
but when cookies cannot be used, a servlet can use hidden fields or URL rewriting. You
have also seen that with event listening and using servlet filters, you can further extend
the functionality and reusability of your servlet Web applications.

Servlets generate HTML from within Java code. This works well when the amount of
HTML is relatively small, but the coding can become onerous if large amounts of HTML
have to be produced. Tomorrow, you will look at another type of servlet called a Java
Server Page (JSP). With JSPs, the opposite approach is taken. Here, the servlet Java code
is imbedded in the HTML page, avoiding the need to have multiple out.println()
statements.

552 Day 12

LISTING 12.13 Continued

15 0672323842 CH12 3/20/02 9:34 AM Page 552

Servlets 553

12

Q&A
Q What are the two main HTTP methods used to send requests to a Web server?

What is the main difference between them? Which should I use to send sensi-
tive information to the server?

A The two main methods are GET and POST. GET adds any request parameters to the
URL query string, whereas POST sends its parameters as part of the request body. It
is for this reason that you should use POST to send sensitive information.

Q What are the main uses for a ServletContext object?

A The main uses are to set and store attributes, log events, obtain URL references to
resources, and get the MIME type of files.

Q What are the names of the methods I must implement to handle HTTP GET
and POST requests?

A The methods are doGet() and doPost().

Q What are the main uses of a servlet filter?

A Filters can be used to provide auditing and to change the format of the request or
the response.

Exercises
To extend your knowledge of Servlets, try the following exercise.

1. Extend the Agency case study. Add a servlet that produces a page that can be used
to add new customers to the database. The information you will need to collect is
the applicant’s name, login, and e-mail address. Use the
agency.createCustomer() method to store this information in the Customer table
in the database. Check that your servlet works correctly by running your
AgencyTableServlet and to display the contents of the Customer table.

2. Now add a new servlet to delete a customer. The only information you will need to
obtain is the login name. Use the agency.deleteCustomer method. Again, check
that your servlet works correctly by running your AgencyTableServlet.

15 0672323842 CH12 3/20/02 9:34 AM Page 553

15 0672323842 CH12 3/20/02 9:34 AM Page 554

DAY 13

WEEK 2

JavaServer Pages
Yesterday, you looked at developing Web applications using Java servlets.
Servlets have the advantage of being able to generate the HTML Web page
dynamically. The disadvantage of servlets is the fact that the developer must
generate a lot of HTML formatting information from within Java. Servlets can
be described as large amounts of boring HTML println() statements inter-
spersed with small amounts of interesting Java code.

Servlets make it difficult to differentiate the presentation layer from the logic
layer of an application. This duality of purpose means that servlets do not allow
the roles of HTML designer and Java programmer to be easily separated.
Writing servlets requires the members of the development team to be either

• Java programmers who must learn HTML and Web design

• Web designers who must learn Java

In practice, there are very few Java programmers who make good Web design-
ers, and fewer Web designers who make good Java programmers.

JavaServer Pages are servlets that are written in HTML. Actually, there is a bit
more to it than that, but the Java code on a JSP is usually either non-existent or
very simple, and can be readily understood by non-Java programmers.

16 0672323842 CH13 3/20/02 9:27 AM Page 555

In today’s lesson, you will learn

• What a JSP is and how its implementation differs from servlets

• The JSP lifecycle—what you have to do and what the Web server will do for you

• How to deploy a JSP

• How to use JavaBeans to hide Java functionality from the JSP

• How to develop a Web application using JSPs

Today’s work builds directly on the knowledge gained yesterday because many of the
mechanisms used in JSPs are the same as servlets.

What is a JSP?
A JSP is just another servlet, and like HTTP servlets, a JSP is a server-side Web compo-
nent that can be used to generate dynamic Web pages.

The fundamental difference between servlets and JSPs is

• Servlets generate HTML from Java code.

• JSPs embed Java code in static HTML.

To illustrate this difference, Listings 13.1 and 13.2 are the same Web page coded as a
servlet and as a JSP, respectively. Each Web page simply reads a parameter called name
from the HTTP request and creates an HTML page displaying the value of the name
parameter. Listing 13.1 shows the servlet, and Listing 13.2 shows the JSP.

LISTING 13.1 Simple Dynamic Page As a Servlet

1: import java.io.*;
2: import javax.servlet.*;
3: import javax.servlet.http.*;
4:
5: public class Hello extends HttpServlet {
6:
7: public void doGet(HttpServletRequest req, HttpServletResponse res)
8: throws ServletException, IOException {
9: res.setContentType (“text/html”);
10: PrintWriter out = res.getWriter();
11: String name = req.getParameter(“name”);
12: out.println (“<HTML>”);
13: out.println (“<HEAD><TITLE>Hello</TITLE></HEAD>”);
14: out.println (“<BODY>”);
15: out.println (“<H1>Hello “ + name + “</H1>”);
16: out.println (“</BODY>”);
17: out.println (“</HTML>”);
18: }
19: }

556 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 556

JavaServer Pages 557

13

LISTING 13.2 Same Dynamic Page As a JSP

1: <HTML>
2: <HEAD><TITLE>Hello</TITLE></HEAD>
3: <BODY>
4: <% String name = request.getParameter(“name”); %>
5: <H1>Hello <%=name%> </H1>
6: </BODY>
7: </HTML>

Here you can see that the JSP not only requires far less typing, but a lot of the work is
being done for you. How the JSP achieves the same effect with far less code will soon
become clear.

Separating Roles
With a servlet, the Java programmer was forced to generate the entire HTML. With a
JSP, it is much easier to separate the HTML from the application tasks. With the use of
JavaBeans and JSP tag libraries (covered on Day 14, “JSP Tag Libraries”), this separa-
tion is even more explicit.

Using JSPs, the Web designer can concentrate on the design and development of the
HTML page. When a dynamic element is needed, the developer can use a pre-written
bean or tag library to provide the data. The Java programmer can concentrate on develop-
ing a useful set of beans and tag libraries encapsulating the complex Java required to
retrieve the data from an EJB, a database, or any other data source.

Translation and Execution
JSPs differ from servlets in one other respect. Before execution, a JSP must be converted
into a Java servlet. This done in two stages:

1. The JSP text is translated into Java code.

2. The Java code is compiled into a servlet.

The resulting servlet processes HTTP requests. The translate and compile process is per-
formed once before the first HTTP request can be processed. The JSP lifecycle is cov-
ered in more detail later.

JSP Syntax and Structure
Before writing your first JSP, you need to gain an understanding of the syntax and the
structure of a JSP.

16 0672323842 CH13 3/20/02 9:27 AM Page 557

As you have seen, JSP elements are embedded in static HTML. Like HTML, all JSP ele-
ments are enclosed in open and close angle brackets (< >). Unlike HTML, but like XML,
all JSP elements are case sensitive.

JSP elements are distinguished from HTML tags by beginning with either <% or <jsp:.
JSPs follow XML syntax, they all have a start tag (which includes the element name) and
a matching end tag. Like XML tags, a JSP tag with an empty body can combine the start
and end tags into a single tag. The following is an empty body tag:

<jsp:useBean id=”agency” class=”web.AgencyBean”>
</jsp:useBean>

The following tag is equivalent to the previous example:

<jsp:useBean id=”agency” class=”web.AgencyBean”/>

Optionally, a JSP element may have attributes and a body. You will see examples of all
these types during today’s lesson. See Appendix C, “An Overview of XML,” for more
information on XML and the syntax of XML elements.

JSP Elements
The basic JSP elements are summarised in Table 13.1.

TABLE 13.1 JSP Elements

Element Type JSP Syntax Description

Directives <%@Directive…%> Information used to control the translation of the
JSP text into Java code

Scripting <% %> Embedded Java code

Actions <jsp: > JSP-specific tags primarily used to support
JavaBeans

You will learn about scripting elements first and then cover directives and actions later in
today’s lesson.

Scripting Elements
Scripting elements contain the code logic. It is these elements that get translated into a
Java class and compiled. There are three types of scripting elements—declarations,
scriptlets, and expressions. They all start with <% and end with %>.

558 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 558

JavaServer Pages 559

13

Declarations

Declarations are used to introduce one or more variable or method declarations, each one
separated by semicolons. A variable must be declared before it is used on a JSP page.
Declarations are differentiated from other scripting elements with a <%! start tag. An
example declaration that defines two variables is as follows:

<%! String color = “blue”; int i = 42; %>

You can have as many declarations as you need. Variables and methods defined in decla-
rations are declared as instance variables outside of any methods in the class.

Expressions

JSP expressions are single statements that are evaluated, and the result is cast into a
string and placed on the HTML page. An expression is introduced with <%= and must
not be terminated with a semi-colon. The following is an expression that will put the
contents of the i element in the items array on the output page.

<%= items[i] %>

JSP expressions can be used as values for attributes in JSP tags. The following example
shows how the i element in the items array can be used as the value for a submit button
on a form:

<INPUT type=submit value=”<%= items[i] %>”>

There cannot be a space between the <% and = signs, because this would
cause a syntax error in the JSP (see the later section on the “JSP Lifecycle”
for how JSP errors are detected and reported).

Note

Scriptlets

Scriptlets contain code fragments that are processed when a request is received by the
JSP. Scriptlets are processed in the order they appear in the JSP. They need not produce
output.

Scriptlets can be used to create local variables, for example

<% int i = 42;%>
<BIG>The answer is <%= i %></BIG>

16 0672323842 CH13 3/20/02 9:27 AM Page 559

The difference between scriptlet variables and declarations is that scriptlet variables are
scoped for each request. Variables created in declarations can retain their values between
requests (they are instance variables).

JSP Comments
There are three types of comments in a JSP page. The first type is called a JSP comment.
JSP comments are used to document the JSP page. A JSP comment is completely ignored;
it is not included in the generated code. A JSP comment looks like the following:

<%-- this is a JSP comment --%>

An alternative way to comment a JSP is to use the comment mechanism of the scripting
language, as in the following:

<% /* this is a java comment */ %>

This comment will be placed in the generated Java code.

The third mechanism for adding comments to a JSP is to use HTML comments.

<!-- this is an HTML comment -->

HTML comments are passed through to the client as part of the response. As a result,
this form can be used to document the generated HTML document. Dynamic information
can be included in HTML comments as shown in the following:

<!-- comment <%= expression %> comment -->

First JSP example
You are now ready to write and deploy your first JSP. The JSP in Listing 13.3 is a very
simple JSP that uses an expression to generate the current date.

LISTING 13.3 Full Text of date.jsp

1: <HTML>
2: <HEAD>
3: <TITLE>JSP Date Example</TITLE>
4: </HEAD>
5: <BODY>
6: <BIG>
7: Today’s date is <%= new java.util.Date() %>
8: </BIG>
9: </BODY>
10: </HTML>

560 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 560

JavaServer Pages 561

13

Perform the following steps to deploy this JSP.

1. Start up the J2EE RI and run deploytool.

2. Create a new application to store your JSPs. Call it simple.

3. Select File, New, Web Component and create a new WAR file in the application, call
it Simple.

4. Click Edit and add the JSP file date.jsp. It does not matter if your JSP source file
is in a sub-directory or not, it will be placed at the top-level directory of the Web
application. Figure 13.1 shows how the date.jsp file in a sub-directory of src/JSP
is added to the Web application.

FIGURE 13.1
Adding a JSP to a Web
component.

5. Click Next.

6. On the Choose Component Type page, set the Web component to be JSP.

7. Click Next and in the JSP Filename box, select date.jsp. Leave the component
name and display names with default values. Your screen should look like the one
shown in Figure 13.2.

8. Click Next twice to get to the Aliases screen.

9. On the Aliases page, add the alias /date. This alias is used in the URL to find the
JSP in the same way as for servlets. Your screen should look like the one shown in
Figure 13.3.

16 0672323842 CH13 3/20/02 9:27 AM Page 561

10. Click Finish.

11. Select Tools, Verifier to check the application before deployment. Ignore any warn-
ing about a missing context because you will add this in the next step.

562 Day 13

FIGURE 13.2
deploytool Choose
JSP General
Properties screen.

FIGURE 13.3
deploytool JSP Alias
page.

16 0672323842 CH13 3/20/02 9:27 AM Page 562

JavaServer Pages 563

13

12. Select Tools, Deploy to deploy the application. Step through each deployment
screen and supply a context root of /simple on the War Context Root screen.

As with servlets, the URL to reference the JSP under the J2EE RI is as follows:

http://<Web server address>/<Context root>/<Component alias>

For this example, the URL must specify the local host with a port number of 8000
because the J2EE Web server does not use the standard HTTP port number. A suitable
URL follows:

http://localhost:8000/simple/date

Enter this URL in your favorite browser. As long as you did not make an error copying
Listing 13.3, you should see the page shown in Figure 13.4. Each time you refresh the
page, the time should change by a few seconds.

FIGURE 13.4
Browser showing the
date JSP.

JSP Problems
There are three types of errors you can make with JSP pages:

• JSP errors causing the translation to fail

• Java errors causing the compilation to fail

• HTML errors causing the page to display incorrectly

Finding and correcting these errors can be quite problematic because the information you
need to discover the error is not readily available. Before looking at resolving errors, you
will need to understand the JSP lifecycle.

JSP Lifecycle
As has already been stated, JSPs go through a translation and compilation phase prior to
processing their first request. This is illustrated in Figure 13.5.

16 0672323842 CH13 3/20/02 9:27 AM Page 563

The Web server automatically translates and compiles a JSP; you do not have to manual-
ly run any utility to do this. JSP translation and compilation can occur at any time prior
to the JSP first being accessed. It is implementation dependent when this translation and
compilation occurs but it is usually either

• On deployment

• When the first request for the JSP is received

If the latter strategy is used, not only is there a delay in processing the first request
because the page is translated and compiled, but if the compilation fails, the client will
be presented with some unintelligible error. If your server uses this strategy, ensure that
you always force the translation and compilation of your JSP, either by making the first
page request after it has been deployed or by forcing the page to be pre-compiled.

With J2EE RI, the translation and compilation only takes place when the page is first
accessed. You can find the translated JSP in <J2EE installation>\repository\
<machine name>\web\<context root>\. You may find it useful to refer to the translated
JSP to understand any compilation errors.

564 Day 13

FIGURE 13.5
JSP translation and
processing phase.

HTTP GET/
POST

HTTP HTML

Java Servlet
class file

service()

Translated
Java source

JSP file

javac
compiler

HTTP
Server

JSP
Translator

finds JSP

16 0672323842 CH13 3/20/02 9:27 AM Page 564

JavaServer Pages 565

13

With J2EE RI, you can force the page to be pre-compiled by using your Web browser
and appending ?jsp_precompile=true to the JSP’s URL string. To pre-compile the
date.jsp example, you could use the following:

http://localhost:8000/simple/date?jsp_precompile=true

Because the compiled servlet is not executed, there are several advantages:

• There is no need to add any page-specific parameters to the URL.

• Pages do not have to be compiled in an order determined by the application logic.

• In a large application, less time is wasted traversing already compiled pages to find
non-compiled ones, and it is easier to ensure that pages are not missed.

Detecting and Correcting JSP Errors
Realistically, you are going to make errors when writing JSPs. These errors can be quite
difficult to comprehend because of the way they are detected and reported. There are
three categories of error:

• JSP translation

• Servlet compilation

• HTML presentation

The first two categories of error are detected by the Web server and sent back to the
client browser instead of the requested page. The last type of error (HTML) is detected
by the Web browser.

Correcting each category of error requires a different technique and is discussed in this
section.

Translation Errors
If you mistype the JSP tags or fail to use the correct attributes for the tags, you will get a
translation error returned to your browser. With the simple date example, missing the
closing % sign from the JSP expression, as in the following code

Today’s date is <%= new java.util.Date() >

will generate a translation error. Figure 13.6 shows the date JSP page with a translation
error.

Using the Web browser to report errors is an expedient solution to the problem of report-
ing errors, but this approach is not used by all Web servers. Some simply write the error
to a log file and return an HTTP error to the browser. The JSP specification simply
requires the Web server to report an HTTP 500 problem if there is an error on the JSP.

16 0672323842 CH13 3/20/02 9:27 AM Page 565

The error in Figure 13.6 shows a parse error defining an unterminated “<%= tag” on line 8
of the “date.jsp” page. The first line of the error is

org.apache.jasper.compiler.ParseException: /date.jsp(8,0) Unterminated <%= tag

This shows all of the useful information for determining the error. The first part of the
line tells you the exception that occurred:

org.apache.jasper.compiler.ParseException:

In this case, a generic parsing exception reported by the JSP translator. The J2EE RI
includes a version of the Apache Tomcat Web server and it is the Jasper parser of Tomcat
that has reported the error.

The second part of the error identifies the JSP page:

/date.jsp

and the third part specifies the line and column number:

(8,0)

You know that the error is on line 8 of the date.jsp page. The column number is often
misleading and is best ignored when looking for the error.

The final part of the error message is a brief description of the problem:

Unterminated <%= tag

566 Day 13

FIGURE 13.6
Browser showing JSP
translation error.

16 0672323842 CH13 3/20/02 9:27 AM Page 566

JavaServer Pages 567

13

The rest of the error information returned to the Web browser is a stack trace of where
the exception occurred in the Jasper translator. This is of no practical use to you and can
be ignored.

From the error information you should be able to identify the problem on the original
JSP. Depending on the nature of the error, you may need to look at JSP lines prior to the
one with the reported error. Sometimes errors are not reported until much later in the
JSP. The worst scenario is when the error is reported on the very last line because this
means the error could be practically anywhere in the JSP.

Compilation Errors
Compilation errors can occur when you mistype the Java code in a Java scripting element
or when you omit necessary page directives, such as import package lists (see the next
section).

Compilation errors are shown on the page returned to the browser and show the line
number in error in the generated file. Figure 13.7 shows compilation error that occurs if
you mistype Date as Datex in the date example show in Listing 13.3. The following is
the error line:

Today’s date is <%= new java.util.Datex() %>

FIGURE 13.7
Browser showing JSP
compilation error.

16 0672323842 CH13 3/20/02 9:27 AM Page 567

The information provided identifies the line in error in the JSP file and the corresponding
line in error in the generated Java file. If you cannot determine the error from the JSP
file, you will need to examine the generated file.

As stated earlier, the J2EE RI saves the generated Java file in the repository directory
in the J2EE installation directory. The actual location is in a directory hierarchy named
after the current workstation, the application name, and the Web application name. The
filename is generated from the original JSP name.

In the example error, if the current host is ABC123, the file will be stored as

<J2EE home>\repository\ABC123\web\simple\0002fdate_jsp.java

The following code fragment shows the generated code containing the Java error:

application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();

// HTML // begin [file=”/date.jsp”;from=(0,0);to=(4,20)]
out.write(
➥”<HTML>\r\n<TITLE>JSP Date Example</TITLE>\r\n<BODY>\r\n <BIG>\r\n Today’s
date is “);

// end
// begin [file=”/date.jsp”;from=(4,23);to=(4,46)]

out.print(new java.util.Datex());
// end
// HTML // begin [file=”/date.jsp”;from=(4,48);to=(8,0)]

out.write(“\r\n </BIG>\r\n</BODY>\r\n</HTML>\r\n”);

// end

As you can see, comments are inserted into the generated code to tie the Java code back
to the original JSP code.

HTML Presentation Errors
The last category of error you can make with a JSP is to incorrectly define the HTML
elements. These errors must be solved by looking at the HTML returned to the browser;
most browsers have a menu option to let you view the HTML source for the page. After
the HTML error is identified, you will have to relate this back to the original JSP file.
Adding HTML comments to the JSP file can help you identify the location of the error if
it is not readily apparent.

If no HTML data is returned to the browser, you have a serious problem with the JSP
that is causing the generated servlet to fail without writing any data. You will need to
examine your Web page very carefully for logic errors in the JSP elements; complex
scriptlets are the most likely cause of the problem.

568 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 568

JavaServer Pages 569

13

Your first step with a JSP that doesn’t return HTML is to remove all of the JSP elements,
leaving a plain HTML page, and ensure this is correctly returned to the browser.
Gradually re-introduce JSP elements one at a time until the error reappears. Now you can
correct the problem when you have identified where it occurs on the page.

Often, you will find that an HTML page is only partially complete. This usually indicates
that the Java code has generated an exception part way through the Web page. Some Web
servers (such as J2EE RI) will include the exception and a stack trace at the end of the
incomplete page, others will write the error to a log file.

The JSP specification supports the concept of an error page that can be used to catch JSP
exceptions, and this is discussed in more detail in the later sections on “The page
Directive” and “Error Page Definition.” Very briefly, an error page is displayed instead of
the JSP when the JSP throws an exception. An error page can be a servlet, a JSP, or an
HTML page. It is usual to define an error page containing debugging information during
development and replace this with a “user friendly” version on a live system. The “Error
Page Definition” section later in this chapter shows how to write a simple debugging
error page for use during JSP development.

JSP Lifecycle Methods
The JSP equivalent of the servlet init() method is called jspInit() and can be defined
to set up the JSP page. If present, jspInit() will be called by the server prior to the first
request. Similarly, a method called jspDestroy() can be defined to deallocate resources
used in the JSP page. The jspDestroy() method will be called when the page is taken
out of service.

These methods must be defined inside a JSP declaration, as shown in the following:

<%!
public void jspInit() {
…

}
public void jspDestroy() {
…

}
%>

One of the problems with these lifecycle methods is that they are often used to initialize
instance variables. Because JSPs are really servlets, the use of instance variables can
cause problems with the multi-threading mechanisms used by the Web server for han-
dling multiple page requests. If an instance variable is accessed concurrently from differ-
ent threads, inconsistent values for the data may be obtained, leading to inconsistent
behavior of the code. This is a well known problem that occurs in any multi-threaded
Java program and is not confined to servlets.

16 0672323842 CH13 3/20/02 9:27 AM Page 569

Access to shared resources (like instance variables) on a JSP should be thread safe.
Either all access to shared resources should be protected by synchronized blocks of
code, or the page should implement the SingleThreadModel interface that forces the
Web server to only run a single thread at a time on each servlet (as discussed on Day 12,
“Servlets”).

Because the servlet class is generated from your JSP code, you cannot implement the
SingleThreadModel interface without support from the page translator. To specify trans-
lation requirements that affect the generated Java code for your Web page, you must add
JSP directives to the page.

JSP Directives
Directives are used to define information about your page to the translator, they do not
produce any HTML output. All directives have the following syntax:

<%@ directive [attr=”value”] %>

where directive can be page, include, or taglib.

The page and include directives are described later, and the taglib directive is
described tomorrow (Day 14) when Tag Libraries are studied in details.

The include Directive
You use the include directive to insert the contents of another file into the JSP. The
included file can contain HTML or JSP tags or both. It is a useful mechanism for includ-
ing the same page directives in all your JSPs or reusing small pieces of HTML to create
common look and feel.

If the include file is itself a JSP, it is standard practice to use .jsf or .jspf, as suggest-
ed in the JSP specification, to indicate that the file contains a JSP fragment. These exten-
sions show that the file is to be used in an include directive (and does not create a well-
formed HTML page). “.jsp” should be reserved to refer to standalone JSPs.

Listing 13.4 shows a JSP with an include directive to add an HTML banner on the page.
The banner is shown in Listing 13.5

LISTING 13.4 Full Text of dateBanner.jsp

1: <HTML>
2: <HEAD>
3: <TITLE>JSP Date Example with common banner</TITLE>
4: </HEAD>

570 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 570

JavaServer Pages 571

13

5: <BODY>
6: <%@ include file=”banner.html” %>
7: <BIG>
8: Today’s date is
9: <%= new java.util.Date() %>
10: </BIG>
11: </BODY>
12: </HTML>

LISTING 13.5 Full Text of banner.html

1: <TABLE border=”0” width=”600” cellspacing=”0” cellpadding=”0”>
2: <TR>
3: <TD width=”350”><H1>Temporal Information </H1> </TD>
4: <TD align=”right” width=”250”> </TD>
5: </TR>
6: </TABLE>
7:

Remember that you must add any include files into the Web application as well as the
JSP file. In this example, you will need to add banner.html and the image file
clock.gif to the Web Application.

The page Directive
Page directives are used to define page-dependent properties. You can have more than
one page directive in the JSP. A page directive applies to the whole JSP, together with
any files incorporated via the include directive. Table 13.2 defines a list of the more
commonly used page directives.

TABLE 13.2 JSP Page Directives

Directive Example Effect

info <%@ page info=”my first JSP Example” %> Defines text string that is
placed in the
Servlet.getServletInfo()

method in the translated code

LISTING 13.4 Continued

16 0672323842 CH13 3/20/02 9:27 AM Page 571

import <%@ page import=” java.math.*” %> A comma-separated list of
package names to be imported
for this JSP. The default
import list is java.lang.*,
javax.servlet.*,
javax.servlet.jsp.*, and
javax.servlet.http.*.

isThreadSafe <%@ page isThreadSafe=”true” %> If set to true, this indicates that
<%@ page isThreadSafe=”false” %> this page can be run multi-

threaded. This is the default, so
you should ensure that access
to shared objects (such as
instance variables) is synchro-
nized.

errorPage <%@ page errorPage=”/agency/error.jsp” %> The client will be redirected to
the specified URL when an
exception occurs that is not
caught by the current page.

isErrorPage <%@ page isErrorPage=”true” %> Indicates whether this page is
<%@ page isErrorPage=”false” %> the target URL for an

errorPage directive. If true, an
implicit scripting variable
called “exception” is defined
and references the exception
thrown in the source JSP. The
default is false.

Using the Agency case study as an example, you can now study a JSP that needs to use
page directives. The program in Listing 13.6 shows an example that displays the name of
the Job Agency.

LISTING 13.6 Full Text of name.jsp

1: <%@page import=”java.util.*, javax.naming.*, agency.*” %>
2: <%@page errorPage=”errorPage.jsp” %>
3: <HTML>
4: <TITLE>Agency Name</TITLE>
5: <BODY>
6: <%

572 Day 13

TABLE 13.2 Continued

Directive Example Effect

16 0672323842 CH13 3/20/02 9:27 AM Page 572

JavaServer Pages 573

13

7: InitialContext ic = null;
8: ic = new InitialContext();
9: AgencyHome agencyHome =

➥(AgencyHome)ic.lookup(“java:comp/env/ejb/Agency”);
10: Agency agency = agencyHome.create();
11: %>
12: <H1><%= agency.getAgencyName() %> </H1>
13: </BODY>
14: </HTML>

Listing 13.6 uses the agency Session bean you developed on Day 5, “Session EJBs,” to
obtain the name of the agency. Because this JSP uses JNDI and EJB features, it must
import the relevant Java packages by using a page directive. This example also uses an
error page that is displayed if there is an uncaught exception on the page.

LISTING 13.6 Continued

The JSP page does not catch the obvious NamingException and EJBException
exceptions that can be thrown by the code in the scriptlet—the JSP error
page is used for this purpose.

Note

The error page contains JSP features that you have not yet encountered and will be
shown later.

Deploying this example is a little more complex than the simple date example because it
must include the additional class files required for the agency Session bean.

To deploy the example in Listing 13.6, perform the following steps:

1. Create a new Web Component in the simple WAR file you created earlier and use
the wizard to define the information shown in step 2.

2. Add the following files for this Web component:

• name.jsp

• errorPage.jsp

• agency/Agency.class

• agency/AgencyHome.class

• agency/DuplicateException.class

• agency/NotFoundException.class

Figure 13.8 shows the files in the WAR file for the simple Web application.

16 0672323842 CH13 3/20/02 9:27 AM Page 573

3. Select name.jsp as the JSP page.

4. Set the page alias as /name.

5. Add an EJB Reference for the agency EJB. Figure 13.9 shows the EJB Reference
page with the required settings.

574 Day 13

FIGURE 13.8
Component files for
the simple Web appli-
cation.

FIGURE 13.9
Agency EJB Reference
for the simple Web
application.

16 0672323842 CH13 3/20/02 9:27 AM Page 574

JavaServer Pages 575

13

The new name.jsp Web page can now be deployed and accessed using the URL
http://localhost:8000/simple/name.

You must have previously deployed the agency application; otherwise, the
Web interface will not be able to find the agency Session bean. Any version
of the agency application will suffice, the one from Day 10, “Message-Driven
Beans,” is the one with most functionality.

Note

Accessing HTTP Servlet Variables
The JSP pages you write are translated into servlets that process the HTTP GET and POST
requests. The JSP code can access servlet information using implicit objects defined for
each page. These implicit objects are pre-declared variables that you can reference from
the Java code on your JSP. The most commonly used objects are shown in Table 13.3.

TABLE 13.3 JSP Implicit Objects

Reference
Name Class Description

config javax.servlet.ServletConfig The servlet configuration informa-
tion for the page

request subclass of javax.servlet.ServletRequest Request information for the cur-
rent HTTP request

session javax.servlet.http.HttpSession The servlet session object for the
client

out javax.servlet.jsp.JspWriter A subclass of java.io.Writer that
is used to output text for inclusion
on the Web page

PageContext javax.servlet.jsp.PageContext The JSP page context used primar-
ily when implementing custom
tags (see Day 14)

Application javax.servlet.ServletContext The context for all Web compo-
nents in the same application

These implicit objects can be used on any JSP page. Using the date JSP shown in Listing
13.3 as an example, an alternative way of writing the date to the page is as follows:

<BIG>
Today’s date is <% out.print(new java.util.Date()); %>

</BIG>

16 0672323842 CH13 3/20/02 9:27 AM Page 575

Using HTTP Request Parameters
The next requirement for many JSP pages is to be able to use request parameters to con-
figure the behavior of the page. Using the Agency case study as an example, you will
develop a simple JSP to display the contents of a named database table.

The first step is to define a simple form to allow the user to select the table to display.
Listing 13.7 shows a simple form encoded as a JSP.

LISTING 13.7 Full Text of tableForm.jsp

1: <HTML>
2: <TITLE>Agency Tables</TITLE>
3: <BODY>
4: <FORM action=table>
5: Select a table to display:
6: <SELECT name=table>
7: <OPTION>Applicant
8: <OPTION>ApplicantSkill
9: <OPTION>Customer
10: <OPTION>Job
11: <OPTION>JobSKill
12: <OPTION>Location
13: <OPTION>Matched
14: <OPTION>Skill
15: </SELECT><P>
16: <INPUT type=submit>
17: </FORM>
18: </BODY>
19: </HTML>

Although the form in Listing 13.7 contains only HTML, it is convenient to treat it as a
JSP. You can define an alias for this page and deploy it to the same Web resource loca-
tion as the JSP that will display the table. This will simplify the application deployment
and Web site management administration. The form component of the page is set to
invoke the JSP called table in the current Web application (see line 4).

You will need to add this JSP to the simple Web application and define an alias of
/tableForm to use it.

The actual JSP to display the table is shown in Listing 13.8.

LISTING 13.8 Full Text of table.jsp

1: <%@page import=”java.util.*, javax.naming.*, agency.*” %>
2: <%@page errorPage=”errorPage.jsp” %>
3: <% String table=request.getParameter(“table”); %>

576 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 576

JavaServer Pages 577

13

4: <HTML>
5: <TITLE>Agency Table: <%= table %></TITLE>
6: <BODY>
7: <H1>Data for table <%= table %> </H1>
8: <TABLE border=1>
9: <%
10: InitialContext ic = null;
11: ic = new InitialContext();
12: AgencyHome agencyHome =

➥(AgencyHome)ic.lookup(“java:comp/env/ejb/Agency”);
13: Agency agency = agencyHome.create();
14: Collection rows = agency.select(table);
15: Iterator it = rows.iterator();
16: while (it.hasNext()) {
17: out.print(“<TR>”);
18: String[] row = (String[])it.next();
19: for (int i=0; i<row.length; i++) {
20: out.print(“<TD>”+row[i]+”</TD>”);
21: }
22: out.print(“</TR>”);
23: }
24: %>
25: </TABLE>
26: </BODY>
27: </HTML>

The JSP in Listing 13.8 uses the implicit JSP variable called request to access the
ServletRequest object (see line 3). The request parameters are retrieved by using the
getParameter() method on the request object. The rest of this JSP simply creates an
instance of the agency Session bean and uses the select() method to retrieve the table
data. The data is formatted as an HTML table and output using the implicit JspWriter
variable called out.

You will need to add this JSP to the simple web application and define an alias of
/table to use it. Because the Web application file already contains an EJB Reference to
the agency Session bean (from the name.jsp example in Listing 13.6), you do not need
to define this EJB Reference again. If you deploy this Web component in a different Web
application, you will need to add the EJB reference shown previously in Figure 13.9.

Simplifying JSP pages with JavaBeans
One of the problems with writing JSP pages is switching between the Java code and the
HTML elements. It is easy to get confused and place syntax errors in the page that can

LISTING 13.8 Continued

16 0672323842 CH13 3/20/02 9:27 AM Page 577

be difficult and time consuming to identify. Using JavaBeans on a JSP page can reduce
the amount of embedded Java code that has to be written. JavaBeans also help to sepa-
rate out the presentation and logic components of your application, allowing HTML
developers to lay out the Web pages and the Java programmers to develop supporting
JavaBeans.

What Is a JavaBean?
A bean is a self-contained, reusable software component. Beans are Java classes that are
written to conform to a particular design convention (sometimes called an idiom). The
rules for writing a JavaBean are as follows:

• A bean must have a no argument constructor.

• Beans can provide properties that allow customization of the bean. For each prop-
erty, the bean must define getter and setter methods that retrieve or modify the
bean property. For example, if a bean has a property called name, the bean class can
define the methods getName() and setName().

• The getter method must have no parameters and return an object of the type of the
property. The setter method must take a single parameter of the type of the proper-
ty and return a void. The following example shows a simple bean with a String
property called name that can be queried and modified using the defined getter and
setter methods.

public class NameBean {
private String name;
public void setName (String name) {
this.name = name;

}
public String getName () {
return name;

}
}

578 Day 13

If a bean property has only a getter method, it is read-only: a write-only
method only has a setter method. A property is read/write if it has both get-
ter and setter methods.

Note

Beans can also define business methods to provide additional functionality above and
beyond manipulating properties.

16 0672323842 CH13 3/20/02 9:27 AM Page 578

JavaServer Pages 579

13

Defining a JavaBean
JavaBeans are defined on the JSP using the tag <jsp:useBean>. This tag creates an
instance of a JavaBean and associates it with a name for use on the JSP.

<jsp:useBean id=”<bean name>” class=”<bean class>” scope=”<scope>”>

The bean name and class are defined by the id and class attributes for the useBean tag.

The useBean tag also requires a scope attribute that defines the scope of the bean refer-
ence. The possible scope values are as follows:

• page Only available on this page.

• request Available for this HTTP request (this page and any pages the request is
forwarded to).

• session The duration of the client session (the bean can be used to pass informa-
tion from one request to another). Session objects are accessed using the implicit
object called session.

• webcontext The bean is added to the Web context and can be used by any other
component in the Web application. The Web context is accessed using the implicit
object called application.

The following code creates an instance of a bean of class NameBean for the current
request and associates it with the name myBean.

<jsp:useBean id=”myBean” class=”NameBean” scope=”request”/>

This bean has been defined using an empty JSP element because the bean is ready to use
as soon as it has been defined. However, if the bean must be initialized, an alternate syn-
tax is shown next and described fully in the “Initializing Beans” section later in the chap-
ter.

<jsp:useBean id=”myBean” class=”NameBean” scope=”request” >
<jsp:setProperty name=”myBean” property=”name” value=”winston”/>

</jsp:useBean>

Getting Bean Properties
Bean properties are retrieved using the getProperty element. This element requires a
bean name (from the ID defined in the useBean tag) and property attribute, as shown in
the following:

<jsp:getProperty name=”<bean name>” property=”<property name>” />

The value of the property is converted to a string and substituted on the Web page.

16 0672323842 CH13 3/20/02 9:27 AM Page 579

The following example shows how to retrieve the name property from the NameBean
defined above and use it as a level 2 heading:

<H2><jsp:getProperty name=”myBean” property=”name”/></H2>

The getProperty tag has an empty body, so you should always define it shown in the
example.

An alternative method for accessing a bean property is to use the bean name and get
property method inside a JSP scripting element (such as an expression). The following
code is an equivalent JSP rendering of the previous example:

<H2><%= myBean.getName() %></H2>

The advantage of this form of retrieving the property is that it less verbose when used as
a value to an attribute for another JSP tag. The following shows how the name property
can be used as the label on an HTML Submit button:

<INPUT type=submit value=”Submit <%= myBean.getName() %>”>

Setting Bean Properties
Bean properties are set using the setProperty element. This element requires a bean
name (from the ID in the useBean element), a property, and a value attribute, as shown
in the following:

<jsp:setProperty name=”<bean name>”
➥property=”<property name>” value=”<expression>”/>

To set the name of the example NameBean to winston, you would use the following:

<jsp:setProperty name=”myBean” property=”name” value=”winston”/>

As with getProperty, the bean method can be called explicitly from a Java scriptlet:

<% myBean.setName(“winston”); %>

A useful feature of the setProperty tag is that bean properties can also be initialized
from the HTTP request parameters. This is accomplished by using a param attribute
rather than the value attribute:

<jsp:setProperty name=”<bean name>” property=”<property name>” param=”<name>”/>

The value of the named parameter is used to set the appropriate bean property. To use a
request parameter called name to set the NameBean property of the same name, you could
use the following:

<jsp:setProperty name=”myBean” property=”name” param=”name”/>

580 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 580

JavaServer Pages 581

13

In fact, the param attribute can be omitted if the property name is the same as the request
parameter name. So the previous example could have put more succinctly as follows:

<jsp:setProperty name=”myBean” property=”name”/>

A last form of the setProperty bean is employed when multiple parameters are used to
initialize several bean properties. If the property name is set to *, all of the form request
parameters are used to initialize bean properties with the same name:

<jsp:setProperty name=”myBean” property=”*”/>

The bean must define a property for every parameter in the HTTP request;
otherwise, an error occurs.

Caution

Initializing Beans
Some beans require properties to be defined to initialize the bean. There is no mecha-
nism for passing in initial values for properties in the jsp:useBean element, so a syntac-
tic convention is used instead.

Conventionally, if a bean must have properties defined before it can be used on the Web
page, the jsp:useBean is defined with an element body and the jsp:setProperty tags
are defined in the useBean body to initialize the required properties.

For example, assuming that the simple NameBean example requires the name to be initial-
ized, the following useBean syntax would be used:

<jsp:useBean id=”myBean” class=”NameBean” scope=”request” >
<jsp:setProperty name=”myBean” property=”name” value=”winston”/>

</jsp:useBean>

Using a Bean with the Agency Case Study
The next example uses the Agency case study code and refactors the name.jsp Web page
shown in Listing 13.6 to use a JavaBean. This time, you will use a bean to hide the com-
plex JNDI lookup and type casting needed to access the agency Session EJB.

The new JSP page is shown in Listing 13.9.

LISTING 13.9 Full Text of agencyName.jsp

1: <HTML>
2: <TITLE>Agency Name</TITLE>
3: <BODY>

16 0672323842 CH13 3/20/02 9:27 AM Page 581

4: <jsp:useBean id=”agency” class=”web.AgencyBean” scope=”request” />
5: <H1><jsp:getProperty name=”agency” property=”agencyName”/></H1>
6: </BODY>
7: </HTML>

This is much simpler for a non-Java developer to work with. All of the code required to
create the EJB using its JNDI name has been spirited away into a JavaBean of class
web.AgencyBean. This bean does not have any properties but simply defines a large num-
ber of business methods whose only purpose is to delegate behavior to the underlying
agency Session bean.

The full bean code is shown in Listing 13.10.

LISTING 13.10 Full Text of web.AgencyBean.java

1: package web;
2:
3: import java.rmi.*;
4: import java.util.* ;
5: import javax.ejb.* ;
6: import javax.naming.* ;
7:
8: import agency.*;
9:
10: public class AgencyBean
11: {
12: Agency agency;
13:
14: public AgencyBean ()

➥throws NamingException, RemoteException, CreateException {
15: InitialContext ic = null;
16: ic = new InitialContext();
17: AgencyHome agencyHome =

➥ (AgencyHome)ic.lookup(“java:comp/env/ejb/Agency”);
18: agency = agencyHome.create();
19: }
20:
21: public String getAgencyName() throws RemoteException {
22: return agency.getAgencyName();
23: }
24:
25: public Collection findAllApplicants() throws RemoteException {
26: return agency.findAllApplicants();
27: }
28:

582 Day 13

LISTING 13.9 Continued

16 0672323842 CH13 3/20/02 9:27 AM Page 582

JavaServer Pages 583

13

29: public void createApplicant(String login, String name, String email)
➥throws RemoteException, DuplicateException, CreateException{
30: agency.createApplicant(login,name,email);
31: }
32:
33:
34: public void deleteApplicant (String login)

➥throws RemoteException, NotFoundException{
35: agency.deleteApplicant(login);
36: }
37:
38: public Collection findAllCustomers() throws RemoteException {
39: return agency.findAllCustomers();
40: }
41:
42:

43: public void createCustomer(String login, String name, String email)
throws RemoteException, DuplicateException, CreateException{
44: agency.createCustomer(login,name,email);
45: }
46:
47: public void deleteCustomer (String login)

➥throws RemoteException, NotFoundException {
48: agency.deleteCustomer(login);
49: }
50:
51: public Collection getLocations() throws RemoteException {
52: return agency.getLocations();
53: }
54:
55: public String getLocationDescription(String name)

➥throws RemoteException, NotFoundException {
56: return agency.getLocationDescription(name);
57: }
58:
59: public void updateLocation(String name, String description)

➥throws RemoteException, NotFoundException {
60: agency.updateLocation(name,description);
61: }
62:
63: public void addLocation(String name, String description)

➥throws RemoteException, DuplicateException {
64: agency.addLocation(name,description);
65: }
66:
67: public void removeLocation(String name)

➥throws RemoteException, NotFoundException {
68: agency.removeLocation(name);

LISTING 13.10 Continued

16 0672323842 CH13 3/20/02 9:27 AM Page 583

69: }
70:
71: public Collection getSkills() throws RemoteException {
72: return agency.getSkills();
73: }
74:
75: public String getSkillDescription(String name)

➥throws RemoteException, NotFoundException {
76: return agency.getSkillDescription(name);
77: }
78:
79: public void updateSkill(String name, String description)

➥throws RemoteException, NotFoundException {
80: agency.updateSkill(name,description);
81: }
82:
83: public void addSkill(String name, String description)

➥throws RemoteException, DuplicateException {
84: agency.addSkill(name,description);
85: }
86:
87: public void removeSkill(String name)

➥throws RemoteException, NotFoundException {
88: agency.removeSkill(name);
89: }
90:
91: public List select(String table) throws RemoteException {
92: return agency.select(table);
93: }
94:
95: }

The bean in Listing 13.10 is an example of an adapter (or wrapper) design pattern
because it wraps around the agency session bean to simplify using the Session EJB on
the JSP.

When deploying the agencyName example, if you add the new Web component to the
simple Web application you will need to include the web.agencyBean class file, as well
as the JSP. If you create a new Web application, you will also need to add the home and
remote interfaces for the agency Session EJB. Figure 13.10 shows all the files in the sim-
ple Web application.

584 Day 13

LISTING 13.10 Continued

16 0672323842 CH13 3/20/02 9:27 AM Page 584

JavaServer Pages 585

13

Adding a Web Interface to the Agency
Case Study

Now that you have learned about most of the features of JavaServer Pages, you are in a
position to add a Web front end to the Agency case study. You will only develop a sim-
ple, but functional, Web interface; it may not be too pretty, but it will work.

Designing a complete Web site is as much an art as a science, and what is considered
good design by one developer may not be considered as good by another. You, too, will
have your own views about what comprises a “good” Web site. Rather than get into the
aesthetics of Web site design, this section will concentrate on applying the features of
JSP in an effective manner.

Structure and Navigation
Designing a good Web site is a lot like designing good Java code. Both require careful
logical thought and should incorporate good design principles and practices. A well-
designed Java program is easier to maintain and enhance than a badly designed one.
Similarly, a well-designed Web site is easy for users to navigate and use. A well-designed
Web site will have proportionally less complaints and criticisms than a badly designed
site.

FIGURE 13.10
Component files for
the simple Web appli-
cation.

16 0672323842 CH13 3/20/02 9:27 AM Page 585

In this section, you will only look at the logical structuring and layout of the Web pages
and Web applications. The presentation of the page (its look and feel) is a very emotive
subject, and what appeals to one user may not appeal to another. Furthermore, your Web
page look and feel will almost certainly be constrained (or dictated) by department or
corporate standards. The structuring of your Web site may well be guided by local stan-
dards or conventions, but even so, you can apply logic and some simple guidelines to
improve the navigability and use of the Web site as a whole.

Consider structuring your Web site along the same lines as you store your files in direc-
tories. This way, you can use different Web applications to represent different functional
areas of your systems, and use the Web application context and aliases to simplify navi-
gation.

Some simple guidelines for good site layout are as follows:

• Group logically related functionality in a single Web application. By grouping
related functionality into one application, you can reduce the learning time
required for someone to maintain or link into your application because he or she
only needs to study part of the site rather than the whole lot.

• Use Web component aliases to apply a structure to your Web pages. Consider using
multiple aliases for a Web page so that multiple aliases can point to a single page,
allowing for logical hierarchical naming conventions. The Agency case study used
names to relate functionality by area as follows:
/customer/create
/customer/delete

The aliases could equally as well have related logically similar functionality such as
/delete/customer
/delete/applicant

Alternatively, both naming schemes could also have been provided. It all depends
on how you view the inter-relationships between the various pages in your applica-
tion.

Whatever approach you choose, you should always use aliases and not the actual
JSP names. This will allow you to restructure your Web site by adding, removing,
or renaming JSP files without affecting hyperlinks from other pages.

• Ensure that no Web pages are dead ends (have no links to another page).

• Provide navigation links in the same place on every page.

• Ensure that every page has a link back to your site’s home page and, if appropriate,
a link to the top level page for this logical area of your system.

586 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 586

JavaServer Pages 587

13

In the Agency case study, it has the following logical areas:

• Customers advertising jobs

• Applicants registering their locations and skills

• Administration of the location and skill lookup tables

Looking ahead to Day 15, “Security,” when you will study the role of security within a
J2EE application, you can structure your Web application to simplify the implementation
of Web page authorization. You will do this by grouping all job and customer functionali-
ty under URLs starting with customer as follows:

/customer/advertise
/customer/createCustomer
/customer/deleteCustomer
/customer/updateCustomer

You will also store applicant functionality under pages with URLs starting with appli-
cant as follows

/applicant/register
/applicant/createApplicant
/applicant/deleteApplicant
/applicant/updateApplicant

A Web site will typically have a main page called the portal page (also known as the
home page or index page) that provides access to the functionality of the Web applica-
tion. All clients will have access to the portal page, but they may have to login to use
other features of the application. Because J2EE Web authorization is based on URL pat-
terns, intelligent use of aliases for each Web page can ease the implementation of securi-
ty to the Web application.

The Agency case study will have a portal page that will allow:

• An existing customer access his or her own details

• A new customer to be added to the system

• An existing applicant access to his or her own details

• A new applicant to register his or her details

• Access to administration features

You will start by studying some features of the main portal page for Job Agency applica-
tion. The “Deploying the Case Study JSPs” section, later in this chapter, shows you how
to deploy the code you will study.

16 0672323842 CH13 3/20/02 9:27 AM Page 587

Look and Feel
Using a consistent look and feel across Web pages is an important criteria principle.
Consistent look and feel is supported by using the JSP page include directive and
HTML Cascading Style Sheets (CSS).

JSP page include directives can be used to define common features for all pages, such
as headers, footers, and navigation links. These directives can be used instead of server-
side include directives implemented by some Web servers.

As an example of how to use include files is shown in the following code fragment:

<HTML>
<HEAD>
<TITLE>Agency Portal</TITLE>
<%@include file=”header.jsf” %>
<!-- rest of page -->

Each Web page in the case study will include a common header file, shown in Listing
13.11.

LISTING 13.11 Full Text of header.jsf

1: <%@page errorPage=”/agency/errorPage.jsp” %>
2: <LINK rel=stylesheet type=”text/css” href=”/agency/agency.css”>
3: </HEAD>
4: <BODY>
5: <HR>
6: <jsp:useBean id=”agency” class=”web.AgencyBean” scope=”request” />
7: <H1><jsp:getProperty name=”agency” property=”agencyName”/></H1>
8: <P>

Note that this file uses the jsf extension to show it is not a complete JSP. The header file
defines an error page, a style sheet, and a common page heading that includes the job
agency name.

By structuring the Web pages to include a common header file, you can be sure there
will be a common look and feel to each page. The header file completes the page <HEAD>
section and starts the page <BODY>. This isn’t ideal, because the JSP designer has to know
that the include file spans two logical components of the HTML page. But it does serve
to show how useful include files can be.

The included header file also defines a bean called agency that can be used on the rest of
the page to access the agency Session EJB. The level 1 page heading (<H1>) uses the
agency name obtained from the agency bean.

588 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 588

JavaServer Pages 589

13

If you haven’t encountered HTML style sheets before, the simple one used for the
agency is shown in Listing 13.12.

LISTING 13.12 Full Text of agency.css

1: H1, H2, H3 {font-family: sans-serif}
2: H1 {background-color: navy; color: white }
3: H2 {color: navy }
4: H3 {color: blue }
5: BODY, P, FORM, TABLE, TH, TD {font-family: sans-serif}

Without going into detail, all this style sheet does is define font styles and colors for use
with the HTML tags on a Web page that links to this style sheet. Browser support for
CSS is erratic, so you may not see all of the desired font changes with your browser. If in
doubt about your users’ Web browsers, you should not use stylesheets but embed font
and color styles on the JSP itself instead.

Returning to the agency portal page, you can use the agency bean defined by the header
to access the agency Session EJB functionality. When the user clicks the Show Customer
button, the following JSP fragment presents the user with a list of customer names and
invokes an advertise.jsp page (via its alias customer/advertise).

<FORM action=”customer/advertise”>
<TABLE>
<TR><TD>Select Customer</TD>
<TD><SELECT name=”customer”>
<% Iterator customers = agency.findAllCustomers().iterator(); %>
<% while (customers.hasNext()) {%>
<OPTION><%=customers.next()%>

<% } %>
</SELECT>
</TD></TR>
<TR><TD colspan=2><input type=submit value=”Show Customer”></TD></TR>
</TABLE>
</FORM>

The HTML select tag used on this form has to be encoded as a scriptlet. On Day 14, you
will learn how Tag Libraries can be used to define custom tags that support iterative con-
structs like those required to support the customer select list.

Listing 13.13 shows all the code of the portal page for the Agency application with sup-
port for the customer functionality only.

16 0672323842 CH13 3/20/02 9:27 AM Page 589

LISTING 13.13 Full Text of agency.jsp

1: <HTML>
2: <HEAD>
3: <TITLE>Agency Portal</TITLE>
4: <%@include file=”header.jsf” %>
5: <%@page import=”java.util.*” %>
6: <H2>Customers</H2>
7: <H3>Existing Customer</H3>
8: <FORM action=”customer/advertise”>
9: <TABLE>
10: <TR><TD>Select Customer</TD>
11: <TD><SELECT name=”customer”>
12: <% Iterator customers = agency.findAllCustomers().iterator(); %>
13: <% while (customers.hasNext()) {%>
14: <OPTION><%=customers.next()%>
15: <% } %>
16: </SELECT>
17: </TD></TR>
18: <TR><TD colspan=2><input type=submit value=”Show Customer”></TD></TR>
19: </TABLE>
20: </FORM>
21: <H3>Create Customer</H3>
22: <FORM action=”customer/createCustomer”>
23: <TABLE>
24: <TR>
25: <TD>Login:</TD>
26: <TD><INPUT type=text name=login></TD>
27: </TR>
28: <TR>
29: <TD>Name:</TD>
30: <TD><INPUT type=text name=name></TD>
31: </TR>
32: <TR>
33: <TD>Email:</TD>
34: <TD><INPUT type=text name=email></TD>
35: </TR>
36: <TR>
37: <TD colspan=2><INPUT type=submit value=”Create Customer”></TD>
38: </TR>
39: </TABLE>
40: </FORM>
41: <H2>Administration</H2>
42: <FORM action=”admin/admin”><INPUT type=submit value=”Administration

Form”></FORM>
43: <P>
44: <HR>
45: </BODY>
46: </HTML>

590 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 590

JavaServer Pages 591

13

Your exercise to complete at the end of today’s lesson will be to add support for register-
ing applicants to this framework.

One last point to raise for the Agency Web pages is that of using a consistent navigation
model for each page. JSP include files are an ideal method for including consistent
hyperlinks in each Web page. The following code fragment shows how a standard footer
with a navigation button for returning to the portal page is included at the end of each
Web page, and Listing 13.14 shows the actual footer page.

<%@include file=”footer.jsf” %>
</BODY>
</HTML>

LISTING 13.14 Full Text of footer.jsf

1: <P>
2: <HR>
3: <P>
4: <FORM>
5: <INPUT type=”button”

➥value=”Return to Agency Menu” onClick=’location=”/agency/agency”’>
6: </FORM>
7:

If you consider the structure of jobs and applicants in the case study, you will realize that
they have two common components:

• A location that will be a value from an HTML select list

• A set of skills (possibly) empty that must also be chosen from a list (in this case,
an HTML select list that supports multiple options)

Good Java design practice would be to avoid duplicating the code by putting it in a sepa-
rate method (or helper class) where the functionality can be reused. With JSP design, you
can factor out the common code into a separate include file. The following code frag-
ment shows how the JSP code for customer’s advertised jobs uses include files:

<TABLE>
<TR><TD>Description:</TD>

<TD><input type=text name=description
value=”<jsp:getProperty name=”job” property=”description”/>”>

</TD>
</TR>
<TR><TD>Location:</TD><TD>
<% String location = job.getLocation(); %>
<%@include file=”location.jsf”%>

</TD></TR>

16 0672323842 CH13 3/20/02 9:27 AM Page 591

<TR><TD>Skills:</TD><TD>
<% String[] skills = job.getSkills(); %>
<%@include file=”skills.jsf”%>

</TD></TR>
</TABLE>

Each included file requires a variable to be defined before including the page (location
and skills); this is the equivalent of passing a parameter into a method. This is not an
ideal solution; in tomorrow’s exercise, you will revisit this code and use tag libraries to
develop a cleaner solution.

The previous code is part of the advertise.jsp file (see Listing 13.15). This JSP main-
tains customer details and jobs. It uses two JavaBeans as wrappers around the two
Session EJBs called CustomerBean and JobBean. The JobBean wraps around the
advertiseJob EJB that uses a compound parameter to identify each job (customer login
and job reference). Creating this bean requires careful coding, as shown next. The list of
customer jobs must be processed on the Web page in a loop implemented as a Java
scriptlet, as shown in the following fragment:

<% String[] jobs = cust.getJobs(); %>
<jsp:useBean id=”job” class=”web.JobBean” scope=”request”>
<jsp:setProperty name=”job” property=”customer” param=”customer”/>

</jsp:useBean>
<% for (int i=0; i<jobs.length; i++) {%>
<% job.setRef(jobs[i]); %>
<H3><jsp:getProperty name=”job” property=”ref”/></H3>

…
<% } %>

Due to the way beans are defined on the page, this code has to be slightly clumsy. The
bean is defined once before the Java loop and the customer part of the compound key are
defined. Each time round the loop, the bean’s setRef() method is called to set the next
job reference; this method creates the appropriate advertiseJob Session EJB for use in
the body of the loop. An alternative and much better approach is to use a custom tag, as
shown on Day 14, “JSP Tag Libraries.”

Listing 13.15 shows the entire advertise jobs page. The include files location.jsf and
skills.jsf are included on the CD-ROM—not shown here.

LISTING 13.15 Full Text of advertise.jsp

1: <HTML><HEAD>
2: <TITLE>Advertise Customer Details</TITLE>
3: <%@include file=”header.jsf” %>
4: <%@page import=”java.util.*” %>
5: <jsp:useBean id=”cust” class=”web.CustomerBean” scope=”request” >

592 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 592

JavaServer Pages 593

13

6: <jsp:setProperty name=”cust” property=”login” param=”customer”/>
7: </jsp:useBean>
8: <H2>Customer details for:

➥<jsp:getProperty name=”cust” property=”login”/></H2>
9: <FORM action=”updateCustomer”>
10: <INPUT type=hidden name=login

➥value=”<jsp:getProperty name=”cust” property=”login”/>”>
11: <TABLE>
12: <TR><TD>Login:</TD><TD>

➥<jsp:getProperty name=”cust” property=”login”/></TD></TR>
13: <TR><TD>Name:</TD><TD><input type=text name=name value=”<jsp:getProperty

➥name=”cust” property=”name”/>”></TD></TR>
14: <TR><TD>Email:</TD><TD><input type=text name=email

➥value=”<jsp:getProperty name=”cust” property=”email”/>”></TD></TR>
15: <% String[] address = cust.getAddress(); %>
16: <TR><TD>Address:</TD>

➥<TD><input type=text name=address value=”<%=address[0]%>”></TD></TR>
17: <TR><TD>Address:</TD>

➥<TD><input type=text name=address value=”<%=address[1]%>”></TD></TR>
18: </TABLE>
19: <INPUT type=submit value=”Update Details”>
20: <INPUT type=reset>
21: </FORM>
22: <FORM action=”deleteCustomer”>
23: <input type=hidden name=customer value=”<%=cust.getName()%>”>
24: <input type=submit value=”Delete Customer <%=cust.getName()%>”></TD></TR>
25: </FORM>
26: <H2>Jobs</H2>
27: <% String[] jobs = cust.getJobs(); %>
28: <jsp:useBean id=”job” class=”web.JobBean” scope=”request”>
29: <jsp:setProperty name=”job” property=”customer” param=”customer”/>
30: </jsp:useBean>
31: <% for (int i=0; i<jobs.length; i++) {%>
32: <% job.setRef(jobs[i]); %>
33: <H3><jsp:getProperty name=”job” property=”ref”/></H3>
34: <FORM action=”updateJob”>
35: <TABLE>
36: <TR><TD>Description:</TD>

➥<TD><input type=text name=description value=”<jsp:getProperty name=”job”
prop➥erty=”description”/>”></TD></TR>
37: <TR><TD>Location:</TD><TD>
38: <% String location = job.getLocation(); %>
39: <%@include file=”location.jsf”%>
40: </TD></TR>
41: <TR><TD>Skills:</TD><TD>
42: <% String[] skills = job.getSkills(); %>
43: <%@include file=”skills.jsf”%>
44: </TD></TR>
45: </TABLE>

LISTING 13.15 Continued

16 0672323842 CH13 3/20/02 9:27 AM Page 593

46: <INPUT type=hidden name=”customer”
➥value=”<jsp:getProperty name=”job” property=”customer”/>”>
47: <INPUT type=hidden name=”ref”

➥value=”<jsp:getProperty name=”job” property=”ref”/>”>
48: <INPUT type=submit value=”Update Job”>
49: </FORM>
50: <FORM action=”deleteJob”>
51: <INPUT type=hidden name=”customer”

➥value=”<jsp:getProperty name=”job” property=”customer”/>”>
52: <INPUT type=hidden name=”ref”

➥value=”<jsp:getProperty name=”job” property=”ref”/>”>
53: <INPUT type=”submit”

➥value=’Delete Job <jsp:getProperty name=”job” property=”ref”/>’>
54: </FORM>
55: <% } %>
56: <H2>Create New Job</H2>
57: <FORM action=”createJob”>
58: <TABLE>
59: <TR>
60: <TD>Ref:</TD>
61: <TD><INPUT type=text name=ref></TD>
62: </TR>
63: <TR>
64: <INPUT type=hidden name=”customer”

➥value=”<jsp:getProperty name=”cust” property=”login”/>”>
65: <TD colspan=2><INPUT type=submit value=”Create Job”></TD>
66: </TR>
67: </TABLE>
68: </FORM>
69: <%@include file=”footer.jsf” %>
70: </BODY>
71: </HTML>

To complete the customer functionality, the Web interface requires separate pages for

• Creating a new customer

• Deleting a customer

• Updating a customer

• Creating a new job

• Deleting a job

• Updating a job

Rather than reproduce all of these pages, the page for updating a customer is shown in
Listing 13.16 (the remainder can be examined on the CD-ROM). Each page simply cre-
ates the appropriate agency, customer, or job bean using the request parameters, and calls
the necessary business method.

594 Day 13

LISTING 13.15 Continued

16 0672323842 CH13 3/20/02 9:27 AM Page 594

JavaServer Pages 595

13

LISTING 13.16 Full Text of updateCustomer.jsp

1: <HTML>
2: <HEAD>
3: <TITLE>Update Customer</TITLE>
4: <%@include file=”header.jsf” %>
5: <jsp:useBean id=”cust” class=”web.CustomerBean” scope=”request” >
6: <jsp:setProperty name=”cust” property=”login” param=”login”/>
7: </jsp:useBean>
8: <% cust.updateDetails(request.getParameter(“name”),

➥request.getParameter(“email”),request.getParameterValues(“address”)); %>
9: <H3>Updated <jsp:getProperty name=”cust” property=”login”/>

➥Successfully</H3>
10: <%@include file=”footer.jsf” %>
11: </BODY>
12: </HTML>

Error Page Definition
The very last file to examine for the case study is the error page file shown in Listing
13.17.

LISTING 13.17 Full Text of errorPage.jsp

1: <%@ page isErrorPage=”true” %>
2: <%@page import=”java.util.*, java.io.* “ %>
3: <HTML>
4: <HEAD>
5: <TITLE>Agency Error Page</TITLE>
6: </HEAD>
7: <BODY>
8: <H1>Agency Error Page</H1>
9: <H2>There has been an error in processing your request.</H2>
10: The following information describes the error:
11: <H3>Request Parameters</H3>
12: <TABLE border=1>
13: <%
14: Enumeration params = request.getParameterNames();
15: while (params.hasMoreElements()) {
16: String name = (String)params.nextElement();
17: out.println(“<TR><TD>”+name+”</TD>”);
18: String[] values = request.getParameterValues(name);
19: for (int i=0; i<values.length; i++) {
20: out.println(“<TD>”+values[i]+”</TD>”);
21: }
22: out.println(“</TR>”);
23: }
24: %>

16 0672323842 CH13 3/20/02 9:27 AM Page 595

25: </TABLE>
26: <H3>Request Attributes</H3>
27: <TABLE border=1>
28: <%
29: Enumeration attrs = request.getAttributeNames();
30: while (attrs.hasMoreElements()) {
31: String name = (String)attrs.nextElement();
32: out.println(“<TR><TD>”+name+”</TD>”);
33: out.println(“<TD>”+request.getAttribute(name)+”</TD>”);
34: out.println(“</TR>”);
35: }
36: %>
37: </TABLE>
38: <H3>Session Attributes</H3>
39: <TABLE border=1>
40: <%
41: Enumeration sess = session.getAttributeNames();
42: while (sess.hasMoreElements()) {
43: String name = (String)sess.nextElement();
44: out.println(“<TR><TD>”+name+”</TD>”);
45: out.println(“<TD>”+session.getAttribute(name)+”</TD>”);
46: out.println(“</TR>”);
47: }
48: %>
49: </TABLE>
50: <H3>Exception</H3>
51: <%=exception%> <%=exception.getMessage()%>
52: <H3>Stack Trace</H3>
53: <%
54: StringWriter buf = new StringWriter();
55: PrintWriter sout = new PrintWriter(buf);
56: exception.printStackTrace(sout);
57: out.println(buf.toString());
58: %>
59: </BODY>
60: </HTML>

This error page is designed for use during development. When an exception occurs, this
page displays information about the exception and various Java variables derived from
the request, servlet, and page contexts.

At the top of Listing 13.17 is the line

<%@ page isErrorPage=”true” %>

This tells the translation phase to include a variable called exception that refers to the
exception that caused the page error. This exception is used to display a stack trace on
the error page. The first line of the stack trace will identify

596 Day 13

LISTING 13.17 Continued

16 0672323842 CH13 3/20/02 9:27 AM Page 596

JavaServer Pages 597

13

• The name of the generated servlet

• The line number where the exception occurred

• The exception that was thrown

• A brief description of the error

This information can be used to trace back the error to the original JSP file by using the
Java code listing for the generated servlet.

For a fully-developed and deployed application, it would be better for the error page to
display a user-friendly error message and report the error (perhaps via JavaMail) to an
administrator.

The Agency case study error pages are designed to illustrate the principles involved in
error reporting and are not necessarily an example of best practice.

Deploying the Case Study JSPs
In today’s lesson, you have used a large number of files to create the Web interface to the
job agency Session beans. Building and deploying the Web application is relatively
straightforward if you perform the following steps:

1. Start up deploytool and create a new Web component and add it to a new WAR file
called web.

2. Add the following JSP files from the src/jsp directory to this war file:

• admin.jsp

• advertise.jsp

• agency.css

• agency.jsp

• createCustomer.jsp

• createJob.jsp

• createLocation.jsp

• createSkill.jsp

• deletCustomer.jsp

• deleteJob.jsp

• deleteLocation.jsp

• deleteSkill.jsp

• errorPage.jsp

• footer.jsf

16 0672323842 CH13 3/20/02 9:27 AM Page 597

• header.jsf

• location.jsf

• modifyLocation.jsp

• modifySkill.jsp

• skills.jsf

• updateCustomer.jsp

• updateJob.jsp

• updateLocation.jsp

• updateSkill.jsp

3. Add the following class files from the web directory to this WAR file:

• AgencyBean.class

• CustomerBean.class

• JobBean.class

4. Add the following class files from the agency directory to this WAR file:

• Advertise.class

• AdvertiseHome.class

• AdvertiseJob.class

• AdvertiseJobHome.class

• Agency.class

• AgencyHome.class

• DuplicateException.class

• NotFoundException.class

• Register.class

• RegisterHome.class

5. Click Next, select JSP for the EJB component, and the click Next.

6. Set the JSP Filename to agency.jsp and accept the default Web component name
of admin.

7. Click Next twice and add a page alias of /agency.

8. Click Next four times to get to the EJB References page. Add the EJB references
shown in Table 13.4 (they are all Session beans with a remote interface):

598 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 598

JavaServer Pages 599

13

TABLE 13.4 Case Study Web Application EJB References

Coded name Home i/f Remote i/f JNDI name

ejb/agency agency.AgencyHome agency.Agency ejb/agency

ejb/advertise agency.AdvertiseHome agency.Advertise ejb/advertise

ejb/advertiseJob agency.AdvertiseJobHome agency.AdvertiseJob ejb/advertiseJob

9. Click Finish.

10. Now you will need to create Web components in the same WAR file for every other
JSP. You have added all of the required files, so all you need to do is define the JSP
page and alias. Table 13.5 lists all the pages you need to define, including the
admin JSP page you just added in step 6.

TABLE 13.5 Case Study Web Application JSP Components

JSP Filename Alias

advertise.jsp /customer/advertise

admin.jsp /admin/admin

createCustomer.jsp /customer/createCustomer

createJob.jsp /customer/createJob

createLocation.jsp /admin/createLocation

createSkill.jsp /admin/createSkill

deletCustomer.jsp /customer/deleteCustomer

deleteJob.jsp /customer/deleteJob

deleteLocation.jsp /admin/deleteLocation

deleteSkill.jsp /admin/deleteSkill

errorPage.jsp /errorPage

updateCustomer.jsp /customer/updateCustomer

updateJob.jsp /customer/updateJob

updateLocation.jsp /admin/updateLocation

updateSkill.jsp /admin/updateSkill

11. When you have added all of the Web components, you can deploy the Web appli-
cation with Tools, Deploy. You do not need to return the client JAR file, so click
Next twice.

12. On the WAR Context Root screen, enter a root context for your Web application of
agency.

16 0672323842 CH13 3/20/02 9:27 AM Page 599

13. Click Finish and, if you’ve entered everything correctly, you will have deployed
your case study Web interface.

You must have previously deployed the Agency application with which the Web interface
can communicate. Any version of the Agency case study from Day 5, “Session EJBs,”
Day 6, “Entity EJBs,” Day 10, “Message-Driven Beans,” or Day 11, “JavaMail” will
suffice.

You can access the case study application using
http://localhost:8000/agency/agency.

Comparing JSP with Servlets
As you have seen JSPs have several advantages over servlets. They

• Are quicker to write and develop

• Focus on the page layout and delegate Java logic to supporting JavaBeans and cus-
tom tags (as will be discussed on Day 14)

• Differentiate the Web page presentation (HTML) from the underlying logic (Java)

• Can be written by non-Java–aware developers provided suitable supporting beans
and tag libraries are available

• Support a standard error reporting mechanism using the error page directive

However, JSPs do have some downsides:

• Error identification and correction is complicated by the translate and compile life-
cycle.

• Large volumes of embedded Java scriptlets can reduce the maintainability of the page.

In general, you should use JSPs with JavaBeans and custom tag libraries whenever possi-
ble. The speed of development and the quick turnaround on look and feel or simple func-
tional changes that is possible with JSPs is a major advantage in modern Web-based
applications.

Consider using servlets only when the Java code is complex or needs to be “hand crafted”
for efficiency.

One common approach for supporting complex Java requirements is to use a servlet for
the Java code and a supporting JSP for the presentation. The Java servlet accesses the
information and stores it in the session context. The servlet then forwards the HTTP
request to the JSP, which retrieves the data from the session context and presents it back
to the client as HTML. This approach still maintains the differentiation between presen-
tation and logic.

600 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 600

JavaServer Pages 601

13

An additional advantage of this servlet/JSP approach is that the servlet can use one of
several JSPs to present the data according to the type of client making the request. You
can define one JSP for HTML clients (PCs) and another for WML clients (mobile
phones). In the future, you can add additional clients for, say, XML clients or a presenta-
tion language than has not yet been defined. All of these different presentation require-
ments can be supported by a single servlet. Any future changes to the underlying busi-
ness rules are only made once in the logic of the servlet, with any necessary changes in
the presentation being made in the appropriate JSPs.

Summary
Today, you have looked at using JavaServer Pages as a means of developing Web-based
J2EE applications. Unlike servlets, JSPs allow you to develop your Web pages in HTML
with embedded Java code when dynamic elements are required.

JSP pages are translated into Java servlets and compiled before they are used to service
client requests. To the browser, a JSP is no different to any other Web page.

JSP defines three elements to supplement the standard HTML tags:

• Directives that are used to pass information to the page translation phase

• Scripts that define Java code used to embed dynamic data in the page

• Actions that define JSP tags used to support JavaBeans

JavaBeans are used to encapsulate Java functionality to remove some Java script code
from the Web page. Beans help separate the role of Java developer from that of HTML
Web developer. Beans are classes that have a no argument constructor and properties.
Bean properties have names, are queried using getter methods, and are updated using set-
ter methods.

In the next lesson, you will study defining your own custom tags as part of a tag library.
Tag libraries will support complex page features, such as the iterative processing of
dynamic data (such as a list of customers). With carefully constructed tag libraries, a JSP
page can be written without using any Java code at all.

Q&A
Q What are the three types of errors that can occur on a JSP?

A Translation, compilation, and HTML syntax errors.

16 0672323842 CH13 3/20/02 9:27 AM Page 601

Q What are the three types of JSP elements?

A Directives, scripts, and actions.

Q What are the three types of Java scripts?

A Declarations, expressions, and scriptlets.

Q What are the three JSP actions that support the use of JavaBeans?

A <jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>.

Q What sort of constructor must a JavaBean have?

A It must have a no argument constructor.

Exercise
Using the JSP code shown in today’s lesson, provide the register applicant functionality
for the Web interface to the agency case study.

You will need to perform the following steps. Build and deploy your application as you
complete each step.

1. Add a createApplicant.jsp page with the alias /applicant/createApplicant to
support the create applicant functionality on the agency.jsp page. Model your
solution on the createCustomer.jsp page already provided.

2. Using advertise.jsp as a guide, develop a Web page called register.jsp to han-
dle client registration. The links to invoke this page from the agency.jsp portal
page have already been provided.

3. Add the ability to update the applicant details and code an updateApplicant.jsp
page that is accessed from a form on the register.jsp page and has the alias
/applicant/updateApplicant.

4. Add functionality to the register.jsp page to delete an applicant and write the
deleteApplicant.jsp page (alias /applicant/deleteApplicant).

602 Day 13

16 0672323842 CH13 3/20/02 9:27 AM Page 602

DAY 14

WEEK 2

JSP Tag Libraries
In the previous two day’s chapters, you have learned about J2EE Web applica-
tions written using servlets and JSPs. You have seen how servlets are most use-
ful when complex Java programming is needed and JSPs are easier to use when
the generated Web page requires large amounts of HTML (or JavaScript).
However, JSPs are essentially static in nature and require the developer to write
Java code, in the form of scriptlets, to support complex features.

JSP Tag Libraries (TagLibs) are a natural extension to the JSP tag syntax.
TagLibs are custom tags that are written in Java but interact with the processing
of the tags on the JSP page. In this chapter, you will learn how to

• Write simple custom tags

• Understand the XML deployment descriptor for Tag Libraries

• Deploy your tags with the J2EE RI

• Use attributes to extend JSP pages

• Write co-operating tags to support more complex functionality, such as
iteration

• Use the JSP Standard Tag Library (JSPTL)

17 0672323842 CH14 3/20/02 9:39 AM Page 603

The Role of Tag Libraries
JSPs enable you to develop Web-based applications using Java without being a Java
expert. By using well designed JavaBeans, it is possible to work almost entirely with
HTML and JSP tags. However, as you saw in yesterday’s work, you still have to use Java
scriptlets to realize the full power of JSPs.

Tag Libraries extend the JSP philosophy further still so that it is possible for you to write
most of your Web pages without using Java code.

This can utilized to good effect in development teams. By separating out the Java code
into custom tags, a development team can utilize their individual skills more effectively.
Java programmers are used to develop the business logic in custom tags, while
HTML/JSP developers can focus on developing the presentation logic and look-and-feel
of the Web pages.

Tag Libraries support custom JSP tags that can

• Be customized by using attributes passed from the calling page

• Access the objects available to JSP pages

• Communicate with each other

• Be used in a hierarchical manner to support complex features, such as iteration

Tag libraries were introduced with JSP 1.1 (1999) and the supporting Java classes were
slightly revised in JSP 1.2 (2001). Since the introduction of JSPs the user community has
quickly adopted them. Popular Web servers supporting Tag Libraries include the follow-
ing:

• Apache Jakarta (open source)

• BEA Web Logic

• IBM Web Sphere

• iPlanet Applications Server

Most Web servers supporting JSP now include some standard Tag Libraries. However,
these Tag Libraries are proprietary to each Web server, leading to Web applications that
can only be deployed on a specific manufacturers server. In 2001, the Java Community
Process (JCP) proposed a JSP Standard Tag Library (JSPTL) that, at the time of writing
this book, was still being evaluated. The proposed standard library is discussed at the end
of today’s work and is available from the Apache Jakarta Project at
http://jakarta.apache.org/taglibs.

604 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 604

JSP Tag Libraries 605

14

Developing a Simple Custom Tag
A custom tag is made up of two components:

• A Java class file that implements the tag

• An entry in a Tag Library Descriptor (TLD) file that defines the tag’s name, its
implementing Java class, and additional information necessary to deploy and use
the tag

Using a custom tag requires a reference to the Tag Library Descriptor (TLD) at the start
of the JSP. Multiple Tag Libraries can be used on the same Web page. After the TLD has
been referenced, the custom tag from the TLD can be used like any other JSP tag.

Using a Simple Tag
To start learning to write and use TagLibs, you will implement a very simple custom tag
that writes “Hello World” onto your Web page. This isn’t a good use of a custom tag, but
it will help you understand the principles involved and guide you through the deployment
process. After this simple example, you will look at how to use custom tags to remove
most of the Java scriptlets from your JSP applications.

The example in Listing 14.1 shows a simple tag that inserts Hello World on the JSP
page.

LISTING 14.1 Full Text of hello.jsp

1: <%@ taglib uri=”/demo” prefix=”demo” %>
2: <HTML>
3: <HEAD>
4: <TITLE>Tag Library Hello Demo</TITLE>
5: <BODY>
6: <demo:hello/>
7: </BODY>
8: </HTML>

Like XML (and unlike HTML), the JSP tags are case sensitive. JSP tags are also
XML compliant and must have all parameter values enclosed in single or
double quotes.

Note

The very first line of the JSP in Listing 14.1 defines the Tag Library and associates the
tags in the library with the demo prefix.

17 0672323842 CH14 3/20/02 9:39 AM Page 605

The tag itself is used in line 6, and its name is hello. The resulting Web page is shown
in Figure 14.1.

606 Day 14

FIGURE 14.1
Browsing the “Hello
World” tag.

The Tag Library Descriptor (TLD)
TLD files map the tag name used in the JSP page onto the Java class that implements the
tag. A TLD file is written in XML and an example is given in Listing 14.2, which shows
the TLD file for the “Hello World” tag.

LISTING 14.2 Full Text of demo.tld

1: <?xml version=”1.0” encoding=”ISO-8859-1” ?>
2: <!DOCTYPE taglib PUBLIC
3: “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”
4: “http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd”>
5: <taglib>
6: <tlib-version>1.0</tlib-version>
7: <jsp-version>1.2</jsp-version>
8: <short-name>demo</short-name>
9: <tag>
10: <name>hello</name>
11: <tag-class>demo.HelloTag</tag-class>
12: <body-content>empty</body-content>
13: </tag>
14: </taglib>

At the present time, the J2EE RI from Sun Microsystems does not include any support
for generating this file from within deploytool. You will have to write your TLD files by
hand and include them in your Web Application.

To write a TLD, you will need to be familiar with XML. If you are new to XML, this
might be a good time to have a quick look at Appendix C, “An Overview of XML,”
before continuing to learn how TLD files work. The use of XML in enterprise applica-
tions is also discussed on Day 16, “Integrating XML with J2EE.”

17 0672323842 CH14 3/20/02 9:39 AM Page 606

JSP Tag Libraries 607

14

Every TLD file begins with a prolog that

• Defines the XML version used in the TLD

• Defines the version of the specification to which the TLD conforms

The prolog, shown in the following lines should always be included at the start of your
TLD as it is used by tools processing the document to validate the XML structure:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE taglib PUBLIC

“-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”
“http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd”>

The first line defines the TLD as using version 1.0 of the XML standard. The second line
defines the TLD as conforming to version 1.2 of the TLD Specification from Sun
Microsystems.

The Tag Library itself is defined by a <taglib> element. The <taglib> element speci-
fies the Tag Library version (1.0) and JSP version (1.2) to which this Tag Library con-
forms as follows:

<taglib>
<tlib-version>1.0</tlib-version>
<jsp-version>1.2</jsp-version>
<short-name>demo</short-name>

...
</taglib>

The third element in the <taglib> section is an optional <short-name> entry that should
be the preferred prefix name for your library. The actual library prefix is defined in the
<%@ taglib> directive on the JSP page. The prefix in the <%@ taglib> directive can be
different from the <short-name> entry. The only reason for changing the prefix on the
JSP page is where two separate Tag Libraries suggest the same prefix name, and the JSP
page designer has to resolve the conflict.

After the Tag Library information is defined, the rest of the TLD is used to specify the
custom tags in the library.

Every custom tag potentially has three parts:

• The starting tag, such as <demo:hello>

• The ending tag, such as </demo:hello>

• The tag’s body, which is the text between the start and end tags

A tag that does not have a body is called an empty tag and is usually written as
<demo:hello/>.

17 0672323842 CH14 3/20/02 9:39 AM Page 607

In the TLD, a <tag> tag defines a custom tag. Several custom tags can be defined in a
single library. The minimal requirements for each custom tag are as follows:

• The tag name to be used on the Web page

• The Java class name that implements the tag

• The type of tag body

In the following example, the tag class is demo.HelloTag, and the tag name is hello:

<tag>
<name>hello</name>
<tag-class>demo.HelloTag</tag-class>
<body-content>empty</body-content>

</tag>

In this case, the <body-content> tag defines the tag to have an empty body. The possible
values for the <body-content> tag are shown in Table 14.1.

TABLE 14.1 Tag Body Contents

Tag Description

empty The tag body must be empty. The page translation will fail if the developer
puts any text between the start and end tags.

JSP The tag contains JSP data and will normally be processed in the same manner
as other parts of the page.

tagdependent The text between the start and end tags will be processed by the Java class and
will not be interpreted as JSP tagged content.

The <body-content> type must be compatible with the way the Java code processes the
tag, as discussed in the next section.

Custom Java Tags
You define custom tags by using Java classes that implement one of the
javax.servlet.jsp.tagext interfaces shown in Table 14.2 .

TABLE 14.2 Interfaces for Custom Tags

Java Interface Description

Tag Implement this interface for simple tags that do not need to process the tag
body.

IterationTag Implement this interface for tags that need to process the body text more than
once to implement an iterative loop.

BodyTag Implement this interface for tags that need to process the text in the tag body.

608 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 608

JSP Tag Libraries 609

14

Implementing these interfaces requires that you define several methods to manage the
lifecycle of the custom tag. To simplify custom tag development, two support classes are
provided in the javax.servlet.jsp.tagext package. These classes provide default
behavior for each of the required interface methods, and you will simply override the
methods you require. Table 14.3 shows the two supporting classes.

TABLE 14.3 Support Classes for Custom Tags

java Class Description

TagSupport implements Tag Extend this class for tags that do not have a body or do
not interact with the tag body.

BodyTagSupport implements Tag, Extend this class when the tag body must be processed
IterationTag, BodyTag as part of the tag, such as an iterative tag or a tag that

interprets the body in some way.

The Tag, TagIteration, and TagSupport interfaces in the javax.servlet.jsp.tagext
package define several methods that control the processing of the custom tag. Figure
14.2 summarizes the lifecycle of a Tag Library object.

FIGURE 14.2
The Custom Tag
lifecycle.

doStartTag()

doInitBody()

doAfterBody()

doEndTag()

release()

[EVAL_BODY_AGAIN]

[EVAL_BODY_INCLUDE]

[SKIP_BODY]

[SKIP_BODY]

17 0672323842 CH14 3/20/02 9:39 AM Page 609

The doStartTag() Method
The doStartTag() method is called once when the start tag is processed. This method
must return an int value that tells the JSP how to process the tag body. The returned
value must be one of the following:

• Tag.SKIP_BODY The tag body must be ignored. The TLD should define the
<body-content> tag as empty.

• Tag.EVAL_BODY_INCLUDE The body tag must be evaluated and included in the JSP
page. The TLD should define the <body-content> tag as JSP for tags that extend
TagSupport, or JSP or tagdependent for tags that extend BodyTagSupport.

The doEndTag() Method
The doEndTag() method is called once when the end tag is processed. This method must
return an int value indicating how the remainder of the JSP page should be processed:

• Tag.EVAL_PAGE Evaluate the rest of the page.

• Tag.SKIP_PAGE Stop processing the page after this tag.

Where a tag has an empty body, the doEndTag() method is still called after the
doStartTag() method.

The release() Method
The release() method is called once when the JSP has finished using the tag and is
used to allow the tag to release any resources it may have acquired. This method’s return
type is void.

The doAfterBody() Method
The doAfterBody() method is called after the tag body has been processed and before
the doEndTag() method is called. This method is only called for classes that implement
IterationTag or BodyTag (those that extend BodyTagSupport). It must return one of the
following values to the JSP page indicating how the tag body should be processed:

• IterationTag.EVAL_BODY_AGAIN This value is used to inform the page that the
tag body should be processed once more. The JSP processing will read and process
the tag body and call the doAfterBody() method once more after the body has
been processed again.

610 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 610

JSP Tag Libraries 611

14

When returning the EVAL_BODY_AGAIN result, this method will typically change
some value so that when the tag body is processed again, different output is written
to the Web page. A simple example would be a tag that executes a database query
in the doStartTag() method and reads the next row of the result set in this method
returning EVAL_BODY_AGAIN until the end of the result set is reached when
SKIP_BODY is returned.

• Tag.SKIP_BODY This value marks the end of the processing of the tag body.

The doInitBody() Method
The doInitBody() method is called once after the doStartTag() method but before the
tag body is processed. doInitBody() is only used in tags that implement the BodyTag
interface (those that extend BodyTagSupport). This method is not called if the
doStartTag() method returns SKIP_BODY. The doInitBody() method returns void.

The “Hello World” Custom Tag
The example Hello World tag shown in Listing 14.1 does not have a body, so it need
only implement the Tag interface, which is best achieved by extending the TagSupport
class and overriding the required methods, as shown in Listing 14.3.

LISTING 14.3 Full Text of HelloTag.java

1: package demo;
2:
3: import javax.servlet.jsp.*;
4: import javax.servlet.jsp.tagext.*;
5:
6: public class HelloTag extends TagSupport {
7: public int doStartTag() throws JspException {
8: try {
9: pageContext.getOut().print(“Hello World”);
10: } catch (Exception ex) {
11: throw new JspTagException(“HelloTag: “+ex);
12: }
13: return SKIP_BODY;
14: }
15:
16: public int doEndTag() {
17: return EVAL_PAGE;
18: }
19:
20: public void release() {
21: }
22: }

17 0672323842 CH14 3/20/02 9:39 AM Page 611

What little work this tag does is done in the doStartTag() method. On line 9, the current
output stream is obtained from the page context (an instance variable called pageContext
of class javax.servlet.jsp.tagext.PageContext) and used to print the “Hello World”
string:

pageContext.getOut().print(“Hello World”);

With all the code for the custom tag defined, you can now deploy the Hello World
example as described in the next section.

Deploying a Tag Library Web Application
To deploy a Web Application that uses a Tag Library, you will follow the same basic
steps as for a normal Web Application, but you will need to include the Tag Library
information at the relevant points:

1. Start up the J2EE RI deploytool.

2. Either create a new Application or select an existing application to use for the Tag
Library example.

3. Create a new Web Component and add it to a new WAR file called Demo.

4. Include the files for the JSP page (hello.jsp) and the Java class file
(demo.HelloTag.class) (the class files will be added to the WEB-INF/classes sub-
directory).

5. Include the Tag Library TLD file (demo.tld), and this will be added to the WEB-INF
directory for your application. At this point, your deployment screen will look like
Figure 14.3.

6. Continue deploying the Web Application, click Next twice to move on to the
General Properties screen and set the main JSP page to hello.jsp.

7. Click Next twice more to move on to the Aliases screen and add a /hello alias for
the JSP page.

8. Step through the next seven configuration screens until the File References screen
is displayed. Define an entry for your TLD in the JSP Tag Libraries section (half
way down the screen). Use the TLD shortcut name you used in the hellp.jsp file
(/demo) and map this onto the actual TLD (/demo.tld)—note that you need only
give the filename as deploytool assumes the TLD is in the WEB-INF directory. At
this point, your screen will look like the one in Figure 14.4.

9. Click the Finish button.

612 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 612

JSP Tag Libraries 613

1410. Now run the verifier on your Web Application to check for any errors and incon-
sistencies in your JSP, TLD, and class files. You should not find any errors if you
are using the example code provided on the CD-ROM that comes with this book.

FIGURE 14.3
Creating the Tag
Library Web
Application.

FIGURE 14.4
Defining the Tag
Library TLD file.

17 0672323842 CH14 3/20/02 9:39 AM Page 613

11. Your application can now be deployed using the Tools, Deploy menu option.

12. On the first deploy screen, simply click Next (you do not need to return the client
JAR file).

13. On the next Root Context screen, define a context directory for your application.
The example shown in Figure 14.5 has set the context to /demo.

614 Day 14

FIGURE 14.5
Defining the Web
context.

14. Use your browser to access the URL http://localhost:8000/demo/hello and the
Hello World Web page will be displayed.

Defining the TLD Location
The example JSP page in Listing 14.2 used a logical name to access the TLD. The logi-
cal name must be defined in the Web Application Deployment Descriptor (web.xml).
This is considered the best approach, because the JSP is not dependent on the physical
location of the TLD.

An alternative approach is to use the actual TLD file location as shown in the following:

<%@ taglib uri=”/WEB-INF/demo.tld” prefix=”demo” %>

The location of the TLD is defined relative to the location of the Web Application.

Using Simple Tags
You would not normally write tags as simple as the Hello World example. Even so, sim-
ple tags like this do serve a purpose. They can be used to retrieve information from the

17 0672323842 CH14 3/20/02 9:39 AM Page 614

JSP Tag Libraries 615

14

system and display it via the JSP page. The mechanics of accessing the information are
hidden inside the custom tag code and are not shown on the JSP page. Hiding complex
operations (perhaps a JNDI lookup operation or obtaining data from a database) helps
simplify the writing of the Web page.

However, without the ability to pass information into the tag, this functionality has limited
use.

Tag Libraries support the following two ways of passing information from the page into
the tag:

• Via parameters passed in with the tag

• Via the text in the body of the tag

Using parameters is the most common approach and is discussed in detail below. Use of
tag-specific body data is discussed in the “Processing Tag Bodies” section near the end
of today’s work.

Tags with Attributes
Attributes are used to pass information into a custom tag to configure the behavior of the
tag. Tag attributes are like XML or HTML attributes and are name/value pairs of data.
The values must be quoted with single or double quotes.

A simple example is a tag that looks up a JNDI name passed in as a parameter. Listing
14.4 shows how such a tag could be used.

LISTING 14.4 Full Text of lookup.jsp

1: <%@ taglib uri=”/demo” prefix=”demo” %>
2: <HTML>
3: <HEAD>
4: <TITLE>Tag Library Lookup Demo</TITLE>
5: <BODY>
6: <demo:lookup name=”jdbc/Agency”/>
7: </BODY>
8: </HTML>

The JSP specification allows attributes to have values that can include Java expressions.
If the lookup name had been passed in as a request parameter called agencyJNDIname,
the lookup tag could have been written as follows:

<demo:lookup name=”<%=request.getParameter(“agencyJNDIname”)%>”/>

17 0672323842 CH14 3/20/02 9:39 AM Page 615

Java expressions like this are referred to as request time expressions. Tag attributes can
be defined to disallow request time expressions, in which case, the value must be a sim-
ple string (as shown in Listing 14.4).

The TLD description for the tag must define any attributes it uses. Each supported
attribute name must be listed together with details of the attribute. Every attribute must
have an <attribute> tag with the sub-components shown in Table 14.4.

TABLE 14.4 TLD Tags for Defining Attributes

Tag Description

attribute Introduces an attribute definition in the <tag> component of the TLD.

name Defines the attribute name.

required Followed by true if the attribute must be provided; otherwise, false.

rtexprvalue Defines whether the attribute can be specified with a request time expression. Set
this element to true to allow JSP scripting values to be used for the attribute; other-
wise, the value must be a string literal.

type Defines the type of an attribute and defaults to java.lang.String. This element
must be defined if the rtexprvalue is true and the attribute value is not a String.

Listing 14.5 shows the complete TLD entry for the lookup tag.

LISTING 14.5 TLD Entry for the lookup Tag

1: <tag>
2: <name>lookup</name>
3: <tag-class>demo.LookupTag</tag-class>
4: <body-content>empty</body-content>
5: <attribute>
6: <name>name</name>
7: <required>true</required>
8: <rtexprvalue>true</rtexprvalue>
9: </attribute>
10: </tag>

For a tag to support attributes, it must follow the JavaBean idiom of providing get and set
methods for manipulating the attributes as shown in Listing 14.6, which shows the Java
implementation of the lookup tag.

LISTING 14.6 Full Text of LookupTag.java

1: package demo;
2:

616 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 616

JSP Tag Libraries 617

14

3: import javax.naming.*;
4: import javax.servlet.jsp.*;
5: import javax.servlet.jsp.tagext.*;
6:
7: public class LookupTag extends TagSupport {
8: private String name;
9:
10: public String getName() {
11: return name;
12: }
13:
14: public void setName(String name) {
15: this.name = name;
16: }
17:
18: public int doStartTag() throws JspException {
19: String msg = null;
20: try {
21: Context ic = new InitialContext();
22: msg = ic.lookup(name).toString();
23: }
24: catch (NamingException ex) {
25: msg = ex.toString();
26: }
27: catch (ClassCastException ex) {
28: msg = ex.toString();
29: }
30: try {
31: pageContext.getOut().print(msg);
32: }
33: catch (Exception ex) {
34: throw new JspTagException(“LookupTag: “+ex);
35: }
36: return SKIP_BODY;
37: }
38:
39: public int doEndTag() {
40: return EVAL_PAGE;
41: }
42: }

The set method for each attribute specified for the tag is called prior to the doStartTag()
method. The doStartTag() and other tag lifecycle methods can use the values of attrib-
utes to determine their behavior.

LISTING 14.6 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 617

Tags that Define Script Variables
Now that you know the basics of custom tags, you can start developing more functional
tags for use in your applications. The first feature you will study is that of creating script-
ing variables that can be used on the Web page.

A scripting variable can be added to the page context using the setAttribute() method
of the instance variable called pageContext that points to the
javax.servlet.jsp.PageContext object of the Web page. The setAttribute() method
takes the following parameters:

• The name of the scripting variable. This name is used to refer to the variable on the
Web page.

• The object reference to the variable to be added to the page.

• The scope of the variable that can be one of the following constants defined in
PageContext:

• APPLICATION_SCOPE Available until the context is reclaimed

• PAGE_SCOPE Available until the current page processing completes (this is
the default)

• REQUEST_SCOPE Available until the current request completes allowing the
variable to be used by other pages should this page forward the HTTP
request

• SESSION_SCOPE Available to all pages in the current session

The following example adds a String variable to the context under the name “title”
and available to this page and all forwarded pages in this request:

String s = “Example Title”;
pageContext.setAttribute(“title”, s, PageContext.REQUEST_SCOPE);

To use scripting variables, you will also need to define each scripting variable in the TLD
file. Every scripting variable must have a <variable> tag with the sub-components
shown in Table 14.5.

TABLE 14.5 TLD Tags for Defining Variables

Tag Description

name-given Defines the name for the scripting variable as a fixed value (cannot be
specified if name-from-Attribute is defined)

name-from-attribute Specifies the attribute that is used to define the scripting variable name
(cannot be specified if name-given is defined)

618 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 618

JSP Tag Libraries 619

14

variable-class Specifies the class of the scripting variable

declare Specifies if the variable is a new object (defaults to true)

scope Defines the scope of the variable—must be one of NESTED, AT_BEGIN, or
AT_END and refer to where in the Web page the variable can be accessed

Using the example String variable would require the following entry in the <tag> sec-
tion of the TLD:

<variable>
<name-given>title</name-given>
<variable-class>java.lang.String</variable-class>
<declare>true</declare>
<scope>AT_BEGIN</scope>

</variable>

Variable components must be defined before any attribute components for the tag.

You can use scripting variables in the Job Agency case study pages you developed on
Day 13, “JavaServer Pages,” to remove one of the perceived weaknesses of defining
beans that require initialization parameters.

As a first step, consider the following code fragment from the advertise.jsp:

<jsp:useBean id=”cust” class=”web.CustomerBean” scope=”request” >
<jsp:setProperty name=”cust” property=”login” param=”customer”/>

</jsp:useBean>

This fragment creates a JavaBean for the customer information. This code looks clumsy.
Ideally, you should be able to create the bean and pass in the initialization properties in a
single tag. The JSP idiom of setting the bean properties inside the useBean start and end
tags is a contrived solution forced on you by the way beans are used in the JSP. With
custom tags, you can provide a much cleaner solution. The following getCust tag creates
the required bean and adds it to the page context:

<agency:getCust login=’<%=request.getParameter(“customer”)%>’/>

Looking back at the bean (CustomerBean.java) used to access the customer details, you
will see it is a simple adapter for the Advertise Session bean. Its only purpose is to
adapt the Session bean interface to the JavaBean semantics required on the Web page.
The following code fragment shows the key points of the Bean class:

public CustomerBean () throws NamingException {
InitialContext ic = new InitialContext();
advertiseHome = (AdvertiseHome)ic.lookup(“java:comp/env/ejb/Advertise”);

TABLE 14.5 Continued

Tag Description

17 0672323842 CH14 3/20/02 9:39 AM Page 619

}
public void setLogin (String login) throws Exception {

this.login = login;
advertise = advertiseHome.create(login);

}
public String getName() throws RemoteException {

return advertise.getName();
}

• The bean constructor obtains the home object for the Session bean.

• The setLogin() method creates the bean as a side effect of setting the login
attribute.

• All the other methods (such as getName()) simply delegate to the appropriate
method in the Session bean.

The advertise Session EJB was developed to conform to the JavaBean semantics for
accessing and setting attributes. Using a custom tag, you can use the Session EJB direct-
ly without the need for a bean wrapper class. Listing 14.7 shows the customer tag that
creates the Advertise Session bean for the advertise.jsp page.

LISTING 14.7 Full Text of GetCustTag.java

1: package web;
2:
3: import javax.naming.*;
4: import javax.servlet.jsp.*;
5: import javax.servlet.jsp.tagext.*;
6: import agency.*;
7:
8: public class GetCustTag extends TagSupport {
9: private String login;
10:
11: public String getLogin() {
12: return login;
13: }
14:
15: public void setLogin(String login) {
16: this.login = login;
17: }
18:
19: public int doStartTag() throws JspException {
20: try {
21: InitialContext ic = new InitialContext();
22: AdvertiseHome advertiseHome =

➥ (AdvertiseHome)ic.lookup(“java:comp/env/ejb/Advertise”);
23: Advertise advertise = advertiseHome.create(login);
24: pageContext.setAttribute(“cust”,

➥advertise, PageContext.REQUEST_SCOPE);

620 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 620

JSP Tag Libraries 621

14

25: }
26: catch (Exception ex) {
27: throw new JspTagException(“CustomerTag: “+ex);
28: }
29: return SKIP_BODY;
30: }
31:
32: public int doEndTag() {
33: return EVAL_PAGE;
34: }
35: }

The doStartTag() method finds and creates the Advertise Session EJB using the login
name passed as an attribute to the tag. The created bean is added to the page context (line
24) using the name cust, and its scope is set to the current request. After the getCust tag
has been defined, the rest of the page can refer to the cust bean and use the
jsp:getProperty and jsp:setProperty tags. Because the session bean uses the same
properties as the CustomerBean wrapper class, there are no additional changes required
to the JSP code.

Listing 14.8 shows the getCust TLD entry with the variable and attribute tags. Note
that the login attribute must have an rtexprvalue of true to allow the Web page to pass
in the value from the HTTP request parameter.

LISTING 14.8 getCust Tag Entry in agency.tld

1: <tag>
2: <name>getCust</name>
3: <tag-class>web.GetCustTag</tag-class>
4: <body-content>empty</body-content>
5: <variable>
6: <name-given>cust</name-given>
7: <variable-class>agency.Advertise</variable-class>
8: <declare>true</declare>
9: <scope>AT_BEGIN</scope>
10: </variable>
11: <attribute>
12: <name>login</name>
13: <required>true</required>
14: <rtexprvalue>true</rtexprvalue>
15: </attribute>
16: </tag>

LISTING 14.7 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 621

To keep the example code simple, it always stores the bean against the name cust. To be
more flexible, you could add an additional parameter (such as beanName) to be used to
allow the customer bean variable name to specified by the JSP developer. In this case,
you would set the TLD <variable> information to use this parameter using the <name-
from-attribute>beanName<name-from-attribute/> tag.

You can update the other Web pages in the case study that use the CustomerBean class in
a similar manner, and develop a GetJobTag.java to remove the need for the JobBean
wrapper around the AdvertiseJob Session bean. The worked case study example
includes these updates; later, your task, should you choose to accept it, will be to update
the applicant registration pages to use custom tags.

The new versions of the Web pages can be deployed now, or you can wait and learn more
about custom tags to address the restrictions of JSP when processing repetitive data.

Iterative Tags
One of the problems with processing dynamic data is that HTML and JSP tags do not
support repetitive data very well. There is no way of defining the layout of one row of
data and asking for this to be applied to all subsequent rows; each row has to be defined
explicitly in the page.

Iterative custom tags interact with the processing of the start and end tags to ask for the
tag body to be processed again, and again, and again….

An iterative tag must implement the IterationTag interface. This is most commonly
achieved by sub-classing the BodyTagSupport class. The doAfterBody() method must
return IterationTag.EVAL_BODY_AGAIN to process the body again or Tag.SKIP_BODY to
stop the iteration. Typically, the doAfterBody() method will change the data for each
iteration loop.

The iteration tag has complete control over the body content of the page because it can
return values from the page interaction methods, such as doAfterBody() and then tell the
JSP processor how to continue processing the page.

The default behavior for the BodyTagSupport class is to buffer up the body text of the
custom tag and discard it when the end tag is processed. You will have to override this
behavior in your custom tag so that it outputs the body text either every time round the
iteration loop or once at the end of the tag.

The BodyTagSupport class stores the body content in a BodyTagSupport class instance
variable called bodyContent (class javax.servlet.jsp.tagext.BodyContent). The
BodyContent class extends the JSPWriter class.

622 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 622

JSP Tag Libraries 623

14

The following code illustrates the normal approach to writing the buffered body content
to the Web page:

JspWriter out = getPreviousOut();
out.print(bodyContent.getString());
bodyContent.clearBody();

The steps required are as follows:

1. Obtain the JSPWriter object that can be used to output the body content text (the
getPreviousOut() method).

2. Print the string data buffered up in the body content.

3. Clear the body content text after it has been written to the page; otherwise, it will
be written more than once.

Typically, the body content is added to the page from within the doAfterBody() method.
This keeps the size of the body content down because it is flushed to the page with each
iteration and saves on memory usage. If the body content cannot be determined until all
of the iterations have completed (or the tag is not an iterative one), you will have to write
it to the page in the doEndTag() method.

Listing 14.9 revisits the case study and shows a custom tag for supporting iteration over
a customer’s jobs.

LISTING 14.9 Full Text of ForEachJobTag.java

1: package web;
2:
3: import java.rmi.*;
4: import javax.ejb.*;
5: import javax.naming.*;
6: import javax.servlet.jsp.*;
7: import javax.servlet.jsp.tagext.*;
8: import agency.*;
9:
10: public class ForEachJobTag extends BodyTagSupport {
11: private Advertise customer;
12: AdvertiseJobHome advertiseJobHome;
13: private String[] jobs;
14: private int nextJob;
15:
16: public Advertise getCustomer() {
17: return customer;
18: }
19:
20: public void setCustomer(Advertise customer) {
21: this.customer = customer;

17 0672323842 CH14 3/20/02 9:39 AM Page 623

22: }
23:
24: public int doStartTag() throws JspException {
25: try {
26: InitialContext ic = new InitialContext();
27: advertiseJobHome = (AdvertiseJobHome)ic.lookup(

➥”java:comp/env/ejb/AdvertiseJob”);
28: jobs = customer.getJobs();
29: int nextJob = 0;
30: return getNextJob();
31: }
32: catch (Exception ex) {
33: throw new JspTagException(“ForEachJobTag: “+ex);
34: }
35: }
36:
37: public int doAfterBody() throws JspException {
38: try {
39: JspWriter out = getPreviousOut();
40: out.print(bodyContent.getString());
41: bodyContent.clearBody();
42: return getNextJob();
43: }
44: catch (Exception ex) {
45: throw new JspTagException(“ForEachJobTag: “+ex);
46: }
47: }
48:
49: private int getNextJob() throws RemoteException, CreateException
50: {
51: if (nextJob >= jobs.length)
52: return SKIP_BODY;
53: AdvertiseJob advertiseJob = advertiseJobHome.create(

➥jobs[nextJob++],customer.getLogin());
54: pageContext.setAttribute(“job”, advertiseJob,

PageContext.REQUEST_SCOPE);
55: return EVAL_BODY_AGAIN;
56: }
57: }

In Listing 14.9, the doStartTag() and doAfterBody() methods both call the private
helper method getNextJob(). It is this method that loads the information about the next
job and returns EVAL_BODY_AGAIN while there is still job information available. The value
SKIP_BODY is returned to stop the iteration loop when the data is exhausted.

As in the previous GetCustTag shown in Listing 14.7, the ForEachJobTag creates a
scripting variable to hold the data for use within the body of the iteration tag. In this
case, the variable is always called job and refers to an AdvertiseJob Session bean.

624 Day 14

LISTING 14.9 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 624

JSP Tag Libraries 625

14

An iteration tag must process the tag body, so the TLD tag entry must define the <body-
content> component as JSP to show that the body contains normal JSP text. The
attribute passed into the ForEachJob tag to control the iteration is called customer and is
a reference to an Advertise Session bean (which defines the customer details). The TLD
entry for ForEachJobTag is shown in Listing 14.10.

LISTING 14.10 TLD Entry for the ForEachJobTag Tag

1: <tag>
2: <name>forEachJob</name>
3: <tag-class>web.ForEachJobTag</tag-class>
4: <body-content>JSP</body-content>
5: <variable>
6: <name-given>job</name-given>
7: <variable-class>agency.AdvertiseJob</variable-class>
8: <declare>true</declare>
9: <scope>AT_BEGIN</scope>
10: </variable>
11: <attribute>
12: <name>customer</name>
13: <required>true</required>
14: <rtexprvalue>true</rtexprvalue>
15: <type>agency.Advertise</type>
16: </attribute>
17: </tag>

With this new tag, you can update the advertise.jsp page to process the jobs without
resorting to coding the iteration loop as a Java scriptlet. The following code shows the
relevant part of the advertise.jsp page you developed on Day 13.

<H2>Jobs</H2>
<% String[] jobs = cust.getJobs(); %>
<% for (int i=0; i<jobs.length; i++) {%>
<jsp:useBean id=”job” class=”web.JobBean” scope=”request”>
<jsp:setProperty name=”job” property=”customer” param=”customer”/>

</jsp:useBean>
<% job.setRef(jobs[i]); %>
<H3><jsp:getProperty name=”job” property=”ref”/></H3>
<FORM action=updateJob>
…
</FORM>

<% } %>

Here, initialization of the JobBean was awkward because a job has a compound key
made up of the customer login name and the job reference. The initialization of the bean
set the customer reference as a bean property using the <jsp:setProperty> tag and
called the bean’s setRef() method directly to reload the bean with the new job details.

17 0672323842 CH14 3/20/02 9:39 AM Page 625

You can replace this inelegant approach with much neater and cleanly encapsulated code
as shown next:

<H2>Jobs</H2>
<agency:forEachJob customer=”<%=cust%>”>
<H3><jsp:getProperty name=”job” property=”ref”/></H3>
<FORM action=updateJob>
...
</FORM>

</agency:forEachJob>

The forEachJob tag passes in a reference to the Advertise Session bean using the cus-
tomer attribute. This attribute is initialized to the scripting variable you defined in the
getCust tag in the previous section.

The last improvement you will make to this Web page is to replace the handling of the
job skills with a set of cooperating tags, as discussed in the next section.

Co-operating Tags
Cooperating tags are those that share information in some way. JSP information can be
shared using the following mechanisms:

• Scripting variables

• Hierarchical (or nested) tags

Using Shared Scripting Variables
One means of writing cooperating tags is to use scripting variables to pass information
between the tags. A tag can create a scripting variable that can be retrieved by a another
tag on the current page. Depending on the scope of the scripting variable, it can be
passed on to other pages in the same request or to pages in subsequent requests.
Variables defined by custom tags have the same scoping rules as other variables defined
on the page. Scripting variables are a very flexible means of passing information between
tags.

A tag can retrieve a scripting variable from the page context using the getAttribute()
method. This method takes the name of the variable as its parameter. An overloaded ver-
sion of the getAttribute() method takes a second parameter that defines the scope of
the variable to retrieve.

The tag needs to know the class of the variable it is retrieving. The following example
retrieves a String variable stored under the name “title”:

String s = (String)pageContext.getAttribute(“title”);

626 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 626

JSP Tag Libraries 627

14

Hierarchical Tag Structures
An alternative means of passing information between tags is to use a parent/child (or
hierarchical) relationship. The parent (outer tag) contains information that is accessed by
a child (inner) tag. The parent tag is often an iterative tag, and the child is used to
retrieve information for each iteration.

The advantage of this approach over scripting variables is that the information can only
be used in the correct context. The scope of the information can be constrained to the
Web page between the start and end tags of the parent tag.

Two static methods are provided in the javax.servlet.jsp.tagext.TagSupport class
for finding a parent tag from within the child:

• TagSupport.findAncestorWithClass(from, class) This method searches
through the tag hierarchy until it finds a tag with the same class as the second para-
meter. The first parameter defines the start point of the search and is typically the
this object.

• TagSupport.getParent() This method finds the immediately enclosing parent
tag.

With this information, you can now redesign the advertise.jsp to remove the rest of
the Java scriptlets from the Job Agency Web pages as shown in the following examples.

On the advertise.jsp page, two separate pages (location.jsp and skills.jsp) han-
dled the job location and skills. Using cooperating tags, you can remove all the messy
handling of the HTML select tags. The code for handling the job skills select list current-
ly looks like the following:

<% String[] skills = job.getSkills(); %>
<%@include file=”skills.jsp”%>

The code creates a Java variable called skills that is used by the skills.jsp page
shown in Listing 14.11.

LISTING 14.11 Full Text of skills.jsp

1: <SELECT name=”skills” multiple size=”6”>
2: <%
3: Iterator allSkills = agency.getSkills().iterator();
4: while (allSkills.hasNext()) {
5: String s = (String)allSkills.next();
6: boolean found = false;
7: for (int si=0; !found && si<skills.length; si++)
8: found = s.equals(skills[si]);
9: if (found)

17 0672323842 CH14 3/20/02 9:39 AM Page 627

10: out.print(“<OPTION selected>”);
11: else
12: out.print(“<OPTION>”);
13: out.print(s);
14: }
15: %>
16: </SELECT>

The use of the Java variable to communicate between the two pages allowed the
register.jsp page to use the same skills.jsp code to generate the applicant’s skill
list. This is an error-prone approach as the skills.jsp page will not work unless this
variable is defined before the skills.jsp page is included.

In other words the skills.jsp page is not self contained. You will be able to write a
much more elegant solution by using cooperating tags.

You will need two custom tags—one to control the iteration over a list of option values
and the other to define whether each option is selected or not. Listing 14.12 shows a
generic iteration tag (called ForEachTag) that takes a collection of strings to iterate over.

LISTING 14.12 Full Text of ForEachTag.java

1: package web;
2:
3: import java.io.*;
4: import java.util.*;
5: import javax.servlet.jsp.*;
6: import javax.servlet.jsp.tagext.*;
7:
8: public class ForEachTag extends BodyTagSupport {
9: private Collection collection;
10: private Iterator it;
11: private String currentValue;
12:
13: public void setCollection (Collection collection) {
14: this.collection = collection;
15: }
16:
17: public Collection getCollection () {
18: return collection;
19: }
20:
21: public int doStartTag() {
22: it = collection.iterator();
23: return getNext();

628 Day 14

LISTING 14.11 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 628

JSP Tag Libraries 629

14

24: }
25:
26: public int doAfterBody() throws JspTagException {
27: try {
28: JspWriter out = getPreviousOut();
29: out.print(bodyContent.getString());
30: bodyContent.clearBody();
31: return getNext();
32: }
33: catch (IOException ex) {
34: throw new JspTagException(“ForEachTag: “+ex);
35: }
36: }
37:
38: private int getNext()
39: {
40: if (it.hasNext()) {
41: currentValue = (String)it.next();
42: return EVAL_BODY_AGAIN;
43: }
44: return SKIP_BODY;
45: }
46:
47: public String getCurrentValue() {
48: return currentValue;
49: }
50: }

This is similar to the previous iteration example with the addition of an accessor method
called getCurrentValue() to obtain the current iteration value.

The nested option tag (OptionTag), shown in Listing 14.13, looks up the tag hierarchy
using findAncestorWithClass() to find the enclosing ForEachTag object. The inner tag
then gets the current iteration value from the found ancestor object and compares it to a
list of values passed as an attribute to the inner tag. If the current value is in the supplied
list, the option is tagged as a selected option.

LISTING 14.13 Full Text of OptionTag.java

1: package web;
2:
3: import java.io.*;
4: import java.util.*;
5: import javax.servlet.jsp.*;
6: import javax.servlet.jsp.tagext.*;

LISTING 14.12 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 629

7:
8: public class OptionTag extends TagSupport {
9: private String[] selected = new String[0];
10:
11: public void setSelected (String[] selected) {
12: this.selected = selected;
13: }
14:
15: public String[] getSelected () {
16: return selected;
17: }
18:
19: public int doStartTag() throws JspTagException {
20: try {
21: ForEachTag loop = (ForEachTag)findAncestorWithClass(

➥this, ForEachTag.class);
22: String value = loop.getCurrentValue();
23: for (int i=0; i<selected.length; i++) {
24: if (value.equals(selected[i])) {
25: pageContext.getOut().print(

➥”<OPTION selected>”+value);
26: return SKIP_BODY;
27: }
28: }
29: pageContext.getOut().print(“<OPTION>”+value);
30: }
31: catch (IOException ex) {
32: throw new JspTagException(“OptionTag: “+ex);
33: }
34: return SKIP_BODY;
35: }
36:
37: }

The OptionTag example is inherently an extension to the HTML OPTION tag, whereas the
ForEach example simply iterates over a generic list. Both tags are eminently reusable on
other JSP pages.

The TLD entries for these tags are shown in Listing 14.14.

LISTING 14.14 TLD entries for ForEachTag and OptionTag

1: <tag>
2: <name>forEach</name>
3: <tag-class>web.ForEachTag</tag-class>
4: <body-content>JSP</body-content>

630 Day 14

LISTING 14.13 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 630

JSP Tag Libraries 631

14

5: <attribute>
6: <name>collection</name>
7: <required>true</required>
8: <rtexprvalue>true</rtexprvalue>
9: <type>java.util.Collection</type>
10: </attribute>
11: </tag>
12: <tag>
13: <name>option</name>
14: <tag-class>web.OptionTag</tag-class>
15: <body-content>empty</body-content>
16: <attribute>
17: <name>selected</name>
18: <required>false</required>
19: <rtexprvalue>true</rtexprvalue>
20: <type>java.util.String[]</type>
21: </attribute>
22: </tag>

Note how the selected attribute of the option tag is an array of String objects and is
optional. The code in the tag implementation defaults this attribute to an empty array if it
is not specified; effectively, none of the select options will be selected.

You can now complete the refactoring of the advertise.jsp page by using the cooperat-
ing tags. The new tag attributes are defined using Java expressions. The only complica-
tion is the need to convert the single location string into an array. The following code
highlights how clean the new code for handling the location is.

The following fragment shows the code you developed on Day 13 to define the list of
available locations:

<TR><TD>Location:</TD><TD>
<% String location = job.getLocation(); %>
<%@include file=”location.jsf”%>

</TD></TR>

The included file location.jsf defines the SELECT list for the location as follows:

<SELECT name=”location”>
<%
Iterator locations = agency.getLocations().iterator();
while (locations.hasNext()) {
String l = (String)locations.next();
if (location == l)
out.print(“<OPTION>”);

else

LISTING 14.14 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 631

out.print(“<OPTION selected>”);
out.print(l);

}
%>
</SELECT>

You can replace this convoluted approach with a neater version using the two custom
tags just shown:

<SELECT name=”location”>
<agency:forEach collection=’<%=agency.getLocations()%>’>
<agency:option selected=’<%=new String[]{job.getLocation()}%>’/>

</agency:forEach>
</SELECT>

The complete version of the revised Advertise Job Web page is shown in Listing 14.15.

LISTING 14.15 Full Text of advertise.jsp

1: <%@ taglib uri=”/agency” prefix=”agency” %>
2: <HTML><HEAD>
3: <TITLE>Advertise Customer Details</TITLE>
4: <%@include file=”header.jsp” %>
5: <%@page import=”java.util.*” %>
6: <agency:getCust login=’<%=request.getParameter(“customer”)%>’/>
7: <H2>Customer details for:

➥<jsp:getProperty name=”cust” property=”login”/></H2>
8: <FORM action=updateCustomer>
9: <INPUT type=hidden name=login

➥value=”<jsp:getProperty name=”cust” property=”login”/>”>
10: <TABLE>
11: <TR><TD>Login:</TD><TD><jsp:getProperty

➥name=”cust” property=”login”/></TD></TR>
12: <TR><TD>Name:</TD><TD><input type=text name=name value=

➥”<jsp:getProperty name=”cust” property=”name”/>”></TD></TR>
13: <TR><TD>Email:</TD><TD><input type=text name=email value=

➥”<jsp:getProperty name=”cust” property=”email”/>”></TD></TR>
14: <% String[] address = cust.getAddress(); %>
15: <TR><TD>Address:</TD><TD>

➥<input type=text name=address value=”<%=address[0]%>”></TD></TR>
16: <TR><TD>Address:</TD>

➥<TD><input type=text name=address value=”<%=address[1]%>”></TD></TR>
17: </TABLE>
18: <INPUT type=submit value=”Update Details”>
19: <INPUT type=reset>
20: </FORM>
21: <FORM action=deleteCustomer>
22: <input type=hidden name=customer value=”<jsp:getProperty name=

➥”cust” property=”login”/>”>
23: <input type=submit value=”Delete Customer <jsp:getProperty name=

632 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 632

JSP Tag Libraries 633

14

➥”cust” property=”login”/>”>
24: </FORM>
25: <H2>Jobs</H2>
26: <agency:forEachJob customer=”<%=cust%>”>
27: <H3><jsp:getProperty name=”job” property=”ref”/></H3>
28: <FORM action=updateJob>
29: <TABLE>
30: <TR><TD>Description:</TD><TD>

➥<input type=text name=description value=”<jsp:getProperty
➥name=”job” property=”description”/>”></TD></TR>
31: <TR><TD>Location:</TD>
32: <TD>
33: <SELECT name=”location”>
34: <agency:forEach collection=’<%=agency.getLocations()%>’>
35: <agency:option

➥selected=’<%=new String[]{job.getLocation()}%>’/>
36: </agency:forEach>
37: </SELECT>
38: </TD>
39: </TR>
40: <TR><TD>Skills:</TD><TD>
41: <% String[] skills = job.getSkills(); %>
42: <SELECT name=skills multiple size=6>
43: <agency:forEach collection=’<%=agency.getSkills()%>’>
44: <agency:option selected=’<%=job.getSkills()%>’/>
45: </agency:forEach>
46: </SELECT>
47: </TD></TR>
48: </TABLE>
49: <INPUT type=hidden name=”customer”

➥value=”<jsp:getProperty name=”job” property=”customer”/>”>
50: <INPUT type=hidden name=”ref”

➥value=”<jsp:getProperty name=”job” property=”ref”/>”>
51: <INPUT type=submit value=”Update Job”>
52: </FORM>
52: <FORM action=deleteJob>
54: <INPUT type=hidden name=”customer”

➥value=”<jsp:getProperty name=”job” property=”customer”/>”>
55: <INPUT type=hidden name=”ref”

➥value=”<jsp:getProperty name=”job” property=”ref”/>”>
56: <INPUT type=”submit”

➥value=’Delete Job <jsp:getProperty name=”job” property=”ref”/>’>
57: </FORM>
58: </agency:forEachJob>
59: <H2>Create New Job</H2>
60: <FORM action=createJob>
61: <TABLE>
62: <TR>

LISTING 14.15 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 633

63: <TD>Ref:</TD>
64: <TD><INPUT type=text name=ref></TD>
65: </TR>
66: <TR>
67: <INPUT type=hidden name=”customer”

➥value=”<jsp:getProperty name=”cust” property=”login”/>”>
68: <TD colspan=2><INPUT type=submit value=”Create Job”></TD>
69: </TR>
70: </TABLE>
71: </FORM>
72: <%@include file=”footer.jsp” %>
73: </BODY>
74: </HTML>

The ForEach tag was designed to be useful for any kind of iteration of values to show
you how generic tags can be developed. In this example, it may have been better to have
an iteration tag that implemented the HTML SELECT list rather than require the developer
to define them on the JSP page. Such a custom tag would need to have attributes match-
ing the attributes of the HTML SELECT tag. The JSP code using a custom <select> tag
could look like the following:

<agency:select name=”skills” multiple=”true” size=”6”
➥collection=”<%=agency.getSkills()%>”>

<agency:option selected=”<%=job.getSkills()%>”/>
</agency:select>

One of the problems with more complex custom tags is that there are often restrictions
on how the attributes can be defined that can’t be shown in TLD definition. A tag may
require that an attribute have specific values (the prevous size tag must be a positive
integer) or perhaps two tags are mutually exclusive. Custom tags address this problem by
using a Tag Extra Info (TEI) object, as discussed in the next section.

Defining Tag Extra Info Objects
Every custom tag can have an optional Tag Extra Info (TEI) object. The TEI object is
used for two purposes:

• To validate tag attributes at page translation time

• To specify the scripting variables created by the tag

A TEI class extends the javax.servlet.jsp.tagext.TagExtraInfo class and is defined
to the TLD before the tag’s body content definition. The following example defines an
OptionTagTEI class for the OptionTag used in the case study:

634 Day 14

LISTING 14.15 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 634

JSP Tag Libraries 635

14

<tag>
<name>option</name>
<tag-class>web.OptionTag</tag-class>
<tei-class>web.OptionTagTEI</tei-class>
<body-content>empty</body-content>

The TEI class itself must define methods to validate attributes and define scripting vari-
ables. These uses of the TEI class are presented in the next two sub-sections.

Validating Attributes
As you know from Day 13, when a JSP is first accessed, the JSP is translated into a Java
servlet that is then compiled. After the compiled servlet is available, it is used to process
the client’s HTTP request. The process of translating the JSP text and compiling the
servlet can fail (and frequently does during page development). As explained on Day 13,
some of the most common errors are as follows:

• JSP syntax errors

• Compilation errors in embedded Java scriptlets

• Incorrectly specifying tag attributes

The first of these errors can be reduced by using JSP, HTML, and XML syntax-aware
editors.

The second problem is reduced when custom tags are used to encapsulate Java code,
enabling Java compilation errors to be detected and corrected as the tag is developed.

Solving the third problem of misusing attributes for a custom tag is addressed by defin-
ing a Tag Extra Info class to validate your attributes. You would do this if you had specif-
ic rules about which attributes could be defined or the value an attribute could have.

As an example, you can update the Option tag from the previous section to allow a sec-
ond attribute, called default, which could be used when a single option is required
rather than force the developer to construct an array of strings. The selected and
default attributes for your tag would be mutually exclusive. The TLD entry defining the
<variable> tag cannot express this constraint, but you can by using a TEI class.

The TEI class defines a single method called isValid(). The single parameter is a
javax.servlet.jsp.tagext.TagData that provides a getAttribute() method to access
each of the tag’s attributes. The example in Listing 14.16 shows how the revised Option
tag could validate that the default and selected attributes are not both defined.

17 0672323842 CH14 3/20/02 9:39 AM Page 635

LISTING 14.16 Full Text of OptionTagTEI.java

1: package web;
2:
3: import javax.servlet.jsp.*;
4: import javax.servlet.jsp.tagext.*;
5:
6: public class OptionTagTEI extends TagExtraInfo {
7: public boolean isValid(TagData data) {
8: Object selected = data.getAttribute(“selected”);
9: Object def = data.getAttribute(“default”);
10: if (def!=null && selected!=null)
11: return false;
12: else
13: return true;
14: }
15: }

The advertise.jsp can be updated to use the default attribute for accessing the location
list:

<agency:option default=’<%=job.getLocation()%>’/>

The OptionTag.java class needs updating to support the default attribute. This is a
simple change that adds the getDefault() and setDefault() bean methods shown next:

public void setDefault (String selected) {
this.selected = new String[]{selected};

}

public String getDefault () {
return selected[0];

}

To use the Tag Extra Info to validate the value of a parameter, you will need to verify
that the value is not a request time expression. Only if the value is a static Java String
can it be compared against the permitted values. The example in Listing 14.17 verifies
that a tag’s color attribute can only take the values red, yellow, amber and green.

LISTING 14.17 TEI Example to Validate a Color Attribute

1: public class SignalTagTEI extends TagExtraInfo {
2: public boolean isValid(Tagdata data) {
3: Object o = data.getAttribute(“color”);
4: if (o != null && o != TagData.REQUEST_TIME_VALUE) {
5: String color = (String)o;
6: if (col.equals(“red”) || col.equals(“yellow”) ||
7: col.equals(“amber”) || col.equals(“green”))

636 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 636

JSP Tag Libraries 637

14

8: return true;
9: else
10: return false;
11: }
12: else
13: return true;
14: }
15: }

Defining Scripting Variables
The second use of the Tag Extra Info class is to provide information about the scripting
variables used by the tag. This TEI information is not required for deploying a tag that
creates scripting variables, but it does provide information that can be used by some
manufacturer’s JSP design tools.

The following example shows how the getCust tag shown in Listing 14.7 could define
the cust scripting variable:

public class DefineTei extends TagExtraInfo {
public VariableInfo[] getVariableInfo(TagData data) {

String type = data.getAttributeString(“type”);
if (type == null)

type = “java.lang.Object”;
return new VariableInfo[] {

new VariableInfo(data.getAttributeString(“id”),
type, true, VariableInfo.AT_BEGIN)};

}
}

The name (cust) and class (agency.Advertise) of the scripting variable are passed in as
tag attributes. The TagData.getAttributeString() method can retrieve this information
and use it to construct the VariableInfo object required as a return value from this
method. The scope of the variable is set to be VariableInfo.AT_BEGIN to allow it to be
used after the opening tag.

Processing Tag Bodies
So far, you have seen tags that treat the text in the body of the tag as simple JSP (or
HTML) data. But tags can also manipulate the tag body in any way they choose. A sim-
ple example would be a tag that interprets its body as an SQL statement and uses this to
query the database. Listing 14.18 shows a simple use of such a tag.

LISTING 14.17 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 637

LISTING 14.18 Full Text of select.jsp

1: <%@ taglib uri=”/demo” prefix=”demo” %>
2: <HTML>
3: <HEAD>
4: <TITLE> Tag Library SQL Query Demo</TITLE>
5: <BODY>
6: <demo:select>
7: SELECT * FROM Customer
8: </demo:select>
9: </BODY>
10: </HTML>

The implementation of this select tag must state in the TLD that the body text is tag
dependent, as shown in the following:

<tag>
<name>select</name>
<tag-class>demo.SelectTag</tag-class>
<body-content>tagdependent</body-content>

</tag>

The implementation of the select tag must extend the BodyTagSupport class as shown
in Listing 14.19. This tag tags an SQL select statement as the tag body and runs this
statement against a database (in this case, the Agency Case study database).

LISTING 14.19 Full Text of SelectTag.java

1: package demo;
2:
3: import java.io.*;
4: import java.sql.*;
5: import javax.sql.*;
6: import javax.naming.*;
7: import javax.servlet.jsp.*;
8: import javax.servlet.jsp.tagext.*;
9:
10: public class SelectTag extends BodyTagSupport {
11: public int doEndTag() throws JspException {
12: try {
13: String ans = doSelect(bodyContent.getString());
14: pageContext.getOut().print(ans);
15: bodyContent.clearBody();
16: }
17: catch (Exception ex) {
18: throw new JspTagException(“SqlTag: “+ex);
19: }
20: return EVAL_PAGE;
21: }
22:
23: private String doSelect (String cmd)

638 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 638

JSP Tag Libraries 639

14

➥throws NamingException, SQLException {
24: StringBuffer ans = new StringBuffer(“<H2>”+cmd+”</H2>”);
25: InitialContext ic = new InitialContext();
26: DataSource dataSource =

➥(DataSource)ic.lookup(“java:comp/env/jdbc/Agency”);
27: Connection con = null;
28: PreparedStatement stmt = null;
29: ResultSet rs = null;
30: try {
31: con = dataSource.getConnection();
32: stmt = con.prepareStatement(cmd);
33: rs = stmt.executeQuery();
34: ans.append(“<TABLE border=1>”);
35: ResultSetMetaData rsmd = rs.getMetaData();
36: int numCols = rsmd.getColumnCount();
37: // get column header info
38: ans.append(“<TR>”);
39: for (int i=1; i <= numCols; i++) {
40: ans.append(“<TH>”);
41: ans.append(rsmd.getColumnLabel(i));
42: ans.append(“</TH>”);
43: }
44: ans.append(“</TR>”);
45: // get cmma separated data
46: while (rs.next()) {
47: ans.append(“</TR>”);
48: for (int i=1; i <= numCols; i++) {
49: ans.append(“<TD>”);
50: ans.append(rs.getString(i));
51: ans.append(“</TD>”);
52: }
53: ans.append(“</TR>”);
54: }
55: ans.append(“</TABLE>”);
56: }
57: finally {
58: if (rs != null) {
59: try {rs.close();} catch (SQLException ex) {}
60: }
61: if (stmt != null) {
62: try {stmt.close();} catch (SQLException ex) {}
63: }
64: if (con != null) {
65: try {con.close();} catch (SQLException ex) {}
66: }
67: }
68: return ans.toString();
69: }
70: }

LISTING 14.19 Continued

17 0672323842 CH14 3/20/02 9:39 AM Page 639

The BodyTagSupport processing buffers up the body text in the bodyContent variable
and the doEndTag() method retrieves the tag body and hands it on to the private helper
method doSelect() for execution as an SQL SELECT statement.

The doSelect() method queries the database (using a registered JNDI data source) and
formats the results as an HTML table. The doAfterBody() method prints out the results
of the SQL query and clears down the body content buffer.

Listing 14.19 shows a very simple example of what can be achieved by using custom
tags. A simple variation of this Web page is to provide a form that lets the user select the
customer name and change the query to show the details for a single customer passed in
as a request parameter called “customer”. The new JSP would be like the following:

<%@ taglib uri=”/demo” prefix=”demo” %>
<HTML>
<HEAD>
<TITLE> Tag Library SQL Query Demo</TITLE>
<BODY>
<demo:select>
SELECT * FROM Customer WHERE login = <%=request.getParamter(“customer”)%>

</demo:select>
</BODY>
</HTML>

The possibilities of this approach are endless. The fact that any custom tag can retrieve
the body content and manipulate the text provides complete flexibility in how a JSP can
be written.

JavaServer Pages Standard Tag Library
(JSPTL)

Tag Libraries are a recent addition to JSP and have been quickly adopted by the develop-
ment community. As with all new technologies, Tag Libraries are rapidly developing and
changing.

As you saw in the section on cooperating tags, it is easy to write generic tags that pro-
vide useful functionality, such as iteration. Many Tag Libraries provided with JSP-
compliant Web servers include their own custom tags, many of which are generic tags.

The proliferation of different Tag Libraries providing similar features has been seen as a
problem, and the Java Community Process (JCP) is working on a standard set of tags to
be included in the JSP standard.

640 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 640

JSP Tag Libraries 641

14

The JavaServer Pages Standard Tag Library (JSPTL) is Java Community Process initia-
tive and is specified on the JCP Web page at http://jcp.org/jsr/detail/052.jsp.

The latest implementation of the JSPTL can be downloaded from the Apache Jakarta
TagLibs page at
http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html.

The Jakarta project also provides a large number of other tag libraries addressing com-
mon page requirements, such as support for JNDI, JMS, and JDBC.

Using the JSPTL with the J2EE RI
Using the JSPTL libraries with the J2EE is a simple process. You start by downloading
the JSPTL archive from the Apache Jakarta Web site at
http://jakarta.apache.org/builds/jakarta-taglibs/releases/standard/.

Extract the downloaded archive and in the JSPTL directory, you will see a number of
files, including two TLD files and some JAR files.

JSPTL defines two versions of the Tag Libraries. One version uses standard Java request
time expressions, and the other uses a suggested scripting language. The two supplied
TLD files refer to the two libraries known as jr (runtime expressions in file
jsptl-tr.tld) and jx (scripting language in file jsptl-jx.tld).

In this section, you will use the JSPTL jr library to examine some of the features of the
standard tags. You will need to include the JSPTL JAR file and TLD in your application.
Look in the JSPTL directory for the jsptl.jar file (it may have a version number, such
as jsptil-1.2.jar, or it may be an early access version jsptlea.jar).

You are now ready to include the JSPTL in your Web application. Start up deploytool
and, to keep the demonstration simple, create a new application called jsptl. Create a
new Web application and add the JSPTL JAR file (jsptl.jar) and the jr TLD file
(jsptl-tr.tld). Figure 14.6 shows the file list from the Web Application Wizard (the
JAR file has been added to the WEB-INF/lib directory).

Click on the Next button and on the Component Type page select the No Component
option. Click on Next six times to get to the File Refs page and then add an entry for the
TLD file. Figure 14.7 shows the entry mapping the logical name /jsptl-jr onto the
actual file /WEB-INF/jsptl-jr.tld.

17 0672323842 CH14 3/20/02 9:39 AM Page 641

Finally, click Finish. The jsptl application now includes the JSPTL Tag Libraries, and
you can create new Web Applications that use this library.

642 Day 14

FIGURE 14.6
Adding the JSPTL
files.

FIGURE 14.7
Defining the JSPTL
TLD file reference.

17 0672323842 CH14 3/20/02 9:39 AM Page 642

JSP Tag Libraries 643

14

Using the JSPTL forEach Tag
The JSPTL forEach tag performs a similar function to the forEach tag you developed
today as part of the case study. However, the JSPTL iteration tag supports many different
Java idioms for defining lists of values:

• Arrays of Java objects

• Arrays of Java primitives (the individual values are automatically wrapped an the
appropriate wrapper object)

• Objects in a java.util.Collection, such as list and sets

• Objects in a java.util.Map collection

• Objects defined by a java.util.Iterator

• Objects defined by a java.util.Enumerator

• Objects defined by a java.sql.ResultSet

• Comma-separated values in a String, such as “apple,orange,pear”

The forEach tag defines a scripting variable to hold the value for the current loop itera-
tion. You specify the name of this variable with the var attribute. The actual list of values
is defined by the items attribute.

Listing 14.20 shows a simple example that displays a list of fruits defined in a comma-
separated string.

LISTING 14.20 Full Text of foreach.jsp

1: <%@ taglib uri=”/jsptl-jr” prefix=”jr” %>
2: <HTML><HEAD><TITLE>JSPTL foreach example</TITLE>
3: </HEAD>
4: <BODY>
5: <H1>JSPTL For Each Example</H1>
6: <jr:forEach var=”fruit” items=’”apple,orange,pear”’>
7: <%=pageContext.getAttribute(“fruit”)%>

8: </jr:forEach>
9: </BODY></HTML>

The Java string literal is defined as a tag attribute. The attribute is quoted in single
quotes, and the string literal is defined in double quotes. The loop iteration variable is
stored in the page context and has to be retrieved using the
PageContext.getAttribute() method, as shown at line 7 of Listing 14.20.

Using the same forEach tag, but this time defining the fruits in an array of String
objects, is shown in the following code fragment:

17 0672323842 CH14 3/20/02 9:39 AM Page 643

<% String[] fruits = {“apple”,”orange”,”pear”}; %>
<jr:forEach var=”fruit” items=”<%=fruits%>”>

<%=pageContext.getAttribute(“fruit”)%>

</jr:forEach>

You can incorporate the JSPTL forEach tag into the case study example. Listing 14.21
shows a simple page to display a list of customers in the Agency database.

LISTING 14.21 Full Text of listcust.jsp

1: <%@ taglib uri=”/jsptl-jr” prefix=”jr” %>
2: <HTML><HEAD><TITLE>JSPTL foreach customer</TITLE>
3: </HEAD>
4: <BODY>
5: <jsp:useBean id=”agency” class=”web.AgencyBean” scope=”request” />
6: <H1><jsp:getProperty name=”agency” property=”agencyName”/></H1>
7: <P>
8: <jr:forEach var=”cust” items=”<%=agency.findAllCustomers()%>”>
9: <%=pageContext.getAttribute(“cust”)%>

10: </jr:forEach>
11: </BODY></HTML>

To deploy the example in Listing 14.21, you will need to add the Agency Session bean
class files to your application. Figure 14.8 shows the files added to the jsptl application,
which are agency.AgencyHome, agency.Agency, agency.NotFoundException,
agency.DuplicateException, and web.AgencyBean.

644 Day 14

FIGURE 14.8
The Agency class files
used by listcust.jsp.

17 0672323842 CH14 3/20/02 9:39 AM Page 644

JSP Tag Libraries 645

14

Other JSPTL Tags
The JSPTL library defines other structural tags. Tags are available to support tokens
defined in a String, an if construct, and a case statement. Each of these is shown
briefly in this section.

The forTokens tag iterates over a delimited list of values specified in a String. The
delims attribute defines the delimiter, for example

<jr:forTokens var=”token” items=”apple|orange|pear” delims=”|”>
...

</jr:forTokens>

Simple optional inclusion of a tag body is supported by the if tag that defines a test
attribute, for example

<jr:if test=’<%((String)pageContext.getAttribute(“cust”)).equals(“george”)%>’>
...

</jr:if>

A case statement is supported by the choose tag and the nested when and otherwise
tags. The choose tag structure is as follows:

<jr:choose>
<when test=”...”>
...

</when>
<when test=”...”>
...

</when>
...

<otherwise>
...

</otherwise>
</jr:choose>

As you can see, the JSPTL provides the basic structural elements necessary to add pro-
gramming language, such as constructs to your Web pages.

JSPTL Scripting Language
The support for a scripting language in the JSPTL is very experimental and in the early
stages of development. The intention behind the scripting language is to incorporate a
powerful technique for adding programming capabilities to tags.

At the time of writing (late 2001), the JSPTL specification provides for pluggable script-
ing languages. A simple language is defined in the specification, but it should be possible
to add other scripting languages, such as JavaScript or Perl.

17 0672323842 CH14 3/20/02 9:39 AM Page 645

The following example shows a forEach tag that iterates over the values defined by a
scripting variable called customers.

<jx:forEach var=”customer” items=”$customers”>
<jx:expr value=”$customer”/>

</jx:forEach>

In this example, the Tag Library prefix is jx rather than jr. The scripting variables are
identified by a dollar sign ($). The expr tag is used to evaluate an expression in the
scripting language and writes the results to the Web page (much like the request time
<%= > tag). Other tags are defined for declaring scripting variables and setting the values
of the scripting variables.

Full documentation for the latest developments in the scripting language support are
available from the JCP and Apache Jakarta Web pages already mentioned.

Other Jakarta Tag Libraries
The Apache Jakarta open source project is developing a large number of Tag Libraries.
Many of these libraries will become the de facto standard for JSP pages.

Already available are libraries for supporting

• Time and Date

• Database access

• I/O support for protocols, such as HTTP, HTTPS, FTP, XML-RPC, and SOAP
(SOAP is discussed further on Day 20, “Using RPC-Style Web Services with
J2EE,” and Day 21, “Web Service Registries and Message-Style Web Services”)

• JNDI

• Support for HTTP session data

• Regular expressions

• XSL (XML style sheets that are discussed on Day 17, “Transforming XML
Documents”)

New Tag Libraries are being developed and added to this collection as a need for them is
identified. The Apache Jakarta Web site is the place to look for standard Tag Libraries
that may implement the functionality you require.

http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html

646 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 646

JSP Tag Libraries 647

14

Summary
Tag Libraries (TagLibs) define one or more custom tags that can be used to extend the
capabilities of JSP. Judicious use of TagLibs can remove most, if not all, of the Java
scriptlets from your Web pages. Encapsulating the Java code in a custom tag will

• Simplify the writing of Web pages

• Reduce development time by removing awkward Java compiler errors from the
JSP-generated code

• Integrate business logic constructs more closely into the JSP syntax

Custom tags can provide programming constructs, such as iteration and selection (if
statements) for your Web pages. Custom tags can also

• Use attributes to pass information from the Web page to the Java code

• Create scripting variables that can be used on the Web page

• Share information between tags in a hierarchical structure

Standard Libraries, such as JSPTL and the Apache Jakarta libraries, provide many useful
tags that can quickly be incorporated into your Web applications. Using existing libraries
reduces the amount of code you have to develop, and that will reduce the overall devel-
opment time for your application.

Q&A
Q What are three features of custom tags that I can use to extend my Web

pages?

A Custom tags can access objects (such as HTTP request parameters and the page
context) of the JSP page. They can cooperate and share information with each
other and can be used in a hierarchical manner to implement programmable con-
cepts, such as iteration.

Q What is the name of the Java package that supports the development of cus-
tom tags, and what are the two classes that are normally extended by custom
tags?

A The custom tag package is javax.servlet.jsp.tagext, and the two super classes
used for most tags are TagSupport and BodyTagSupport.

Q What are the five methods I can override when extending BodyTagSupport,
including parameters and return type? In what order are these methods call
when processing the custom tag?

17 0672323842 CH14 3/20/02 9:39 AM Page 647

A The BodyTagSupport methods in execution order are

1. int doStartTag()

2. void doInitBody()

3. int doAfterBody()

4. int doEndTag()

5. void release()

Q What does TLD stand for and what is it used for?

A TLD is the Tag Library Descriptor, and it is an XML document that defines the Tag
Library. The TLD is used to define the library name and version of the JSP specifi-
cation to which your tags conform. It also lists every tag in your library.

Q What are the five XML components that are used in the custom tag <tag>
entry in the TLD?

A The most common tags used in the <tag> entry in a TLD are

1. <name> The tag name

2. <tag-class> The implementing Java class

3. <body-content> How the tag body is defined

4. <attribute> Defines an attribute for the tag

5. <variable> Defines a scripting variable created by the tag

Exercise
Refactor the register.jsp page you developed on Day 13 to use custom tags. Write a
getApplicant tag that provides support for accessing the Applicant Session bean and
remove the need for the web.ApplicantBean class. Model your code on the changes to
the advertise.jsp page and the new getCust tag you were shown in today’s work. As a
starting point for the code for your exercise, use the agency code from today’s examples
sub-directory of the case study on the accompanying CD-ROM. The existing agency.jsp
page includes the code for creating a new applicant and for selecting an existing appli-
cant for update or deletion.

You will need to create the following JSP files to support the register applicant function-
ality:

• register.jsp

• createApplicant.jsp

• deleteApplicant.jsp

• updateApplicant.jsp

648 Day 14

17 0672323842 CH14 3/20/02 9:39 AM Page 648

JSP Tag Libraries 649

14

You can use the versions of these files from Day 13 and modify them to use the tag
libraries you developed today for handling locations and skills. In addition, you will need
to develop a new custom tag to create an instance of a Register Session bean for use on
the Web page. Call the new Tag Library class GetAppTag.java.

Model your implementation and use of this tag following the example GetCustTag
shown in this chapter.

Don’t forget to add an entry for the GetApp tag to the agency.tld file.

A solution to this exercise is incorporated in the Agency case study stored in the agency
sub-directory of Day 14 on the accompanying CD-ROM.

17 0672323842 CH14 3/20/02 9:39 AM Page 649

17 0672323842 CH14 3/20/02 9:39 AM Page 650

Integrating J2EE
into the Enterprise

15 Security

16 Integrating XML with J2EE

17 Transforming XML Documents

18 Patterns

19 Integrating with External
Resources

20 Using RPC-style Web Services
with J2EE

21 Web Service Registries and
Message-style Web Services

WEEK 3 15

16

17

18

19

20

21

18 0672323842 Week3 3/20/02 9:27 AM Page 651

18 0672323842 Week3 3/20/02 9:27 AM Page 652

DAY 15

WEEK 3

Security
So far, you have developed your J2EE application without considering security.
Now you will look at how to add security constraints to your system to prevent
loss of privacy or to keep unauthorized clients from accessing data and causing
accidental or malicious damage.

In today’s lesson, you will look at

• How the J2EE specification supports the common requirements for a
secure system

• The common terminology used when discussing system security

• Symmetric and asymmetric encryption

• Securing a J2EE application using principals and roles

• Using declarative security for EJBs and Web pages

• Using programmatic security in EJBs and Web pages

• Supplying security credentials to an LDAP naming service provider for
JNDI

19 0672323842 CH15 3/20/02 9:33 AM Page 653

654 Day 15

Security Overview
Security is an essential aspect of most, if not all, enterprise applications. However, defin-
ing an application as secure is not as easy as it sounds, because the definition of secure
can be interpreted in different ways.

To some users, a Web site is secure if they have to provide a username and password to
obtain access to the Web pages. As you will see, just because a site requires a user to
login does not make it secure.

Security Terminology
Security has many aspects that can be categorized into the following areas:

• Authentication

• Authorization

• Confidentiality

• Integrity

• Non-repudiation

• Auditing

Each of these categories is discussed in this section.

Authentication
Authentication means identifying a client as a valid user of the system. Identifying a
client has two components:

• Initially confirming the client’s identity

• Authenticating the client each time it accesses the application

Initial Identification

At its simplest level, initial identification requires a user to simply register with an appli-
cation without any additional identification. More often, a third party, such as the Human
Resources department or manager in a company, identifies a user. At its most complex
level, usually associated with military systems, identification requires background checks
to confirm a user’s identity. Identified users are registered with the system and granted
access to some or all of the facilities provided by the system (see the “Authorization”
later in this chapter).

19 0672323842 CH15 3/20/02 9:33 AM Page 654

Security 655

15
Client Authentication

Registered users of an application must identify themselves each time they use the appli-
cation. The most common form of authentication is to give each user a unique name (typi-
cally an account or login name) and a password associated with that account. Users sim-
ply have to provide their account names and passwords to gain access to the application.

The information identifying a client is usually called the user credentials. The most com-
monly encountered forms of user credentials are as follows:

• Account name and password

• Swipe cards

• Smart cards

• Physical identification systems, such as fingerprints and retinal images

• Digital certificates

Authentication is like the entrance gate to a modern theme park. As long as you have a
ticket, you are allowed into the park—you have been authenticated. But authentication
does not necessarily allow you to use all of the rides and facilities in the park. The means
by which you are allowed access to different parts of the theme park is called authoriza-
tion.

Authorization
Authorization involves controlling access to capabilities of an application according to
the authenticated user’s identity. Authorization differentiates between different categories
or types of users and grants, or denies them access to different parts of the system.

Using the theme park analogy again, you may only be authorized to use certain rides.
Rides may have height, weight, or age restrictions that authorize access to some users
and deny access to others.

Confidentiality
Another aspect of security relates not to controlling access to functionality but to ensur-
ing that data is only seen by authorized users. In other words, the data remains confiden-
tial. Maintaining confidentiality is not just a question of authorizing access to the data
but also of ensuring unauthorized access either cannot occur, or if it does, that the data
remains “secure.” In practical terms, confidentiality is often achieved by encrypting the
data so that only authorized users can decrypt and access the data.

Integrity
Ensuring data integrity means preventing deliberate or accidental attempts to modify the
data in an unauthorized manner. Applying authorization correctly solves most of the data
integrity problems concerned with accessing data on a server.

19 0672323842 CH15 3/20/02 9:33 AM Page 655

Data transferred across the network must not be changed or corrupted as it is trans-
ferred. The user must be sure that the data they receive is the data that was transmitted.
Techniques, such as encryption, checksums, and message digests (see the “Messages
Digests and Checksums” section later in today’s lesson), help ensure data integrity across
networks.

Integrity also means that any changes made to a system, are not lost, such as might occur
when a server crashes. Good auditing practices (see the “Auditing” section later in this
chapter) help prevent the loss of changes to persistent data.

Non-Repudiation
Non-repudiation means being able to prove a user did something, even if the user subse-
quently denies it. A simple example is a user with online banking facilities. A fraudulent
user could transfer money to another bank account and then try to claim this was a spuri-
ous transaction and a fault of the banking system. With good accounting processes, the
bank can prove this was not the case.

Auditing
Auditing is familiar to database users and has the same meaning in security—providing a
record of activity. Good auditing is an adjunct to supporting non-repudiation and integri-
ty. Remember, audit records must themselves be kept secure.

Common Security Technology
Modern software architectures make use of several technologies for supporting system
security. This section is a quick summary of the key technologies that are used and how
then can help support the different aspects of secure systems.

Symmetric Encryption
Data encryption means converting the data so that it can only be decrypted and read by
authorized users. Data encryption requires an algorithm that is applied to the data to
encrypt it.

Symmetric encryption is so called because it uses the same key to both encrypt and
decrypt the data.

One of the simplest cryptographic techniques is the Caesar cipher (named because Julius
Caesar was reported to have used it). The Caesar cipher simply replaces each letter of the
alphabet by the letter three positions further on, so that A is replaced by D, B by E, and
so on, with the last three letters replaced by the start of the alphabet. Figure 15.1 shows
the Caesar cipher.

656 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 656

Security 657

15

The Caesar cipher is a specific example of a simple shift substitution cipher when one
letter replaces another. A different cipher is obtained by shifting the alphabet by more or
less than three letters, as shown in Figure 15.2.

FIGURE 15.1
The Caesar cipher.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

HELLO WORLD KHOOR ZRUOG

FIGURE 15.2
A Shift cipher. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

0

1

2

3

2 5

KEY

The number of letters the enciphering alphabet is shifted by is called the cipher key.
Given an encrypted message, anyone with the key can decipher the message. Because the
same key is used to encrypt and decrypt the message, this is know as a symmetric
encryption algorithm.

In programming terms, each letter is represented by a number, and the substitution cipher
simply adds the key number to the value of each letter to get the encrypted form. The
resultant number must be adjusted to map the last few letters (X, Y, and Z) onto the first
few (A, B, and C) letters. This is a very simple algorithm.

In real applications, symmetric algorithms use sophisticated algorithms with number
keys of 56 or 128 bits (approximately 45 decimal digits). The algorithms used are usual-
ly well known but, due to the size of the keys used, they cannot be easily reversed. In
other words, without the key, the original plain text message can only be recovered by
applying each possible key in turn. As long as the key is a large one and the encryption
algorithm is sufficiently robust, the time taken to crack the cipher with a brute-force
method attack, such as applying every possible key, can be hundreds of years.

19 0672323842 CH15 3/20/02 9:33 AM Page 657

One of the most widely used symmetric encryption algorithms is called DES (Data
Encryption Standard).

Symmetric encryption is used to ensure data confidentiality. Symmetric encryption
ensures that only the intended recipients who know the decryption key can recover the
original data.

Asymmetric Encryption
Asymmetric encryption uses different algorithms than symmetric encryption and requires
the use of two keys. One key is used to encrypt the data, and the other is used to decrypt
the data. The two keys can be very large numbers, with modern systems using numbers
of 1024 bits (approximately 140 decimal digits). Asymmetric encryption is called public
key encryption due to the way the two keys are used.

Of the two keys used in asymmetric encryption, one is made public, while the other is
kept private to the owner. The keys are known, respectively, as the public key and the
private key.

If data is encrypted with the public key, only the owner of the private key can decrypt it.
This approach is used to ensure data confidentiality but is restricted to supporting only
one recipient per message.

In contrast, using symmetric key encryption allows one message to be distributed to sev-
eral recipients, as long as each recipient knows the key used to encrypt the message. If
the private key was known by more than one person, it would undermine the other bene-
fits of using asymmetric encryption (such as non-repudiation) and avoid the need to dis-
tribute the cipher key. Distributing the keys used in symmetric encryption is a major
problem, because the keys have to be distributed in a secure manner. An attacker obtain-
ing the keys can decrypt the message to recover the original data.

Another use of asymmetric encryption is to support non-repudiation. If a message is
encrypted with the private key, it can only have originated from the key owner. Anyone
can decrypt the data using the public key with the knowledge that it can only have origi-
nated from the owner of the private key. This use of asymmetric encryption is the basis
of digital signatures.

Asymmetric encryption is slow compared to symmetric encryption. To improve perfor-
mance, it may be desirable to use symmetric encryption. The problem here is how to dis-
tribute the encryption key to the recipient securely.

A common approach is to use symmetric encryption for the data and to pass the
encryption key with the data. To make this approach secure, the recipient’s public key
is used to encrypt the symmetric key passed with the encrypted data. The recipient

can use his or her private key to recover the key and then decrypt the actual data.

658 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 658

Security 659

15
This technique enables large volumes of data to be encrypted quickly and, at the same
time, distributing the encryption key in a secure manner.

SSL and HTTPS
The Secure Sockets Layer (SSL) is an implementation of public key encryption in
TCP/IP networking. TCP/IP communication uses a technology called sockets (sometimes
called service or port numbers). All standard TCP/IP services advertise themselves on a
fixed socket or port—FTP on 21, TCP/IP on 23, HTTP on 80, and so on. You have seen
socket numbers when using the J2EE RI Web server that runs on port 8000.

http://localhost:8000

Ordinary socket communication uses plain (unencrypted) data. Any user that can monitor
network traffic can read any usernames, passwords, credit card details, bank account
information, or anything else passed over the network. This is obviously an unacceptable
situation from a security point of view.

One solution to securing confidential data over a network is to encrypt the data within
the application. This is an inconsistent solution because some applications will be secure
while others are not.

Another solution is to always encrypt all network traffic. Because encryption adds an
overhead to the network communication, this will affect overall performance and is
unnecessary when data does not need to be encrypted.

The workable solution is to seamlessly provide network encryption only for applications
that require secure data transmission. Using this approach, any application can encrypt
confidential data simply by using the encrypted network communications instead of the
usual plain text data transfer. Each application decides if encryption is needed but does
not have to implement the encryption algorithms.

SSL is a network encryption layer than can be used by any TCP/IP application. The
application has to connect by using a secure socket rather than a plain socket, but other-
wise, the application remains unchanged.

Hypertext Transfer Protocol Secure (HTTPS) is the name given to the HTTP protocol
when it uses a secure socket. The default port used by an HTTPS is 443. When a URL
specifies the HTTPS service, the Web browser connects to an HTTP server but uses SSL
to encrypt the data. All the popular Web browsers indicate on the status line when SSL
communication is taking place. Typically, an open and closed padlock is used to shown
whether data is encrypted.

Online credit card verification services and banking systems use SSL communication.

19 0672323842 CH15 3/20/02 9:33 AM Page 659

Checksums and Digests
Data integrity is usually achieved by providing checksums or digests of the data. The
data in a message is subjected to a numerical algorithm that calculates one or more vali-
dation numbers that are transmitted with the data. The recipient receives the data and
applies the same algorithms to the data. As long as the recipient’s calculations yield the
same numbers as those transmitted with the data, the recipient is reasonably confident
that the data is unchanged.

Checksums use simple algorithms and are primarily intended to detect accidental corrup-
tion of data. Message digests use sophisticated algorithms that are designed to prevent
deliberate changes to data. The algorithms used in a message digest generate many digits
and are chosen so that it is virtually impossible to change the original data without
changing at least one of the digest numbers.

There are several digest algorithms in use, with Message Digest version 5 (MD5) cur-
rently one of the most popular. The MD5 specification can be found at
http://www.ietf.org/rfc/rfc1321.txt.

Many applications that can be downloaded from the Web also have an associated signa-
ture file. A signature file is used to validate the contents of the associated file (the one it
signs). Signature files usually contain one or more digests (typically MD5) of the file
they are signing. After downloading the file, a conscientious user can also download the
signature file and check the integrity of the download file by calculating the digest of the
file and comparing it to the value in the signature file. Programs to calculate digests are
widely available on the Internet.

Digital Certificates
Digital certificates are specified by the X509 international standard and define a format
for representing public keys and other information about an entity (it could be a user, a
program, a company, or anything that has a public key).

The official specification for the X.500 Directory Service is available from the
International Telecommunications Union (ITU) web site at
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=

TREC-X.509.

Digital certificates are often sent with a request for data so that the server can encrypt the
data with the recipient’s public key.

Digital certificates must be signed by a Certification Authority (CA) to prove their validi-
ty. A signed digital certificate contains a message digest of the certificate encrypted using
the CA’s private key. Any recipient of the certificate can decrypt the digest using the CA’s
public key and verify that the rest of the certificate has not been corrupted or modified.

660 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 660

Security 661

15
Digital certificates can be used to ensure authentication, confidentiality, and non-
repudiation.

Valid Digital Certificates have been erroneously issued to individuals spoof-
ing the credentials of trusted companies. A Digital Certificate is only as trust-
worthy as its Certification Authority.

Caution

Security in J2EE
The J2EE specification takes a pragmatic approach to security by focusing primarily on
authorization within the J2EE environment and integration with security features that
already exist in the enterprise.

You have already seen the J2EE design philosophy of separating roles with the develop-
ment lifecycle identifying code developers, application assemblers, deployers, and
administrators. The J2EE security supports this role-based model by using two forms of
security:

• Declarative security—Declarative security is defined within the application’s
deployment descriptor (DD) and authorizes access to J2EE components, such as
Web pages, servlets, EJBs, and so on. End user tools, such as the J2EE RI deploy-
tool, support declarative security.

• Programmatic security—Programmatic security is used when declarative security
is not sufficient to meet the needs of an application. Security-aware components
implement the security requirements by using programming constructs.

The J2EE security specification also requires transparent propagation of security creden-
tials between components. In layman’s terms, this means that once clients have logged in
to a Web page, they do not need to authenticate themselves again for any EJBs accessed
from the Web page. Also, the authenticated identity of the user remains the same for all
components (Web pages, servlets, client applications, and EJBs).

J2EE Security Terminology
The J2EE security domain is based around the concept of principals, roles, and role ref-
erences.

Principals
Principals represent authenticated entities, such as users. The authentication mechanism
is not defined within the J2EE specification, allowing existing authentication schemes to
be integrated with a J2EE application.

19 0672323842 CH15 3/20/02 9:33 AM Page 661

The downside of not defining how users are authenticated means that some parts of the
J2EE security features vary between one manufacturer’s implementation and another. As
the J2EE specification has evolved, additional security requirements have been incorpo-
rated to remove the variation between implementations. Future versions of the J2EE
specification will add additional security-related constraints as the underlying technology
matures and standardizes.

In a simple implementation, a J2EE principal is a user and the principal’s name is the
username. However, there is no requirement for a particular implementation to map the
real usernames onto unique principal names. In fact, a principal can represent a group of
users rather than an individual user. Principal names are only used in programmatic secu-
rity and are inherently non-portable.

Wherever possible, J2EE security should be based on roles rather than principals because
roles are more portable than principal names. Using principals to implement security
requires coordination between the developer and the deployer and can restrict the
reusability a particular J2EE component.

Roles
Roles are identified by the developer and represent how components in an application
will be used. Typically, a developer will identify roles, such as user, administrator, man-
ager, and so on, and suggest how the functionality in the application will be used by each
identified role.

A deployer will map principals (real users and groups of users) onto the roles defined in
the application. The deployer has total control on how the actual security authentication
is mapped onto the J2EE application.

An assembler will combine the roles from many different components to create roles that
represent common security requirements across different components.

Role References
Role references are used to map the names used in programmatic security to the roles
defined in the deployment descriptor (DD). The developer defines the coded role names
used in the code, and the assembler or deployer maps the coded references onto the roles
defined in the application.

The relationships between principals, role references, and roles are shown in Figure 15.3.

662 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 662

Security 663

15

Working with J2EE RI Security
So far, you have only been aware of J2EE RI security when running client applications.
Even though your applications so far have not been security aware, the J2EE RI environ-
ment requires your code to be run inside an environment that has a security context.

Web applications run within the J2EE RI Web server that does have a security context.
However, applications that run from the command line, such as those you developed on
Day 4, “Introduction to EJBs,” and Day 5, “Session EJBs,” do not have a security con-
text. You must add your client classes to the Enterprise Application Resource (EAR) file
as a client application to obtain a security context. The runclient program is used to run
your client applications with a security context.

Before you look at making your J2EE application security aware, you must spend a short
time looking at the J2EE RI support for a simple authentication system.

The J2EE RI provides an authentication domain that can be used during application
development. The RI security domain supports:

FIGURE 15.3
Mapping J2EE princi-
pals and roles.

<security-role>
<description>Administers the skills

and locations tables</description>
<role-name>Administrator</role-name>

</security-role>

<security-role-ref>
<role-name>admin</role-name>
<role-link>Administrator</role-link>

</security-role-ref>

if (ctx.callerIsInRole(“admin”))
…

Client name is the
Principal

Deployer maps
Principals to Roles

Application DD defines
Roles

Deployer defines
Role References

in the DD

EJB Programmer uses
Coded Names

19 0672323842 CH15 3/20/02 9:33 AM Page 663

• Realms—A realm defines users that are authenticated using the same mechanism.
The J2EE RI defines two realms:

• default Consisting of users identified by passwords

• certificate Consisting of users identified by X509 digital certificates,
(certificates are only used to authenticate Web browser clients)

• Users—Defines a username within the J2EE security domain. In the default realm,
the username is the principal name. In the certificate realm, the common name on
the certificate is the username.

• Groups—Users in the default realm can be assigned to groups. Groups can be
mapped onto role references to simplify security administration.

Adding Users and Groups
Users and groups can be added to the J2EE RI server via two tools:

• realmtool A command-line–based interface

• deploytool A GUI interface

Both tools provide limited support for adding users, groups, and certificates to the J2EE
authentication domain. After changes have been made to the J2EE security realms, the
server must be restarted before those changes take effect.

The command line realmtool supports the following options:

RealmTool
Options
-show
-list realm-name
-add username password group[,group]
-addGroup group
-import certificate-file -alias alias
-remove realm-name username
-removeGroup group

The tool lacks the ability to list groups in the default realm, but it has the advantage of
working without having to have the J2EE server up and running.

The GUI interface is more functional and easier to use and is accessed via the “Tools ->
Server_Configuration” menu in deploytool. Figure 15.4 shows the main user configu-
ration screen.

Although the GUI interface is easier to use, it requires the J2EE server to be running.
The server must be stopped and restarted for the changes to be recognized by your appli-
cations.

664 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 664

Security 665

15

Neither utility supports the ability to change a user’s password. If a password is forgot-
ten, the user must be deleted and re-created to define a new password.

The default users provided with the J2EE RI server are shown in Table 15.1.

TABLE 15.1 Pre-Defined J2EE RI Users

User Password Groups

j2ee j2ee staff, mgr

guest guest123

scott tiger eng

Both utilities are intuitive to use. For today’s work, you will need to add some sample
users as defined in Table 15.2.

TABLE 15.2 Agency Case Study Users

User Password Group

romeo romeo Applicant

juliet juliet Applicant

winston winston Customer

george george Customer

FIGURE 15.4
Adding users with
deploytool.

19 0672323842 CH15 3/20/02 9:33 AM Page 665

You will need to add the groups for applicant and customer as well as the users shown
in Table 15.2. After making your changes, don’t forget to stop and restart the J2EE server.

666 Day 15

You must make these changes to your J2EE server if you want to use the
example code provided on the accompanying CD-ROM.

Note

Security and EJBs
EJB security is determined either by the declarative entries added to the DD, the pro-
grammatic constraints coded into the EJBs, or a combination of both.

Ideally, EJB security should only use the declarative approach, but where declarative
security cannot represent the application’s requirements, security must be encoded in the
EJB class. The programmatic security is less portable and may restrict the way an appli-
cation assembler can combine beans from different sources.

Defining EJB Security
Defining security for an EJB involves

• Defining one or more roles to control access to different areas of your application

• Restricting access to EJBs and EJB methods according to the clients roles

• Mapping roles onto principals in the authentication domain

• Optionally adding programmatic authorization to Session and Entity beans

If you are using the J2EE RI, the security can be defined using deploytool. Other J2EE
environments may provide GUI tools similar to deploytool or, if you are unlucky, you
may have to manually edit the DD to include the security requirements.

In the rest of this section, you will use deploytool to add security to the Agency case
study. You will see how extra information is added to the DD to define the security
requirements.

Defining Roles
There are three distinct roles with the simple Agency application:

• Administrators that can modify the skills and location tables

• Customers who advertise jobs

• Applicants who advertise their locations and skills

19 0672323842 CH15 3/20/02 9:33 AM Page 666

Security 667

15
You may even decide that there are only two roles—administrators and clients (for want
of a better term). Clients can register their own skills or advertise jobs for other clients.
While this is a perfectly acceptable model, it looses the differentiation between appli-
cants and customers.

Currently, there are no constraints on who can be a client and who can be a customer.
However, in a real world job agency, it may become necessary to restrict who can be
applicants and customers. Perhaps customers will be charged for applicants who match
their jobs, so they need to be validated before they can use your system.

Having decided on your roles, you must add them to the DD. Roles are added to JAR
files in your application. If several EJBs are defined in the same JAR file, they can share
the same roles. EJBs in separate JAR files must define their own roles. If the same role
name is used in different JAR files, it still represents a different role.

Grouping related EJBs into a single JAR file is a good design philosophy because it
allows related beans to share the same security roles.

Now you will add security constraints to the Agency case study. If you want to look at
the finished results of following the steps described in the rest of this section, you can
look at the agency.ear file in the exercises directory for Day 15 (“Security”) on the
accompanying CD-ROM.

If you want to add security to the Agency case study as you have developed it so far, start
up deploytool and open the agency.ear file in the Day 10 (“Message-Driven Beans”)
examples directory. The Agency application has three JAR files—one for the Session
beans, one for the Entity beans, and one for the Web interface. Select the agency Session
bean and display the “Roles” page. Use the Add button to add the three roles defined in
Table 15.3. Figure 15.5 shows the screen after adding these roles.

TABLE 15.3 Agency Case Study Roles

Role Description

Administrator Administers the skills and locations tables

Applicant Registers details to apply for jobs

Customer Advertises job details

Roles are defined in the <assembly-descriptor> component inside the <ejb-jar> tag in
the DD. Listing 15.1 shows the entry created for the three roles you have just defined.

19 0672323842 CH15 3/20/02 9:33 AM Page 667

LISTING 15.1 Security Role Entries in the DD

1: <assembly-descriptor>
2: <security-role>
3: <description>Administers the skills and locations tables</descrip-

tion>
4: <role-name>Administrator</role-name>
5: </security-role>
6: <security-role>
7: <description>Registers details to apply for jobs</description>
8: <role-name>Applicant</role-name>
9: </security-role>
10: <security-role>
11: <description>Advertises job details</description>
12: <role-name>Customer</role-name>
13: </security-role>
14: </assembly-descriptor>

A <security-role> tag with <role-name> and <description> elements defines each
role.

Defining the Security Identity
After the roles for a JAR file have been defined, you can restrict access to the methods of
an EJB. In deploytool, select the AgencyBean EJB and then the Security tab. You will
see the screen shown in Figure 15.6.

668 Day 15

FIGURE 15.5
Adding security roles.

19 0672323842 CH15 3/20/02 9:33 AM Page 668

Security 669

15

The Security Identity section at the top of the screen shows that authorization is con-
trolled by the caller’s identity. There are two options for security identity:

• Use the caller’s ID.

• Use a defined role.

In Figure 15.6, Use Caller ID is selected.

The <security-identity> tag in the DD defines how access to an EJB is authorized.
The tag is part of the <session> bean definition, and the <use-caller-identity> option
is shown in Listing 15.2.

LISTING 15.2 Security Identity Entries in the DD

1: <enterprise-beans>
2: …
3: <session>
4: <display-name>AgencyBean</display-name>
5: <ejb-name>AgencyBean</ejb-name>
6: <home>agency.AgencyHome</home>
7: <remote>agency.Agency</remote>
8: <ejb-class>agency.AgencyBean</ejb-class>
9: <session-type>Stateless</session-type>
10: …
11: <security-identity>
12: <description></description>
13: <use-caller-identity/>

FIGURE 15.6
Security for EJB meth-
ods.

19 0672323842 CH15 3/20/02 9:33 AM Page 669

14: </security-identity>
15: …
16: </session>
17: …
18: </enterprise-beans>

The use of roles for the security identity is discussed in the “Using Roles as the Security
Identity” section later in this chapter.

The lower part of the deploytool Security page is the Role References section, and
this is discussed in the section “Programmatic EJB Security”.

Defining Method Permissions
The Method Permissions section in the middle of the deploytool window shown in
Figure 15.6 lists the methods for the interfaces defined for your bean. The radio button
selects which interface is displayed (the default for the agency bean is the remote inter-
face). Each bean method defines a row in a table, and the columns are the roles defined
for the JAR file. By using the cells in this table, you can select which methods can be
called by each role.

From Figure 15.6, you can see that the default access (the Availability column) to all
methods is All Users which is why, so far, you have been able to access all your applica-
tion functionality regardless of any username you supplied when logging in to run the
application.

In the underlying DD, the method permissions are added to the <assembly-descriptor>
tag. The <method-permissions> tag associates one or more permissions with one or
more methods. A permission is the name of a role specified with the <role-name> tag or
the empty tag <unchecked/> to show that access is unchecked (it is callable by all
clients). A method is defined by the <method> tag that has three variants:

1. Authorize all methods in an EJB using a tag of the following form:
<method>
<ejb-name>EJBname</ejb-name>
<method-name>*</method-name>

</method>

where the * means all methods

2. Authorize a named method in an EJB using a tag of the following form:
<method>
<ejb-name>EJBname</ejb-name>
<method-name>MethodName</method-name>

</method>

670 Day 15

LISTING 15.2 Continued

19 0672323842 CH15 3/20/02 9:33 AM Page 670

Security 671

15
3. Authorize a specific overloaded method in an EJB using a tag of the following

form:
<method>
<ejb-name>EJBname</ejb-name>
<method-name>MethodName</method-name>
<method-params>
<method-param>ParameterClass1</method-param>
...
<method-param>ParmeterClassN</method-param>

</method-params>
</method>

The third form is considered unnecessary because there should be no need to differenti-
ate between overloaded functions for security purposes. Overloaded forms of the same
method should perform the same function and therefore require the same security per-
missions. If the security requirements are different, good design would imply using dif-
ferent method names.

The <method> tag also allows a <method-intf> (method interface) tag for defining the
interface name if it is duplicated in the home and remote interfaces.

As an example, you could set all the methods in the agency bean to be accessible only
by the Administrator role using the example in Listing 15.3.

LISTING 15.3 Method Permission Entries in the DD

1: <method-permission>
2: <role-name>Administrator</role-name>
3: <method>
4: <ejb-name>agency</ejb-name>
5: <method-name>*</method-name>
6: </method>
7: <method-permission>

If a method is not listed in a <method-permission> tag, that method cannot be called by
the client code.

Hopefully, you won’t have to write the DD entry yourself but will be able to use a
utility, such as deploytool. Returning to the deploytool screen shown in Figure 15.6,
you can see that the default access for all methods is All Users. The All Users permission
maps onto the <unchecked/> tag in the DD. If you examine the DD using the
"Tools->Descriptor Viewer” menu, you will see the method permission entries for the
agency EJB, as shown in Figure 15.7.

19 0672323842 CH15 3/20/02 9:33 AM Page 671

Applying security is now just a matter of deciding which roles can call which methods
for every EJB in your application. In the agency bean, you can set the access permissions
as shown in Table 15.4.

TABLE 15.4 Agency EJB Authorization

Method Roles

removeLocation Administrator

updateLocation Administrator

deleteCustomer Administrator, Customer

getPrimaryKey none

getEJBHome none

findAllCustomers All

getLocationDescription All

findAllApllicants All

removeSkill Administrator

getSkills All

getAgencyName All

getHandle none

select Administrator

addLocation Administrator

remove All

updateSkill Administrator

isIdentical none

672 Day 15

FIGURE 15.7
Security DD for EJB
methods.

19 0672323842 CH15 3/20/02 9:33 AM Page 672

Security 673

15
addSkill Administrator

getSkillDescription All

createCustomer Administrator, Customer

getLocations All

deleteApplicant Administrator, Applicant

createApplicant Administrator, Applicant

TABLE 15.4 Continued

Method Roles

Setting the method permissions by using deploytool is laborious but, unfor-
tunately, you have no choice in using the tool because you cannot edit the
descriptor manually unless you use batch files or shell scripts to rebuild the
EAR file as discussed on Day 5. Sometimes manually editing the DD is prefer-
able to using a GUI tool.

Note

When you have added the permissions, your application will look similar to that shown
in Figure 15.8.

FIGURE 15.8
Security DD for
agency EJB.

19 0672323842 CH15 3/20/02 9:33 AM Page 673

Authorization is only required for the methods in the remote interface. Some of the
methods (such as getSkills()) can be accessed by all users, so the home interface
methods (such as create()) must also be available to all users. Consequently, the default
authorizations are appropriate for the home interface.

This is a slightly contrived example used to illustrate the purpose of roles within an
application. In a real world job agency, you would probably only want administrators to
create customers. However, you would probably be comfortable with allowing any user
to register themselves as an applicant. There would be no need to differentiate between
applicant clients and customer clients. In the “Programmatic EJB Security” section later
in this chapter, you will see how the Agency case study can use programmatic security to
provide a more realistic authorization mechanism.

The remaining three EJBs in the Agency application must also have method permissions
defined. These are much easier to specify.

The Register EJB must have all the home and remote interface methods accessible to
the Administration and Applicant roles only.

The Advertise EJB and AdvertiseJob EJB must have all the home and remote interface
methods accessible to the Administration and Customer roles only.

After all these method permissions have been defined, the application is now ready for
the deployer to map the principals on to the roles you have just defined. If you haven’t
already done so, it is worth saving your agency.ear file at this point just in case some-
thing goes wrong later.

Just before you learn how to do this with the J2EE RI deploytool, you should consider
the security of the Entity beans in the data JAR file. How can the Entity beans be
accessed, and what authorization is required?

The Entity beans are only ever accessed via the Session beans. Consequently, by apply-
ing authorization to the Session beans, you have also protected the Entity beans. Should
you redesign the application so that the Entity beans are exposed to client code (maybe
by accessing the beans directly from a Web page), you will need to change the method
permissions for all of the Entity beans.

By designing access to Entity beans via the Session beans, you have simplified the
design of the security features. This is one of the advantages of not exposing Entity
beans to client code.

Mapping Principals to Roles
A developer or assembler in the EJB development lifecycle undertakes the process of
defining the roles and method permissions. The process of mapping principals to roles is
very much a deployer function.

674 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 674

Security 675

15
The exact mechanism of mapping principals onto roles is not defined in the EJB specifi-
cation (at least not yet). There are no tags defined in the DD; instead, each J2EE server
defines its own mechanism for mapping principals to roles. The J2EE RI defines a pro-
prietary XML file (sun-j2ee-ri.xml) that is stored in the Enterprise Application
Resource (EAR) file. This file is maintained by using deploytool and deployed with the
EJB components.

The deploytool maps principals to roles at the application level. To map the roles for the
Agency case study, you must run deploytool and select the Agency application contain-
ing the JAR file in which you defined the roles. Select the Security tab and you will see a
window similar to the one shown in Figure 15.9.

FIGURE 15.9
J2EE RI principal
mapping screen.

You can see that deploytool has retrieved the role names from all the JAR files in the
application. By clicking the Add button, you can map each role onto one or more users
or groups in the authentication domain.

The Agency case study requires the role mappings shown in Table 15.5.

TABLE 15.5 Case study Role Mappings

Role User Group

Administrator j2ee

Applicant applicant

Customer customer

19 0672323842 CH15 3/20/02 9:33 AM Page 675

After defining the role mappings for the Agency case study, you can deploy and test your
changes by using the GUI client code in the Day 15 “examples” directory.

676 Day 15

If you run the example GUI clients from Day 15 on the accompanying CD-
ROM, you will see an error message and a stack trace prior to being prompt-
ed for a username and password. The last few lines of the error are

java.lang.NullPointerException
No local string for enterprise.deployment.unabletoloadtld
Unable to load TLD WEB-INF/agency.tld
java.lang.Exception: parsing error: null

This error can be ignored because it is related to the TLD descriptor used by
the custom tag libraries of the Web interface (see Day 14 “JSP Tag
Libraries”). This error appears to be a problem with Sun Microsystem’s J2EE
RI and does not affect the functionality of the Web interface to the Agency
case study (you may have seen this exception when working on the exam-
ples and exercise for Day 14).

Note

Because the j2ee user has unrestricted access, you can test all the functionality if you
log in as j2ee (password j2ee). If you log in as an applicant, such as romeo or juliet,
you will only be able to use the applicant registration functionality. Similarly, customers
such as winston and george will only be able to access job advertisement functionality.

Any attempt to access unauthorized functionality results in a J2EE vendor-specific
exception.

Using Roles as the Security Identity
An alternative to propagating the caller’s security identity is to define a bean as using a
specific role. This is achieved using deploytool by selecting the Run As Specified Role
option and selecting the appropriate role from the list of roles. The developer or assem-
bler determines whether to use the caller ID or a specific role for a bean.

The <run-as> tag is used to define the role for beans that run with a specified role, as
shown in Listing 15.4. The role name is defined in the <role-name> tag and must specify
the name of a role defined in the <assembly-descriptor> of the <ejb-jar> definition.

LISTING 15.4 Run-As Specified Role in the DD

1: <enterprise-beans>
2: …
3: <session>
4: <display-name>AgencyBean</display-name>
5: <ejb-name>AgencyBean</ejb-name>

19 0672323842 CH15 3/20/02 9:33 AM Page 676

Security 677

156: <home>agency.AgencyHome</home>
7: <remote>agency.Agency</remote>
8: <ejb-class>agency.AgencyBean</ejb-class>
9: <session-type>Stateless</session-type>
10: …
11: <security-identity>
12: <run-as>
13: <description></description>
14: <role-name>Administrator</role-name>
15: </run-as>
16: </security-identity>
17: …
18: </session>
19: …
20: </enterprise-beans>

Defining the bean to run using a specific role meets the developer’s requirements, but the
deployer must also map the role onto a principal in the target security domain for it to be
effective. The actual method of defining the principal for the “Run as role” security iden-
tity is vendor specific. The J2EE RI adds an entry to the sun-j2ee-ri.xml descriptor file.

To set the required principal using deploytool, click the Deployment Settings button
and choose the role from the available list in the pop-up window. Figure 15.10 shows the
j2ee user selected as the principal for a bean that defines the run as role as
Administrator.

LISTING 15.4 Continued

FIGURE 15.10
J2EE RI defining the
<run-as> security
identity.

Note that deploytool will only list the users mapped onto the selected role, it will not
include the users in groups mapped onto a role.

The Deployment Settings pop-up window is also used to configure client certificates and
SSL support used with Web client security.

Defining a bean to run as a specific role is useful when the bean requires special permis-
sions that the client cannot be guaranteed to provide. However, using the “Run as role”
capability should be used carefully because it effectively negates the authorization process.

19 0672323842 CH15 3/20/02 9:33 AM Page 677

Any client with access to the bean automatically gets the appropriate security permissions;
therefore, it is imperative that only authorized clients can use the bean.

The “Run as role” bean is often a helper Session bean used as an adapter (or wrapper)
around other J2EE components, such as Entity beans.

678 Day 15

When using the “Run as role” security identity, it is usual to define all bean
methods as having <unchecked/> access allowing access to all roles. If
checked access is applied to the methods, the run as role must be allowed;
otherwise, the method can never be called.

Note

Programmatic EJB Security
If simple declarative security constraints cannot express all of the security policy rules,
the developer must resort to adding security into the EJB code.

The javax.ejb.EJBContext interface defines two methods for supporting programmatic
security:

• java.security.Principal getCallerPrincipal() returns an object defining the
principal calling the method. The Principal class defines a getName() method
that returns the name of the principal. The getCallerPrincipal() method never
returns null.

• boolean isCallerInRole(String roleName) returns true if the caller of the
method is in the role passed as a parameter.

These two methods allow the developer to use the client security identity to enable or
disable EJB functionality.

Of the two methods, isCallerInRole() is considered portable because the developer
defines the role name used in the code, and the deployer (or assembler) maps this role
reference onto a real role. This allows the developer to write the code without knowing
the real role names defined for the application.

The getCallerPrincipal() method is considered non-portable because the principal
name used is dependent on the authentication mechanism used by the target J2EE server.
In practice, as long as principal names are not defined as string literals in the Java code,
the getCallerPrincipal() method can be used in a portable manner.

Using the Agency case study as an example, you will now implement a real-world solution
to authorizing access to your application. Instead of identifying administrators, applicants,
and customers, you can simply differentiate between administrators and all other clients.

19 0672323842 CH15 3/20/02 9:33 AM Page 678

Security 679

15
Some functionality would be restricted to administrators only (creating new skills, for exam-
ple), but most functionality would be available to all clients.

Client-specific authorization could be implemented so that

• Any client can register as an applicant, but the applicant name must be the same as
the client's principal name.

• Any client can register an customer, but the customer name must be the same as
the client's principal name.

• Registered applicants or customers can only remove their own details from the
system.

• Registered applicants or customers can only log in to access their own data in the
system.

• Administrators have unrestricted access to the system.

Listing 15.5 shows the ejbCreate() method of the Advertise Session bean that has
been modified to prevent a client from accessing data that does not match his or her prin-
cipal name. Administrators are permitted to access data for any client.

LISTING 15.5 The ejbCreate() Method from agency.AdvertiseBean.java

1: public void ejbCreate (String login) throws CreateException {
2: try {
3: if (ctx.isCallerInRole(“admin”) ||
4: ctx.getCallerPrincipal().getName().equals(login)) {
5: customer = customerHome.findByPrimaryKey(login);
6: }
7: else
8: throw new CreateException

➥(“Customer name does not match principal name”);
9: }
10: catch (FinderException ex) {
11: error (“Cannot find applicant: “+login,ex);
12: }
13: }

The revised ejbCreate() method checks if the caller is not in the admin role and rejects
the operation if the customer login name does not match the caller’s principal name.

The parameter to the isCallerInRole() method is a role reference, and this must be
mapped onto a real role by the application deployer. Figure 15.11 shows the Advertise
bean security page in deploytool with the role reference defined.

FIGURE 15.11

19 0672323842 CH15 3/20/02 9:33 AM Page 679

15.11, the coded role of admin is mapped onto the real role of Administrator. The role
references for a bean are defined in the bean’s entry in the DD with the
<security-role-ref> tag, as shown in Listing 15.6.

LISTING 15.6 Role References in the DD

1: <enterprise-beans>
2: …
3: <session>
4: <display-name>AgencyBean</display-name>
5: <ejb-name>AgencyBean</ejb-name>
6: <home>agency.AgencyHome</home>
7: <remote>agency.Agency</remote>
8: <ejb-class>agency.AgencyBean</ejb-class>
9: <session-type>Stateless</session-type>
10: …
11: <security-role-ref>
12: <role-name>admin</role-name>
13: <role-link>Administrator</role-link>
14: </security-role-ref>
15: …
16: </session>
17: …
18: </enterprise-beans>

680 Day 15

Defining a role
reference.

In Figure

19 0672323842 CH15 3/20/02 9:33 AM Page 680

Security 681

15
In addition to the change to the Advertise EJB, the Agency Session bean must also be
updated to ensure non-administrator clients can only create or delete customers with a
login name equal to the client’s principal name (see Listing 15.7).

LISTING 15.7 The Create and Delete Customer Methods from agency.AgencyBean.java

1: public void createCustomer(String login, String name, String email)
➥throws DuplicateException, CreateException{

2: try {
3: if (ctx.isCallerInRole(“admin”) ||
4: ctx.getCallerPrincipal().getName().equals(login)) {
5: CustomerLocal customer =

➥customerHome.create(login,name,email);
6: }
7: else
8: throw new IllegalArgumentException(

➥”Cannot create a customer with a different name to the principal name”);
9: }
10: catch (CreateException e) {
11: error(“Error adding Customer “+login,e);
12: }
13: }
14:
15: public void deleteCustomer (String login) throws NotFoundException {
16: try {
17: if (ctx.isCallerInRole(“admin”) ||
18: ctx.getCallerPrincipal().getName().equals(login)) {
19: customerHome.remove(login);
20: }
21: else
22: throw new IllegalArgumentException(

➥”Cannot delete a customer with a different name to the principal name”);
23: }
24: catch (RemoveException e) {
25: error(“Error removing customer “+login,e);
26: }
27: }

The code uses the java.lang.IllegalArgumentException to show the error when the
customer login name does not match the principal name.

The admin to administrator role ref must also be added for the Agency session EJB.

The ejbCreate() method in agency.AdvertiseJobBean should also be updated in a
similar manner to the ejbCreate() method in agency.AdvertiseBean, and the admin to
administrator role ref created for the AdvertiseJob session EJB.

The revised application can now be deployed and tested.

19 0672323842 CH15 3/20/02 9:33 AM Page 681

So far, the security constraints have been added to the Session beans. An alternative
approach would have been to add the authorization code to the Entity beans.

The advantage of adding security to the Entity beans is that security is enforced at the
data access level, preventing a badly written client from bypassing the security or violat-
ing the data integrity. Security is also applied uniformly across all clients and obviates
any need for duplicated code to enforce security.

The disadvantage of applying the security within the Entity beans is that it confuses the
role of the Entity bean. An Entity bean represents persistent data but should not enforce
business rules (other than those required to ensure data integrity). Adding security con-
trols to an Entity bean is adding business rules to the data access layer.

The Agency case study implements the business rules in the Session beans and consis-
tently uses the beans in the GUI client and the Web client. For the Agency case study, the
Session bean is the logical place to enforce the security business rules.

Security in Web Applications and
Components

The Web security features of J2EE use the same model as the EJB security. Security is
implemented using declarations in the deployment descriptor and programming in the
Web pages. Authorization is enforced using roles and principals in the same manner as
EJB security.

The key concepts for the Web security model are

• Single login—A client is only required to authenticate itself once to access all Web
pages in the same realm. The Web server defines security realms, and the deployer
decides to which realm each Web application belongs. Each realm can use a differ-
ent authentication mechanism (effectively, a different collection of usernames).

• Spans multiple applications—An authenticated client should be able to use Web
pages from different Web applications without having to login for each application.

• Associated with session—The security credentials must be associated with the
servlet session, so that each servlet or JSP can access the credentials when required
for programmatic authorization.

The J2EE Web security specifies requirements for client authentication as well as autho-
rization for Web applications.

682 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 682

Security 683

15
Web Authentication
The J2EE 1.3 specification does not explicitly specify a Web authentication mechanism,
but uses the Servlet 2.3 specification that defines four mechanisms for authenticating
users:

• Basic HTTP

• HTTP Digest

• Forms based

• HTTPS Client

The Servlet 2.3 specification can be found on the Sun Microsystems’ web site at
http://java.sun.com/products/servlet/download.html.

Basic HTTP Authentication
The HTTP protocol defines a simple authentication system where the Web server can
request the client to supply a username and password. The Web client obtains the user-
name and password of the user and returns them to the Web server for authentication.
The popular Web browsers display a simple login form for the user to provide authenti-
cation information.

The username and password are returned to the Web server using a simple encoding
scheme. Basic HTTP authentication is simple and effective, but it does not provide confi-
dentiality because the username and password are easily obtained by hackers that can
monitor network traffic. In reality, hackers will find it almost impossible to monitor net-
work traffic outside of their own organization. However, malicious company employees
with the requisite knowledge and software will be able to monitor internal networks.

HTTP Digest Authentication
HTTP Digest authentication works in a similar manner to Basic HTTP authentication
except that the username and password are returned in an encrypted form. The encrypted
username and password are more secure against illicit monitoring of network traffic.

HTTP digest authentication is not required by the Servlet 2.3 specification because it is
not widely supported by Web clients at the present time.

Forms-Based Authentication
J2EE Web applications can specify their own forms-based authentication. This is similar
to basic HTTP authentication, but a form is supplied by the application when a user has
to be authenticated. The application can supply an authentication form with the same
look and feel as the other Web pages in the application, instead of using the simple form
provided by a Web browser.

19 0672323842 CH15 3/20/02 9:33 AM Page 683

HTTPS Client Authentication
This is the most secure form of authentication because it requires the client to identify
itself using a digital certificate. Client authentication is usually implemented by using
SSL and is supported by the common Web browsers. This is a large subject area, and
there is insufficient space for it to be covered in today’s lesson.

Configuring J2EE RI Basic Authentication
To illustrate the basic features of J2EE Web security, you will need to configure the Web
interface to the Agency case study to authenticate users. You will use basic HTTP authen-
tication because it is the simplest mechanism to configure for your Web application.

Start up deploytool, open the agency.ear file in today’s “examples” directory and
select the Web application you developed on Day 13, “JavaServer Pages” and Day 14
(called web). Choose the Security tab and select Basic from the list of options in the User
Authentication Method section on the form. Figure 15.12 shows the Basic authentication
mechanism being selected from the list of choices.

684 Day 15

FIGURE 15.12
Defining Basic HTTP
Web authentication.

The Settings button is used to configure additional features for each authentication
method. The only configurable property for Basic HTTP authentication is the realm in
which to authenticate the user. The J2EE RI only provides one realm, called default, for
use with Basic HTTP authentication. Although the J2EE RI defines a second realm
called certificate, but this is for use with HTTPS (SSL)-based client authentication.

19 0672323842 CH15 3/20/02 9:33 AM Page 684

Security 685

15
Your changes have added a <login-config> security constraint to the DD entry for the
Web application, as shown in Listing 15.8.

LISTING 15.8 Web Authentication in the DD

1: <web-app>
2: <display-name>Web</display-name>
3: …
4: <login-config>
5: <auth-method>BASIC</auth-method>
6: <realm-name></realm-name>
7: </login-config>
8: …
9: <web-app>

Defining the authentication mechanism does not force the client to authenticate itself for
pages in the Web application. You will need to add declarative security constraints for the
Web pages that have to be protected as discussed in the “Declarative Web Authorization”
section later in this chapter. When the user accesses one of the protected pages, the serv-
er will use Basic HTTP authentication to obtain the username and password and validate
these credentials against the default security realm.

Declarative Web Authorization
Authorized access to Web pages is based on the URL of the Web page. By default, all
pages are unprotected, but the DD for a Web application can define security constraints
to force a client to authenticate itself before accessing the protected pages.

Authorization is based on roles and constraints. A Web application defines the roles
required to access different functionality within the application. One or more constraints
can be defined to authorize access to an individual page or a group of pages based on the
roles defined for the application.

As with EJB security roles, the deployer must map the role references used in the DD
onto principals defined in the target authentication domain.

Configuring J2EE RI Declarative Web Security
Web application roles are defined in deploytool using the Roles page for the Web appli-
cation. To contrast with the example of EJB security that identified applicants and cus-
tomers as separate roles, the Web application will treat all potential applicants and cus-
tomers as clients. You will configure two roles for your Web application, as shown in
Table 15.6.

19 0672323842 CH15 3/20/02 9:33 AM Page 685

TABLE 15.6 Agency Case Study Roles

Role Description

Administrator Administers the skills and locations tables

Client A potential applicant or customer

Figure 15.13 shows the configured roles for the Agency case study.

686 Day 15

FIGURE 15.13
Defining roles for a
Web authentication.

After the application roles have been defined, you can add one or more security con-
straints. A security constraint defines the following:

• A list of roles that are authorized by this constraint

• One or more Web resource collections that define the Web pages protected by this
constraint

• A list of protected Web pages each defined by a URL pattern and the HTTP
request names GET and POST

Constraints are applied to the Web application rather than an individual Web component.
In deploytool, select the Web application (called web) and the Security tab (this page is
shown in Figure 15.14 after you have made the changes discussed in the rest of this sec-
tion).

19 0672323842 CH15 3/20/02 9:33 AM Page 686

Security 687

15
Before adding any constraints, you must decide which parts of the Web application must
be protected. The main portal page (agency.jsp) should be accessible to all users
because this page is used to create new customer or applicant details. Existing customers
also use this page to access their data.

Functionality for customers, jobs, and applicants should be protected so that only authen-
ticated clients can use those pages. The administration page (admin.jsp) for maintaining
skill and location lists should only be accessible to authenticated clients in the
Administration role.

To enforce these restrictions, you will need two separate constraints for your Web appli-
cation:

• One constraint to allow clients and administrators to access customer, job, and
applicant functionality

• One constraint to allow administrators to maintain the skill and location lookup
tables

On Day 13, you chose aliases for your Web pages to simplify the definition of the securi-
ty constraints. All of the customer functionality uses aliases of the form /customer/…;
similarly, applicant functionality is /applicant/…. This naming scheme can be used
when applying authorization to Web pages.

The following steps will set up the first of these constraints:

1. In the Security Constraints section, click Add to add a new constraint accept the
default name of SecurityConstraint because changing it has no effect (the name
is not saved in the DD).

2. In the Authorized Roles section, click Edit and add the Client and Administrator
roles by using the pop-up screen.

3. In the Web Resource Collections section, click Add to add a new resource bundle
and rename this to Customers.

4. Also in the Web Resource Collections section, click Edit to add the protected URL
patterns. You will need to protect the individual page names (in the next step) and
the aliases you defined when deploying the application.

5. On the pop-up screen Edit Web Resource Collection page, add the following cus-
tomer related JSP pages to the collection:

• advertise.jsp

• createCustomer.jsp

• createJob.jsp

• deleteCustomer.jsp

19 0672323842 CH15 3/20/02 9:33 AM Page 687

• deleteJob.jsp

• updateCustomer.jsp

• updateJob.jsp

6. On the same page, click the Add URL Pattern button and add the pattern
/customer/*.

7. Click OK to save your changes.

8. Back on the Security page, check the GET and POST boxes to ensure all HTTP
requests to your selected pages are authorized. Your screen will now be similar to
the one shown in Figure 15.14.

688 Day 15

FIGURE 15.14
Defining Web security
constraints.

You have had to protect the real Web page filenames as well as the page aliases because
authorization is based on URL patterns and not the physical file location.

You may be wondering why you have protected the actual JSP page when the pages
themselves always use the page alias. To answer that, you have to remember that the
Web is not a secure environment. There are users who will try to break your security by
examining HTTP requests and URLs in an attempt to detect logical naming patterns.

Seeing a URL pattern such as customer/advertise?customer=winston, hackers will
try different customer names or variations on the Web address to bypass your security.

19 0672323842 CH15 3/20/02 9:33 AM Page 688

Security 689

15
It only takes one determined hacker to find that the URL
advertise.jsp?customer=winston works and your security mechanism has been cir-
cumvented unless you protect the individual JSP pages as well as the URL pattern cus-
tomer/*.

Where security is concerned, it is better to err on the side of caution and protect every-
thing rather than leave a small loophole for a hacker to exploit.

You must now add a second Resource Collection for protecting access to the applicant
registration functionality. Create a new Resource Collection (call it Applicants) and pro-
tect the URL Pattern /applicant/* and the following JSP pages:

• register.jsp

• createApplicant.jsp

• deleteApplicant.jsp

• updateApplicant.jsp

The last constraint you need is to protect the administrative functionality on the
admin.jsp page. Because this requires a different set of roles, you will need to

1. Create a new Security Constraint (it will be named SecurityConstraint1).

2. Add the Administration role to this constraint.

3. Create a new Web Resource Collection and call it Administration.

4. Add the URL pattern /admin/* and the following pages to this collection

• admin.jsp

• createLocation.jsp

• createSkill.jsp

• deleteLocation.jsp

• deleteSkill.jsp

• modifyLocation.jsp

• modifySkill.jsp

• updateLocation.jsp

• updateSkill.jsp

The last portion of the Security screen describes the options for the Network Security
Requirements. There are three options available:

• none There are no network security requirements.

• integral The transfer of the data between server and client must guarantee that
the data will not be changed.

19 0672323842 CH15 3/20/02 9:33 AM Page 689

• confidential The transfer of the data between server and client must guarantee
that the data cannot be observed.

In practice, choosing an option other than none will usually necessitate the use of SSL.
The default value of none will suffice during your study of J2EE security.

After you have defined all of these changes, the DD will have the
<security-constraint> entries, as shown in Listing 15.9.

LISTING 15.9 Web Security Constraints in the DD

1: <web-app>
2: <display-name>Web</display-name>
3: ...
4: <security-constraint>
5: <web-resource-collection>
6: <web-resource-name>Administration</web-resource-name>
7: <url-pattern>/modifySkill.jsp</url-pattern>
8: <url-pattern>/createSkill.jsp</url-pattern>
9: <url-pattern>/updateLocation.jsp</url-pattern>
10: <url-pattern>/admin.jsp</url-pattern>
11: <url-pattern>/modifyLocation.jsp</url-pattern>
12: <url-pattern>/updateSkill.jsp</url-pattern>
13: <url-pattern>/admin/*</url-pattern>
14: <url-pattern>/deleteSkill.jsp</url-pattern>
15: <url-pattern>/deleteLocation.jsp</url-pattern>
16: <url-pattern>/createLocation.jsp</url-pattern>
17: </web-resource-collection>
18: <auth-constraint>
19: <role-name>Administrator</role-name>
20: </auth-constraint>
21: <user-data-constraint>
22: <transport-guarantee>NONE</transport-guarantee>
23: </user-data-constraint>
24: </security-constraint>
25: <security-constraint>
26: <web-resource-collection>
27: <web-resource-name>Customers</web-resource-name>
28: <url-pattern>/updateCustomer.jsp</url-pattern>
29: <url-pattern>/advertise.jsp</url-pattern>
30: <url-pattern>/customer/*</url-pattern>
31: <url-pattern>/updateJob.jsp</url-pattern>
32: <url-pattern>/createJob.jsp</url-pattern>
33: <url-pattern>/deleteJob.jsp</url-pattern>
34: <url-pattern>/deleteCustomer.jsp</url-pattern>
35: <url-pattern>/createCustomer.jsp</url-pattern>
36: </web-resource-collection>
37: <web-resource-collection>
38: <web-resource-name>Applicants</web-resource-name>

690 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 690

Security 691

1539: <url-pattern>/updateApplicant.jsp</url-pattern>
40: <url-pattern>/applicant/*</url-pattern>
41: <url-pattern>/register.jsp</url-pattern>
42: <url-pattern>/createApplicant.jsp</url-pattern>
43: <url-pattern>/deleteApplicant.jsp</url-pattern>
44: </web-resource-collection>
45: <auth-constraint>
46: <role-name>Administrator</role-name>
47: <role-name>Client</role-name>
48: </auth-constraint>
49: <user-data-constraint>
50: <transport-guarantee>NONE</transport-guarantee>
51: </user-data-constraint>
52: </security-constraint>
53: ...
54: </web-app>

You can now deploy the application with the declarative security enabled. After deploy-
ing your application, you can still access the main portal page http://
localhost:8000/agency/agency without authentication. However, if you select a cus-
tomer name such as winston from the list and get to the advertise page, you will be
prompted to enter a username and password. This is the basic HTTP security authentica-
tion mechanism.

You must log in with the same name as the customer (winston) you selected from the list
on the agency.jsp page. If you chose any other login name, the EJB programmatic secu-
rity you added to the advertise Session bean will throw an exception because the cus-
tomer name does not match your principal name.

In the next section, you will use programmatic Web security to remove the need for an
existing customer or applicant to select his or her name from a list.

Programmatic Web Authorization
Web applications that are security aware use three methods in the HTTP request object to
access the authenticated client’s security information.:

• boolean HttpServletRequest.isUserInRole(String role) Returns true if
the client is in the role passed as a parameter.

• Principal HttpServletRequest.getUserPrincipal() Returns a java.securi-
ty.Principal object representing the client’s principal. Unlike the
EJBContext.getCallerPrincipal() method, this method can return null if the
client has not been authenticated.

LISTING 15.9 Continued

19 0672323842 CH15 3/20/02 9:33 AM Page 691

• String HttpServletRequest.getRemoteUser() Returns the principal name of
the client or null if the client has not been authenticated.

Adding Programmatic Web Security to the Case Study
The Agency case study does not need any programmatic security additions. The compo-
nent Session beans (advertise and register) ensure that authenticated clients can only
access his or her own details. However, the user interface can be improved by making
use of the principal information from the client authentication.

The Agency case study main page (agency.jsp) presents the user with a list of cus-
tomers to select from and a small form for creating a new customer. There is no need for
the user to be given a list of customers if an authentication mechanism is used. The
user’s login name can be used to the appropriate customer data. The customer section of
the simplified form is shown in Listing 15.10.

LISTING 15.10 Customer Options in agency.jsp

1: <H2>Customers</H2>
2: <FORM action=customer/advertise>
3: Existing customer: <input type=submit value=”Login”>
4: </FORM>
5: <H3>New Customer</H3>
6: <FORM action=customer/createCustomer>
7: <TABLE>
8: <TR>
9: <TD>Login:</TD>
10: <TD><INPUT type=text name=login></TD>
11: </TR>
12: <TR>
13: <TD>Name:</TD>
14: <TD><INPUT type=text name=name></TD>
15: </TR>
16: <TR>
17: <TD>Email:</TD>
18: <TD><INPUT type=text name=email></TD>
19: </TR>
20: <TR>
21: <TD colspan=2><INPUT type=submit value=”Create Customer”></TD>
22: </TR>
23: </TABLE>
24: </FORM>

An existing customer simply clicks the Login button and the Web authentication form is
displayed for the user to login. On successful login, the advertise.jsp page is dis-
played, and this should obtain the current customer from the remote client principal name.

692 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 692

Security 693

15
To allow an administrator to login as any user, the form tests the caller’s role and, if the
authenticated user is an administrator, obtains the customer name from the page parame-
ter. Listing 15.11 shows the new section of code that obtains the customer name.

LISTING 15.11 Customer Name Selection in advertise.jsp

1: <%
2: String name = null;
3: if (request.isUserInRole(“admin”))
4: name = request.getParameter(“customer”);
5: else
6: name = request.getRemoteUser();
7: %>
8: <agency:getCust login=’<%=name%>’/>
9: <H2>Customer details for:

➥<jsp:getProperty name=”cust” property=”login”/></H2>

To support the isUserInRole() method, an entry must be added to the DD to map the
role reference of admin onto the real role of Administrator. This is done on the Security
page of the advertise Web application, as shown in Figure 15.15.

Role references are defined in the <servlet> entry in the <web-app> section of the DD.
Listing 15.12 shows the admin role reference added to the DD.

FIGURE 15.15
Defining Web role
references.

19 0672323842 CH15 3/20/02 9:33 AM Page 693

LISTING 15.12 Role Reference in Web Application DD

1: <servlet>
2: <servlet-name>advertise</servlet-name>
3: <display-name>advertise</display-name>
4: <jsp-file>/advertise.jsp</jsp-file>
5: <security-role-ref>
6: <role-name>admin</role-name>
7: <role-link>Administrator</role-link>
8: </security-role-ref>
9: </servlet>

In Listing 15.11, if the client is in the admin role, the code still uses the request parame-
ter customer for the customer name. This supports the requirement for an administrator
to be able to modify customer details. The code to do this has been added to the
admin.jsp file for today’s work on the accompanying CD-ROM and is not shown here.

Web applications, like EJBs, can define security roles by using a specific role rather than
using the client’s ID. The Web application Security page is used to define the available
security options.

You can now redeploy the Agency case study and test out the new Web interface. If you
test the new changes and login as an applicant (such as romeo) rather than as a customer
(such as winston) your JSP will fail because it cannot create the required advertise ses-
sion EJB. This will prevent any output being returned to your browser, and a browser
specific error message will inform you that the requested document has no data.
Obviously, in a real application, you would detect the failure to create the Session EJB in
the JSP page and report a suitable error to the user.

Using Secure Web Authentication Schemes
The basic HTTP authentication mechanism is suitable for development and testing, but
many commercial applications require more “secure” authentication schemes. As dis-
cussed earlier, the J2EE Servlet specification requires the server to support HTTPS
certificate-based authentication for secure applications by using confidential data.

Because you will never use J2EE RI as a commercial server, learning how to make it
secure is not a useful exercise; you have many other features of J2EE to learn in the
remaining six days.

If understanding and using HTTPS and SSL is necessary for your understanding of
J2EE, this is best done with your commercial Web server. Read the documentation and
tutorials with your Web server and give it a go. The basic understanding of security
you have gained from today’s work will stand you in good stead when implementing
certificate-based security.

694 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 694

Security 695

15
Security and JNDI

Although JNDI is part of J2SE rather than J2EE, name servers are most commonly used
with enterprise applications, many of which use J2EE. The underlying Service Provider
implements the security for the naming and directory service. To all intents and purposes,
a secure directory service uses LDAP or a service that has an LDAP interface (Active
Directory or NDS).

You may want to check back to Day 3, “Naming and Directory Services,” to remind
yourself about JNDI before reading the rest of this section.

LDAP security is based on three categories:

• anonymous No security information is provided

• simple The client provides a clear text name and password

• Simple Authentication and Security Layer (SASL) The client and server negoti-
ate an authentication system based on a challenge and response protocol that con-
forms to RFC2222.

If the client does not supply any security information, the client is treated as an anony-
mous client.

Security credentials to JNDI are provided as properties. These can be defined in a
jndi.properties file or supplied as a HashTable to the InitialContext constructor.

The following JNDI properties provide security information:

• java.naming.security.authentication is set to a String to define the authentica-
tion mechanism used (one of none, simple, or a space-separated list of authentica-
tion schemes supported by the LDAP server).

• java.naming.security.principal is set to the fully-qualified domain name of the
client to authenticate.

• java.naming.security.credentials is a password or encrypted data (such as a
digital certificate) the implementation uses to authenticate the client.

If values for these properties are defined in code using a HashTable, the string constants
defined in the javax.naming.Context class should be used instead. These constants are as
follows:

• Context.SECURITY_AUTHENTICATION

• Context.SECURITY_PRINCIPAL

• Context.SECURITY_CREDENTIALS

19 0672323842 CH15 3/20/02 9:33 AM Page 695

Simple LDAP Authentication
Simple LDAP authentication is easy to use but passes security information, such as the
principal name and password, in plain text across the network. Simple authentication is
vulnerable to hackers monitoring network data to collect usernames and passwords.

To use simple LDAP authentication, the following properties are needed:

• The authentication is set to simple.

• The security principal is the fully-qualified Distinguished Name (DN) of the LDAP
user.

• The security credentials are set to the user’s plain text password.

The following example shows how to define simple authentication for a fictitious user
called Winston with a password of cigar (the same user was used in the JNDI examples
from Day 3):

env.put(Context.SECURITY_AUTHENTICATION, “simple”);
env.put(Context.SECURITY_PRINCIPAL, “ cn=Winston,ou=Customers,o=Agency,c=us”);
env.put(Context.SECURITY_CREDENTIALS, “cigar”);

// Create the initial context
DirContext ctx = new InitialDirContext(env);

SASL Authentication
If you use strong (simple or anonymous) authentication, the
java.naming.security.authentication value consists of a space-separated list of
authentication mechanisms. Depending on the LDAP service provider, JNDI can support
the following authentication schemes:

• External—Allows JNDI to use any authentication system. The client must define a
callback mechanism for JNDI to hook into the client’s authentication mechanism.

• GSSAPI (Kerberos v5)—A well-known, token-based security mechanism.

• Digest MD5—Uses the Java Cryptography Extension (JCE) to support client
authentication using the MD5 encryption algorithm that has no known decryption
technique. This is proposed by RFC2829 to be a mandatory default for LDAP v3
servers.

Additional schemes may also be supported.

An LDAP server stores a list of SASL mechanisms against the attribute
supportedSASLMechanisms for the root context. Listing 15.13 shows a program that lists
out the SASL mechanisms for an LDAP server.

696 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 696

Security 697

15
LISTING 15.13 Full Text of ListSASL.java

1: import javax.naming.*;
2: import javax.naming.directory.*;
3:
4: public class ListSASL {
5: public static void main (String[] args) {
6: try {
7: // Create initial context
8: DirContext ctx = new InitialDirContext();
9:
10: // get supported SASL Mechanisms
11: Attributes attrs =

➥ctx.getAttributes(“supportedSASLMechanisms”);
12: NamingEnumeration ae = attrs.getAll();
13: while (ae.hasMore()) {
14: Attribute attr = (Attribute)ae.next();
15: System.out.println(“ attribute: “ + attr.getID());
16: NamingEnumeration e = attr.getAll();
17: while (e.hasMore())
18: System.out.println(“ value: “ + e.next());
19: }
20: }
21: catch (NamingException ex) {
22: System.out.println (“Naming error: “+ex);
23: ex.printStackTrace();
24: System.exit(1);
25: }
26: }
27: }

Remember that the default JNDI server for the J2EE RI is a CORBA name server and
does not support a directory naming service. You will need to define a jndi.properties
file in the current directory to define the LDAP server to use. Listing 15.14 shows a suit-
able file for an LDAP server on 192.168.0.250.

LISTING 15.14 A jndi.properties File for an LDAP Server on 192.168.0.250

1: java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
2: java.naming.provider.url=ldap://192.168.0.250:389

The following code fragment shows how the example user (Winston) can define the
security credential properties to use Digest MD5:

env.put(Context.SECURITY_AUTHENTICATION, “DIGEST-MD5”);
env.put(Context.SECURITY_PRINCIPAL, “ cn=Winston,ou=Customers,o=Agency,c=us “);
env.put(Context.SECURITY_CREDENTIALS, “cigar”);

19 0672323842 CH15 3/20/02 9:33 AM Page 697

// Create the initial context
DirContext ctx = new InitialDirContext(env);

To use Digest MD5, the Java Cryptography Extension (JCE) must be installed on your
system. JCE is included in JDK 1.4 but must be downloaded from Sun Microsystems’
Web site and installed for earlier versions of the JDK.

The subject of JCE and LDAP SASL authentication is a whole day’s lesson in its own
right, and there isn’t time today to do any more work in this area. If you are interested in
finding out more about JCE and JNDI security, the JNDI Tutorial on Sun Microsystems’
Web site is an excellent starting point.

Summary
Today, you have looked at several aspects of J2EE security. You’ve studied basic security
terminology, including the difference between authentication and authorization.

You have seen how the J2EE specification doesn’t specify the authentication schemes
that must be used but relies on a server to provide some form of authentication. The
authenticated username is known as a J2EE principal.

J2EE authorization is based on roles defined for each EJB JAR or Web JAR in the appli-
cation. Each authenticated principal can be mapped onto one or more roles.

J2EE uses declarative constraints to define authorization based on the roles defined in the
application. Each method in an EJB can be authorized for all principals or a specific list
of roles. Similarly, individual Web pages can be authorized for specific roles. This
declarative programming de-couples the development of the EJB and Web code from the
runtime authentication scheme. Declarative security constraints facilitate the separation
of the developer role from the assembler and deployer roles.

Programmatic security is used when simple declarative security cannot express the appli-
cation’s authorization requirements. An EJB or Web page becomes security aware by
using methods in the J2EE API to obtain the client’s principal name or role. This infor-
mation can be used to change the behavior of an EJB or Web page based on the client’s
security credentials.

Adding security to a J2EE application is a simple process. Careful design of the func-
tionality in each EJB or Web page enables an assembler to apply consistent security con-
straints to several J2EE components comprising a complete application.

698 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 698

Security 699

15
Q&A

Q What are six different aspects of security?

A Six aspects of security are

• Authentication

• Authorization

• Confidentiality

• Integrity

• Non-repudiation

• Auditing

Q What are the three participants of the J2EE security domain?

A Principal represents an entity (typically a user) in the authentication system of the
target environment. Role represents a security role within the application. Role
Reference is used to map a coded role name onto an actual role.

Q What are the two methods of defining J2EE security?

A Declarative and programmatic.

Q What are the two EJB context methods and three HTTP Request methods
used in programmatic security?

A EJBContext.isCallerInRole()

EJBContext.getCallerPrincipal()

HttpServletRequest.isUserInRole()

HttpServletRequest.getUserPrincipal()

HttpServletRequest.getRemoteUser()

Exercises
Using the code for the Advertise EJB as an example, add in security for the Register
EJB. Use declarative security to restrict access to the Register Session bean to
members of the J2EE RI Applicants group. Add programmatic security to ensure a non-
administrator can only create a Register EJB using a login name the same as his or her
principal name. Update the Agency bean to restrict the abilities of a non-administrator to
only being able to create and delete applicants with a login name the same as his or her
principal name. Don’t forget to add the role ref mapping admin onto Administrator in
the Register session EJB and the Register Web application.

19 0672323842 CH15 3/20/02 9:33 AM Page 699

Update the agency.jsp and register.jsp Web pages to obtain the applicant’s name
from the security credentials instead of presenting the user with a list of applicant names.
Hint: follow the example JSP code for managing customers (advertise.jsp) shown in
today’s lesson.

700 Day 15

19 0672323842 CH15 3/20/02 9:33 AM Page 700

DAY 16

WEEK 3

Integrating XML with
J2EE

Today, we take a bit of departure from J2EE and its emphasis on programming
elements to look at what is fast becoming the lingua franca of the Internet—the
Extensible Markup Language (XML).

Throughout the book so far, you have seen many ways in which XML is used
within J2EE applications to describe the structure and layout of the application.
Today and tomorrow, you will study XML and its associated APIs and stan-
dards to gain a fuller understanding of how XML can be used to exchange data
between different components in your applications.

Today you will learn about

• How XML has evolved from the need for platform-independent data
exchange

• The relationship between XML and both Standard Generalized Markup
Language (SGML) and Hypertext Markup Language (HTML)

20 0672323842 CH16 3/20/02 9:38 AM Page 701

702 Day 16

• How to create well-formed and valid XML documents

• The Java API for XML Processing (JAXP)

• How to process XML documents with the Simple API for XML (SAX) and the
Document Object Model (DOM)

• How XML is used in the J2EE platform

This book is about J2EE, of which XML is just a component. To learn more about XML,
take a look at Sams Teach Yourself XML in 21 Days, which covers everything you need to
know about XML and related standards.

The Drive to Platform-Independent Data
Exchange

Applications essentially consist of two parts—functionality described by the code and
the data that is manipulated by the code. The in-memory storage and management of
data is a key part of any programming language and environment. Within a single appli-
cation, the programmer is free to decide on how the data is stored and represented.
Problems start when the application must exchange data with another application.

One solution is to use an intermediary storage medium, such as a database, and standard
tools, such as SQL and JDBC, to gain access to the data in such databases.

But what if the data is to be exchanged directly between two applications, or the applica-
tions cannot access the same database. In this case, the data must be encoded in some
particular format as it is produced so that its structure and contents can be understood
when it is consumed. This has often resulted in the creation of application-specific data
formats, such as binary data files (.dat files) or text-based configuration files (.ini, .rc,
.conf, and so on), in which applications store their information.

Similarly, when exchanging information between applications, purpose-specific formats
have arisen to address particular needs. Again, these formats can be text-based, such as
HTML for encoding how to display the encapsulated data, or binary, such as those used
for sending remote procedure calls. In either case, there tends to be a lack of flexibility in
the data representation, causing problems when versions change or when data needs to
be exchanged between disparate applications, frequently from different vendors.

XML was developed to address these issues. XML provides a data encoding format
that is

20 0672323842 CH16 3/20/02 9:38 AM Page 702

Integrating XML with J2EE 703

16

• Generic

• Simple

• Flexible

• Extensible

• Portable

• Human readable

• And perhaps most importantly, license-free

Benefits and Characteristics of XML
XML offers a method of putting structured data in a text file. Structured data is data that
conforms to a particular format; examples are spreadsheets, address books, configuration
parameters, and financial transactions. While being structured, XML is also readable by
humans as well as software; this means that you do not need the originating software to
access the data.

Origins of XML
XML was created by the World Wide Web Consortium (W3C) who now promote and
control the standard. The W3C also promotes and develops a number of other interopera-
ble technologies. The latest XML standard, along with lots of useful information and
tools, can be obtained from the WC3 Web site (www.w3.org).

XML is a set of rules for designing text formats that describe the structure of your data.
XML is not a programming language, so it is therefore easy for non-programmers to
learn and use. In devising XML, the originators had a set of design goals which were as
follows:

• XML should be straightforward to use over the Internet.

• XML should support a wide variety of applications.

• XML should be compatible with the Standard Generalized Markup Language.

• It must be easy to write programs which process XML documents.

• The number of optional features in XML should be kept to the absolute
minimum—ideally, zero.

• XML documents should be human-legible and reasonably clear.

• XML documents should be easy to create.

• Terseness in XML was of minimal importance.

20 0672323842 CH16 3/20/02 9:38 AM Page 703

XML is based on the Standard Generalized Markup Language (SGML). SGML is a pow-
erful but complex meta-language that is used to describe languages for electronic docu-
ment exchange, document management, and document publishing. HTML (probably the
best known markup language) is an example of an SGML application. SGML provides a
rich and powerful syntax, but its complexity has restricted its widespread use and it is
used primarily for technical documentation.

XML was conceived as a means of retaining the power and flexibility of SGML while
losing most of its complexity. Although a subset of SGML, XML manages to preserve
the best parts of SGML and all of its commonly used features while being more regularly
structured and simple to use.

XML is still a young technology but is fast making a significant impact. Already there is
an important XML application—XHTML, the successor to HTML. The most popular
browsers support XHTML and a number of Web developers are using it and gaining the
benefit of a better structured and more flexible language.

Structure and Syntax of XML
In this section, you will explore the syntax of XML and understand what is meant by a
well-formed document.

704 Day 16

You will often encounter the terms “well formed” and “valid” applied to
XML documents. These are not the same. A well-formed document is struc-
turally and syntactically correct, whereas a valid document is also semantical-
ly correct. A document can be well-formed but not valid.

Note

The best way to become familiar with the syntax of XML is to write an XML document.
To check your XML, you will need access to an XML-aware browser or another XML
validator.

An XML browser includes an XML parser. To get the browser to check the syntax and
structure of your XML document, simply use the browser to open the XML file. Valid
XML will be displayed in a structured way (with indentation). If the XML is not well-
formed, an appropriate error message will be given.

20 0672323842 CH16 3/20/02 9:38 AM Page 704

Integrating XML with J2EE 705

16

HTML and XML
At first glance, XML looks very similar to HTML. An XML document consists of ele-
ments that have a start and end tag enclosed, just like HTML. In fact, Listing 16.1 is both
well-formed HTML and XML.

LISTING 16.1 Example XML and HTML

1: <html>
2: <head><title>Web Page</title></head>
3: <body>
4: <H1>Teach Yourself J2EE in 21 Days</H1>
5: <P>Now you have seen the web page – buy the book</P>
6: </body>
7: </html>

An XML document is only well formed if there are no syntax errors. If you are familiar
with HTML, you will be aware that many browsers are lenient with poorly formed
HTML documents. Missing end tags and even missing sections will often be ignored and
therefore unnoticed until the page is displayed in a more rigorous browser and fails to
display correctly.

XML differs from HTML in that a missing end tag will always cause an error.

We will now look at XML syntax so you can understand what is going on.

Structure of an XML Document
The outermost element in an XML document is called the root element. Each XML doc-
ument must have one and only one root element, often called the top level element. If
there is more than one root element, an error will be generated.

An easy way to validate XML is to use a browser. A validating XML parser is
available for Microsoft Internet Explorer versions 5 and later. To obtain this,
access the Microsoft Developers Network Web site
(msdn.microsoft.com/downloads/samples/internet/xml/xml_validator/)
and follow the download instructions.

Other XML validators are available, such as the Sun Microsystems Multi-
Schema XML Validator. This is a Java tool to validate XML documents and
can be obtained from www.sun.com/software/xml/developers/multischema/.

Tip

20 0672323842 CH16 3/20/02 9:38 AM Page 705

The root element can be preceded by a prolog that contains XML declarations.
Comments can be inserted at any point in an XML document. The prolog is optional, but
it is good practice to include a prolog with all XML documents giving the XML version
being used (all full XML listings in this chapter will include a prolog). A minimal XML
document must contain at least one element to be well-formed.

Declarations
There are two types of XML declaration. XML documents may, and should, begin with
an XML declaration, which specifies the version of XML being used. The following is an
example of an XML declaration:

<?xml version =”1.0”?>

which tells the parser that this document conforms to the XML version 1.0 (WC3 recom-
mendation 10-February-1998). As with all declarations, the XML declaration, if present,
should always be placed in the prolog.

The other type of declaration is called an XML document type declaration and is used to
validate the XML. This will be discussed in more detail in the section titled “Creating
Valid XML” later in this chapter.

Elements
An element must have a start tag and an end tag enclosed in < and > characters. The end
tag is the same as the start tag except that it is preceded with a / character. The tags are
case sensitive, and the names used for the start and end tags must be exactly the same,
for example The tags <Start>...</start> do not make up an element, whereas
<Start>...</Start> do (both tags are letter case consistent).

An element name can only contain letters, digits, underscores _, colons :, periods ., and
hyphens -. An element name may not begin with a digit, period, or hyphen.

The element may also optionally have attributes and a body. All the elements in Listing
16.2 are well-formed XML elements.

LISTING 16.2 Valid XML Elements

1: <start>this is the beginning</start>
2: <date day=”16th” Month=”February”>My Birthday</date>
3: <today yesterday=”15th” Month=”February”></today>
4: <box color=”red”/>
5: <head></head>
6: <end/>

706 Day 16

20 0672323842 CH16 3/20/02 9:38 AM Page 706

Integrating XML with J2EE 707

16

Table 16.1 describes each of these elements.

TABLE 16.1 XML Elements

Line in
Listing 16.2 Element Type An Element With

1 <tag>text</tag> A start tag, body, and end tag

2 <tag attribute=”text”> Attribute and a text</tag>body

3 <tag attribute=”text”> Attribute but no body
</tag>

4 <tag attribute=”text”/> Short form of attribute but no body

5 <tag></tag> A start tag and end tag but no body

6 <tag/> Shorthand for the previous tag

Although the body of an element may contain nearly all the printable Unicode charac-
ters, certain characters are not allowed in certain places. To avoid confusion (to human
readers as well as parsers) the characters in Table 16.2 should not be used in tag or
attribute names. If these characters are required in the body of an element, the appropri-
ate symbolic string in Table 16.2 can be used to represent them.

TABLE 16.2 Special XML Characters

Character Name Symbolic Form

& Ampersand &

< Open angle bracket <

> Close angle bracket >

‘ Single quotes '

“ Double quotes "

The elements in an XML document have a tree-like hierarchy, with elements containing
other elements and data. Elements must nest—that is, an end tag must close the textually
preceding start tag. This means that

<I>bold and italic</I>

is correct, while

<I>bold and italic</I>

is not.

20 0672323842 CH16 3/20/02 9:38 AM Page 707

Well-Formed XML Documents
An XML document is said to be well-formed if there is exactly one root element, and it
and every sub-element has delimiting start and end tags that are properly nested within
each other.

The following is a simple XML document with an XML declaration followed by a num-
ber of elements. The structure represents a list of jobs that could be used in the Agency
case study example. In Listing 16.3, the <jobSummary> tag is the root tag followed by a
number of jobs.

LISTING 16.3 Example jobSummary XML

<?xml version =”1.0”?>
<jobSummary>
<job>
<customer>winston</customer>
<reference>Cigar Trimmer</reference>
<location>London</location>
<description>Must like to talk and smoke</description>
<skill>Cigar maker</skill>
<skill>Critic</skill>

</job>
<job>
<customer>george</customer>
<reference>Tree pruner</reference>
<location>Washington</location>
<description>Must be honest</description>
<skill>Tree surgeon</skill>

</job>
</jobSummary>

Attributes
Attributes are name/value pairs that are associated with elements. There can be any num-
ber of attributes, and an element’s attributes all appear inside the start tag. The names of
attributes are case sensitive and are limited to certain characters in the same way as those
of elements. Attributes can only contain letters, underscores _, colons :, periods ., and
hyphens -. An attribute name cannot begin with a digit, period, or hyphen.

The value of an attribute is a text string delimited by quotes. Unlike HTML, all attribute
values in an XML document must be enclosed in quotes; single or double quotes can be
used. Listing 16.4 shows the jobSummary XML document re-written to use attributes to
hold some of the data.

708 Day 16

20 0672323842 CH16 3/20/02 9:38 AM Page 708

Integrating XML with J2EE 709

16

LISTING 16.4 JobSummary.xml XML with Attributes

1: <?xml version =”1.0”?>
2: <jobSummary>
3: <job customer=”winston” reference=”Cigar Trimmer”>
4: <location>London</location>
5: <description>Must like to talk and smoke</description>
6: <skill>Cigar maker</skill>
7: <skill>Critic</skill>
8: </job>
9: <job customer=”george” reference=”Tree pruner”>
10: <location>Washington</location>
11: <description>Must be honest</description>
12: <skill>Tree surgeon</skill>
13: </job>
14: </jobSummary>

This version is preferable to the previous one for two reasons. First, it is easier to check
by eye to make sure that every job also has a customer and reference. Second, in pro-
gramming terms, the reference and the customer are items that need to be integrity
checked (the reference has to be unique and the customer must already exist). You gen-
erally make an item an attribute when its value is limited in some way. You will see later,
in the “Document Type Definitions” section, how to use DTDs and schemas to check the
validity of both elements and attributes.

Comments
XML comments have the same syntax as a type of HTML comment. They are introduced
by <!-- and ended with -->, for example

<!-- this is a comment -->

Comments can appear anywhere in a document except within the tags, for example,

<item quantity=”1 lb”>Cream cheese <!-- this is a comment --></item>

is acceptable, whereas the following is not

<item <!-- this is a comment --> quantity=”1 lb”>Cream cheese </item>

As with commenting code, the comments you add to your XML should be
factually correct, useful, and to the point. They should be used to make the
XML document easier to read and comprehend.

Note

20 0672323842 CH16 3/20/02 9:38 AM Page 709

Any character is allowed in a comment, including those that cannot be used in elements
and tags, but to maintain compatibility with SGML, the combination of two hyphens
together (--) cannot be used within the text of a comment.

Comments should be used to annotate the XML, but you should be aware that the parser
might remove the comments, so they may not be always accessible to a receiving appli-
cation.

Creating Valid XML
As you have seen, XML validators recognize well-formed XML, and this is very useful
for picking up syntax errors in your document. Unfortunately, a well-formed, syntactical-
ly-correct XML document may still have semantic errors in it. For example, a job in
Listing 16.4 with no location or skills does not make sense, but without these ele-
ments, the XML document is still well-formed, but not valid.

What is required is a set of rules or constraints that define what is a valid structure for an
XML document. There are two common methods for specifying XML rules—the
Document Type Definition (DTD) and schemas.

Document Type Definitions
A DTD provides a template that defines the occurrence, and arrangement of elements
and attributes in an XML document. Using a DTD, you can define

• Element ordering and hierarchy

• Which attributes are associated with an element

• Default values and enumeration values for attributes

• Any entity references used in the document (internal constants, external files, and
parameters)

710 Day 16

Entity references are covered in Appendix C, “An Overview of XML,” on the
CD-ROM.

Note

DTDs originated with SGML and have some disadvantages when compared with XML
Schemas, which were developed explicitly for XML. One of these disadvantages is that a
DTD is not written in XML, which means you have to learn another syntax to define a
DTD.

20 0672323842 CH16 3/20/02 9:38 AM Page 710

Integrating XML with J2EE 711

16

DTD rules can be included in the XML document as document type declarations, or they
can stored in an external document. The syntax is the same in both cases.

If a DTD is being used, the XML document must include a DOCTYPE declaration, which
is followed by the name of the root element for the XML document. If an external DTD
is being used, the declaration also includes the word SYSTEM followed by a system identi-
fier (the URI that identifies the location of the DTD file). For example

<!DOCTYPE jobSummary SYSTEM “jobSummary.dtd”>

specifies that the root element for this XML document is jobSummary and the remainder
of the DTD rules are in the file called jobSummary.dtd in the same directory.

An external identifier can also include a public identifier. The public identifier precedes
the system identifier and is denoted by the word PUBLIC. An XML processor can use the
public identifier to try to generate an alternative URI. If the document is unavailable by
this method, the system identifier will be used.

<!DOCTYPE web-app
➥PUBLIC ‘-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN’
➥’http://java.sun.com/dtd/web-app_2_3.dtd’>

DOCTYPE, SYSTEM and PUBLIC must appear in capitals to be recognized.Note

Element Type Declarations
The DTD defines every element in the XML document with element type declarations.
Each element type declaration takes the following form:

<!ELEMENT name (content) >

For example, for the jobSummary XML document in Listing 16.4, the jobSummary root
element is defined as

<!ELEMENT jobSummary (job*)>

The * sign indicates that the jobSummary element may consist of zero or more job ele-
ments. There are other symbols used to designate rules for combining elements and these
are listed in Table 16.3.

TABLE 16.3 Occurrence Characters Used in DTD Definitions

Character Meaning

* Zero or more (not required)

+ One or more (at least one required)

20 0672323842 CH16 3/20/02 9:38 AM Page 711

? Element is optional (if present can only appear once)

| Alternate elements

() Group of elements

The following defines an XML job element that must include one location, an optional
description, and at least one skill.

<!ELEMENT job (location, description*, skill+)>

Defining the Element Content
Elements can contain other elements, or content, or have elements and content. The
jobSummary element, in Listing 16.4, contains other elements but no text body; whereas
the location element has a text body but does not contain any elements.

To define an element that has a text body, use the reference #PCDATA (Parsed Character
DATA). For example, the location element in Listing 16.4 is defined by

<!ELEMENT location (#PCDATA)>

An element can also have no content (the
 tag in HTML is such an example). This
tag would be defined with the EMPTY keyword as

<!ELEMENT br EMPTY>

You will also see elements defined with contents of ANY. The ANY keyword denotes that
the element can contain all possible elements, as well as PCDATA. The use of ANY should
be avoided. If your data is so unstructured that it cannot be defined explicitly, there prob-
ably is no point in creating a DTD in the first place.

Defining Attributes
In Listing 16.4, the job element has two attributes—customer and reference. Attributes
are defined in an ATTLIST that has the following form:

<!ATTLIST element attribute type default-value>

The element is the name of the element and attribute is the name of the attribute. The
type defines the kind of attribute that is expected. A type is either one of the defined
constants described in Table 16.4, or it is an enumerated type where the permitted values
are given in a bracketed list.

712 Day 16

TABLE 16.3 Continued

Character Meaning

20 0672323842 CH16 3/20/02 9:38 AM Page 712

Integrating XML with J2EE 713

16

TABLE 16.4 DTD Attribute Types

Type Attribute Is a…

CDATA Character string.

NMTOKEN Valid XML name.

NMTOKENS Multiple XML names.

ID Unique identifier.

IDREF An element found elsewhere in the document. The value for IDREF must
match the ID of another element.

ENTITY External binary data file (such as a gif image).

ENTITIES Multiple external binary files.

NOTATION Helper program.

The ATTLIST default-value component defines a value that will be used if one is not
supplied. For example

<!ATTLIST button visible (true | false) “true”).

defines that the element button has an attribute called visible that can be either true or
false. If the attribute is not supplied, because of the default value it will be assumed to
be true.

The default-value item can also be used to specify that the attribute is #REQUIRED,
#FIXED, or #IMPLIED. The meaning of these values is given in Table 16.5.

TABLE 16.5 DTD Attribute Default Values

Default Value Meaning

#REQUIRED Attribute must be provided.

#FIXED Effectively a constant declaration. The attribute must be set to the given
value or the XML is not valid.

#IMPLIED The attribute is optional and the processing application is allowed to use
any appropriate value if required.

Example DTD
Listing 16.5 is the DTD for the jobSummary XML document. Create the DTD in a file
called jobSummary.dtd in the same directory as your jobSummary XML document.

20 0672323842 CH16 3/20/02 9:38 AM Page 713

LISTING 16.5 DTD for jobSummary XML

1: <!ELEMENT jobSummary (job*)>
2: <!ELEMENT job (location, description, skill+)>
3: <!ATTLIST job customer CDATA #REQUIRED>
4: <!ATTLIST job reference CDATA #REQUIRED>
5: <!ELEMENT location (#PCDATA)>
6: <!ELEMENT description (#PCDATA)>
7: <!ELEMENT skill (#PCDATA)>

Don’t forget to add the following line to the jobSummary XML at line 2 (following the
PI):

<!DOCTYPE jobSummary SYSTEM “jobSummary.dtd”>

View the jobSummary.xml document in your XML browser or other XML validator.

If the browser cannot find the DTD, it will generate an error. Edit jobSummary.xml,
remove the customer attribute, and check that your XML validator generates an appro-
priate error (such as “Required attribute ‘customer’ is missing”).

Namespaces
When an individual designs an XML structure for some data, he or she is free to choose
tag names that are appropriate for the data. Consequently, there is nothing to stop two
individuals from using the same tag name for different purposes or in different ways.
Consider the job agency that deals with two contract companies, each of which uses a
different form of job description (such as those in Listings 16.3 and 16.4). How can an
application differentiate between these different types of book descriptions?

The answer is to use namespaces. XML provides namespaces that can be used to impose
a hierarchical structure on XML tag names in the same way that Java packages provides
a naming hierarchy for Java methods. You can define a unique namespace with which
you can qualify your tags to avoid them being confused with those from other XML
authors.

An attribute called xmlns (XML Name Space) is added to an element tag in a document
and is used to define the namespace. For example, line 2 in Listing 16.6 indicates that the
tags for the whole of this document are scoped within the agency namespace.

LISTING 16.6 XML Document with Namespace

1: <?xml version =”1.0”?>
2: <jobSummary xmlns=”agency”>
3: <job customer=”winston” reference=”Cigar Trimmer”>

714 Day 16

20 0672323842 CH16 3/20/02 9:38 AM Page 714

Integrating XML with J2EE 715

16

4: <location>London</location>
5: <description>Must like to talk and smoke</description>
6: <skill>Cigar maker</skill>
7: <skill>Critic</skill>
8: </job>
9: <job customer=”george” reference=”Tree pruner”>
10: <location>Washington</location>
11: <description>Must be honest</description>
12: <skill>Tree surgeon</skill>
13: </job>
14: </jobSummary>

The xmlns attribute can be added to any element in the document to enable scoping of
elements, and multiple namespaces can be defined in the same document using a prefix.
For example, Listing 16.7 has two namespaces—ad and be. All the tags have been pre-
fixed with the appropriate namespace and now two different forms of the job tag (one
with attributes and one without) can coexist in the same file.

LISTING 16.7 XML Document with NameSpaces

<?xml version =”1.0”?>
<jobSummary xmlns:ad=”ADAgency” xmlns:be=”BEAgency”>
<ad:job customer=”winston” reference=”Cigar Trimmer”>

<ad:location>London</ad:location>
<ad:description>Must like to talk and smoke</ad:description>
<ad:skill>Cigar maker</ad:skill>
<ad:skill>Critic</ad:skill>

</ad:job>
<be:job>
<be:customer>george</be:customer>
<be:reference>Tree pruner</be:refenence>
<be:location>Washington</be:location>
<be:description>Must be honest</be:description>
<be:skill>Tree surgeon</be:skill>

</be:job>
</jobSummary>

Enforcing Document Structure with an XML Schema
As has been already stated, DTDs existed before XML, and they have some limitations:

• A DTD cannot define type information other than characters.

• DTDs were not designed to support namespaces and, although it is possible to add
namespaces to a DTD, how to do so is beyond the scope of this book.

LISTING 16.6 Continued

20 0672323842 CH16 3/20/02 9:38 AM Page 715

• DTDs are not easily extended.

• You can only have one DTD per-document, so you cannot have different defini-
tions of an element in a single document and have them validated with a DTD.

• The syntax for DTDs is not XML. Tools and developers must understand the DTD
syntax as well as XML.

To address these issues, a new structure definition mechanism was developed by the
W3C to fulfil the role of DTDs while addressing the previously listed limitations. This
mechanism is called an XML Schema. It uses XML to represent structure and type infor-
mation.

The XML Schema standard is split into two parts:

• Specifying the structure and constraints on an XML document

• A way of defining data types, including a set of pre-defined types

Because it is a more powerful and flexible mechanism than DTDs, the syntax for defin-
ing an XML schema is slightly more involved. An example of an XML schema for the
jobSummary XML shown in Listing 16.4 can be seen in Listing 16.8.

716 Day 16

The World Wide Web Consortium provides an online XML schema validator.
It can be accessed via www.w3.org/2001/03/webdata/xsv. If your schema is
not accessible via the Web, you will have to upload the file to the W3C site.

Tip

LISTING 16.8 XML Schema for Job Agency JobSummary XML Document

1: <?xml version=”1.0”?>
2: <xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

➥elementFormDefault=”qualified”>
3:
4: <xsd:element name=”jobSummary”>
5: <xsd:complexType>
6: <xsd:sequence>
7: <xsd:element name=”job” type=”jobType” minOccurs=”0”

➥maxOccurs=”unbounded”/>
8: </xsd:sequence>
9: </xsd:complexType>
10: </xsd:element>
11:
12: <xsd:complexType name=”jobType”>
13: <xsd:sequence>
14: <xsd:element name=”location” type=”xsd:string”/>
15: <xsd:element name=”description” type=”xsd:string”/>

20 0672323842 CH16 3/20/02 9:38 AM Page 716

Integrating XML with J2EE 717

16

16: <xsd:element name=”skill” type=”xsd:string” minOccurs=”1”
➥maxOccurs=”unbounded”/>
17: </xsd:sequence>
18: <xsd:attribute name=”customer” type=”xsd:string” use=”required”/>
19: <xsd:attribute name=”reference” type=”xsd:string” use=”required”/>
20: </xsd:complexType>
21: </xsd:schema>

The first thing to notice is that this schema exists within a namespace as defined on line
2. The string xsd is used by convention for a schema namespace, but any prefix can be
used.

Schema Type Definitions and Element and Attribute
Declarations
Elements that have sub-elements and/or attributes are defined as complex types. In addi-
tion to complex types, there are a number of built-in simple types. Examples of a few
simple types are

• string Any combination of characters

• integer Whole number

• float Floating point number

• boolean true/false or 1/0

• date yyyy-mm-dd

A complex type element (one with attributes or sub-elements) has to be defined in the
schema and will typically contain a set of element declarations, element references, and
attribute declarations. Line 12 of Listing 16.8 is the start of the definition for the job tag
complex type, which contains three elements (location, description, and skill) and
two attributes (customer and reference).

In a schema, like a DTD, elements can be made optional or required. The job element on
line 7 is optional because the value of the minOccurs attribute is 0. In general, an ele-
ment is required to appear when the value of minOccurs is 1 or more. Similarly, the max-
imum number of times an element can appear is determined by the value of maxOccurs.
This value can be a positive integer or the term unbounded to indicate there is no maxi-
mum number of occurrences. The default value for both the minOccurs and the
maxOccurs attributes is 1. If you do not specify the number of occurrences, the element
must be present and must only occur once.

Element attributes (like those on lines 18 and 19) can be declared with a use attribute to
indicate whether the element attribute is required, optional, or even prohibited.

LISTING 16.8 Continued

20 0672323842 CH16 3/20/02 9:38 AM Page 717

There are more aspects to schemas than it is possible to cover here in this book on J2EE.
Visit the WC3 Web site (www.w3.org) for more information on XML schemas and all
other aspects of XML.

How XML Is Used in J2EE
XML is portable data, and the Java platform is portable code. Add Java APIs for XML
that make it easy to use XML and, together, you have the ideal combination:

• Portability of data

• Portability of code

• Ease of use

The J2EE platform bundles all these advantages together.

Enterprises are rapidly discovering the benefits of using J2EE for developing Web
Services that use XML for the dissemination and integration of data. Particularly because
XML eases both the sharing of legacy data, internally among departments, and the shar-
ing of any data with other enterprises.

J2EE includes the Java API for XML Processing (JAXP) that makes it easy to process
XML data with applications written in Java. JAXP embraces the parser standards:

• Simple API for XML Parsing (SAX) for parsing XML as a stream.

• Document Object Model (DOM) to build an in-memory tree representation of an
XML document.

• XML Stylesheet Language Transformations (XSLT) to control the presentation of
the data and convert it to other XML documents or to other formats, such as
HTML. XLST is covered on Day 17, “Transforming XML Documents.”

JAXP also provides namespace support, allowing you to work with multiple XML docu-
ments that might otherwise cause naming conflicts.

Internally, J2EE also uses XML to store configuration information about applications.
You will have seen the deployment descriptor on many occasions while working through
this book.

Parsing XML
So far, you have used Internet Explorer or other third-party tools to parse your XML
documents. Now you will look at three APIs that provide a way to access and manipulate
the information stored in an XML document so you can build your own XML applica-
tions. The Simple API for XML (SAX) defines parsing methods and Document Object

718 Day 16

20 0672323842 CH16 3/20/02 9:38 AM Page 718

Integrating XML with J2EE 719

16

Model (DOM) defines a mechanism for accessing and manipulating well-formed XML.
The third is the Java API for XML Processing (JAXP) that you will use to build a simple
SAX and DOM parser. The two parsers you will develop effectively echo the input XML
structure. Usually, you will want to parse XML to perform some useful function, but
simply echoing the XML is a good way to learn the APIs.

JAXP has the benefit that it provides a common interface for creating and using SAX
and DOM in Java.

SAX and DOM define different approaches to parsing and handling an XML document.
SAX is an event-based API, whereas DOM is tree-based.

With event-based parsers, the parsing events (such as the start and end tags) are reported
directly to the application through callback methods. The application implements these
callback methods to handle the different components in the document, much like han-
dling events in a graphical user interface (GUI).

Using the DOM API, you will transform the XML document into a tree structure in
memory. The application then navigates the tree to parse the document.

Each method has its advantages and disadvantages. Using DOM

• Simplifies the mapping of the structure of the XML.

• Is a good choice when the document is not too large (less than 20Mb). If the docu-
ment is large, it can place a strain on system resources.

• Most or all of the document needs to be parsed.

• The document is to be altered or written out in a structure that is very different
from the original.

Using SAX is a good choice

• If you are searching through an XML document for a small number of tags

• The document is large

• When processing speed is important

• If the document does not need to be written out in a structure that is different from
the original

SAX is a public domain API developed cooperatively by the members of the XML-DEV
(XML DEVelopment) Internet discussion group.

The DOM is a set of interfaces defined by the W3C DOM Working Group. The latest
DOM recommendation can be obtained from the WC3 Web site.

20 0672323842 CH16 3/20/02 9:38 AM Page 719

The JAXP Packages
The JAXP APIs are defined in the javax.xml.parsers package, which contains two fac-
tory classes—SAXParserFactory and DocumentBuilderFactory.

The packages that define the SAX and DOM APIs are

• javax.xml.parsers A common interface for different vendors’ SAX and DOM
parsers

• org.w3c.dom Defines the DOM and all of the components of a DOM

• org.xml.sax The SAX API

You will now build two applications—one that uses the SAX API and one that uses
DOM.

Parsing XML using SAX
The code examples in this section are written using JAXP 1.1, which supports SAX2.0.

To parse an XML document, you instantiate a javax.xml.parsers.SAXParseFactory
object to obtain a SAX-based parser. This parser is then used to read the XML document
a character at a time.

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();

DefaultHandler handler = new XMLParse();
saxParser.parse(new File(argv[0]), handler);

Your SAX parser class must extend the public class
org.xml.sax.helpers.DefaultHandler. This class defines stub methods that receive
notification (callbacks) when XML entities are parsed. By default, these methods do
nothing, but they can be overridden to do anything you like. For example, a method
called startElement() is invoked when the start tag for an element is recognized. This
method receives the element’s name and its attributes. The elements name can be passed
in any one of the first three parameters to startElement(), see Table 16.6, depending on
whether namespaces are being used.

TABLE 16.6 Parameters to the startElement() Method

Parameter Contents

uri The namespace URI or the empty string if the element has no
namespace URI or if namespace processing is not being per-
formed

720 Day 16

20 0672323842 CH16 3/20/02 9:39 AM Page 720

Integrating XML with J2EE 721

16

localName The element name (without namespace prefix) will be a non-
empty string when namespaces processing is being performed

qualifiedName The element name with namespace prefix

attributes The element’s attributes

In the following code example, handling for the qualified name is provided.

public void startElement(String uri, String localName, String qualifiedName,
➥Attributes attributes)

throws SAXException {
System.out.println (“START ELEMENT “ + qualifiedName);
for (int i = 0; i< attributes.getLength(); i++) {

System.out.println (“ATTRIBUTE “ + attributes.getQName(i) + “ = “ +
➥attributes.getValue(i));

}
}

This example prints out a statement indicating that a start tag has been parsed followed
by a list of the attribute names and values.

A similar endElement() method is invoked when an end tag is encountered.

public void endElement(String uri, String localName, String qualifiedName)
➥throws SAXException {

System.out.println (“END ELEMENT “ + qualifiedName);
}

In the parser in Listing 16.9, not all the XML components will be handled. The default
action is for components to be ignored. For a complete list of the other DefaultHandler
methods, see Table 16.7 or refer to the Java 2 Platform, Enterprise Edition, v 1.3 API
Specification.

The parser first checks for the XML document, the name of which is provided on the
command line (lines 9–12). After instantiating the SAXParserFactory (line 14) and con-
structing the handler (line 13), the XML file is parsed on line 17—that is all there is to it.
Lines 32–57 are where the handler routines are defined. This parser reports the occur-
rence of the start and end of the document—the start and end of elements and the charac-
ters that form the element bodies only.

The complete listing for the SAX Parser is shown in Listing 16.9.

TABLE 16.6 Continued

Parameter Contents

20 0672323842 CH16 3/20/02 9:39 AM Page 721

LISTING 16.9 Simple SAX Parser

1: import java.io.*;
2: import org.xml.sax.*;
3: import org.xml.sax.helpers.DefaultHandler;
4: import javax.xml.parsers.*;
5:
6: public class XMLParse extends DefaultHandler {
7:
8: public static void main(String argv[]) {
9: if (argv.length != 1) {
10: System.err.println(“Usage: XMLParse filename”);
11: System.exit(1);
12: }
13: DefaultHandler handler = new XMLParse();
14: SAXParserFactory factory = SAXParserFactory.newInstance();
15: try {
16: SAXParser saxParser = factory.newSAXParser();
17: saxParser.parse(new File(argv[0]), handler);
18: }
19: catch (ParserConfigurationException ex) {
20: System.err.println (“Failed to create SAX parser:” + ex);
21: }
22: catch (SAXException ex) {
23: System.err.println (“SAX parser exceeption:” + ex);
24: }
25: catch (IOException ex) {
26: System.err.println (“IO exeception:” + ex);
27: }
28: catch (IllegalArgumentException ex) {
29: System.err.println (“Invalid file argument” + ex);
30: }
31: }
32: public void startDocument() throws SAXException {
33: System.out.println (“START DOCUMENT”);
34: }
35:
36: public void endDocument() throws SAXException {
37: System.out.println (“END DOCUMENT”);
38: }
39:
40: public void startElement(String uri, String localName,

➥String qualifiedName, Attributes attributes)
41: throws SAXException {
42: System.out.println (“START ELEMENT “ + qualifiedName);
43: for (int i = 0; i< attributes.getLength(); i++) {
44: System.out.println (“ATTRIBUTE “ + attributes.getQName(i) +

➥” = “ + attributes.getValue(i));
45: }
46: }

722 Day 16

20 0672323842 CH16 3/20/02 9:39 AM Page 722

Integrating XML with J2EE 723

16

47:
48: public void endElement(String uri, String localName,

➥String qualifiedName) throws SAXException {
49: System.out.println (“END ELEMENT “ + qualifiedName);
50: }
51:
52: public void characters(char[] ch, int start, int length)

➥throws SAXException {
53: if (length > 0) {
54: String buf = new String (ch, start, length);
55: System.out.println (“CONTENT “ + buf);
56: }
57: }
58: }

As already stated, lines 32–57 are the handler callback methods that are called when the
corresponding XML entity is parsed. If an entity method is not declared in your parser,
the entity is handled by the superclass DefaultHandler methods, the default action being
to do nothing. Table 16.7 gives a full list of the callback DefaultHandler methods that
can be implemented.

TABLE 16.7 SAX DefaultHandler Methods

Method Receives Notification of

characters(char[] ch, Character data inside an
int start, int length) element.

startDocument() Beginning of the document.

endDocument() End of the document.

startElement(String uri, Start of an element.
String localName, String

qName, Attributes

attributes)

endElement(String uri, End of an element.
String localName, qName)

startPrefixMapping Start of a namespace
(String prefix, String uri) mapping.

endPrefixMapping End of a namespace mapping.
(String prefix)

error(SAXParseException e) E recoverable parser error.

FatalError A fatal XML parsing error.
(SAXParseException e)

LISTING 16.9 Continued

20 0672323842 CH16 3/20/02 9:39 AM Page 723

Warning Parser warning.
(SAXParseException e)

IgnorableWhitespace Whitespace in the element (char[] ch, int
start, contents.
int length).

notationDecl(String name, Notation declaration.
String publicId, String

systemId

processingInstruction A processing instruction.
(String target, String

data)

resolveEntity(String An external entity.
publicId, String systemId)

skippedEntity(String name) A skipped entity (processors may skip entities if
they have not seen the declarations (for example,
the entity was declared in an external DTD).

This parser can be invoked simply from the command line:

> java XMLParse jobSummary.xml

The output in Figure 16.1 is produced when this SAX parser is used on the jobSummary
XML in Listing 16.4.

724 Day 16

TABLE 16.7 Continued

Method Receives Notification of

FIGURE 16.1
SAX parser output.

20 0672323842 CH16 3/20/02 9:39 AM Page 724

Integrating XML with J2EE 725

16

As you can see, the output is not very beautiful. You might like to improve it by adding
indentation to the elements or even getting the output to look like the original XML.

In addition to making this parser more robust, the following functionality could be
added:

• Scan element contents for the special characters, such shown in a table, and replac-
ing them with the symbolic strings as appropriate

• Improve the handling of fatal parse errors (SAXParseException) with appropriate
error messages giving error line numbers

• Use the DefaultHandler error() and warning() methods to handle non-fatal
parse errors

• Configure the parser to be namespace aware with
javax.xml.parsers.SAXParserFactory.setNamespaceAware(true), so that you
can detect tags from multiple sources

You will now build a parser application that uses the DOM API.

Document Object Model (DOM) Parser
When you use the DOM API to parse an XML document, a tree structure representing
the XML document is built in memory. You can then analyze the nodes of the tree to dis-
cover the XML contents.

The mechanism for instantiating a DOM parser is very similar to that for a SAX parser.
A new instance of a DocumentBuilderFactory is obtained that is used to create a new
DocumentBuilder.

The parse() method is called on this DocumentBuilder object to return an object that
conforms to the public Document interface. This object represents the XML document
tree. The following code fragment creates a DOM parser and reads the XML document
from a file called text.xml:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(“text.xml”);

20 0672323842 CH16 3/20/02 9:39 AM Page 725

With the DocumentBuilder.parse() method, you are not restricted to reading XML only
from a file; you can also use a constructed InputStream or read from a source defined by
a URL.

There are a number of methods provided in the Document interface to access the nodes in
the tree. These are listed in Table 16.8.

The normalize() method should always be used to put all text nodes into a form where
there are no adjacent text nodes or empty text nodes. In this form, the DOM view better
reflects the XML structure.

As already shown, a DOM parser is instantiated in a similar manner as a SAX parser; the
code should be familiar:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));

This is where the similarity ends. At this point, the DOM parser has built an in-memory
representation of the document that will look something like Figure 16.2.

The root of the DOM tree is obtained with the getDocumentElement() method.

Element root = document.getDocumentElement();

This method returns an Element, which is simply a node that may have attributes associ-
ated with it. An element can be the parent to other elements.

There are a number of methods provided in the Document interface to access the nodes in
the tree, which are listed in Table 16.8. These methods return either a Node or a NodeList
(ordered collection of nodes).

TABLE 16.8 Document Interface Methods to Traverse a DOM Tree

Method Name Description

getDocumentElement() Allows direct access to the root element of the document

getElementsByTagName(String) Returns a NodeList of all the elements with the given tag
name in the order in which they are encountered in the
tree

getChildNodes() A NodeList that contains all children of this node

726 Day 16

20 0672323842 CH16 3/20/02 9:39 AM Page 726

Integrating XML with J2EE 727

16

In the DOM application you are about to build, the getChildNodes() method is used to
recursively traverse the DOM tree. The NodeList.getLength() method can then be used
to find out the number of nodes in the NodeList.

FIGURE 16.2
Diagram of DOM tree.

Element

JobSummary null

Attribute

customer winston

Attribute

reference Cigar Trimmer

Element

location null

Element

description null

Element

skill null

Element

skill null

Text

#text London

Text

#text Must like to…

Text

skill Cigar maker

Text

#text Critic

Element

Job null

Name Value

Node Key: Type

getParentNode() The parent of this node

getFirstChild() The first child of this node

getLastChild() The last child of this node

getPreviousSibling() The node immediately preceding this node

TABLE 16.8 Continued

Method Name Description

20 0672323842 CH16 3/20/02 9:39 AM Page 727

NodeList children = node.getChildNodes();
int len = (children != null) ? children.getLength() : 0;

In addition to the tree traversal methods, the Node interface provides the following meth-
ods to investigate the contents of a node as in Table 16.9.

TABLE 16.9 Document Interface Methods to Inspect DOM Nodes

Method Name Description

getAttributes() A NamedNodeMap containing the attributes of a node if it is an
Element or null if it is not.

getNodeName() A string representing name of this node (the tag).

getNodeType() A code representing the type of the underlying object. A node
can be one of ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE,
CDATA_SECTION_NODE, ENTITY_REFERENCE_NODE, ENTITY_NODE,
PROCESSING_INSTRUCTION_NODE, COMMENT_NODE,
DOCUMENT_NODE, DOCUMENT_TYPE_NODE,
DOCUMENT_FRAGMENT_NODE, NOTATION_NODE.

getNodeValue() A string representing the value of this node. If the node is a
text node, the value will be the contents of the text node; for
an attribute node, it will be the string assigned to the attribute.
For most node types, there is no value and a call to this
method will return null.

getNamespaceURI() The namespace URI of this node.

hasAttributes() Returns a boolean to indicate whether this node has any
attributes.

hasChildNodes() Returns a boolean to indicate whether this node has any chil-
dren.

Listing 16.10 is the full listing of a simple standalone parser that uses DOM. It reads in a
file from the command line, builds the parse tree, and outputs elements (including attrib-
utes) and text nodes as XML.

LISTING 16.10 Simple DOM Parser

1: import javax.xml.parsers.*;
2: import org.xml.sax.*;
3: import java.io.*;
4: import org.w3c.dom.*;
5: import java.util.*;
6:
7: public class DOMParse {
8:

728 Day 16

20 0672323842 CH16 3/20/02 9:39 AM Page 728

Integrating XML with J2EE 729

16

9: static Document document;
10:
11: public static void main(String argv[]) {
12: if (argv.length != 1) {
13: System.err.println(“Usage: DOMParse filename”);
14: System.exit(1);
15: }
16: DocumentBuilderFactory factory =

➥DocumentBuilderFactory.newInstance();
17: try {
18: DocumentBuilder builder = factory.newDocumentBuilder();
19: document = builder.parse(new File(argv[0]));
20: document.getDocumentElement().normalize ();
21: Element root = document.getDocumentElement();
22: writeElement(root, “”);
23: }
24: catch (ParserConfigurationException ex) {
25: System.err.println (“Failed to create DOM parser:” + ex);
26: }
27: catch (SAXException ex) {
28: System.err.println (“General SAX exeception:” + ex);
29: }
30: catch (IOException ex) {
31: System.err.println (“IO exeception:” + ex);
32: }
33: catch (IllegalArgumentException ex) {
34: System.err.println (“Invalid file argument” + ex);
35: }
36: }
37:
38: private static void writeElement(Node n, String indent) {
39: StringBuffer name = new StringBuffer(indent);
40: name.append(‘<’);

// note where to put / when printing out end tag
41: int tag_start = name.length();
42: name.append(n.getNodeName());
43:
44: NamedNodeMap attrs = n.getAttributes();
45: int attrCount = (attrs != null) ? attrs.getLength() : 0;
46: StringBuffer attributes = new StringBuffer();
47: for (int i = 0; i < attrCount; i++) {
48: Node attr = attrs.item(i);
49: attributes.append(‘ ‘);
50: attributes.append(attr.getNodeName());
51: attributes.append(“=\””);
52: attributes.append(attr.getNodeValue());
53: attributes.append(‘“‘);
54: }
55: System.out.print (name);

LISTING 16.10 Continued

20 0672323842 CH16 3/20/02 9:39 AM Page 729

56: System.out.print (attributes);
57: System.out.println (“>”);
58: name.append(‘>’);
59:
60: NodeList children = n.getChildNodes();
61: int len = (children != null) ? children.getLength() : 0;
62: indent += “ “;
63: for (int i = 0; i < len; i++) {
64: Node node = children.item(i);
65: switch (node.getNodeType())
66: {
67: case Node.TEXT_NODE:
68: writeText(node, indent);
69: break;
70:
71: case Node.ELEMENT_NODE:
72: writeElement(node, indent);
73: break;
74: }
75: }
76: name.insert(tag_start, ‘/’);
77: System.out.println (name);
78: }
79:
80: private static void writeText(Node n, String indent) {
81: String value = n.getNodeValue().trim();
82: if (value.length() > 0) {
83: System.out.print(indent);
84: StringTokenizer XMLTokens =

➥new StringTokenizer(value, “&<>’\””, true);
85: while (XMLTokens.hasMoreTokens()) {
86: String t = XMLTokens.nextToken();
87: if (t.length() == 1) // might be a special char
88: {
89: if (t.equals(“&”))
90: System.out.print (“&”);
91: else if (t.equals(“<”))
92: System.out.print (“<”);
93: else if (t.equals(“>”))
94: System.out.print (“>”);
95: else if (t.equals(“‘“))
96: System.out.print (“'”);
97: else if (t.equals(“\””))
98: System.out.print (“"”);
99: else
100: System.out.print(t);
101: }
102: else
103: System.out.print(t);

730 Day 16

LISTING 16.10 Continued

20 0672323842 CH16 3/20/02 9:39 AM Page 730

Integrating XML with J2EE 731

16

104: }
105: System.out.println();
106: }
107: }
108: }

Although at first site this looks more complicated than the SAX parser, most of the addi-
tional code is concerned with producing output that conforms to the XML syntax.

Lines 38–57 prints out the start tag with any associated attributes. Lines 59–75 checks
for any child nodes and calls the appropriate method according to whether the child node
is an XML element or a text node. Line 76 inserts a / character into the tag name before
printing it out as the end tag.

The writeText() method starting on line 80 tokenizes the text contents and replaces the
special characters (listed in Table 16.2) with the appropriate XML strings.

Modifying a DOM Tree
We will now look at another use of the DOM API to modify the contents or structure of
the XML. Unlike SAX, DOM provides a number of methods that allow nodes to be
added, deleted, changed, or replaced in the DOM tree. Table 16.10 summarizes these
methods.

TABLE 16.10 Document Interface Methods to Inspect DOM Nodes

Method Name Description

appendChild(Node newNode) Adds the new node to the end of the NodeList
of children of this node.

cloneNode(boolean deep) Returns a duplicate of a node. The cloned
node has no parent. If deep is true, the whole
tree below this node is cloned; if false, only
the node itself is cloned.

insertBefore(Node newNode, Inserts the newNode before Node refNode)the
existing refNode.

removeChild(Node oldNode) Removes the oldNode from the list of chil-
dren.

replaceChild(Node newNode, Replaces the oldNode withNode
oldNode)newNode in the child NodeList.

LISTING 16.10 Continued

20 0672323842 CH16 3/20/02 9:39 AM Page 731

setNodeValue(String Set the value of this node,
nodeValue)depending on its type; see Table
16.10.

setPrefix(java.lang.String Set the namespace prefix of prefix)this
node.

For example, the following code fragment simply creates a new customer element and
appends it to the end of the XML document:

Node newNode = addXMLNode (document, “Customer”, “Columbus”);
Element root = document.getDocumentElement();
root.appendChild(newNode);

private static Node addXMLNode (Document document, String name, String text) {
Element e = document.createElement(name);
Text t = document.createTextNode(text);
e.appendChild (t);
return e;

}

The following XML element is added to the XML file that is read in:

<customer>Columbus</customer>

Java Architecture for XML Binding
DOM is a useful API allowing you to build and transform XML documents in memory.
Unfortunately, DOM is somewhat slow and resource hungry. To address these problems,
the Java Architecture for XML Binding (JAXB) is being developed through the Java
Community Process (JCP) with an expert group consisting of representatives from many
commercial organizations.

JAXB provides a mechanism that simplifies the creation and maintenance of XML-
enabled Java applications. It does this by using an XML schema compiler (only DTDs at
the time of writing) that translates XML DTDs into one or more Java classes, thereby
removing the burden from the developer to write complex parsing code.

The generated classes handle all the details of XML parsing and formatting, including
code to perform error and validity checking of incoming and outgoing XML documents,
which ensures that only valid, error-free XML is accepted.

732 Day 16

TABLE 16.10 Continued

Method Name Description

20 0672323842 CH16 3/20/02 9:39 AM Page 732

Integrating XML with J2EE 733

16

Because the code has been generated for a specific schema, the generated classes are
more efficient than using a generic SAX or DOM parser. Most importantly, a JAXB pars-
er often requires a much smaller footprint in memory than a generic parser.

At the time of writing, JAXB is still in its early release phase.

Differences Between JAXP and JAXB
JAXP and JAXB serve different purposes. Which API you choose depends on the
requirements of your application. If you want to transform the data to another format,
you should use JAXP, which includes the XSLT transformer API that allows you to trans-
form XML documents, SAX events, or DOM trees (XSLT is covered in Day 17).

JAXP also allows you the flexibility of choosing to validate the data or not. The fact that
JAXB requires a DTD guarantees that only valid data is processed.

Classes created with JAXB do not include tree-manipulation capability, which is one fac-
tor that contributes to the small memory footprint of a JAXB object tree. If you want to
build an object representation of XML data but you need to get around the memory limi-
tations of DOM, you should use JAXB.

These following two bulleted lists summarize the advantages of JAXB and JAXP so that
you can decide which one is right for your application.

Use JAXB when you want to

• Access data in memory, but do not need tree manipulation capabilities

• Process only data that is valid

• Convert data to different types

• Generate classes based on a DTD

• Build object representations of XML data

Use JAXP when you want to

• Have flexibility with regard to the way you access the data: either serially with
SAX or randomly in memory with DOM

• Use your same processing code with documents based on different DTDs

• Parse documents that are not necessarily valid

• Apply XSLT transformations

• Insert or remove components from an in memory XML tree

20 0672323842 CH16 3/20/02 9:39 AM Page 733

Extending the Agency Case Study
As the final part of today’s lesson, you will return to code written on Day 10, “Message-
Driven Beans,” and amend the Agency application to handle messages received as XML.
First refresh your memory by returning to Day 10 and looking back over the code for the
MessageSender helper class in Listing 10.4, the ApplicantMatch Message-driven bean in
Listing 10.5, and the code for the AgencyBean and RegisterBean Session beans. This
code has also been reproduced in the Examples directory for Day 16 on the CD-ROM.

The MessageSender class will now be modified to create an XML document that con-
tains the applicant’s full details to send to the ApplicantMatch bean. To achieve this, the
following changes to the Day 10 code will be made.

1. Amend the AgencyBean and RegisterBean Session beans to pass the applicant’s
full details in the JMS message when an applicant is first registered or the appli-
cant’s location or skills are changed.

2. Amend the MessageSender helper class to create an XML representation of the
data and send this as a message to the jms/applicantQueue.

3. Amend the ApplicantMatch Message-driven bean to parse the XML message
instead of using Entity beans to look up the applicant’s details.

The following XML schema represents the applicant’s details.

<?xml version=”1.0”?>
<xsd:schema>
<xsd:element name=”applicantSummary”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”applicant” type=”applicantType” minOccurs=”0”

➥maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:complexType name=”applicantType”>
<xsd:sequence>
<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”email” type=”xsd:string”/>
<xsd:element name=”summary” type=”xsd:string”/>
<xsd:element name=”location” type=”xsd:string”/>
<xsd:element name=”skill” type=”xsd:string” minOccurs=”1”

➥maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”login” type=”xsd:string” use=”required”/>
<xsd:attribute name=”new” type=”xsd:boolean” use=”required”/>

</xsd:complexType>
</xsd:schema>

734 Day 16

20 0672323842 CH16 3/20/02 9:39 AM Page 734

Integrating XML with J2EE 735

16

For example the details for romeo would be constructed as follows:

<?xml version =”1.0”?>
<applicantSummary>
<applicant login=”romeo” new=”false”>
<name>Romeo Montague</name>
<email>romeo@montague.co</email>
<summary>Dutiful son</summary>
<location>Wessex</location>
<skill>Cook</skill>
<skill>Bodyguard</skill>

</applicant>
</applicantSummary>

Step 1—Change Session Beans
The following changes are required to AgencyBean. Replace the createApplicant()
method with one that calls messageSender.sendApplicant() with all the applicants
details. The following code shows how this is achieved.

public void createApplicant(String login, String name, String email)
➥throws DuplicateException, CreateException{

try {
ApplicantLocal applicant = applicantHome.create(login,name,email);

➥messageSender.sendApplicant(applicant.getLogin(), applicant.getName(),
➥applicant.getEmail(), applicant.getSummary(), applicant.getLocation().
➥getName(), applicant.getSkills(), true);

}
catch (CreateException e) {

error(“Error creating applicant “+login,e);
}
catch (JMSException e) {

error(“Error sending applicant details to message bean “+login,e);
}

}

Similarly, update RegisterBean to call the MessageSender.send() method with the
applicant’s full details when a new applicant is added or the details are changed. This
time, the information can be obtained from private methods in the RegisterBean class.

Replace the messageSender method call:

messageSender.sendApplicant(getLogin(), getName(), getEmail(), getSummary(),

with

messageSender.sendApplicant(applicant.getLogin(), applicant.getName(),
➥applicant.getEmail(), applicant.getSummary(), applicant.getLocation().
➥getName(), applicant.getSkills(), false);

20 0672323842 CH16 3/20/02 9:39 AM Page 735

Note that the final parameter to the sendApplicant() method indicates whether this is a
new applicant or an updated one. It is set to true in AgencyBean (to indicate new appli-
cant) and false in RegisterBean (to indicate that applicant details have been updated).

Step 2—Amend the MessageSender Helper Class
The MessageSender class now defines some extra methods that construct the XML docu-
ment. For simplicity, these methods have been left in the MessageSender class, but they
can be placed in their own helper class if desired.

The following two methods are used to create XML start and an end tags and append the
tag to a StringBuffer object.

private void addStartTag (StringBuffer buf, String tag, String attributes) {
buf.append(“<”);
buf.append(tag);
buf.append(attributes);
buf.append(“>”);

}
private void addEndTag (StringBuffer buf, String tag) {

buf.append(“</”);
buf.append(tag);
buf.append(“>”);

}

The addElement() method constructs an entire XML element:

private void addElement (StringBuffer buf, String tag, String attributes,
➥String contents) {

addStartTag(buf, tag, attributes);
buf.append (contents);
addEndTag (buf, tag);

}

The applicant XML is created by the applicantXML() method:

private final String XMLVersion = “<?xml version =’1.0’?>”;
private String applicantXML (String applicant, String name,
➥String email, String summary, String location, String[] skills,
➥boolean newApplicant) throws JMSException {

StringBuffer xmlText = new StringBuffer(XMLVersion);
addStartTag(xmlText, “applicantSummary”, “”);
String newApplicantString = newApplicant?”true’”:”false’”;
String attributes = “ login=’” + applicant + “‘ new=’” + newApplicantString;
addStartTag(xmlText, “applicant”, attributes);
addElement(xmlText, “name”, “”, name);
addElement(xmlText, “email”, “”, email);
addElement(xmlText, “summary”, “”, summary);
addElement(xmlText, “location”, “”, location);
Iterator it = skills.iterator();

736 Day 16

20 0672323842 CH16 3/20/02 9:39 AM Page 736

Integrating XML with J2EE 737

16

while (it.hasNext()){
SkillLocal skill = (SkillLocal) it.next();
addElement(xmlText, “skill”, skill.getName()); }

addEndTag(xmlText, “applicant”);
addEndTag (xmlText, “applicantSummary”);
return xmlText.toString();

}

Finally, the sendApplicant() method is changed to construct the XML document before
embedding it in the JMS message body:

public void sendApplicant(String applicant, String name, String email,
String summary, String location, String[] skills,
➥boolean newApplicant) throws JMSException {

TextMessage message = queueSession.createTextMessage();
String xml = applicantXML (applicant, name, email, summary,

➥location, skills, newApplicant);
message.setText(xml);
queueSender.send(message);

}

Step 3—Amend the ApplicantMatch Message-Driven
Bean
The ApplicantMatch bean now receives all the information required to perform a match
between applicants and jobs in the JMS message. Instead of using the Agency Entity
beans to obtain the location and skill, it parses the XML message. To do this, the
onMessage() method has been changed to perform the following functions.

1. Get the XML text out of the JMS message.

xmlText = ((TextMessage)message).getText();

2. Build a DOM tree from the XML.
DocumentBuilder builder = factory.newDocumentBuilder();
InputSource is = new InputSource (new StringReader(xmlText));
document = builder.parse(is);
document.getDocumentElement().normalize ();

3. Get the applicant’s login and newApplicant status from the applicant node.
String login = getAttribute(document,”applicant”, “login”);
String newApplicant = getAttribute (document,”applicant”, “new”);

private String getAttribute (Document document, String tag,
➥String attribute) {

NodeList nodes = document.getElementsByTagName(tag);
NamedNodeMap attrs = nodes.item(0).getAttributes();
Node n = attrs.getNamedItem(attribute);
if (n == null)

20 0672323842 CH16 3/20/02 9:39 AM Page 737

return null;
else

return n.getNodeValue().trim();
}

4. If this is not a new applicant, make any old matches are removed from the Match
table.
if (newApplicant.equals(“false”)) {

matchedHome.deleteByApplicant(login);
}

5. Get the applicant’s skills and location from the XML elements.
String location = getTagContents (document,”location”);
Collection appSkills = getMultipleContents (document,”skill”);
private String getTagContents (Document document, String tag) {

NodeList nodes = document.getElementsByTagName(tag);
NodeList contents = nodes.item(0).getChildNodes();
int len = (contents != null) ? contents.getLength() : 0;
Node text = contents.item(0);
if (len != 1 || text.getNodeType() != Node.TEXT_NODE) {

return null;
}
return text.getNodeValue().trim();

}

private Collection getMultipleContents (Document document, String tag) {
Collection col = new ArrayList();
NodeList nodes = document.getElementsByTagName(tag);
int len = (nodes != null) ? nodes.getLength() : 0;
for (int i = 0; i < len; i++) {

NodeList contents = nodes.item(i).getChildNodes();
Node text = contents.item(0);
if (text.getNodeType() == Node.TEXT_NODE) {

col.add(text.getNodeValue().trim());
}

}
return col;

}

This replaces the previous code

ApplicantLocal applicant = applicantHome.findByPrimaryKey(login);
String location = applicant.getLocation().getName();
Collection skills = applicant.getSkills();
Collection appSkills = new ArrayList();
Iterator appIt = skills.iterator();
while (appIt.hasNext()) {

SkillLocal as = (SkillLocal)appIt.next();
appSkills.add(as.getName());

}

738 Day 16

20 0672323842 CH16 3/20/02 9:39 AM Page 738

Integrating XML with J2EE 739

16

As before, deploy this code and test by creating new applicants or updating existing
applicants. Use the table.jsp created on Day 13, “JavaServer Pages,”, or any other
method you choose, to display the contents of the matched table.

Summary
Today, you have had a very quick and necessarily brief introduction to XML and the
APIs and technologies available in J2EE to parse and generate XML data. You have seen
how XML can be used to create flexible structured data that is inherently portable. With
DTDs and schemas, you appreciated how this data can also be validated. You have been
introduced to several different ways of parsing an XML document with SAX, DOM, or
JAXB, and you should now recognize the advantages and disadvantages of each tech-
nique.

Tomorrow, you will extend your XML knowledge to include XML transformations.

Q&A
Q What are the major characteristics of XML?

A XML is a human readable, structured data-encoding format that is generic, simple,
flexible, extensible and free to use.

Q What is the difference between well-formed and valid XML.

A Well-formed XML is syntactically and structurally correct. XML is only valid if it
complies with the constraints of a DTD or schema.

Q What are the J2EE APIs and specifications that support the processing of
XML?

A The J2EE APIs and specifications that supports XML processing are JAXP Java
API for XML Processing, SAX Simple API for XML Parsing, DOM Document
Object Model, and XLST for transforming XML documents

Q What are the main differences between SAX and DOM?

A SAX provides a serial event-driven parser. DOM is more flexible in that it builds
an in-memory representation of the document that can be manipulated randomly
(that is, nodes can be addressed or processed in any order). SAX is generally faster,
while DOM can be a heavy user of memory.

20 0672323842 CH16 3/20/02 9:39 AM Page 739

Exercises
To practice working with XML, try the following exercise.

1. Extend the Agency case study. Amend the AdvertiseBean and AdvertiseJobBean
Session beans and the MessageSender helper class to create an XML document
containing all the information about the jobs when they are added or updated. The
XML document should have a structure like the following:
<?xml version =”1.0”?>
<jobSummary>
<job customer=”winston” reference=”Cigar Trimmer” new=”false”>
<location>London</location>
<description>Must like to talk and smoke</description>
<skill>Cigar maker</skill>
<skill>Critic</skill>

</job>
</jobSummary>

Update your Message-driven bean called JobMatch, written as the exercise on Day 10,
that searches through all the applicants to find those suitable to be considered for the job,
so that it now takes its information from the XML document. Remember that to be con-
sidered for a job, the applicant must match the job’s location and at least one skill.

740 Day 16

20 0672323842 CH16 3/20/02 9:39 AM Page 740

DAY 17

WEEK 3

Transforming XML
Documents

In Day 16’s lesson, “Integrating XML with J2EE,” you studied the basic fea-
tures of the Extensible Markup Language (XML) and the Java for XML
Processing API (JAXP). You can now create XML documents using DOM or
Java OutputStream/Writer objects and process existing XML documents using
SAX and DOM. As long as you use XML to store information or transfer infor-
mation between different components in your application, what you already
know about XML is probably sufficient.

But for many applications, you will need to transform your XML documents
into other formats, such as HTML, for presentation to a Web client. You may
also need to generate a new XML document from an existing one where the
new document uses a different XML DTD or schema from the original.

These and other requirements are so ubiquitous among enterprise applications
(like those based on J2EE) that tools and standard APIs supporting common
capabilities are developing all the time.

21 0672323842 CH17 3/20/02 9:32 AM Page 741

742 Day 17

In today’s work, you will look at

• Techniques for presenting XML data to a Web client

• Applying HTML stylesheets to XML

• The Extensible Stylesheet Language Transformation (XSLT) component of the
JAXP for transforming XML documents into other formats

• XALAN, an open-source XSLT implementation from the Apache project

• XSLT compilers, such as xsltc

Presenting XML to Clients
XML is a useful way of exchanging data between applications and for moving and stor-
ing data within an application. However, XML is not very convenient for presenting data
to a user because it primarily describes the content of the data and not how to present it
to the user.

Data presented to a user must be formatted so that it is easy to read. XML defines the
data and its metadata, but it does not define how to format the data for presentation. In
fact, one of the design criteria of XML is not to define data presentation formats.
Because the same data will be presented in different ways to different users, any attempt
to include presentation information would turn the XML document into an incoherent
mix of data, metadata, and formatting instructions for multiple output devices.

The technique of presenting XML data to a user involves transforming the data from
XML to another format. Typical applications are to transform XML into

• HTML for output to a Web browser

• WML for output to a WAP-enabled mobile phone

• PDF for displaying on any graphic client

• Postscript for output to a printer

• RTF or TeX for presentation to a word processor or text formatter

• XML for presentation to another application that requires the data in a different
format

XML can be displayed directly by an XML-aware client using Cascading
Stylesheets (CSS) to describe how the XML elements should be displayed.

Note

21 0672323842 CH17 3/20/02 9:32 AM Page 742

Transforming XML Documents 743

17

The transformation of the XML document can be undertaken either by the server that has
access to the document or by the client that controls the display. There are pros and cons
for each approach. The more work that is done on the server, the fewer clients it can sup-
port. However, relying on the client to perform complex transformations tends to rule out
the use of many lightweight (thin) clients.

In practice, most current implementations of XSLT perform the transformations on the
server. This means that the server must be aware of all possible client display require-
ments. In practice, this is not a major problem because most clients support a standard
presentation language, such as HTML, WML, and PDF, for visual displays and on
Postscript for printing.

Presenting XML to Browsers
Web browsers display HTML information. As you saw on Day 16, well written HTML is
a well formatted XML- document. Given the close relationship between HTML and
XML, it is feasible for an HTML browser to be adapted to present XML. Many recent
browsers, such as Mozilla (Netscape 6), Internet Explorer 5, Opera, and countless others,
support presentation of XML documents. However, additional formatting information
must be provided with the XML data to enable the browser to format the data. By
default, XML documents are rendered in plain text, usually with the XML tags highlight-
ed in color and possibly with the tags neatly aligned to highlight the nested tag structure
of the document.

Like HTML browsers, there is some variation between the browsers on the market as to
how they support presentation of XML. To address this problem, the World Wide Web
Consortium (W3C) has defined a standard mechanism called Extensible Stylesheet
Language (XSL) for supplying information on transforming an XML document into dif-
ferent formats. The most common use of XSL at the present time is to convert XML into
HTML for display by a Web browser, but the technology is much more flexible than this
limited use implies.

Early XSL support in popular HTML browsers was based on draft versions of the stan-
dard, and some browsers added in their own proprietary extensions. With a fully ratified
standard, recent versions of the browsers are now implementing the standard, but at least
one manufacturer is maintaining backward compatibility at the expense of standards con-
formance. You must take into account the variations in client support for XSL when
designing your systems. In practice, this means either dictating the client browser and
targeting your application to that browser or transforming the data on the server into
HTML or another format (such as PDF).

21 0672323842 CH17 3/20/02 9:32 AM Page 743

Extensible Stylesheet Language (XSL)
XSL is a family of technologies used to transform XML documents into any other for-
mat. The two components of XSL are

• XSLT—Extensible Stylesheet Transformations (XSLT) are applied to an XML doc-
ument to transform it to another format.

• XSL-FO—XSL Formatting Objects are used define formatting semantics in a
device independent manner.

XSLT has been widely adopted by the computing industry, and you will look in detail at
this technology in the “Extensible Stylesheet Transformations” section later in this chap-
ter.

XSL-FO XSL Formatting Objects
Formatting objects define a device-independent grammar for defining how data should be
presented. The actual data is intermixed with the formatting objects to define a portable
formatted document.

Formatting objects are widely referred to as XSL-FO, but this is not an acronym defined
in the W3C standard. You may see XSL-FO written in different forms—XSL:FO,
XSLFO, XSL/FO, and others.

Listing 17.1 shows a fragment of an XSL-FO document that defines a table of skills in
the Agency case study.

LISTING 17.1 Fragment of an XSL-FO Document

1: <fo:block font-family=”sans-serif” color=”blue”>
2: <fo:table border-style=”solid”>
3: <fo:table-body>
4: <fo:table-row>
5: <fo:table-cell padding=”1mm”>
6: <fo:block>Bodyguard</fo:block>
7: </fo:table>
8: <fo:table-cell padding=”1mm”>
9: <fo:block>Critic</fo:block>
10: </fo:table>
11: <fo:table-row>
12: <fo:table-body>
13: <fo:table>

As you can see from listing 17.1, XSL-FO is an XML document defining formatting
instructions and data. In this example, the formatting objects provide the bulk of the

744 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 744

Transforming XML Documents 745

17

document with a very small amount of data. XSL-FO is quite a verbose format and
maintains device independence at the cost of some generalizations; the font name on line
1 is sans-serif instead of a device-specific font name, such as Arial. This helps
improve portability of XSL-FO but at the expense of control over the exact rendering of
a document on a specific device.

XSL-FO requires two stages for presenting an XML document to a client device.

1. The XML document must be transformed into an XSL-FO document.

2. The XSL-FO document must be transformed into the necessary formatting instruc-
tions.

XSLT is used to transform XML into XML-FO. There are several tools around for con-
verting XSL-FO into other formats. One example is the open-source Apache FOP utility
that can produce PDF output from an XSL-FO document. FOP can also create a Java
Swing application that will display an XSL-FO document using Swing components.

One criticism of XSL-FO is that it does not bring anything new to the process of format-
ting XML documents. HTML and WML already do a very good job of defining the pre-
sentation of data for two of the most popular client devices—PCs and mobile phones.
Similarly, PDF defines a portable format for online presentation, and Postscript defines a
portable format for printing documents. There is no requirement for another device inde-
pendent format.

You can find out more about XSL-FO from online Web resources and the book Sams
Teach Yourself XML in 21 Days from Sams Publishing.

Extensible Stylesheet Transformations (XSLT)
XSLT is a very flexible technique that is used to transform an XML document into a dif-
ferent format, such as XSL-FO, HTML, WML, PDF, or any format you choose, includ-
ing an XML document conforming to another DTD.

XSLT defines a stylesheet that can be applied to an XML document to transform the
XML data into another format. The most common use of XSLT at the moment is to
transform XML into HTML for display by a Web browser.

An XSLT stylesheet defines rules that will transform the XML data into the new format.
The rules are driven by pattern matching XML elements and attributes in the original
XML document. The pattern matching approach enables a single stylesheet to be used
with XML documents conforming to different DTDs, provided that there is a reasonable
amount of commonality between the XML elements.

21 0672323842 CH17 3/20/02 9:32 AM Page 745

A stylesheet transforms any XML document independently from any DTD or Schema to
which the document may conform. However, the writer of the stylesheet must be aware
of the source document’s structure to ensure that the stylesheet achieves the desired
result.

An XSLT stylesheet is a well-formed XML document in its own right and conforms to a
standard defined by the W3C. Listing 17.2 shows the smallest valid stylesheet called
simple.xsl; conventionally, stylesheets are stored in files with a .xsl suffix.

LISTING 17.2 Full Text of simple.xsl

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
</xsl:stylesheet>

In Listing 17.2, line 2 binds the namespace xsl to the namespace URI
http://www.w3.org/1999/XSL/Transform within the context or the document’s root ele-
ment. Although the example stylesheet apparently does nothing, in fact, it transforms an
XML document by removing the XML tags and outputting the remaining text. While this
doesn’t seem a very useful way of presenting data to a client, it is helpful for understand-
ing the different ways of applying stylesheets to documents.

Applying Stylesheets
There are three ways of applying stylesheets when delivering data to a client such as a
Web browser:

• The server uses the stylesheet to transform the XML document into a local file,
and the file is sent to the client instead of the original document.

• The stylesheet is sent to the client and then the client transforms the specified
XML document for display to the user.

• The server uses the stylesheet to transform the document to a presentation lan-
guage, such as HTML or WML, and then presents the transformed document to the
client.

All three approaches in theory use the same XML data and stylesheet; they differ in
where and when the transformation takes place.

Storing Transformed Documents on the Server
Storing the transformed data on the server and presenting this to the client is a good tech-
nique when the document changes infrequently and many clients will use the same docu-
ment. This approach reduces the processing requirements because a new HTML docu-
ment is only generated when the original data changes.

746 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 746

Transforming XML Documents 747

17

The downside to this approach is that at least two copies of the data must be retained—
the original data and the formatted data. There often may be several copies of the data
formatted for each possible client device. Keeping the formatted documents synchro-
nized with original data can become an administrative nightmare. This increased com-
plexity also introduces additional potential for subtle and hard to identify bugs in the
application.

Presenting XML Documents and Stylesheets to the
Client
Sending the stylesheet and the XML document to the client requires an XML/
XSLT-aware client. Given that most clients are Web browsers, this means adding XSLT
capabilities to the Web browser.

XSLT support is available in many browsers, such as Netscape 6, Internet Explorer5,
Mozilla, Opera, and many others. Sadly, the IE5 and IE6 implementation does not con-
form to the W3C standard. If you can ensure your customers will use a W3C-conformant
browser, presenting XML and a stylesheet to the client is a viable approach. In practice,
given the dominance of IE as a Web browser at the present time, portable J2EE applica-
tions must adopt a different solution.

Because there are no other widely-used client browsers that support XML transforma-
tions (as defined by the W3C), the rest of today’s work with XSLT will concentrate on
the third means of applying XSLT transformations—that is, on the server.

Transforming the XML Document on the Server
The most common approach to transforming XML for presentation by the client is to do
the transformation on the server when the client requests the data. The formatted output
is sent to the requesting client. Subsequent requests from the same or different clients
must reformat the XML source. This approach ensures that the server retains control of
the XML data and only presents the client with the appropriate data. Because the client is
just a simple display device, there is no requirement for the client to support XML or
XSLT. The drawback is that the server must devote processing time to transforming the
data.

There are many tools on the market for supporting XLST, some that are free for personal
use and some that require commercial licenses. You will use the XALAN processor from
the Apache open-source project for investigating the XSLT transformations discussed in
today’s chapter. XALAN implements the JAXP framework for including XSLT in your
Java programs, and it supports a command-line processing interface for transforming
XML documents outside of a programming environment.

21 0672323842 CH17 3/20/02 9:32 AM Page 747

Using XALAN with J2EE
You can download XALAN from the following URL on the Apache project Web site.

http://xml.apache.org/xalan-j/

Download the latest Java version of XALAN to your workstation. Note that XALAN is
also provided as a non-Java implementation; make sure you download the Java version.
After extracting the XALAN archive, you will have an installation directory named after
the version of XALAN (for example, xalan-j_2_2_D14).

After installing XALAN, you will need to make the XALAN class files available to the
J2EE server and any Java applications you may write. The simplest method of doing this
is to install the required XALAN JAR files as JDK extensions.

JDK extensions are installed in the lib/ext directory of the Java Runtime Edition (jre)
directory. Look in the JDK installation directory on your workstation and find the follow-
ing directory.

Under Windows, it will be

%JAVA_HOME%\jre\lib\ext

Under Linux/Unix, it will be

$JAVA_HOME/jre/lib/ext

This is the JDK extension directory. You may also have a separate Java Runtime directo-
ry which should also be updated.

Windows users will find the Java Runtime extension directory in Program
Files\JavaSoft\JRE\1.3\lib\ext.

Linux and Unix users should examine their program search path ($PATH) for other Java
directories.

You will need to copy the XALAN JAR files into the extension directories for the JDK
and any installed Java Runtime Edition to be sure your applications will find the required
class files.

In the XALAN installation directory, there is a bin sub-directory containing several
XALAN files. Copy the following two JAR files from this directory to all the extension
directories you have identified on your system:

xalan.jar
xml-apis.jar

748 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 748

Transforming XML Documents 749

17

XALAN requires access to an XML parser. The JAXP package from Sun Microsystems
contains an XML parser that can be used with XALAN. JAXP is a standard component
of J2EE RI 1.3 and JDK 1.4, so it will be available on your workstation if you have
installed J2EE RI 1.3.

That is it, XALAN is now ready to use from standalone applications and from within
your J2EE applications.

Transforming XML Documents with XALAN
There are two ways of using XALAN:

• From the command line to transform an XML file

• From within a Java program to transform an XML data stream

For introducing XALAN, you will use the simple stylesheet shown in Listing 17.2 and
the XML document shown in Listing 17.3.

LISTING 17.3 Full Text of job.xml

1: <?xml version =”1.0”?>
2: <jobSummary>
3: <job customer=”winston” reference=”Cigar Trimmer”>
4: <location>London</location>
5: <description>Must like to talk and smoke</description>
6: <!--- skills list for winston -->
7: <skill>Cigar maker</skill>
8: <skill>Critic</skill>
9: </job>
10: <job customer=”george” reference=”Tree pruner”>
11: <location>Washington</location>
12: <description>Must be honest</description>
13: <!--- skills list for george -->
14: <skill>Tree surgeon</skill>
15: </job>
16: </jobSummary>

The XML data in Listing 17.3 is similar to the examples you used yesterday when study-
ing XML and JAXP. It defines information about one or more jobs. Each job’s primary
key is defined using attributes and the job description, location, and skills are defined as
child elements. This XML example also contains some XML comments. All aspects of
XSLT can be shown using this example.

21 0672323842 CH17 3/20/02 9:32 AM Page 749

Using XALAN from the Command Line
Using XALAN from the command line is simply a matter of invoking the XALAN
processor class (org.apache.xalan.xslt.Process) specifying the source XML file, the
stylesheet file, and the output file, as shown below:

java org.apache.xalan.xslt.Process -in <input XML> -xsl <stylesheet>
➥-out <output file>

If the -out parameter is omitted, the output is displayed onscreen. In the Day 17
Examples directory on the accompanying CD-ROM, the stylesheets are stored in an XSL
sub-directory and the XML documents in an XML sub-directory. The run subdirectory
contains a simple batch file and shell script that can be used to run the examples without
specifying the full command line. The command line shown in Listing 17.4 could be
replaced by run the batch file from the run sub-directory by using

runXalan job.xml simple.xsl

All the examples will use the relative pathnames for the files as stored in the Examples
directory on the CD-ROM.

Listing 17.4 shows how to use XALAN from the command line to transform the job.xml
source (Listing 17.3) by using the simple.xsl stylesheet (Listing 17.2). The sample files
are in the examples directory for Day 17 on the accompanying CD-ROM.

LISTING 17.4 Using XALAN from the Command Line

1: >java org.apache.xalan.xslt.Process -in XML/job.xml -xsl XSL/simple.xsl
2: <?xml version=”1.0” encoding=”UTF-8”?>
3:
4:
5: London
6: Must like to talk and smoke
7:
8: Cigar maker
9: Critic
10:
11:
12: Washington
13: Must be honest
14:
15: Tree surgeon
16:
17:

If you study the output from this command, you will see all the text from the original
XML document but none of the processing instructions, XML tags and attributes, or com-
ments. The default transformation rules suppress all but the text elements in the document.

750 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 750

Transforming XML Documents 751

17

Using XSLT in Java Applications
The second method of using XSLT is used more often when XML data must be trans-
formed by a Java application. JAXP provides a javax.xml.transform.Transformer
class that is used to transform XML documents using XSLT.

A javax.xml.transform.TransformerFactory is used to create a Transformer object.
A new TransformerFactory object is created by the static newInstance() method in the
factory class.

The following code creates a new TransformerFactory:

TransformerFactory factory = TransformerFactory.newInstance();

A Transformer object is created by a newTransformer() method in the factory object
and requires a stylesheet as a parameter to the method. The stylesheet must be accessed
using a javax.xml.transform.stream.Source object. A StreamSource object can be
constructed from a java.io.InputStream (or a File or Reader object).

The following code constructs an XSLT transformer from the stylesheet file called
simple.xsl:

Source xsl = new StreamSource(new FileInputStream(“simple.xsl”));
Transformer transformer = factory.newTransformer(xsl);

The Transformer method transform() is used to transform an XML document using
the stylesheet. The transform() method takes two parameters—a Source defining the
XML document and a javax.xml.transform.stream.Result for the output file. A
Result can be constructed from a java.io.OutputStream (or a File or Writer object).

The following lines will transform the XML document jobs.xml sending the output to
the screen:

Source xml = new StreamSource(context.getResourceAsStream(“jobs.xml”));
transformer.transform(xml, new StreamResult(System.out));

It’s as simple as that. Wrapping this code up as a J2EE servlet is a relatively easy opera-
tion, as shown by Listing 17.5.

The text elements representing the new lines between elements are
retained in the output. This is not a problem when transforming to HTML,
but it may be a problem for output formats where newlines are significant.
XSL defines tags for handling whitespace as discussed in the “Processing
White Space” section in today’s lesson.

Note

21 0672323842 CH17 3/20/02 9:32 AM Page 751

LISTING 17.5 Full Text of ApplyXSLT.java

1: import javax.servlet.*;
2: import javax.servlet.http.*;
3: import java.io.*;
4: import java.net.*;
5: import java.util.*;
6: import javax.xml.transform.*;
7: import javax.xml.transform.stream.*;
8:
9: public class ApplyXSLT extends HttpServlet {
10:
11: ServletConfig config;
12:
13: public void doGet (HttpServletRequest request,

➥HttpServletResponse response)
14: throws ServletException, IOException,

java.net.MalformedURLException
15: {
16: PrintWriter out = response.getWriter();
17: try {
18: String source = request.getParameter(“source”);
19: int ix = source.lastIndexOf(‘/’);
20: String xmlDoc = source.substring(0,ix);
21: String xslDoc = source.substring(ix);
22: TransformerFactory factory =

➥TransformerFactory.newInstance();
23:
24: ServletContext context = config.getServletContext();
25:
26: Source xml =

➥new StreamSource(context.getResourceAsStream(xmlDoc));
27: Source xsl =

➥new StreamSource(context.getResourceAsStream(xslDoc));
28:
29: Transformer transformer = factory.newTransformer(xsl);
30:
31: out.println(“<H2>Transformed Document</H2><PRE>”);
32: transformer.transform(xml, new StreamResult(out));
33: showResource(“XSL Stylesheet”, xslDoc, out);
34: showResource(“XML Source”, xmlDoc, out);
35: out.print(“</PRE>”);
36: }
37: catch (Exception ex) {
38: out.println(ex);
39: ex.printStackTrace(out);
40: }
41: out.close();
42: }
43:

752 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 752

Transforming XML Documents 753

17

44: private void showResource(String heading, String name, PrintWriter
out)
➥throws IOException {
45: out.println(“<H2>”+heading+”</H2>”);
46: BufferedReader in = new BufferedReader(new InputStreamReader(

➥config.getServletContext().getResourceAsStream(name)));
47: String buf;
48: while ((buf=in.readLine())!=null) {
49: StringTokenizer tok = new StringTokenizer(buf,” <>&’\””,true);
50: while (tok.hasMoreTokens()) {
51: String s = tok.nextToken();
52: if (s.length()==1)
53: {
54: switch (s.charAt(0)) {
55: case ‘ ‘: out.print(“ ”); break;
56: case ‘<’: out.print(“<”); break;
57: case ‘>’: out.print(“>”); break;
58: case ‘&’: out.print(“&”); break;
59: case ‘\’’: out.print(“'”); break;
60: case ‘“‘: out.print(“"”); break;
61: default: out.print(s); break;
62: }
63: }
64: else
65: out.print(s);
66: }
67: out.print(“
”);
68: }
69: out.print(“<P>”);
70: }
71:
72: public void init(ServletConfig config) throws ServletException {
73: super.init(config);
74: this.config = config;
75: }
76: }

The important lines in the servlet in Listing 17.5 are from 18 to 32. On line 18, the
servlet reads a request parameter that defines the XML source file and the stylesheet file,
which must be defined in the same Web application as the servlet. The two filenames are
passed as a single parameter called source, each filename being preceded by a forward
slash (/).

Before looking at the rest of this servlet, a simple HTML form that lets the user invoke
this servlet with the example files provided so far is shown in Listing 17.6.

LISTING 17.5 Continued

21 0672323842 CH17 3/20/02 9:32 AM Page 753

LISTING 17.6 Full Text of xsltForm.html

1: <HTML>
2: <TITLE>XLST Transformations</TITLE>
3: <BODY>
4: <FORM action=applyXSLT>
5: Select an XML document/XSL stylesheet to transform:
6: <SELECT name=source>
7: <OPTION>/job.xml/simple.xsl
8: </SELECT><P>
9: <INPUT type=submit>
10: </FORM>
11: </BODY>
12: </HTML>

You will be able to use this form and servlet to examine most of the example transforma-
tions shown today.

Returning to Listing 17.5, the code in lines 18 to 21 obtains the names for the XML and
stylesheet files from the HTTP source parameter.

Lines 26 and 27 use the getResourceAsStream() method from the ServletContext
object to find the named Web application file and return an InputStream object that can
be used to read the contents of the file. The getResourceAsStream() method hides the
real location of the file from the servlet enabling the servlet to be deployed as part of any
Web application.

In Listing 17.5, lines 22 to 32 perform the actual transformation and write the trans-
formed data to the Web page. In Lines 33 and 34, the showResource() method returns
the text of the original XML data and stylesheet back to the Web browser for the user to
view the original XML document, stylesheet, and transformed output on the single page.
The showResource() method replaces the reserved HTML characters with their replace-
ment string representation.

To run this demonstration servlet, create a new application called xslt and add the fol-
lowing files to the WAR file:

• ApplyXSLT.class

• xsltForm.html

• jobs.xml

• simple.xsl

Create a servlet Web application using ApplyXSLT.class as the servlet and give it an
alias of /applyXSLT. Define the Web application context as /xslt and deploy the appli-
cation.

754 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 754

Transforming XML Documents 755

17

You can access the HTML form using the URL

http://localhost:8000/xslt/xsltForm.html

Select the XML and stylesheet pair you want to view and click the “Submit” button.
Your screen will look similar to the one shown in Figure 17.1.

FIGURE 17.1
Viewing the simple
XML transformation.

To look at the later examples in today’s lesson, you will need to add XML document and
stylesheet entries to the <select> list on the HTML form and add the XML document
and stylesheet to the xslt Web application.

So far, you have seen a very simple XLST transformation. You will now look in more
detail at XSLT and its capabilities.

XSLT Stylesheets
In Listing 17.2, you saw a simple stylesheet that used default transformation rules to
remove everything except for the text from an XML document. You will now look at
how to define your own rules for transforming an XML document.

Rules are based on matching elements in the XML document and transforming the
elements into a new document. Text and information from the original XML document
can be included or omitted. Components from the XML document are matched using the

21 0672323842 CH17 3/20/02 9:32 AM Page 755

XPath notation defined by the W3C. You will learn more about XPath in the “Using
XPath with XSLT” section later in today’s lesson, after you have looked at some simple
XSLT templates.

Template Rules
The most common XSLT template rules are those for matching and transforming ele-
ments. The following simple example matches the root node of a document and trans-
forms it into an outline for an HTML document that will be created as you learn more
about XSLT’s capabilities.

<xsl:template match=”/”>
<HTML>
<HEAD> <TITLE>Job Details</TITLE> </HEAD>
<BODY> </BODY>

</HTML>
</xsl:template>

The <xsl:template> defines a new template rule in the stylesheet and its match attribute
specifies which parts of the XML document will be matched by this rule. The root of a
document is matched by the forward slash (/); other matching patterns are discussed
later in the “Using XPath with XSLT” section.

The body of the <xsl:template> element is output in place of the matched element in
the original document. In this case, the entire document is replaced by a blank HTML
document. No other elements in the document will be matched.

If you want to transform other elements in the original document, you must define addi-
tional templates and apply those templates to the body of the matched element. The fol-
lowing text adds an <xsl:apply-templates/> element to the rule matching the XML
document root:

<xsl:template match=”/”>
<HTML>
<HEAD> <title>Job Details</title> </HEAD>
<BODY> <xsl:apply-templates/> </BODY>

</HTML>
</xsl:template>

When this rule is applied to the transformed root element, the body of the root element is
scanned for further template matches. The output from the other rules is inserted at the
point where the <xsl:apply-templates/> element is defined.

Listing 17.7 shows a simple stylesheet that transforms all of the XML elements into
HTML elements.

756 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 756

Transforming XML Documents 757

17

LISTING 17.7 Full Text of basicHTML.xsl

1: <?xml version=”1.0”?>
2: <xsl:stylesheet version=”1.0”

➥xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
3: <xsl:template match=”/”>
4: <HTML>
5: <HEAD> <TITLE>Job Details</TITLE> </HEAD>
6: <BODY> <xsl:apply-templates/> </BODY>
7: </HTML>
8: </xsl:template>
9: <xsl:template match=”*”>
10: <P><xsl:apply-templates/></P>
11: </xsl:template>
12: </xsl:stylesheet>

In Listing 17.7, the second rule at lines 9–11 matches every element in the XML docu-
ment, replaces it with a element, and applies all the templates recursively to
the body of the XML element.

A stylesheet is an XML document, and you must ensure the XML remains
valid when outputting HTML. In Listing 17.7, on line 10, the text is
enclosed inside an HTML paragraph to ensure that the stylesheet remains
valid. Many authors of HTML simply insert the paragraph <P> tag at the end
of the paragraph. This will not work with stylesheets because the untermi-
nated <P> tag is not well-formed XML. Other HTML tags, such as
 and
, must be treated in a similar manner. There are alternative solutions
to the problem of defining HTML documents inside XSLT stylesheets that are
outside the scope of this chapter.

Caution

Listing 17.8 shows the HTML output from applying the basicHTML.xsl stylesheet to the
jobs.xml file shown in Listing 17.3.

LISTING 17.8 Applying basicHTML.xsl to jobs.xml

1: >java org.apache.xalan.xslt.Process -in XML\job.xml -xsl XSL\basicHTML.xsl
2: <HTML>
3: <HEAD>
4: <META http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
5: <TITLE>Job Details</TITLE>
6: </HEAD>
7: <BODY>
8: <P>
9:

21 0672323842 CH17 3/20/02 9:32 AM Page 757

10:
11: <P>
12:
13:
14: <P>
15: London
16: </P>
17:
18: <P>
19: Must like to talk and smoke
20: </P>
21:
22:
23: <P>
24: Cigar maker
25: </P>
26:
27: <P>
28: Critic
29: </P>
30:
31:
32: </P>
33:
34: <P>
35:
36:
37: <P>
38: Washington
39: </P>
40:
41: <P>
42: Must be honest
43: </P>
44:
45:
46: <P>
47: Tree surgeon
48: </P>
49:
50:
51: </P>
52:
53:
54: </P>
55: </BODY>
56: </HTML>

758 Day 17

LISTING 17.8 Continued

21 0672323842 CH17 3/20/02 9:32 AM Page 758

Transforming XML Documents 759

17

In Listing 17.8, the HTML body starts with two STRONG elements corresponding to the
<jobSummary> root element and the first <job> element. The nested XML elements
<location> and <skill> are output inside tags.

If you studied Listing 17.8 carefully, you will have seen a <META> element inserted into
the output at line 4. The XSL processor has identified the output as an HTML document
and, on recognizing the HTML <HEAD> element, has inserted the <META> element to iden-
tify the contents of the Web page.

The stylesheet must be well formed XML, so any HTML tags must use consis-
tent letter case names for both the start and end tags. HTML is not case sen-
sitive and would allow you to use mismatched names such as
.... This example is invalid in XML and will cause the
transformation to fail. It is also extremely poor HTML style.

Note

Now that you have seen how the templates are applied to the body of a tag, you might be
wondering how not to apply the templates but still output the text of an element. You do
this by using the <xsl:value-of select=’.’/> tag. This tag outputs the text of the cur-
rently selected XML element without applying any more templates either to this element
or any of its descendents.

You will use the <xsl:value-of> element when you want to output the text of an XML
tag rather than transform it in some way. Listing 17.9 shows a more realistic stylesheet
for the jobs.xml example file, and Listing 17.10 shows the transformed document.

LISTING 17.9 Full Text of textHTML.xsl

1: <?xml version=”1.0”?>
2: <xsl:stylesheet version=”1.0”

➥xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
3: <xsl:template match=”/”>
4: <HTML>
5: <HEAD> <TITLE>Job Details</TITLE> </HEAD>
6: <BODY> <xsl:apply-templates/> </BODY>
7: </HTML>
8: </xsl:template>
9: <xsl:template match=”jobSummary”>
10: <H2>Jobs</H2><xsl:apply-templates/>
11: </xsl:template>
12: <xsl:template match=”job”>
13: New Job: <P><xsl:apply-templates/></p>
14: </xsl:template>
15: <xsl:template match=”description”>

21 0672323842 CH17 3/20/02 9:32 AM Page 759

16: <P>Descriptiom: <xsl:value-of select=”.”/></P>
17: </xsl:template>
18: <xsl:template match=”location”>
19: <P>Location: <xsl:value-of select=”.”/></P>
20: </xsl:template>
21: <xsl:template match=”skill”>
22: <P>Skill: <xsl:value-of select=”.”/></P>
23: </xsl:template>
24: </xsl:stylesheet>

In Listing 17.9, the leaf elements of <description>, <location>, and <skill> are out-
put as text rather than expanded using the template rules.

760 Day 17

LISTING 17.9 Continued

Listing 17.9 includes a template for the document root (match=”/”) and the
root element (match=’jobSummary”). On Day 16, you learned that the docu-
ment root is the entire XML document, including the processing instructions
and comments outside of the root element.

Note

LISTING 17.10 Applying textHTML.xsl to jobs.xml

1: >java org.apache.xalan.xslt.Process -in XML\job.xml -xsl XSL\textHTML.xsl
2: <HTML>
3: <HEAD>
4: <META http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
5: <TITLE>Job Details</TITLE>
6: </HEAD>
7: <BODY>
8: <H2>Jobs</H2>
9:
10: New Job: <P>
11:
12: <P>Location: London</P>
13:
14: <P>Descriptiom: Must like to talk and smoke</P>
15:
16:
17: <P>Skill: Cigar maker</P>
18:
19: <P>Skill: Critic</P>
20:
21: </P>
22:
23: New Job: <P>
24:
25: <P>Location: Washington</P>

21 0672323842 CH17 3/20/02 9:32 AM Page 760

Transforming XML Documents 761

17

26:
27: <P>Descriptiom: Must be honest</P>
28:
29:
30: <P>Skill: Tree surgeon</P>
31:
32: </P>
33:
34: </BODY>
35: </HTML>

Using the <xsl:value-of> tag raises two questions:

• What is the text value of an XML element?

• What does the select attribute do?

These questions are answered in the next two sections.

Text Representation of XML Elements
Every XML node has a textual representation that is used when the <xsl:value-of> tag
is defined within a template rule. Table 17.1 shows how the textual equivalent of each of
the seven XML nodes is obtained.

TABLE 17.1 Text Values of XML Elements

Element Type Description

Document root The concatenation of all the text in the document

Elements The concatenation of all the text in the body of the element

Text The text value of the node, including whitespace

Attributes The text value of the attribute, including whitespace

Namespaces The namespace URI that is bound to the namespace prefix associ-
ated with the node

Processing Instructions The text the processing instruction following the target name and
including any whitespace

Comments The text of the comment between the <!-- and --> delimiters

As you can see from Table 17.1, every node has a textual equivalent. The default rules
for a stylesheet only include the text values for the document root, elements, and all text
nodes. By default, the other four nodes (attributes, namespaces, processing instructions,
and comments) are not output. Before you can understand the default rules, you will
need to study the XPath notation for matching nodes in an XML document.

LISTING 17.10 Continued

21 0672323842 CH17 3/20/02 9:32 AM Page 761

Using XPath with XSLT
XPath is means of identifying nodes within an XML document. The W3C identified
several aspects of XML that required the ability to identify nodes, for example

• Pointers from one XML document to another called XPointer (the equivalent of
href in HTML)

• Template rules for XSLT stylesheets

• Schemas

To ensure that the two requirements for identifying nodes share a common syntax, the
XPath notation was defined as a separate standard.

An XPath is a set of patterns that can be used to match nodes within an XML document.
There are a large number of patterns that can be used to match any part of an XML doc-
ument. Rather than reproduce the entire XPath specification in today’s lesson, you will
just study some examples that will help you understand how to use XPath. Further infor-
mation about XPath can be obtained from the WC3 Web site.

XPath uses the concept of axes and expressions to define a path in the XML document:

• Axes define different parts of the XML document structure.

• Expressions refer to a specific objects within an axis.

Some of the most frequently used axes have special shortcuts to reduce the amount of
typing needed. Consider the stylesheet rule you used to match a skill element:

<xsl:template match=”skill”>
Skill: <xsl:value-of select=”.”/><P></P>

</xsl:template>

This matches a child “skill” element using a simple abbreviation. The full XPath nota-
tion for this would be:

<xsl:template match=” child::skill”>

The axis is child and the expression is an element with the name skill (the double
colon separates the axis from the expression). The current node that a path is defined
from is called the context node.

The child axis is used to identify all nodes that are immediate children of the context
node. Related axes are

• self The current node

• parent The immediate parent of the context node

762 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 762

Transforming XML Documents 763

17

• descendent Immediate children of the context node, all the children of those
nodes, their children, and so on

• descendent-or-self All descendent nodes and the current context node

• ancestor Any node higher up the node tree that contains context node

There are several other axes defined in the XPath notation.

The match=”.” attribute in the example <xsl:value-of> element, shown previously, is
another example of a shortcut. The full notation is as follows:

Skill: <xsl:value-of select=”self::node()”/><P></P>

The function node() refers to the current context node. Additional functions are

• name() The name of the context node instead of the body of the node

• comment() Selects a comment node

• text() Selects a text node

• processing-instruction() Selects a processing instruction node

Some simple XPath expressions are as follows:

• self::comment() All comments in the current element

• child::text() All the text nodes in the immediate child nodes

• descendent::node() All the nodes below the context node

• descendent-or-self::skill All the nodes named skill below the current
node, including the current node

Expressions can be more complex and specify a node hierarchy:

• job/skill A skill node that is an immediate child of a job node (in full
child::job/child::skill)

XPath expressions can be arbitrarily long and can contain the following special expres-
sions:

• .. The immediate parent node defined as parent::node()

• // The current node or any descendent as descendent-or-self::node()

• * Any node in the specified axis

• | Used to provide alternate patterns (one pattern or another)

These patterns can be used to identify any node as illustrated by the following examples:

• jobSummary//skill Nodes called skill defined anywhere below the
jobSummary node

21 0672323842 CH17 3/20/02 9:32 AM Page 763

• jobSummary/*/skill skill nodes defined as children of children of the
jobSummary node

• skill/.. The immediate parent node of a skill node

• location|skill A location or skill node

• parent::comment()|child::text() Comment nodes in the immediate parent
and text nodes in the immediate child

• /|* The document root and all elements

Attributes can be selected using the attribute axis, which can be abbreviated to @. For
example,

• attribute::customer An the attribute called customer of any node (not the
node itself)

• job/@reference An attribute called reference so long as it is associated with a
job node

In addition to these basic features, XPath supports a powerful matching language sup-
porting variable-like constructs, expressions, and additional functions.

Now that you have a basic understanding of Xpath, you can look at the default rules for a
stylesheet.

Default Stylesheet Rules
There are some default stylesheet rules that apply to the whole XML document unless
overridden by specific template rules.

The first default rule that ensures all elements are processed is as follows:

<xsl:template match=”*|/”>
<xsl:apply-templates/>

</xsl:template>

A second rule is used to output the text of text nodes and attributes:

<xsl:template match=”text()|@*”>
<xsl:value-of select=”.”/>

</xsl:template>

A third rule suppresses comments and processing instructions:

<xsl:template match=”processing-instruction()|comment()”/>

If an XML element in the source document matches more than one rule, the most specif-
ic rule is applied. Consequently, rules defined in a stylesheet will override the default
rules.

764 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 764

Transforming XML Documents 765

17

The second default rule specifies that the text value of attributes should be output, but
you can see from Listing 17.4 that the attributes in job.xml (Listing 17.3) have not been
included. Obviously, there is an extra requirement for processing attributes because this
rule has never been invoked.

Processing Attributes
Attributes of XML elements are not processed unless a specific rule is defined to process
the element’s attributes.

An attribute is processed by using the <xsl:apply-templates> rule selecting one or
more attributes. The third line in the following rule is the one that applies templates to all
attributes:

<xsl:template match=”*”>
<xsl:apply-templates/>
<xsl:apply-templates select=”@*”/>

</xsl:template>

This <xsl:template> rule matches all elements and applies templates to the child ele-
ments and then that element’s attributes. It is the second <xsl:apply-templates> rule
with the select=”@*” attribute that ensures that all attributes are output. If you only
defined the second <xsl:apply-templates select=”@*”> rule, no output would be pro-
duced because the rule had not been applied to elements in the context node.

With this extra information, you can now revisit the job.xml file and define a stylesheet
that will display the job information in an HTML table. Listing 17.11 shows a stylesheet
that will convert a <job> element to an HTML table.

LISTING 17.11 Full Text of table.xsl

1: <?xml version=”1.0”?>
2: <xsl:stylesheet version=”1.0”

➥xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
3: <xsl:template match=”job”>
4: <H2>Job ref: <xsl:value-of select=”@customer”/>/

➥<xsl:value-of select=”@reference”/></H2>
5: <P><xsl:apply-templates select=”description”/></P>
6: <TABLE border=”1”>
7: <xsl:apply-templates select=”skill|location”/>
8: </TABLE>
9: </xsl:template>
10: <xsl:template match=”description”>
11: <I><xsl:value-of select=”.”/></I>
12: </xsl:template>
13: <xsl:template match=”skill|location”>

21 0672323842 CH17 3/20/02 9:32 AM Page 765

14: <TR><TD><xsl:value-of select=”name()”/>:</TD>
➥<TD><xsl:value-of select=”.”/></TD></TR>
15: </xsl:template>
16: </xsl:stylesheet>

Listing 17.11 brings together several features of stylesheets that have been described pre-
viously. The rule at line 3 matches a <job> element, and the customer and reference
attributes are inserted into the output at line 4. At line 5, the job description child ele-
ment is output in its own paragraph, and the skill and location children are output
inside an HTML table at lines 6 and 8.

In line 6, the HTML table border attribute is enclosed in quotes so that it is valid XML
(the same is also true for line 10 and the colspan attribute).

Line 12 uses one rule to match the <location> or <skill> elements. Finally, the name of
the selected node is inserted into the output stream using the name() function in line 13.

Figure 17.2 shows the result of applying the table.xsl stylesheet from Listing 17.10 to
the jobs.xml file.

766 Day 17

LISTING 17.11 Continued

FIGURE 17.2
The XML to HTML
table transformation.

XSL supports significantly more complex transformation rules than those shown so far.
The next section will provide an overview of some of the additional XSL features.

21 0672323842 CH17 3/20/02 9:32 AM Page 766

Transforming XML Documents 767

17

Using Stylesheet Elements
XSL defines about twenty elements for transforming XML documents. So far, you have
seen the basic <xsl:template> element for defining template rules and the <xsl:apply-
templates> and <xsl:value-of> rules for including data in the output document.

Many transformations can be defined just using these three elements. However, some of
the more complex requirements need additional support from XSL.

Processing Whitespace and Text
By default, an XSL transformation retains the whitespace in the original document. This
may not be required for the following reasons:

• The whitespace is generally ignored when processing the output.

• Users browsing the transformed document may find the whitespace misleading or
annoying.

• Some output document formats may be whitespace sensitive, so the transformation
must control the way whitespace is written to the output.

The <xsl:strip-space> tag can be used to strip leading and trailing whitespace from an
element’s body. The tag takes an elements attribute that defines from which elements to
strip the whitespace. Elements are selected using the XPath notation.

Listing 17.12 shows the simple.xsl stylesheet shown in Listing 17.2 enhanced to strip
whitespace from all elements.

LISTING 17.12 Full Text of simpleStrip.xsl

1: <?xml version=”1.0”?>
2: <xsl:stylesheet version=”1.0”

➥xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
3: <xsl:strip-space elements=”*”/>
4: </xsl:stylesheet>

Applying this stylesheet to the jobs.xml document produces the following output:

LondonMust like to talk and smokeCigar makerCriticWashingtonMust
➥be honestTree surgeon

No whitespace has been included but, as you can see, this is not particularly readable
because the whitespace between the elements has been lost. You could selectively strip
whitespace from elements using tags, as shown in the following:

<xsl:strip-space elements=”jobSummary|job”/>

But this will still retain multiple spaces in the non-stripped elements.

21 0672323842 CH17 3/20/02 9:32 AM Page 767

Inserting whitespace into the output stream is best done using the <xsl:text> element.
Any whitespace inside the <xsl:text> element is retained. You could rewrite the default
rule for all elements to include a single blank line before each element, as shown in
Listing 17.13.

LISTING 17.13 Full Text of simpleSpace.xsl

1: <?xml version=”1.0”?>
2: <xsl:stylesheet version=”1.0”

➥xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
3: <xsl:strip-space elements=”*”/>
4: <xsl:template match=”*”>
5: <xsl:text>
6: </xsl:text>
7: <xsl:apply-templates/>
8: </xsl:template>
9: </xsl:stylesheet>

The blank line is inserted at lines 5 and 6. Notice how the closing </xsl:text> tag is not
indented; otherwise, additional whitespace would have been included. You could not use
an empty tag here (<xsl:text/>) because you need to insert the end of line into the out-
put document). The output from applying this stylesheet to jobs.xml is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>

London
Must like to talk and smoke
Cigar maker
Critic

Washington
Must be honest
Tree surgeon

Whitespace is automatically stripped from the stylesheet, which is why the indented
<xsl:apply-templates/> tag does not insert any whitespace before the output text.

The <xsl:text> tag is also used to insert text containing XML special characters (such
as < and &) into the output stream. These characters are defined in the stylesheet using
their character reference form (such as <) and are output in the same format.
Wrapping the symbols inside an <xsl:text> element with the disable-output-
escaping attribute set to yes will output any special symbols as simple Unicode charac-
ters. The <xsl:text> element is most often used when the output document is not an
XML document, or the output is not well formed XML.

768 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 768

Transforming XML Documents 769

17

The following example shows one way of inserting a piece of JavaScript into your Web
page (using comments, as described in the “Adding Comments” section later in this
chapter, is a better approach):

<xsl:template match=”SCRIPT”>
<SCRIPT language=”javascript”>
<xsl:text disable-output-escaping=”yes”>
<!--
if (n < 0 && m > 0) {
n = m;

} // -->
</xsl:text>

</SCRIPT>
</xsl:template>

This transforms to

<SCRIPT language=”javascript”>
<!--
if (n < 0 && m > 0) {
n = m;

} // -->
</SCRIPT>

Adding Comments
You can add a comment to a stylesheet as follows:

<xsl:template match=”job”>
<!--this is a job definition -->
<xsl:apply-templates/>

</xsl:template>

Using XML comments in this way is treated as a stylesheet comment and is not inserted
into the output stream. To include a comment in the output document, you must use the
<xsl:comment> element, as shown in the following:

<xsl:template match=”job”>
<xsl:comment>this is a job definition</xsl:comment>
<xsl:apply-templates/>

</xsl:template>

Disabling the output escaping mechanism is dangerous and should only be
used when no alternative solution can be found. The disable-output-
escaping attribute is often abused, much like the goto statement in some
programming languages.

Caution

21 0672323842 CH17 3/20/02 9:32 AM Page 769

The following example shows a better solution to inserting JavaScript in an HTML page:

<xsl:template match=”SCRIPT”>
<SCRIPT language=”javascript”>
<xsl:text>
<xsl:comment>
if (n < 0 && m > 0) {
n = m;

} // </xsl:comment>
</xsl:text>

</SCRIPT>
</xsl:template>

Another advantage of using <xsl:comment> is that the actual comment can be derived
from data in the source XML document. The following example inserts the job customer
and reference attributes into a comment:

<xsl:template match=”job”>
<xsl:comment>Job definition for <xsl:value-of select=”@customer”/>/

➥<xsl:value-of select=”@reference”/></xsl:comment>
<xsl:apply-templates/>

</xsl:template>

Finally, if you want to copy the comments from the original XML document into the
transformed document, add the following rule to your stylesheet:

<xsl:template match=”comment()”>
<xsl:comment><xsl:value-of select=”.”/></xsl:comment>

</xsl:template>

Attribute Values
Some transformations require output element attributes to vary according to the element
being processed. As a simple example, think back to Day 16 when you first looked at
XML and the simple structure for the job summary, as shown in the following:

<?xml version=”1.0”?>
<jobSummary>
<job>
<customer>winston</customer>
<reference>Cigar Trimmer</reference>
<location>London</location>
<description>Must like to talk and smoke</description>
<!-- skills list for winston -->
<skill>Cigar maker</skill>
<skill>Critic</skill>

</job>
</jobSummary>

This version didn’t use attributes to represent the primary key of the job. Imagine that
you have to convert this form of document into the new form using attributes. Your first
attempt to do this might be as follows:

770 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 770

Transforming XML Documents 771

17

<xsl:template match=”job”>
<job
customer=”<xsl:value-of select=’./customer’/>”
job=”<xsl:value-of select=’./reference’/>”

/>
<xsl:apply-templates/>

</xsl:template>

Unfortunately, this won’t work, because XML does not allow you to define elements
inside attributes of other elements. You can always insert a < symbol inside an attribute
value using < but this would not be interpreted as an element.

To get around the XML restriction of not allowing elements to be defined inside attribut-
es, XSLT stylesheets let you insert the value of elements inside attributes by enclosing
the XPath name in braces, as shown in the following:

<xsl:template match=”job”>
<job customer=”{./customer}” job=”{./reference}” />
<xsl:apply-templates select=’location|description|skill’/>

</xsl:template>

To prevent the nested <customer> and <reference> elements from being output by the
default template rules, the <apply-templates> element selects the required child ele-
ments of the job element. An alternative syntax that excludes the unwanted elements and
doesn’t need you to explicitly list the required elements uses an XPATH expression nota-
tion that has not been discussed today. For completeness, this rule it is as follows:

<xsl:apply-templates select=”./*[name()!=’customer’ and name()!=’reference’]”/>

If you want to convert the new style job element (with attributes) back to the one with
nested elements, you use the following rule:

<xsl:template match=”job”>
<job>
<customer><xsl:value-of select=”@customer/></customer>
<reference><xsl:value-of select=”@reference/></reference>
<xsl:apply-templates/>

</job>
</xsl:template>

Creating and Copying Elements
In the previous section, you learned how to convert one XML document to another by con-
verting nested elements into tags. But what do you do if you want to convert an attribute
into an element where the attribute value is the name of the element, or vice versa?

As a simple example, consider a Deployment Descriptor (DD) for two Session beans, as
shown in Listing 17.14.

21 0672323842 CH17 3/20/02 9:32 AM Page 771

LISTING 17.14 Full Text of dd.xml

1: <?xml version=”1.0” encoding=”UTF-8”?>
2: <!-- DOCTYPE ejb-jar PUBLIC

➥’-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
➥’http://java.sun.com/dtd/ejb-jar_2_0.dtd’ -->

3: <ejb-jar>
4: <display-name>Agency</display-name>
5: <enterprise-beans>
6: <session>
7: <display-name>AgencyBean</display-name>
8: <ejb-name>AgencyBean</ejb-name>
9: <home>agency.AgencyHome</home>
10: <remote>agency.Agency</remote>
11: <ejb-class>agency.AgencyBean</ejb-class>
12: <session-type>Stateless</session-type>
13: <transaction-type>Bean</transaction-type>
14: </session>
15: <session>
16: <display-name>AdvertiseBean</display-name>
17: <ejb-name>AdvertiseBean</ejb-name>
18: <home>agency.AdvertiseHome</home>
19: <remote>agency.Advertise</remote>
20: <ejb-class>agency.AdvertiseBean</ejb-class>
21: <session-type>Stateful</session-type>
22: <transaction-type>Bean</transaction-type>
23: </session>
24: </enterprise-beans>
25: </ejb-jar>

Imagine that a different application (or a future version of J2EE) decided that stateless
and stateful Session beans were sufficiently different to warrant using different elements.
For example,

<Stateless>
<ejb-name>AgencyBean</ejb-name>
…

</Stateless>
<Stateful>
<ejb-name>AdvertiseBean</ejb-name>
…

</Stateful>

To make this transformation, you need a rule that can generate an element whose name is
derived from the original XML document. The XSL element that does this is called
<xsl:element>, and the transformation shown previously is achieved by the following rule:

<xsl:template match=”session”>
<xsl:element name=”{./session-type}”>
<xsl:apply-templates/>

</xsl:element>

772 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 772

Transforming XML Documents 773

17

</xsl:template>
<xsl:template match=”session/session-type”/>

The name attribute to the <xsl:element> is the name of the element to define. In this
example, the name is the value of the session-type child element (remember that braces
take the value of a node when defining attributes).

The second rule in the previous example (<xsl:element name=”{./session-type}”>)
ensures that the session-type child element is not included in the output document.

Sadly, there is one major problem with the previous example. All other elements are out-
put using their text values, the element start and end tags and attributes have been lost
from the document. The problem can be overcome using the <xsl:copy> element.

The <xsl:copy> element is used to copy elements from the XML source to the output
document. The following rule is an identity transformation rule (the document is copied
without any changes):

<xsl:template match=”*|@*|comment()|processing-instruction()|text()”>
<xsl:copy>
<xsl:apply-templates

➥select=”*|@*|comment()|processing-instruction()|text()”/>
</xsl:copy>

</xsl:template>

The template matches all elements and uses the <xsl:copy> element to copy the matched
element. The body of the <xsl:copy> element must apply the template rules to the body
of the matched XML node; otherwise, no output will occur.

The full stylesheet for transforming the old style DD into the new style is shown in
Listing 17.15. The output from applying this stylesheet is shown in Listing 17.16.

LISTING 17.15 Full Text of session.xsl

1: <?xml version=”1.0”?>
2: <xsl:stylesheet version=”1.0”

➥xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
3: <xsl:template match=”session”>
4: <xsl:element name=”{./session-type}”>
5: <xsl:apply-templates/>
6: </xsl:element>
7: </xsl:template>
8: <xsl:template match=”session/session-type”/>
9: <xsl:template match=”*|@*|comment()|processing-instruction()|text()”>
10: <xsl:copy>
11: <xsl:apply-templates

➥select=”*|@*|comment()|processing-instruction()|text()”/>
12: </xsl:copy>
13: </xsl:template>
14: </xsl:stylesheet>

21 0672323842 CH17 3/20/02 9:32 AM Page 773

LISTING 17.16 Applying session.xsl to dd.xml

1: >java org.apache.xalan.xslt.Process -in XML/dd.xml -xsl XSL/session.xsl
2: <?xml version=”1.0” encoding=”UTF-8”?>
3: <!-- DOCTYPE ejb-jar PUBLIC

➥’-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
➥’http://java.sun.com/dtd/ejb-jar_2_0.dtd’ -->

4: <ejb-jar>
5: <display-name>Agency</display-name>
6: <enterprise-beans>
7: <Stateless>
8: <display-name>AgencyBean</display-name>
9: <ejb-name>AgencyBean</ejb-name>
10: <home>agency.AgencyHome</home>
11: <remote>agency.Agency</remote>
12: <ejb-class>agency.AgencyBean</ejb-class>
13:
14: <transaction-type>Bean</transaction-type>
15: </Stateless>
16: <Stateful>
17: <display-name>AdvertiseBean</display-name>
18: <ejb-name>AdvertiseBean</ejb-name>
19: <home>agency.AdvertiseHome</home>
20: <remote>agency.Advertise</remote>
21: <ejb-class>agency.AdvertiseBean</ejb-class>
22:
23: <transaction-type>Bean</transaction-type>
24: </Stateful>
25: </enterprise-beans>
26: </ejb-jar>

Attributes and Attribute Sets
In the example jobSummary document in Listing 17.3 and the stylesheet table.xsl in
Listing 17.10, you might like to be able to use a hyperlink to link the customer name to a
URL of the form

/agency/advertise?customer=<customer_name>

Using the sample data from Listing 17.3, the output heading for a job for winston would
look as follows:

<H2>Job ref: winston/Cigar Trimmer</H2>

Here, the value of the new attribute is derived from the XML source document. This can
be achieved by using the <xsl:attribute> element, as shown in the following:

<xsl:template match=”job”>
<H2>Job ref:

774 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 774

Transforming XML Documents 775

17

<A>
<xsl:attribute name=”HREF”>
/agency/advertise?<xsl:value-of select=”@customer”/>

</xsl:attribute>
<xsl:value-of select=”@customer”/>

/<xsl:value-of select=”@reference”/></H2>
<TABLE border=”1”>
<xsl:apply-templates/>
</TABLE>

</xsl:template>

The <xsl:attribute> element defines an attribute for the enclosing element (in this
case, <A>). More than one attribute can be defined, but all attributes must be defined
before any other text or child nodes in the element.

Sometimes, the same attributes must be defined for many different tags. This is a com-
mon requirement when applying styles to HTML tables. Consider making every cell in
the table contain text with a blue sans-serif font. You could define the style separately for
every cell in the table, but this is hard to maintain should the style requirements change.
Alternatively, you could use Cascading Style Sheets (CSS), but the most popular
browsers do not support CSS in a consistent manner. An XSL solution is to use an
attribute set.

The <xsl:attribute-set> element defines the attributes you can apply to multiple ele-
ments. An <xsl:attribute-set> defining a blue sans-serif font is as follows:

<xsl:attribute-set name=”rowStyle”>
<xsl:attribute name=”face”>Arial,sans-serif</xsl:attribute>
<xsl:attribute name=”color”>blue</xsl:attribute>

</xsl:attribute-set>

An attribute set is applied by using the xsl:use-attribute-sets attribute with an ele-
ment. For example

<xsl:template match=”skill|location”>
<TR><TD>

<xsl:value-of select=”name()”/>
</TD><TD>
<xsl:value-of select=”.”/>

</TD></TR>
</xsl:template>

The transformed table definition for the job skill and location elements is as follows:

<TABLE border=”1”>
<TR>
<TD>location</TD>
<TD>London</TD>

</TR>

21 0672323842 CH17 3/20/02 9:32 AM Page 775

<TR>
<TD>skill</TD>
<TD>Cigar maker</TD>

</TR>
<TR>
<TD>skill</TD>
<TD>Critic</TD>

</TR>
</TABLE>

The complete stylesheet for transforming the jobSummary document into HTML is
shown in Listing 17.17.

LISTING 17.17 Full Text of tableStyle.xsl

1: <?xml version=”1.0”?>
2: <xsl:stylesheet version=”1.0”

➥xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
3: <xsl:template match=”job”>
4: <H2>Job ref:
5: <A>
6: <xsl:attribute name=”HREF”>
7: /agency/advertise?<xsl:value-of select=”@customer”/>
8: </xsl:attribute>
9: <xsl:value-of select=”@customer”/>
10: /<xsl:value-of select=”@reference”/>
11: </H2>
12: <P><xsl:apply-templates select=”description”/></P>
13: <TABLE border=”1”>
14: <xsl:apply-templates select=”skill|location”/>
15: </TABLE>
16: </xsl:template>
17: <xsl:template match=”description”>
18: <I><xsl:value-of select=”.”/></I>
19: </xsl:template>
20: <xsl:attribute-set name=”rowStyle”>
21: <xsl:attribute name=”face”>Arial,sans-serif</xsl:attribute>
22: <xsl:attribute name=”color”>blue</xsl:attribute>
23: </xsl:attribute-set>
24: <xsl:template match=”skill|location”>
25: <TR><TD>
26: <xsl:value-of select=”name()”/>
27: </TD><TD>
28: <xsl:value-of select=”.”/>
29: </TD></TR>
30: </xsl:template>
31: </xsl:stylesheet>

776 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 776

Transforming XML Documents 777

17

Additional XSL Elements
XSL supports a number of elements that can provide program language like capabilities
within a stylesheet. Using these elements requires a good knowledge of the XPath nota-
tion. Because you have only seen some of the XPath notation, you will only look very
briefly at the elements that support programming capabilities.

Numbering Elements
A common requirement for many transformations is to insert numeric data into the out-
put document, often to produce numbered lists.

The <xsl:number> element is used to insert numbers into the document. By default (that
is, without attributes), this element inserts a count of the position of a context node in a
list of elements of the same type.

To number the skills defined by a particular job, you could use the following rule:

<xsl:template match=”skill”>
<TR><TD>

Skill <xsl:number/>:
</TD><TD>
<xsl:value-of select=”.”/>

</TD></TR>
</xsl:template>

Attributes can be supplied to the <xsl:number> element to determine what numeric value
is inserted. The level=”any” attribute is used to count all occurrences of the same type
of node, regardless of where the node occurs in the document tree structure. The follow-
ing example adds numbers to job definitions:

<xsl:template match=”job”>
<H2><xsl:number level=”any”/>.

Job ref:
…

</xsl:template>

Listing 17.18 shows the final stylesheet for transforming the job.xml document using
numbers to count jobs and skills within a job. The resulting Web page is shown in
Figure 17.3.

LISTING 17.18 Full Text of tableCount.xsl

1: <?xml version=”1.0”?>
2: <xsl:stylesheet version=”1.0”

➥xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
3: <xsl:template match=”job”>
4: <H2><xsl:number level=”any”/>.

21 0672323842 CH17 3/20/02 9:32 AM Page 777

5: Job ref:
6: <A>
7: <xsl:attribute name=”HREF”>
8: /agency/advertise?<xsl:value-of select=”@customer”/>
9: </xsl:attribute>
10: <xsl:value-of select=”@customer”/>
11: /<xsl:value-of select=”@reference”/>
12: </H2>
13: <P><xsl:apply-templates select=”description”/></P>
14: <TABLE border=”1”>
15: <xsl:apply-templates select=”skill|location”/>
16: </TABLE>
17: </xsl:template>
18: <xsl:template match=”description”>
19: <I><xsl:value-of select=”.”/></I>
20: </xsl:template>
21: <xsl:attribute-set name=”rowStyle”>
22: <xsl:attribute name=”face”>Arial,sans-serif</xsl:attribute>
23: <xsl:attribute name=”color”>blue</xsl:attribute>
24: </xsl:attribute-set>
25: <xsl:template match=”location”>
26: <TR><TD>
27: <xsl:value-of select=”name()”/>
28: </TD><TD>
29: <xsl:value-of select=”.”/>
30: </TD></TR>
31: </xsl:template>
32: <xsl:template match=”skill”>
33: <TR><TD>
34: Skill <xsl:number/>:
35: </TD><TD>
36: <xsl:value-of select=”.”/>
37: </TD></TR>
38: </xsl:template>
39: </xsl:stylesheet>

The <xsl:number> tag can also be used to

• Insert numeric data obtained from an element or attribute in the XML source docu-
ment

• Count occurrences of a node

• Count nodes from a given start point

• Use letters or roman numerals instead of decimal integers or insert leading zeroes
to make fixed-width numbers

778 Day 17

LISTING 17.18 Continued

21 0672323842 CH17 3/20/02 9:32 AM Page 778

Transforming XML Documents 779

17

Other Features
XSLT supports the optional inclusion of text in the output document using the following
tags:

• <xsl:if> The body of this element is only included if the test defined as an
attribute is true.

• <xsl:choose> Defines a list of choices, only one of which will be included.

• <xsl:when> Defines a choice for an <xsl:choose> element.

• <xsl:otherwise> Defines the default choice for an <xsl:choose> element if no
<xsl:when> element is matched.

The <xsl:if> and <xsl:when> elements use a test attribute that evaluates an XPath
expression and includes the element body if the test is true.

The following example tests if a Session bean from a DD is a stateless bean:

<xsl:if test=”./session-type=’Stateless’”>
…

</xsl:if>

The following <xsl:choose> example selects different transformations for stateful and
stateless Session beans:

<xsl:choose>
<xsl:when test=”./session-type=’Stateless’”>
…

FIGURE 17.3
Applying
tableCount.xsl to
job.xml.

21 0672323842 CH17 3/20/02 9:32 AM Page 779

</xsl:when>
<xsl:when test=”./session-type=’Stateful’”>
…

</xsl:when>
<xsl:otherwise>
…

</xsl:when>
</xsl:choose>

Other XSL elements include the following:

• <xsl:sort> Used to sort elements by alphabetic or numeric order

• <xsl:include> and <xsl:import> Import rules from other stylesheets

• <xsl:variable> Used to define variables that can be used in other XSL elements

• <xsl:template> Used to define templates that can be inserted in different parts
of the transformed output (parameters can be used to customize each instance of a
template)

As you can see, XSLT provides a powerful transformation language that really is too
large and complex to cover in one lesson. Today’s work on XSLT has been designed to
give you an overview of what XSLT can do. For more information on XSLT, refer to the
specifications on the W3C Web site or read the book Sams Teach Yourself XML in 21
Days from Sams Publishing.

XSLT Compilers
One drawback to XLST stylesheets is performance. An XLST processor, such as
XALAN, must read in the stylesheet and build an internal structure representing the rules
that must be applied. The processor must then read in the XML document and match
each element to the rules defined in the stylesheet and generate the required output. All
of this takes time.

One way to improve performance is to preprocess the stylesheet to create a custom pro-
gram that will apply the one stylesheet to an XML document in an efficient manner.

Such a technology is called an XSLT compiler. This is a fast changing area of XSL tech-
nology, but the original XSLT compiler, called xsltc, developed by Sun Microsystems is
now developed and maintained by the Apache project.

Apache provides the xsltc compiler used to compile an XSL stylesheet into a translet (a
set of Java classes). An associated runtime processor is used to apply the compiled
translet to an XML document and perform the XML document transformation.

780 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 780

Transforming XML Documents 781

17

An XSLT translet can be invoked from the command line or included in a developer’s
application.

The XLST compiler technology is very new and still maturing (and changing) as this
book is being written in late 2001. For more information and to download the xsltc
technology, take a look at the XALAN pages on the Apache Web site at

http://xml.apache.org/xalan/

Summary
Today you have looked at transforming XML documents into other data formats. The
XSLT standard defines an XML stylesheet format that specifies how to transform an
XML document into a new format. XSLT is commonly used to transform XML data into
HTML for presentation by a Web browser.

An XSLT stylesheet defines a set of rules. Each rule

• Is matched against elements in an XML source document

• Defines transformations that are applied to the matched element to create the trans-
formed data

• Can be applied to a selected element or multiple elements including a complete
tree hierarchy of elements

• Uses the XPath notation to match XML elements (the same XPath notation is also
used with XPointers in XML documents)

A new technology designed to address some of the performance problems of XSLT
processors, such as Apache XALAN, is an XSLT compiler. An XSLT compiler has two
components:

• A compiler than generates a translet (a set of Java classes) from an XSLT
stylesheet

• A runtime processor that applies a translet to an XML document to perform the
transformation

The XSL technology also identifies a portable device independent grammar (XSL-FO)
for defining formatting requirements and the document data. XSL-FO is not being wide-
ly adopted by the industry at the present time.

You have now finished your excursion into XML. Tomorrow, you will return to Java pro-
gramming and the J2EE platform to study Java and J2EE design patterns.

21 0672323842 CH17 3/20/02 9:32 AM Page 781

Q&A
Q What are the two components of XSL?

A XSLT defines a language that is used to write stylesheets that will transform an
XML document into a different format.

Formatting objects, or XSL-FO, specifies a device-independent grammar for defin-
ing the format of a transformed XML page.

Q What are three techniques for applying an XSLT stylesheet for a Web client?

A • Send the XML document and stylesheet to the client for processing.

• Convert the XML into an HTML file, store the file on the server, and send
the file to the client to satisfy future HTTP requests.

• Transform the XML data on the server for every HTPP request for the data.

Q Which XSL element is used to insert the body of a matched XML tag into the
output document expanding any nested elements?

A <xsl:apply-templates/>

Q What do the ., .., //, and @name XPath shortcuts expand to?

A . expands to self::node()
.. expands to parent::node()
// expands to descendent-or-self::node()
@name expands to attribute::name

Q What are the XSL elements for inserting a comment, inserting an element,
inserting an attribute, and copying elements?

A • <xsl:comment>

• <xsl:element>

• <xsl:attribute>

• <xsl:copy>

Exercises
On Day 14, “JSP Tag Libraries,” you developed a custom tag library for use with your
Web application. Today, you will write an XSLT stylesheet that will transform a Tag
Library Descriptor (TLD) document into an HTML page for easy viewing.

782 Day 17

21 0672323842 CH17 3/20/02 9:32 AM Page 782

Transforming XML Documents 783

17

Listing 17.19 shows the agency.tld file from Day 14 that you will transform into
HTML for display by a Web browser.

LISTING 17.19 Full Text of agency.tld

1: <?xml version=”1.0” encoding=”ISO-8859-1” ?>
2: <!--DOCTYPE taglib PUBLIC
3: “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”
4: “http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd”-->
5: <taglib>
6: <tlib-version>1.0</tlib-version>
7: <jsp-version>1.2</jsp-version>
8: <short-name>agency</short-name>
9: <tag>
10: <name>getJob</name>
11: <tag-class>web.GetJobTag</tag-class>
12: <body-content>empty</body-content>
13: <variable>
14: <name-given>job</name-given>
15: <variable-class>agency.AdvertiseJob</variable-class>
16: <declare>true</declare>
17: <scope>AT_BEGIN</scope>
18: </variable>
19: <attribute>
20: <name>ref</name>
21: <required>true</required>
22: <rtexprvalue>true</rtexprvalue>
23: </attribute>
24: <attribute>
25: <name>customer</name>
26: <required>true</required>
27: <rtexprvalue>true</rtexprvalue>
28: </attribute>
29: </tag>
30: <tag>
31: <name>getCust</name>
32: <tag-class>web.GetCustTag</tag-class>
33: <body-content>empty</body-content>
34: <variable>
35: <name-given>cust</name-given>
36: <variable-class>agency.Advertise</variable-class>
37: <declare>true</declare>
38: <scope>AT_BEGIN</scope>
39: </variable>
40: <attribute>
41: <name>login</name>
42: <required>true</required>
43: <rtexprvalue>true</rtexprvalue>
44: </attribute>

21 0672323842 CH17 3/20/02 9:32 AM Page 783

45: </tag>
46: <tag>
47: <name>forEachJob</name>
48: <tag-class>web.ForEachJobTag</tag-class>
49: <body-content>JSP</body-content>
50: <variable>
51: <name-given>job</name-given>
52: <variable-class>agency.AdvertiseJob</variable-class>
53: <declare>true</declare>
54: <scope>AT_BEGIN</scope>
55: </variable>
56: <attribute>
57: <name>customer</name>
58: <required>true</required>
59: <rtexprvalue>true</rtexprvalue>
60: <type>agency.Advertise</type>
61: </attribute>
62: </tag>
63: <tag>
64: <name>forEach</name>
65: <tag-class>web.ForEachTag</tag-class>
66: <body-content>JSP</body-content>
67: <attribute>
68: <name>collection</name>
69: <required>true</required>
70: <rtexprvalue>true</rtexprvalue>
71: <type>java.util.Collection</type>
72: </attribute>
73: </tag>
74: <tag>
75: <name>option</name>
76: <tag-class>web.OptionTag</tag-class>
77: <tei-class>web.OptionTagTEI</tei-class>
78: <body-content>empty</body-content>
79: <attribute>
80: <name>selected</name>
81: <required>false</required>
82: <rtexprvalue>true</rtexprvalue>
83: <type>java.util.String[]</type>
84: </attribute>
85: <attribute>
86: <name>default</name>
87: <required>false</required>
88: <rtexprvalue>true</rtexprvalue>
89: <type>java.util.String</type>
90: </attribute>
91: </tag>
92: </taglib>

784 Day 17

LISTING 17.19 Continued

21 0672323842 CH17 3/20/02 9:32 AM Page 784

Transforming XML Documents 785

17

To display this TLD document, you will need to write a stylesheet that defines rules for
the following transformations:

• Put the tag library name in a <H1> element.

• Define a <TABLE border=”1”> to contain all the tags.

• Highlight each tag name using a element.

• Put each tag in a row in the table and put the name, body content, all the attributes
and all the variables each in their own cell.

• Put the attribute lists in their own table.

• Put the variable lists in their own table.

Listing 17.20 shows a suitable HTML page containing one row that meets the previously
listed requirements.

LISTING 17.20 Transformed HTML Output

1: <HTML>
2: <HEAD>
3: <META http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
4: <TITLE>agency TLD</TITLE>
5: </HEAD>
6: <BODY>
7: <H1>Tag Library Name: agency</H1>
8: <TABLE border=”1”>
9: <TR align=”left” valign=”top”>
10: <TH colspan=”2”>Tag</TH><TH>Attributes</TH><TH>Variables</TH>
11: </TR>
12: <TR align=”left” valign=”top”>
13: <TH>Name</TH><TH>Body</TH><TH>Name Required</TH><TH>Name Class</TH>
14: </TR>
15: <TR align=”left” valign=”top”>
16: <TD>getJob</TD><TD>empty</TD><TD>
17: <TABLE>
18: <TR align=”left” valign=”top”>
19: <TD>ref</TD><TD>true</TD>
20: </TR>
21: <TR align=”left” valign=”top”>
22: <TD>customer</TD><TD>true</TD>
23: </TR>
24: </TABLE>
25: </TD><TD>
26: <TABLE>
27: <TR align=”left” valign=”top”>
28: <TD>job</TD><TD>agency.AdvertiseJob</TD>
29: </TR>
30: </TABLE>

21 0672323842 CH17 3/20/02 9:32 AM Page 785

31: </TD>
32: </TR>
33: </TR>
34: </TABLE>
35: </BODY>
36: </HTML>

786 Day 17

LISTING 17.20 Continued

Finally, Figure
17.4 shows a
screen snap-
shot of how
your trans-
formed HTML
page should
appear in a
Web browser.

FIGURE 17.4
Applying

21 0672323842 CH17 3/20/02 9:32 AM Page 786

DAY 18

WEEK 3

Patterns
It has often been said that software engineering is more of an art than a science.
Small teams, or even individuals, have been able to create sophisticated and
powerful solutions using fairly ad-hoc design and development processes. On
the other hand, many large projects that have been run on traditional engineer-
ing lines have arrived over budget and late, if they arrive at all. One of the main
differentiators between successful and unsuccessful projects is the experience
of those creating the system architecture and their understanding of the capabil-
ities of the platform on which they are delivering that system.

The patterns movement within software attempts to capture some of the experi-
ence of successful architects and designers so that it can be applied more wide-
ly. The exploration of platform-specific patterns can also help designers to
apply appropriate patterns in the right place using the right technologies. As
J2EE technology has matured, J2EE-specific patterns have been discovered that
should make your life as a J2EE designer and developer easier.

Today, you will

• Explore how the use of patterns can improve the design of systems

• Examine some of the J2EE-specific patterns currently documented

22 0672323842 CH18 3/20/02 9:26 AM Page 787

• Discover some of the J2EE patterns that are applied in the case study

• Suggest how other J2EE patterns can be used to improve the design of the case
study

Today’s intention is to investigate the role of J2EE-based patterns and see how such pat-
terns can be applied in the context of the case study.

J2EE Patterns
Being a software designer, developer, or architect is not an easy job. To be truly effective,
you must combine an understanding of the features required—the so-called problem
domain—with a knowledge of the technologies and products from which the solution
will be built. It is difficult for most practitioners to keep abreast of changing technologies
in parallel with actually delivering applications to aggressive timescales. What is needed
is some help to understand the best way to apply technologies and solve common design
problems, rather than having to learn from trial and error. Patterns, and specifically in the
context of this book, J2EE patterns, can help you to do this.

What Are Patterns?
To understand the intent of patterns, it is helpful to understand a little bit of their back-
ground.

The original inspiration of the software patterns movement is the work of the architect
Christopher Alexander. His considerations of how we design buildings led him to identi-
fy and document common features of successful buildings. These common design fea-
tures were christened patterns, and the documentation of a related set of them is termed a
pattern language. Alexander’s work can be explored in his writings, such as his book,
The Timeless Way of Building.

An architect who designs buildings is constrained only by the qualities of the materials
with which the building can be constructed together with cost constraints and certain
physical laws (such as gravity, for example!). This leads architects to experiment with
different forms of building, based on new materials and fashions in design. Some of
these experiments are successful and turn up whole new ways of living and working.
Many more experiments create buildings that are uninhabitable and are torn down in a
relatively short time. Most architects need to build useful buildings that form a pleasant
environment for those who live and work in them. The intention of Alexander’s patterns
is to provide a set of proven building blocks on which such architects can base their
designs.

Now, consider the preceding paragraph in software terms.

788 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 788

Patterns 789

18

An architect who designs software systems is constrained only by the technologies with
which the system can be constructed together with cost constraints and certain physical
laws (such as available bandwidth!). This leads architects to experiment with different
forms of system, based on new technologies and fashions in design. Some of these
experiments are successful and turn up whole new styles of application. Many more
experiments create applications that are unusable and are discarded in a relatively short
time. Most architects need to build useful applications that create a pleasant experience
for those who live and work with them. The intention of software patterns is to provide a
set of proven building blocks on which such architects can base their designs.

As you can see from this comparison, the motivations and intentions of architectural and
software patterns have much in common.

So, what is a pattern? A short definition of a pattern is “A solution to a problem in a con-
text.” Essentially, a pattern is a reusable idea on how to solve a particular problem found
in the domain of architecture or design, whether that be physical buildings or software
systems. The key aspect of patterns is that they are proven solutions—you discover pat-
terns, you don’t invent them!

The concrete form of a pattern is a document describing certain aspects, including the
following:

• A statement of the problem that the pattern addresses. This can include a list of
conflicting requirements and issues that need to be balanced—known as forces.

• Contexts in which the pattern is known to work.

• A description of the solution, possibly including the detailed workings of the solu-
tion as it is applied in one context. For example, a software pattern may include
code samples.

A pattern description may also set out different strategies within the pattern. These
describe different approaches to solving the problem, possibly using different technolo-
gies or techniques, while still applying the same underlying principle.

Although patterns have common central aspects, there is no fixed way of documenting a
pattern. Certain groups of patterns and pattern languages will adopt their own style of
documentation that suits their needs. The main thing is that it is understandable and
accessible.

If you want to investigate the general concept of patterns, the philosophy behind them,
and the work of Christopher Alexander, try the following locations:

• “Christopher Alexander: An Introduction for Object-Oriented Designers” hosted at
http://g.oswego.edu/dl/ca/ca/ca.html

22 0672323842 CH18 3/20/02 9:26 AM Page 789

• “Some Notes on Christopher Alexander” hosted at http://
www.math.utsa.edu/sphere/salingar/Chris.text.html

Why Use Patterns?
The intent of patterns, then, is to provide a certain level of what might be termed “dis-
tilled wisdom.” If people are lucky enough to work alongside a skilled architect or
designer when they are learning their trade, they will gain such “wisdom” by osmosis.
Patterns help the propagation of such wisdom so that the written pattern becomes a way
of gaining some of the wisdom, even if you do not work alongside such a luminary.

The patterns become a toolchest for the designer or architect from which they can select.
These tools can help them create an efficient, robust, and flexible solution. As such, the
designer or architect must familiarize themselves with the patterns to the extent that they
become adept at identifying the type of problem each pattern addresses and the pattern’s
context. In doing so, they can ensure that they select the right pattern or combination of
patterns for the task at hand.

It is important to note that patterns are a guideline for a solution—not a solution in and
of themselves. Although some design tools now provide templates for the implementa-
tion of common patterns, you cannot just drag-and-drop patterns into an application to
form a solution. As a chef will adapt a recipe to suit the ingredients available and the
taste of the guests, so a designer may adjust the implementation of a pattern to suit the
specific context.

Types of Patterns
Patterns occur in all aspects of life, from spiders’ webs to the way a school works. Some
patterns are small and specific while others are general and wide-ranging. The same is
true of the patterns found in the realm of software. The following are some common
types of patterns:

• Architectural patterns define the overall style of the system and frequently include
physical partitioning and infrastructure considerations as well as the software itself.

• Design patterns work at the level of software artefacts, such as classes and compo-
nents, and describe ways in which such artefacts can be built and combined to
solve common problems.

• Idioms are ways of solving a particular problem in a given environment, such as a
language or platform. Some idioms are the embodiment of a pattern for a particular
environment. For example, the Java mechanisms around the Cloneable interface
and the reflection API are idioms that embody more general creational patterns.

790 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 790

Patterns 791

18

• Process patterns have been identified relating to the actual mechanics of designing
and creating the software and systems.

• Analysis patterns list common problems found in a particular business domain and
ways in which these problems can be modelled.

The concept of patterns applied in the field of software was popularised mainly by the
book Design Patterns—Elements of Reusable Object-Oriented Software written by
Gamma, Helm, Johnson, and Vlissides. This is commonly referred to as the ”Gang of
Four” book, or GoF for short. As its name suggests, this book contains a set of design
patterns that are independent of platform and language. Many software patterns, includ-
ing the J2EE patterns examined later, reference GoF patterns to help the reader under-
stand aspects of the pattern being described.

Because patterns are found at different levels, the design of a system can involve the
application of patterns inside patterns. An architectural pattern may define tiers or ser-
vices from which the system is built. The contents of these tiers and services may be
specified in terms of groups of components that conform to design patterns. These com-
ponents, in turn, may be implemented using language- or platform-level idioms.

Sets of interlocking patterns have been discovered that form a toolchest for a particular
context or at a particular level. These pattern languages help to promote consistent and
coherent use of patterns. One such context is the J2EE platform, and it is a pattern lan-
guage for this environment that will be explored today.

J2EE Patterns
The term J2EE patterns is used to refer to a set of patterns that have been identified
within J2EE-based solutions. These patterns describe how to apply J2EE technologies to
address common problems found when creating modern, distributed systems. As such,
they fit the criterion stated earlier that they are “a solution to a problem in a context.” In
the case of J2EE patterns, that context is the J2EE platform and the typical application
architectures used when building J2EE applications.

Some patterns come with the territory in that they are found within the J2EE platform
itself. However, the term J2EE patterns tends to refer to patterns that can be applied
when creating systems on top of the J2EE platform.

Some J2EE patterns are simply direct implementations of previously identified patterns
using J2EE technologies. An example of this would be the use of publish/subscribe when
applying JMS. Other patterns are specific adaptations of known patterns for J2EE-
oriented issues. An example of this is the Session Facade pattern, discussed later in the
section on “Session Facades and Entity EJBs,” that encourages correct use of Entity EJBs.

22 0672323842 CH18 3/20/02 9:26 AM Page 791

Given that all J2EE patterns share a common context (namely, J2EE), they form a pattern
language within that context. Some J2EE patterns are built on concepts from J2EE pat-
terns or include them as part of a suggested implementation.

792 Day 18

The set of J2EE patterns laid out here (and in other places) does not form a
closed set from which J2EE applications can be built. An architect or design-
er can apply generic patterns or architectural patterns as they see fit when
creating a J2EE-based solution. The J2EE-specific patterns simply provide a
known set of J2EE-oriented solutions.

Note

Pattern Catalogs
Patterns tend to evolve. There is no central body for the approval of patterns. A pattern
tends to become accepted over time (or not, as the case may be) by the general audience
or designers and architects at which it is targeted. Given this, how do you find patterns
that you can apply?

There are various places where you can find information on patterns:

• There are now many general patterns books and repositories. These include the
GoF book, the Pattern-Oriented Software Architecture (POSA) book series, the
Pattern Languages of Programming (PLoP) book series, and the Hillside online
pattern resources hosted at http://www.hillside.net/.

• J2EE-specific pattern information is available through the Sun Java Center patterns
documented in the Core J2EE Patterns book. The Sun J2EE Blueprints patterns are
available at the J2EE Blueprints Web site
(http://java.sun.com/blueprints/enterprise/), the proposed J2EE patterns
are available at TheServerSide.com (http://www.theserverside.com/pat-
terns/, and many patterns with J2EE-related content are available on IBM’s
DeveloperWorks Web site at http://www.ibm.com/developerworks/patterns/.

• Some products, such as Together/J, Rational Rose, and Aonix Component Factory,
provide templates and documentation to help you build systems based on common
patterns.

In all cases, the patterns are embodied in documentation and examples.

Applying J2EE-Specific Patterns
Now that you understand the rationale and intent of patterns, how can you apply them to
your J2EE applications? To do this, you must understand the J2EE design context, and
you must also become familiar with the patterns themselves.

22 0672323842 CH18 3/20/02 9:26 AM Page 792

Patterns 793

18

Applying Patterns in a Context
Most of the patterns defined for the J2EE platform range between the design and archi-
tecture levels. The most common J2EE architecture is largely assumed—a 3-tier business
system—as the context for these patterns. You may be able to apply individual patterns in
different styles of architecture, but as a pattern language, the current J2EE patterns are
squarely targeted at a 3-tier, Web-based business system. The 3 tiers are usually classi-
fied as the presentation or Web tier, the middle or business tier, and the integration or
data tier.

As well as consisting of multiple tiers, the target architecture is roughly based on the
Model-View-Controller (MVC) principle. MVC is a form of pattern that can be applied
at several levels. At the GUI level, it splits the responsibilities for interacting with the
user between a data model, a presentation-oriented view, and a controller to govern the
interaction. At the architectural level, this translates into entity EJBs (and various other
components) providing a data model, servlets and JSPs providing the view, and Session
EJBs providing the controller or business logic. Separating concerns in this way delivers
a lot of flexibility. An example of this is that the model and controller (the data and the
business logic) can be combined with a variety of views to expose the same functionality
to different clients. This is shown in Figure 18.1.

FIGURE 18.1
Multiple views for dif-
ferent types of client
within an MVC archi-
tecture.

Integration
Client

Browser
Client

Mobile
Client

XML Web
component

HTML Web
component

WAP Web
component

XML Request

XML Response

HTML Request

HTML Response

WML Request

WML Response

Session
and entity

EJBs

J2EE Server

Given this context, and given that an overall application style is in place, why do you
need more patterns? Well, the purpose of applying patterns within an n-tier application
generally relates to the systemic qualities of the application. Systemic qualities, some-
times called non-functional requirements, refer to qualities such as maintainability, exten-
sibility, scalability, availability, and so on. By applying the patterns outlined today, you
should be able to improve at least one of these systemic qualities in your application, if

22 0672323842 CH18 3/20/02 9:26 AM Page 793

not several. When the case study is examined later, the impact on systemic qualities of
the patterns applied is also considered.

If you are designing an application from scratch, it will be second nature to think of
applying patterns to the design process. However, many times you will be working with-
in a pre-defined architecture or with an existing application. This does not mean that pat-
terns no longer apply. It is quite possible to apply patterns to existing applications to
improve them. It may be that the original design was not well thought out, or that it used
the technologies in a naïve way (quite common when technologies are new). A pattern
can be retro-fitted to part of the application to improve the systemic qualities of the
application and to generally clean it up. This process is called refactoring, and is a key
element in many software processes. As part of examining the case study, several poten-
tial refactorings will be considered.

The last thing that you need before examining the case study is knowledge of the pat-
terns themselves.

Generic Patterns
Table 18.1 lists some common, generic patterns that are documented in the GoF book.

TABLE 18.1 Common GoF Patterns

Pattern Name Pattern Description

Proxy Provide a surrogate for another object or component to control access to it or
enable access to it

Decorator Add a variable level of functionality dynamically with the ability to plug in or
remove components or filters as required (sometimes also known as wrapper or
pipes and filters)

Singleton Provide a single instance of a component and a global point of access to it

Iterator Provide sequential access to a collection of objects in a way that is independent
of the underlying representation

Observer Define a relationship between components so that a change in the state of one
of them causes a notification of this change to be delivered to the others

Façade Provide a unified interface for a subsystem, thereby hiding underlying com-
plexity

Command Encapsulate a request with its data so that it can be presented and executed as a
whole, without having to specify many different processing methods

794 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 794

Patterns 795

18

J2EE Presentation-Tier Patterns
Table 18.2 lists patterns that have been identified around the presentation (or Web) tier of
an n-tier J2EE application. The origin of each pattern is denoted using initials—SJC (Sun
Java Center), BLU (Sun J2EE Blueprints), TSS (TheServerSide.com).

TABLE 18.2 Common J2EE Presentation-Tier Patterns

Pattern Name Pattern Description

Front Controller (SJC) A servlet (or JSP) intercepts the request from the user and routes or
“adds value” to the request.

Intercepting Filter (SJC) Provide a Decorator-style (GoF) filter chain as part of a Front
Controller.

View Helper (SJC) Use a JavaBean or custom JSP tag to encapsulate functionality and
separate Java functionality out of a JSP.

Composite View (SJC) Compose a JSP from several different sub-components to provide a
typical, multi-panel Web page view.

Dispatcher View (SJC) A Front Controller (SJC) intercepts and routes (or dispatches) a
request to a JSP (or view). The view or its View Helpers (SJC) retrieve
the content and/or data required to populate the view.

Service to Worker (SJC) A Front Controller intercepts and routes (or dispatches) a request to a
JSP (or view). The Front Controller (SJC) (or its helpers) retrieves the
content and/or data required and passes this to the view as JavaBeans.

Service Locator (SJC) A client-side shared helper object caches frequently used EJB home
interfaces and dispenses EJB remote references on request.

J2EE Business-Tier Patterns
Table 18.3 lists patterns that have been identified around the business (or middle) tier of
an n-tier J2EE application. The origin of each pattern is denoted using initials—SJC (Sun
Java Center), BLU (Sun J2EE Blueprints), TSS (TheServerSide.com).

TABLE 18.3 Common J2EE Business-Tier Patterns

Pattern Name Pattern Description

Session Facade (SJC) A Session EJB provides a Facade (GoF) to shield entity EJBs
from direct client access and to obscure the data schema from
the client.

22 0672323842 CH18 3/20/02 9:26 AM Page 795

Business Delegate (SJC) A client-side object hides EJB-specific (or JMS-specific) inter-
action and exposes local business-oriented methods.

Value Object (SJC) Provide a snapshot of underlying data to be used as a conve-
nient data parcel between client and server to avoid chattiness
(excessive network traffic between client and server).

Value Object Builder (SJC) A constructor of Value Objects (SJC) from disparate server-
side data sources. It presents one Value Object-based interface
for a set of varied business data.

Composite Entity (SJC) Create a coarse-grained business entity from a set of fine-
grained data objects, such as entity EJBs or DAOs.

Value List Handler (SJC) Have a session EJB act as a data cache and provide
single/multiple data element Iterator (GoF) capability.

Page-by-page Iterator (BLU) A variant of Value List Handler (SJC).

Fast Lane Reader (BLU) Retrieve data for reading directly from the database for
speed, write data back via entity EJBs for transactions and
consistency.

J2EE Integration-Tier Patterns
Table 18.4 lists patterns that have been identified around the integration (or data) tier of
an n-tier J2EE application. The origin of each pattern is denoted using initials—SJC (Sun
Java Center), BLU (Sun J2EE Blueprints), TSS (TheServerSide.com).

TABLE 18.4 Common J2EE Integration-Tier Patterns

Pattern Name Pattern Description

Data Access Object (SJC) Encapsulate data access behind a common interface that can be
implemented in different ways for different data sources.
Typically used for data access in servlets and Session EJBs to
encapsulate direct database access.

Service Activator (SJC) Allow an EJB to be called on receipt of an asynchronous mes-
sage.

EJB Observer (TSS) An Observer-based (GoF) event pattern providing a strategy
using EJBs.

796 Day 18

TABLE 18.3 Continued

Pattern Name Pattern Description

22 0672323842 CH18 3/20/02 9:26 AM Page 796

Patterns 797

18

Patterns Within J2EE
As noted previously, certain patterns occur within the J2EE environment itself, including
the following:

• The Proxy pattern (GoF) is used widely in J2EE. Examples include RMI stubs as
client-side proxies and EJB objects as server-side proxies.

• An EJB home interface acts as a Singleton (GoF) for the creation of EJB instances.

• The servlet filters provided as part of J2EE 1.3 are a form of the Intercepting Filter
pattern (SJC).

There are many other patterns that are applied within the Java and J2EE environments.

Patterns in Context
You now know some of the common patterns that can be applied in J2EE applications.
Using this knowledge, you can analyse the case study followed throughout the book to
see how they can be applied.

Analysing the Case Study
Patterns are usually best understood in context. It helps to understand the intention of the
design (and its associated code) and what it is trying to achieve so you can understand
why a particular pattern helps in that situation. By examining the code for the case study,
this section intends to

• Identify some of the places where J2EE patterns have been applied in the case
study

• Examine some of those patterns in detail, including how the pattern looks in code

• Consider what other patterns could have been applied in certain places and the
changes that would be required to use those patterns

• Understand why other J2EE patterns are not relevant to the design of the case
study

The intention is to look at the central patterns that occur (or could occur) within the case
study. This section will not contain an exhaustive list of all the patterns used.

One important objective is to point out at each stage why the patterns are useful. This
principally takes the form of indicating which systemic qualities the pattern improves,
such as maintainability, extensibility, or scalability, and also any systemic qualities that
may suffer due to the pattern being applied.

22 0672323842 CH18 3/20/02 9:26 AM Page 797

When examining any design, it is important to understand the context in which design
decisions were made. In this case, it is important to understand that the case study is, in
places, intentionally simplistic. There are two reasons for this:

• The case study is essentially a learning tool. Use of production-level code can
sometimes obscure (or unnecessarily complicate) the underlying principles or steps
required. Hence, various simplifications are made in places that result in sub-opti-
mal design and code.

• The case study follows the same disclosure sequence as the chapters of the book.
Every effort is made to ensure that technologies are not used before they are intro-
duced. Because of this, some parts of the design use alternative mechanisms that,
again, can be sub-optimal.

The following sections examine different aspects of the case study and the J2EE patterns
within it.

Session Facades and Entity EJBs
Probably the most obvious use of a J2EE pattern in the case study are the Session
Facades that prevent the clients from accessing the entity EJBs directly. This applies both
for the standalone application clients and the servlets/JSPs. All of the session beans in
the Agency (Advertise, AdvertiseJob, Agency, and Register) act in the role of Session
Facade because they all manipulate data in entity EJBs based on requests from the
clients.

An example of this relationship is shown in Figure 18.2. This figure shows the class rela-
tionships between an AdvertiseClient, its associated AdvertiseBean (the Session
Facade), and the CustomerBean that holds the back-end data. The implementation of the
CustomerBean reflects the nature of this relationship because it only has a local home
interface. This means that the CustomerBean is only intended for use by other EJBs such
as the AdvertiseBean.

798 Day 18

FIGURE 18.2
The AdvertiseBean
acts as a Session
Facade between the
AdvertiseClient and
the CustomerBean.

AdvertiseClient
«Session EJB»
AdvertiseBean

«Entity EJB»
CustomerBean1 1 1 1

22 0672323842 CH18 3/20/02 9:26 AM Page 798

Patterns 799

18

In terms of systemic qualities, the use of a Session Facade has the following impact:

• Maintainability and flexibility—By decoupling the client from the details of the
underlying data model, there is a large reduction in dependencies. Fewer dependen-
cies between layers make the system easier to change for maintenance reasons or
in the face of changing requirements. The introduction of the Session Facade pro-
vides an ideal place for the location of business logic that is separated from both
the client and the data management. Any changes to the business logic or the
underlying data storage are then confined to the Session Facade and do not impact
the client code.

• Security—There is now one point of access for a particular piece of business logic
and its associated data. Appropriate controls can be placed on the Session Facade
that are independent of the underlying data access control and properly reflect the
logic being undertaken.

• Performance—In some ways, a Session Facade will reduce the level of perfor-
mance because extra code and method calls are introduced. However, designing the
Session Facade interface to offer a coarse-grained, business-oriented interface in
place of the underlying entity bean’s fine-grained, data-oriented interface can fre-
quently offset any reduction in performance because it reduces the number of
remote method calls required to perform a task. This type of interface simplifica-
tion and business-orientation can be seen later when the use of a Value Object is
discussed that reduces the number of remote method calls required to access and
update a customer’s details.

Before moving on, consider what you have just seen in terms of the general concept of
patterns discussed at the start of this day’s material. There are issues surrounding the use
of Entity EJBs directly from remote clients. Most designers that have worked with EJBs
for some time know of these issues. However, designers who are new to J2EE will not
necessarily identify these issues. They may then produce poor quality systems until they
learn about such issues by trial and error. By learning from such errors, the designer
becomes better at his or her job (designing J2EE applications). However, this is of little
solace to the owner of the poor application on which the designer learned his or her
trade.

If designers know of the existence of J2EE-oriented patterns catalogs, they can study
these as part of their J2EE education. They would then learn about the issues surround-
ing direct Entity EJB access from remote clients. If they read the description of the
Session Facade pattern, they would know that they could introduce a Session EJB as
described in this section. This has the effect of making the systems they produce more
maintainable, flexible, and better performing. The designers of the Agency application

22 0672323842 CH18 3/20/02 9:26 AM Page 799

have used the Session Facade pattern where appropriate. Did they do this because they
had learned from personal experience that direct Entity EJB access from distributed
clients causes problems, or did they know this from studying J2EE patterns? To all
intents and purposes it does not matter how they gained this J2EE design “wisdom,”
what matters is that the delivered system is of higher quality than it would be without the
application of this pattern. By learning and applying the patterns described today, you
should be able to improve the quality of the J2EE applications on which you work.

Data Exchange and Value Objects
Within the Agency application, the Session bean data access methods return collections
of strings that identify jobs and other domain concepts. The client then uses one of these
strings to create another Session bean to retrieve the details associated with that job. An
alternative would be to use Value Objects to hold the information, such as job details,
and to pass collections of these back and forth between the Agency Session bean and the
clients.

The question of whether, how, and where to apply Value Objects revolves around the
style of the application and the amount of data passed. When using an online catalog,
such as those found in e-commerce applications, you will generally present the customer
with a list of products. This list will be obtained as the result of some form of query (for
example, all the books by Ian Fleming—or even all the products sold that relate to James
Bond). The query results will be presented to the customer for him or her to make his or
her choice. To make this choice, the customer needs more information about the product
than just its name. Additional information could include its type (is it a video of
GoldenEye, or a DVD, or a Playstation game, or a book?), the price, availability, and so
on. This means that for every query result, you would want to pass back multiple pieces
of information. In this case, encapsulating them in a Value Object would make a lot of
sense. You could then return a collection of such Value Objects to the Web-tier client,
which would then display them to the customer.

The style of the Agency application is somewhat different from this. Most of the infor-
mation presented to the user is “top-level” information, such as a list of customers or
locations. Information is retrieved and updated as required. Therefore, the application
works more on the principle of “browse and drill down,” meaning that the “next level” of
information (such as the details for a particular customer) is only fetched when required
after a selection has been made at the higher level. Passing back collections of Value
Objects would be overkill in this situation because only one set of information (applicant
or job) is required at any one time.

800 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 800

Patterns 801

18

However, the Value Object pattern can be applied to several of the agency EJB interfaces.
Take, as an example, the Advertise interface (shown in Listing 18.1) that is used to
update or retrieve information on a particular job advertiser. Because the individual data
items, such as the advertiser’s name, must be retrieved individually through calls to the
Session EJB, the application displays excessive chattiness. This means that there are lots
of network connections, each one retrieving a small amount of data. This is in contrast to
the updateDetails method that takes all of the advertiser’s details in a single method
call. You can apply the Value Object pattern to convert the repeated method calls into a
single method call that returns a single JavaBean. This single JavaBean would contain all
of the required information.

To show this pattern-based refactoring in practice, consider two forms of the Advertise
interface. The original Advertise interface is shown in Listing 18.1 and has one method
for each property defined on the advertiser. The interaction between the client and the
Session EJB when loading the advertiser’s details is shown in Figure 18.3.

LISTING 18.1 Original Advertise Interface

1: public interface Advertise extends EJBObject
2: {
3: void updateDetails (String name, String email, String[] Address)
4: throws RemoteException;
5: String getLogin() throws RemoteException;
6: String getName() throws RemoteException;
7: String getEmail() throws RemoteException;
8: String[] getAddress() throws RemoteException;
9: String[] getJobs() throws RemoteException;
10:
11: void createJob (String ref)
12: throws RemoteException, DuplicateException, CreateException;
13: void deleteJob (String ref) throws RemoteException, NotFoundException;
14: }

FIGURE 18.3
Interaction between
the original
AdvertiseClient and
AdvertiseBean.

Get email

Get address

Get jobs

AdvertiseClient
«EJB»

AdvertiseBean

Get nameloadDetails

22 0672323842 CH18 3/20/02 9:26 AM Page 801

Listing 18.2 shows a refactored interface containing a single query method for the
advertsiser’s details that returns a Value Object of type AdvertiseValueObject. The
interaction between the refactored client and Session EJB when loading details is shown
in Figure 18.4. As you can see, there are now only two remote method calls made during
the load rather than four, thus reducing the chattiness of this part of the application. This
change will also approximately halve the time taken to load the details, because the time
taken to make the remote calls will generally dwarf the time spent in local processing.

Note that you can now also use the Value Object as a parameter to updateDetails when
updating the advertiser’s details. Although this change to the update does not improve net-
work performance, it does mean that any changes to the information held per-advertiser
need only be made to the Value Object and the code that manipulates Value Objects rather
than changing the Advertise interface.

LISTING 18.2 A Refactored Advertise Interface

1: public interface Advertise extends EJBObject
2: {
3: void updateDetails (AdvertiseValueObject details) throws

RemoteException;
4: AdvertiseValueObject getDetails() throws RemoteException;
5:
6: String[] getJobs() throws RemoteException;
7:
8: void createJob (String ref)
9: throws RemoteException, DuplicateException, CreateException;
10: void deleteJob (String ref) throws RemoteException, NotFoundException;
11: }

802 Day 18

FIGURE 18.4
Interaction between
the refactored
AdvertiseClient and
AdvertiseBean.

Get jobs

AdvertiseClient
«EJB»

AdvertiseBean

Get detailsloadDetails

22 0672323842 CH18 3/20/02 9:26 AM Page 802

Patterns 803

18

Listing 18.3 shows a possible implementation for the AdvertiseValueObject. This is a
very simple implementation and it would be quite possible to improve it, such as by pro-
viding multiple constructors or allowing smarter addition of address information.
However, the code shown is the minimum you would need. Note that the Value Object
conforms to the rules for a JavaBean in that it has a no-argument constructor, it uses
getter/setter naming, and it is declared as implementing Serializable.

LISTING 18.3 AdvertiseValueObject

1: public class AdvertiseValueObject implements java.io.Serializable
2: {
3: private String _login;
4: private String _name;
5: private String _email;
6: private String[] _address;
7:
8: public AdvertiseValueObject() {}
9:
10: public String getLogin() { return _login; }
11: public void setLogin(String login) { _login = login; }
12: public String getName() { return _name; }
13: public void setName(String name) { _name = name; }
14: public String getEmail() { return _email; }
15: public void setEmail(String email) { _email = email; }
16: public String[] getAddress() { return _address; }
17: public void setAddress(String[] address) { _address = address; }
18: }

Using the AdvertiseValueObject, the code in the client (AdvertiseClient.java) that
loads the details would change to that shown in Listing 18.4. The code has changed very
little, but the bulk of the data retrieval methods (apart from getDetails and the getJobs
method that is used in the loadJobs method) are now local rather than remote.

LISTING 18.4 Refactored loadDetails Method

1: ...
2: public class AdvertiseClient ...
3: {
4: ...
5: private void loadDetails (Advertise advertise) throws RemoteException
6: {
7: AdvertiseValueObject details = advertise.getDetails();
8:
9: name.setText(details.getName());
10: email.setText(details.getEmail());
11: String[] address = details.getAddress();
12:

22 0672323842 CH18 3/20/02 9:26 AM Page 803

13: address1.setText(address[0]);
14: address2.setText(address[1]);
15:
16: loadJobs(advertise);
17: }
18: }

One thing to note is that the list of jobs associated with the advertiser is not included in
the Value Object. The client manipulates the jobs separately from the rest of the advertis-
er details. Therefore, the updating and listing of jobs is kept separate from the manipula-
tion of the advertiser’s details.

In terms of systemic qualities, the use of a Value Object has the following impact:

• Performance—There is now one remote method call to retrieve applicant data
rather than five. This will speed up the loading of the information by a sizeable
factor (providing that there are no other performance roadblocks anywhere else).

• Scalability—Fewer calls across the network will reduce the amount of network
bandwidth used and also the number of concurrent sockets required at each end of
the connection. This means that the solution is more scalable (resources run out
less quickly).

• Maintainability and flexibility—The reduction in dependencies and coupling
brought about in the Register interface make subsequent changes to the applicant
information easier to manage. Although changes to the contents of the Value
Object will require changes in the client and server’s internal data and the database
schema, there is no need to change the remote interface.

There are also several variations on the Value Object pattern that you may find useful:

• Partial Value Object—If only part of the data held by the server is required by the
client, a Value Object can be used that encapsulates precisely the data required.
This will reduce the overall amount of data passed over the network.

• XML Value Object—You can extend the Value Object concept by passing an XML
document instead of a Java object. This XML Value Object can be used to pass
data between the presentation tier and the client tier. Alternatively, the EJB inter-
face can pass the XML document as a String for easier interoperability with
CORBA clients (see the CORBA discussion on Day 19, “Integrating with External
Resources”).

Data Access Without Entity EJBs
When you first started to look at the use of EJBs in the case study, on Day 4,
“Introduction to EJBs,” and Day 5, “Session EJBs,” Entity EJBs were not yet used to

804 Day 18

LISTING 18.4 Continued

22 0672323842 CH18 3/20/02 9:26 AM Page 804

Patterns 805

18

encapsulate the underlying data. Entity EJBs are a fundamental part of the J2EE architec-
ture. They provide an extra level of flexibility by abstracting the underlying data source
and, if using CMP, remove the need to write JDBC code. However, you may find that
they do not bring any advantage for simpler, read-mostly applications. In this case, you
may want to stick with direct database access from Session EJBs.

The Session EJBs from the Day 5 case study use direct database access for all queries
and updates. Although direct database access is conceptually simpler than using an Entity
EJB, it does mean that the data access code is intermingled with the business logic in the
Session bean. This has a negative impact on

• Maintainability—Changes to either the data access code or the business logic will
require that you change the Session bean code. An incorrect update can potentially
destabilize all of the functionality of the Session bean.

• Flexibility—Should the underlying data source change, such intermingled code is
difficult to change. This change could be anything from the use of a different data-
base to a completely different data storage mechanism, such as LDAP, mainframe,
or Entity EJBs.

To overcome these issues, you could apply the Data Access Object (DAO) pattern to
these Session EJBs that separates the data access code from the business logic. Using a
DAO to house the data access code means that the underlying data source becomes plug-
gable. The user of the DAO delegates all responsibility for the specifics of data access,
such as mechanism, location, and error handling, to the DAO implementation. An exam-
ple of this pluggability is shown in Figure 18.5.

FIGURE 18.5
A DAO acts as an
adapter between the
user and the specific
data source.

Oracle
database

Client

OracleDAO

Sybase
database

SybaseDAO

uses

uses

encapsulates

encapsulates

To achieve this level of pluggability, the data and operations associated with the underly-
ing data store must be abstracted. A J2EE DAO will use three mechanisms for this:

• The DAO defines a Java interface that will be implemented by all forms of the
DAO. This interface will provide creation, retrieval, update, and deletion (CRUD)
methods in much the same way that an EJB home interface does.

22 0672323842 CH18 3/20/02 9:26 AM Page 805

• One or more Value Objects represent the data to be used with the CRUD methods.
Collections of Value Objects represent returned data. Because the Value Object is
an abstraction of the underlying data, this helps to decouple the user of the data
from the underlying data access mechanism, such as a JDBC ResultSet.

• Optionally, a factory can be used to determine the type of DAO used. This allows
the user of the DAO to leave the implementation selection until runtime.

So, how could you apply a DAO in the pre-entity agency? Well, the first thing to do
would be to decide on the granularity of the DAO or DAOs to be used. You could poten-
tially create one large DAO to represent all of the underlying data in the system, but this
would be somewhat unwieldy and difficult to maintain. Hence, the cleanest design would
be to create one DAO per-table (per-type of data) and then see how that worked. Should
this cause performance problems, the DAOs could potentially be merged or optimised
later.

To illustrate the application of a DAO, consider the two main data types used by the
Advertise Session EJB—job and customer. Focusing on the job information, the first
thing to do would be to define the interface and Value Object to be used by a potential
job-related DAO. Listing 18.5 shows a DAO interface, JobDAO, that could be used for this
purpose.

LISTING 18.5 JobDAO, a DAO Interface for Use with Job Information

1: public interface JobDAO
2: {
3: public Collection findByCustomer(String customer) throws Exception;
4: public void deleteJob(String ref, String customer) throws Exception;
5: public void createJob(String ref, String customer) throws Exception;
6: }

The methods to create and delete jobs are fairly self-explanatory. The findByCustomer
method returns a polymorphic Collection that will contain Value Objects representing
all the jobs found that are associated with the given customer. An example of such a
Value Object is shown in Listing 18.6. This time, the Value Object has several read-only
properties that are set when it is initialized.

LISTING 18.6 JobValueObject, a Value Object for Use with Job Information in a Job
DAO

1: public class JobValueObject implements java.io.Serializable
2: {
3: private String _ref;
4: private String _customer;

806 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 806

Patterns 807

18

5: private String _description;
6: private String _location;
7:
8: public JobValueObject(String ref, String customer,

➥String description, String location)
9: {
10: _ref = ref;
11: _customer = customer;
12: setDescription(description);
13: setLocation(location);
14: }
15:
16: public String getRef() { return _ref; }
17: public String getCustomer() { return _customer; }
18: public void setDescription(String description)
19: {
20: description = description;
21: }
22: public String getDescription() { return _description; }
23: public void setLocation(String location) { _location = location; }
24: public String getLocation() { return _location; }
25: }

The DAO interface and Value Object can then be used by an implementation of the DAO
DirectJobDAOImpl. The implementation uses the JDBC code previously embedded in the
Entity-less AdvertiseBean. Such a DAO is shown in Listing 18.7.

LISTING 18.7 DirectJobDAOImpl, a DAO Implementation that Uses JDBC Calls

1: public class DirectJobDAOImpl extends DirectDAOImpl implements JobDAO
2: {
3: public DirectJobDAOImpl(String jndiName)
4: throws SQLException, NamingException
5: {
6: super(jndiName);
7: }
8:
9: public void createJob(String ref, String customer) throws Exception
10: {
11: PreparedStatement stmt = null;
12: try
13: {
14: Connection connection = acquireConnection();
15: stmt = connection.prepareStatement(
16: “INSERT INTO Job (ref,customer) VALUES (?, ?)”);
17:
18: stmt.setString(1, ref);

LISTING 18.6 Continued

22 0672323842 CH18 3/20/02 9:26 AM Page 807

19: stmt.setString(2, customer);
20:
21: stmt.executeUpdate();
22: }
23: catch (SQLException e)
24: {
25: error(“Error creating Job “+ customer +”:”+ref, e);
26: }
27: finally
28: {
29: releasePreparedStatement(stmt);
30: releaseConnection();
31: }
32: }
33:
34: public void deleteJob (String ref, String customer) throws Exception
35: {
36: PreparedStatement stmt = null;
37: Connection connection = null;
38: try
39: {
40: connection = acquireConnection();
41: connection.setAutoCommit(false);
42: stmt = connection.prepareStatement(
43: “DELETE FROM JobSkill WHERE job = ? AND customer = ?”);
44:
45: stmt.setString(1, ref);
46: stmt.setString(2, customer);
47: stmt.executeUpdate();
48:
49: stmt = connection.prepareStatement(
50: “DELETE FROM Job WHERE ref = ? AND customer = ?”);
51:
52: stmt.setString(1, ref);
53: stmt.setString(2, customer);
54: stmt.executeUpdate();
55: connection.commit();
56: }
57: catch (SQLException e)
58: {
59: try
60: {
61: if (connection != null)
62: {
63: connection.rollback();
64: }
65: }
66: catch (SQLException ex) {}

808 Day 18

LISTING 18.7 Continued

22 0672323842 CH18 3/20/02 9:26 AM Page 808

Patterns 809

18

67: error(“Error deleting job “+ref+” for “+customer, e);
68: }
69: finally
70: {
71: releasePreparedStatement(stmt);
72: releaseConnection();
73: }
74: }
75:
76: public Collection findByCustomer(String customer) throws Exception
77: {
78: PreparedStatement stmt = null;
79: ResultSet rs = null;
80: Collection jobs = new TreeSet();
81: try
82: {
83: Connection connection = acquireConnection();
84: stmt = connection.prepareStatement(
85: “SELECT ref FROM Job WHERE customer = ?”);
86:
87: stmt.setString(1, customer);
88: rs = stmt.executeQuery();
89:
90: jobs.clear();
91: while (rs.next())
92: {
93: jobs.add(rs.getString(1));
94: }
95: }
96: catch (SQLException e)
9x: {
98: error(“Error loading jobs for “+customer, e);
99: }
100: finally
101: {
102: releasePreparedStatement(stmt);
103: releaseResultSet(rs);
104: releaseConnection();
105: }
106: return jobs;
107: }
108:
109: private void error (String msg, Exception ex) throws Exception
110: {
111: String s = “DirectJobDAOImpl: “+msg + “\n” + ex;
112: System.out.println(s);
113: throw new Exception(s + ex);
114: }
115: }

LISTING 18.7 Continued

22 0672323842 CH18 3/20/02 9:26 AM Page 809

The DAO takes advantage of a superclass that manages the JDBC connection on its
behalf. The subclass calls the methods acquireConnection and releaseConnection as
required. All the rest of the JDBC manipulation is performed in the DirectJobDAOImpl
class. The user of the class simply provides the JNDI string identifying the resource from
which the data can be obtained. In this case, the resource will be the data source from
which the Agency data can be obtained.

One thing to notice about the DAO implementation shown in Listing 18.7 is that it does
not maintain a cache of jobs for the specific customer in the way that the Entity-less
AdvertiseBean does. It would be quite possible to create a customer-specific form of the
DAO that would cache this information to improve efficiency, if that was found to be
beneficial.

Figure 18.6 shows the relationships between the different classes for this job DAO. The
AdvertiseBean will instantiate a DirectJobDAOImpl and will call its methods to create,
delete, and list jobs. This simplifies the code in the AdvertiseBean enormously and
means that the code calls a single, meaningful method rather than containing many lines
of JDBC calls and error handling.

810 Day 18

FIGURE 18.6
Relationships between
the classes that make
up the job DAO.

AdvertiseBean DirectJobDAOImpl

DirectDAOImpl
«interface»

JobDAO

JobValueObject

DataSourceuses encapsulates

creates

extendsimplements

obtains

The updated createJob method from the Entity-less AdvertiseBean is shown in Listing
18.8. You may notice that this code is now very similar to the code in the version of the
AdvertiseBean that uses an Entity EJB. This is not surprising, because the DAO is
essentially taking on the role of the Entity EJB in abstracting the data manipulation from
the business logic.

22 0672323842 CH18 3/20/02 9:26 AM Page 810

Patterns 811

18

LISTING 18.8 createJob Method from the Entity-less AdvertiseBean Updated to Work
with a Job DAO

1: ...
2: public class AdvertiseBean ...
3: {
4: ...
5: public void createJob (String ref)
6: throws DuplicateException, CreateException
7: {
8: try
9: {
10: jobDAO.createJob(ref, login);
11: }
12: catch(Exception ex)
13: {
14: error(“Could not create job for “ + ref, ex);
15: }
16: }
17: ...

It is worth noting that in the Sun Java Center definition of Session Façade, the data
objects protected from client access can be Entity EJBs, Session EJBs, or DAOs.

In terms of systemic qualities, the use of a Data Access Object has the following impact:

• Maintainability and flexibility—By separating out the data access from the busi-
ness logic, it is possible to upgrade or replace the data access without affecting the
business logic and vice versa. This makes the whole solution easier to maintain and
evolve.

• Performance—As when adding any extra layer, there will be a certain reduction in
performance due to extra object instantiations and method calls. However, these
could potentially be offset by optimisations and caching in the DAO layer.

Messages and Asynchronous Activation
On Day 10, “Message-Driven Beans,” message-driven beans were added to the Agency to
match jobs with applicants and store the results of this matching process for later assess-
ment. The reason for using asynchronous processing was due to the significant amount of
time that this may take when the number of jobs or applicants has grown large.

The conversion of a synchronous EJB invocation into a message-driven form is defined
by the Service Activator pattern. In EJB 2.0, this message receipt and processing can be
easily implemented using message-driven beans. Prior to EJB 2.0, this pattern could be
implemented by using a separate message server to process the messages and invoke the
relevant EJB method.

22 0672323842 CH18 3/20/02 9:26 AM Page 811

In terms of systemic qualities, the use of a Service Activator has the following impact:

• Performance—Because the searching for matching jobs and applicants takes place
asynchronously, the level of performance perceived by the client is better (in other
words, the server returns immediately rather than “hanging” while the search is
performed).

• Scalability—The client updates job or applicant information by calling a method
on one of the relevant session EJBs, such as AdvertiseJobBean. Because each
Session EJB will take up server resources (sockets, memory, and so on), the client
should use the EJB as quickly as possible. After the client has finished using the
EJB, its resources can be returned to the pool, ready to be used by another client.
As a result, rapid processing leads to increased scalability because more clients can
be serviced by the same number of resources in the same amount of elapsed time.
The use of message-driven searching reduces the time that the client uses the
Session EJB and so aids scalability.

• Availability—Should the server run out of message-driven beans in the pool (or
should the server on which they run become unavailable), the messages can still be
queued for delivery. If the service were accessed synchronously, a server outage
would cause errors and stop the processing of client requests.

Composing an Entity
Although Entity EJBs are often used to represent rows in a database table, this mapping
of table to Entity EJB is not necessarily optimal. If an Entity bean is directly based on an
underlying database table, and then if the database table changes, so must the Entity EJB
and all code that uses that Entity EJB. If there are many related tables, the application
code may have to instantiate and use many Entity EJBs to access all of the data it needs.
Each additional Entity EJB adds to the complexity of the application code. As more
Entity EJBs are required, more RMI calls must be made to access their data, potentially
increasing the traffic on the network and slowing down access to the data. Also, the
application code may need to contact Entity beans from multiple data stores to retrieve
all the data it requires.

To reduce the complexity for the application code and provide a more coherent view of
the application’s data, a single Entity can be used to represent data stored in multiple
places (tables, databases, data stores). This single Entity bean can present a single,
coarse-grained interface to the application code (usually a Session EJB).

In J2EE pattern terms, this is termed a Composite Entity. An example of this was seen in
the Agency case study on Day 6, “Entity EJBs,” when the JobBean was a BMP Entity
EJB managing data from both the Job and JobSkill tables. Consequently, the JobBean

812 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 812

Patterns 813

18

becomes a coarse-grained entity and any potential JobSkill Entity EJB is removed from
the design. You performed the same design refactoring when you implemented the
ApplicantBean to access both the Applicant and ApplicantSkill tables.

The JobBean and ApplicantBean BMP Entity EJBs both used JDBC directly to retrieve
and update the required data. However, a good case can be made for combining
Composite Entity with the DAO pattern so that the actual JDBC calls are handled in
dependent DAO objects.

The Composite Entity pattern is applicable for both BMP and CMP Entity EJBs.
However, for a CMP Entity, the specification of the dependent relationships can be done
using many-to-many Entity relationships.

In terms of systemic qualities, the use of a Composite Entity has the following impact:

• Maintainability and flexibility—By reducing the number of entity EJBs, the appli-
cation becomes easier to manage and maintain. Also, the use of one Entity EJB
per-table effectively exposes the underlying database schema to the client. This
makes it difficult to change at a later date. Providing access via a composite hides
away the detail of the underlying data relationships.

• Performance—Any use of a composite interface as compared to multiple interfaces
should reduce the chattiness of the application. However, some of this gain can be
offset by a longer load time for the composite. The composite will potentially have
to load more data than it needs to serve a simple request. However, there are several
strategies, such as lazy loading, that can help to address this.

Composing a JSP
JSPs are easy to write and deploy. It is sometimes easy to forget that they are fully-
featured and powerful Web components. Poor use of JSP functionality can have as much
of an impact on the performance and scalability of your application as poor use of EJBs.
J2EE Presentation Tier patterns, such as those listed in the “J2EE Presentation-Tier
Patterns” section you saw earlier, can help you improve the quality of your Presentation
Tier components and their interactions.

Consider some of the implications of using JSP functionality to deliver Web functionali-
ty. One common strategy when developing Web sites is to create one or more templates
that define a standard layout for pages displayed to the user. As well as using common
colors and styles, each page can display common information (the current location on the
site) or functionality (a Home button) in a consistent place. Such templates help to
improve the user interface of Web sites and make them easier to navigate. HTML frames
have traditionally been used to divide the screen into separate areas to provide this tem-
plated look.

22 0672323842 CH18 3/20/02 9:26 AM Page 813

When developing JSP-based Web applications, the same principles of usability and navi-
gability still apply. In the case of a JSP, the @include tag can be used to bring in stan-
dard functionality in specific parts of a page. The rest of the content in the page is deter-
mined by the JSP that is including the templated sections. This style of page composition
using JSPs is captured in the J2EE Composite View pattern.

As an example of this, consider the agency.jsp from Day 13, “JavaServer Pages,” the
first few lines of which are shown in Listing 18.9. This JSP uses the @include tag to
bring in the code from header.jsf, as shown in Listing 18.10. This header fragment
brings in a set of standard page elements, both functional, such as the error page defini-
tion, and visible, such as the style sheet definition. The most visible part of this included
fragment is the heading (in the <H1></H1> element) showing the agency name that can be
seen at the top of Figure 18.7.

LISTING 18.9 Partial Listing of Day 13 agency.jsp

1: <html>
2: <head>
3: <title>Agency Portal</title>
4: <%@include file=”header.jsf” %>
5: <%@page import=”java.util.*” %>
6: <h2>Customers</h2>
7: <h3>Existing Customer</h3>
8: <form action=advertise>
9: ...

LISTING 18.10 header.jsf.

1: <%@page errorPage=”errorPage.jsp” %>
2: <head>
2: <link rel=stylesheet type=”text/css” href=”agency.css”>
3: </head>
4: <body>
5: <hr>
6: <jsp:useBean id=”agency” class=”web.AgencyBean” scope=”request” />
7: <h1><jsp:getProperty name=”agency” property=”agencyName”/></h1>
8: <p>

The header.jsf fragment is included in all of the JSP pages that are provided for the
Agency’s Web interface. All of the other pages (apart from agency.jsp) also include the
footer.jsf fragment at the bottom of the page. The admin.jsp page, shown partially in
Listing 18.11, is an example of this. The footer.jsf fragment, shown in Listing 18.12,
provides a button to take the user back to the main Agency JSP. The resulting admin
page is shown in Figure 18.8.

814 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 814

Patterns 815

18LISTING 18.11 Partial Listing of Day 13 admin.jsp

1: <html>
2: <head>
3: <title>Agency Administration</title>
4: <%@include file=”header.jsf” %>
5: <%@page import=”java.util.*” %>
6: <h2>Administration</h2>
7: <h3>Delete Customer</h3>
8: <form action=deleteCustomer>
9: ...
10: </form>
11: <%@include file=”footer.jsf” %>
12: </body>
13: </html>

LISTING 18.12 footer.jsf.

1: <p>
2: <hr>
3: <p>
4: <form>
5: <input type=”button” value=”Return to Agency Menu”
6: onClick=’location=”agency”’>
7: </form>
8:

FIGURE 18.7
The heading that
shows the name of the
Agency is part of a
templated header
included in
agency.jsp.

22 0672323842 CH18 3/20/02 9:26 AM Page 815

The full Composite View pattern also includes a view manager component that allows
parts of the page to be included dynamically. The view manager makes decisions about
what should and should not be included in the page as the page is being generated. If the
view manager takes the form of a JavaBean, conditional statements in the JSP can be
based on method calls to the bean. An alternative strategy is to have the view manager
implemented as a custom tag library. The tags themselves can then decide what should or
should not be output for that page view.

In terms of systemic qualities, the use of a Composite View has the following impact:

• Maintainability—Because the template used for the pages is modular, particular
parts of the template can be re-used throughout the application, giving a consistent
look-and-feel, without having to maintain the same code in multiple pages.

• Manageability—Use of the pattern has benefits in that cleanly separated page frag-
ments make it easier to make changes. If one part of the template is altered, this
change is automatically propagated to all pages that include that part of the tem-
plate. However, a plethora of fragments also presents a challenge to manage all of
these pieces in a cohesive way.

• Flexibility—The use of a view manager to conditionally include fragments of con-
tent makes the application interface very flexible.

816 Day 18

FIGURE 18.8
admin.jsp includes
both a header and a
footer to provide con-
sistent style and a
standard button to
return to the main
screen.

22 0672323842 CH18 3/20/02 9:26 AM Page 816

Patterns 817

18

• Performance—The runtime generation of a page has a negative impact on perfor-
mance, particularly when using a view manager. It may be best to have parts of the
standard template pre-included when the JSPs are updated and refreshed in the
Web application.

JSPs and Separation of Concerns
When designing an application, it is always important to correctly partition the compo-
nents so that each component, or group of components, performs a specific task or tasks.
This separation of concerns leads to fewer dependencies, cleaner code, and a more main-
tainable and flexible application. The separation of concerns becomes very important
when those concerns relate to the skills of the people who must maintain and update
parts of the application. In the case of JSPs, there are two distinct skillsets required—
user interface design and writing J2EE-level Java code. Because it is rare to find these
skills in the same person, these two aspects should be kept apart as much as possible.

Following this principle, the JSPs developed on Day 13 contain a certain amount of Java
code to generate dynamic output, but not all of the code required is visible in the JSP
pages. The JSPs use three JavaBeans, AgencyBean, JobBean, and CustomerBean, to per-
form the more involved processing required, such as the interaction with the business-tier
EJBs. The J2EE pattern View Helper describes various ways in which encapsulated Java
components can be used to hide a lot of the business processing required to create the
desired output or view.

To see this in action, consider the AgencyBean, part of which is shown in Listing 18.13.
As you can see, the constructor locates an Agency EJB (lines 31–37) and the rest of the
code consists of methods that wrap calls to the EJB. If you look back to Listing 18.10,
you can see that an AgencyBean declaration is included in header.jsf so that all pages
will have an instance in scope. However, because the bean is scoped by request, the same
bean can be shared if requests are forwarded to other JSPs or servlets within the applica-
tion.

LISTING 18.13 Selected Highlights of AgencyBean.java

1: ...
2:
3: public class AgencyBean
4: {
5: Agency agency;
6:
7: public String getAgencyName() throws RemoteException
8: {
9: return agency.getAgencyName();

22 0672323842 CH18 3/20/02 9:26 AM Page 817

10: }
11:
12: public Collection findAllApplicants() throws RemoteException
13: {
14: return agency.findAllApplicants();
15: }
16:
17: public void createApplicant(String login, String name, String email)
18: throws RemoteException, DuplicateException, CreateException
19: {
20: agency.createApplicant(login,name,email);
21: }
22:
23: public void deleteApplicant (String login)
24: throws RemoteException, NotFoundException
25: {
26: agency.deleteApplicant(login);
27: }
28:
29: ...
30:
31: public AgencyBean ()
32: throws NamingException, RemoteException, CreateException
33: {
34: InitialContext ic = null;
35: ic = new InitialContext();
36: AgencyHome agencyHome =
37: (AgencyHome)ic.lookup(“java:comp/env/ejb/Agency”);
38: agency = agencyHome.create();
39: }
40: }

The use of the bean in the page makes it easy to build up JSP content based on the func-
tionality exposed by the bean. The section of JSP code in Listing 18.14 is able to use the
bean without the overhead of including the EJB-specific discovery code. This makes the
page easier to maintain.

LISTING 18.14 Simple Use of the AgencyBean in the JSP

<form action=advertise>
<table>
<tr><td>Select Customer</td>
<td><select name=”customer”>
<% Iterator customers = agency.findAllCustomers().iterator(); %>
<% while (customers.hasNext()) {%>
<option><%=customers.next()%>

<% } %>

818 Day 18

LISTING 18.13 Continued

22 0672323842 CH18 3/20/02 9:26 AM Page 818

Patterns 819

18

</select>
</td></tr>
<tr><td colspan=2><input type=submit value=”Show Customer”></td></tr>
</table>
</form>

The relationships and interaction between the client, the JSP, and the bean are depicted in
Figures 18.9 and 18.10. Everything to the right of the AgencyBean JavaBean is transpar-
ent to the agency JSP.

LISTING 18.13 Continued

FIGURE 18.9
Class relationships for
the AgencyBean View
Helper.

Client
«JSP»
agency

«EJB»
AgencyBean

AgencyBean

FIGURE 18.10
Example interaction
diagram for the
AgencyBean View
Helper.

findAllCustomers
findAllCustomers

Create

Create

Createiterator

hasNext

next

Find

Client

AgencyBean

Collection

Iterator

«JSP»
agency

«EJP»
AgencyBean

Request

As well as using JavaBeans, there are other strategies for delegating code to components
outside the JSP. The most powerful strategy is probably the one using a custom tag
library. The code in Listing 18.15 shows how even more of the Java code is removed by
using the custom agency:forEach and agency:option tags. This JSP code can now be
easily manipulated and interpreted by a Web page designer and the tools used for Web
page design.

22 0672323842 CH18 3/20/02 9:26 AM Page 819

LISTING 18.15 A Tag Library Used as a View Helper to Remove Code from the Agency JSP

1: <form action=advertise>
2: <table>
3: <tr><td>Select Customer</td>
4: <td>
5: <select name=”customer”>
6: <agency:forEach collection=’<%=agency.findAllCustomers()%>’>
7: <agency:option/>
8: </agency:forEach>
9: </select>
10: </tr></tr>
11: <tr><td colspan=2><input type=submit value=”Show Customer”></td></tr>
12: </table>
13: </form>

One other strategy for removing code from a JSP is to simply store the code in a JSP
fragment and then include the fragment where appropriate. The advertise.jsp from
Day 13 does this with skills.jsf and location.jsf. Although this can be effective in
some cases, it lacks the encapsulation of the other mechanisms. It is important to note
that the importing of these fragments relates more to the View Helper pattern than the
Composite View pattern, as it may seem at first glance.

In terms of systemic qualities, the use of View Helpers has the following impact:

• Maintainability—If the code and the HTML of the JSP are separated, it makes it
far easier to maintain the two parts. There is much less chance of accidental
changes than when code and HTML are mixed.

• Flexibility—If the code behind the helpers changes, for example to use different
EJBs or direct database access, there is no need for the JSP to be altered.

• Performance—As with any layering technique, there is the potential for some
degradation in performance.

Client-Side Proxies and Delegates
The JavaBeans in the View Helper discussion also act as a shield between the JSP and
the business tier functionality. For example, the JSP has no need to know that it is using
an EJB when it instantiates an AgencyBean JavaBean. The JavaBean encapsulates all of
the EJB handling (the custom tag library also does this in later versions). In this role of
client-side proxy, the JavaBean provides an implementation of another J2EE pattern, the
Business Delegate.

The role of a Business Delegate is to reduce the coupling between the client tier or Web
tier code and the business tier implementation. As indicated, coupling is reduced by
encapsulating the implementation of the business logic (as an EJB). This encapsulation

820 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 820

Patterns 821

18

includes not only the lookup of resources but also error handling, retrys, and failover if
appropriate. The Business Delegate can also perform caching and mapping of EJB
exceptions to application exceptions.

When Business Delegates and Session Facades are used together, there is commonly a
1:1 mapping between them. This occurs in the Day 13 Agency code where the
AgencyBean, JobBean, and CustomerBean JavaBeans each act as a Business Delegate for
the Agency, Job, and Customer Session Facade EJBs, respectively. The primary reason
that the Business Delegate does not contain business logic is that such business logic
should be factored back into an associated Session Facade.

In terms of systemic qualities, the use of Business Delegates has the following impact:

• Maintainability—The Business Delegate encapsulates the business tier access
code. Any changes required to this code can be made in one place.

• Reliability and availability—Retry and failover strategies can be implemented by a
Business Delegate to improve the reliability and availability of the access to busi-
ness tier services.

• Performance—As with any layering technique, there is the potential for some
degradation in performance. However, a Business Delegate can also cache informa-
tion if appropriate, having a positive impact on performance.

Locating Services
Because the case study is designed to be simple, it tends to obtain EJB home and remote
references on a per-call basis. In a production system, this is one of the areas where
caching would be of benefit. The Service Locator pattern describes a way to speed up the
retrieval of EJB remote interfaces.

The Service Locator is a derivative of the GoF Singleton pattern. It acts as a central,
common service on the presentation or Web tier from which EJB remote references can
be obtained. The Service Locator will obtain and cache a reference to the home inter-
faces of the EJBs it serves. These cached home interfaces are then used to dispense EJB
remote interfaces as required. The client code does not need to perform the home inter-
face lookup every time and so becomes more efficient.

In terms of the case study, both the application clients and Web-tier components could
use such a service to improve the way that they obtain EJB remote references.

In terms of systemic qualities, the use of Service Locator has the following impact:

• Performance—Caching the EJB home interfaces should improve the time taken to
obtain an EJB remote reference markedly. Also, because there are fewer JNDI
lookups, there will be less network traffic.

22 0672323842 CH18 3/20/02 9:26 AM Page 821

• Reliability and availability—Retry and failover strategies can be implemented by a
Service Locator to improve the reliability and availability of the access to business
tier services.

• Maintainability—Because all of the EJB lookup (or JMS queue/topic lookup) takes
place in one component, there is one place for updates.

Any Other Business
Other J2EE patterns could be applied to the case study if the requirements were different.
For example, the case study uses standard J2EE security in a fairly straightforward way.
However, if there were more complex security requirements, a Front Controller servlet
could be used in the Web tier to enforce such security in a uniform manner without hav-
ing to place security code in each JSP and servlet. If other functionality, such as logging
and audit, were required, the Intercepting Filter pattern could be applied to chain togeth-
er all of the required common “transparent” functionality (security, logging, and so on)
ahead of any access to JSPs and servlets.

Because the data displayed by the Web-based interface is fairly standard, there is no
requirement for pre-processing of information in a Front Controller or for any form of
routing to take place such that the client is shown different pages depending on the con-
text information they submit (for example, a cookie or form field). If such pre-processing
and conditional display were to form part of the case study, the patterns Service to
Worker and Dispatcher View could be considered when deciding where to place the dif-
ferent responsibilities.

The case study is not an e-commerce system, as many J2EE systems are. Such systems
tend to deal with catalogs of products and spend most of their time displaying static
information and less time updating information (for example, a customer will browse
many pages before placing an order). For e-commerce systems, other patterns in the
J2EE catalog, such as Value List Handler and Fast Lane Reader, become relevant.

The different patterns are relevant in different contexts. Some patterns will be irrelevant
in some cases, so don’t assume that all patterns will be applicable in your system.

Refactoring the Case Study
As you have seen, there are various ways in which the case study can be refactored to
improve its systemic qualities. The reason that such refactoring can be performed is
down to the context in which the application was written, namely that parts of it were
simplified for educational purposes.

As noted earlier, most development work is performed on existing code, so identifying a
potential application of a pattern in such code and applying the appropriate refactoring is

822 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 822

Patterns 823

18

a useful skill to build. The reason that you would want to apply the refactorings shown is
to make the case study a more efficient, maintainable, and scalable application. But why
are you doing that? Well, probably because you want to apply that application in the real
world to serve real customers. In that case, the context for the application has changed
from being an educational J2EE showcase to being a live production application. The
change in context alters the requirements and the forces on which the application is
based. Such changes will almost inevitably show up areas in which changes are required.

As any application is altered, whether that is the addition of new functionality or a
change to the systemic quality requirements (for example, an increase in the order of
magnitude of users), certain of the original design decisions may no longer make as
much sense as they did in the original design context. As a result, refactoring of applica-
tions and the use of different patterns in different areas over time should become a way
of life for software designers and developers. Without suitable maintenance, software
will erode over time as the world changes around it.

Directions for J2EE Patterns
As you have seen, there are a number of patterns that have been identified as recurring in
J2EE design and development. However, the list of J2EE patterns provided earlier is not
a definitive and final one. More J2EE-specific patterns will undoubtedly emerge over
time due to various factors:

• Because more applications are developed based on existing J2EE technologies,
more patterns may be mined by identifying other common design elements within
those applications.

• New patterns will evolve based on newly released technologies that become part of
the J2EE platform. A prime example of this is in the area of Web Services. Web
Services will play a major part in J2EE applications developed from J2EE 1.4
onward. The application of such new technology will give rise to new patterns of
use. Because Web Services will form part of J2EE, these new patterns will find
their place in the range of J2EE patterns available to the application designer.

• New applications of all these technologies will lead to new requirements. The solu-
tions to these new requirements will give rise to new patterns of use and, hence, to
new J2EE patterns.

Another aspect of the emergence of patterns in environments such as J2EE is that the
common patterns become embodied in the environment itself. This was noted earlier,
given that patterns such as Proxy are prevalent in the infrastructure and generated classes
of a J2EE application. As J2EE evolves, more patterns will be captured in the underlying
platform. An example of this is the introduction of servlet filters in J2EE 1.3, which
embodies much of the Intercepting Filter pattern.

22 0672323842 CH18 3/20/02 9:26 AM Page 823

Summary
Good design relies on knowledge of the technologies in use and an appreciation of how
they best fit together to solve particular problems. Technologies are comparatively
straightforward to learn, and there are many sources from which you can obtain informa-
tion and insight, such as books and training courses. Gaining an appreciation of how best
to apply these technologies is more difficult. By studying design patterns, particularly
those targeted at a specific platform such as J2EE, you can accelerate your understanding
of the design issues in particular environments. Design patterns also provide you with a
set of solutions to these issues that can be applied as part of your application design.

Q & A
Q There is much material available on application design and architecture. Why

should I use patterns?

A Patterns are mined from concrete examples of design and architectural elements
that have been used and proven in delivered systems. A pattern is only a pattern
when it has been identified in multiple existing designs or architectures. As such, a
pattern is more than just an opinion.

Q What effect do J2EE patterns have on the systemic qualities of a design, such
as scalability and availability?

A Correctly applied, J2EE patterns will improve one or more of the systemic qualities
of a design. As an example, consider the Value Object pattern. The primary pur-
pose of using a Value Object between client and server is to reduce network chatti-
ness, where a client makes repeated calls to a server to obtain a set of related data.
By creating a single object to represent such data, only a single method call is
required to retrieve the data. This improves the performance and scalability of the
system.

Q Can I only apply J2EE patterns to new designs?

A No. J2EE patterns can be used to re-shape existing application code to improve its
maintainability and other systemic qualities.

Q Why do J2EE patterns tend to abstract the access to underlying databases?

A An important part of good design is to reduce the dependencies between parts of a
system. As an example, consider the use of a Session Facade to hide the underlying
structure and relationships of the business data. The Session Facade interface
should be business-oriented rather than data-oriented, because the Session Facade
provides business services instead of raw data. Obscuring the structure of the data
means that this data can be changed at a later date without requiring changes to the
client.

824 Day 18

22 0672323842 CH18 3/20/02 9:26 AM Page 824

Patterns 825

18

Exercises
There are several refactorings that could be performed on the case study. One of the most
effective is to use Value Objects between the clients and their associated Session beans.
This exercise asks to you perform such a refactoring.

1. Create a Value Object called ApplicantValueObject. This should contain all of the
information about an applicant, such as his or her name, e-mail, and so on. The
class you create should be a JavaBean, and you must be able to use it as a parame-
ter or return type in an RMI method call.

2. Alter the Register interface so that it passes ApplicantValueObjects between
client and server. The interface should only have two methods.

3. Alter the RegisterBean EJB so that it implements the updated Register interface
and uses ApplicantValueObjects.

4. Alter the RegisterClient application so that it uses the updated Register inter-
face and ApplicantValueObjects.

5. Build the updated application and re-deploy it. Make sure that everything still
works correctly.

6. An example solution is available under the agency directory in the Day 18 exercise
code on the CD-ROM. Examine the sample solution in contrast to your own. How
might you improve this solution? Areas to consider include the EJB home inter-
faces, the Value Object constructor, the way that the Value Object stores skills, and
whether the Applicant EJB should create the Value Object.

22 0672323842 CH18 3/20/02 9:26 AM Page 825

22 0672323842 CH18 3/20/02 9:26 AM Page 826

DAY 19

WEEK 3

Integrating with
External Resources

Yesterday, you learned about patterns and how they describe typical application
development problems that you might face and how these patterns provide solu-
tions to these problems. One problem that many application developers share is
how to integrate a J2EE application with existing non-Java code, applications,
or systems. Today’s lesson introduces you to four possible solutions to this
problem.

The first of these solutions is the J2EE Connector architecture, which allows
you to connect to Enterprise Information Systems (EIS), such as Enterprise
Resource Planning systems (ERP). Primarily, today’s lesson focuses on this
architecture, but it also shows you approaches to writing Java code that con-
sumes non-Java code libraries (such as legacy C libraries) and consume remote
objects, which are also not written in Java.

Today’s lesson covers the following topics:

• Reviewing external resources and legacy systems

• Introducing the Connector architecture

23 0672323842 CH19 3/20/02 9:38 AM Page 827

• Connecting to legacy systems by using the Common Client Interface

• Introducing Java IDL and CORBA

• Working with RMI over IIOP

• Working with the Java Native Interface

• Reviewing integration technologies

Reviewing External Resources and
Legacy Systems

In an ideal world, your entire application might only contain Java components and appli-
cations, but it is not an ideal world. Very few architects have the opportunity to design
entire Java systems from the ground-up, and very few enterprise developers have the
opportunity to solely work on these types of systems. In reality, systems are heteroge-
neous in nature; that is, they are made up of many different parts. Figure 19.1 shows a
complex heterogeneous environment that shows an array of clients attempting to access
the services provided by a vast array of non-Java applications and systems.

828 Day 19

FIGURE 19.1
A complex heteroge-
neous environment.

Enterprise Services

Mainframe
transaction
processing

C++
ObjectsSAPERP CORBAC Library

Low-Level
code

segment

Server
acting as

Client

Desktop
Client

Mobile
Client

As you can see, the system consists of Enterprise Information Systems, such as ERP,
SAP, and mainframe transaction processing systems. In addition, the enterprise services
must call on the services provided by legacy code libraries, remote objects written in
non-Java programming languages, and code written in lower-level programming lan-
guages.

23 0672323842 CH19 3/20/02 9:38 AM Page 828

Integrating with External Resources 829

19

The needs of business and the pressures of the application development cycle means that
it is simply not feasible to rewrite all these elements so that they consist of pure Java.
The only feasible option is that enterprise services provide mechanisms that integrate
with these legacy and non-Java elements. Luckily, there are a number of Java technolo-
gies that allow you to integrate J2EE applications with these elements. It is these tech-
nologies that you will explore in today’s lesson.

Introducing Connector Architecture
The Java solution to application integration in a heterogeneous environment is the J2EE
Connector architecture. The architecture provides a standard way to connect to legacy
and non-Java systems. As you will learn, the architecture allows EIS providers to create a
single resource that allows any J2EE application server to access the EIS. In addition, the
architecture defines a standard API that allows you to program against any supported EIS
by using a standard set of API calls.

Today’s lesson discusses and uses version 1.0 of the Connector architecture,
but there is already a JSR proposing version 2.0 of the architecture. This ver-
sion may include support for a number of items, including Common Client
Interface metadata and XML integration. You can learn more about version
2.0 of the architecture by reading JSR112.

Note

Overview of the Architecture
The J2EE Connector architecture defines two categories of contract—system and appli-
cation. The system contract defines the relationship between a J2EE application server,
or a container, and an EIS. The system-level contract requires the application server and
the EIS to collaborate to hide system-level functionality from developers and compo-
nents. The EIS provider implements its part of the contract through a resource adapter,
which plugs into the application server to form a bridge between components and EISs.
Figure 19.2 shows the resource adapter within the J2EE connector architecture.

Figure 19.2 also shows how application components, such as an EJB or JSP, communi-
cate with an EIS through the resource adapter—not through direct communication. The
application contract governs this communication through a client API—you will learn
more about this contract later in the “Using the Common Client Interface” section of
today’s lesson.

23 0672323842 CH19 3/20/02 9:38 AM Page 829

To draw a comparison with other elements of J2EE, you can consider a resource adapter
to be similar to a JDBC driver. In both cases, a service provider or a third-party provides
a bridge between a non-Java application and Java components. In the case of JDBC, the
bridge is a JDBC driver and, in the case of the Connector architecture, the bridge is a
system-level software driver known as a resource adapter. In both instances, components
communicate to the underlying service via the bridge.

After an EIS provider has written a resource adapter, any J2EE-compliant application
server can use that adapter. This means that the EIS provider only has to write one
resource adapter to support many application servers. An application server can host sev-
eral resource adapters—one for each EIS—and, thus, support multiple EISs. To offer you
a deeper insight into the relationship between EIS, application server, and application
component, the next section of today’s lesson looks at the roles and responsibilities the
Connector architecture specification defines. In addition, the next section takes a closer
look at the service and application contracts.

Roles and Responsibilities
Figure 19.3 shows a simplified representation of the roles, which relate to the process
Figure 19.2 outlines.

830 Day 19

FIGURE 19.2
The J2EE Connector
architecture. EIS Resource Adapter

Application Server
Manages:

Connections
Transactions

Security

Application
Component

Application
Contract

EIS Specific
Interface

Plug into…

Container-
Component
Contract as

Specified by J2EE
Specification

The javax.resource.spi package provides the classes, and interfaces that
you require to write a resource adapter for an EIS. The process of writing a
resource adapter is outside the scope of today’s lesson. If you want to learn
more about writing resource adapters, please refer to the J2EE API docu-
mentation and the Connector architecture specification.

Note

23 0672323842 CH19 3/20/02 9:38 AM Page 830

Integrating with External Resources 831

19

Typically, but not exclusively, the EIS provider and the resource adapter provider are the
same person or organization. The resource adapter plugs into the application server, so
that the server can provide application components with connectivity to the EIS. The
application server manages security, resources, and transactions on behalf of the EIS, so
that these system-level functions are transparent to the application component.

Previously, in Figure 19.2, you saw how a system contract governs the relationships
between an EIS and an application server. The system contract comprises of three sepa-
rate contracts:

• Connection contract

• Transaction Management contract

• Security contract

The remainder of this section of today’s lesson examines each of these contracts, so that
you can gain an understanding of the services available to you as an application develop-
er. If you want to explore these areas in more depth, please refer to the J2EE Connector
architecture specification, the current version of which is available at
http://java.sun.com/j2ee/connector/index.html.

The Connection Contract
The connection contract allows the application server to pool connections to the EIS, and
allows application components to connect to the EIS. Typically, when connecting to an
EIS, you write code that performs a lookup in the JNDI namespace for a connection fac-
tory, which you use to gain a connection to an underlying EIS. The connection factory,
on receiving a request for a connection, delegates responsibility to a connection manager
on the application server. The connection manager is then responsible for checking the
connection pool for a connection and, together with the application server, providing a
connection instance that you can use to access the underlying EIS. Because the applica-
tion server pools connections, multiple clients can connect to multiple EISs. For exam-
ple, the application could manage the connections between multiple servlet instances and
an ERP system and a legacy database system.

FIGURE 19.3
J2EE Connector archi-
tecture roles (simpli-
fied).

EIS Provider Resource Adapter
Provider

Application Server
Provider

Application
Component

Provider

23 0672323842 CH19 3/20/02 9:38 AM Page 831

The Transaction Management Contract
The transaction management contract allows an application server to manage transactions
across multiple EISs if appropriate. Figure 19.4 shows the different types of transactions
the Connector architecture recognizes, and it also shows how these transactions are man-
aged.

832 Day 19

FIGURE 19.4
J2EE Connector archi-
tecture transaction
management.

EIS

XA or JTA
transactions

Application server
external

transaction
manager
manages

transactions

Container
managed

demarcation

Component
managed

demarcation

Local transactions

As you can see, the architecture defines two main categories of transactions—XA or JTA
transactions and local transactions. The former category includes those transactions that a
transaction manager on the application server manages on behalf of the EIS. In this sce-
nario, the application server provides all runtime support for transactions, so you do not
need to concern yourself with these types of transactions. The latter category, local trans-
actions, includes transactions that the EIS manages itself. In this instance, the server-side
must perform some form of transaction demarcation. The server-side can perform this
demarcation in one of two ways:

• Container managed

• Component managed

23 0672323842 CH19 3/20/02 9:38 AM Page 832

Integrating with External Resources 833

19

Container-managed demarcation is where the component container performs demarcation
on behalf of the component. For example, the EJB specification requires an EJB contain-
er to support the container-managed transactions demarcation model. Therefore, an EJB
container can manage demarcation so that you do not have to explicitly begin, commit,
or rollback transactions. Unlike container-managed demarcation, component-managed
demarcation requires you to manage the demarcation of a transaction. You will learn how
to do this in the second of the example applications in today’s lesson. With regard to
J2EE application components, EJB containers must support component-managed trans-
action demarcation, and so must Web containers that house JSPs and servlets.

For a guide to transaction management and how this affects the scalability
and performance of your application, please refer to Day 8, “Transactions
and Persistence.”

Note

The Security Contract
An EIS will often hold information that might be sensitive (credit card details) or mis-
sion critical (prospects details in a call center). It is vitally important for an organization
to know that this information is only available to authorized persons. The J2EE
Connector architecture security contract stipulates how this security is maintained when
J2EE components connect to EISs. The contract aims to achieve this by extending the
J2EE security model to EIS integration through the Connector architecture. One of the
key goals of the contract specification is to keep security mechanism neutral. That is, the
security contract is flexible enough to support a wide-range of security technologies and
EISs. The two principal ways it achieves this are by not stating

• A mandatory, specific security policy

• A mandatory, specific security technology

For example, the Connector architecture specification identifies the two most commonly
used authentication (identifying a user) mechanisms—basic user-password that is specific
to an EIS and Kerberos Version 5. Although the specification identifies these mechanisms,
it does not stipulate that a given application server or EIS should support them. Likewise,
the specification provides a great deal of flexibility with regard to authorizing users. In
this instance, checking whether a given user is allowed access to a particular resource can
be performed either by the EIS or the application server (you will see this in the code
examples in the “Using the Common Client Interface” section of today’s lesson).

23 0672323842 CH19 3/20/02 9:38 AM Page 833

The whole process of signing on to an EIS from an application can occur in two ways.
The first is container managed. This is where the application server takes responsibility
for signing onto an EIS. Alternatively, the sign on process can be component managed.
In this instance, you are responsible for writing the code that provides the authentication
and authorization credentials required for sign-on.

Using the Common Client Interface
Up to now, today’s lesson has concentrated on the system contract between an EIS and
an application server. This information is important to assist your overall understanding
of how Java applications interact with legacy and non-Java systems. But, as an applica-
tion developer, you are probably eager to start writing code. This section of today’s les-
son looks at the relationship between an application component and a resource adapter.
Specifically, you will learn how to code against the Common Client Interface (CCI) API.

A resource adapter provides a client API that you can code against. This client API may
be an implementation of the CCI API, but the Connector architecture specification allows
a resource adapter to support a client API that is specific to its underlying EIS. For exam-
ple, an EIS that is a relational database might support the JDBC API. Even if the
resource adapter does not provide a CCI implementation, a third-party can provide an
implementation that sits above the resource adapter’s EIS specific client API. Because of
the wide variety of EISs and the APIs they may implement, today’s lesson focuses on the
CCI API. Always check with your resource adapter to determine the APIs it implements.

The CCI API provides a standard client API for you to code against. When you code
against this API, you work with an abstraction of EIS functionality. This means that, like
any other standard API, you only have to learn the one set of API calls to write code that
interacts with multiple differing EISs. It also means that if you write code for one EIS
and then change the underlying EIS, your code will still run against the replacement EIS.

Interacting with an EIS
The process of performing an operation against an EIS involves a number of steps.
Figure 19.5 shows these steps.

In a moment, you will write an application that implements these steps in code, but you
will first explore them at a high-level. A resource adapter provides a ConnectionFactory
that you use to create a Connection to the EIS. To locate the ConnectionFactory, you
must first establish a JNDI Context for your current session and then perform a look up
on the JNDI namespace to locate the ConnectionFactory. After you locate the
ConnectionFactory, you can use it to create a Connection. As previously mentioned,
the Connection is an application-level handle that you use to access an EIS instance.

834 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 834

Integrating with External Resources 835

19

After you have a Connection, you create an Interaction. An Interaction allows you
to execute EIS functions. In other words, all the operations you want to perform against
the EIS are done through the Interaction. Typically, when you execute an EIS function,
you also provide the Interaction instance with a Record. The Record holds either the
input to or the output from an EIS function. For example, you can use a Record instance
to pass parameters to the EIS function, or you can use a Record instance to hold the
information the EIS function returns.

If you are handling your own transaction management, you must begin a transaction
before performing operations against the EIS. If you are not handling transaction man-
agement, you proceed to perform operations against the EIS. After you have performed
the desired operations against the EIS, if you are managing transactions, you commit or
rollback the transaction. Finally, you close the connection to the EIS.

Installing a Resource Adapter
To run the example applications in this lesson, you must install appropriate resource
adapters and ensure that you have access to a corresponding EIS. To ensure that you can
actually run and test the examples in today’s lesson, both of the examples use the
Cloudscape database, which you installed in Day 8, “Transactions and Persistence.” With
regard to resource adapters, you will require two resource adapters—cciblackbox_tx

and cciblackbox_xa. Both of these resource adapters are samples supplied with the
J2EE reference implementation.

Resource adapters come packaged in Resource adapter ARrchive (RAR) files. When you
downloaded and installed the J2EE SDK, you would have also installed the resource
adapters for today’s lesson. You can find these resource adapters in the lib/connector

FIGURE 19.5
The process of inter-
acting with an EIS.

Establish JNDI
context

1

look up the
resource
adapter’s

connection
factory 2

Create a new
connection

3

Create a new
interaction

4

Create records
as appropriate

5

Close connection
to EIS

9

*Commit or
rollback

transaction
8

Perform
operation on
data store

7

*Begin a
transaction

6

*These steps apply only if you are conducting your own transaction management.

23 0672323842 CH19 3/20/02 9:38 AM Page 835

directory under the J2EE installation directory. If you do not have the resource adapters,
you can download them by downloading the J2EE Connector architecture sample source
and binary code adapters, which is available from Sun Microsystems at
http://java.sun.com/j2ee/sdk_1.3/.

836 Day 19

RAR is also a recursive acronym for Roshall Archive a compressed file format.
The format is named after its creator, Eugene Roshall, and you can discover
more about it at http://www.rarsoft.com.

Note

To install a resource adapter, start the J2EE server.

Use the deploytool to deploy the resource adapter. You must use the deployConnector
switch and pass the location of the resource adapter and the server name. To do this on a
Windows platform, type the following at the command prompt:

deploytool –deployConnector
➥%J2EE_HOME%\lib\connector\cciblackbox-tx.rar localhost

On a Unix platform, use the following command:

deploytool –deployConnector
➥$J2EE_HOME/lib/connector/cciblackbox-tx.rar localhost

To complete the installation, you must associate a connection factory with the deployed
CCI adapter. You must use the j2eeadmin tool with the addConnectorFactory switch,
passing two arguments—a JNDI name for the connection factory and the name of the
resource adapter. To do this on a Windows platform, type the following at the command
prompt:

j2eeadmin –addConnectorFactory eis/CciBlackBoxTx cciblackbox-tx.rar

On a Unix platform, use the following:

j2eeadmin –addConnectorFactory eis/CciBlackBoxTx cciblackbox-tx.rar

That’s it, you have installed the first resource adapter. Repeat the process for the second
resource adapter, cciblackbox-ax.rar. Finally, verify that you have correctly deployed
the resource adapters by using the listConnectors switch of the deploytool. On both
Windows and Unix platforms, type the following at the command line:

deployTool –listConnectors localhost

Creating a First CCI Application
This first application shows you how to write code that uses the CCI API to connect to
an EIS. The application component that you will write in this instance is a Session bean;

23 0672323842 CH19 3/20/02 9:38 AM Page 836

Integrating with External Resources 837

19

however, you could use any other J2EE component. The bean will contain the business
logic that allows you to connect to an EIS and, using a stored procedure, insert an entry
into a books table held by the Cloudscape database.

If you are unfamiliar with stored procedures, they are methods that perform
business logic, and are stored within a database. Typically, stored procedures
are written as standard SQL statements. However, some databases can use
stored procedures written in Java; Cloudscape is such a database.

Note

In this first example, you are using an EJB that uses container-managed persistence. This
ensures that access to the EIS does not occur outside the context of a transaction. As
such, you do not have to explicitly handle transactions as shown in steps 6 and 8 of
Figure 19.5. The second example in today’s lesson shows you how to manage your own
transactions.

To start coding this example, you define the bean’s home interface. You can see that this
interface is no different from any other home interface:

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface BookManagerHome extends EJBHome {
BookManager create() throws RemoteException, CreateException;

}

Like the home interface, the remote interface is no different to any other remote inter-
face. As you can see, the interface defines the insertBook() method that the client will
use to insert a book into the EIS database:

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface BookManager extends EJBObject {
public void insertBook(String name, double price) throws RemoteException;

}

After you create the interfaces, you can start creating the EJB class. The first thing to
note about this class is that you import two additional packages and an additional class:

• javax.resource.cci The package containing the CCI API interfaces

• javax.resource.ResourceException The root exception of the Connector archi-
tecture’s exception hierarchy

• com.sun.connector.cciblackbox

23 0672323842 CH19 3/20/02 9:38 AM Page 837

The code itself declares four fields, which today’s lesson discusses as you use them:

public class BookManagerEJB implements SessionBean {
private SessionContext sc;
private String user;
private String pass;
private ConnectionFactory cf;

In this example, there is no implementation of the ejbCreate(), ejbRemove(),
ejbActivate(), and ejbPassivate() methods. Listing 19.1 at the end of this section
shows their empty bodies. However, you must provide a body for the
setSessionContext() method:

public void setSessionContext(SessionContext sc) {
this.sc=sc;
try {

Context ic = new InitialContext();
user = (String) ic.lookup(“java:comp/env/user”);
pass = (String) ic.lookup(“java:comp/env/password”);
cf = (ConnectionFactory) ic.lookup(“java:comp/env/CCIEIS”);

}
catch (NamingException ne) {

System.err.println(ne.getMessage());
}

}

The try-catch construct contains the code that uses the CCI API. The code starts by
establishing a JNDI context (step 1 of Figure 19.5) using code with which you are famil-
iar. You then use the JNDI context to perform three lookups (step 2 of Figure 19.5). The
first two simply obtain the username and password from environment properties. The
third obtains a reference to the connection factory for the resource adapter. Finally,
the lookup() method throws a NamingException, so you catch this.

After you have implemented the setSessionContext() method, you can write the meth-
ods that contain the business logic. In this example, there is only one such method and it
accepts a book name (String) and a book price (double), that it inserts into the EIS:

public void insertBook(String name, double price) {

A try-catch construct encapsulates the method body, because many of the methods you
call might throw ResourceExceptions or exceptions that extend ResourceException.
The construct begins by creating a new connection to the EIS (step 3 of Figure 19.5). To
do this, you must first create a ConnectionSpec object that you will use to pass the user-
name and password to the connection factory. ConnectionSpec is an interface, so you
create an object by using the concrete class CciConnectionSpec:

ConnectionSpec cs = new CciConnectionSpec(user, pass);

838 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 838

Integrating with External Resources 839

19

After you create the ConnectionSpec object, you can get a Connection object by using
the getConnection() method of the ConnectionFactory. This method is overloaded
and, as such, has two versions, both of which return a Connection object. The first ver-
sion accepts no parameters, and you should only use this if you want the EIS to manage
the sign-on process. The second version, which you will now use, accepts a single
parameter—a ConnectionSpec object. The method throws a ResourceException.

Connection c = cf.getConnection(cs);

To actually perform operations against the EIS, you need an Interaction object (step 4
of Figure 19.5). To get an Interaction object, you call the createInteraction()
method of the Connection object. Note that the methods throws a ResourceException:

Interaction i = c.createInteraction();

To use the Interaction object, you must create an InteractionSpec object. This object
allows the Interaction object to execute functions on the underlying EIS. The
InteractionSpec interface in the CCI API exposes three fields and no methods. An
implementation of the interface does not have to support these standard fields if they do
not apply to the underlying EIS. In addition, the implementation can provide any addi-
tional fields that apply to the EIS. The specification for the interface states that the
implementation must provide accessor methods (get and set) for any fields that it does
support. The implementation of this interface that comes with cciblackbox provides
accessor methods for three fields:

• functionName

• schema

• catalog

For the sake of completeness, you set all three of these fields in the example you are cur-
rently writing. Note, however, that the catalog is set to null, because Cloudscape does
not require a catalog name. The INSERTBOOK function name refers to the stored procedure
that you will execute in a moment. You will learn more about stored procedures a little
later in this section.

CciInteractionSpec iSpec = new CciInteractionSpec();
iSpec.setFunctionName(“INSERTBOOK”);
iSpec.setSchema(user);
iSpec.setCatalog(null);

You are now ready to start creating records that hold the input to or the output from an
EIS function. To create records, you must first create a record factory. The
getRecordFactory() method of the ConnectionFactory object creates a
RecordFactory. This method throws two exceptions—a ResourceException and one of

23 0672323842 CH19 3/20/02 9:38 AM Page 839

its subclasses, NotSupportedException—thrown when a resource adapter or application
server does not support the operation.

RecordFactory rf = cf.getRecordFactory();

The RecordFactory creates two types of records—MappedRecord and IndexedRecord. A
MappedRecord is a record that you use to hold a key-value representation of the record
elements. You should find this type of record familiar because it has a super interface of
java.util.Map (HashMap and Hashtable also implement this interface). In contrast to
the MappedRecord, the IndexedRecord is a record that represents record elements as an
ordered collection. This type of record allows you to access items in the collection by
index, and it also allows you to search for elements within the collection. You should also
find using this type of record familiar because it has a super interface of java.util.List
(Vector and ArrayList also implement this interface). In the example you are writing,
you use an IndexedRecord because Cloudscape only supports indexed records.

IndexedRecord iRec = rf.createIndexedRecord(“InputRecord”);

The stored procedure that you are going to execute on the EIS accepts two parameters—
a book name and a book price. You use the IndexedRecord object that you just created to
pass these parameters to the procedure. To do this, you use the add() method that
IndexedRecord inherits from java.util.List. The method returns a boolean that you
assign to a variable named flag. In this instance, you discard the returned Boolean
because you do not use it later in the code:

iRec.add(name);
iRec.add(new Double(price));

You can see that the code creates a new instance of Double rather than passes the price as
a primitive double. The reason for creating the Double object is that when the program
connects to the EIS, it converts Java object types into SQL equivalents, and when the EIS
returns, the program converts the SQL type back to a Java type. The actual mapping of
Java and SQL types is defined in the Types class of the java.sql package. To gain a
complete reference to the Java-SQL mappings, refer to the J2SE API documentation.

840 Day 19

The stored procedures used in this example are written in Java. It is not the
objective of this lesson to explain stored procedures, but if you want to view
their code, you can find them on the CD-ROM that accompanies this book.

Note

Now that you have added the parameters to the record, you can execute the function on
the EIS. To do this, you use the execute() method of the Interaction object. This

23 0672323842 CH19 3/20/02 9:38 AM Page 840

Integrating with External Resources 841

19

method is overloaded and, as such, comes in two varieties. The one you will use accepts
an Interaction object and an input (containing parameters) Record object. When the
function executes, the method returns a Record object containing the output, such as the
results of a query. The second version of the method accepts an additional Record object
that the method updates to include the output from the function execution. This version
of the method returns a Boolean that has a value of true if the execution of the EIS func-
tion was successful.

i.execute(iSpec, iRec);

After you execute the EIS function, you can close the connection to the underlying EIS
(step 9 in Figure 19.5). To do this, simply call the close() method of the Connection
object:

c.close();

You have now completed the Session bean code to insert data into an EIS. Listing 19.1
shows the complete code.

LISTING 19.1 BookManagerEJB.java

import javax.ejb.*;
import javax.resource.cci.*;
import javax.resource.ResourceException;
import javax.naming.*;
import com.sun.connector.cciblackbox.*;

public class BookManagerEJB implements SessionBean {
private SessionContext sc;
private String user;
private String pass;
private ConnectionFactory cf;

// Session Bean Methods
public void ejbPassivate() {}
public void ejbActivate() {}
public void ejbCreate() {}
public void ejbRemove() {}
public void setSessionContext(SessionContext sc) {

this.sc=sc;
try {

// Establish a JNDI intial context
Context ic = new InitialContext();
// Lookup the username and password
user = (String) ic.lookup(“java:comp/env/user”);
pass = (String) ic.lookup(“java:comp/env/password”);
// Lookup the connection factory
cf = (ConnectionFactory) ic.lookup(“java:comp/env/CCIEIS”);

23 0672323842 CH19 3/20/02 9:38 AM Page 841

}
catch (NamingException ne) {

System.err.println(ne.getMessage());
}

}

// The business method
public void insertBook(String name, double price) {

try {
// Create a ConnectionSpec object that holds username and password
ConnectionSpec cs = new CciConnectionSpec(user, pass);

// Get a connection to the EIS from the ConnectionFactory
Connection c = cf.getConnection(cs);

// Create an interaction, to invoke stored procedures
Interaction i = c.createInteraction();

/**
* Create an InteractionSpec,
* so as to pass properties to the interaction object
*/
CciInteractionSpec iSpec = new CciInteractionSpec();

// Set the fields for this instance
iSpec.setFunctionName(“INSERTBOOK”);
iSpec.setSchema(user);
iSpec.setCatalog(null);

// Create a new record factory from the connection factory
RecordFactory rf = cf.getRecordFactory();

// Cloudscape only supports indexed records, so create one of these
IndexedRecord iRec = rf.createIndexedRecord(“InputRecord”);

// Add the name and price parameters or the record
iRec.add(name);
iRec.add(new Double(price));

// Execute the stored procedure
i.execute(iSpec, iRec);

// Close the connection
c.close();

}
catch(ResourceException re) {

System.err.println(re.getMessage());
}

}
}

842 Day 19

LISTING 19.1 Continued

23 0672323842 CH19 3/20/02 9:38 AM Page 842

Integrating with External Resources 843

19

To run the application, you must compile the EJB’s source code, build the application,
and write a client application. The client for this example is quite simple; it accesses the
bean as you would any other bean, namely

• Create a new context

• Lookup the EJB

• Create instances of the home interface and the EJB itself

After you create an instance of the EJB, you call its insertBook() method passing a
book name and book price:

System.err.println(“Inserting book...”);
bm.insertBook(“Teach Yourself in 21 Days”, 29.99);

That’s it. To run the application, compile Listing 19.2.

LISTING 19.2 BookManagerClient.java

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

public class BookManagerClient {
public static void main(String[] args) {

try {
Context initial = new InitialContext();
Object objref = initial.lookup(“java:comp/env/ejb/BookManager”);

BookManagerHome bmh = (BookManagerHome)
➥PortableRemoteObject.narrow(objref, BookManagerHome.class);

BookManager bm = bmh.create();

System.err.println(“Inserting book...”);
bm.insertBook(“Teach Yourself in 21 Days”, 29.99);

System.err.println(“Book inserted.”);
}
catch (Exception e) {

System.err.println(e.getMessage());
}

}
}

Managing Transactions and Exploring Records
The previous example application was relatively simple; it used container-managed per-
sistence and defined a single business method. This next example defines a method that
retrieves data from the underlying EIS, and also requires you to manage transactions.

23 0672323842 CH19 3/20/02 9:38 AM Page 843

The EJB’s home interface is identical to that in the previous example, except that you
append a 2 to the interface and classnames:

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface BookManagerHome2 extends EJBHome {
BookManager2 create() throws RemoteException, CreateException;

}

The EJB’s remote interface is also very similar to that in the previous example. The
important thing to note is that the method signature the interface defines now applies to a
listTitles() method that accepts only a single parameter, a string:

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface BookManager2 extends EJBObject {
public void listTitles(String name) throws RemoteException;

}

All of the changes to the main EJB class apply to the business method, except that you
must import the java.util package because you will use this later. The new business
method has a signature of

public void listTitles(String name)

Like the previous example, a try-catch construct encapsulates the body of the method.
Also exactly like the previous example, you create ConnectionSpec, Connection,
Interaction, CciInteractionSpec, RecordFactory, and IndexedRecord objects:

ConnectionSpec cs = new CciConnectionSpec(user, pass);
Connection c = cf.getConnection(cs);
Interaction i = c.createInteraction();
CciInteractionSpec iSpec = new CciInteractionSpec();
iSpec.setFunctionName(“LISTTITLES”);
iSpec.setSchema(user);
iSpec.setCatalog(null);
RecordFactory rf = cf.getRecordFactory();
IndexedRecord iRec = rf.createIndexedRecord(“InputRecord”);

After you create the IndexedRecord object, the code differs in a number of respects from
the previous example. The first change is that you only add one parameter to the input
record—the stored procedure only searches for book titles, which contain the following
parameter value:

iRec.add(name);

844 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 844

Integrating with External Resources 845

19

Now that you have created and populated the input record, you should start a transaction
so you can roll back to a convenient point in the case of an error. Earlier, today’s lesson
discussed transaction management, and it said that there were two ways to manage local
transactions, either by:

• Container management—like the previous example

• Component management

In this example, you are implementing component transaction management. To do this,
you use the methods the CCI API LocalTransaction interface defines. You should note
that it is optional for a CCI implementation to implement this interface. To get a
LocalTransaction instance, you call the getLocalTransaction() method of the
Connection object. This method throws a RemoteException and, in the instance of an
implementation not supporting local transactions, it throws a NotSupportedException.

LocalTransaction lTrans = c.getLocalTransaction();

After you obtain a LocalTransaction object, you call its begin() method to begin a
transaction:

lTrans.begin();

At this point in the previous example, you invoked a stored procedure that inserted a
record into the underlying EIS. In this example, you execute a stored procedure that per-
forms a SELECT against the EIS. Because you are changing the business logic, the code
changes in a couple respects. First, because the execution of the stored procedure might
fail, you use a try-catch construct to encapsulate the code that executes the stored pro-
cedure. Second, you create a record to hold the output that the stored procedure returns.
You can either create a Record and pass this as a third parameter to the execute()
method of the Interaction object, or you can simply use the version of the execute()
method that returns a Record:

Record oRec = i.execute(iSpec, iRec);

The Record object, oRec, contains the results of the SELECT statement the stored proce-
dure executed against the underlying EIS. To iterate through the list of elements the
Record object contains, you create an Iterator object. The IndexedRecord class inherits
an iterator() method from java.util.List, and this returns an Iterator object. To
call this method, you must cast the Record object you just created to an IndexedRecord:

Iterator iterator = ((IndexedRecord)oRec).iterator();

Now that you have an Iterator object, you can iterate through the data returned by the
EIS and print each of the book titles. You use the Iterator object in the same way as
you would in any other Java application:

23 0672323842 CH19 3/20/02 9:38 AM Page 845

while (iterator.hasNext()) {
String title = (String)iterator.next();
System.out.println(title);

}

That completes the processing undertaken within the try element of the try-catch con-
struct. To complete the code, you must catch any exceptions that might be thrown and, in
such an event, rollback the transaction by using the rollback() method of the
LocalTransaction:

catch (ResourceException e) {
lTrans.rollback();

}

You have now completed the Session bean code to retrieve data from an EIS. Listing
19.3 shows the complete code.

LISTING 19.3 BookManagerEJB2.java

import javax.ejb.*;
import javax.resource.cci.*;
import javax.resource.ResourceException;
import javax.naming.*;
import com.sun.connector.cciblackbox.*;
import java.util.*;

public class BookManagerEJB2 implements SessionBean {
private SessionContext sc;
private String user;
private String pass;
private ConnectionFactory cf;

// Session Bean Methods
public void ejbPassivate() {;}
public void ejbActivate() {;}
public void ejbCreate() {;}
public void ejbRemove() {;}
public void setSessionContext(SessionContext sc) {

this.sc=sc;
try {

Context ic = new InitialContext();
user = (String) ic.lookup(“java:comp/env/user”);
pass = (String) ic.lookup(“java:comp/env/password”);
cf = (ConnectionFactory) ic.lookup(“java:comp/env/CCIEIS”);

}
catch (NamingException ne) {

System.err.println(ne.getMessage());
}

}

846 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 846

Integrating with External Resources 847

19

// The business method
public void listTitles(String name) {

try {
ConnectionSpec cs = new CciConnectionSpec(user, pass);
Connection c = cf.getConnection(cs);
Interaction i = c.createInteraction();
CciInteractionSpec iSpec = new CciInteractionSpec();
iSpec.setFunctionName(“LISTTITLES”);
iSpec.setSchema(user);
iSpec.setCatalog(null);
RecordFactory rf = cf.getRecordFactory();
IndexedRecord iRec = rf.createIndexedRecord(“InputRecord”);

// Add the name parameter to the record
iRec.add(name);

// Obtain a reference to a transaction context
LocalTransaction lTrans = c.getLocalTransaction();

// Start the transaction
lTrans.begin();

/**
* Execute the stored procedure,
* passing the InteractionSpec and the record
*/
try {

Record oRec = i.execute(iSpec, iRec);
// Get an iterator. Cast the Record to an IndexedRecord.
Iterator iterator = ((IndexedRecord)oRec).iterator();
// Iterate through the records and print names
while (iterator.hasNext()) {

String title = (String)iterator.next();
System.out.println(title);

}
}
catch (ResourceException e) {

// Rollback in the event of an error
lTrans.rollback();

}

c.close();
}
catch(ResourceException re) {

System.err.println(re.getMessage());
}

}
}

LISTING 19.3 Continued

23 0672323842 CH19 3/20/02 9:38 AM Page 847

Finally, to run the application, you must compile the EJB’s source code, build the appli-
cation, and write a client application. The client for this example is the same as that for
the previous example, except that it calls the EJB’s listTitles() method.

That’s it. To run the application, compile the code in Listing 19.4.

LISTING 19.4 BookManagerClient2.java

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

public class BookManagerClient2 {
public static void main(String[] args) {

try {
Context initial = new InitialContext();
Object objref = initial.lookup(“java:comp/env/ejb/BookManager2”);
BookManagerHome2 bmh = (BookManagerHome2)

➥PortableRemoteObject.narrow(objref, BookManagerHome2.class);
BookManager2 bm = bmh.create();
System.out.println(“Retrieving titles...”);
bm.listTitles(“Sams”);
System.out.println(“Completed Retrieval.”);

}
catch (Exception e) {

System.err.println(e.getMessage());
}

}
}

Introducing Other Connectivity Technologies
So far in today’s lesson, you have learned about the J2EE Connector architecture, how it
allows J2EE application components to interact with EISs, and how to code against these
EISs. This is just one element of the Java technologies that allows you to connect to lega-
cy systems and non-Java systems. There are other Java technologies that allow you to
integrate Java applications with non-Java applications. The remainder of today’s lesson
provides an overview of three of these Java technologies:

• Java IDL

• RMI over IIOP

• Java Native Interface (JNI)

848 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 848

Integrating with External Resources 849

19

The first two technologies allow you to create and interact with objects that comply with
the Common Object Request Broker Architecture (CORBA). If you don’t know about
CORBA, don’t worry because the next section of today’s lesson provides a brief
overview of it. The most important aspect of these Java technologies is that they allow
you to write code that interacts with either local or remote objects that are written in lan-
guages other than Java.

The third technology, JNI, also allows you to write code that interacts with code written
in languages other than Java. Unlike the previous technologies, JNI allows you to interact
with applications and libraries that are written in other languages, rather than only
CORBA objects written in other languages. For example, you can write code that uses
JNI that utilizes C libraries or C++ classes. This means that you can call non-Java func-
tions to provide services that are unavailable from Java. The integration that JNI allows
works in both directions—both the Java and non-Java sides can create, update, and
access Java objects.

After today’s lesson introduces these technologies, it will provide you with a brief evalu-
ation of these technologies to help you decide which best suit your application’s needs.

Introducing CORBA
The Object Management Group (OMG) defines the Common Object Request Broker
Architecture (CORBA), an architecture that allows you to build distributed objects and
services. The architecture is independent of any particular language implementation or
system architecture. Thus, you can write remote objects in one language, say C++, and
then consume them from a client object written in yet another language, such as Java.
Because the CORBA standard allows communication between seemingly disparate lan-
guages, applications, and systems, it is quite extensive. However, to understand how
CORBA works, there are four main aspects of the architecture that you should appreciate:

• Interface Definition Language (IDL)

• Object Request Broker (ORB)

• The Naming Service

• Inter-ORB communication

The OMG has a Web site dedicated to CORBA, that you can access at
http://www.corba.org/.

Note

23 0672323842 CH19 3/20/02 9:38 AM Page 849

CORBA-compliant remote objects expose interfaces that you define in IDL. After you
have written an IDL interface, you compile it to produce a client stub and an object
skeleton. It is through the stub and skeleton that clients and objects communicate. The
OMG provides a number of standard mappings that map CORBA IDL to other program-
ming languages. Examples of these languages include

• Java

• Python

• Smalltalk

• COBOL

• C++

850 Day 19

Java IDL, which you will learn about in the next section of this lesson, is not
a mapping defined by the OMG but, rather, Sun Microsystems’s implementa-
tion of the standard mapping.

Note

All communication among objects and clients occurs through the ORB. An ORB runs on
both the client and the server. Figure 19.6 shows the roles of the ORBs in client-server
communication. You can see that a client application makes a request on a stub that
exposes the methods of the remote object. The client ORB forwards that request to the
remote ORB and, in turn, this ORB forwards the request through the skeleton to the
remote object.

FIGURE 19.6
Client interacting with
CORBA object.

Client Application

Client’s ORB

Remote Object

Server’s ORB

IDL Stub IDL Skeleton

IIOP

CORBA defines a number of transport protocols that allow distributed ORBs to commu-
nicate. The most popular of these is the Internet Inter-ORB Protocol (IIOP), which is

23 0672323842 CH19 3/20/02 9:38 AM Page 850

Integrating with External Resources 851

19

based on TCP/IP. Although you will learn more about this protocol later in today’s les-
son, it is very unlikely that you will have to work with it at a low-level.

The CORBA Naming Service allows you to register an instance of a class, so that a
client can look up this instance and gain a reference to it. You will learn more about how
this works later in today’s lesson in the “Using RMI over IIOP” section.

Introducing Java IDL
Previously, you learned that OMG provides an IDL mapping for each language that sup-
ports CORBA. You also learned that Sun’s implementation of the OMG Java mapping is
known as Java IDL, or to be more precise, Java IDL supports the OMG IDL mapping for
Java. Using Java IDL, you can write, instantiate, and consume distributed objects that
comply with CORBA. If you are an experienced Java programmer but not an experi-
enced CORBA programmer, you may want to look at RMI over IIOP (the next section of
this lesson introduces you to RMI over IIOP). This provides similar functionality without
the need to write any IDL. In the context of J2EE, you will virtually always use RMI
over IIOP when interacting with CORBA objects. Therefore, this lesson shows you how
to use RMI over IIOP rather than Java IDL. If you want to discover more about Java
IDL, refer to the current documentation available at Sun Microsystems’ Web site.

Using RMI over IIOP
Remote Method Invocation (RMI) is a term you may have seen a number of times read-
ing this book. You probably know that EJBs use RMI, but you may still wonder what
exactly RMI is. Well, it is a Java-specific distributed object system that allows you to
create and use remote objects. For example, an RMI object running on one server can get
a reference to another RMI object running on another server. After it has that reference, it
can invoke the methods of the remote object as if it were local.

As with CORBA applications, you write remote interfaces for an object and generate
stubs and skeletons. Also like CORBA, RMI allows a client and a remote object to com-
municate through client stubs and server skeletons. The stub exposes the methods of the
remote object, and the client makes requests against the stub. These requests forward to
the server and pass through the server skeleton to the remote object.

The original form of RMI used a proprietary protocol, Java Remote Method Protocol
(JRMP), to allow objects to communicate. This works very effectively in a Java-only
environment; but as you have seen, many enterprises environment are heterogeneous. If
your environment houses objects that are written in languages other than Java, you can-
not use RMI with JRMP. One solution to this problem is to forget RMI and write all your
objects as CORBA objects. However, this would lead to many problems. For example,

23 0672323842 CH19 3/20/02 9:38 AM Page 851

writing CORBA interfaces in Java IDL is involved, and how would EJBs communicate
over distributed systems? Another solution is to create RMI objects but allow them to use
IIOP, the CORBA protocol, as a transport mechanism. This approach is known as RMI
over IIOP, or RMI-IIOP.

As you will learn when you write the code example later in this section, you can use
RMI-IIOP to allow RMI objects to communicate directly with CORBA objects and, like-
wise, CORBA objects with RMI objects. This approach to interacting with CORBA
objects requires you to make a few changes to a typical RMI object’s code, but you do
not have to write any IDL. Another very important use of RMI-IIOP is providing a trans-
port mechanism for EJBs. When you create stubs and skeletons for EJBs, RMI-IIOP is
used as the default transport mechanism. You can also allow EJBs to communicate with
CORBA objects by using the remote method invocation compiler (rmic) to generate IDL
on your behalf. When you do this, you can write an EJB client using an alternative
CORBA language binding, such as C++. You will learn how to use rmic in the next sec-
tion of today’s lesson.

RMI over JRMP Example
This first example shows you how to use RMI in a completely Java environment. The
example allows a remote user to enter their name, and the local server prepends the name
with hello and returns the string to the client. There are three Java classes that you must
write to produce an RMI application:

• An interface for the remote object

• An implementation of the interface

• A client for the remote object

Listing 19.5 shows the code for the interface for the remote object. As you can see, the
interface is quite straightforward, but there are a couple of points to note. The first is that
the interface must extend java.rmi.RemoteInterface. The second is that all methods
that the interface declares must throw a RemoteException. This exception is the super-
class of many of the exceptions that might occur during an RMI operation.

LISTING 19.5 HelloUser.java

import java.rmi.RemoteException;
import java.rmi.Remote;

public interface HelloUser extends Remote {
public String sayHello(String s) throws RemoteException;

}

852 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 852

Integrating with External Resources 853

19

You must now create the implementation of this interface. Naturally, this implementation
class must implement the HelloUser interface, but is also must extend
java.rmi.UnicastRemoteObject. This class provides an object with much of the basic
functionality to allow an object to become remote. If you don’t extend this class, you
have to explicitly provide this functionality:

import java.rmi.server.UnicastRemoteObject;
import java.rmi.*;

public class HelloUserImpl extends UnicastRemoteObject implements HelloUser {

When you wrote the interface, you declared that all the methods throw
RemoteExceptions; this is also true of the class constructer. As a result, you must pro-
vide a constructer that throws a RemoteException:

public HelloUserImpl() throws RemoteException {
}

After you write the constructer, you can implement the method bodies. In this example,
there is only one method—sayHello(). Remember that you must declare that each
method implementation might throw a RemoteException:

public String sayHello(String name) throws RemoteException {
return “Hello “+name;

}

The final part of the implementation class is to create a main() method that creates an
instance of the implementation class and registers it with an RMI registry. Registering an
object with the RMI registry allows remote clients to look it up over a network. After a
remote client finds the object, the registry returns a reference to the client. The client can
use this reference to invoke the methods of the remote object. To register an object with
the RMI registry, create an instance of the implementation class and then use the
rebind() method of the Naming class to register the class instance:

public static void main(String args[]) {
try {

HelloUserImpl hui = new HelloUserImpl();
Naming.rebind(“HelloUser”,hui);

The rebind() method’s two arguments are a name for the object (the client can then
look up this name) and a remote object. If an existing binding for the name exists, it is
replaced with this new binding. Alternatively, you can bind a name by using the bind()
method. However, if the name already exists, the method throws an
AlreadyBoundException. To explicitly unbind a name associated with a remote object,
you use the unbind() method. This method takes one parameter—the name to unbind. If
the name is not already bound, the method throws a NotBoundException.

You have now written the implementation class. Listing 19.6 shows the full code for this
class.

23 0672323842 CH19 3/20/02 9:38 AM Page 853

LISTING 19.6 HelloUserImpl.java

import java.rmi.server.UnicastRemoteObject;
import java.rmi.*;

public class HelloUserImpl extends UnicastRemoteObject implements HelloUser {
// Constructer throws RemoteException
public HelloUserImpl() throws RemoteException {
}

// Implement method body
public String sayHello(String name) throws RemoteException {

return “Hello “+name;
}

public static void main(String args[]) {

// Create and install a security manager
if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());
}

try {
// create a HelloUser instance
HelloUserImpl hui = new HelloUserImpl();

//Register the account
Naming.rebind(“HelloUser”,hui);
System.out.println(“Registered”);

}
catch (Exception e) {

System.out.println(e.getMessage());
}

}
}

Now that you have written the remote object, you must write a client that accesses it. The
client class is like any other Java class, except that it must create an instance of a remote
object rather than one that is local. To do this, you again use the Naming class, but this
time you invoke its lookup() method. This method accepts a single parameter—the
name of the remote object—and returns a reference to the remote object. You specify the
name as a URL using the rmi scheme. For example, to look up a remote object called
example on a server named sams, you would pass the parameter rmi://sams/example. In
the client you are building, the code appears as follows:

HelloUser hu = (HelloUser)Naming.lookup(“rmi://localhost/HelloUser”);

854 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 854

Integrating with External Resources 855

19

Notice that you have to perform an explicit cast on the object the lookup() method
returns. You must perform the cast, because the lookup() method always returns an
object of the type Remote. After you have a reference to the remote object, you can
invoke its methods as if it where a local object. Listing 19.7 shows the complete code for
this class, including the code that invokes the sayHello() method of the remote object.

LISTING 19.7 HelloUserClient.java

import java.rmi.server.UnicastRemoteObject;
import java.rmi.Naming;

public class HelloUserClient {
public static void main(String args[]) {

if (args.length!=1) {
System.err.println(“Usage: java name”);

}
try {

// Lookup the remote object
HelloUser hu = (HelloUser)Naming.lookup(“rmi://localhost/HelloUser”);

// invoke the method
System.out.println(hu.sayHello(args[0]));

}
catch (Exception e) {

System.out.println(e.getMessage());
}

}
}

You have now completed all the Java code this example requires. Now you must compile
the Java classes you have just written and then create a skeleton and stub for the remote
object. To create the skeleton and stub, you simply run the remote method invocation
compiler (rmic) and pass it the name of the implementation class for which it should cre-
ate the skeleton and stub:

rmic HelloUserImpl

After run, rmic creates two java class files—ClassName_Skel.class and
ClassName_Stub.class. On the server, ensure that the J2EE server is running and then
start the RMI registry:

• start rmiregistry On Win32

• rmiregistry & On Unix

23 0672323842 CH19 3/20/02 9:38 AM Page 855

Now you must run the HelloWorldImpl class so that the runtime invokes its main()
method, which will register an instance of the class with the RMI registry. To run the
class, you must pass two property name-value pairs to the Java Interpreter. The first prop-
erty is java.rmi.server.codebase, which allows any remote process to dynamically load
classes as required. If you don’t set this property, you have to physically copy all of the
classes to the client. The property value is a URL that points to the code base for the
application. The URL can use either the HTTP scheme or the file scheme. For example,

java -Djava.rmi.server.codebase=http://sams.com/classes/

856 Day 19

The URL in this example does not resolve; it is purely for illustrative
purposes.

Note

In this application, either use the HTTP scheme and change the path so that it relates to
your machine, or use the file scheme and again change the path to suit you machine:

java -Djava.rmi.server.codebase=file:/C:/classes/

The second property you must pass to the Java interpreter is the location of a security
policy file. You must provide a security file different from the default policy file, because
the default policy does not allow remote class resolution, which you require to run RMI
applications with dynamic class loading. This lesson does not intend to explain policy
files, refer to the appropriate document to learn more about security, but the following is
an example of a security policy file that allows your application to execute:

grant {
// Allow everything
permission java.security.AllPermission;

};

Save this file as default.policy on both the client and the server in the directory con-
taining the classes for this application. Finally, to complete running the HelloWorldImpl
class, execute the following command (change forward and backward slashes to suit your
system):

java -Djava.rmi.server.codebase=file:/C:/classes/
➥-Djava.security.policy=c:\classes\default.policy HelloUserImpl <hostname>

The server-side is now complete. To use the remote object from a client, you must copy
the client class (HelloUserClient) and the interface (HelloUser) to client machine. In
common with the server, you must provide a more relaxed security policy to facilitate
dynamic class loading. In this instance, use the same policy file that you used on the

23 0672323842 CH19 3/20/02 9:38 AM Page 856

Integrating with External Resources 857

19

server. To run the client type, use the following command, substituting <username> for
your name and <hostname> for the remote server’s name:

java -Djava.rmi.server.codebase=http://<hostname>/classes/
-Djava.security.policy=default.policy HelloUserClient <username> <hostname>

When the code executes, the client gains a reference to the remote objects and dynami-
cally loads the stub from the server. The client application is then able to invoke the
remote object’s methods through the stub.

RMI over IIOP Example
Previously, today’s lesson told you that you can use RMI over IIOP to write CORBA
objects, and that EJBs used IIOP as a standard transport protocol. After you write a
remote object so that it uses IIOP rather than JRMP as a transport protocol, it can com-
municate with CORBA objects, and they can communicate with it. At a high-level, the
process to achieve this is quite straightforward:

1. Create an interface for the remote object.

2. Write a Java implementation of the interface.

3. Use rmic (with a special switch) to generate IDL stubs and skeletons.

4. Use the CORBA naming service rather than the RMI registry.

As you may guess, creating an object for use over IIOP requires you to make some
changes to a standard RMI application. To illustrate this, today’s lesson will walk
through the process of converting the previous example application so that it uses IIOP
rather than JRMP.

The remote object interface requires no changes, so the code in Listing 19.5 is still
applicable in this application. However, the implementation of this interface and the
client application both require modification. The implementation class no longer extends
UnicastRemoteObject, but extends javax.rmi.PortableRemoteObject instead.

public class HelloUserImpl extends PortableRemoteObject implements HelloUser {

The only other change to this class is that you no longer use Naming.rebind(). Instead
of this, you must create an InitialContext object and then use its rebind() method.
The InitialContext class implements Context, which represents a naming context that
consists of pairs of name-object bindings. The InitialContext class has three construc-
tors:

• One creates a context based on a hashtable of environment information.

• The second constructs a context without initializing it.

• The third simply creates an initial context.

23 0672323842 CH19 3/20/02 9:38 AM Page 857

After you create the initial context, you call its rebind() method to bind the HelloUser
instance (you created this previously) and a name for that instance:

Context ctx = new InitialContext();
ctx.rebind(“HelloUser”,hui);

That is the extent of the modifications to the implementation class. Listing 19.8 shows
the complete, modified code for the class.

LISTING 19.8 HelloUserImpl.java

import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import java.rmi.*;

public class HelloUserImpl extends PortableRemoteObject implements HelloUser {
public HelloUserImpl() throws RemoteException {
}

public String sayHello(String name) throws RemoteException {
return “Hello “+name;

}

public static void main(String args[]) {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}

try {
HelloUserImpl hui = new HelloUserImpl();

// Create an initial context
Context ctx = new InitialContext();

//Register the instance with initial context
ctx.rebind(“HelloUser”,hui);
System.out.println(“Registered”);

}
catch (Exception e) {

System.out.println(e.getMessage());
}

}
}

Like the implementation class, the client must also create an initial context rather than
use Naming.lookup(). Previously, you used the following line of code to look up the
remote object:

HelloUser hu = (HelloUser)Naming.lookup(“rmi://localhost/HelloUser”);

858 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 858

Integrating with External Resources 859

19

Now you replace this line with the following:

Context ctx = new InitialContext();
HelloUser hu = (HelloUser)PortableRemoteObject.narrow
➥(ctx.lookup(“HelloUser”),HelloUser.class);

You can see that you do not simply cast the object returned by the lookup in this
instance, but you use the narrow() method of the PortableRemoteObject class instead.
This method accepts two parameters. The first is an object from which to narrow. The
second is a java.lang.Class object to which to narrow. In this instance, the code refer-
ences the Class object by appending .class to the name of the class.

That is the extent of the changes to the Java code. Listing 19.9 shows the complete, mod-
ified code for the client class.

LISTING 19.9 HelloUserClient.java

import javax.naming.*;
import javax.rmi.PortableRemoteObject;

public class HelloUserClient {
public static void main(String args[]) {

if (args.length!=1) {
System.err.println(“Usage: java name”);

}

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}

try {
// Create an initial context
Context ctx = new InitialContext();

// use narrow to narrow object to object of the given class type
HelloUser hu =

➥(HelloUser)PortableRemoteObject.narrow(ctx.lookup(“HelloUser”),HelloUser.class);

System.out.println(hu.sayHello(args[0]));
}
catch (Exception e) {

System.out.println(e.getMessage());
}

}
}

As you did previously, compile the entire Java source to generate the class files. After
you have done this, you need to create a client stub and a server skeleton. Like the

23 0672323842 CH19 3/20/02 9:38 AM Page 859

previous example, you use rmic, but in the current example, you pass rmic an iiop
switch to create an IIOP skeleton and stub:

rmic -iiop HelloWorldImpl

When you execute this command, two new files are created—_HelloWorldImpl_Tie (the
skeleton) and _HelloWorldImpl_Stub (the stub). You have now generated all the files
you require. To run the application, you must first start the J2EE server. After you start
this, you must start the Transient Name Server—previously, you started the
rmiregistry. The Transient Name Server provides a CORBA naming service that also
has JNDI access:

tnameserv

All that remains is for you to run HelloUserClient and HelloUserImpl. To do this, you
must pass additional environment properties to the Java interpreter. The first is naming
factory provider, which in this application provides naming functionality for the CORBA
Naming Service. The second is naming provider; for more information on JNDI environ-
ment properties, see Day 4, “Introduction to EJBs.” Consequently, to start execute the
implementation class on the server, issue the following command (remember to change
the slash orientation to suit your system, and replace <hostname> with your server’s
name):

java -Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
➥-Djava.naming.provider.url=iiop://<hostname>:900
➥-Djava.rmi.server.codebase=http://<hostname>/rmi/
➥-Djava.security.policy=m:\rmi\default.policy HelloWorldImpl <hostname>

860 Day 19

This example uses port 900, but if you are using Unix (including Solaris and
Linux), you must specify a port number greater than 1024 because the lower
ports are privileged ports for reserved purposes.

Note

To start the client, issue the following command substituting <username> for your name,
and <hostname> for your hostname:

java -Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
➥-Djava.naming.provider.url=iiop://<hostname>:900 HelloWorldClient <username>

Introducing JNI
The Java Native Interface (JNI) allows you to write code that utilizes code written in
programming languages other than Java. If you consider the maxim “Write once, run

23 0672323842 CH19 3/20/02 9:38 AM Page 860

Integrating with External Resources 861

19

anywhere,” you may wonder why you might want to use non-Java code. There are a
number of scenarios where it is preferable or even wise to use non-Java code:

• When you require functionality not supported by the standard Java class library.
For example, you may need to access parts of the Win32 API.

• When you want to reuse a library or application written in another programming
language, so you don’t have to rewrite these libraries or applications. For example,
many organizations posses large legacy C libraries.

• When you need to utilize a lower-level programming language, such as assembly,
to provide support for a time-critical section of code.

JNI allows you to write code that supports these types of scenario. You can use JNI to
declare native methods, but implement the methods bodies in native code, such as C or
C++. These native methods can use Java objects and methods in the same way that Java
code uses them. Specifically, both native methods and Java methods can create Java
objects, use them, update them, and then share them interchangeably. Like a native
method using a Java object, a native method can invoke Java methods. For example,
Figure 19.7 shows a native method invoking a Java method and passing parameters to it.
The Java method performs some processing of the parameters, returns the result to the
native method, and the native method then uses this result for some further purpose.

FIGURE 19.7
Native method invok-
ing a Java method.

Native method

Java method

Perform processing
on behalf of the native

method

Beyond these interoperability aspects, JNI allows you to perform further tasks including
the following:

• Throwing and catching exceptions from a native method, and then the Java applica-
tion handles them.

• Through the Invocation API, you can embed the JVM into native applications.

23 0672323842 CH19 3/20/02 9:38 AM Page 861

• Special JNI functions allow native methods to load Java classes and obtain class
information.

• Native methods can use JNI to perform runtime type checking.

A full exploration of JNI is beyond the scope of this book; however, today’s lesson aims
to provide you with enough information to make an informed choice of whether you
might find JNI of use. For further information on the features of JNI, please refer to Sun
Microsystems’ JNI specification. To complete your introduction to JNI, today’s lesson
shows you how to write a simple JNI application—namely, Hello World. Figure 19.8
shows the six steps you will follow to write the application.

862 Day 19

FIGURE 19.8
Creating a JNI appli-
cation.

Create Java
class that

declares native
methods

Compile Java
source

Generate
Header File

5

Create shared
library

1 2 3

Write method
implementation

in native
programming

language 4 6

Run the Java
program

As Figure 19.8 shows, the first step is to create a Java class that declares the native
method. To do this, declare your class and provide the method signature for the native
method. Notice that the code uses the native modifier to indicate to the compiler that
the method implementation is a programming language other than Java:

class HelloWorld {
public native void displayHelloWorld();

Later, when you write the native code, you will compile it into a shared library. To allow
the runtime to load this library into the Java class, you use the loadLibrary() method
of the System class in the context of a static initializer. The method takes a single
parameter—a string that is the name of the library to load. You only need to pass the root
of the library name, because the method modifies the name to suit the current platform.
For example, it will use hello.dll on Windows or libhello.so on Solaris:

static {
System.loadLibrary(“hello”);

}

23 0672323842 CH19 3/20/02 9:38 AM Page 862

Integrating with External Resources 863

19

Finally, you must write the main() method in the same way as you would for any other
Java class. Listing 19.10 shows the completed code for this class. After you have written
it, compile it as if it were any other Java class (javac HelloWorld.java).

LISTING 19.10 HelloWorld.java

class HelloWorld {
public native void displayHelloWorld();
static {

System.loadLibrary(“hello”);
}

public static void main (String args[]) {
HelloWorld hw=new HelloWorld();
hw.displayHelloWorld();

}
}

Step 3 of the process is to generate the header file for the native method. Creating the
header file is simple; at the command line, ensure that you are in the directory of the
HelloWorld class file and then use javah by issuing the following command:

javah –jni HelloWorld

The jni switch instructs javah that it should output a header file for use with JNI. This
is the default behavior in Java 1.2 and later, but earlier versions need the switch so that
they do not output header files for use with the older JDK 1.0 native interface.

After you run javah, it creates a header file (HelloWorld.h) in the current directory. You
don’t need to look at this file, but if you want to open it up in a text editor, the native
method signature is as follows:

Java_HelloWorld_displayHelloWorld (JNIEnv *, jobject);

All generated method signatures follow the same format:

java_packagename-classname-methodname

In the application you are currently writing, there is no package name, so it is omitted
from the method signature. In this application, you write the native method implementa-
tion after writing the Java class file, but in reality, you may already have native methods
you want to use. In this instance, you must ensure that the native method signature (in
the method implementation in native code) matches the method signature in the generat-
ed header file.

23 0672323842 CH19 3/20/02 9:38 AM Page 863

Now you must write the native implementation of the method. The code in this applica-
tion is written in C, but don’t panic because the code is very simple to follow. The code
(shown in Listing 19.11) begins by including three header files—jni.h, HelloWorld.h,
and stdio.h. All native implementations must include jni.h because this provides infor-
mation that allows the native language to interact with the Java runtime. You include
HelloWorld.h because this is the header file that you just generated. Finally, you include
stdio.h because the printf function (you use this to print hello world) is contained
within this library.

Because this is not a C tutorial, there is only one other thing to note about the code. You
can see that the method accepts two parameters of the types JNIEnv and jobject. All
native methods must accept these parameters. The first, JNIEnv, is an interface pointer
that allows the native code to access any parameters your Java code passes to it. The sec-
ond parameter, jobject, references the current object itself.

LISTING 19.11 HelloWorldImp.c

#include <jni.h>
#include “HelloWorld.h”
#include <stdio.h>

JNIEXPORT void JNICALL
Java_HelloWorld_displayHelloWorld(JNIEnv *env, jobject obj)
{

printf(“Hello world!\n”);
return;

}

Now that you have written the native code, the second-to-last step shown in Figure 19.8
is to compile the header and implementation file into a shared library by using your
favorite C compiler. The shared library must have the same name that was used in
loadLibrary() method in the Java class—namely, hello. The actually command for this
operation depends on the C compiler that you use; the JDK doe not provide such a com-
piler, as you might expect.

You have written the application. To run it, simply execute the Java class file you wrote
earlier:

java HelloWorld

When the code executes, the runtime loads the shared library into the Java class. The
main() method of the Java class invokes the displayHelloWorld() method of the native
class, which in turn prints Hello World to the standard output.

864 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 864

Integrating with External Resources 865

19

This example has shown you how to use JNI in a very simple situation. In reality, you
may have to integrate large amounts of code using JNI, so standalone command-line
applications will certainly be unsuitable for use in the J2EE arena. A viable approach to
making legacy code available to J2EE components is to wrap the code using JNI (as you
did in the example application). Then, export the code as an RMI remote object, as
shown previously. This approach allows J2EE components to interact directly with RMI
objects, thus abstracting the underlying legacy code.

Evaluation of Integration Technologies
Today’s lesson has provided you with an introduction to a number of approaches to inte-
grating legacy and non-Java code or applications into your J2EE applications. Sometimes
you may find it quite clear which approach to adopt, but sometimes the approach to
adopt might not be immediately obvious. The following guidelines will assist you in
making that choice.

• Connector Architecture—This is your primary choice when you want to allows
J2EE components to call on the functions an EIS provides. Typically, these EISs
include ERP systems, mainframe transaction processing systems, and databases
(not to the exclusion of JDBC).

• JavaIDL and RMI-IIOP—If you want to utilize non-Java objects and the remote
system is incapable of running a stable JVM or runs existing CORBA objects, you
will use CORBA. You should use Java IDL if your existing code-base makes use of
Java IDL, or you are an experienced CORBA programmer wanting to use Java. In
most other instances, you will find it simpler and more effective to use RMI-IIOP.

• JNI—You should wrap code by using JNI when that code is a local non-Java appli-
cation, library, or time critical sections of code that you want to implement in a
lower-level programming language. In addition, you can wrap remote non-Java
code by using JNI, and then export it as RMI remote objects. Note that to adopt
this approach, you must have a JVM on both the client and the server.

Summary
In today’s lesson, you learned about legacy and non-Java systems and how you can inte-
grate J2EE applications with these. The lesson illustrated the J2EE Connector architec-
ture, including the roles and contracts it defines. Building on this, you learned about the
Common Client Interface and then wrote an application that utilized it.

23 0672323842 CH19 3/20/02 9:38 AM Page 865

The lesson continued by providing you with a high-level introduction to CORBA. You
then learned how two Java technologies, Java IDL and RMI over IIOP, allow you to write
CORBA objects and communicate with them. Finally, you learned how to use the Java
Native Interface (JNI) to provide seamless interaction between Java applications and
non-Java code, whether it was a lower-level language, a legacy library, or an application
written in a non-Java programming language.

There were a lot of aspects to today’s lesson, and this breadth meant that it wasn’t possi-
ble to provide an absolutely complete reference to each of the technologies. However, the
lesson has provided you with enough information on how and why you use these tech-
nologies for you to make an informed choice of which might best suit your particular
application development requirements.

Q&A
Q What is the role of a resource adapter in the J2EE Connector architecture?

A A resource adapter is a software driver that acts as a bridge between an EIS and a
J2EE container. The J2EE Connector architecture specification defines the relation-
ship between the EIS and an application server through the system contract. The
system contract dictates the responsibilities of both parties with regard to connec-
tion pooling, transaction management, and security. These operations are transpar-
ent to application components, which simply invoke functions on the EIS via an
API exposed by the resource adapter.

Q How do I manage the demarcation of transactions when using the CCI API?

A The J2EE Connector architecture specification recognizes two categories of
transaction—XA or JTA and local. The former category of transactions is managed
by a transaction manager on the application server. Local transactions are
managed either by the container or the component. You can demarcate component
managed transactions by using the methods of the LocalTransaction class in a
CCI API implementation.

Q I have a connection to an EIS, but I can’t invoke its functions. What am I
missing?

A After you establish a connection to an EIS, you must create an Interaction
object. All EIS functions are invoked through the Interaction object.

866 Day 19

23 0672323842 CH19 3/20/02 9:38 AM Page 866

Integrating with External Resources 867

19

Q Which Java technologies allow me to consume CORBA objects?

A Two Java technologies allow you to consume CORBA objects—Java IDL and RMI
over IIOP. Java IDL is based on the OMG Java mapping for IDL. To use this
approach, you write a remote object’s interface in IDL. RMI over IIOP uses the
Java-specific RMI technology. You write a remote object’s interface and then use
the RMI compiler to generate stubs and skeletons for use with IIOP, a CORBA
transport protocol.

Q I have legacy code written in C that I would like to access remotely. How
might I do this?

A Although C is not object-oriented, you can still wrap C code using JNI. After you
wrap the code, you can export it as an RMI object, which a client can access
remotely.

Exercises
Bill is having trouble piecing together all the different elements of the architecture of an
e-commerce system. At the heart of the system is a J2EE server. Underlying this there is

• An extensive legacy C library that provides a number of cryptographic functions
the system requires

• An ERP that is used for managing customer service

In addition, the application must automatically forward orders to two of the company’s
suppliers. The first provides a public interface through the use of CORBA objects, and
the second through RMI.

Please help Bill by devising a suitable architecture for his e-commerce system. Create a
visual representation of the architecture, ensuring that you highlight any J2EE compo-
nents, the legacy and non-Java elements, and customers and suppliers. Briefly justify
your choice of architecture.

23 0672323842 CH19 3/20/02 9:38 AM Page 867

23 0672323842 CH19 3/20/02 9:38 AM Page 868

DAY 20

WEEK 3

Using RPC-Style Web
Services with J2EE

So far, you have seen how to use existing J2EE technologies to build multitier
applications. However, the world moves on. A key area of interest at the turn of
the millennium is how to integrate applications both within and between orga-
nizations. Web Services provide a flexible and powerful integration mechanism
that can be used to expose existing functionality and components to other orga-
nizations or to new applications. Today and tomorrow, you will see how you
can use Web Services to build bridges between J2EE application components
and any other platforms that support Web Services.

Web Services are seen by many as the next wave of the Internet revolution. The
vision is of a Web as rich with functionality as the current Web is with informa-
tion. The challenge is to expose this functionality in a consistent and usable way.

Today, you will

• Examine the concepts underlying Web Services and how Web Services fit
with J2EE

• Create a client for an RPC-style Web Service

24 0672323842 CH20 3/20/02 9:22 AM Page 869

• Implement an RPC-style Web Service

• Generate client code from Web Services Description Language (WSDL) docu-
ments and generate WSDL documents from your server implementations

• Pass complex Java types between client and service

First, you need to understand why you would use Web Services.

The aim of the last two days is to describe how to use J2EE technologies to implement
and access a Web Service. This chapter will give an overview of the Web Service archi-
tecture and show how to generate and consume SOAP messages based on a WSDL inter-
face.

870 Day 20

Web Service Overview
This first section provides the underlying information and concepts required to success-
fully implement Web Services. Before employing Web Services, you should understand
what problems they are designed to solve and the motivation behind them. This should
ensure that you apply Web Services in appropriate places within your application.

What Is a Web Service?
Web Services can be seen as the next stage in the evolution of software. Procedural pro-
gramming evolved into object-oriented (OO) programming to improve the modelling of

Before proceeding further, please be aware that the subject of Web Services
is in itself very large, and there are many books dedicated to this popular
topic. Today and tomorrow are intended to give you a start into using Web
Services in Java and with J2EE technologies. However, it is not possible to
answer every question or to pursue every topic. If you would like to find out
more about Java and Web Services after you have read through the material
in this book, try the following URLs:

• Sun Java Web Services—http://java.sun.com/webservices/

• IBM DeveloperWorks—http://www-106.ibm.com/developer-
works/webservices/

• Apache XML—http://xml.apache.org/

• Web Services Architect—
http://www.webservicesarchitect.com/

• Web Services Portal—http://www.webservices.org

• ebXML home and resources—http://www.ebxml.org

Note

24 0672323842 CH20 3/20/02 9:22 AM Page 870

Using RPC-Style Web Services with J2EE 871

20

system elements and the encapsulation of data and functionality. Component-based
development provides a standardized, service-rich framework in which OO functionality
can be delivered and built into applications. Web Services takes advantage of common
Web protocols to make component instances easily accessible both within and outside an
organization.

A Web Service is essentially an application component that can be accessed using Web
protocols and data encoding mechanisms, such as HTTP and XML. In some cases, this
will be a third-party component hosted remotely. The difference between a Web Service
and a traditional component lies not only in the protocols used to access it, but also in
that the service can bring its own “live” data and “back-end” functionality with it. An
example of this would be a currency conversion service. Under the component model, a
currency conversion component could bring with it a file containing a fixed set of curren-
cy conversion rates that must be updated regularly. However, it would be up to you to
ensure that this information is updated. On the other hand, a currency conversion service
takes responsibility for this updating. Your application simply makes use of the conver-
sion service and leaves the details of obtaining the required data and subsidiary services
to those who implement and host the service.

Similarly, a Web Service may represent a courier service or a credit-card processing ser-
vice. Again, you do not need to concern yourself with how the service is implemented,
simply the results of using the service. There are many types of Web Services appearing
that provide a sliding scale of functionality from low-level infrastructure to high-level
business services.

Applications can be built from services in a similar way to building applications from
components. You will combine standard services (such as credit-card authorization) with
custom code to create your desired application.

As a software developer, you may write Web Services for others to use. In this case you
would

1. Have a good idea for a service.

2. Implement the service being offered.

3. Describe the service being offered.

4. Publish the description.

5. Wait for customers or consumers of your Web Service.

Alternatively, you may use Web Services as part of your application as follows:

1. Discover an interesting service.

2. Retrieve the description.

24 0672323842 CH20 3/20/02 9:22 AM Page 871

3. Plug it into your application.

4. Use the service as the application executes.

This all sounds very easy, but you need a ubiquitous framework for Web Services to stop
this from sliding into chaos. The key factor in delivering such a framework is the wide-
spread agreement to use common, Web-based protocols. In the first instance, this comes
down to the use of the Simple Object Access Protocol (SOAP), which is a combination
of XML and HTTP. SOAP provides the transport mechanism over which Web Services
communicate. Other protocols are also required to deliver the full framework and you
will encounter these protocols over the course of the next two days.

Why Use Web Services?
Web Services bring similar advantages to the use of components. Using a service allows
you to take advantage of another organization’s expertise in, say credit card processing,
without you having to become a specialist in it yourself. The service model allows you to
use the most powerful and up-to-date functionality by connecting to a remote running
service.

Although a service-based approach to application development is not a new concept, it
has traditionally presented difficult challenges:

• Interoperability between different distribution mechanisms, such as CORBA, RMI,
and DCOM.

• Application integration, including legacy systems, cross-vendor, and cross-version.

• Web-based business requires cross-organization development, high flexibility to
accommodate a rapid rate of change, and safe operation through company fire-
walls.

Web Services can provide a consistent, cross-organization, cross-vendor framework that
will speed up the integration of applications and application components. By selecting
existing, widely-used standards, the Web Service framework removes many barriers to
integration that existed when using other frameworks. The Web Service model is lan-
guage- and platform-neutral, so developers anywhere can potentially build and consume
Web Services.

Probably most important of all is the fact that all the major application, platform, and
technology vendors have adopted the Web Service concept. This means that Web
Services will form a large part of application development over the next few years.

872 Day 20

24 0672323842 CH20 3/20/02 9:22 AM Page 872

Using RPC-Style Web Services with J2EE 873

20

Web Service Technologies and Protocols
The following are the central protocols, technologies, and standards in Web Services:

• The Simple Object Access Protocol (SOAP) combines XML and Multipurpose
Internet Mail Extensions (MIME) to create an extensible packaging format. The
SOAP envelope can be used to contain either RPC-style or document-centric, mes-
sage-style service invocations. A SOAP message can be carried over many trans-
port mechanisms, including HTTP, SMTP, and traditional messaging transports.
Although SOAP began its life outside the World Wide Web Consortium (W3C),
ongoing work on SOAP can be found at http://www.w3.org/2002/ws/. This
includes the latest working drafts of the 1.2 specifications, as well as a link to the
version 1.1 specification.

• The Web Services Description Language (WSDL) is an XML vocabulary used to
describe Web Services. It defines operations, data types, and binding information.
The WSDL specification can be found at http://www.w3.org/TR/wsdl.

• Universal Description, Discovery, and Integration (UDDI) provides a model for
organizing, registering and accessing information about Web Services. The UDDI
specifications can be found at http://www.uddi.org/.

• The Web Service Flow Language (WSFL) and Web Service Collaboration
Language (WSCL) are concerned with describing the workflow between services
so that their relationships can be encapsulated as part of an application. More infor-
mation on WSFL can be found at http://xml.coverpages.org/wsfl.html.

• Electronic Business XML (ebXML) provides a framework for e-commerce that
includes the inter-application workflow, and the description and discovery of ser-
vices. It uses SOAP as its transport mechanism but does not directly use WSDL,
UDDI, or WSFL. ebXML is a joint initiative between OASIS and the United
Nations CEFACT group. The set of ebXML specifications can be found at
http://www.ebXML.org/.

Web Service Architecture
The interaction between a Web Service-based application and the Web Service itself is
shown in Figure 20.1. The overall interaction is very similar to the way that a J2EE client
uses an EJB. When a Web Service is created, information about its interface and its loca-
tion are stored in a registry. The Web Service consumer can then retrieve this information
and use it to invoke the Web Service.

24 0672323842 CH20 3/20/02 9:22 AM Page 873

Some of this consumer/service interaction takes place at design and development time.
The interface and service contract information will can be registered, regardless of
whether the service is active or not. This information is required by the application
builder to create code that uses the Web Service in their application. At runtime, the
application can look up the precise location of the Web Service to locate it, very much
like a traditional RPC mechanism, such as RMI.

There are several variations on this interaction. A Web Service can be used entirely
dynamically in that the service description is discovered and invoked dynamically.
Alternatively, the location information discovered at design time as part of the service
description can be bound into the client application so that it has no need of the registry
at runtime.

Similarly, the way in which an application interacts with a Web Service will depend on
the service. Some services may provide an RPC-style interface based on request/response
operations while others may work in a massaging style by exchanging XML-based docu-
ments. In either case, the interaction can be synchronous or asynchronous. There is noth-
ing to stop a Web Service from offering out its services in all four combinations.

Service developers will define an interface for their service using a description mecha-
nism such as WSDL. This can be based on an existing service implementation, or the
service can be developed after the interface is defined.

Application developers will take the service description and write code based on this. In
many cases, a client-side proxy will be created for the services and the application will
interact with this proxy. However, the precise details of this are left to the client-side
developer.

874 Day 20

FIGURE 20.1
Interaction between
Web Service, registry,
and service consumer.

Web
Service

Application
3 Use service

1 Register
service

description
and location

2 Retrieve
service

information

Web Service
Registry

24 0672323842 CH20 3/20/02 9:22 AM Page 874

Using RPC-Style Web Services with J2EE 875

20

The service implementations will take a variety of forms. On the server-side, an adapter
and router will be required to accept inbound SOAP messages and dispatch them to the
appropriate service implementation. This performs the role of the Object Request Broker
(ORB) in CORBA and RMI or of the Service Control Manager (SCM) under DCOM.

The services being invoked can be of varying granularity. Web Service mechanisms can be
used as a convenient way to integrate existing, fine-grained components. Alternatively, the
Web Service being accessed can represent a whole application, such as an ERP system.

Although there is much about the Web Service paradigm that will seem familiar to you,
the use of Web Services, especially third-party Web Services, does bring some extra con-
siderations for developers:

• The fact that the service is hosted elsewhere will impact testing, security, availabili-
ty, and scalability. There will be a need for Service-Level Agreements (SLAs) to be
defined for all services used.

• The providers of an external service will have to be paid somehow. There will be
associated authentication requirements so that use of the service can be tracked by
the providers.

Web Services for J2EE
At the time of writing, Web Services are not an integral part of J2EE. However, the over-
all intention and roadmap has been laid out. This section examines how Web Services fit
with the J2EE model and how they can be used with J2EE components.

J2EE Web Service Architecture
J2EE will be both a provider and consumer of Web Services. Figure 20.2 shows the over-
all architecture, with business logic being provided by EJBs (although other classes
could be used). The functionality offered by the business components will be described
by a WSDL document (or similar), and this can then be used to build clients that use this
functionality.

SOAP RPC calls will be handled by a router component based around a servlet. This will
dispatch calls to the associated EJB or other component. The router that handles docu-
ment-centric SOAP messages will also be servlet-based. In either case, the precise nature
of the servlet will depend on the type of underlying transport over which the messages
are sent.

The J2EE business components may themselves use other Web Services to help them
deliver business functionality. In this case, the components will take advantage of the
client-side Web Service APIs to call out to these Web Services.

24 0672323842 CH20 3/20/02 9:22 AM Page 875

The Web Service runtime will consist of a variety of filters, providers, and helpers that
will be used in combination with the routing servlets and basic, low-level APIs. These
helpers will deliver additional value on top of the basic APIs, such as ebXML quality of
service guarantees.

Tools and Technologies
There are a number of JSRs that are in progress in the Java Community Process (JCP) to
define Web Service APIs for Java. These include the following:

• JSR101, Java APIs for XML-based RPC (JAX-RPC), provides APIs for invoking
RPC-based Web Services over SOAP. It defines how interactions should take place
and provides the basis for automated tools to produce stubs and skeletons. It also
specifies type mapping and marshalling requirements between Java and
SOAP/WSDL.

• JSR067, Java APIs for XML Messaging (JAXM), defines APIs for creating
document-centric SOAP messages that can be exchanged either synchronously or
asynchronously. Vendors can provide messaging profiles on top of this that offer
value-added services, such as ebXML.

• JSR093, the Java API for XML Registries (JAXR), defines a two-tier API for
accessing registry information stored in XML format. This is targeted at Web
Service-related registries, such as UDDI registries and ebXML registry/reposito-
ries, as well as other generic XML registries.

876 Day 20

FIGURE 20.2
Overall J2EE Web
Service architecture.

SOAP
RPC
Client

WSDL
interfaces

SOAP
Message

Client

SOAP
RPC

Router

SOAP
Message
Router

RPC
Web

Service

Message
Web

Service

EJBs

J2EE Server

24 0672323842 CH20 3/20/02 9:22 AM Page 876

Using RPC-Style Web Services with J2EE 877

20

The contents and status of these JSRs are available through the JCP Web site at
http://www.jcp.org/.

The role that each of these APIs plays in the J2EE Web Service architecture is shown in
Figure 20.3. All of these APIs are intended for inclusion in J2EE 1.4 (as defined in
JSR151). In the interim, they will be delivered as part of the JAX Pack, along with other
Java APIs for the manipulation of XML. The first JAX Pack was delivered in Fall 2001.

FIGURE 20.3
J2EE Web Service
APIs.

JAX-RPC
Client

WSDL
interfaces

JAXM
Client

JAX-RPC
Router

JAXM
Router

RPC
Web

Service

Message
Web

Service

EJBs

J2EE Server

JAXR JAXR Service
registry

JAX-RPC

JAXM

Until the finalization and release of J2EE 1.4, there are various sources of Java-based
Web Service functionality:

• The Apache Software Foundation provides the Axis toolkit for the creation and use
of SOAP-based Web Services that can be deployed in most servlet containers. Axis
is tracking the JAX-RPC JSR as well as the progress of SOAP 1.2. The predeces-
sor to Axis was Apache’s SOAP toolkit 2.2. The Axis toolkit can be found at
http://xml.apache.org/axis.

• IBM provide their Web Services Toolkit (WSTK) through their Alphaworks devel-
oper site. The WSTK provides a set of tools and APIs on which to build Web
Services. The WSTK integrates with the Apache Tomcat servlet engine and IBM’s
WebSphere application server. IBM’s Web Service Toolkit can be found at
http://alphaworks.ibm.com/tech/webservicestoolkit.

24 0672323842 CH20 3/20/02 9:22 AM Page 877

• As the various JSRs reach maturity, they will be obliged to release a reference
implementation (RI) of their functionality. These various RIs are available for indi-
vidual download from Sun and are also bundled as part of the JAX Pack, also
available from Sun. You can download the latest versions of these implementations
from http://java.sun.com/webservices.

• Some Web Service functionality is available in shipping J2EE application servers.
An example of this is the BEA WebLogic server 6.1 that provided Web Service
functionality that pre-dates the final outcomes of any of the related JSRs. Due to
the nature of the JCP, most vendors are able to track the progress of the JSRs and
deliver functionality early to their customers.

If you want to investigate or use Web Service functionality in your applications, the
appropriate choice will depend on the style and robustness you require.

878 Day 20

At the time of writing, the Web Service standards and their Java APIs were
still works in progress. Hence, the primary vehicle used in subsequent sec-
tions for creating and using RPC-style Web Services is Apache’s Axis toolkit.
This shows many indications that it is tracking the JAX-RPC JSR and so
should have similar features and tools to the eventual reference implemen-
tation.

Note

Integrating Web Services with Existing J2EE
Components
Most development projects involve using or adapting existing functionality. Projects
based on Web Services will be no different. In fact, a project can be specifically focused
at exposing existing functionality to clients in the form of Web Services. So, how do you
expose existing J2EE functionality as Web Services?

For a traditional J2EE application, business logic is contained in EJBs. This functionality
is usually made available to client applications through servlets and JSPs. If the clients
are Web browsers, these Web components will generate and consume HTML. Similarly,
if the clients are mobile applications, the Web components may generate and consume
Wireless Markup Language (WML). However, these WML Web components share the
same business logic—they just provide a different front-end or channel for it. Web
Service clients are no different in that respect from HTML or WML clients. The SOAP
router servlet, together with helper classes, acts as a server-side wrapper for the business
logic, delivering it to Web Service clients. This situation is shown in Figure 20.4.

24 0672323842 CH20 3/20/02 9:22 AM Page 878

Using RPC-Style Web Services with J2EE 879

20

The other type of J2EE component in which application logic can be held is a servlet or
JSP. You may ask how you would wrap this functionality for use as a Web Service. Well,
the issue here is that many of the Web components in question are already acting as
channels to some form of client (as shown in Figure 20.4). Consequently, wrapping them
makes no sense. What you should do is create a replacement for such a Web component
that is targeted at Web Service clients rather than Web browsers. If your Web compo-
nents are well designed, you should be able to reuse the JavaBeans, servlet filters, and
helper classes (even servlets/JSPs that they use) as part of your Web Service implementa-
tion. If you already have servlets or JSPs that generate XML, you might be able to
migrate them to meet your Web Service needs or transform the generated XML as part of
the solution.

Using an RPC-style SOAP-Based Web Service
SOAP grew out of an effort to create an XML-based method invocation mechanism for
distributed objects (primarily Microsoft’s DCOM). As such, it is an ideal transport for
method calls made over Web Services.

FIGURE 20.4
Web Services are just
another channel
through which to
access business func-
tionality.

J2EE Server

Web Service
Client

Browser
Client

Mobile
Client

SOAP Request

SOAP Response

HTML Request

HTML Response

WML Request

WML Response

EJBs

SOAP
servlet

HTML
servlet

WAP
servlet

24 0672323842 CH20 3/20/02 9:22 AM Page 879

RPC-Oriented Web Services
Remote Procedure Calls (RPCs) made over Web-based protocols are essentially no dif-
ferent from those made over other protocols, such as IIOP, DCOM, or JRMP. The calls
are usually synchronous (in other words, the client waits for the method to return before
continuing). Zero or more parameters of varying types are passed into the call to provide
information to process, and zero or more return values are generated to deliver the out-
puts of the remote method to the client. The remote method calls are delivered to some
form of dispatcher at the remote server that determines which method should be called
and arranges for the smooth flow of parameters and return values.

For RPC-style operation, SOAP implementations conform to the preceding description.
The difference with SOAP (and other Web-based RPC mechanisms, such as XML-RPC)
is that it uses standard, general-purpose transports, such as HTTP, together with a text-
based method call description in XML. All of the parameters and return values are
encoded in XML as part of the SOAP body, while information about the service and
method to call are provided in the transport header and possibly the SOAP header. When
sent over HTTP, the SOAP header and body are wrapped in another XML document—
the SOAP envelope—and this envelope forms the body of an HTTP POST request.

An HTTP-based SOAP message will be delivered to a SOAP router that takes the form
of an HTTP servlet (for a Java implementation). The SOAP router will examine the
HTTP and SOAP header information and decide how it should forward the message
body. This will involve instantiating or calling a particular component or class that will
receive the message. The SOAP router, or its helper classes, will also perform the con-
version of the XML-based parameters into Java objects and primitives that can be passed
as part of the service invocation. Figure 20.5 shows the operation of such a SOAP router.
Note that the description of the Web Service is used by both the client and server to help
determine the correct mapping between Java and XML for method calls and parameter
types.

This is all good, but why go to this effort? Why not use an existing RPC mechanism,
such as RMI or just use HTTP itself?

The justification for not using RMI or CORBA relates to commonality and security.
There are at least three different distributed object protocols (CORBA, RMI, and
DCOM), each of which has its adherents. The use of HTTP and XML provides a com-
mon protocol that is not tied to any vendor. Also, the protocols listed have great difficulty
in penetrating most firewalls (not surprising, given their ability to invoke random func-
tionality). However, HTTP (and SMTP) have general right of access through most fire-
walls, which makes it easier to integrate applications across organizational boundaries
(after the security questions are sorted out).

880 Day 20

24 0672323842 CH20 3/20/02 9:22 AM Page 880

Using RPC-Style Web Services with J2EE 881

20

Although raw HTTP is a good transport, it was created to exchange simple HTML mes-
sages. This does not provide the sophistication required for a distributed invocation envi-
ronment. The use of a defined XML message format brings structure to this environment
and allows for the interoperability of Web Service clients and servers from different
vendors—something that escaped CORBA until comparatively recently.

Now that you understand the architecture and motivation for RPC-style Web Services,
you can install a Java-based Web Service environment and, through it, use and build your
own Web Services.

Setting up Axis under Tomcat 4.0
The environment you will use for Web Service development in the first instance consists
of the Tomcat servlet engine and the Axis Web Service toolkit, both from the Apache
Software Foundation.

FIGURE 20.5
A Java-based SOAP
router.

Web
Service
Proxy

EJBs

SOAP
Router and
Dispatcher

servlet

Web Service
Client

Candidate
Web Services

SOAP Request

SOAP Response

Java
methods

Invoke
target method

servlets

JavaWSDL

From a developer’s perspective, one of SOAP’s greatest assets is its ability to
penetrate firewalls. However, from an administrator’s point of view, this pre-
sents the same types of problem as traditional RPC, namely the ability to tar-
get a random function call at an exposed server. Although the principle of
SOAP is only a small step on from the invocation of server-side functionality
such as CGI, great care should be taken to ensure adequate security when
exposing Web Services. The overall security story for Web Services is still a
work in progress.

Caution

24 0672323842 CH20 3/20/02 9:22 AM Page 881

You can download Tomcat 4.0 from the Apache Software Foundation at http://jakar-
ta.apache.org/tomcat/ or install it from the CD-ROM as follows:

1. Unzip the Tomcat 4.0 archive (jakarta-tomcat-4.0.1.zip) into an appropriate
directory on your hard drive (an example from Windows would be C:\jakarta-
tomcat-4.0.1).

2. In your personal or system environment, set the environment variable
CATALINA_HOME to point to this directory.

You can download Axis from the Apache Software Foundation or install it from the CD-
ROM as follows:

• Unzip the Axis archive (xml-axis-alpha2-bin.zip) into an appropriate directory
on your hard drive (an example from Windows would be C:\axis-1_0).

• Copy the webapps\axis directory from the axis-1_0 distribution into Tomcat’s
webapps directory ({CATALINA_HOME}\webapps).

You need to install XML support for Axis from the Fall 01 JAX Pack (available from
Sun or on the CD-ROM) as follows:

• Unzip the JAX Pack archive (java_xml_pack-fall01.zip) into an appropriate
directory on your hard drive (an example from Windows would be
C:\java_xml_pack-fall01).

• Copy crimson.jar and xalan.jar from the jaxp-1.1.3 directory into axis\WEB-
INF\lib under Tomcat’s webapps directory ({CATALINA_HOME}\webapps).

Tomcat and Axis are now installed with the appropriate XML support.

In the next section, you will create a client for a simple hello Web Service. First, you
must install and test this simple Web Service as follows:

1. Install the class required for the HelloService by copying the webservices direc-
tory from the CD-ROM directory Day20\examples\HelloService to axis\WEB-
INF\classes under Tomcat’s webapps directory ({CATALINA_HOME}\webapps).

2. Start Tomcat by running the startup script/batch file in the {CATALINA_HOME}\bin
directory.

3. To ensure that Tomcat and Axis are installed correctly, start a Web browser and
point it at http://localhost:8080/axis/index.html. You should see a welcome
screen from Axis.

• Now deploy the hello server using the deployit batch file in the CD-ROM
directory Day20\examples\HelloService.

882 Day 20

24 0672323842 CH20 3/20/02 9:22 AM Page 882

Using RPC-Style Web Services with J2EE 883

20

Assuming that you had no errors, you have now deployed a simple Web Service called
MyHelloService. In the long and distinguished tradition of curly-bracket-based lan-
guages, you will start with a variation on the Hello World! program.

Service Description Information
Your Web server now has a Web Service installed under it. The next step is to access that
Web Service. However, before you can take advantage of the Web Service, you need the
following information:

• A definition of the service you are calling—This information corresponds to the
traditional interface definition for an RPC or RMI server. The interface definition
contains information about the methods available, the number and types of parame-
ters, the type of any return values, and definitions of any complex types used as
parameters.

• The location of the service—This corresponds to the binding information used by
RPC and RMI servers. This Web Service binding information lists the protocols
over which you can call the available Web Service methods. For each supported
protocol, there is also a URL indicating the location of a server that provides an
implementation of that service for that protocol.

As you may have surmised by now, all of this information is provided by a WSDL
description of the service.

Anatomy of a WSDL Document
The WSDL for MyHelloService is shown in Listing 20.1. It is worth taking a few
moments to study this information because it provides a good insight into the way that
Web Services work.

LISTING 20.1 WSDL for the Hello Service (MyHelloService.wsdl)

1: <?xml version=”1.0” encoding=”UTF-8”?>
2:
3: <definitions
4: targetNamespace=”http://localhost:8080/axis/services/MyHelloService”
5: xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
6: xmlns:serviceNS=”http://localhost:8080/axis/services/MyHelloService”
7: xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
8: xmlns=”http://schemas.xmlsoap.org/wsdl/”>
9:
10: <message name=”sayHelloToRequest”>
11: <part name=”arg0” type=”xsd:string”/>
12: </message>
13:
14: <message name=”sayHelloToResponse”>

24 0672323842 CH20 3/20/02 9:22 AM Page 883

15: <part name=”sayHelloToResult” type=”xsd:string”/>
16: </message>
17:
18: <portType name=”HelloServerPortType”>
19: <operation name=”sayHelloTo”>
20: <input message=”serviceNS:sayHelloToRequest”/>
21: <output message=”serviceNS:sayHelloToResponse”/>
22: </operation>
23: </portType>
24:
25: <binding name=”HelloServerSoapBinding”

➥ type=”serviceNS:HelloServerPortType”>
26: <soap:binding style=”rpc”

➥ transport=”http://schemas.xmlsoap.org/soap/http”/>
27: <operation name=”sayHelloTo”>
28: <soap:operation soapAction=”” style=”rpc”/>
29: <input>
30: <soap:body use=”encoded”
31: encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
32: namespace=”MyHelloService”/>
33: </input>
34: <output>
35: <soap:body use=”encoded”
36: encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
37: namespace=”MyHelloService”/>
38: </output>
39: </operation>
40: </binding>
41:
42: <service name=”HelloServer”>
43: <port name=”HelloServerPort”

➥ binding=”serviceNS:HelloServerSoapBinding”>
44: <soap:address

➥ location=”http://localhost:8080/axis/services/MyHelloService”/>
45: </port>
46: </service>
47:
48: </definitions>

The document consists of the following sections:

• The XML prolog and root element (lines 1–8 and 48). The namespace declarations
on the root element (definitions) show that all unqualified elements and attribut-
es come from the WSDL schema. The soap prefix denotes types from the SOAP
schema, while the xsd prefix denotes types from the W3C XML Schema defini-
tion. There is also a namespace defined for this service that is associated with the
serviceNS prefix.

884 Day 20

LISTING 20.1 Continued

24 0672323842 CH20 3/20/02 9:22 AM Page 884

Using RPC-Style Web Services with J2EE 885

20

• WSDL message definitions (lines 10–16). These define two matched messages—a
request and a response. The request (sayHelloToRequest) takes a single string
parameter and the response (sayHelloToResponse) also returns a single string.

• WSDL portType definitions (lines 18–23). A portType is the equivalent of an
interface definition. It contains one or more operation definitions, which in turn
are built from the message definitions in the document. In this case, there is a sin-
gle operation defined in the HelloServerPortType called sayHelloTo. This con-
sists of the two messages, sayHelloToRequest and sayHelloToResponse, seen ear-
lier.

• Now that you have an interface (portType), you can define the protocols over
which that interface can be accessed. The binding element (lines 25–40) creates a
binding, called HelloServerSoapBinding, between the HelloServerPortType and
SOAP. Within this WSDL binding, a SOAP binding (soap:binding) is defined.
Because SOAP can work with a variety of underlying transports and it can work in
an RPC-centric or document-centric way, the attributes on the soap:binding indi-
cate that it is an RPC-style binding that uses HTTP.

The WSDL operation is then mapped to a SOAP operation with input and out-
put soap:body elements defined to map the request and response.

• Finally, an instance of the service is defined in the WSDL service element (lines
42–46). A WSDL service contains a list of WSDL port elements. Each port ele-
ment defines a specific instance of a server that conforms to one of the WSDL
bindings defined earlier.

Again, in the case of the simple Hello service, the service element (named
HelloServer) contains a single WSDL port called HelloServerPort. This speci-
fies that a server conforming to the HelloServerSoapBinding can be found at the
given SOAP address, namely
http://localhost:8080/axis/service/MyHelloService.

This is a very simple WSDL document defining a very simple service. WSDL documents
are typically far longer and more complex. Because of this, WSDL is largely intended for
manipulation by tools and applications.

Creating a Java Proxy from WSDL
Given the service description in Listing 20.1, the next step is to create a client that can
use this service. The simplest way to do this is to have a tool generate a proxy for the
service. This proxy will be a local object that will hide away a lot of the complexity
associated with the mechanics of calling methods on the service.

You can apply the Apache Axis Wsdl2java tool to MyHelloService.wsdl as follows

java org.apache.axis.wsdl.Wsdl2java MyHelloService.wsdl

24 0672323842 CH20 3/20/02 9:22 AM Page 885

This will generate three Java files:

• HelloServerPortType.java is a Java interface that represents the remote interface
(or portType in WSDL terms). This is shown in Listing 20.2. Note that the inter-
face looks like an RMI interface in that it extends java.rmi.Remote, and the
method is defined as throwing java.rmi.RemoteException. The service proxy
implements this interface, and the client should use the interface type to reference
instances of the service proxy.

• HelloServer.java is a factory class that creates instances of the service proxy.
This is shown in Listing 20.3. The client instantiates a factory and then calls the
getHelloServerPort method to obtain a service proxy. Two forms of this method
are provided—one that allows the client to specify the endpoint at which the ser-
vice resides and the other that takes no arguments. The latter method will use the
location information contained in the WSDL file when instantiating the service
proxy.

• HelloServerSoapBindingStub.java is the service proxy itself. Note that by using
a separate interface to represent the portType and a factory for the creation of the
proxy, the same client code can be used, regardless of the particular protocol bind-
ing. The code for HelloServerSoapBindingStub.java is not shown here because
it is very similar to the “raw” SOAP code you will see shortly.

LISTING 20.2 HelloServerPortType.java

1: /**
2: * HelloServerPortType.java
3: *
4: * This file was auto-generated from WSDL
5: * by the Apache Axis Wsdl2java emitter.
6: */
7: 7:
8: public interface HelloServerPortType extends java.rmi.Remote {
9: public String sayHelloTo(String arg0) throws java.rmi.RemoteException;
10: }

886 Day 20

To run the tools and compile the files, you must have the JAR files from the
axis\WEB-INF\lib directory on your classpath, namely axis.jar, clutil.jar,
crimson.jar, log4j-core.jar, wsdl4j.jar, and xalan.jar.

Note

24 0672323842 CH20 3/20/02 9:22 AM Page 886

Using RPC-Style Web Services with J2EE 887

20

LISTING 20.3 HelloServer.java

1: /**
2: * HelloServer.java
3: *
4: * This file was auto-generated from WSDL
5: * by the Apache Axis Wsdl2java emitter.
6: */
7:
8: public class HelloServer {
9:
10: // Use to get a proxy class for HelloServerPort
11: private final java.lang.String HelloServerPort_address =
12: “http://localhost:8080/axis/services/MyHelloService”;
13: public HelloServerPortType getHelloServerPort() {
14: java.net.URL endpoint;
15: try {
16: endpoint = new java.net.URL(HelloServerPort_address);
17: }
18: catch (java.net.MalformedURLException e) {
19: return null; // unlikely as URL was validated in wsdl2java
20: }
21: return getHelloServerPort(endpoint);
22: }
23:
24: public HelloServerPortType

➥ getHelloServerPort(java.net.URL portAddress) {
25: try {
26: return new HelloServerSoapBindingStub(portAddress);
27: }
28: catch (org.apache.axis.SerializationException e) {
29: return null; // ???
30: }
31: }
32: }

You can now write a client application that uses these classes. The code for such an
application is shown in Listing 20.4. This application simply takes the name passed as a
parameter and sends it to the sayHelloTo method of the Web Service. You can see the
creation of the HelloServer service proxy factory on line 20. The client then calls the
getHelloServerPort method to obtain an instance of the service proxy (line 23).
The client can then call the sayHelloTo method passing the given parameter (line 28).
This method invocation is wrapped in a try-catch block to catch any potential
RemoteException that may occur.

24 0672323842 CH20 3/20/02 9:22 AM Page 887

LISTING 20.4 HelloServerClient.java Application That Uses Generated Service Proxy

1: import java.rmi.RemoteException;
2:
3: public class HelloServerClient
4: {
5: public static void main(String [] args)
6: {
7: String name = “unknown”;
8:
9: if (args.length != 1)
10: {
11: System.out.println(“Usage: WebServiceSayHello <name>”);
12: System.exit(1);
13: }
14: else
15: {
16: name = args[0];
17: }
18:
19: // Instantiate the factory
20: HelloServer factory = new HelloServer();
21:
22: // Get a PortType that represents this particular service
23: HelloServerPortType service = factory.getHelloServerPort();
24:
25: try
26: {
27: // Call the service
28: String response = service.sayHelloTo(name);
29:
30: System.out.println(response);
31: }
32: catch(RemoteException ex)
33: {
34: System.out.println(“Remote exception: “ + ex);
35: }
36: }
37: }

To test out your client, you should:

1. Compile the client code.

2. Ensure that the service is running (both Tomcat and the Axis server).

3. Run the client (with the appropriate classpath settings) as shown

prompt> java HelloServerClient Fred
Hello Fred!

888 Day 20

24 0672323842 CH20 3/20/02 9:23 AM Page 888

Using RPC-Style Web Services with J2EE 889

20

Calling the Web Service Through SOAP
You have now accessed the service through a service proxy based on WSDL. However,
you can access the service directly through SOAP, should that be necessary. Indeed,
some older toolkits may only provide a SOAP-level API and no WSDL-based tools, so
this section looks quickly at how you would achieve the same effect directly with SOAP.

Listing 20.5 shows the code you would write under Apache SOAP 2.2 (the precursor to
Axis) to call the Hello service using the SOAP API directly.

LISTING 20.5 SoapSayHello.java Using the Apache SOAP 2.2 API

1: import java.net.*;
2: import java.util.*;
3: import org.apache.soap.*;
4: import org.apache.soap.rpc.*;
5:
6: public class SoapSayHello
7: {
8: private static String serviceUrn = “MyHelloService”;
9: private static String soapRouterUrl =

➥ “http://localhost:8080/axis/servlet/AxisServlet”;
10:
11: public static void main(String[] args)
12: {
13: String name = “unknown”;
14:
15: if (args.length != 1)
16: {
17: System.out.println(“Usage: SoapSayHello <name>”);
18: System.exit(1);
19: }
20: else
21: {
22: name = args[0];
23: }
24:
25: URL url = null;
26:
27: try
28: {
29: url = new URL(soapRouterUrl);
30: }
31: catch (MalformedURLException ex)
32: {
33: System.out.println(“Exception: “ + ex);
34: System.exit(1);
35: }
36:

24 0672323842 CH20 3/20/02 9:23 AM Page 889

37: Call call = new Call();
38:
39: call.setTargetObjectURI(serviceUrn);
40: call.setMethodName(“sayHelloTo”);
41:
42: Vector params = new Vector();
43:
44: params.addElement(new Parameter(“name”, String.class,
45: name, Constants.NS_URI_SOAP_ENC));
46: call.setParams(params);
47:
48: Response response;
49:
50: try
51: {
52: response = call.invoke(url, “”);
53: }
54: catch (SOAPException e)
55: {
56: System.err.println(“Caught SOAPException (“ +
57: e.getFaultCode() + “): “ +
58: e.getMessage());
59: return;
60: }
61:
62: if (!response.generatedFault())
63: {
64: Parameter retVal = response.getReturnValue();
65: Object value = retVal.getValue();
66:
67: System.out.println(value != null ? “\n” + value : “I don’t know.”);
68: }
69: else
70: {
71: Fault fault = response.getFault();
72:
73: System.err.println(“Generated fault: “);
74: System.out.println (“ Fault Code = “ + fault.getFaultCode());
75: System.out.println (“ Fault String = “ + fault.getFaultString());
76: }
77: }
78: }

The first thing to notice is that the endpoint URL is now split into the service name and
the SOAP router (lines 8 and 9). This SOAP router URL must be turned into a
java.net.URL (lines 25–35) for it to be used.

890 Day 20

LISTING 20.5 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 890

Using RPC-Style Web Services with J2EE 891

20

A SOAP Call is then instantiated (line 37) and populated with the service name (line 39)
and the method name (line 40). The parameters for the call must be encoded as
Parameter instances, specifying the parameter name, Java class, and encoding required.
A java.util.Vector containing all of the parameters is then passed to the Call object
(lines 42–46).

The call is then made to the SOAP server using the invoke method (line 52). This is
where the SOAP router URL is passed in. A SOAP Response is returned from invoke.

Now the result must be deciphered (lines 62–76). This involves checking for an error,
retrieving the Parameter object, extracting the actual returned object from it, and then
casting this returned object to the appropriate type.

As you can see, the use of a proxy is preferable because it removes most of the complex-
ity. This is why the Java APIs for creating and sending SOAP messages—JAX-RPC and
JAXM—both work at a higher level than this. The benefits of using the WSDL-based
proxy are that the client code is less complex, there is type safety by using the generated
Java interface, and the client developer needs to know very little about the SOAP-level
operations or indeed about SOAP itself.

A Half-Way House
There is a compromise that can be made between service-specific calling using a proxy
and the use of raw SOAP. Axis provides a ServiceClient class that performs much of
the code shown in Listing 20.5. In fact, all of the code from line 25 on can be effectively
replaced by the following lines:

ServiceClient client = new ServiceClient(soapRouterUrl);

String response = (String)client.invoke(serviceUrn,
“sayHelloTo”,
new Object [] { name });

The service address, method name, and the parameters are all passed into the invoke
method. Note that the last argument in the code shown creates a new array of type
Object and populates it with a single element, which is the String containing the name
provided by the user.

In this case, there is a lot more flexibility than with the WSDL proxy, because the
method name and parameter can be specified at runtime. This allows for dynamic inter-
action with discovered services. However, the code shown is preferable to the SOAP
code in Listing 20.5 because the code surrounding the call setup has been largely simpli-
fied.

Dynamic calling will be examined further tomorrow in the discussion surrounding the
use of directory services.

24 0672323842 CH20 3/20/02 9:23 AM Page 891

Debugging a SOAP Interaction
As with any distributed environment, debugging Web Service interaction is a challenge.
One of the main issues is knowing precisely what is being sent and received. To assist
with this, Axis provides a tool called tcpmon that will monitor and display SOAP traffic.

The basic idea is that you target your client at a different port. The tcpmon utility listens on
that port, logs the SOAP traffic arriving, and then passes it on to the real SOAP server port.
SOAP traffic sent back is also logged. If you cannot change the client configuration, you
could change the port on which the SOAP server listens. The tcpmon utility can then listen
on the original SOAP server port and forward traffic on to the new port. Figure 20.6 shows
how an instance of tcpmon can monitor inbound traffic from SOAP clients on port 8888,
log the traffic, and then forward it on to the real SOAP router listening on port 8080.

892 Day 20

FIGURE 20.6
The tcpmon utility
monitoring SOAP calls
on port 8888 and pass-
ing them on to the real
SOAP router on port
8080.

Servlet Container

TCPMON

SOAP
Message
Router

SOAP
Client

Port 8888

Port 8080

Graphical
output

To start the tcpmon utility, type

java org.apache.axis.utils.tcpmon

This will start a GUI through which the traffic will be displayed. When the GUI starts
up, you will be prompted for the port on which to listen and also the port and host to
which traffic should be forwarded. Figure 20.7 shows a monitor session being started that
will listen on port 8888 and forward all traffic received on to localhost:8080.

The tcpmon utility allows you to set up multiple port/host/port mappings.
Each will be displayed in its own tabbed pane.

Tip

24 0672323842 CH20 3/20/02 9:23 AM Page 892

Using RPC-Style Web Services with J2EE 893

20

The request and response messages are displayed as pairs, as shown in Figure 20.8. This
shows an interaction between the Hello service and a client that has been modified so
that its target port is configurable. The client sends its request to port 8888 with a
SOAPAction of MyHelloService/sayHelloTo. You can see the method invocation and the
string parameter in the SOAP body. The response is shown in the right pane. In the
response, the SOAP body contains a sayHelloToResponse message encapsulating the
sayHelloToResult return value.

FIGURE 20.7
Setting up the port
configuration for
tcpmon.

FIGURE 20.8
SOAP request and
response to the Hello
service seen through
tcpmon.

24 0672323842 CH20 3/20/02 9:23 AM Page 893

The tcpmon utility will retain a history of messages sent back and forth through a partic-
ular port. You can then look back through a sequence of messages in your own time.

Implementing an RPC-Style SOAP-Based
Web Service

Now that you are familiar with writing a simple client for a Web Service, you will proba-
bly want to create your own Web Service in Java.

To deliver a Web Service, you must provide the following:

• The business logic

• A description of the Web Service, such as its name, the methods to be exposed and
so forth

• A router to receive SOAP calls and dispatch method calls to the business logic

Following the same principles as EJBs, it would be good if most of the Web Service-
related functionality was provided for you, leaving you to concentrate on the business
logic. Ideally, you would provide the business logic and some of the Web Service
description, leaving someone else to provide the rest. Fortunately, as you will see, the
Axis environment provides most of the Web Service plumbing, as do other Java-based
Web Service containers.

Wrapping up a Java class as a Web Service
To create a Web Service to run under Axis, all you need to do is supply a Java class and
some configuration information. The Java class needs no specific code to make itself
Web Service-aware, simply one or more public methods.

As an example, consider the SimpleOrderServer shown in Listing 20.6. This contains
the business logic to be wrapped. Note that in this instance, the server is just a standard
Java class. Apart from the package name, there is no indication that this is intended to be
a Web Service. Even the package name is there only to separate this example from other
classes. This class will be instantiated and its methods invoked by the Axis server.

The Axis server takes the form of a servlet called, not surprisingly, AxisServlet. This
servlet acts as the router for all HTTP-based SOAP requests and also supplies WSDL
descriptions for deployed services, as you will see later. The AxisServlet can be found
at http://localhost:8080/axis/servlet/AxisServlet.

894 Day 20

24 0672323842 CH20 3/20/02 9:23 AM Page 894

Using RPC-Style Web Services with J2EE 895

20

LISTING 20.6 SimpleOrderServer.java—A Simple Server to Receive and Process Orders

1: package webservices;
2:
3: public class SimpleOrderServer
4: {
5: public String submitOrder(String customerID, String productCode,

➥ int quantity)
6: {
7: // Form up a receipt for the order
8: String receipt = “”;
9:
10: receipt = “Thank you, “ + customerID + “\n”;
11: receipt += “You ordered “ + quantity + “ “ + productCode + “‘s\n”;
12: receipt += “That will cost you “ + (quantity * 50) + “ Euros”;
13:
14: return receipt;
15: }
16: }

Now that you have your business logic, you will need to provide some information for
the AxisServlet:

• The name under which the service is to be deployed—in this case, the name will
be SimpleOrderService.

• The class that provides the functionality for the service—in this case, this is the
SimpleOrderServer as shown in Listing 20.6.

• The names of the methods that should be exposed as part of the service—in this
case, the single method submitOrder.

This information is encapsulated in XML format, as shown in Listing 20.7. The
<service> element defines the name and the fact that this is an RPC-based service. The
<option> elements define the class and method names.

LISTING 20.7 Deployment Descriptor for the SimpleOrderService
(deploy_simple_order.xml)

1: <admin:deploy xmlns:admin=”AdminService”>
2: <service name=”SimpleOrderService” pivot=”RPCDispatcher”>
3: <option name=”className” value=”webservices.SimpleOrderServer”/>
4: <option name=”methodName” value=”submitOrder”/>
5: </service>
6: </admin:deploy>

24 0672323842 CH20 3/20/02 9:23 AM Page 895

You are now ready to deploy your Web Service.

First, copy over the SimpleOrderServer.class file to the Axis classes directory:

{TOMCAT_HOME}\webapps\axis\WEB-INF\classes\

This ensures that the class is on the Axis classpath so that the server can find it when you
invoke the submitOrder method. Make sure that you retain the appropriate directory
hierarchy. This means that because SimpleOrderServer is in the webservices package,
it should appear as webservices\SimpleOrderServer.class below the Axis classes
directory.

Next, use the ServiceManagerClient to deploy your Web Service according to the
deployment descriptor in Listing 20.7, as follows:

java org.apache.axis.client.AdminClient
➥ -lhttp://localhost:8080/axis/servlet/AxisServlet deploy_simple_order.xml

Assuming that you get no errors, you can list the services currently deployed, either by
pointing your Web browser at the Axis services URL, http://localhost:8080/axis/
services?list, or by issuing the following command from the command line:

java org.apache.axis.client.AdminClient
➥ -lhttp://localhost:8080/axis/services list

896 Day 20

The deployment descriptor syntax shown works with Axis alpha 2. However,
there is a stated commitment that this syntax will migrate to a standard
Web Service Deployment Descriptor (WSDD) syntax at a later date. Although
the syntax will differ, the principles will remain largely the same.

Note

The URL prefix /axis/services is simply a mapping for the /axis/servlet/
AxisServlet URL prefix, so they can be used interchangeably.

However, be aware that the web.xml mapping for the virtual directory services
is incorrect on Axis alpha 2. To list a service or obtain its WSDL, you must either
update the web.xml file for the services mapping so that it looks as follows:

<servlet-mapping>
<servlet-name>AxisServlet</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

or always use the explicit AxisServlet URL:

http://localhost:8080/axis/servlet/AxisServlet/{service name and

options}

Note

24 0672323842 CH20 3/20/02 9:23 AM Page 896

Using RPC-Style Web Services with J2EE 897

20

Whether you list the services through the Web browser or the tool, you should see a list
of services similar to the one in Listing 20.8. You can see the deployment information for
the SimpleOrderService between lines 24–27, and that for MyHelloService that you
used earlier between lines 29–32.

LISTING 20.8 List of Services Deployed under Axis

1: <engineConfig>
2: <handlers>
3: <handler class=”org.apache.axis.handlers.http.HTTPAuthHandler”

➥ name=”HTTPAuth”/>
4: <handler class=”org.apache.axis.handlers.DebugHandler” name=”debug”/>
5: <handler class=”org.apache.axis.handlers.EchoHandler”

➥ name=”EchoHandler”/>
6: <handler class=”org.apache.axis.handlers.JWSProcessor”

➥ name=”JWSProcessor”/>
7: <handler class=”org.apache.axis.providers.java.RPCProvider”

➥ name=”RPCDispatcher”/>
8: <chain flow=”JWSHandler,debug” name=”global.request”/>
9: <chain flow=”Authenticate,Authorize” name=”authChecks”/>
10: <handler class=”org.apache.axis.handlers.http.URLMapper”

➥ name=”URLMapper”/>
11: <handler class=”org.apache.axis.handlers.SimpleAuthorizationHandler”

➥ name=”Authorize”/>
12: <handler class=”org.apache.axis.handlers.JWSHandler”

➥ name=”JWSHandler”/>
13: <handler class=”org.apache.axis.providers.java.MsgProvider”

➥ name=”MsgDispatcher”/>
14: <handler class=”org.apache.axis.transport.local.LocalResponder”

➥ name=”LocalResponder”/>
15: <handler class=”org.apache.axis.handlers.SimpleAuthenticationHandler”

➥ name=”Authenticate”/>
16: </handlers>
17:
18: <services>
19: <service pivot=”MsgDispatcher” name=”AdminService”>
20: <option name=”methodName” value=”AdminService”/>
21: <option name=”enableRemoteAdmin” value=”false”/>
22: <option name=”className” value=”org.apache.axis.utils.Admin”/>
23: </service>
24: <service pivot=”RPCDispatcher” name=”SimpleOrderService”>
25: <option name=”methodName” value=”submitOrder”/>
26: <option name=”className” value=”webservices.SimpleOrderServer”/>
27: </service>
28: <service pivot=”JWSProcessor” name=”JWSProcessor”/>
29: <service pivot=”RPCDispatcher” name=”MyHelloService”>
30: <option name=”methodName” value=”sayHelloTo”/>
31: <option name=”className” value=”webservices.HelloServer”/>
32: </service>

24 0672323842 CH20 3/20/02 9:23 AM Page 897

33: <service pivot=”EchoHandler” name=”EchoService”/>
34: </services>
35: <transports>
36: <transport request=”URLMapper” name=”SimpleHttp”/>
37: <transport request=”HTTPAuth,URLMapper” name=”http”/>
38: <transport response=”LocalResponder” name=”local”/>
39: </transports>
40: </engineConfig>

A Client for Your Web Service
Now that you have successfully deployed your server, you can create a client for it as
you did for the MyHelloService earlier. Again, you have the choice of directly using a
ServiceClient or generating a client-side service proxy based on the service’s WSDL.

But wait, it is all very well to talk about generating a service proxy from WSDL, but the
service you have just deployed is just a Java class. How do you get the WSDL for it?
Well, once again the tools can help here. The Axis environment will provide for you the
WSDL description if you append the query string “?wsdl” onto the service URL. Figure
20.9 shows the WSDL for the SimpleOrderService displayed in a Web browser. You can
then simply save the page onto local disk as SimpleOrderService.wsdl.

898 Day 20

LISTING 20.8 Continued

FIGURE 20.9
Obtaining the WSDL
description of your
service in a Web
browser through Axis.

24 0672323842 CH20 3/20/02 9:23 AM Page 898

Using RPC-Style Web Services with J2EE 899

20

Other tools provide other ways of obtaining the WSDL from a Java-based service. For
example, IBM’s WSTK provides a graphical tool called wsdlgen that allows you to select
the Java methods that you want to expose as Web Service methods.

After you have a WSDL file for your service, you can create a client as you did before
for the MyHelloService by using Wsdl2java to generate client-side service proxy classes
(SimpleOrderServer, SimpleOrderServerPortType, and
SimpleOrderServerSoapBindingStub, in this case).

It is a good idea to generate your service proxy classes in a different directo-
ry from your server. Unless you are very careful with your naming strategy,
Wsdl2java can easily select the same name for its service proxy factory as
you have for your server (SimpleOrderServer.java). Creating the client
in a different directory can save a lot of frustration.

Caution

The client code to use the SimpleOrderServer client-side service proxy is shown in
Listing 20.9.

LISTING 20.9 SimpleOrderClient.java—Takes Parameters for the Customer ID, Product
Code, and Quantity and Submits the Order to the SimpleOrderService

1: import java.rmi.RemoteException;
2:
3: public class SimpleOrderClient
4: {
5: public static void main(String [] args)
6: {
7: String customerId = “unknown”;
8: String productCode = “Widget”;
9: int quantity = 1;
10:
11: if (args.length != 3)
12: {
13: System.out.println(“Usage: SimpleOrderClient <customerId>

➥ <productCode> <quantity>”);
14: System.exit(1);
15: }
16: else
17: {
18: customerId = args[0];
19: productCode = args[1];
20: quantity = Integer.parseInt(args[2]);
21: }
22:
23: // Intantiate the factory

24 0672323842 CH20 3/20/02 9:23 AM Page 899

24: SimpleOrderServer factory = new SimpleOrderServer();
25:
26: // Get a PortType that represents this particular service
27: SimpleOrderServerPortType service = factory.getSimpleOrderServerPort();
28:
29: try
30: {
31: // Call the service
32: String response = service.submitOrder(customerId, productCode,

➥ quantity);
33:
34: System.out.println(response);
35: }
36: catch(RemoteException ex)
37: {
38: System.out.println(“Remote exception: “ + ex);
39: }
40: }
41: }

The following shows how you would run the client and the result returned:

prompt> java SimpleOrderClient Acme ACX-09387 37
Thank you, Acme
You ordered 37 ACX-09387’s
That will cost you 1850 Euros

You have now created a complete Java Web Service client and server.

Starting from WSDL
When a system is designed, the designers will create UML diagrams (or the like) to rep-
resent the system entities and interactions between them. Tools can then generate pro-
gramming artefacts, such as Java classes and interfaces based on this information. If the
system will be based on Web Services, such artefacts will include WSDL descriptions of
the required services. You, as a Java developer, may then be presented with a WSDL
description that requires a Java implementation.

Rather than having to work out manually what sort of Java class would match that
WSDL description, the Java-based Web Service toolkits provide utilities that can produce
the appropriate Java skeleton code from a given WSDL document. Under Axis, the
Wsdl2java utility can be used to produce a skeleton Java Web Service as follows:

java org.apache.axis.wsdl.Wsdl2java --skeleton SimpleOrderServer.wsdl

900 Day 20

LISTING 20.9 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 900

Using RPC-Style Web Services with J2EE 901

20

This generates all of the client-side service proxy files together with the following server-
side files:

• SimpleOrderServerSoapBindingSkeleton.java This is the class that is
deployed as the target for the AxisServlet. You will not edit this file, but its con-
tents are shown in Listing 20.10. As you can see, it delegates the business function-
ality to an instance of the SimpleOrderServerSoapBindingImpl class that is cre-
ates (lines 14 and 25).

• SimpleOrderServerSoapBindingImpl.java The implementation class is the one
you will fill with the business logic. The skeleton provided is shown in Listing
20.11. You can see the location for the business logic on line 14.

• deploy.xml and undeploy.xml Two XML deployment files are provided—one to
deploy the service and one to undeploy it. In Listing 20.12, you can see that the
service is deployed as SimpleOrderServerPort and calls the
SimpleOrderServerSoapBindingSkeleton class to service requests. You can use
this XML file together with AdminClient to deploy the Web Service.

LISTING 20.10 SimpleOrderServerSoapBindingSkeleton.java—A Server-Side Proxy for
the Given WSDL Service Description

1: /**
2: * SimpleOrderServerSoapBindingSkeleton.java
3: *
4: * This file was auto-generated from WSDL
5: * by the Apache Axis Wsdl2java emitter.
6: */
7:
8: public class SimpleOrderServerSoapBindingSkeleton
9: {
10: private SimpleOrderServerPortType impl;
11:
12: public SimpleOrderServerSoapBindingSkeleton()
13: {
14: this.impl = new SimpleOrderServerSoapBindingImpl();
15: }
16:
17: public

➥ SimpleOrderServerSoapBindingSkeleton(SimpleOrderServerPortType impl)
18: {
19: this.impl = impl;
20: }
21:
22: public Object submitOrder(String arg0, String arg1, int arg2)
23: throws java.rmi.RemoteException
24: {

24 0672323842 CH20 3/20/02 9:23 AM Page 901

25: Object ret = impl.submitOrder(arg0, arg1, arg2);
26: return ret;
27: }
28: }

LISTING 20.11 SimpleOrderServerSoapBindingImpl.java—A Skeleton Within Which to
Implement Your Business Logic

1: /**
2: * SimpleOrderServerSoapBindingImpl.java
3: *
4: * This file was auto-generated from WSDL
5: * by the Apache Axis Wsdl2java emitter.
6: */
7:
8: public class SimpleOrderServerSoapBindingImpl
9: implements SimpleOrderServerPortType
10: {
11: public String submitOrder(String arg0, String arg1, int arg2)
12: throws java.rmi.RemoteException
13: {
14: throw new java.rmi.RemoteException (“Not Yet Implemented”);
15: }
16: }

LISTING 20.12 deploy.xml—A Deployment Descriptor Automatically Generated from
the SimpleOrderServer WSDL

1: <!-- -->
2: <!--Use this file to deploy some handlers/chains and services -->
3: <!--Two ways to do this: -->
4: <!-- java org.apache.axis.utils.Admin deploy.xml -->
5: <!-- from the same dir that the Axis engine runs -->
6: <!--or -->
7: <!-- java org.apache.axis.client.AdminClient deploy.xml -->
8: <!-- after the axis server is running -->
9: <!--This file will be replaced by WSDD once it’s ready -->
10:
11: <m:deploy xmlns:m=”AdminService”>
12:
13: <!-- Services from SimpleOrderServer WSDL service -->
14:
15: <service name=”SimpleOrderServerPort” pivot=”RPCDispatcher”>
16: <option name=”className”

➥ value=”SimpleOrderServerSoapBindingSkeleton”/>

902 Day 20

LISTING 20.10 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 902

Using RPC-Style Web Services with J2EE 903

20

17: <option name=”methodName” value=” submitOrder”/>
18: </service>
19: </m:deploy>

Using Axis JWS files
As you have seen, most of the work on the server side is done for you by the tools and
utilities that come with the toolkit. All you have to really provide is a Java class and
everything else can be generated for you. Given this, the Axis project has taken things
one stage further and developed the concept of JWS (or .jws) files.

JWS files (short for Java Web Service) provide a way of deploying a Java-based Web
Service in the simplest possible way. All you do is take the Java class that would be the
target for the Web Service deployment descriptor (the class option under the <service>
element) and change its suffix to .jws instead of .java. You then place this file some-
where below the /axis directory and that’s it. There is no need to create deployment
information or to use AdminClient.

One thing to note is that if your classes belong to a package hierarchy, you will have to
place them in the appropriate subdirectory under the axis directory.

As an example, consider creating a JWS service based on the SimpleOrderServer. Take
the SimpleOrderServer.java file and rename it as SimpleOrderServer2.java (and
rename the class inside it to SimpleOrderServer2 also, as shown in Listing 20.13). The
change to the filename and classname will avoid any confusion with the original service.
Then change the file extension from .java to .jws and copy the file into the /axis
directory. You can then access it as follows:

http://localhost:8080/axis/SimpleOrderServer2.jws

LISTING 20.13 SimpleOrderServer2.jws—A JWS Version of the Simple Order Server

1: public class SimpleOrderServer2
2: {
3: public String submitOrder(String customerID, String productCode,

➥ int quantity)
4: {
5: // Form up a receipt for the order
6: String receipt = “”;
7:
8: receipt = “Thank you, “ + customerID + “\n”;
9: receipt += “You ordered “ + quantity + “ “ + productCode + “‘s\n”;
10: receipt += “That will cost you “ + (quantity * 50) + “ Euros”;
11:

LISTING 20.12 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 903

12: return receipt;
13: }
14: }

A JWS file is a fully-functioning Web Service, so you can obtain its WSDL by using the
URL http://localhost:8080/axis/SimpleOrderServer2.jws?wsdl.

The result of this is shown in Listing 20.14. As you can see, the names used reflect the
name of the JWS file, such as SimpleOrderServer2 as the name of the service on line
38. The SOAP address provided as part of the port targets the JWS file, as you can see
on line 41. You can then use this WSDL information to create a client-side service proxy
and call the service as you have done before.

LISTING 20.14 WSDL Generated from SimpleOrderServer2.jws

1: <?xml version=”1.0” encoding=”UTF-8” ?>
2: <definitions

➥ targetNamespace=”http://localhost:8080/axis/SimpleOrderServer2.jws”
3: xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
4: xmlns:serviceNS=”http://localhost:8080/axis/SimpleOrderServer2.jws”
5: xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
6: xmlns=”http://schemas.xmlsoap.org/wsdl/”>
7: <message name=”submitOrderResponse”>
8: <part name=”submitOrderResult” type=”xsd:string” />
9: </message>
10: <message name=”submitOrderRequest”>
11: <part name=”arg0” type=”xsd:string” />
12: <part name=”arg1” type=”xsd:string” />
13: <part name=”arg2” type=”xsd:int” />
14: </message>
15: <portType name=”SimpleOrderServer2PortType”>
16: <operation name=”submitOrder”>
17: <input message=”serviceNS:submitOrderRequest” />
18: <output message=”serviceNS:submitOrderResponse” />
19: </operation>
20: </portType>
21: <binding name=”SimpleOrderServer2SoapBinding”
22: type=”serviceNS:SimpleOrderServer2PortType”>
23: <soap:binding style=”rpc”

➥ transport=”http://schemas.xmlsoap.org/soap/http” />
24: <operation name=”submitOrder”>
25: <soap:operation soapAction=”” style=”rpc” />
26: <input>
27: <soap:body use=”encoded”
28: encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
29: namespace=”” />
30: </input>

904 Day 20

LISTING 20.13 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 904

Using RPC-Style Web Services with J2EE 905

20

31: <output>
32: <soap:body use=”encoded”
33: encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
34: namespace=”” />
35: </output>
36: </operation>
37: </binding>
38: <service name=”SimpleOrderServer2”>
39: <port name=”SimpleOrderServer2Port”
40: binding=”serviceNS:SimpleOrderServer2SoapBinding”>
41: <soap:address

➥ location=”http://localhost:8080/axis/SimpleOrderServer2.jws” />
42: </port>
43: </service>
44: </definitions>

JWS files are a very neat idea, and they remove a lot of the hassle from creating and
deploying Web Services. However, there is a cost to the simplicity compared to the Web
Services seen previously, including

• All public methods on the JWS class are exposed; you have no fine-grained control
as you would with a deployment descriptor.

• You cannot control the lifetime of the JWS class, so you cannot maintain session
state between invocations.

This means that “serious” Web Services are likely to be deployed as Java classes (or
wrapped EJBs). However, in the same way that JSPs provide a lightweight way of using
a servlet, JWS files provide a lightweight way of delivering Web Services. Other factors,
such as the ease of deployment and automatic compilation reinforce the similarities
between these two models.

Session Context and Web Services
As with servlets and JSPs, it is important to be able to maintain session state between
method invocations on a particular Web Service. To do this, Axis lets you control state
management policy at both the client and server side.

If a server is intended to allow state to be maintained between method invocations, this
needs to be specified in the deployment descriptor. Listing 20.15 shows a variant of the
SimpleOrderService that maintains state between method invocations. This class stores
the name of the last customer to call the submitOrder method (line 23) and checks the
name of the next customer against this value (line 12). If the customer name is the same,
the message in the receipt is different (lines 14–18). Obviously, if there is no session
maintained, the instance of the server class will be discarded after each method call.

LISTING 20.14 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 905

The only time that the “Hello again” greeting will be seen is if session state has been
maintained between invocations.

LISTING 20.15 SessionSimpleOrderServer.java—A Version of the Simple Order Server
That Maintains Session State

1: package webservices;
2:
3: public class SessionSimpleOrderServer
4: {
5: private String lastCustomer = “”;
6:
7: public

➥String submitOrder(String customerID, String productCode, int quantity)
8: {
9: // Form up a receipt for the order
10: String receipt = “”;
11:
12: if (customerID.equals(lastCustomer))
13: {
14: receipt = “Hello again, “ + customerID + “\n”;
15: }
16: else
17: {
18: receipt = “Thank you, “ + customerID + “\n”;
19: }
20: receipt += “You ordered “ + quantity + “ “ + productCode + “‘s\n”;
21: receipt += “That will cost you “ + (quantity * 50) + “ Euros”;
22:
23: lastCustomer = customerID;
24:
25: return receipt;
26: }
27: }

To provide the ability to maintain session state between invocations, an option must be
set in the deployment descriptor to indicate that the Web Service implementation should
maintain session state. The deployment descriptor for the SessionSimpleOrderServer is
shown in Listing 20.16, and you can see on line 6 that a new option element has been
added to set the scope option to Session. This indicates to the Axis server that the server
instance should not be discarded until the user session has ended.

LISTING 20.16 Deployment Descriptor for the SessionSimpleOrderServer

1: <admin:deploy xmlns:admin=”AdminService”>
2: <service name=”SessionSimpleOrderService” pivot=”RPCDispatcher”>

906 Day 20

24 0672323842 CH20 3/20/02 9:23 AM Page 906

Using RPC-Style Web Services with J2EE 907

20

3: <option name=”className”
➥ value=”webservices.SessionSimpleOrderServer” />
4: <option name=”methodName” value=”submitOrder” />
5: <option name=”scope” value=”Session”/>
6: </service>
7: </admin:deploy>

Under Axis, simply setting state on the server side will have no effect unless the client
also indicates that it wants to maintain session state. To do this, the client calls the
setMaintainSession on the client-side service proxy, as shown in the altered client in
Listing 20.17 on lines 30–32.

LISTING 20.17 Client Code Altered to Work with the SessionSimpleOrderServer to
Maintain Session State

1: import java.rmi.RemoteException;
2:
3: public class SessionSimpleOrderClient
4: {
5: public static void main(String [] args)
6: {
7: String customerId = “unknown”;
8: String productCode = “Widget”;
9: int quantity = 1;
10:
11: if (args.length != 3)
12: {
13: System.out.println(“Usage: SessionSimpleOrderClient “ +
14: “<customerId> <productCode> <quantity>”);
15: System.exit(1);
16: }
17: else
18: {
19: customerId = args[0];
20: productCode = args[1];
21: quantity = Integer.parseInt(args[2]);
22: }
23:
24: // Intantiate the factory
25: SessionSimpleOrderServer factory = new SessionSimpleOrderServer();
26:
27: // Get a PortType that represents this particular service
28: SessionSimpleOrderServerPortType service =

➥ factory.getSessionSimpleOrderServerPort();
29:
30: SessionSimpleOrderServerSoapBindingStub stub =
31: (SessionSimpleOrderServerSoapBindingStub)service;

LISTING 20.16 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 907

32: stub.setMaintainSession(true);
33:
34: try
35: {
36: // Call the service
37: String response;
38:
39: response = service.submitOrder(customerId, productCode, quantity);
40:
41: System.out.println(response);
42:
43: response = service.submitOrder(customerId, productCode, quantity);
44:
45: System.out.println(response);
46: }
47: catch(RemoteException ex)
48: {
49: System.out.println(“Remote exception: “ + ex);
50: }
51: }
52: }

When the two consecutive calls to submitOrder are made (as seen on lines 39–45), the
server instance is not discarded between the calls, so the following output is seen:

prompt> java SessionSimpleOrderClient Fred ASX4220 15
Thank you, Fred
You ordered 15 ASX4220’s
That will cost you 750 Euros
Hello again, Fred
You ordered 15 ASX4220’s
That will cost you 750 Euros

Maintaining state is particularly useful when building up information from a client or
when expensive resources, such as EJB references, are required.

908 Day 20

LISTING 20.17 Continued

In this context, the term “expensive” is used to denote that a large amount
of valuable connection time is wasted obtaining such a resource if it has to
be created or retrieved for every client call. Ideally, the server-side imple-
mentation should be able to cache and recycle such resources between
clients to make best use of them. Failing that, you would certainly want to
retain resources between client invocations that form part of the same
workflow (or transaction).

Issues surrounding resource recycling and scalability have already been dis-
cussed on Day 18, “Patterns.”

Note

24 0672323842 CH20 3/20/02 9:23 AM Page 908

Using RPC-Style Web Services with J2EE 909

20

Wrapping Existing J2EE Functionality as Web Services
As noted earlier, many Web Service implementations will be used to wrap existing func-
tionality. If that functionality takes the form of JavaBeans (such as those used in combi-
nation with servlets or JSPs), it is relatively simple to use these from the Web Service
Java classes seen so far. In this case, the Java class provided as the target for the Web
Service router will perform a similar role to the servlet or JSP in that it provides the
front-end interaction logic that will then draw on functionality in the JavaBeans as
required. This Java class is then acting in the role of a façade, as discussed on Day 18.

The key question for J2EE applications is how Web Services will interact with the J2EE
container and server to provide access to J2EE resources, most notably EJBs. The answer
is relatively simple, although there are some complications in the short term.

As you have seen, the Web Service router takes the form of a servlet, such as the
AxisServlet. Hence, your Web Service Java classes are the equivalent of JavaBeans or
helper classes being used by any other servlet. This means that they are being invoked
within the context of the servlet. Because the Web Service router can run within a J2EE
servlet container, it can be installed on a J2EE server. This means that the router and any
classes used by it can gain access to J2EE resources through the container, so your Web
Service Java classes can use the same code as your servlets and JSPs to access EJBs and
other J2EE resources.

All of this seems quite simple, but there are some issues with this model:

• To deploy your Web Services under J2EE, they must be bundled in a WAR file. This
Web Application will contain mappings for the endpoint addresses used by your
client applications, such as http://acme.com:8080/axis/services/MyService.
The virtual directory mappings used here (/axis and /axis/services) can only be
used by one Web Application in the server. This means that any Web Services that
use these endpoint addresses must be deployed as part of the same Web
Application. Also, to comply with the J2EE model, all J2EE resources accessed
from within this Web Application must be declared as part of the deployment
descriptor.

The end result of this is that your Web Service Java classes must be bundled into
the WAR alongside the Axis classes. Any change to any of your Web Services, or the
addition of any new Web Services, will require this WAR to be re-built and re-
deployed. This is slightly inconvenient because it may cause the re-deployment of
completely unrelated services that are running quite happily. The only alternative to
this involves deploying multiple copies of the Web Service router, each with differ-
ent endpoint mappings. Over time, as Web Services become incorporated into the
underlying J2EE platform, this issue should disappear.

24 0672323842 CH20 3/20/02 9:23 AM Page 909

• To avoid the previous issue and provide a single Web Service router that is inde-
pendent of the Web Services themselves, you could use an external servlet contain-
er, such as Tomcat, to house your Web Service router. This would allow you to
deploy Web Services simply by copying their classes into place and informing the
router of their existence. In this case, you would need to access EJBs and other
J2EE resources from this remote container. In some respects, this is not a problem
because you can initialize your JNDI runtime to perform its resource lookups using
the naming service on the remote J2EE server. The following code shows how you
could look up an EJB deployed on the R2EE RI from Tomcat:
Hashtable env = new Hashtable();

env.put(“java.naming.factory.initial”,
➥”com.sun.jndi.cosnaming.CNCtxFactory”);
env.put(“java.naming.provider.url”, “iiop://localhost:1050”);

InitialContext ic = new InitialContext(env);
Object lookup = ic.lookup(agencyJNDI);

home = (AgencyHome)PortableRemoteObject.narrow(lookup, AgencyHome.class);

However, there is a problem with this in that the calling container must be able to
propagate the appropriate security and transaction context to the remote EJB con-
tainer. Because such propagation can still be the source of interoperability issues
between J2EE servers, the configuration of an out-of-server EJB client can become
tricky. As a result, this is not an ideal solution at present.

• The previous two issues are largely technical in nature and can generally be over-
come by the application of suitable mechanisms. However, there is a more central
issue here. Regardless of where the Web Services are deployed or invoked, you still
have to write a Web Service Java class to expose the business logic in your EJBs.

In some cases, this may be desirable in that you want to apply extra constraints on
Web Service-based users of these EJBs. However, if the EJB is a Session EJB con-
taining the business logic you want to expose, you would want a way of automati-
cally creating the intervening Web Service Java class. After all, the EJB interface is
just a list of Java methods similar to those on the Web Service Java class.

The ability to expose EJB methods automatically as Web Services is provided in
Axis and its predecessor, Apache SOAP. The “pluggable provider” mechanism
allows you to use an EJB provider rather than a Java class-based one. You then
specify this in the deployment descriptor, and the SOAP engine will then target the
given EJB when a SOAP call arrives. Similarly, the IBM WSTK provides a graphi-
cal way of wrapping up EJBs as Web Services, although as of October 2001, this
would only work with EJB-JAR files conforming to the EJB 1.0 specification. In
both cases, there is still the issue of ensuring the correct context propagation to the
target J2EE server.

910 Day 20

24 0672323842 CH20 3/20/02 9:23 AM Page 910

Using RPC-Style Web Services with J2EE 911

20

As you can see, these issues make the creation and deployment of J2EE-based Web
Services slightly awkward at the moment. However, the primary purpose of J2EE 1.4 is
the incorporation of Web Services into the core J2EE platform. This should mean that
creating and deploying a Web Service that uses J2EE resources becomes as easy as creat-
ing a servlet or EJB.

Parameter Types and Type Mapping
So far, the Web Services you have seen have used simple parameters, such as strings and
integers. However, in the real world, most systems will need to pass complex types such
as arrays, classes, and data structures. During the rest of today, you will look at how such
complex types can be mapped between Java and SOAP/WSDL and create an order ser-
vice that uses these types.

Mapping Between Java and SOAP/WSDL Types
For simple types, SOAP and WSDL use the representations defined in “XML Schema
Part 2: Datatypes” that is part of the W3C XML Schema standard. There is a straight
mapping for all Java primitive types except for char. There is also a straight mapping for
the Java String class.

If you were to define a Web Service with the following (unlikely) method:

public void test(byte byteArg, short shortArg, int intArg, long longArg,
float floatArg, double doubleArg, char charArg,
boolean boolArg, String stringArg)

this would map into WSDL as follows:

<definitions targetNamespace=”http://localhost:8080/axis/Test.jws”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:serviceNS=”http://localhost:8080/axis/Test.jws”
xmlns:ns1=”java”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<message name=”testResponse”>
<part name=”testResult” type=”ns1:void”/>

</message>
<message name=”testRequest”>
<part name=”arg0” type=”xsd:byte”/>
<part name=”arg1” type=”xsd:short”/>
<part name=”arg2” type=”xsd:int”/>
<part name=”arg3” type=”xsd:long”/>
<part name=”arg4” type=”xsd:float”/>
<part name=”arg5” type=”xsd:double”/>
<part name=”arg6” type=”ns1:char”/>
<part name=”arg7” type=”xsd:boolean”/>
<part name=”arg8” type=”xsd:string”/>

</message>

24 0672323842 CH20 3/20/02 9:23 AM Page 911

Notice that all of the arguments except char are mapped to a type using the xsd prefix,
which refers to the http://www.w3.org/2001/XMLSchema namespace.

However, when you start to work with arrays and complex Java types, such as your own
classes, more effort must be put into the representation of these mappings. Consider what
is done by RMI when you pass Java objects between a client and server:

• RMI uses the Java serialization mechanism to convert the contents of the object
into a byte stream that can be sent across the network.

• Both client and server must have a definition for the type being passed (or must be
able to get hold of one).

• The remote interface definition uses standard Java syntax to indicate where objects
are used as parameters or return values.

When using complex Java types as part of a Web Service, you must address the same
issues. However, there is the added complication that you must do this in a platform and
language-independent way. Therefore, the following is needed to pass complex parame-
ters as part of a Web Service method:

• Provide a mechanism to marshal and unmarshal the contents of a complex Java
type into an XML format that can be used as part of a SOAP message

• Deliver the marshalling and unmarshalling mechanism on both the client and the
server

• Indicate in the WSDL definition that certain parameters or return values are com-
plex types, and provide a mapping between the complex types and their associated
marshalling/unmarshalling code

Consider also the situation where you are provided with WSDL that has been generated
from a non-Java Web Service, such as a Web Service implemented using Microsoft .NET
components. This may also contain definitions for complex types that must be mapped
into Java types to use that Web Service from Java.

Somebody has to do this mapping, and it is not necessarily straightforward. Sometimes it
can be done using automated tools, while at other times it may require custom code.

Mapping Complex Types with Serializers
The JAX-RPC specification defines a serialization framework that can be used to map
between complex Java types and their XML representations in WSDL and SOAP. You
will define serializer and deserializer classes for each complex type that will be called on
by the Web Service runtime to perform this conversion. (See Figure 20.10.)

912 Day 20

24 0672323842 CH20 3/20/02 9:23 AM Page 912

Using RPC-Style Web Services with J2EE 913

20

Serializers fall into three types:

• A set of standard serializers are provided as part of the Java Web Service frame-
work. These include serializers for arrays and common classes, such as
java.util.Date.

• Given a JavaBean, a generic serializer can use its getters to extract its data when
marshalling, and the associated deserializer can use the setters to populate a new
instance when unmarshalling.

• A custom serializer can be written to create an XML representation of any Java class.

Obviously, the creation of a custom serializer is not a trivial task. Therefore, it is best to
try to keep to standard classes and JavaBeans.

To see how complex type mapping works, consider how you could improve the
SimpleOrderServer seen previously. The submitOrder method took three parameters—
customerId, productCode, and quantity. A more realistic service would take a variety
of customer information together with a list of line items, each of which would
describe a product and the quantity required of that product. The productCode and
quantity can form the basis of a simple line item to start improving the order service.

FIGURE 20.10
The role of serializers
and deserializers in a
SOAP request.

SOAP
Client

SOAP
Transport

SOAP
Transport

<XML>

Serializer

Complex
types

SOAP
Server

<XML>

Deserializer

Complex
types

24 0672323842 CH20 3/20/02 9:23 AM Page 913

The LineItemBean formed from these is shown in Listing 20.18. As you can see, this
provides getters and setters for both the product code and the quantity.

914 Day 20

It is important that the JavaBean has a no-argument constructor and the full
compliment of getters and setters. Failure to provide all of these can lead to
exceptions when trying to marshal or unmarshal these types.

Caution

LISTING 20.18 LineItemBean.java—Encapsulating the Product Information in a
JavaBean

1: package webservices;
2:
3: public class LineItemBean
4: {
5: private String _productCode;
6: private int _quantity;
7:
8: public LineItemBean(String productCode, int quantity)
9: {
10: _productCode = productCode;
11: _quantity = quantity;
12: }
13:
14: public LineItemBean()
15: {
16: }
17:
18: public String getProductCode()
19: {
20: return _productCode;
21: }
22:
23: public void setProductCode(String productCode)
24: {
25: _productCode = productCode;
26: }
27:
28: public int getQuantity()
29: {
30: return _quantity;
31: }
32:
33: public void setQuantity(int quantity)
34: {
35: _quantity = quantity;
36: }
37: }

24 0672323842 CH20 3/20/02 9:23 AM Page 914

Using RPC-Style Web Services with J2EE 915

20

The server-side code can then be altered to use this JavaBean, as shown in Listing 20.19.

LISTING 20.19 BeanOrderServer.java—Using the LineItemBean

1: package webservices;
2:
3: public class BeanOrderServer
4: {
5: public String submitOrder(String customerID, LineItemBean item)
6: {
7: String receipt = “Thank you, “ + customerID + “\n”;
8: receipt += “You ordered “ + item.getQuantity() + “ “ +

➥ item.getProductCode() + “‘s\n”;
9: receipt += “That will cost you “ + (item.getQuantity() * 50) +

➥ “ Euros”;
10:
11: return receipt;
12: }
13: }

Before you can deploy this updated class, you need a way to tell the Axis server how it
can unmarshal an instance of a LineItemBean. If you do not do this, an exception will
occur when the server attempts to service a call to submitOrder.

Given that the LineItemBean is a JavaBean, the Axis BeanSerializer can be used to
marshal and unmarshal its contents. You instruct the Axis server to use this serializer by
defining a bean mapping in the deployment descriptor. Listing 20.20 shows an updated
form of the order service deployment descriptor containing a bean mapping between
lines 5–7. The bean mapping associates an XML qualified name (a tag name and associ-
ated namespace) with a particular Java class. On line 9, the tag LineItem from the name-
space urn:com-acme-commerce is defined as representing the Java class
webservices.LineItemBean.

LISTING 20.20 Defining a Bean Serializer for Use with the BeanOrderService

1: <admin:deploy xmlns:admin=”AdminService”>
2: <service name=”BeanOrderService” pivot=”RPCDispatcher”>
3: <option name=”className” value=”webservices.BeanOrderServer”/>
4: <option name=”methodName” value=”submitOrder”/>
5: <beanMappings>
6: <acme:LineItem xmlns:acme=”urn:com-acme-commerce”

➥ classname=”webservices.LineItemBean”/>
7: </beanMappings>
8: </service>
9: </admin:deploy>

24 0672323842 CH20 3/20/02 9:23 AM Page 915

All name-to-class mappings contained within the <beanMappings> element will be per-
formed by the BeanSerializer. After you have deployed the BeanOrderService, a list-
ing of the deployed Axis services will reveal a full type mapping for the bean, as shown
in the following (you may need to restart your Web server for this mapping to show up):

<service pivot=”RPCDispatcher” name=”BeanOrderService”>
<option name=”methodName” value=”submitOrder”/>
<option name=”className” value=”webservices.BeanOrderServer”/>
<typeMappings>
<typeMapping type=”ns:order”

xmlns:ns=”urn:com-acme-commerce”
classname=”webservices.LineItemBean”

deserializerFactory=”org.apache.axis.encoding.BeanSerializer$BeanSerFactory”
serializer=”org.apache.axis.encoding.BeanSerializer”/>
</typeMappings>

</service>

You can see that the mapping information provided in the deployment descriptor has
been augmented by the class names for the BeanSerializer.

The final link-up is made on the server side by indicating which parameters to the Web
Service method should be subject to this mapping. The WSDL generated for the service
shows that the second parameter (arg1) is of the type nsl:LineItem. This type associates
it with the namespace urn:com-acme.commerce as defined by the bean mapping in the
deployment descriptor.

<definitions
targetNamespace=”http://localhost:8080/axis/services/BeanOrderService”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:serviceNS=”http://localhost:8080/axis/services/BeanOrderService”
xmlns:ns1=”urn:com-acme-commerce”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<message name=”submitOrderRequest”>
<part name=”arg0” type=”xsd:string”/>
<part name=”arg1” type=”ns1:LineItem”/>

</message>
...

The mapping is now set up on the server side. You can now call this service, confident
that the correct unmarshalling will take place. All that remains is to call the service from
a client. The code shown in Listing 20.21 shows a client for the BeanOrderService.

LISTING 20.21 A Client for the BeanOrderService

1: import java.rmi.RemoteException;
2: import java.net.MalformedURLException;
3:
4: import org.apache.axis.AxisFault;

916 Day 20

24 0672323842 CH20 3/20/02 9:23 AM Page 916

Using RPC-Style Web Services with J2EE 917

20

5: import org.apache.axis.client.ServiceClient;
6: import org.apache.axis.encoding.BeanSerializer;
7: import org.apache.axis.utils.Options;
8: import org.apache.axis.utils.QName;
9:
10: import webservices.LineItemBean;
11:
12: public class BeanOrderServiceClient
13: {
14: public static void main(String [] args)
15: {
16: String customerId = “unknown”;
17: String productCode = “Widget”;
18: int quantity = 1;
19: ServiceClient client = null;
20:
21: try
22: {
23: Options options = new Options(args);
24: client = new ServiceClient(options.getURL());
25: args = options.getRemainingArgs();
26: }
27: catch (MalformedURLException ex)
28: {
29: System.err.println(“Option error: “ + ex);
30: System.exit(2);
31: }
32: catch (AxisFault ex)
33: {
34: System.err.println(“Option error: “ + ex);
35: System.exit(2);
36: }
37:
38: if (args == null || args.length != 3)
39: {
40: System.out.println(“Usage: SimpleOrderClient -l<endpoint>” +
41: “<customerId> <productCode> <quantity>”);
42: System.exit(1);
43: }
44: else
45: {
46: customerId = args[0];
47: productCode = args[1];
48: quantity = Integer.parseInt(args[2]);
49: }
50:
51: LineItemBean lineItem = new LineItemBean(productCode, quantity);
52:
53: QName lineItemAssociatedQName = new QName(“urn:com-acme-commerce”,

➥ “LineItem”);

LISTING 20.21 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 917

54:
55: BeanSerializer serializer =

➥ new BeanSerializer(webservices.LineItemBean.class);
56:
57: client.addSerializer(webservices.LineItemBean.class,
58: lineItemAssociatedQName,
59: serializer);
60:
61: String receipt;
62: try {
63: receipt = (String)client.invoke(“BeanOrderService”,
64: “submitOrder”,
65: new Object[] { customerId, lineItem });
66: } catch (AxisFault fault) {
67: receipt = “No receipt”;
68: System.err.println(“Error : “ + fault.toString());
69: }
70:
71: System.out.println(receipt);
72: }
73: }

The main interest begins at line 51 where the LineItemBean is instantiated. Following
this (line 53), an org.apache.axis.utils.QName is created containing the XML quali-
fied name that will represent the LineItemBean as it is passed across the network. The
value of this QName is the one shown in the WSDL generated from the server, namely the
tag name LineItem in the namespace urn:com-acme-commerce.

A BeanSerializer is then created that will actually perform the mapping. This serializer
must know which particular type of JavaBean it is supposed to map. Consequently, it is
given the class type (webservices.LineItemBean.class) as a constructor parameter.

Scrolling back to line 24, you can see that the client will be using a ServiceClient to
invoke the Web Service method. This is initialised with the service URL (http://
localhost:8080/axis/services/BeanOrderService). On lines 57–59, the serializer and
the QName are passed to the addSerializer method of the ServiceClient, together with
the JavaBean type, so that the ServiceClient knows for which type this serializer is
intended.

Finally, the Web Service method itself is invoked on lines 63–65, and the LineItem
instance is passed as the second parameter. The client-side runtime will then invoke the
serializer you have associated with LineItem when that parameter is marshalled into the
SOAP message.

918 Day 20

LISTING 20.21 Continued

24 0672323842 CH20 3/20/02 9:23 AM Page 918

Using RPC-Style Web Services with J2EE 919

20

Going Further with Complex Type Mapping
The use of a BeanSerializer is just the start as far as the mapping of complex types is
concerned. Taking the example of the LineItem further, you would probably pass an
array of LineItem objects into the method. Alternatively, you could create an Order class
that held a Collection of LineItems and pass an instance of Order into the method. In
this case, you get into the issues of nested serialization and passing complex types into
the getters and setters. While some of this is still within the bounds of the serializers pro-
vided by Axis, this path leads toward custom serialization—whether such serializers are
written by hand or automatically generated by more powerful tools. To create your own
serializers, you can subclass the org.apache.axis.encoding.Deserializer class, but
the creation of custom serializers is beyond the scope of today’s work.

Apart from beans, serializers are provided for other standard types, such as Date and
Map, as well as for byte arrays and SOAP arrays.

JAX-RPC defines an extensible type-mapping framework similar to that delivered by
Axis in that you can associate serializers with particular Java classes. These mappings
are again stored in a type-mapping registry on both the client and the server side.
Standard serializers are to be provided for String, Date, Calendar, BigInteger, and
BigDecimal, as well as arrays and JavaBeans.

Another area in which progress should be made for type mapping between Java and
XML is the Java API for XML Data Binding (JAXB). JAXB will provide more powerful
facilities to map between complex Java types and XML representations of those types.
As JAXB progresses, it should provide a useful mapping layer and source of serializers.

Summary
Today, you have seen how Web Services provide a future route for many application inte-
gration projects. Web Services provide a framework for the integration of internal or
external applications using HTTP and XML. You have seen that Web Services provide a
better solution for exposing functionality than existing RPC or Web mechanisms, and
you have explored the Web Service functionality offered in Java and J2EE.

You used an existing RPC-style Web Service, both directly using SOAP and through a
proxy generated from WSDL. You then created your own server and generated WSDL
from this. You looked at how to keep state when using a Web Service and examined the
issues around exposing J2EE components as Web Services. Finally, you used complex
type mapping to enable a Java object to be passed as a parameter to a Web Service.

24 0672323842 CH20 3/20/02 9:23 AM Page 919

Q&A
Review today’s material by taking this quiz.

Q SOAP uses HTTP as a transport, so does this mean that it is restricted to syn-
chronous interaction?

A Any transport can be used for a SOAP message as long as someone creates a bind-
ing for it. SOAP bindings have been defined for SMTP, and such bindings can be
created for any other transport mechanism, such as FTP or MQSeries, regardless of
whether such mechanisms are synchronous or asynchronous.

Also, although HTTP is inherently synchronous, you can use it to pass XML docu-
ments that consist of business “messages” and that form part of a workflow. If the
sender of the message is also capable of receiving such messages, it may receive a
response of some form at some future point in time. This uses two synchronous
interactions to create asynchronous behavior.

Q Can I use Axis (or JAX-RPC) to send an XML document rather than per-
forming an XML-based RPC call?

A Although it is possible to send an XML document as a parameter to an RPC call
using Axis, document-centric interactions are intended to be serviced by the Java
API for XML Messaging (JAXM). You will encounter JAXM in more detail
tomorrow.

Q What sort of information is contained in a WSDL document?

A A WSDL document contains two basic types of information. It contains the inter-
face for the Web Service that consists of type information, message definitions
(parameters and return types), operation definitions (methods that can be called),
port types (groupings of methods), and bindings that define how port types are car-
ried over different transports. A WSDL file also contains specific location informa-
tion for a Web Service in the form of ports that provide a specific location for an
instance of a port type and service descriptions that define groups of ports.

Q What does a BeanSerializer do?

A A BeanSerializer lets you use a JavaBean as a parameter or return type in a Web
Service method. When sending, the BeanSerializer will convert the contents of
the JavaBean into XML that can be transported as part of the SOAP message.
When receiving, the BeanSerializer will unmarshal the XML content for that
parameter into an instance of the JavaBean ready to be used by the Java client or
server.

920 Day 20

24 0672323842 CH20 3/20/02 9:23 AM Page 920

Using RPC-Style Web Services with J2EE 921

20

Exercises
The intention of this day is for you to create and use RPC-style Web Services. To ensure
that you are comfortable with these areas, you should attempt the following tasks.

1. Create a simple stock quote server using a JWS file. The stock quote server should
take a string as the stock for which a quote is required (“SUNW”, “MSFT”, “ACME”).
The quote service should return a floating point value that reflects the current share
price. Your server should just hold two arrays—one of strings and one of associated
stock prices (don’t get bogged down in the application logic, but feel free to have a
bit of fun with the stock prices you return!).

2. Deploy the service and check that it is operational by obtaining its WSDL.

3. Create a client for the service using a generated proxy or a ServiceClient. The
client should be a simple command-line application that takes a single string that is
the name of the stock to retrieve.

4. Convert your JWS service into a standard service that uses a deployment descrip-
tor. Deploy and test your service.

5. Alter your client and server so that the value returned is a JavaBean that contains
the name of the stock together with its current price and its 90-day high and low
values (so basically, a string and three floating point numbers).

Use a BeanSerializer to marshal and unmarshal your JavaBean. Alter the server’s
deployment information appropriately. Redeploy the service and test it out.

24 0672323842 CH20 3/20/02 9:23 AM Page 921

24 0672323842 CH20 3/20/02 9:23 AM Page 922

DAY 21

WEEK 3

Web Service Registries
and Message-Style
Web Services

Yesterday, you learned about Web Service architecture and you created your
own Web Services. Part of the Web Service architecture involved the look up of
Web Service information in a registry, but the Web Service information you
used was not obtained that way. Also, the Web Services you created were all
RPC-style as opposed to document-oriented Web Services. Web Services are
more than just a replacement for RPC.

Today, you will

• Investigate the role of Web Service registries

• Examine code that registers and retrieves information using a UDDI
registry

• Explore how JAXR will provide uniform access to XML-based registries
from Java

• Send and receive SOAP messages using JAXM

• Use a JAXM Provider to send routed SOAP messages

25 0672323842 CH21 3/20/02 9:35 AM Page 923

Today’s intention is to interact with Web Service registries and to use message-based
Web Services (as opposed to RPC-based ones).

Registries for Web Services
As you saw on Day 3, “Naming and Directory Services,” naming and directory services
are an important part of any distributed environment. J2EE uses JNDI as a way of
accessing information about application resources and the location of remote services,
such as EJBs and databases.

Because Web Services also operate in a distributed environment, Web Service-oriented
naming and directory services are required. In fact, the scope of such services is broader
under the Web Services model than under J2EE, because the service will hold organiza-
tional and business information as well as Web Service metadata and location informa-
tion. In Web Service terms, the place to find this information is called a registry or repos-
itory.

What is a Web Service Registry?
As discussed yesterday, a Web Service client can retrieve information about the Web
Service it wants to use from a registry. The registry contains information about the ser-
vice being offered (from currency conversion to the supply of 10-ton trucks). This infor-
mation includes details about the organization offering the service, the technical access
information for the service (interface and transport), and where to find the service.

Tools can be built to browse and search this Web Service registry information. The infor-
mation retrieved can then be plugged into client applications so that they can integrate
with the supplier of the service. This integration can range from fully manual, where a
human selects the interface and writes client code to invoke it, to fully automatic, where
the selection and invocation are performed by the client application itself.

Why Do I Need One?
To cooperate, applications need information about what services exist and where to find
them. You can do this manually by exchanging service definition files, such as WSDL
documents. This procedure is reasonably okay when interacting with known business
partners. However, manual exchange does have some drawbacks because it does not
allow you to find new suppliers of services, and your information must be updated when-
ever a service location changes.

One alternative is to exchange service information in a partially dynamic way with your
business partners by obtaining service definition information from the server on which

924 Day 21

25 0672323842 CH21 3/20/02 9:35 AM Page 924

Web Service Registries and Message-Style Web Services 925

21

the service itself is located. Such a mechanism is described in the Web Service
Inspection Language (WSIL) specification. Again, this method of interaction is reason-
ably okay if you already know where the server is.

To engage in fully dynamic Web Service use, what you really need to do is search for
companies or services that match a specific profile (type of business, type of service,
location of business, and so on). From this list, you can choose an appropriate service,
and then retrieve its technical information with the minimum of fuss. At runtime, it is
possible to check the service information again in case the service location information
has been updated.

How Do They Work?
There are two basic ways of finding information in a registry. One way is to drill-down,
starting at a known location. Under this model, you can iterate through the registry
entries below the current location and potentially recurse down through their children or
follow links from them to find the information you require. The alternative mechanism is
to globally search the registry for the information you require. In this case, you would
search based on a particular piece of information about the service you require, such as
the organization’s name, its line of business, or the interface definition of the service for
which you are looking. The use of these three types of search criteria (frequently called
white, yellow, and green pages, respectively) provide you with a lot of flexibility for
locating the Web Service you need.

What will usually happen is that you will use some form of search to locate an initial
registry entry, such as the top-level registry entry describing an organization’s business,
and then drill down from there to examine the services available.

One issue here is that for searches to be effective, people must agree on ways of describ-
ing and categorizing information. This gives rise to classification systems or taxonomies.
There are various common taxonomies set up by industry standards bodies to classify
information in their particular areas. Such taxonomies can be used as part of the classifi-
cation of a Web Service in a registry to help clients find the right form of service.

Types of Registry
Web Service registries come in a variety of forms:

• Global registries are publicly available and open to all types of business—similar
in concept to the global Domain Name System (DNS) that lets you find anyone’s
Internet Protocol (IP) assigned to the hostname that forms part of their Uniform
Resource Locator (URL).

25 0672323842 CH21 3/20/02 9:35 AM Page 925

• Private registries can be set up behind organizational firewalls. These will facilitate
the location of Web Services on a company’s intranet.

• Site-specific registries will list all of the services offered at the site associated with
the registry. For example, acme.com could host a registry service that helped you to
locate all Web Services provided by acme.com.

• Marketplace registries are set up and maintained by a market maker (a third party
or industry consortium). Such registries may or may not be publicly available, but
will provide some form of selection or quality check on the providers of services
before including them in the registry.

There is a good whitepaper about Web Service registry styles on the Web Services part of
IBM’s DeveloperWorks site at http://www-106.ibm.com/developerworks/library/ws-
rpu1.html.

Just before leaving the general topic of Web Service registries, it is worth considering
how your application—and your business—will actually use Web Services. If you are
looking to use Web Services provided by suppliers as part of a supply chain, you may
want to use some of the dynamic capabilities of a Web Service registry to locate suppli-
ers and services. However, not all of the information you require will be found dynami-
cally. In real life business terms, you will not necessarily change your supplier of ball
bearings from minute to minute. There are other criteria by which you choose your busi-
ness partners (quality, timeliness, trust, and so on). Therefore, for most applications, the
selection of suppliers will usually take place at human speeds and involve humans in the
selection. After the selection is made, dynamic lookups can be performed to discover and
use the technical service interface and location information.

Marketplaces can also help here. A marketplace can provide a qualitative judgement of
potential suppliers, making the selection of previously unknown suppliers less risky. This
type of qualitative judgement already takes place in various areas of business, such as
organizations that provide credit ratings for businesses. Employing such a service helps
you to manage your risk when selecting potential business partners. Given such a rating
ability, if a marketplace can offer five trustworthy and high-quality suppliers, you can
potentially spread the load across these equal suppliers. Even so, this type of dynamic
interaction is more likely in information-based areas, such as financial data and transac-
tions, than in the realms of 10-ton truck purchase.

ebXML Registry and Repository
One of the principal types of Web Service registry is the ebXML Registry and
Repository (R&R). The ebXML R&R plays a central role in the ebXML model of
e-commerce, as shown in Figure 21.1.

926 Day 21

25 0672323842 CH21 3/20/02 9:35 AM Page 926

Web Service Registries and Message-Style Web Services 927

21

The ebXML R&R acts as a storage area for the central business document definitions, or
Core Components, that are used in ebXML business messages. An organization
(Company A) that wants to advertise its services in an ebXML R&R will base its service
descriptions on these Core Components and will then implement the service (shown as
steps 1 and 2). Company A and its services will then be registered in the ebXML R&R
(step 3), including a Collaboration Partner Profile (CPP) that describes the different bind-
ings for each service and the roles and workflows associated with it.

When Company B searches the registry for a service, it can select Company A’s offering
and download the service information (step 4). Company B can then use the information
in Company A’s CPP to determine how it should interact with Company A’s services. It
can then contact Company A with a suggested Collaboration Partner Agreement (CPA)
that details the bindings and service interactions required (step 5). This CPA forms the
basis of the contact between the two companies. When a CPA has been agreed on by the
two companies, business transactions can begin between the two new partners according
to the terms set out in the CPA (step 6). Messages sent between the partners will refer-
ence a CPA identifier (CPAid) to indicate of which interaction they are a part.

FIGURE 21.1
Discovery and negotia-
tion based around an
ebXML registry and
repository.

ebXML
registry

Implement
System

Query for
Co. A profile

Download
scenarios

and profiles

<XML>
Business components
Business scenarios
Business profiles

Request Business Details

1

2

4

Company A

Company B

Register Implementation
Details and Co. A profile

3

Agree on business
arrangement

5

Do business
transactions

6

25 0672323842 CH21 3/20/02 9:35 AM Page 927

UDDI Overview
UDDI defines an information model for a registry of Web Service information and a set
of SOAP messages for accessing that information. The information contained can be split
into two parts:

• Business information—This provides the name and contact information for the
business. It also provides a list of the categories under which the business should
be “registered” to help a user find the business.

• Service information—This gives information about which Web Services are offered
by the business, their interfaces, and location(s).

At the lowest level, you have the description of a specific Web Service. As you have seen
from WSDL, this will contain a description of the service interface and endpoint infor-
mation telling the user where to find the service. UDDI splits this information between
two structures:

• A structure called a tModel is used to describe the Web Service’s interface, such as
the operations, parameters, and data types it uses. Separating such interface infor-
mation from the service location information means that tModels can be stored
independently and shared by multiple different services from different businesses.
This greatly aids the discovery of compatible service offerings. Although common-
ly conceptualised as a Web Service description, the information in a tModel can
describe any mechanism for accessing a service, including e-mail, phone, or fax.

If you are building a tModel from a WSDL interface, you would include the
WSDL messages, parameters, return values, complex types, PortTypes, and
Bindings.

• The UDDI bindingTemplate structure uses tModels to define which particular ser-
vice is being offered and also provides the location of the service. The location
information defines specific endpoints at which the service can be found.

Again, in WSDL terms, the extra information in the bindingTemplate correlates to
the WSDL port and service information.

At a higher level, a businessService is used for the logical grouping of services, as
defined in bindingTemplates. At the top level is a UDDI businessEntity that contains
the business information. Each businessEntity contains one or more
businessServices.

The UDDI API provides a set of SOAP operations to search for information within this
model and to retrieve the relevant parts.

928 Day 21

25 0672323842 CH21 3/20/02 9:35 AM Page 928

Web Service Registries and Message-Style Web Services 929

21

Accessing Information in a UDDI Registry
In this section, you will examine how information in a UDDI registry can be accessed
from Java.

The subject of accessing, updating, and searching UDDI-based registries
would fill a book in itself. This section is intended to give you a head start in
using a UDDI-based registry rather than showing you all the nuts and bolts
required.

Note

As a Java developer, you do not really want to have to build SOAP messages to commu-
nicate with a UDDI registry. What you want is a Java-based API that hides away the
SOAP manipulation. In the rest of this section on registries, you will examine three alter-
natives:

• UDDI4J—IBM’s Java implementation of the UDDI API

• IBM WSTK Client API—A higher-level API that abstracts some of the UDDI com-
plexity

• JAXR—The Java API for XML Registries being developed through the JCP

Manipulating Service Information using UDDI4J
Before you start manipulating data in a registry, you must choose which registry you will
use:

• A public production registry—This is a “live” business registry, such as those host-
ed by IBM and Microsoft. You should only manipulate “real” business data in
these registries. You can search such a registry freely, but if you want to publish
data, you will be required to obtain a login and password.

• A public test registry—This is a generally available resource for testing the regis-
tration and discovery of Web Services. As with production registries, public test
registries are hosted by IBM and Microsoft. If you want to publish data about your
test services, you will be required to obtain a login and password.

• A locally hosted registry—There are several UDDI registries available that you can
configure in your own environment (IBM’s downloadable UDDI registry and
jUDDI are two examples). These registries can be used internally within your com-
pany for Web Service discovery and testing.

Listing 21.1 shows how UDDI4J can be used to register a business in the IBM test reg-
istry.

25 0672323842 CH21 3/20/02 9:35 AM Page 929

LISTING 21.1 RegisterBusiness.java—A Simple UDDI Client

1: import com.ibm.uddi.*;
2: import com.ibm.uddi.datatype.business.*;
3: import com.ibm.uddi.response.*;
4: import com.ibm.uddi.client.*;
5: import org.w3c.dom.*;
6: import java.util.*;
7: import java.security.*;
8:
9: public class RegisterBusiness
10: {
11: public static void main (String args[])
12: {
13: System.setProperty(“java.protocol.handler.pkgs”,
14: “com.ibm.net.ssl.internal.www.protocol”);
15: Security.addProvider(new com.ibm.jsse.JSSEProvider());
16:
17: UDDIProxy proxy = new UDDIProxy();
18:
19: try
20: {
21: proxy.setInquiryURL(
22: “http://www-3.ibm.com/services/uddi/testregistry/inquiryapi”);

23: proxy.setPublishURL(https://www-3.ibm.com/services/uddi/ +
24: “testregistry/protect/publishapi”);
25:
26: AuthToken token = proxy.get_authToken(“fbloggs”, “Wibble”);
27:
28: System.out.println(“Authentication Token: “ +

➥ token.getAuthInfoString());
29:
30: Vector businessEntities = new Vector();
31:
32: BusinessEntity businessEntity =

➥ new BusinessEntity(“”, “Bloggs Business”);
33: businessEntities.addElement(businessEntity);
34:
35: BusinessDetail detail =
36: proxy.save_business(token.getAuthInfoString(),entities);
37:
38: businessEntities = detail.getBusinessEntityVector();
39: BusinessEntity returnedBusinessEntity =

➥ (BusinessEntity)(businessEntities.elementAt(0));
40:
41: System.out.println(“List businesses starting with B to find ours”);
42:
43: BusinessList list = proxy.find_business(“B”, null, 0);
44:
45: Vector businessInfoVector =

➥ list.getBusinessInfos().getBusinessInfoVector();
46: for (int i = 0; i < businessInfoVector.size(); i++)

930 Day 21

25 0672323842 CH21 3/20/02 9:35 AM Page 930

Web Service Registries and Message-Style Web Services 931

21

47: {
48: BusinessInfo businessInfo =

➥ (BusinessInfo)businessInfoVector.elementAt(i);
49: System.out.println(businessInfo.getNameString());
50: }
51: }
52: catch (UDDIException ex)
53: {
54: DispositionReport report = ex.getDispositionReport();
55: if (report != null)
56: {
57: System.out.println(“UDDIException” +
58: “\n faultCode:” + ex.getFaultCode() +
59: “\n operator:” + report.getOperator() +
60: “\n generic:” + report.getGeneric() +
61: “\n errno:” + report.getErrno() +
62: “\n errCode:” + report.getErrCode() +
63: “\n errInfoText:” + report.getErrInfoText());
64: }
65: ex.printStackTrace();
66: }
67: catch (Exception ex)
68: {
69: ex.printStackTrace();
70: }
71: }
72: }

There is no intention to walk through the precise details of the code here. However, you
should note the following:

• The UDDI4J API provides a UDDIProxy class that acts as a client-side proxy for
the UDDI registry. An instance is created on line 17.

• Before using any UDDI-based applications, you must ensure that you have a valid
username and password for the registry in question. These are used on line 26 to
obtain an authentication token that is passed in subsequent calls to identify this
user.

• Because you will need to send your login name and password to authenticate your-
self to a public registry, these registries require the use of HTTPS for this purpose.
Lines 21–24 show the URLs for inquiries and updates being set on the UDDI
proxy. The URL for updates (publish) uses an https:// protocol identifier. To use
this type of URL from a standalone client such as the one shown, you must use the
Java Secure Sockets Extension (JSSE). If you are using a pre-JDK 1.4 platform,
you will have to download and install this extension. The application shown uses
the IBM version of JSSE and initialises it on lines 13–15.

LISTING 21.1 Continued

25 0672323842 CH21 3/20/02 9:35 AM Page 931

After it has contacted the UDDI registry, the application creates a (very sparse) business
entity and publishes this to the registry. It then lists all of the businesses beginning with
B to ensure that the update has taken place correctly.

Although at this stage the application is not too complex, the act of retrieving or publish-
ing information can be somewhat tortuous. This is particularly true in the area of service
definitions. Consider the situation where you want to publish the WSDL description of
your service. To do this, you must convert that service description into a UDDI tModel.
The UDDI data structure corresponding to the tModel must be created as an XML docu-
ment, and this document must then be uploaded to the registry. Even if you like creating
XML documents, there is still the issue of retrieving the relevant parts of the service
description from your WSDL to import this into the tModel document. Although there is
another IBM API, called WSDL4J, that can help you to perform this manipulation,
things are becoming fairly messy by now.

Manipulating Service Information Using the IBM
WSTK Client API
Because of the complexity associated with using UDDI4J, you may decide to use the
IBM WSTK Client API that provides a higher-level abstraction of the UDDI4J API. The
WSTK Client API also uses the WSDL4J API to help convert WSDL document informa-
tion into UDDI tModel and service binding information.

The WSTK Client API is centred around the ServiceRegistryProxy class, which is an
equivalent to the UDDIProxy. One way of creating a new ServiceRegistryProxy is
shown in the following:

ServiceRegistryProxy proxy = new ServiceRegistryProxy
➥(inquiryURL, publishURL, userName, password);

As you can see, the initial code to use a ServiceRegistryProxy instance is little differ-
ent from that to use a UDDIProxy in that you must provide it with URLs for inquiry and
publication, credentials to access the registry, and so forth. However, after the proxy has
been initialized, you need essentially only deal with four Java types—service provider,
service definition, service implementation, and service interface.

The ServiceProvider class represents the business information in your UDDI registry
entry. This is a wrapper for the UDDI businessEntity information. You will build a
ServiceProvider object to represent your organization when publishing information, or
you will manipulate ServiceProvider objects when retrieving business information from
the registry.

932 Day 21

25 0672323842 CH21 3/20/02 9:35 AM Page 932

Web Service Registries and Message-Style Web Services 933

21

The ServiceDefinition class wraps the UDDI businessService structure and provides
a way to obtain the interface and location information for the service. The
ServiceImplementation wraps the UDDI bindingTemplate and allows you to retrieve
the endpoint information for a service. The ServiceInterface class represents the
UDDI tModel for the service. For both the ServiceImplementation and the
ServiceInterface, a WSDL filename can be passed to the constructor and all of the
manipulation of the WSDL document is done for you. This greatly simplifies the creation
of service information.

Retrieving and Using Service Information
So far, you have mainly considered the creation of your own business and service infor-
mation to be registered in the UDDI registry. However, you may also want to use other
peoples’ services within your application. To do this, you must search the registry and
use the information you retrieve.

Regardless of which registry API you use, you will follow the white/yellow/green page
model of searching. As an example, the ServiceRegistryProxy provides many finder
methods, similar to those on an EJB home interface. The finders allow you to specify
various facts to help find the required information, such as names, categories, ownership,
service definitions, and interface definitions. The information you provide to the finder
will depend on what you know already and what type of information you want to get
back. The finders will return ServiceProvider, ServiceDefinition, and
ServiceInterface objects either singly or in arrays. From these objects, you can find
out all you want to know about the service you have found.

The next question is what you do with the service information when you have it. You
will probably be retrieving information in one of three scenarios:

• You have an application that uses pre-defined Web Service interfaces. At runtime it
will use UDDI to retrieve services that implement that interface and choose the
most suitable implementation to use.

• Your application or component forms part of an application creation framework. It
will retrieve service information using UDDI and offer the choices to the applica-
tion builder (think of your typical Java IDE).

• Your application will retrieve service information and dynamically invoke the
methods it finds. In this case, the application has no fixed binding to any particular
service interface. This is the most complex form of interaction, requiring more cod-
ing to invoke the services dynamically and more intelligence to make the right
choice about the correct operations and parameters.

25 0672323842 CH21 3/20/02 9:36 AM Page 933

As time goes on, standards and tools should make the creation of UDDI-based applica-
tions easier. One such standard is the Java API for XML Registries (JAXR) being devel-
oped through the Java Community Process.

Using JAXR for Registry Access
The Java API for XML Registries (JAXR) is an attempt to provide a unified model of
access to XML-based information stored in registries and repositories. The intention is
that this will provide a standard API for such access to ease the development of applica-
tions that depend on this information.

934 Day 21

At the time of writing, JAXR was still in progress through the JCP. As with
any API still in development, some of the calls and mechanisms may change
as it matures. Please check the latest JAXR information at the Sun Java Web
site (java.sun.com).

Note

A Generic Approach
The IBM WSTK classes and code you saw in the previous section are specifically target-
ed at UDDI access. As you know, UDDI is not the only XML-based Web Service reg-
istry; the ebXML Registry and Repository also fills this role. In addition, there are vari-
ous other XML-based registries that are used in different e-commerce frameworks. JAXR
intends to provide a set of generic APIs that work on a generic registry information
model. Existing registries can then be mapped onto this generic framework, giving devel-
opers the ability to access information in different registries using the same API. This
should bring the level of consistency to XML-based registry access that JNDI and JDBC
have brought to directory services and databases, respectively.

The overall JAXR architecture is shown in Figure 21.2. The client will interact with the
JAXR Pluggable Provider layer that acts as a standard interface and rendezvous point.
Underneath the Pluggable Provider, a particular registry-specific provider will be used to
obtain information from a particular type of registry. This style of architecture has much
in common with those of JDBC and JNDI. In fact, it is anticipated that many JAXR
providers will, at least initially, be developed as bridges to existing registry providers, in
a similar style to the JDBC-ODBC bridge.

The interaction between the JAXR client and the registry service is performed by a set of
Java interfaces defined in the java.xml.registry package. To begin working with a reg-
istry using JAXR, you would use the Connection, RegistryService and potentially the
RegistryClient interfaces. Listing 21.2 shows some typical initialization code for an
interaction.

25 0672323842 CH21 3/20/02 9:36 AM Page 934

Web Service Registries and Message-Style Web Services 935

21

LISTING 21.2 Example JAXR Client Initialization Code (Based on Early JAXR Specification)

1: import javax.xml.registry.*;
2: ...
3: public class JAXRClient implements RegistryClient throws JAXRException
4: {
5: public void init(InitialContext ctxt)
6: {
7: ConnectionFactory factory =

➥ (ConnectionFactory)ctxt.lookup(“JAXRConnectionFactory”);
8:
9: // Define connection configuration properties
10: Properties props = new Properties();
11: props.put(“javax.xml.registry.factoryClass”,
12: “com.sun.xml.registry.ConnectionFactory”);
13: props.put(“javax.xml.registry.queryManagerURL”,
14: “http://java.sun.com/uddi/inquiry”);
15: props.put(“javax.xml.registry.lifeCycleManagerURL”,
16: “http://java.sun.com/uddi/publish”);
17:
18: Connection connection = factory.createConnection(props, this);
19:
20: Set credentials = new Set();
21: ...
22: connection.setCredentials(credentials);
23: connection.setLocale(locale);
24: connection.setSynchronous(false);
25:
26: RegistryService rs = connection.getRegistryService();
27: ...
28: }
29: ...
30: }

FIGURE 21.2
JAXR architecture.

J2EE Container

JAXR Pluggable Provider

JAXR Client

ebXML
Provider

UDDI
Provider

Other
Provider

ebXML
Registry

UDDI
Registry

Other
Registry

25 0672323842 CH21 3/20/02 9:36 AM Page 935

Obtaining a Connection is very much like any other J2EE resource. A factory is obtained
through JNDI, and a connection is created from the factory. As with the UDDI code ear-
lier, the URLs for inquiry and publication are provided when creating the connection
(lines 13–16). Authentication credentials are also supplied before the registry service is
used. As with UDDI, credentials will almost certainly be required to update information
in the registry and may even be required for access to information.

Responses to registry queries can be obtained synchronously or asynchronously. In this
case, the client will be using the asynchronous style of interaction with the JAXR
provider. Hence, it must implement the RegistryClient interface that allows the
provider to deliver information and errors to the client. Implementation of this callback
interface is not required for synchronous interaction because all information and errors
are returned directly from the JAXR calls made by the client.

Using JAXR to Store and Retrieve Service Information
JAXR defines its own information model onto which other information models (such as
UDDI or ebXML) can be mapped. The JAXR information model contains many familiar
interfaces, including the following:

• Organization Similar to a UDDI businessEntity

• Service Similar to the UDDI businessService and tModel, containing interface
and category information for a service

• ServiceBinding Similar to the UDDI bindingTemplate containing location
information for a service instance

• Concept Similar to UDDI categories, used for classifying organizations and
services

Collections of such interfaces are passed to and returned from JAXR query and manipu-
lation methods.

After the client has obtained a RegistryService reference, it can discover the capabili-
ties of the registry service. Capabilities can be generic or business-related. The capabili-
ties are defined in levels and there are currently two levels—0 and 1. Every JAXR
Provider must implement the level 0 capabilities. More advanced Providers will also
implement the level 1 capabilities. The capability interfaces are

• The BusinessLifeCycleManager interface allows you to create, update, and delete
Organizations, Services, ServiceBindings, and Concepts. Each method returns
a BulkResponse that contains a collection either of keys identifying individual reg-
istry entries or of exceptions indicating that a save or delete operation failed. This
is a level 0 capability.

936 Day 21

25 0672323842 CH21 3/20/02 9:36 AM Page 936

Web Service Registries and Message-Style Web Services 937

21

• The GenericLifeCycleManager allows you to save or delete any form of registry
entry. This is a level 1 capability.

• The BusinessQueryManager allows you to find organizations, services, or concepts
based on names, concepts, and binding information. The methods offered are very
similar to those described earlier for the IBM WSTK ServiceRegistryProxy. This
is a level 0 capability.

• The SQLQueryManager allows you to submit a SQL query that is executed against
the registry data. This treats interface types (for example, Organization) as if they
were database table names. This is a level 1 capability.

Because the principal registries for Web Services are the ebXML Registry and
Repository and the UDDI Registry, the JAXR specification defines bindings for UDDI
and ebXML. These bindings detail the mappings between the different registry informa-
tion models.

You have now seen how Web Service information can be stored and retrieved.

Using a Message-Based SOAP Interface
So far, you have examined Web Services largely from an RPC-oriented perspective. For
the rest of today, you will examine how message-based Web Services can be used under
J2EE.

Message-Style Versus RPC-style
To a large degree, there is little difference between the mechanics of message-style and
RPC-style Web Services. Essentially, a message-style Web Service uses a single opera-
tion with a single parameter. This single parameter is an XML document to be processed.
There is no reason why you could not define an RPC-style interface that takes a single
parameter that is an XML document. Under the covers, in SOAP-land, these interfaces
would look largely the same. However, there are some differences in application style:

• RPC services offer a related group of operations. There may be some implication
of retained state between operations on the same interface.

• Message services tend to work on document-centric interactions, such as a work-
flow in which each service accepts the document, changes or processes part of it,
and then passes it on.

There are pros and cons to both RPC-style services and message-style services. The
choice between them will largely depend on how your application works. This choice is
the same as between RMI interfaces and JMS messages in non-Web Service J2EE. As
with RMI and JMS in J2EE applications, you can mix and match RPC-style and
message-style Web Services as required.

25 0672323842 CH21 3/20/02 9:36 AM Page 937

Creating a Client
A messaging client must do two things:

• Create a message to send to the service

• Obtain a connection to the service, or some proxy for it, over which the message
can be sent

In terms of a SOAP messaging client, it will send an XML document, possibly with
some non-XML attachments. As a developer, you need an API through which to create
and populate the underlying SOAP message. A SOAP message has a fixed format, as
shown in Figure 21.3, so the API will need to reflect this.

As you can see, the overall message is packaged using MIME to delineate the XML part
of the message from the attachments. The XML part of the message is encapsulated in a
SOAP envelope. Within the SOAP envelope, there is a SOAP header that contains infor-
mation relating primarily to the transportation of the message and a SOAP body that
holds the principal payload of the message. Both the header and the body consist of
XML elements with content, attributes, and namespace information. Your chosen API
must allow you to access and populate the contents of a SOAP envelope.

938 Day 21

FIGURE 21.3
The contents of a
SOAP message.

Transport/MIME

SOAP Envelope

SOAP Header

Attachment

Attachment

SOAP Block

SOAP Block

...

SOAP Body

SOAP Block

SOAP Block

...

...

25 0672323842 CH21 3/20/02 9:36 AM Page 938

Web Service Registries and Message-Style Web Services 939

21

To send the message, you could create a direct connection to the target service.
Otherwise, you could pass it to an intermediary that will route the message to its eventu-
al destination. In both cases, you will need an address for the target service.

You will frequently require some form of reply to your message. The way this is sent
depends on the style of interaction. If you send directly to the service, the response could
be returned from the call. Otherwise, if the response is to arrive later, you will have to
supply your own endpoint information to the service for it to use as the return address for
the message. You will also need some mechanism to handle this response when it arrives.

Creating a Service
A message-based service has a single entry point to which messages are delivered.
Messages will be received by the service and processed according to their purpose. A
synchronous service will generate a response or acknowledgement during the processing
and then return this to the sender. An asynchronous service will delegate the message
processing to another thread of execution and then return from the call, allowing the
sender to proceed. An asynchronous service can send a response to the original sender at
a later time.

To receive messages, a service must listen on a named endpoint. In the case of direct,
synchronous services, the client will use this to send a message directly to the service.
For routed services, the routing system must deliver the message to the target service
when it arrives at its destination.

A service can potentially process a single type of message or it could process multiple
types. In the latter case, there must be some way for it to determine which type of mes-
sage has been received to process it correctly. One option is to apply a form of the
Command pattern where the message contains information about how it should be
processed. It is possible to put such information in the SOAP header, SOAP body, or in
an attachment. However, embedding the command in the SOAP body is generally the
best way.

Sending and Receiving SOAP Messages with
JAXM

The Java API for XML Messaging (JAXM) provides an API for the creation, manipula-
tion, and exchange of SOAP messages. Figure 21.4 shows the overall architecture of a
JAXM application.

25 0672323842 CH21 3/20/02 9:36 AM Page 939

In a full-blown JAXM application, the message sender connects to a JAXM Provider.
The JAXM Provider delivers additional services above and beyond the basic SOAP trans-
port, such as multihop routing and quality-of-service (QoS) guarantees. The sender cre-
ates a message and hands it over to the JAXM Provider. The Provider is then responsible
for delivering this to the receiver at the given address, possibly via multiple intermediate
nodes.

There are two example Providers that come with the JAXM reference implementation:

• A Provider based on the ebXML Transport, Routing and Packaging (TR&P)
specification—This provides for multi-hop routing and the manipulation of
ebXML information in the message, such as the conversation and CPA IDs.

• A Provider for the SOAP Routing Protocol (SOAPRP)—Again, this provides for
multihop routing and manipulation of SOAPRP-specific fields in the underlying
message header.

Because it uses the services of the Provider, a JAXM-based component, whether a sender
or receiver of messages, is termed a JAXM client. This nomenclature can make some
statements quite confusing, so the terms sender and receiver (or submitter and processor)
are used in this section.

940 Day 21

FIGURE 21.4
Overall architecture of
a JAXM application.

J2EE Container

JAXM
Client

JAXM
Runtime

J2EE Container

Provider Subsystem

JAXM
Client

Message
Router

Message
RouterMessage

RouterMessage
Router

Message
Router

JAXM
Runtime

25 0672323842 CH21 3/20/02 9:36 AM Page 940

Web Service Registries and Message-Style Web Services 941

21

The JAXM specification defines five styles of interaction that must be supported between
JAXM clients:

• Synchronous information query (response now)

• Asynchronous information query (response later)

• Synchronous updates (acknowledgement now)

• Asynchronous updates (acknowledgement later)

• Logging (no response or acknowledgement)

Full JAXM clients that use a Provider can support all of these models. Indeed, J2EE
components that do not use a provider can still send and receive messages using JAXM.
In this case, SOAP messages can be delivered directly in a point-to-point fashion. Even a
J2SE application can use JAXM to send (but not receive) SOAP messages. Such J2SE-
based JAXM clients are referred to as standalone clients.

JAXM and J2EE
JAXM is intended to bring message-based Web Services to J2EE and is scheduled to
form part of J2EE 1.4. This will allow J2EE components to send or receive SOAP-based
messages and act as message-based Web Service clients or servers.

Any J2EE component can be a JAXM client, although servlets and EJBs are the primary
focus. In the first release, a base servlet called JAXMServlet is provided on which mes-
sage receivers can be built. The JAXMServlet handles the SOAP message in its doPost
method and delivers a Java SOAPMessage object to the receiver. Two types of receiver
interface are defined—one for synchronous interaction and one for asynchronous.

Under J2EE, a JAXM client will obtain a suitable Provider through JNDI. Information
about the Provider and associated client endpoints will be provided as part of the J2EE
container configuration.

Configuring JAXM
JAXM can be installed under either Tomcat or the J2EE RI (or any other J2EE server).
Specific instructions are provided in the JAXM documentation (see jaxm-
1.0/docs/jaxm-on-j2ee.html and jaxm-1.0/docs/tomcat.html, respectively).
Although the specifics differ, the tasks that need to be done are as follows:

1. Copy the library jars provided with JAXM into a central location
(<J2EE_HOME>/lib/system or <CATALINA_HOME>/common/lib). This includes
jaxm.jar, log4j.jar, dom4j.jar, activation.jar, mail.jar, jndi.jar,
client.jar, crimson.jar, xalan.jar, and potentially provider.jar (out of
provider.war).

25 0672323842 CH21 3/20/02 9:36 AM Page 941

2. For J2EE, you will also need to put these on the J2EE_CLASSPATH in the
<J2EE_HOME>/bin/userconfig script.

3. For Tomcat, you will need to copy <JAXM-HOME>/jaxm/provider.war into
<CATALINA_HOME>/webapps.

4. Start (or restart) the server.

When creating JAXM clients, you will use servlets wrapped up as Web applications.
Under Tomcat, you can simply copy these WAR files into the <CATALINA_HOME>/webapps
directory and restart the server.

To deploy your Web applications under J2EE, you should add them to a J2EE application
and then deploy the application (you can use deploytool for this).

To ensure that your installation is correct, deploy the simple.war WAR from the JAXM
samples directory. You can then access the following URL (under Tomcat, change the
port number for J2EE) to run this simple application and see it confirm a sent and
received message:

http://localhost:8080/simple/index.html

Later, in “Using a JAXM Profile,” you examine how the sample JAXM Providers work.
This will require you to use the JAXM Provider Admin Tool. To enable this tool, deploy
the provideradmin.war file from <JAXM-HOME>/tools. Under J2EE, you will need to
add the j2ee user to this Web application as an authorized role.

To run the Provider Admin Tool, use a Web browser to access the URL http://local-
host:8080/provideradmin. You can log in using a username/password combination of
tomcat/tomcat under Tomcat and j2ee/j2ee under J2EE.

Sending Basic SOAP Messages
Probably the simplest way to use the JAXM SOAP functionality is to send a straightfor-
ward SOAP message. You can create a command-line Java application that acts as a
standalone JAXM client to create a SOAP message using the JAXM API and send it
directly to a SOAP server. Figure 21.5 shows the interaction between a standalone JAXM
client and a SOAP server.

942 Day 21

25 0672323842 CH21 3/20/02 9:36 AM Page 942

Web Service Registries and Message-Style Web Services 943

21

The code for such a standalone JAXM client application is shown in Listing 21.3.

LISTING 21.3 JAXMOrderServiceClient.java—A Standalone JAXM Client

1: import java.util.Iterator;
2:
3: import webservices.LineItem;
4: import webservices.Order;
5: import webservices.Receipt;
6:
7: import javax.xml.soap.*;
8:
9: import javax.xml.messaging.URLEndpoint;
10:
11: public class JAXMOrderServiceClient
12: {
13: public static void main(String [] args)
14: {
15:
16: try
17: {
18: MessageFactory messageFactory = MessageFactory.newInstance();
19: SOAPMessage message = messageFactory.createMessage();
20:
21: SOAPPart part = message.getSOAPPart();
22: SOAPEnvelope envelope = part.getEnvelope();
23:
24: Order order = new Order(“Bargain Buys”,”Strangeways, Manchester”);
25: order.addLineItem(new LineItem(“Levi 501”, 200));

FIGURE 21.5
A standalone JAXM
client sending a mes-
sage to a SOAP ser-
vice.

Standalone
JAXM
Client

JAXM
Runtime

Server

SOAP
Service

25 0672323842 CH21 3/20/02 9:36 AM Page 943

26: order.addLineItem(new LineItem(“Wibble 1000 mp3 player”, 33));
27: order.addLineItem(new LineItem(“Sony Playstation”, 10));
28:
29: order.marshal(envelope);
30:
31: SOAPConnectionFactory connectionFactory =

➥ SOAPConnectionFactory.newInstance();
32: SOAPConnection connection = connectionFactory.createConnection();
33:
34: URLEndpoint endPoint =

➥ new URLEndpoint(“http://localhost:8080/JAXMOrderService/order”);
35:
36: SOAPMessage msg = connection.call(message, endPoint);
37: SOAPPart p = msg.getSOAPPart();
38: SOAPEnvelope env = p.getEnvelope();
39: SOAPBody body = env.getBody();
40:
41: Receipt receipt = new Receipt();
42:
43: Name receiptName = envelope.createName(“receipt”,
44: “acme”,
45: “http://acme.com/commerce”);
46:
47: Iterator iterator = body.getChildElements(receiptName);
48:
49: if (iterator.hasNext())
50: {
51: SOAPBodyElement element = (SOAPBodyElement)iterator.next();
52: receipt.unmarshal(element, env);
53:
54: System.out.println(“Got receipt for order\n\tName:\t\t” +

➥ receipt.getName() +
55: “\n\tAddress:\t” + receipt.getAddress() +
56: “\n\tNumber of items:\t” +

➥ receipt.getNumItems() +
57: “\n\tCost:\t\t” + receipt.getCost());
58: }
59: else
60: {
61: throw new SOAPException(

➥ “receipt SOAPElement is missing from SOAP body”);
62: }
63: }
64: catch (SOAPException ex)
65: {
66: System.err.println(“Exception: “ + ex);
67: }
68: }
69: }

944 Day 21

LISTING 21.3 Continued

25 0672323842 CH21 3/20/02 9:36 AM Page 944

Web Service Registries and Message-Style Web Services 945

21

The first thing to do is create the SOAP message. Lines 18 and 19 of Listing 21.3 show
how a javax.xml.soap.SOAPMessage is created from a
javax.xml.soap.MessageFactory. In this case, a generic SOAP message is required so
the factory is created simply through the newInstance method. Later, you will obtain a
message factory for a specific provider profile.

You can now populate the SOAP message with your information. As shown previously in
Figure 21.3, a SOAP message consists of a SOAP part and a set of optional attachments.
As a result, you need to retrieve the SOAP part of the message to populate it using the
getSOAPPart method (line 21). You can then retrieve the SOAP envelope from the SOAP
part with the getEnvelope method (line 22). The parts of a SOAP message correspond-
ing to the JAXM SOAPPart are shown in Figure 21.6.

FIGURE 21.6
The parts of a SOAP
message contained in a
JAXM SOAPPart.

Transport/MIME

SOAP Envelope

SOAP Block

SOAP Header

SOAP Block

•
•
•

SOAP Block

SOAP Body

SOAP Block

•
•
•

•
•
•

Attachment

Attachment

Dotted line
shows extent

of JAXM
SOAPPart

The SOAP envelope will be populated with the message data. Lines 24–27 show the cre-
ation and population of a domain object that represents an order. It contains a name,
address, and multiple line items. Each line item contains a product ID and a quantity.
The marshal method on line 29 asks the Order object to populate the given SOAP enve-
lope. This marshalling code will be examined soon, but for now, concentrate on the send-
ing of the message.

25 0672323842 CH21 3/20/02 9:36 AM Page 945

After the message is ready, the client needs a javax.xml.soap.SOAPConnection to send
the message. This is created from a javax.xml.soap.SOAPConnectionFactory, as shown
in lines 31 and 32. Because the client application is not running inside a J2EE container,
the connection factory is created simply through the newInstance method. Inside J2EE
containers, connection factories can be obtained through JNDI. As with all such resources,
if your client is long-running, you should close and release the connection when you are
no longer using it (this is not done here because it will be done on application exit).

Because this is a direct SOAP client (that is, it does not use a Provider) you must specify
the address of the target server using a javax.xml.messaging.URLEndpoint. The end-
point specified in line 34 is the URL of a SOAP server (this happens to be implemented
using JAXM, as you will see later, but this is not essential, the server could equally well
be implemented in Perl).

You now have the two things you need—a message and somewhere to send it—so you
can now send the message (line 36).

Because the service you are calling is a synchronous, request/response service, you will
receive a SOAP message as a response. In application terms, this message contains an
XML document containing receipt information for the order you have just submitted. To
process this receipt, you need to retrieve the XML document from the SOAP message.
This XML document will be contained in the SOAP body, so you must retrieve the body
from within the SOAP envelope (lines 37–39).

After it has retrieved the SOAP body, the application creates a Receipt domain object
(line 41) that will represent this information. This object can be passed an XML
<receipt> element (containing sub-elements for name, address, number of items, and
cost) that it will unmarshal and use to populate its data fields. Consequently, the applica-
tion must find the <receipt> element within the SOAP body. To do this, it creates a
javax.xml.soap.Name based on the SOAP envelope (lines 43–45). This name represents
the qualified name (including namespace) of the element to be found—in this case,
(http://acme.com/commerce)receipt. This is then passed to the getChildElements
method of the javax.xml.soap.SOAPBody (line 47) to return a java.util.Iterator that
can be used to find all such child elements (there should be only one).

The javax.xml.soap.SOAPBodyElement representing the XML <receipt> element can
then be retrieved and passed to the Receipt’s unmarshal method that will populate the
Receipt object from the XML document (lines 51 and 52). The information in the
receipt is then printed out (lines 54–57).

Note that during all of this, javax.xml.soap.SOAPExceptions may be thrown by the
various methods and constructors used. Please refer to the JAXM API documentation for
specific details.

946 Day 21

25 0672323842 CH21 3/20/02 9:36 AM Page 946

Web Service Registries and Message-Style Web Services 947

21

Running the Simple Client
To run the client, you will need to deploy the server. Under Tomcat, this is as simple as
copying the server WAR file into the /webapps directory. The server WAR file
(JAXMOrderService.war) is provided in Day 21’s examples/JAXMDirect/OrderServer
directory on the CD-ROM.

To run the standalone client, you will need to add to your CLASSPATH all the
JAR files you placed into (CATALINA_HOME)/common/lib earlier.

Note

When you have deployed the server WAR file, start (or re-start) Tomcat and then run the
client:

prompt> java JAXMOrderServiceClient
Got receipt for order

Name: Bargain Buys
Address: Strangeways, Manchester
Number of items: 243
Cost: 12147.57

As you can see, this submits the order as shown in Listing 21.3 to the server and prints
out the receipt.

Wow. That seems like quite a lot of work to send a simple message. However, you
should now have a good grasp of how it all fits together, which makes the rest of the
JAXM API easier to understand.

Populating the Message
So far, you have seen how a message can be created and sent, but the client application
did not give details on how a message is populated. As indicated earlier, the JAXM API
reflects the SOAP containment hierarchy in that you will obtain a SOAPPart from the
SOAPMessage and then a SOAPEnvelope from the SOAPPart. Within the SOAPEnvelope is a
SOAPBody and a SOAPHeader. The JAXM API provides a DOM-like mechanism for popu-
lating and examining the contents of the SOAP body and header.

To examine how this is done, consider the code for the Order class shown later in Listing
21.4. The class is essentially a JavaBean that contains a name, address, and a Vector to
hold the line items. To be encapsulated in the SOAP message, the order should be con-
verted into XML similar to the following:

<acme:order xmlns:acme=”http://acme.com/commerce”>
<acme:name>Fred Bloggs</acme:name>
<acme:address>Bury New Road, Manchester</acme:address>
<acme:items>

25 0672323842 CH21 3/20/02 9:36 AM Page 947

<acme:item>
<acme:productId>...</acme:productId>
<acme:quantity>...</acme:quantity>

</acme:item>
...

</acme:items>
</acme:order>

Recall from the application code in Listing 21.3 that the marshal method is passed a
SOAP envelope to populate (line 29 of Listing 21.3 and line 16 of Listing 21.4). The
SOAP body is retrieved from the envelope, and a new SOAPBodyElement is created with
the addBodyElement method to represent the top level XML <order> element (line 24).
Note again that qualified names are required when creating new elements (lines 21–23).

Elements to represent the name and address are created below the XML <order> element
(lines 26–36) by using the SOAPBodyElement’s addChildElement method. These new ele-
ments are of type SOAPElement. The text for the elements is added using the
addTextNode method on SOAPElement.

To generate the line items in the XML document, an XML <items> element is created in
the SOAPBodyElement, and this is then populated by iterating through the Vector of
LineItem objects that are asked to marshal themselves underneath the XML <items> ele-
ment (lines 38–49).

LISTING 21.4 Order.java Showing the Marshalling and Unmarshalling of XML Data
from a SOAP Body

1: package webservices;
2:
3: import java.util.*;
4:
5: import javax.xml.soap.*;
6:
7: public class Order
8: {
9: private Collection _lineItems = new Vector();
10: private String _name = “”;
11: private String _address = “”;
12:
13: // NORMAL BEAN METHODS AND CONSTRUCTOR REMOVED FOR CLARITY
14: ...
15:
16: public void marshal(SOAPEnvelope envelope) throws SOAPException
17: {
18: SOAPBody body = envelope.getBody();
19:

948 Day 21

25 0672323842 CH21 3/20/02 9:36 AM Page 948

Web Service Registries and Message-Style Web Services 949

21

20: // Create a new Order element under the body
21: Name orderName = envelope.createName(“order”,
22: “acme”,
23: “http://acme.com/commerce”);
24: SOAPBodyElement order = body.addBodyElement(orderName);
25:
26: Name nameName = envelope.createName(“name”,
27: “acme”,
28: “http://acme.com/commerce”);
29: SOAPElement name = order.addChildElement(nameName);
30: name.addTextNode(name);
31:
32: Name addressName = envelope.createName(“address”,
33: “acme”,
34: “http://acme.com/commerce”);
35: SOAPElement address = order.addChildElement(addressName);
36: address.addTextNode(address);
37:
38: Name itemsName = envelope.createName(“items”,
39: “acme”,
40: “http://acme.com/commerce”);
41: SOAPElement items = order.addChildElement(itemsName);
42:
43: for (Iterator iterator = _lineItems.iterator();
44: iterator.hasNext();)
45: {
46: LineItem item = (LineItem)iterator.next();
47:
48: item.marshal(items, envelope);
49: }
50: }
51:
52: public void unmarshal(SOAPBodyElement order, SOAPEnvelope envelope)

➥ throws SOAPException
53: {
54: Name nameName = envelope.createName(“name”,
55: “acme”,
56: “http://acme.com/commerce”);
57: Name addressName = envelope.createName(“address”,
58: “acme”,
59: “http://acme.com/commerce”);
60: Name itemsName = envelope.createName(“items”,
61: “acme”,
62: “http://acme.com/commerce”);
63:
64: Iterator iterator = order.getChildElements(nameName);
65:

LISTING 21.4 Continued

25 0672323842 CH21 3/20/02 9:36 AM Page 949

66: if (iterator.hasNext())
67: {
68: SOAPElement element = (SOAPElement)iterator.next();
69: _name = element.getValue();
70: }
71: else
72: {
73: throw new SOAPException(“order SOAPElement is missing name”);
74: }
75:
76: iterator = order.getChildElements(addressName);
77:
78: if (iterator.hasNext())
79: {
80: SOAPElement element = (SOAPElement)iterator.next();
81: _address = element.getValue();
82: }
83: else
84: {
85: throw new SOAPException(“order SOAPElement is missing address”);
86: }
87:
88: iterator = order.getChildElements(itemsName);
89:
90: if (iterator.hasNext())
91: {
92: SOAPElement element = (SOAPElement)iterator.next();
93:
94: iterator = element.getChildElements();
95:
96: while (iterator.hasNext())
97: {
98: SOAPElement elem = (SOAPElement)iterator.next();
99:
100: LineItem item = new LineItem();
101:
102: item.unmarshal(elem, envelope);
103:
104: addLineItem(item);
105: }
106: }
107: else
108: {
109: throw new SOAPException(“order SOAPElement is missing items”);
110: }
111: }
112: }

950 Day 21

LISTING 21.4 Continued

25 0672323842 CH21 3/20/02 9:36 AM Page 950

Web Service Registries and Message-Style Web Services 951

21

The unmarshal method (line 52) used by the server contains the reverse code from the
marshal method. The unmarshal method is passed a SOAPBodyElement representing an
XML <order> element. The getChildElements method can then be used to retrieve the
XML <name>, <address>, and <items> elements in turn. The method returns an
Iterator that can be used to retrieve the SOAPElement itself (as shown in lines 66–68).
The text contents of the SOAPElement can be retrieved with the getValue method (line
69). As each line item element is retrieved, it is passed to an instance of the LineItem
class to be unmarshalled (94–105).

The marshalling and unmarshalling code for the Receipt and LineItem classes is very
similar.

Although this is a perfectly adequate way of populating a SOAP message, it is somewhat
unwieldy, especially if you already have the information as a Java object or DOM
instance. Hopefully, simpler ways of populating JAXM messages will emerge over time,
which may include use of the Java API for XML Data Binding (JAXB).

Headers and Attachments
As well as XML information in the SOAP body, JAMX allows you to add and retrieve
header information and attachments.

The SOAPHeader can be obtained from the SOAPEnvelope with the getHeader method. If
you are creating a message, you can populate the header using the addHeaderElement
method that returns a SOAPHeaderElement. You can then add text or attributes to this
header element, as shown in the following:

Name txName = envelope.createName(“TransactionId”, “acme”,
“http://acme.com/transactions”);

SOAPHeaderElement headerElement = header.addHeaderElement(txName);
headerElement.addTextNode(“78d2892ea8af625323c7”);

There are also specific methods for associating a particular SOAP actor or the SOAP
mustUnderstand attribute to a header element.

When receiving a message, an Iterator that iterates over the header elements can be
retrieved with the examineHeaderElements method.

Additionally, you may want to add attachments to your SOAP messages by using
SOAPMessage’s addAttachmentPart method. SOAPMessage also has a createAttachment
method that allows you to create an AttachmentPart object to attach to a message.

You can provide the data for your attachment directly or through a content handler (part
of the JavaBeans Activation Framework—JAF). These attachments can be any form
of data, so the key thing is to set the appropriate MIME type. If providing the data
directly, you must specify the MIME type when creating the attachment. When using a
content handler, this can supply the correct MIME type to the AttachmentPart object.

25 0672323842 CH21 3/20/02 9:36 AM Page 951

The code required to create an attachment from an image at a given URL is shown in the
following code:

SOAPMessage message = ...
...
URL url = new URL(“http://acme.com/acme_logo.jpg”);
AttachmentPart attachment = message.createAttachmentPart(new DataHandler(url));
message.addAttachmentPart(attachment);

Receiving a SOAP Message Using JAXM
The SOAP service used by the standalone client you ran previously is implemented using
JAXM. The service takes the form of a servlet that is a JAXM client. The servlet runs
inside a servlet container and interacts with JAXM, as shown in Figure 21.7. The servlet
consumes the SOAP message from the client containing the order, processes it, and
returns a SOAP message containing a receipt.

952 Day 21

FIGURE 21.7
A JAXM client acting
as a SOAP service.

Standalone
JAXM
Client

JAXM
Runtime

J2EE Container

JAXM
Client

SOAP
Router

JAXM
Runtime

To implement a simple JAXM client is reasonably straightforward. The code for the ser-
vice used is shown in Listing 21.5. The first thing to note is that the JAXM client imple-
ments the javax.xml.messaging.ReqRespListener interface (line 8). This interface
defines a single method—onMessage—that takes a single SOAPMessage as a parameter
and returns a SOAPMessage as a parameter (line 10). If a JAXM client intends to consume
SOAP messages, it must implement either ReqRespListener or OnewayListener, which
defines the same onMessage method but with no return value.

25 0672323842 CH21 3/20/02 9:36 AM Page 952

Web Service Registries and Message-Style Web Services 953

21

LISTING 21.5 JAXMOrderServer.java—A Simple JAXM Client Providing a SOAP Order
Service

1: package webservices;
2:
3: import java.util.Iterator;
4: import javax.xml.soap.*;
5: import javax.xml.messaging.JAXMServlet;
6: import javax.xml.messaging.ReqRespListener;
7:
8: public class JAXMOrderServer extends JAXMServlet implements ReqRespListener
9: {
10: public SOAPMessage onMessage(SOAPMessage message)
11: {
12: try
13: {
14: SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();
15: SOAPBody body = envelope.getBody();
16:
17: Name orderName = envelope.createName(“order”,
18: “acme”,
19: “http://acme.com/commerce”);
20:
21: Iterator iterator = body.getChildElements(orderName);
22:
23: Order order = new Order();
24:
25: if (iterator.hasNext())
26: {
27: SOAPBodyElement element = (SOAPBodyElement)iterator.next();
28: order.unmarshal(element, envelope);
29: }
30: else
31: {
32: throw new SOAPException(

➥ “order SOAPElement is missing from SOAP body”);
33: }
34:
35: System.out.println(“Got order from “ + order.getName());
36:
37: Receipt receipt = new Receipt(order.getName(),

➥ order.getAddress(),
38: order.getNumItems(), calculateCost(order));
39:
40: MessageFactory fac = MessageFactory.newInstance();
41:
42: SOAPMessage msg = fac.createMessage();
43:

25 0672323842 CH21 3/20/02 9:36 AM Page 953

44: SOAPEnvelope env = msg.getSOAPPart().getEnvelope();
45:
46: Name receiptName = envelope.createName(“receipt”,
47: “acme”,
48: “http://acme.com/commerce”);
49:
50: SOAPBodyElement rcpt =

➥ env.getBody().addBodyElement(receiptName);
51:
52: receipt.marshal(rcpt, env);
53:
54: return msg;
55: }
56: catch(Exception ex)
57: {
58: System.err.println(

➥ “Error in processing or replying to a message: “ + ex);
59: return null;
60: }
61: }
62:
63: private double calculateCost(Order order)
64: {
65: // Sale now on - everything for $49.99
66: return order.getNumItems() * 49.99;
67: }
68: }

You will know from yesterday that HTTP-based SOAP messages are delivered to the
doPost method of a servlet. The question then arises of where this SOAP message is
delivered when the submitter sends it. The answer lies in the fact that the
JAXMOrderServer extends javax.xml.messaging.JAXMServlet. The doPost method of
JAMXServlet processes the inbound SOAP message and calls the onMessage method
defined by its subclass (the signature of the method called depends on which interface
the subclass implements). The JAXMServlet also takes responsibility for converting any
returned SOAPMessage into an appropriate HTTP/XML document and sending this back
to the caller.

The code that processes the message should be fairly familiar from the standalone client.
The servlet extracts the XML <order> element from the received SOAP message and
then passes it to a Java Order object to unmarshal it. Based on the contents of this order,
the servlet generates a Receipt object to pass back. The servlet creates a SOAPMessage
and recovers its SOAPBody into which the receipt is marshalled.

954 Day 21

LISTING 21.5 Continued

25 0672323842 CH21 3/20/02 9:36 AM Page 954

Web Service Registries and Message-Style Web Services 955

21

To compile and deploy your JAXM service, you will need to do the following:

1. Include jaxm.jar on your CLASSPATH when compiling.

2. Create the correct directory structure for a Web application, including a WEB-INF
directory and a web.xml file (see Day 12, “Servlets,” for more detail). The web.xml
file should define a servlet mapping for the URL by which your client expects to
access the service. Place your class files under the WEB-INF/classes directory.

3. JAR the Web application into a WAR file and copy the WAR into
(CATALINA_HOME)/webapps. Start (or restart) Tomcat and then run the client as
before.

Note that the example used in this section has a standalone client submitting the order. It
is equally possible for the submitter to be a JAXM client itself. This scenario is shown in
Figure 21.8.

FIGURE 21.8
A JAXM client acting
as a SOAP client.

J2EE Container

JAXM
Client

JAXM
Runtime

J2EE Container

JAXM
Client

SOAP
Router

JAXM
Runtime

Using a JAXM Profile
As noted earlier, synchronous, point-to-point message exchange is only one of the
intended modes of operation for a JAXM application. To conclude this three-week tour
of J2EE past, present, and future, this final section looks briefly at how you use a JAXM
Provider. Recall that a Provider delivers extra messaging capabilities, such as multihop
routing and quality-of-service guarantees.

The order submission application can be updated to use a Provider. The updated
exchange is described in the following:

25 0672323842 CH21 3/20/02 9:36 AM Page 955

• The processor JAXM client implements OnewayListener through which it will
receive orders to process.

• The submitter JAXM client will send a message to the processor and then continue
processing without requiring a receipt to be returned.

• The processor will receive a message and then process it. In reality, this would
probably involve spawning a thread to process the message while the onMessage
method returns.

If you wanted to send a receipt, the submitter would also have to implement
OnewayListener. The processor could then send the receipt back to the submitter and the
submitter would receive the receipt through its own onMessage method. The full
exchange of order and receipt is shown in Figure 21.9. Because the sending of a receipt
is the reverse of sending the order, we will just examine how to pass messages in one
direction.

956 Day 21

FIGURE 21.9
An asynchronous
exchange between two
JAXM clients.

<<servlet>>
Submitter

<<servlet>>
Processor

<<Thread>>
Worker

Send request message

Return no data

Send response message

Pass in data

Create

Return result

Process
request

Do other
work

Because the application logic of the JAXM servlets is essentially the same (the creation
and consumption of orders), we will concentrate on describing code that is different.

The updated application consists of an order submitter (SubmittingServlet.java) and
an order processor (ProcessingServlet.java). The classes involved are available under
the JAXMProvider directory in the Day 21 examples code on the CD-ROM.

The JAXM Provider requires additional configuration across several files and
tools, which can be tricky to get right. You should ensure that you are fully
comfortable with the concepts around the provider before making the
changes required to deploy a provider-based JAXM client.

Caution

25 0672323842 CH21 3/20/02 9:36 AM Page 956

Web Service Registries and Message-Style Web Services 957

21

Sending a Message Using a JAXM Profile
The first thing that the submitter must do if it is to use a Provider is to get a connection
to the Provider. This is done in the servlet’s init method, as shown in Listing 21.6 (lines
27–41). A Provider can also be configured in the servlet’s deployment information and
obtained using JNDI.

LISTING 21.6 SubmittingServlet.java—A JAXM Client That Uses a Provider

1: package soaprp.submitter;
2:
3: import java.net.*;
4: import java.io.*;
5:
6: import javax.servlet.http.*;
7: import javax.servlet.*;
8:
9: import javax.xml.messaging.*;
10: import javax.xml.soap.*;
11:
12: import javax.activation.*;
13: import com.sun.xml.messaging.soaprp.*;
14:
15: public class SubmittingServlet extends HttpServlet
16: {
17: private String submitter =”http://www.acme.com/orderprocessor”;
18: private String processor = “http://www.acme.com/orderprocessor”;
19:
20: private ProviderConnectionFactory cFactory;
21: private ProviderConnection connection;
22: private MessageFactory mFactory;
23:
24: private static final String providerURI =
25: “http://java.sun.com/xml/jaxm/provider”;
26:
27: public void init(ServletConfig config) throws ServletException
28: {
29: super.init(config);
30:
31: try
32: {
33: cFactory = ProviderConnectionFactory.newInstance();
34: connection = cFactory.createConnection();
35: }
36: catch (Exception ex)
37: {
38: System.err.println(“Unable to open connection to the provider” +
39: ex.getMessage());
40: }

25 0672323842 CH21 3/20/02 9:36 AM Page 957

41: }
42:
43: public void doGet(HttpServletRequest request,
44: HttpServletResponse response) throws ServletException
45: {
46: try
47: {
48: if (mFactory == null)
49: {
50: ProviderMetaData metaData = connection.getMetaData();
51: String[] profiles = metaData.getSupportedProfiles();
52: String profile = null;
53:
54: for (int i=0; i < profiles.length; i++)
55: {
56: if (profiles[i].equals(“soaprp”))
57: {
58: profile = profiles[i];
59: break;
60: }
61: }
62: mFactory = connection.createMessageFactory(profile);
63: }
64:
65: SOAPRPMessageImpl message =
66: (SOAPRPMessageImpl)mFactory.createMessage();
67:
68: message.setFrom(new Endpoint(submitter));
69: message.setTo(new Endpoint(processor));
70:
71: String order = “http://localhost:8080/jaxm-soaprp-order/orders/” +
72: “order1.xml”;
73: URL orderDocument = new URL(order);
74: DataHandler dh = new DataHandler(orderDocument);
75:
76: AttachmentPart attachment = message.createAttachmentPart(dh);
77: attachment.setContentType(“text/xml”);
78: message.addAttachmentPart(attachment);
79:
80: System.out.println(“SubmittingServlet: doGet: Sending message”);
81:
82: connection.send(message);
83:
84: System.out.println(“SubmittingServlet: doGet: Sent message”);
85:
86: PrintWriter writer = response.getWriter();
87: writer.println(“<html><body>Looking good...</body></html>”);

958 Day 21

LISTING 21.6 Continued

25 0672323842 CH21 3/20/02 9:36 AM Page 958

Web Service Registries and Message-Style Web Services 959

21

88: writer.flush();
89: writer.close();
90: }
91: catch (Exception ex)
92: {
93: System.err.println(“SubmittingServlet: doGet: “ + ex.getMessage());
94: }
95: }
96: }

The doGet method handles the submit request (line 43) as follows:

• Obtain a message factory for your chosen profile. The code (lines 48–63) looks
through the profiles available and selects the SOAP routing protocol—soaprp.

• Create a SOAPMessage representing a fixed order to send. This takes the form of a
SOAPRPMessageImpl, which is a concrete form of SOAPMessage.

• Populate and send the message (lines 68–82). In this case, for simplicity, a pre-
built order, order1.xml, is loaded into an attachment of this message. Because this
is a routed SOAP message, you must set the source and destination addresses using
two endpoint URIs that are discussed later. If you were using the ebXML profile,
you could set ebXML-specific message fields, such as the CPAid, and the
sender/receiver parties. Note also that no response is expected from the message
processor.

• Displaying an HTML page to the user stating that the order has been sent (line 87).

LISTING 21.6 Continued

Do not try to obtain a message factory in the servlet’s init because this can
hang the servlet engine.

Note

Receiving a Message Using a JAXM Profile
The submitter sets the destination address on the SOAPRP message in the form of end-
points. The processor is registered with the SOAPRP Provider under the URI
http://www.acme.com/orderprocessor. The Provider must map this address to an actu-
al servlet URL to deliver messages to this address. This mapping information is con-
tained in an XML file—client.xml—that forms part of each JAXM client’s Web appli-
cation and is stored in the WEB-INF/classes directory.

25 0672323842 CH21 3/20/02 9:36 AM Page 959

To use the Provider, you must also configure router mappings for the endpoints. These
mappings indicate to which router JAXM should pass messages when they are sent to the
processor URI. To configure the provider under Tomcat, point your Web browser at the
URL http://localhost:8080/provideradmin/index.jsp. Here you will be able to
configure the SOAPRP mappings for HTTP-based JAXM clients by expanding the menu
on the left side as follows: JAXM Provider, Profiles, SOAPRP, HTTP. You can now
select Create New Endpoint Mapping from the Available Actions drop-down list box and
set up the following router mapping:

URI: http://www.acme.com/orderprocessor
URL: http://localhost:8080/jaxm-provider/receiver/soaprp

This mapping points to the message receiver for SOAPRP messages (a servlet located at
/provider/receiver/soaprp), which is part of the SOAPRP Provider. This message
receiver acts as the local router for such messages. When the client servlet is initialized
and creates a new connection, its endpoint-to-URL mapping is registered with the
SOAPRP Provider. The Provider builds a routing table based on all of the registered end-
points. This routing table is used to route all JAXM-based SOAPRP services that arrive
at the local host. When a message arrives at the message receiver, the message receiver
consults this routing table to dispatch the message. If this were a full-blown application
and deployment, this SOAPRP Provider may figure out that the message is not for a
local service and so forward it on to the next router. Alternatively, the endpoint mapping
for a particular URI can cause a locally-sent message to be delivered to a different router
(possibly an “edge” router for this organization).

The order processor, shown in Listing 21.7, implements the OnewayListener interface. The
order processor obtains a Provider connection, waits for a message and processes it when it
arrives. In this simple case, the processing just consists of logging the message to standard
output. As you can see, there are very few requirements on JAXM message recipients.

LISTING 21.7 ProcessingServlet.java—A JAXM Client That Receives Messages from a
Provider

1: package soaprp.processor;
2:
3: import javax.xml.messaging.*;
4: import javax.xml.soap.*;
5: import javax.servlet.*;
6: import javax.servlet.http.*;
7: import com.sun.xml.messaging.soaprp.*;
8:
9: public class ProcessingServlet extends JAXMServlet
10: implements OnewayListener
11: {

960 Day 21

25 0672323842 CH21 3/20/02 9:36 AM Page 960

Web Service Registries and Message-Style Web Services 961

21

12: private ProviderConnectionFactory factory;
13: private ProviderConnection connection;
14: private static final String providerURI =
15: “http://java.sun.com/xml/jaxm/provider”;
16:
17: public void init(ServletConfig servletConfig) throws ServletException
18: {
19: super.init(servletConfig);
20:
21: try
22: {
23: factory = ProviderConnectionFactory.newInstance();
24: connection = factory.createConnection();
25: setMessageFactory(new SOAPRPMessageFactoryImpl());
26: }
27: catch (Exception ex)
28: {
29: throw new ServletException(“ProcessingServlet: init: “ +
30: ex.getMessage());
31: }
32: }
33:
34: public void onMessage(SOAPMessage message)
35: {
36: System.out.println(“ProcessingServlet: onMessage: Received message:”);
37: try
38: {
39: message.saveChanges();
40: // Just log the message for now...
41: message.writeTo(System.out);
42: }
43: catch(Exception ex)
44: {
45: System.err.println(“ProcessingServlet: onMessage: “ +
ex.getMessage());
46: }
47: }
48: }

LISTING 21.7 Continued

Should you decide to try out the JAXM Provider-based code shown here
(and provided on the CD-ROM), you may find that on early versions of the
reference implementation, the initial message gets “stuck” and is not deliv-
ered to the order processor. If this happens, try sending another message
(just use the browser Back button and click the hyperlink again), which has
the effect of flushing out the initial message.

Tip

25 0672323842 CH21 3/20/02 9:36 AM Page 961

That is a submitter and processor for JAXM using a Provider. The classes and Web appli-
cations are quite similar in many respects for both submitter and processor because they
are both essentially just clients of the JAXM provider taking on the alternate roles of
client and server in this particular case.

Summary
Today, you have seen how registries play a vital role in allowing Web Service clients to
locate and use Web Services. UDDI provides a basic interface for such interactions, but
JAXR provides a higher-level interface that makes interaction easier and also allows you
to interact with different types of XML-based registry.

You sent SOAP messages between a JAXM client and server. You then improved this
simple exchange by using a JAXM Provider that can deliver multihop routing and other
value-added services.

Q&A
Review today’s material by taking this quiz.

Q Why are different categories of information required in a UDDI registry?

A When you come to search for Web Services, you may know only certain things
about them, such as the name of the company that offers the service or the type of
interface you expect from the service. By providing business (white pages), catego-
ry (yellow pages), and technical (green pages) information, UDDI provides a lot of
flexibility in the way that you can search for Web Services.

Q Do you have to use a JAXM Provider to take advantage of all the different
types of interaction between JAXM clients?

A No. The use of a Provider adds robustness and extra functionality but is not essen-
tial as long as endpoints are defined for both parties in the interaction. All of the
following JAXM interactions can be performed without the use of a JAXM
Provider:

• Synchronous information query (response now)

• Asynchronous information query (response later)

• Synchronous updates (acknowledgement now)

• Asynchronous updated (acknowledgement later)

• Logging (no response or acknowledgement)

962 Day 21

25 0672323842 CH21 3/20/02 9:36 AM Page 962

Web Service Registries and Message-Style Web Services 963

21

Q Why might you use IBM’s WSTK Client API to access registry information in
preference to UDDI4J?

A The WSTK Client API provides a higher-level interface to UDDI and WSDL. For
example, the developer can use the WSTK Client API to decompose WSDL docu-
ments into the equivalent UDDI objects rather than having to perform such low-
level manipulation themselves. As such, it is easier to work with XML-based reg-
istry information using the WSTK Client API than it is through lower-level APIs
such as UDDI4J and WSDL4J.

Q What does it mean to be a JAXM client?

A A JAXM client is any J2EE component or J2SE application that uses the JAXM
API to send or receive SOAP messages. A full JAXM client will use a Provider to
send messages and will register with a Provider to receive messages.

Exercises
You have covered many topics today. One of the most common tasks that you will want
to perform is to send XML documents as SOAP messages.

1. Create a JAXM client that accepts a SOAP message representing a new customer
for the Job Agency and returns a response containing an assigned login. Generate
your own string for the assigned login; there is no need to integrate this client with
the agency EJBs you created earlier.

The expected XML message in the SOAP body should be as follows:
<acme:customer xmlns:acme=”http://acme.com/commerce”>
<acme:name>Fred Bloggs</acme:name>
<acme:email>fred@bloggs.org</acme:email>
<acme:address>
<acme:addressLine>Bury Old Road</acme:addressLine>
<acme:addressLine>Manchester</acme:addressLine>
<acme:addressLine>M25 7ZZ</acme:addressLine>

</acme:address>
</acme:customer>

The generated XML response body should look like the following:
<acme:login xmlns:acme=”http://acme.com/commerce”>
Fred Bloggs1234

</acme:login>

An example solution is available under the JobService directory in the Day 21
exercise code on the CD-ROM.

25 0672323842 CH21 3/20/02 9:36 AM Page 963

2. Create a JAXM client servlet that submits a new customer to the service you creat-
ed in step 1. This should generate a SOAP message containing the customer infor-
mation in its SOAP body and then send this to the SOAP service. Send the mes-
sage directly to the service, do not use a JAXM Provider in this instance. Display
the assigned login returned from the call.

An example solution is available under the JobPortal directory in the Day 21
exercise code on the CD-ROM.

3. Run the submitter and receiver to test that they work together.

964 Day 21

25 0672323842 CH21 3/20/02 9:36 AM Page 964

APPENDIX A
An Introduction to UML

A number of the lessons in this book use Unified Modelling Language (UML)
diagrams to illustrate the relationships between classes, the interactions
between objects, and other types of relationships and events. If you don’t know
the UML, this appendix offers an accelerated introduction to the UML and the
essentials of creating models using the UML. Alternatively, if you do know the
UML, you will find this appendix offers a quick reference to the most common-
ly used elements of the language—the ones used throughout this book.

Introducing the UML
The UML is an Object Modelling Group (OMG) standard that acts as a means
of communication in the object-oriented (OO) arena. It defines a notation that
consists of graphical elements you can use in UML models. In other words, the
notation is the syntax of the modelling language. A meta-model defines the
actual notation, and this is normally represented as a class diagram. The meta-
model can help you ensure that your models are well formed—that is, that they
are syntactically correct.

26 0672323842 AppA 3/20/02 9:29 AM Page 965

Although the UML standard defines how you represent items, it does not stipulate the
process you use to create models. In other words, the UML does not dictate what steps
you must take to create a model; however, processes do exist that you can use, such as
the Rational Unified Process (RUP). Alternatively, you can use your own process, which
implements parts of the UML, that suit your particular needs.

966 Appendix A

You can discover more about the UML and the work of the OMG by visiting
http://www.uml.org.

Note

You can learn about the RUP and how it relates to the UML by visiting
http://www.rational.com.

Note

At this point, you might wonder why you should take the time to learn and use the UML.
There are a number of very good reasons to use the UML, including the following:

• It is less verbose than ideas communicated through natural language.

• It is quicker to write and modify than ideas expressed in code.

• It is independent of programming languages, so people can understand it regardless
of their programming backgrounds.

• It aids good OO design and helps exploit the features of OO programming lan-
guages.

• It is a universal standard, so anyone that learns it can understand models created by
others.

In addition to these advantages, different people can use the UML in different scenarios.
This appendix will often discuss UML models in three different scenarios or levels,
which were originally suggested by Fowler and Scott (UML Distilled, Second Edition:
1999):

• Conceptual level—Looks at the domain in terms of concepts, with no regard to
actual software

• Specification level—Looks at the software in terms of its interfaces

• Implementation level—Looks at the actual classes of the software

Working at a conceptual level allows you to develop and modify models very quickly.
Typically, you can work at this level and then progress your models to either the specifi-
cation level or implementation level. In practice, it is generally better to work at the

26 0672323842 AppA 3/20/02 9:29 AM Page 966

An Introduction to UML 967

A

specification level before the implementation level, so that you end up coding classes to
interfaces rather than the other way around. Remember though, that these are simply sug-
gestions because the UML does not define a rigid process for creating models.

Use Case Diagrams
A Use Case Diagram allows you to model the interactions between a user and a system.
A Use Case consists of one or more scenarios, where a scenario is a sequence of steps
taken when a user interacts with a system. The boundaries that define Use Cases and sce-
narios often blur, so you might say that a certain group of interactions form a single Use
Case, but another person might group those interactions into more than one Use Case.
Either approach is correct, because it is up to the modeller to use his or her discretion
when deciding what forms a Use Case.

The notation for Use Cases is quite straightforward, as Figure A.1 shows.

FIGURE A.1
Use Case notation.

Actor
Extension Point

Use Case «include»

«extend»

Generalization

The actor is an individual or other system that interacts with the system. As you can see
in Figure A.1, the actor carries out Use Cases. A single Use Case can have several actors
or a single actor. Likewise, a single actor can perform several Use Cases.

The <<include>> notation avoids repetition, because it allows you to copy the behavior
of one or more Use Cases. For example, a motor vehicle insurance company’s system
can allow an actor to get a price quote or make a claim. In both instances, a valuation is
required for the Use Case. Figure A.2 shows the two Use Cases, including the valuation
Use Case, thus avoiding repetition.

26 0672323842 AppA 3/20/02 9:29 AM Page 967

The generalization notation that Figure A.1 shows allows you to describe a variation
on the normal course of behaviour for a Use Case. For example, the price quote Use
Case illustrated previously might have an alternative that the system uses if the proposed
insured is classified as a high risk, perhaps because he or she is young. Figure A.3 shows
the use of the generalization notation in this instance.

968 Appendix A

FIGURE A.2
The <<include>>
notation.

Price Quote

Valuation

Value Claim

«include»

«include»

FIGURE A.3
The generalization
notation.

Age Limit Not
Reached

Price Quote

Generalization

A more rigid notation than the generalization notation is the <<extend>> notation. This
illustrates a situation where a Use Case has the same functionality as another Use Case,
but it extends or overrides parts of that functionality. To show this, you must list the
items within the base Use Case that the extending Use Case can extend. In addition, if
the extending Use Case does extend some of these items (it is not mandatory to extend

26 0672323842 AppA 3/20/02 9:29 AM Page 968

An Introduction to UML 969

A

every item on offer), you must place the names of these items in parentheses by the
<<extend>> notation, as Figure A.4 illustrates.

FIGURE A.4
The <<extend>>
notation.

Extension points
Personal details
Payment details
Vehicle details

Other Insurance«extend»
(personal details, payment details)Existing

Customer

Class Diagrams
Class diagrams show different objects within a system and how these objects associate
with each other. In part, the diagram does this by showing the attributes and operations
of each class within the system, and defining the constraints placed on these classes. The
basic notation to show a class is a rectangular box containing the classname. However,
you can add more information to the box, as you will see.

Note that the UML notation for class diagrams is extensive, so this appendix only shows
you the most commonly used elements of the notation. Specifically, you will learn about
five main types of notation:

• Associations

• Attributes

• Operations

• Generalization

• Constraints

Associations
If you want to show that an instance of a class has a relationship with an instance of
another class, you join the two classes with a line, known as an association. Each end of
the line is known as a role. You can further define the classes’ relationships through the
use of multiplicity and navigability. Multiplicity show how many objects can participate
in a given relationship. For example, in Figure A.5, one customer (shown as 1) can have
between zero and infinite policies (shown as *).

26 0672323842 AppA 3/20/02 9:29 AM Page 969

There are four possible values for illustrating multiplicity:

• 1—One instance

• *—Zero to infinite instances

• 0..1—Zero or one instance

• m..n—User-defined between m and n

Navigability shows the responsibilities of classes. The arrow head points to the class that
is not responsible in the relationship. For example, the Policy must say which Customer
it belongs to in Figure A.5, but the Customer does not have to say which Policy instances
it has. In this example, the responsibility is unidirectional, but in some situations, both
parties might hold responsibilities. In these instances, you mark both roles with an arrow
head; this is known as bidirectional association.

Attributes
Attributes have different meanings, depending on the level at which you are modelling.
At a conceptual level, an attribute simply defines that a class has a certain feature, such
as the Vehicle class having a license number. At the specification level, an attribute indi-
cates that a Vehicle object has a way of setting the value of its license, and that it also
can provide you with the value of that license. Finally, at the implementation level, an
attribute indicates that a Vehicle has a field for the license.

Figure A.6 simply shows the name of the attributes, but it could show more detail. The
UML defines the following, which you can use to define an attribute:

visibility name: type = defaultValue

970 Appendix A

FIGURE A.5
An association.

Policy Customer
1

multiplicity

*

association

navigability

26 0672323842 AppA 3/20/02 9:29 AM Page 970

An Introduction to UML 971

A

The visibility of the attribute can be either

• Public—Precede the name with a + (plus)

• Protected—Precede the name with a # (hash)

• Private—Precede the name with a – (minus)

The name, type, and default values represent the attribute’s name, type (for example,
String), and default value (for example, “unregistered”). In some instances, you might
want to show the multiplicity of an attribute, possibly to show whether the system
requires it. To do this, place the multiplicity value (any one of those shown in the previ-
ous section) in square brackets after the attribute name, as shown in the following:

licence[1]: String = “unregistered”

Operations
Operations are the processes that a class performs and, again, this can have different
meanings at different levels. At the conceptual level, operations illustrate the responsibili-
ties of a class. At a specification level, they should correspond to methods with public
visibility. Finally, at the implementation level, they can correspond to methods with any
degree of visibility. Figure A.7 illustrates that you show operations in the lower section
of the box that represents the class.

FIGURE A.6
Attribute notation.

Vehicle

License

FIGURE A.7
Operations notation.

Class Name

Operations

Attributes

You can provide quite a lot of information about the operation within the box. To do this,
use whichever parts of the UML syntax you require:

visbility name(parameter list): return-type-expression { property-strings }

As you can see, the syntax is similar to that used to show an attribute, but with a few
notable exceptions. The return-type-expression indicates a comma-separated list of
return types—yes, the UML permits multiple return types. The parameter list, shown
in parentheses, indicates a comma-separated list of parameters, whose syntax is as fol-
lows:

26 0672323842 AppA 3/20/02 9:29 AM Page 971

direction name: type = defaultValue

The different parts of the syntax have the same value as when you have previously
encountered them, with the exception of direction. This shows whether a parameter is
used for input, output, or both input and output. The values to indicate the direction are
as follows:

• in—Parameter used only for input; this is the default value.

• out—Parameter used only for output.

• inout—Parameter used for both input and output.

Finally, to show how all this syntax ties together, the following example shows a protect-
ed operation that accepts two input parameters and returns a String object:

myOperation(arg1: String, arg2: Integer=0):String

Generalization
Figure A.8 shows that a large, unfilled arrow head depicts generalization. Like an associ-
ation, a generalization shows a relationship between two classes. However, unlike an
association, it shows a special type of relationship where one class is the child of the
other class. In other words, one class is a subclass or subtype of the other class. In prac-
tice, the meaning of generalization differs according to the context within which you
construct the model. At the conceptual level, classes B and C are subtypes of A if all
instances of them are also instances of A. At the specification level, you are dealing with
interfaces. Thus, B and C are subtypes of A if they include all the elements of the inter-
face of A. Finally, at the implementation level, you are showing inheritance between
classes, where classes B and C inherit all the methods and fields of A; of course, they
can override the methods they inherit.

972 Appendix A

FIGURE A.8
Generalization nota-
tion.

B

A

C

26 0672323842 AppA 3/20/02 9:29 AM Page 972

An Introduction to UML 973

A

Constraints
So far in this appendix, you have looked at a number of ways to model the relationships
between classes. Often, these relationships act to constrain the classes within that rela-
tionship. For example, multiplicity constrains a class in terms of how many instances of
it can exist. The UML also provides further syntax that allows you to show constraints,
which are otherwise concealed. The syntax is as follows:

{ description of constraint }

You connect the constraint description to a class by using a dashed line. The description
of the constraint can take any form you want, but if you want to use a formal syntax, you
can use the Object Constraint Language (OCL). The example that Figure A.9 shows sim-
ply uses plain text. As you can see, the model shows a constraint on the Policy class,
which states that if a customer is under the age of 25 years old, the system should classi-
fy him or her as high risk.

FIGURE A.9
Using constraints
notation.

1*
Policy

Risk

Customer

Age

{If Policy.Customer.age is under 25
then risk is high}

Sequence Diagrams
Class diagrams show how classes interact with each other, but they do not give you a feel
for how instances of those classes will interact in a real situation. Instead, sequence dia-
grams model this type of behavior. These diagrams do this by showing objects and the
messages that pass between these objects. In this appendix, you will learn the UML syn-
tax for sequence diagrams by exploring two examples, the first of which is shown in
Figure A.10.

This first example shows most of the commonly used UML syntax for sequence dia-
grams. You place actors and boxes that represent objects or classes when their static
methods are accessed at the top of the diagram. Descending from these items are dashed
vertical lines that represent the life of the item. These lines are known as lifelines. The
rectangles these lines pass through are activations, and these represent the time the
objects require to do their work. The horizontal arrows represent messages—the commu-
nication between items that you model.

26 0672323842 AppA 3/20/02 9:29 AM Page 973

As you can see, the actor sends a message to the first object, and the message in this
instance take the form, “Wishes to...”—just a plain text description of the interaction. For
example, this first object could be an instance of a servlet that the user calls. The first
object then sends a message to the second object. In the diagram, the message is labeled
<<create>>, which illustrates that the first object creates the second object. Likewise, the
first object sends another message to the second object, but this time toward the end of
its activation. This message is labeled <<destroy>>, and the lifeline of the second object
is marked with a large X. This signifies that the first object deletes the second object.
The other type of message that is used frequently, but is not shown in Figure A.10, is
where the message label represents the name of the method an object calls on another
object or class.

Figure A.11 shows a sequence diagram where a user wants to access some service of the
system that requires authentication. The user sends a message to the Controller object,
stating that he or she wants to access the system. This object creates an instance of the
Authenticator class. The user then supplies this object with his or her username and
password. The Authenticator receives these credentials and calls the static
isEmployee() method of the Employee class. Notice how the message label in this
instance is the method name together with a comma-separated parameter list. The
isEmployee() method performs some form of processing on the parameters. In reality,
this might involve looking up information in a data store. However, the example is sim-
plified in this instance, so assume that this method does not require the services of any
other class. You will notice that up to this point, all the UML syntax is the same as that
shown in the previous example.

974 Appendix A

FIGURE A.10
Sequence Diagram #1.

«create»

«destroy»

Object A Object B

Wishes to…

Actor

26 0672323842 AppA 3/20/02 9:29 AM Page 974

An Introduction to UML 975

A

After the isEmployee() method finishes its work, it returns an Employee object to the
Authenticator object. As you can see, the UML syntax for this is a dashed horizontal
line that points to the calling class or object and an optional label that indicates what is
returned. At this point, the Authenticator object returns the Employee object to the
Controller object. It then sends a <<destroy>> message to itself. This type of message
is known as a self-call and is shown as a message arrow that leaves an activation and
then doubles back to return to that activation. That’s it; the sequence is complete.

The two previous examples show you the majority of the UML syntax you require to
draw and understand sequence diagrams. The only other syntax that you may need to
know relates to messages. Specifically, all the messages shown in this appendix have full
arrow heads. This signifies that the messages are synchronous—the caller ceases opera-
tion until the called object returns. In reality, you might want to model situations where
you require asynchronous messages. For example, you may have an object that creates
new threads so that it can carry on with some other processing. To markup these types of
messages, you show a half arrow head rather than a full arrow head.

FIGURE A.11
Sequence Diagram #2.

«create»

isEmployee(username, password)

«destroy»

Username

Password

Employee
Employee

Controller Authenticator Employee

Wishes to access
protected system

Actor

26 0672323842 AppA 3/20/02 9:29 AM Page 975

26 0672323842 AppA 3/20/02 9:29 AM Page 976

APPENDIX B
SQL Reference

The Structured Query Language (SQL) is language that allows you to query,
insert, and update data held in a relational database. The language has evolved
during the past three decades to the latest incarnation of the language, which is
called SQL99—otherwise known as SQL3. SQL99 is a standard published by
the American National Standards Institute (ANSI) and ratified by the
International Standards Organization (ISO). Today, SQL is the eminent lan-
guage used by developers to work with relational databases.

Unlike some standards, SQL99 is not available on a “free access” model. You
can purchase sections of the standard, at $18 per section from http://
www.ncits.org/.

Note

Each provider of a Relational Database Management System (RDBMS) pro-
vides their own implementation of the language, but these implementations
generally still comply with the standard. For example, the SQL statements,
clauses, and functions you use with Oracle differ from those you use with
MySQL, but both conform to the SQL standard. The good news is that you will

27 0672323842 AppB 3/20/02 9:22 AM Page 977

find that each vendor’s implementation conforms to the standard to such an extent that
you do not have to learn a complete new set of commands to work with their product.
However, you will have to refer to their documentation to discover which parts of SQL99
they adhere to and what vendor-specific extensions they have added to their product. In
the process of using this book, you may have used one of any number of RDBMSs. So,
rather than provide a reference to a specific vendor’s implementation of the language,
this appendix provides a reference to the most commonly used statements and clauses of
the SQL99 standard. You should find that this reference, irrespective of the RDBMS you
use, is generic enough to allow you to build the most commonly used SQL statements
and execute them against your RDBMS with only a small number of changes to your
code.

Commonly Used SQL Statements (SQL99)
The following provides a reference to the SQL statements that you might use on a day-
to-day basis. It does not intend to provide a complete reference, and it also does not aim
to illustrate vendor implementation-specific syntax. For a fuller reference or an exact
guide to your chosen RDBMS, please refer to your vendor’s documentation.

ALTER TABLE
ALTER TABLE table_name {

ADD [COLUMN] column_name datatype attributes
| ALTER COLUMN column_name SET DEFAULT default_value
| ALTER COLUMN column_name DROP DEFAULT
| ALTER COLUMN column_name ADD SCOPE table_name
| ALTER COLUMN column_name DROP SCOPE [RESTRICT | CASCADE]
| DROP COLUMN column_name [RESTRICT | CASCADE]
| ADD table_constraint_name
| DROP CONSTRAINT table_constraint_name [RESTRICT | CASCADE]

}

Description:

The ALTER TABLE statement alters the columns and constraints of a table. As you can see,
this statement provides a number of ways to add, modify, or drop a column from a table.
Statements that utilize RESTRICT and CASCADE allow you to dictate how the database
should behave if either dropping or modifying a column impacts on foreign or primary
keys. Specifically, RESTRICT forces the database to throw an exception, or simply abort
the command, if the database contains foreign keys that reference a primary key that you
want to drop or modify. CASCADE instructs the database to drop any foreign keys that ref-
erence a primary key that you want to drop or modify.

978 Appendix B

27 0672323842 AppB 3/20/02 9:22 AM Page 978

SQL Reference 979

B

The constraints options allow you to place table-wide restrictions on the type of data a
user can enter into a table’s rows. In the context of constraints, RESTRICT and CASCADE
have the same meaning as with columns.

CREATE TABLE
CREATE [GLOBAL TEMPORARY | LOCAL TEMPORARY] TABLE table_name

[ON COMMIT [PRESERVE ROWS | DELETE ROWS]] {
column_name datatype [(length)] [NULL | NOT NULL],...n
| [LIKE table_name]
| [table_constraint][,...n]]

}

Description:

The CREATE TABLE statement creates a new table. Both the TEMPORARY options are
optional, and they both create temporary tables that the database discards at the end of a
session. The GLOBAL option creates a table that is available to all user sessions; whereas,
the LOCAL option creates a table that is only available to the user session that creates it.
The ON COMMIT clause is used only with temporary tables, and it has two options. The
first preserves any modifications to a temporary table when you issue a COMMIT state-
ment. The second, DELETE ROWS, deletes the rows of the temporary table when you issue
a COMMIT statement; this is the default behavior that SQL99 defines.

The LIKE option allows you to create a new table based on the definition of an existing
table. For example, you create a new table that has the same column names as an existing
table.

The optional table constraints clause allows you to place constraints, or tests, on the data
types that a user can insert into a column. For example, you could stipulate that a column
is the primary key for the table or that it must contain a unique value.

CREATE VIEW
CREATE VIEW view_name [(column [,...])] AS SELECT_statement
[WITH [CASCADE | LOCAL] CHECK OPTION]

Description:

The CREATE VIEW statement creates a new view based on a query. The list of columns is
optional. It allows you to assign names to each of the columns of the view. If you do not
provide a list of columns, the statement uses the column names returned by the SELECT
statement.

The optional WITH CHECK OPTION option ensures that a view can only insert, modify, or
delete data that it can read from the view’s base table. The LOCAL option only applies the

27 0672323842 AppB 3/20/02 9:22 AM Page 979

check to the current view, whereas the CASCADE option applies the check to the current
view and all the views on which it is built.

DELETE
DELETE FROM [owner.]table_name [WHERE clause]

Description:

The DELETE statement deletes rows from a table. If you use the statement without the
optional WHERE clause, it deletes all the rows in the table. For an explanation of the WHERE
clause, see the “Commonly Used SQL Clauses” section later in this appendix.

DROP TABLE
DROP TABLE table_name [RESTRICT | CASCADE]

Description:

The DROP TABLE statement drops a table—including constraints, indexes, and triggers—
from a database. RESTRICT forces the database to throw an exception or abort the opera-
tion if any views or constraints reference the table. In contrast, CASCADE drops all views
or constraints that reference the table.

DROP VIEW
DROP VIEW view_name [RESTRICT | CASCADE]

Description:

The DROP VIEW statement drops a view. RESTRICT forces the database to throw an excep-
tion or abort the operation if any views or constraints reference the table. In contrast,
CASCADE drops all views and constraints that reference the table.

INSERT
INSERT INTO [database_name.]owner. (table_name | view_name) [(column [,...])]
{[DEFAULT] VALUES | VALUES (value[,...]) | SELECT_statement }

Description:

The INSERT statement inserts new rows of data into either a table or view.

The list of columns is optional, but if you omit it, the statement will either assume the
order of the columns and insert data on this assumption (inserting either null or default
values into the remaining columns, or the RDMBS will throw an exception, for example,
MySQL throws a Column Count Does Not Match Value Count exception. The

980 Appendix B

27 0672323842 AppB 3/20/02 9:22 AM Page 980

SQL Reference 981

B

statement accepts data in three ways. The first is using the DEFAULT VALUES method,
which inserts the database implementation’s default values, if the implementation sup-
ports default values (most do), into the table. The second, VALUES, contains a list of
comma-separated values that insert into the specified columns. Finally, you can use a
SELECT statement, which is described next in this appendix.

SELECT
SELECT [ALL | DISTINCT] [select[,...]] FROM table_name [,...]
[JOIN join_condition]
[WHERE search_condition]
[GROUP BY group_by_expression[,...]]
[HAVING search_condition [,...]]
[ORDER BY order_expression [ASC | DESC]]

Description:

The SELECT statement retrieves data from a table. The basic form of the statement is
shown in the first line of the syntax. The list of select items can consist of column
names, expressions, local and global variables (where supported), mathematical calcula-
tions, or a wildcard * (returns all columns). In addition, you can specify an alias for the
returned columns. For example, to select the column first_name but reference it as
fore_name, you use the syntax SELECT first_name AS fore_name. You can also apply
this syntax to a table name by using the FROM clause. The default behavior of the state-
ment is to return all records, including duplicates and those containing only default val-
ues. If you use the DISTINCT option, the statement does not return duplicate records.

The final section of this appendix, “Commonly Used SQL Commands,”
describes the use of the WHERE, GROUP BY, HAVING, and ORDER BY clauses.

Note

The JOIN operation allows you to modify a SELECT statement so that it returns a result set
based on a relationship you define (a join) between columns in two different tables.
There are five main types of join.

Inner Join
The Inner Join, which is also known as an EquiJoin, joins two tables where a Boolean
expression you specify returns true. For example, the following JOIN operation joins the
products table and suppliers table by their supplier_id columns. In this instance, the
statement will only return the records where supplier IDs correspond in both tables:

27 0672323842 AppB 3/20/02 9:22 AM Page 981

SELECT * FROM products JOIN suppliers
ON products.supplier_id=suppliers.supplier_id

CROSS JOIN

The CROSS JOIN joins two tables by Cartesian Product—each record in the first table
joins to all the records in the second table. Because a CROSS JOIN joins every record in
two tables, you do not specify columns to join. Thus, the syntax for this join appears as
follows:

SELECT * FROM products CROSS JOIN suppliers

982 Appendix B

Although the SQL99 standard syntax for an inner join is JOIN, many RDMBS
use the syntax INNER JOIN.

Note

Using a CROSS JOIN on a live database can result in an enormous result set.
You can very easily place an excessive load on a system using this command,
and this can adversely affect the normal operation of your database server.

Caution

Left Outer Join
The LEFT JOIN joins two tables and returns all the values from the left table and only the
matching records from the right table. Where no match occurs, a NULL value is returned
as the value of the right table. For example, the following statement returns all records
that have supplier IDs in the products table, but only those records from the suppliers
table that have a corresponding supplier ID in the products table:

SELECT * FROM products LEFT JOIN suppliers
ON products.supplier_id=suppliers.supplier_id

Right Outer Join
The RIGHT JOIN joins two tables and returns all the values from the right table and only
the matching records from the left table. Where no match occurs, a NULL value is
returned as the value of the left table. For example, the following statement returns all
the supplier IDs from the suppliers table, but only those from the products table that
have a corresponding entry in the suppliers table:

SELECT * FROM products RIGHT JOIN suppliers
ON products.supplier_id=suppliers.supplier_id

27 0672323842 AppB 3/20/02 9:22 AM Page 982

SQL Reference 983

B

FULL JOIN

The FULL JOIN joins two tables, and returns all the rows from both tables. For example,
the following statement returns all the supplier IDs from both tables regardless of
whether they match:

SELECT * FROM products FULL JOIN suppliers
ON products.supplier_id=suppliers.supplier_id

UPDATE
UPDATE {table_name | view_name}
SET {column_name | variable_name} = {DEFAULT | expression} [,...n]
WHERE conditions

Description:

The UPDATE statement changes data in a table or view. The statement centers on the SET
clause that allows you to set a named column to a new data value. You can express the
data value either as DEFAULT—the column’s default value —or as an expression. The
expression can be an expression, such as age+10; or a value, such as ‘New Value’.
The WHERE clause is optional, but if you omit it, the statement updates all the records in
the column.

Commonly Used SQL Clauses
The following list describes the SQL clauses that you will use most frequently. In rela-
tion to the previous SQL statements, the WHERE clause is used with the DELETE, UPDATE,
and SELECT statements; the remaining clauses are only used with the SELECT statement.

FROM
FROM table_name [,...]

Description:

The FROM clause specifies the tables from which a statement should retrieve data. You can
combine the FROM clause with AS to assign aliases to table names. For example, to assign
an alias of products to a table called us_products, you use the following syntax:

FROM us_products AS products.

WHERE
WHERE Boolean_expression

27 0672323842 AppB 3/20/02 9:22 AM Page 983

Description:

The WHERE clause restricts a statement so that it only returns those rows or records for
which a Boolean expression that you define evaluates as true. For example, to delete
only those rows from a table where a record has an employee name of John Smith, you
execute the following:

DELETE FROM employee_table WHERE employee_name = ‘John Smith’

GROUP BY
GROUP BY column_name [,...]

Description:

The GROUP BY clause divides the result of a SELECT statement into logical groups. The
clause allocates data to these groups by grouping data that has identical values for the
column names you specify. Typically, you do not use this clause to group the data that is
displayed (use the ORDER BY clause to achieve this), but instead you use it together with
an aggregate function, such as MAX, AVG, or COUNT. For example, to get a breakdown of
how many employees live in each state, you issue the following command:

SELECT COUNT(*) FROM employee_table GROUP BY home_state

HAVING
HAVING search_condition

Description:

The HAVING clause works with the GROUP BY clause in much the same way as the WHERE
clause works with the SELECT statement. It allows a statement to return only items within
groups that conform to a condition the HAVING clause defines. For example, the following
command lists the average employee salary for all departments where the average salary
is greater than 30,000 dollars:

SELECT department, AVG(salary)
FROM employee_table
GROUP BY department
HAVING AVG(salary)>30000

ORDER BY
ORDER BY { (column_name | column_position) [ASC | DESC]] }[,...]

984 Appendix B

27 0672323842 AppB 3/20/02 9:22 AM Page 984

SQL Reference 985

B

Description:

The ORDER BY clause defines the order in which a statement returns a result set. The ASC
and DESC options dictate whether the statement should return the results in ascending or
descending order, respectively; ascending order is the default. The column_name is the
name of the column by which to sort. The column position allows you to stipulate an
ordinal position that relates to the column names or aliases you specify when creating the
statement. For example, the following statement returns all the employee forenames and
surnames from an employee table and orders the results by surname in descending order:

SELECT forename, surname
FROM employee_table
ORDER BY 2,1

27 0672323842 AppB 3/20/02 9:22 AM Page 985

27 0672323842 AppB 3/20/02 9:22 AM Page 986

APPENDIX C
An Overview of XML

Throughout the book, there are many examples of how XML can be used with-
in J2EE applications. Day 16, “Integrating XML with J2EE,” and Day 17,
“Transforming XML Documents” cover the topic of XML in some detail. This
appendix is here to provide a quick reference that should enable you to compre-
hend XML examples used in this book.

XML is often described as portable data that co-exists alongside Java’s portable
code. Many new initiatives in Java use XML in a central role, so it is rapidly
becoming a standard part of the Java developer’s toolkit.

This appendix examines:

• The syntax and structure of an XML document

• Ways of defining XML structure, such as DTD and XML schema

• How different XML dialects can be identified

28 0672323842 AppC 3/20/02 9:35 AM Page 987

What Is XML?
XML has arisen from the need for a portable data format.

Essentially, XML is a standard for representing data in a text document. XML provides a
framework for representing almost any kind of data, which is one of the reasons why it
has attracted so much interest.

An XML document consists of text-based tags used to provide the document structure
(similar to those used in HTML) together with the data itself. All XML documents con-
sist of elements and optional declarations and comments.

Elements
An element has the following form:

<start_tag attributes>body<end_tag>

For example,

<book title=”J2EE in 21 Days”>A very useful book</book>

In XML, unlike HTML, the tags are not predefined. As the author of an XML document,
you are free to invent whatever tags are appropriate for the data you are describing.

When defining an XML tag, you may include attributes that further describe the tag. In
the previous example, the title of the book is supplied as an attribute to the book tag.

The body of an element is all the text, including any nested tags, enclosed by the start
and end tags.

An element need not have any attributes or even any body.

Tag names must start with a letter or underscore and can contain any number of letters,
numbers, hyphens, periods, or underscores, but they cannot include spaces.

All XML is case sensitive, and attributes must be quoted (both single and double quotes
are accepted). The following are alternative forms for an element:

<tag>text</tag>
<tag attribute=”text”>text</tag>
<tag attribute=”text”></tag>
<tag></tag>
<tag attribute=”text”/>
<tag/>

The last two in this list show examples where the start and end have been combined. This
is done simply to reduce clutter in the document.

988 Appendix C

28 0672323842 AppC 3/20/02 9:35 AM Page 988

An Overview of XML 989

C

Tags must nest. That is, an end tag must close the textually preceding start tag. For
example,

<I>bold and italic</I>

The following is not well-formed XML:

<I>bold and italic</I>

To be well-formed XML, the </I> end tag must precede the so the tags nest cor-
rectly.

The tags provide

• Information about the meaning of the data

• The relationships between different parts of the data

There must be exactly one top level element in an XML document, called the root ele-
ment, which must enclose all the other elements in the document.

The following is a well-formed XML document:

<jobSummary>
<job customer=”winston” reference=”Cigar Trimmer”>
<location>London</location>
<description>Must like to talk and smoke</description>
<skill>Cigar maker</skill>
<skill>Critic</skill>

</job>
</jobSummary>

The root element is <jobSummary...</jobSummary>. The <job> element has two
attributes and enclosed elements.

Declarations
Declarations are used to provide information to the XML parser. They are of two forms.
The first is a Processing Instruction and is enclosed in <? ... ?>.

The following example tells the parser that the document has been written using XML
version 1.0 and the UTF-8 character encoding:

<?xml version =”1.0” encoding=”UTF-8”?>

The second form of declaration is an XML Document Type Declaration and is preceded
enclosed in <! ... >.

28 0672323842 AppC 3/20/02 9:35 AM Page 989

<!DOCTYPE jobSummary SYSTEM “jobSummary.dtd”>

Document Type Declarations are used to inform the parser of the correct structure of the
XML document and to validate the XML. There is more information on the different
type of document type declarations in section “Document Type Definition” later in this
appendix.

If declarations appear in an XML document, they must precede the root element. This
section is usually referred to as the prolog.

Comments
As well as elements and declarations, an XML document can contain comments that help
to clarify the document content for human readers. Comments can be used anywhere
within an XML document that a tag could appear. An example is as follows:

<!-- This is a really good book -->

Special Characters
The characters in Table C.1 have a special meaning in XML and, if required in the con-
tents of an element, they must be replaced with the symbolic form.

TABLE C.1 Special XML Characters

Character Name Symbolic Form

& (ampersand) &

< (open angle bracket) <

> (close angle bracket) >

‘ (single quotes) '

“ (double quotes) "

Other special characters, such as non-printing characters, that may cause problems dur-
ing processing, should be replaced by entities that give their decimal value. For example,
^A becomes .

990 Appendix C

Do not confuse a Document Type Declaration, which is the XML element
containing declarations indicating the grammar that should be applied to
validate an XML document, with the grammar itself, which is called a
Document Type Definition (DTD). DTDs are explained later in this appendix.

Caution

28 0672323842 AppC 3/20/02 9:35 AM Page 990

An Overview of XML 991

C

If you are familiar with HTML, you will recognize the technique of replacing certain
characters or including characters not found in standard character sets (such as ©) with
a character entity that is either &name; or &#nnn (where nnn is a numeric representing
the character). As an HTML user, you are also probably aware that browsers can inter-
pret character entities differently. This means the character encoding you are familiar
with may not conform to the standard. Refer to the W3C Web site to find a list of the
character entities for the ISO-8859-1 (Unicode 2.0) character set. Only those character
entities defined in the standard should be used in XML.

For data containing large amounts of special characters, you can use a CDATA section.
This begins with the string <![CDATA[and ends with]]>. Any characters between the
start and end of a CDATA section are not processed by the parser and are just treated as a
text string.

Namespaces
Namespaces are used to scope tags within a document. The use of multiple namespaces
allows different tags to have the same name but different meanings in a single XML doc-
ument.

An attribute called xmlns (XML Name Space) is added to an element tag in a document
and is used to define a namespace for the body of the element.

The following is a document with two namespaces:

<?xml version =”1.0”?>
<jobSummary xmlns:ad=”ADAgency” xmlns:be=”BEAgency”>
<ad:job customer=”winston” reference=”Cigar Trimmer”>
<ad:location>London</ad:location>
<ad:description>Must like to talk and smoke</ad:description>
<ad:skill>Cigar maker</ad:skill>
<ad:skill>Critic</ad:skill>

</ad:job>
<be:job>
a completely different form of the job element

</be:job>
</jobSummary>

Enforcing XML Document Structure
If XML is used to transfer information between applications, there needs to be a mecha-
nism for ensuring that the XML is not only syntactically correct but also is structurally
correct. In fact, there are two common mechanisms for this:

• Document Type Definitions

• XML Schemas

28 0672323842 AppC 3/20/02 9:35 AM Page 991

Document Type Definition (DTD)
A Document Type Definition (DTD) is a way of defining the structure of an XML docu-
ment. DTD elements can be included in the XML document itself or in a separate exter-
nal document. The syntax used to define a DTD is different from XML itself.

The following is an example DTD that describes the jobSummary XML:

<!DOCTYPE jobSummary>
<!ELEMENT jobSummary (job*)>
<!ELEMENT job (location, description?, skill*)>
<!ATTLIST job customer CDATA #REQUIRED>
<!ATTLIST job reference CDATA #REQUIRED>
<!ELEMENT location (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT skill (#PCDATA)>

The !DOCTYPE element must include the name of the root element. If the remainder of the
document type definitions are stored in an external file, it will have the following form:

<!DOCTYPE root_element SYSTEM “external_filename”>>

If the definitions are included in the XML document itself, the !DOCTYPE element must
appear in the document prolog before the actual document data begins. In this case, the
!DOCTYPE element must include all the DTD elements with the following syntax:

<!DOCTYPE jobSummary [
<!ELEMENT jobSummary (job*)>
<!ELEMENT job (location, description?, skill*)>
<!ATTLIST job customer CDATA #REQUIRED>
<!ATTLIST job reference CDATA #REQUIRED>
<!ELEMENT location (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT skill (#PCDATA)>
]>

The other elements (!ELEMENT and !ATTLIST) are described in this section.

Elements
Element declarations take the following form:

<!ELEMENT element_name (content)>

where element_name is the XML tag and content is one or more of the values shown in
Table C.2.

992 Appendix C

28 0672323842 AppC 3/20/02 9:35 AM Page 992

An Overview of XML 993

C

TABLE C.2 DTD Content Specifications for Elements

Content Type Syntax Element contains

Element <!ELEMENT tag (sub1)> Sub-element only

#PCDATA <!ELEMENT tag (#PCDATA)> Text only

EMPTY <!ELEMENT tag (EMPTY)> Nothing

ANY <!ELEMENT tag (ANY)> anything (text or elements)

#PCDATA limits the content of the element to character data only; nested ele-
ments are not allowed. Do no confuse with CDATA sections in XML that are
used to present large areas of un-interpreted text.

Note

The characters in Table C.3 can be used to combine multiple element content types to
define more complex elements.

TABLE C.3 Content Characters Used in DTD Definitions

Character Meaning

, Sequence operator, separates a list of required elements

* Zero or more (not required)

+ One or more (at least one required)

? Element is optional

| Alternate elements

() Group of elements

The following is a declaration for the job element:

<!ELEMENT job (location, description?, skill*)>

The job element consists of, in order, one location, an optional description, and an
optional list of skill elements.

Attributes
Attribute declarations take the following form:

<!ATTLIST element_name attribute_1_name (type) default-value
attribute_2_name (type) default-value>

28 0672323842 AppC 3/20/02 9:35 AM Page 993

An attribute type can be any one of the types shown in Table C.4, though CDATA (text) is
the most common.

TABLE C.4 DTD Attribute Types

Type Attribute is a…

CDATA Character string.

NMTOKEN Valid XML name.

NMTOKENS Multiple XML names.

ID Unique identifier.

IDREF An element found elsewhere in the document. The value for IDREF must match the
ID of another element.

ENTITY External binary data file (such as a GIF image).

ENTITIES Multiple external binary files.

NOTATION Helper program.

The default-value item can also be used to specify that the attribute is #REQUIRED,
#FIXED, or #IMPLIED. The meanings of these values are presented in Table C.5.

TABLE C.5 DTD Attribute Default Values

Default Value Meaning

#REQUIRED Attribute must be provided.

#FIXED Effectively a constant declaration. The attribute must be set to the given
value or the XML is not valid.

#IMPLIED The attribute is optional and the processing application is allowed to use
any appropriate value if required.

Entity References
Another DTD element not mentioned so far is an entity reference. An entity reference
has more than one form. The first, called a general entity reference, provides shorthand
for often-used text. An entity reference has the following format:

<!ENTITY name “replacement text”>

994 Appendix C

This is, in fact, how the special characters are handled. The character entity
& is defined as <!ENTITY & “&”>.

Note

28 0672323842 AppC 3/20/02 9:35 AM Page 994

An Overview of XML 995

C

The entity reference called name can be referred to in the XML document using &name;,
as shown in the following:

<!DOCTYPE book [
...
<ENTITY copyright “Copyright 2002 by Sams Publishing>
]>

<book title=”J2EE in 21 Days”>A very useful book ©right;</book>

The second form, called an external entity reference, provides a mechanism to include
data from external sources into the document’s contents. This has the following format:

<!ENTITY name SYSTEM “URI”>

For example, if the file Copy.xml that can be retrieved from the Sams Web site contains
the following XML fragment

<copyright>
<date>2002</date>
<publisher>Sams Publishing</publisher>

</copyright>

this can be referenced in any XML document as follows:

<!DOCTYPE [
...
<ENITITY copyright http://www.samspublishing.com/xml/Copy.xml>
]>
<book>
<title>J2EE in 21 Days>

..©right;
<synopsis>All you need to know about J2EE</synopsis>

</book>

XML Schema
Like DTDs, an XML Schema can be used to specify the structure of an XML document.
In addition, it has many advantages over DTDs:

• Schemas have a way of defining data types, including a set of pre-defined types.

• A schema is namespace aware.

• It is possible to precisely specify the number of occurrences of an element (as
opposed to a DTD’s imprecise use of ?, *, and +) with the minOccurs and
maxOccurs attributes.

• The ability to restrict the values that can be assigned to predefined types.

• A schema is written in XML.

28 0672323842 AppC 3/20/02 9:35 AM Page 995

The following is a schema to define the jobSummary XML:

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ elementFormDefault=”qualified”>

<xsd:element name=”jobSummary”>
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”job” type=”jobType” minOccurs=”0”
➥ maxOccurs=”unbounded”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name=”jobType”>
<xsd:sequence>
<xsd:element name=”location” type=”xsd:string”/>
<xsd:element name=”description” type=”xsd:string”/>

<xsd:element name=”skill” type=”xsd:string” minOccurs=”1”
➥ maxOccurs=”unbounded”/>

</xsd:sequence>
<xsd:attribute name=”customer” type=”xsd:string” use=”required”/>
<xsd:attribute name=”reference” type=”xsd:string” use=”required”/>

</xsd:complexType>
</xsd:schema>

In schemas, elements can have a type attribute that can be one of the following:

• string Any combination of characters

• integer An integral number

• float A floating-point number

• boolean true/false or 1/0

• date yyyy-mm-dd

There are considerably more predefined simple data types. A full list can be obtained
from the W3C Web site.

Or an element can be a complex type, which is a combination of elements or elements
and text.

The number of times an element can appear is controlled by two attributes:

• minOccurs

• maxOccurs

For example, the following skill element must appear at least once and can occur any
number of times.

996 Appendix C

28 0672323842 AppC 3/20/02 9:35 AM Page 996

An Overview of XML 997

C

<xsd:element name=”skill” type=”xsd:string” minOccurs=”1”
➥ maxOccurs=”unbounded”/>

Elements can be made optional by setting the value of the minOccurs attribute to 0.

Element attributes can be declared with a use attribute to indicate whether the element
attribute is required, optional, or even prohibited.

A declaration of a complex type generally includes one of the following that specifies
how the elements appear in the document:

• all—All the named elements must appear, however they may be in any order.

• choice—One, and only one, of the elements listed must appear.

• sequence—All the named elements must appear in the sequence listed.

Where to Find More Information
More information on XML standards can be found at various Web sites, the most impor-
tant being the W3C Web site, which is found at http://www.w3.org.

Day 16, “Integrating XML with J2EE,” covers in more detail the subject of creating and
validating XML. It introduces the Java API for XML Processing (JAXP) that allows you
to use J2EE to parse and create XML.

Other related XML subjects, such as XSLT, Xpath, and XPointer, are covered on Day 17,
“Transforming XML Documents.” A brief introduction to these subjects is given in this
section.

XSL is a stylesheet language for XML. XSL specifies the styling of an XML docu-
ment by using XSL Transformations to describe how the document is transformed
into another XML document.

XSLT is a language for transforming XML documents into other XML documents.
A transformation expressed in XSLT is called a stylesheet.

XPointer provides a mechanism to “point” to particular information in an XML
document.

XPath is a language for identifying parts of an XML document; it has been
designed to be used by both XSLT and XPointer. XPath gets its name from its use
of a compact path notation for navigating through the hierarchical structure of an
XML document.

With the XPath notation, it is, for example, possible to refer to the third element in the
fifth Job node in a XML document.

28 0672323842 AppC 3/20/02 9:35 AM Page 997

XPath is also designed so that it can be used for matching (testing whether or not a node
matches a pattern). The form of XPath used in XSLT.

Everything in this appendix and a lot more is also covered in some detail in the Sams
Teach Yourself XML in 21 Days, Shepherd, ISBN 0-672-32093-2. This book covers
everything you need to know about XML to “hit the ground running.”

998 Appendix C

28 0672323842 AppC 3/20/02 9:35 AM Page 998

APPENDIX D
The Java Community
Process

Many of the lessons in this book have referred to JSRs (Java Specification
Request). If you are not familiar with the Java Community Process (JCP), you
may wonder exactly what a JSR is and how it affects J2EE technologies. This
appendix provides you with an introduction to both JSRs and the JCP, and
explains why they affect J2EE and you as a developer.

Introducing the JCP
The Java platform is developed within an open framework, unlike some other
technologies. The JCP is the framework within which this open development
occurs. It involves a number of interested parties, potentially including yourself,
who develop or modify:

• Java technology specifications

• Technology Compatibility Kits (TCK)

• Reference Implementations (RI)

29 0672323842 AppD 3/20/02 9:28 AM Page 999

The JCP revolves around JSRs, which are the formalized requests that JCP members
make when they want to either develop a new Java technology specification or modify an
existing specification. Before you discover what is involved in the process of converting
a JSR to a finalized specification, you will learn who is involved in the JCP.

Getting Involved
There are five main groups involved with the JCP. Each group plays a defined role that
ensures that the JCP delivers Java technology specifications that meet the needs of devel-
opers and organizations, and ensure the continued stability and cross-platform compati-
bility of Java technologies.

JCP Members
Any individual or organization can become a member of the JCP. To become a member,
you must sign the Java Specification Agreement (JSPA) and pay a fee, which, at the time
of writing, is $5000/ann for commercial entities and $2000/ann for all other entities.

JCP members are responsible for the submission of JSRs that are then further developed
by Expert Groups. These groups consist of experts that JCP members may nominate
either themselves or other members for. One JCP member will lead each Expert Group
and is responsible for forming the group and adding experts to that group. JCP members
also have the right to vote on Executive Committee ballots; you will learn about these a
little later.

Expert Groups
Each expert group is responsible for forming a specification and its RI and TCK from a
JSR. In addition, once they form the specification, they are responsible for the mainte-
nance of that specification.

When JCP members make nominations for Expert Group members, they ensure that the
group will consist of individuals who are experts in the technology to which the specifi-
cation relates. In addition, they ensure that the Expert Group includes enough depth and
breadth of knowledge to enable the final specification to be of real use to developers and
organizations.

The Public
Any member of the public can become involved with the JCP without having to become
a full member of the JCP or pay a fee. The main ways that members of the public can
become involved are by reviewing and commenting on

1000 Appendix D

29 0672323842 AppD 3/20/02 9:28 AM Page 1000

The Java Community Process 1001

D

• Any specification JCP members develop

• Any new or revised JSR

• Proposed error corrections and modifications to existing specifications

Process Management Office (PMO)
The PMO is a group within Sun Microsystems that manages the day-to-day running of
the JCP. The group does not involve itself with actual formation of JSRs and the final
specifications.

Executive Committees
There are two Executive Committees, each overseeing different elements of the Java plat-
form, namely the Standard Edition, Enterprise Edition, and Micro Edition. It is the
responsibility of an Executive Committee to oversee the work of the Expert Groups to
ensure that specifications do not overlap or conflict with each other. The Executive
Committee is not involved with the JCP on a day-to-day process, but, instead, reviews
the work of Expert Groups at defined points of the JCP. Specifically, an Executive
Committee selects JSRs for development, provides guidance for the PMO, and approves

• Draft specifications

• Final specifications

• Maintenance revisions of a specification

• The transfer of maintenance responsibilities between JCP members

Each Executive Committee consists of sixteen seats. Of these, only one is permanent—
held by Sun Microsystems. Of the remaining seats, ten are ratified and five are elected.
Each of these seats is held for three years, and its holder is determined on a rolling basis;
thus, five seats are either ratified or held open for election each year.

Understanding the JSR Process
There are several stages to transforming an initial JSR to a final specification, and each
involves different entities concerned with the JCP. However, the process consists of three
main stages, which are shown by Figure D.1:

FIGURE D.1
The JCP process.

Public Review
and

Specification Finalization
Community DraftInitiation

29 0672323842 AppD 3/20/02 9:28 AM Page 1001

As you can see, the process consists of three main sections. The first, Initiation, is where
a JCP member submits a JSR. This JSR is open for review by JCP members and the pub-
lic. Once reviewed, the Executive Committee decides whether to approve the request. If
the request is approved, the process moves into the Community Draft stage.

This stage is where the Expert Group is formed. The Expert Group then writes the first
draft of the specification and makes the draft available for Community Review by JCP
members. The Expert Group may update the draft at this point, or they may pass the
draft immediately to the Executive Committee for approval. If the draft is approved, the
process moves into the final stage—Public Review and Specification Finalization.

This final stage commences with the group posting the draft on the Internet so that the
public can review and comment on it. After the public review is complete, the Expert
Group may modify the draft to include feedback from the public. At this point, the group
prepares the proposed final draft and ensures that the RI and TCK are complete. After the
proposed final draft is complete, the group passes it to the Executive Committee for final
approval. If the specification is approved, it is then released.

After the Expert Group release the final specification, the specification is not simply
abandoned. Instead, it is subject to an ongoing process of review and modification.
Within this process, there might be requests for revisions or enhancements to the specifi-
cation, or a need for further clarification and interpretation of the specification. The
Executive Committee is responsible for reviewing each proposed change, and they will
decide on a suitable course of action to implement the change.

Taking the Next Step
This appendix has provided you with a brief overview of the Java Community Process,
the roles you can play within in it, and the lifecycle of a Java Specification Request. If
you want to find out more or get involved, you can do so by visiting
http://www.jcp.org.

If you simply want to browse the JSR archive, you can do so by visiting
http://www.jcp.org/jsr/overview/index.jsp.

1002 Appendix D

29 0672323842 AppD 3/20/02 9:28 AM Page 1002

GLOSSARY

This appendix lists new or uncommon terms used throughout this book and
provides a brief definition.

3-Tier The 3-tier model for enterprise applications, as used by J2EE, that
splits the application functionality into three parts: presentation, business, and
integration. Components that deliver these three types of functionality will typi-
cally live on their own tier of servers, so that the three types of functionality are
physically as well as logically separated. See also n-tier.

Active Directory Active Directory is Microsoft’s directory service, first
delivered as part of Microsoft Windows 2000.

ANSI The American National Standards Institute is a private, non-profit orga-
nization that administers and coordinates the U.S. voluntary standardization and
conformity assessment system.

ANSI SQL ANSI SQL represents a standard for SQL programming that is
independent of any one specific implementation. The first ANSI SQL standard
was published in 1989, but most vendors now support the update published in
1992. See also ANSI SQL 92.

ANSI SQL 92 ANSI SQL 92 refers to the version of the SQL specification
published by ANSI in 1992. This forms the basis of most current SQL imple-
mentations by major vendors. See also SQL.

30 0672323842 GL 3/20/02 9:40 AM Page 1003

Apache Software Foundation (or just Apache) The Apache Software
Foundation is an umbrella organization that supports a range of open-source projects
being pursued under the Apache banner. Notable among these projects are the Jakarta
Project, which delivers the Tomcat servlet and JSP implementation, together with the
XML Project, which oversees the development of the Crimson and Xerces parsers, the
Xalan XSLT processor and the Axis SOAP engine. See also Axis, Jakarta.

Application Client A J2EE application client is a client-side J2EE component that
has access to a subset of the J2EE APIs provided by the J2EE client container. A J2EE
application client must be invoked within the context of a J2EE client container, such as
the runclient container provided by the J2EE RI.

Application Layer The application layer is a term used to refer to the logical layer
containing the interaction with the user of the application. This can include not only
Web-based interaction using servlets and JSPs with a Web browser, but also application
clients.

Application Server An application server is a server-side container for components
of an n-tier application. In Java terms, a typical application server will provide all of the
J2EE APIs and container types. Application servers can also provide additional function-
ality, such as CORBA, COM, or Web Service support. Common application servers
include BEA WebLogic, IBM WebSphere, iPlanet Application Server (iAS), and JBoss.

Auxiliary Deployment Descriptor The deployment descriptors provided with J2EE
components and applications provide standard information about the properties and con-
figuration of those components and applications. The auxiliary deployment descriptor
defines additional, non-standard information about the J2EE application or component
that is used by a specific J2EE container or application server. Hence, the contents of the
auxiliary deployment descriptor are specific to that environment. See also Deployment
Descriptor.

Axis The Apache Axis project is part of the Apache XML project. Axis is a Java-based
SOAP toolkit that allows you to build and invoke Web Services from Java components.
See also Apache.

Bean See JavaBean.

Bean-Managed Persistence (BMP) See BMP.

Bean-Managed Transaction Demarcation (BMTD) See BMTD.

BMP (Bean-Managed Persistence) An Entity EJB can take responsibility for per-
sisting and retrieving its own internal state when prompted by its container. This is com-
monly done by including JDBC code in the appropriate lifecycle methods. This style of
Entity EJB persistence is termed Bean-Managed Persistence. See also CMP.

1004 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1004

Glossary 1005

BMTD (Bean-Managed Transaction Demarcation) An EJB can take control of its
own transactions by making API calls to start and end transactions. This is termed Bean-
Managed Transaction Demarcation. See also CMTD.

Business Tier The set of machines on which the business components execute in an
n-tier or 3-tier application. See also n-tier, 3-tier.

Client Tier See Presentation Tier.

CMP (Container-Managed Persistence) An Entity EJB can delegate responsibility
for persisting and retrieving its internal state to its container. This is termed Container-
Managed Persistence. See also BMP.

CMR (Container-Managed Relationships) Under EJB 2.0 (and J2EE 1.3), it is
possible to specify relationships between Entity EJBs in such a way that the container
will automatically manage the lifecycle of the whole interconnected web of entities
according to those relationships. This means that entities that are referenced by other
entities will automatically be instantiated and populated when required, with no need for
code in either the client or the containing Entity. Such relationships are termed
Container-Managed Relationships.

CMTD (Container Managed Transaction Demarcation) An EJB can delegate
control of its transactions to its container, which will start and end transactions on behalf
of the EJB. This is termed Container-Managed Transaction Demarcation. See also
BMTD.

Collaboration Protocol Agreement (CPA) See CPA.

Collaboration Protocol Profile (CPP) See CPP.

Component A component is a grouping of functionality that forms a coherent unit.
This unit can be deployed in a component container independently of other components.
Applications can then be built by calling on the functionality of multiple, specialist com-
ponents. J2EE applications are built from various types of component, such as Web
Components and EJBs. See also Container.

Connector See JCA (Java Connector Architecture).

Container A container provides services for a component. These services can include
lifecycle management, security, connectivity, transactions, and persistence. Each type of
J2EE component is deployed into its own type of J2EE container, such as a Web
Container or an EJB Container. See also Component.

Container-Managed Persistence (CMP) See CMP.

Container-Managed Relationships (CMR) See CMR.

30 0672323842 GL 3/20/02 9:40 AM Page 1005

Container Managed Transaction Demarcation (CMTD) See CMTD.

Cookie A cookie is a short text string sent as part of an HTTP request and response.
Because HTTP is a stateless protocol, cookies provide a way of identifying the same
client across multiple HTTP requests. Any cookie sent by a server is stored by the client
and then submitted whenever another request is made to the same server. Cookies form
the basis of most Web-based session management.

CORBA (Common Object Request Broker Architecture) CORBA, from the
Object Management Group (OMG), defines a distributed environment consisting of
client-server connectivity integrated with a set of distributed services. CORBA clients
and servers connect to a local Object Request Broker (ORB) for connectivity and can
register and discover each other in the Common Object Services Naming Service (COS
Naming). There are many other CORBA services defined, including security, transaction,
and persistence.

CPA (Collaboration Protocol Agreement) A CPA is an XML document that
defines an agreement between two parties who are using ebXML to conduct e-business.
The CPA defines an intersection of the two parties’ CPPs, specifying which protocols
and mechanisms they will use to exchange information and services. See also CPP.

CPP (Collaboration Protocol Profile) A CPP is an XML document that defines the
services and capabilities offered by an organization that provides e-business services
using ebXML. See also CPA.

Crimson The Crimson XML parser from Apache is used to provide the XML parsing
functionality of the Sun JAXP reference implementation. See also Apache, Xerces.

Custom Tag Library See Tag Library.

Data-Tier See Integration Tier.

Declarative attributes Declarative attributes provide a way for a component to spec-
ify requirements to its container by means of attributes defined in the deployment
descriptor. These requirements can include when to start and stop transactions and the
level of security required by different parts of the component. Delegating control of such
functionality to the container and defining them in the deployment descriptor rather than
using code means that they are more easily changed when configuring an application.

Deployment Descriptor A deployment descriptor defines metadata for the compo-
nent or application with which it is associated. J2EE deployment descriptors are XML
documents that convey the requirements that a component or application has of its con-
tainer (such as security requirements). The deployment descriptor can also define the
relationships between different classes in the component, naming information, persis-
tence requirements, and so on.

1006 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1006

Glossary 1007

Design pattern See Pattern.

Digital certificate A digital certificate provides a way of signing digital data in such
a way that it authoritatively proves the identity of the sender. Certificates are usually
issued by trusted third parties called certification authorities.

DNS (Domain Name System) DNS is the mechanism whereby Internet applications
can resolve URLs (such as java.sun.com) to IP addresses (such as 192.18.97.71), act-
ing as a basic directory service. It also provides reverse resolution and information on the
location of e-mail servers.

Document Object Model (DOM) See DOM.

Document Type Definition (DTD) See DTD.

DOM (Document Object Model) The document object model is an API defined by
the W3C for manipulating and traversing an XML document. The API is defined in lan-
guage-neutral (CORBA) IDL, and Java-based XML parsers provide a Java-language
mapping of it. DOM is one of the two main parsing APIs provided by JAXP. See also
JAXP, SAX, and W3C.

Domain Layer The term domain layer is sometimes used to denote the group of logi-
cal components that provide the data model for an application. These components are
manipulated by other components in the business layer to perform business-oriented
functionality.

Domain Name System (DNS) See DNS.

DTD (Document Type Definition) The structure of an XML document can be
defined using a DTD. The DTD syntax forms part of the XML specification, but is some-
what limited in its descriptive capabilities. For this reason, it is being superseded by
XML Schema. See also XML Schema.

EAR (Enterprise Archive) An EAR file contains the components and deployment
descriptors that make up an enterprise application. An EAR is the unit of deployment for
a J2EE server (that is, how it expects applications to be packaged).

EAI (Enterprise Application Integration) Many existing enterprise applications
reside on systems, such as mainframes. Providing connectivity and interoperability with
such systems for an n-tier application is commonly termed Enterprise Application
Integration. Some n-tier reference models will refer to an integration tier, which is a
combination of components that connect to databases and EAI components, sometimes
called enterprise information systems. See also EIS.

30 0672323842 GL 3/20/02 9:40 AM Page 1007

ebXML (Electronic Business XML) The ebXML initiative has produced a set of e-
business standards that range from data transportation through to the choreography of
business processes. These standards provide a platform for e-business and a set of value-
added services when sending e-business messages. See also CPA, CPP, JAXM.

Electronic Business XML (ebXML) See ebXML.

EIS (Enterprise Information Systems) An enterprise information system is any
source of enterprise data, such as a database or mainframe. EIS systems will be accessed
through an integration tier. See also EAI.

EJB (Enterprise JavaBean) An EJB is a J2EE business component that lives within a
J2EE EJB container. EJBs can be Session beans, Entity beans, or Message-driven beans.
An EJB consists of home and remote interface definitions, the bean functionality, and the
metadata required for the container to correctly interact with the bean.

EJB Container An EJB container provides services for the EJBs deployed within it. It
will control access to the EJB instances and will call the lifecycle methods on each EJB
at the appropriate time. The container also provides the persistence and relationship
mechanisms used by Entity EJBs.

ejb-jar An ejb-jar file contains one or more EJBs together with the deployment
descriptor and resources needed by them. The ejb-jar is a unit of deployment for EJB
business components. See also EJB.

EJB QL (EJB Query Language) EJBs that use CMP must specify the results expect-
ed from the various finder methods defined on their home interface. EJB QL provides a
container-independent way of doing this by allowing the developer to associate EJB-
based queries with the different finder methods.

EJB Query Language See EJB QL.

Enterprise Application An enterprise application consists of one or more J2EE com-
ponents packaged in an EAR archive. An enterprise application is the end result of a
J2EE development.

Enterprise Application Integration (EAI) See EAI.

Enterprise Archive (EAR) See EAR.

Enterprise Information Systems (EIS) See EIS.

Enterprise JavaBean (EJB) See EJB.

Enterprise Resource Planning (ERP) See ERP.

1008 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1008

Glossary 1009

ERP (Enterprise Resource Planning) ERP packages provide pre-packaged, config-
urable components that provide core enterprise functions, such as personnel management
and operations. Such systems are core to enterprise operations, so they must be integrat-
ed with other enterprise applications, such as those developed using J2EE. Information
from such systems can be retrieved and manipulated through J2EE Connectors or Web
Services. See also JCA.

Entity EJB (or Entity Bean) An Entity EJB is a data component used in a J2EE
application. Entities frequently map onto domain Entities discovered during analysis and
design.

eXtensible Markup Language (XML) See XML.

eXtensible Stylesheet Language (XSL) See XSL.

eXtensible Stylesheet Language Formatting Objects (XSL-FO) See XSL-FO.

eXtensible Stylesheet Language Transformations (XSLT) See XSLT.

Home Interface The home interface of an EJB is a remote factory interface that is
registered using JNDI. Clients will discover this interface and use its methods to create,
remove, or find one or more EJBs. See also EJB.

HTML (Hypertext Markup Language) HTML is the language used to define Web
pages that display in a Web browser, such as Netscape Navigator or Microsoft Internet
Explorer. See also HTTP.

HTTP (Hypertext Transfer Protocol) HTTP is the standard transport mechanism
used between Web clients and servers. It is used to fetch HTML documents, and also as
the underlying transport for Web Services. HTTP servers can be set up on any TCP end-
point, but are usually found on port 80 or common alternatives (8000, 8080, 8888, and so
on). See also HTML, HTTPS, and Web Service.

HTTPS (Secure Hypertext Transfer Protocol) HTTPS uses SSL sockets to encrypt
HTTP traffic between a client and a server and to authenticate the server to the client
(and possibly vice versa). HTTPS uses a different endpoint (443) from standard HTTP.
See also HTTP.

HyperText Markup Language (HTML) See HTML.

HyperText Transfer Protocol (HTTP) See HTTP.

IMAP (Internet Message Access Protocol) IMAP is a flexible way of dealing with
Internet-based e-mail. Using IMAP, messages stay in a user’s mailbox on the server
while the client retrieves metadata about them (such as the size, sender, and so on). The
client can then selectively download messages, rather than having to download all e-
mails in one go. See also POP.

30 0672323842 GL 3/20/02 9:40 AM Page 1009

Initial Context A JNDI initial context is the starting point for JNDI interaction. J2EE
components will obtain an initial context to discover resources, properties, and other
J2EE components.

Integration Tier The set of machines on which the data access components execute
in an n-tier or 3-tier application. See also n-tier, 3-tier.

Internet Message Access Protocol (IMAP) See IMAP.

J2EE Java 2 Enterprise Edition.

J2EE application See Enterprise Application.

J2EE Component A J2EE component is the basic unit of a J2EE application.
Different components will serve different purposes, such as presentation of data, provi-
sion of business logic, or access to underlying data. See also Web Component.

J2EE Container A J2EE container provides the services and environment required by
a particular type of J2EE component. See also Web Container.

J2EE Pattern A J2EE Pattern is a pattern that is implemented using J2EE technolo-
gies. J2EE Patterns can help to improve the quality of the J2EE applications within
which they are applied. See also Pattern.

J2EE Reference Implementation (RI) See J2EE RI.

J2EE RI (J2EE Reference Implementation) The J2EE RI (or the Java 2 SDK
Enterprise Edition—J2SDKEE) serves as a proof-of-concept for the technologies defined
in the J2EE specification. The team that produces the JSR for each version of J2EE is
responsible for delivering a reference implementation for it. The J2EE RI is freely down-
loadable and provides a useful test environment for J2EE developers.

J2EE Server A J2EE server is the underlying J2EE platform that provides the services
required by J2EE containers. J2EE servers are typically delivered in the form of applica-
tion servers. See also J2EE Container.

Jakarta Project The Jakarta Project is the overarching project for Java-oriented devel-
opment at the Apache Foundation. This includes the Tomcat servlet and JSP engine. See
also Apache.

JAF (JavaBeans Activation Framework) JAF provides a way of associating a par-
ticular MIME type with an application or component that knows how to process data of
that MIME type. JAF is used in various parts of J2EE including JavaMail and Web
Services.

1010 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1010

Glossary 1011

JAR (Java Archive) JAR files are a compressed archive format in which Java classes
and associated resources are typically stored. All of the various archives used by J2EE
are delivered in JAR files. See also EAR , ejb-jar, WAR.

Java API for XML Messaging (JAXM) See JAXM.

Java API for XML Parsing (JAXP) See JAXP.

Java API for XML Registries (JAXR) See JAXR.

Java API for XML-based RPC (JAX-RPC) See JAX-RPC.

Java Architecture for XML Binding (JAXB) See JAXB.

Java Archive (JAR) See JAR.

JavaBean A JavaBean is a Java class that conforms to certain rules on method nam-
ing, construction, and serialization. JavaBeans are used within J2EE to contain Java func-
tionality and data in Web components or as data carriers between layers. Note that a
JavaBean is not an EJB. See also EJB.

JavaBeans Activation Framework (JAF) See JAF.

Java Connector Architecture (JCA, Connectors) See JCA.

Java Community Process (JCP) See JCP.

Java Database Connectivity (JDBC) See JDBC.

Java Data Objects (JDO) See JDO.

Java IDL Java IDL is the delivery mechanism for CORBA IDL support under Java.
The Java IDL compiler allows you to compile CORBA IDL into Java stubs and skeletons
that can be used to communicate with remote CORBA objects. See also CORBA.

JavaMail JavaMail is part of the J2EE platform that allows you to send and receive e-
mail messages.

Java Message Service (JMS) See JMS.

Java Naming and Directory Interface (JNDI) See JNDI.

JavaServer Pages (JSP) See JSP.

JavaServer Pages Standard Tag Library (JSPTL) See JSPTL.

Java Transaction API (JTA) See JTA.

Java Transaction Service (JTS) See JTS.

Java Web Service (JWS) file See JWS.

30 0672323842 GL 3/20/02 9:40 AM Page 1011

JAXB (Java Architecture for XML Binding) JAXB defines an architecture for mar-
shalling data between Java and XML formats. It provides tools to convert XML DTDs
and Schemas into Java classes.

JAXM (Java API for XML Messaging) JAXM defines how J2EE components send
and receive XML-based messages over SOAP. JAXM will form part of J2EE 1.4. See
also SOAP.

JAXP (Java API for XML Processing) JAXP defines the interfaces and program-
ming model for the parsing, manipulation, and transformation of XML in Java.

JAX Pack (or Java XML Pack) The JAX Pack provides an interim delivery mecha-
nism for the various XML-related APIs currently under development. After these APIs
have been incorporated into J2EE 1.4, the JAX Pack may disappear. See also JAXM,
JAXP, JAXR, JAX-RPC.

JAXR (Java API for XML Registries) JAXR defines how a J2EE component will
access and manipulate XML data held in XML-oriented registries, such as UDDI and the
ebXML registry and repository.

JAX-RPC (Java API for XML-based RPC) JAX-RPC defines how J2EE components
make and receive XML-based RPC calls over SOAP. It specifies the relationship between
the definition of an interface in WSDL and the Java binding for that interface. See also
SOAP, UDDI.

JCA (Java Connector Architecture) The JCA defines how external data sources,
such as ERP systems, should be made available to J2EE components. The JCA mecha-
nism is very similar to the JDBC standard extension that allows components to discover
and use data sources defined by the container.

JCP (Java Community Process) The JCP is the process under which vendors and
individuals in the Java community work together to create and formalize the APIs and
technologies used in the Java platform. Standardization efforts under the JCP are referred
to as Java Specification Requests (JSRs). See also JSR.

JDBC (Java Database Connectivity) JDBC provides data access for Java applica-
tions and components.

JDO (Java Data Objects) JDO specifies a lightweight persistence mechanism for
Java objects. Its functionality lies somewhere between Java Serialization and entity EJBs.

JMS (Java Message Service) JMS specifies how a J2EE component can produce or
consume messages by sending them to, or retrieving them from, a queue or a topic. JMS
supports both the point-to-point model and the publish/subscribe model of message
passing.

1012 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1012

Glossary 1013

JNDI (Java Naming and Directory Interface) JNDI provides a generic API for
access to information contained in underlying naming services, such as the CORBA CoS
Naming service. JNDI is used by J2EE components to discover resources, configuration
information, and other J2EE components.

JSP (JavaServer Pages) JSPs provide a model for mixing static tagged content, such
as HTML or XML, with content dynamically generated using Java code. Such code can
be embedded in the page itself or, more usually, encapsulated in a JavaBean or tag
library. See also JavaBean, Tag Library.

JSP Directive Directives are messages to the JSP container that are embedded in a JSP
page. They appear as tags delimited by <%@ %>. Directives include page, taglib, and
include. A common example would be a page directive that defines the error page for
this JSP. See also JSP, JSP Error Page.

JSP Error Page An error page can be defined for each JSP page to handle any errors
occurring on that page. Any unhandled exceptions will cause the error page to be dis-
played. The same error page can be shared between multiple JSP pages. An error page is
basically a JSP page that has access to error-specific information, such as the exception
that caused the error. See also JSP.

JSP Expression A JSP expression is a Java statement that is executed, and the result
of this statement is coerced into a string and output at the current location in the page.
Expressions are delimited by <%= %>. A typical example would use a Java statement to
evaluate the current date or time to be inserted at the current location. See also JSP.

JSP Scriptlet A JSP scriptlet is a section of Java code embedded in a JSP page and
delimited by <% %>.

JSPTL (JavaServer Pages Standard Tag Library) The JSPTL is an initiative under
the JCP to create a standard tag library for common functionality, such as conditional
evaluation and looping. See also Tag Library.

JSR (Java Specification Request) A JSR is a project under the auspices of the JCP
that defines a new standard for a Java API or technology. JSRs are run by groups of
experts drawn from vendors and the broader Java community. See also JCP.

JTA (Java Transaction API) The JTA defines an API that allows J2EE components to
interact with transactions. This includes starting transactions and completing or aborting
them. The JTA uses the underlying services of the JTS. See also JTS.

JTS (Java Transaction Service) The JTS is a low-level, Java-based mapping of the
CORBA Object Transaction Service. Transaction managers that conform to JTS can be
used as part of a J2EE environment to control and propagate transactions on behalf of
J2EE components. J2EE components will not use JTS directly, it is used on their behalf
by their container or through the JTA. See also JTA.

30 0672323842 GL 3/20/02 9:40 AM Page 1013

JWS (Java Web Service file) A JWS file is a Java class file with a .jws extension.
When placed under the appropriate part of the Apache Axis hierarchy, this Java class will
automatically be exported as a Web Service. See also Axis.

Kerberos Kerberos is a strong, distributed security mechanism that uses encryption
and signed “tickets” to allow clients and servers to interoperate in a secure manner.

LDAP (Lightweight Directory Access Protocol) LDAP is a standard protocol for
accessing data in a directory service. Common directory services such as Microsoft’s
Active Directory and Novell’s NDS support LDAP. JNDI can be used to deliver LDAP
requests using the LDAP service provider. See also Active Directory, JNDI, NDS.

Lightweight Directory Access Protocol (LDAP) See LDAP.

Local Home Interface A local home interface is an EJB factory interface that returns
EJB local interfaces. The local home interface is for use by clients that run in the same
server and reduces the overhead associated with remote RMI calls. See also Home
Interface, Local Interface.

Local Interface A local interface is a business- or data-access interface defined by an
EJB that is intended to be used by clients running in the same server. Using a local inter-
face reduces the overhead associated with remote RMI methods. Local interfaces form
the foundation for container-managed relationships used by Entity EJBs. See also CMR,
Local Home Interface, Remote Interface.

MDB (Message-Driven EJB) A Message-driven bean is an EJB that processes JMS
messages. The bean implements an onMessage method, just like a JMS message con-
sumer. Messages delivered to the associated queue will be passed to the MDB’s
onMessage method, so the MDB will be invoked asynchronously (the client could be
long gone).

Message-Driven EJB (or Message-Driven Bean, MDB) See MDB.

Microsoft SQL Server Microsoft SQL Server is Microsoft’s flagship enterprise data-
base. SQL Server is now part of Microsoft’s .NET server range. J2EE components can
access data in a SQL Server database through standard data access mechanisms, such as
JDBC. See also JDBC.

MIME (Multipurpose Internet Mail Extensions) MIME provides a way of defin-
ing a multi-part message in which each part contains a different type of data. Within the
message, each part has its own MIME header defining the content type of that part and
delimiting that part from the other parts. Common uses of MIME include Internet e-mail
and SOAP.

Multipurpose Internet Mail Extensions (MIME) See MIME.

1014 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1014

Glossary 1015

N-Tier Modern distributed applications are defined in terms of multiple tiers. A 3-tier
application has three physical tiers containing presentation, business, and data access
components. In reality, applications can have many more physical tiers, each of which
can be some specialization of the three tiers listed, or as a representation of ultimate
clients and data sources. As such, these applications are referred to as n-tier to indicate
that there are a variable number of tiers (3 or more). See also 3-tier.

NDS (Novell Directory Services) NDS is Novell’s popular directory service, origi-
nating from its NetWare family of products.

Novell Directory Services (NDS) See NDS.

OASIS (Organization for the Advancement of Structured Information
Standards) OASIS is a non-profit, international consortium that creates interoperable
industry specifications based on public standards, such as XML and SGML. OASIS is
one of the sponsors of ebXML. See also ebXML.

Object-Oriented Database Management System (OODBMS) See OODBMS.

Object Relational Database Management System (ORDBMS) See ORDBMS.

OODBMS (Object-Oriented Database Management System) An OODBMS
provides persistent storage that supports the OO paradigm so that data definition can be
done in terms of classes, inheritance, and methods. Data retrieval can be performed in
terms of object instances in contrast to record sets. See also ORDBMS.

Oracle Oracle produce several J2EE-related products. The Oracle database can be used
as an enterprise-class data store as part of a J2EE application. The Oracle application
server is itself a J2EE application server that can host a J2EE-compliant application. As
you would expect, this gives performance and functionality benefits when combined with
Oracle’s database.

ORDBMS (Object Relational Database Management System) An ORDBMS
provides an OO mapping on top of a traditional relational database. This means that the
developer can work in terms of objects and classes, and the ORDBMS takes the respon-
sibility for mapping these classes and objects to the underlying database tables. See also
OODBMS.

Organization for the Advancement of Structured Information Standards
(OASIS) See OASIS.

Pattern A pattern is a solution to a problem in a given context. Patterns commonly
occur in software design and architecture. By using patterns, designers and architects can
improve the quality of the software and systems they produce.

Post Office Protocol (POP/POP3) See POP.

30 0672323842 GL 3/20/02 9:40 AM Page 1015

POP/POP3 (Post Office Protocol) POP defines a way for an e-mail client, such as
Eudora, to retrieve messages from a mailbox maintained by an e-mail server. All mes-
sages must be downloaded before they can be examined or read. See also IMAP, SMTP.

Presentation Layer The presentation layer is a term used to refer to the logical layer
containing the interaction with the user of the application. For a Web-based application,
this typically means the generation of HTML or XML by servlets and/or JSPs. For an
application client, the presentation is typically done through a Swing GUI.

Presentation Tier The set of machines on which the presentation components exe-
cute in an n-tier or 3-tier application. See also 3-tier, N-tier.

Reference Implementation See J2EE RI.

Remote Interface The business or data access methods exposed by an EJB are
referred to as its remote interface. The interface extends the RMI Remote interface, indi-
cating that it is to be used outside of the current virtual machine. Each EJB has one
remote interface, and this is the type returned by finder and creator methods on the EJB’s
home interface.

Remote Method Invocation (RMI) See RMI.

Remote Procedure Call (RPC) See RPC.

Remote Reference A remote reference is an object reference that refers to a remote
object. The method calls made through the remote reference will be propagated to the
remote object using RMI. In J2EE terms, a remote reference will usually refer to an EJB
or its home interface and will be retrieved from a finder/creation method or through
JNDI, respectively. See also RMI.

RI See J2EE RI.

RMI (Remote Method Invocation) RMI is a Java-based, object-oriented RPC
mechanism. All communication with EJBs in a J2EE application is done via RMI (except
for Message-driven beans). RMI defines a syntax and mechanism for accessing remote
Java objects and also for passing serialized Java objects between client and server. See
also RMI-IIOP.

RMI-IIOP RMI-IIOP defines a way that RMI RPC calls can be carried over the
CORBA IIOP transport. This allows for interoperability between different J2EE applica-
tion servers as well as between RMI clients and servers and CORBA clients and servers.
See also CORBA, RMI.

RPC (Remote Procedure Call) An RPC is a method call that spans processes, fre-
quently across a network. A client-side stub (or proxy) and a server-side skeleton (or
stub) will make the issuing of RPCs look similar to a local method call. See also
CORBA, RMI.

1016 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1016

Glossary 1017

SAX (Simple API for XML) SAX was defined by members of the XML-DEV e-mail
list (and formalized by David Megginson) as a way of processing XML in Java. The
SAX API is event driven, notifying the Java program as XML elements and content are
encountered. SAX is generally regarded as lighter-weight than the DOM API and is
delivered as part of JAXP. See also DOM, JAXP.

Scriptlet See JSP Scriptlet.

Secure HyperText Transfer Protocol (HTTPS) See HTTPS.

Secure Sockets Library (SSL) See SSL.

Servlet A servlet is a Web component that is written entirely in Java. Servlets have a
defined lifecycle and allow Web developers to consume (most commonly) HTTP
requests and generate responses. Responses can be in the form of HTML, XML, or any
text or binary format. See also JSP, Web Component.

Session EJB (or Session Bean) Session EJBs are intended to house business logic
and processing in a typical J2EE application. Session EJBs will provide business services
to the presentation tier and will use Entity EJBs, connectors, or direct database access to
retrieve business data.

Session EJBs can be either stateful (they retain state between invocations) or stateless
(state is not retained between invocations).

SGML (Standard Generalized Markup Language) SGML is a forerunner of both
HTML and XML. It is a very flexible general purpose markup language that, like XML,
can be used to mark up any form of data. However, its flexibility leads to it being some-
what unwieldy. The originators of XML intended to keep much of the flexibility of
SGML while deriving a simpler syntax. See also XML.

Simple API for XML (SAX) See SAX.

Simple Mail Transfer Protocol (SMTP) See SMTP.

Simple Object Access Protocol (SOAP) See SOAP.

SMTP (Simple Mail Transfer Protocol) The SMTP standard defines how e-mail
servers send messages to each other. SMTP forms the backbone of the Internet e-mail
delivery system. See also IMAP, POP.

SOAP (Simple Object Access Protocol) SOAP is an XML-based, de-facto standard
for the encoding of XML-based messages. The messages can be intended as method
names and parameters for a remote procedure call, or as an XML-encoded message to be
processed and potentially passed on. SOAP is used as the underlying transport for all
Web Services. SOAP is being formalized under the auspices of the W3C. See also JAX-
RPC, JAXM, SOAP-RP, Web Service.

30 0672323842 GL 3/20/02 9:40 AM Page 1017

SOAP Routing Protocol See SOAP-RP.

SOAP-RP (SOAP Routing Protocol) SOAP-RP is an evolving standard that adds the
ability to route SOAP messages. The original SOAP specification only dealt with SOAP
messages sent between two parties. A fully-functional messaging system should be able
to support multi-hop messages. This is the intention of SOAP-RP. See also SOAP.

SQL (Structured Query Language) SQL is a language used to create, update,
retrieve, delete, and manage data in a relational database. SQL statements are defined
from simple selection of data through to the invocation of parameterised stored proce-
dures. Although the core SQL statements are standardized, some vendors provide their
own extensions. See also ANSI SQL, ANSI SQL 92.

SQL 92 See ANSI SQL 92.

SQLJ SQLJ defines a way of embedding SQL statements in Java code and, as such, is
an alternative to the use of JDBC. SQLJ also defines how Java code can be used to create
stored procedures. SQLJ is a vendor-independent initiative. More information can be
found online at http://www.sqlj.org.

SSL (Secure Sockets Library) SSL defines a standard way of using encryption
across a sockets connection. This includes authentication of the server (and optionally
the client) using digital certificates, and the exchange of encryption keys. SSL is com-
monly used as the basis for transporting secure versions of higher-level protocols, such
as secure HTTP (HTTPS). See also HTTPS.

Standard Generalized Markup Language (SGML) See SGML.

Stateful Session EJB (or Stateful Session Bean) See Session EJB.

Stateless Session EJB (or Stateless Session Bean) See Session EJB.

Structured Query Language (SQL) See SQL.

Sybase Sybase is one of the major server vendors. Their products include the Adaptive
Server database and the EAServer application server.

Tag Library A tag library defines a set of XML-compliant tags that can be used as
part of a JSP. Each tag is associated with a particular piece of Java code. When the JSP
processor encounters one of these tags, it will invoke the associated Java code. The Java
code may generate new content, or it may perform other tasks such as looping or access
to J2EE resources. See also JSP.

Taglib See Tag Library.

1018 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1018

Glossary 1019

Tomcat The Tomcat servlet engine is an open-source Java implementation delivered
by the Apache Foundation. Tomcat (and the associated Jasper JSP engine that is deliv-
ered with it) have formed the reference implementation for servlets and JSPs. Tomcat can
run as a standalone server, or it can be plugged into most Web servers, including the
Apache Web Server. See also Jakarta Project.

UDDI (Universal Description, Discovery and Integration) UDDI is one of the
main technologies used for registration and discovery of Web Services. UDDI defines a
set of SOAP messages that can be used to access XML-based data in a registry. It also
defines a registry information model to structure the data stored and make it easier to
search and navigate.

UDDI4J UDDI4J is a Java-based API from IBM that provides Java wrappers for the
UDDI SOAP messages. This API fills the same role as JAXR. See also JAXR, UDDI.

UML (Unified Modelling Language) UML defines a largely diagrammatic lan-
guage for capturing system requirements and expressing system design in object-oriented
terms. UML diagrams are commonly used to illustrate class relationships and object
interactions. UML was created from a merger of previous OO methodologies, including
Booch, Jacobsen, and OMT.

UML Class Diagram A UML class diagram represents a domain entity of some form
that has usually been discovered by analysis. This entity can represent information, func-
tionality, or both. An example would be a Customer class that had attributes and func-
tionality associated with the role of a customer. Class diagrams can also be used to repre-
sent the relationships between different classes in a system. See also UML.

UML Collaboration Diagram A UML collaboration diagram is a way of showing
interactions between objects at the same time as showing the relationships between the
objects. It combines some of the features of a class diagram with some of the features of
a sequence diagram. See also UML.

UML Component Diagram A UML component diagram shows the components in a
system and their dependencies. See also UML.

UML Interaction Diagram The term “UML interaction diagram” refers to any one
of several forms of UML object-based diagrams that show the interactions between
objects, such as sequence diagrams. See also UML Sequence Diagram.

UML Sequence Diagram A UML sequence diagram shows the interactions between
two or more objects over time. Each object is represented by a “swim lane” down the
page, and messages are shown passing to and fro. See also UML.

Unified Modelling Language (UML) See UML.

30 0672323842 GL 3/20/02 9:40 AM Page 1019

Uniform Resource Identifier (URI) See URI.

Uniform Resource Locator (URL) See URL.

Universal Description, Discovery and Integration (UDDI) See UDDI.

URI (Uniform Resource Identifier) A URI is a string-based name for an abstract or
physical resource. The URI specification defines how specific resource identifiers, such
as URLs, should be formatted. If you like, a URI is the “abstract base class” of other
resource identifiers, such as URLs. See also URL.

URL (Uniform Resource Locator) A URL is a string-based name for identifying a
resource available across the Internet. An absolute URL begins with the protocol (http),
then a colon (:), and then the specific address using that protocol. This usually contains a
hostname, a relative path, and possibly other components. An example of a URL is
http://java.sun.com. See also URI.

Validation See XML validation.

W3C (World Wide Web Consortium) The W3C is a vendor-neutral body created
in 1994 by Tim Berners-Lee to lead the development of common Web protocols. The
W3C has more than 500 Member organizations from around the world.

WAP (Wireless Access Protocol) WAP is a standard protocol for transporting data
between a mobile device and a server. Most WAP servers take the form of gateways that
provide onward access to Internet resources. The WAP protocol layers take the place of
TCP/IP, and are designed to allow for the unpredictability of mobile connectivity. See
also WML.

WAR (Web Archive) A WAR file is the unit of deployment for one or more Web
components. A WAR file is a JAR-format file that contains servlets and/or JSPs together
with deployment information and additional resources required by the component. See
also EAR, JAR.

Web Application A Web application provides functionality accessible over the Web,
usually from a Web browser. A Web application can be delivered in a WAR file and
deployed under a compliant Web container. See also Enterprise Application, WAR.

Web Archive (WAR) See WAR.

Web Component A Web component is a unit of functionality that forms part of a
Web application or Enterprise application. A Web component consists of one or more
JSPs and/or servlets together with deployment information and additional resources
required by the component. A Web component is deployed into a Web container that con-
trols its access to resources and its lifecycle. See also Enterprise Application, WAR, Web
Application, Web Container.

1020 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1020

Glossary 1021

Web Container A Web container provides services, such as access control, resource
access, and lifecycle management for one or more Web components. See also Web
Component.

Web Service A Web Service is a programmatic interface for functionality accessible
using Web protocols. Web Services are accessed over SOAP and may be registered in
Web Service registries, such as UDDI. The functionality of a Web Service is usually
defined in terms of WSDL. See also ebXML, SOAP, UDDI, WSDL.

Web Service Registry A Web Service registry is an XML-based repository for infor-
mation about Web Services. Service providers will register their services in such a repos-
itory and clients will search for required services there. Examples of Web Service
Registry standards include UDDI and the ebXML Registry and Repository standard. See
also ebXML, UDDI.

Web Services Description Language (WSDL) See WSDL.

Web Tier See Presentation-Tier.

Well-formed (of an XML document) An XML document is said to be well formed
if it obeys certain rules regarding structure laid down in the XML standard. XML docu-
ments that are not well formed cannot be manipulated by XML tools, such as parsers,
and will generate errors when processed. See also XML, XML Validation.

Wireless Access Protocol (WAP) See WAP.

Wireless Markup Language (WML) See WML.

WML (Wireless Markup Language) WML is a markup language, similar to
HTML, that is targeted at mobile devices. Due to the limited nature of most mobile dis-
plays, WML is far less feature-rich than HTML. WML documents are delivered to
mobile devices over WAP. See also WAP.

World Wide Web Consortium (W3C) See W3C.

WSDL (Web Services Description Language) WSDL is an XML syntax for
describing a Web Service interface, the protocols through which that interface can be
reached, and the location of one or more servers that implement the interface. See also
Web Service.

WSDL4J WSDL4J is a Java-based API for WSDL manipulation defined by IBM. This
API occupies the same role as the forthcoming API for WSDL being defined by JSR
110. See also WSDL.

30 0672323842 GL 3/20/02 9:40 AM Page 1021

Xalan Xalan is an open-source XSLT processor from the Apache Foundation that is
written in Java and is accessible from Java. Xalan supports the TrAX API for Java-based
XML transformations. Xalan is used by the JAXP reference implementation as the basis
for its XSLT transformation support. See also Apache.

Xerces Xerces is an open-source XML parser from the Apache Foundation that is writ-
ten in Java and accessible from Java. Xerces supports the SAX and DOM APIs and is
very popular in the Java community. It is likely that Xerces will soon be merged with
Crimson to create a single Apache XML processor. See also Apache, Crimson.

XML (eXtensible Markup Language) XML is a tag-based syntax for adding infor-
mation into text documents. XML does not define any specific tags, rather it defines the
structure and conventions to be used by custom tags created for a variety of purposes.
XML documents consist of a set of elements (delimited by opening and closing tags) and
optionally attributes on those elements. The XML specification is defined and maintained
by the W3C. See also W3C.

XML Schema The XML Schema standard defines an XML grammar that can be used
to define the contents of an XML document. An XML schema can define the data types
expected, sequencing of XML elements, the presence and values of attributes, and so on.
XML schemas are associated with XML documents using namespaces. See also XML.

XML validation A valid XML document is a well-formed XML document that con-
forms to a particular DTD or XML Schema. A parser can be asked to validate an XML
document against a DTD or schema and will generate errors if the structure checking
fails. See also DTD, Well-formed, XML Schema.

XPath The W3C XPath standard describes a syntax for selecting parts of an XML doc-
ument. XPath is used by XSLT to identify which parts of the source document are to be
transformed by a particular rule. See also XSLT.

XPointer The W3C XPointer standard describes how a fragment of an XML docu-
ment can be identified using a URI combined with XPath syntax. This is similar in con-
cept to an HTML-based URL that includes an anchor (for example http://www.tem-
puri.org/usefulfacts.html#WEBSERVICES) to locate a specific part of the document.
See also XPath.

XSL (eXtensible Stylesheet Language) The W3C XSL standard covers both XSLT
and XSL-FO. Originally, there was intended to be a single XML-oriented style sheet lan-
guage (such as is the case with the Cascading Style Sheet Language for HTML), but two
distinct elements of functionality were identified (transformation and rendering), so two
separate standards were spawned. See also XSL-FO, XSLT.

1022 Glossary

30 0672323842 GL 3/20/02 9:40 AM Page 1022

Glossary 1023

XSL-FO (eXtensible Stylesheet Language Formatting Objects) XSL-FO
defines a set of XML-based formatting objects that can be used to render a document.
XSL-FO is a more generic rendering format than, for example, HTML, and can be used
on a wider variety of devices and applications. See also XSL.

XSLT (eXtensible Stylesheet Language Transformations) XSLT is a declarative
language and processing model used to convert one dialect of XML into another dialect
of XML (or some other text-based format). XSLT is frequently used when importing or
exporting business documents in XML format. See also XSL.

30 0672323842 GL 3/20/02 9:40 AM Page 1023

30 0672323842 GL 3/20/02 9:40 AM Page 1024

3-tier development. See
n-tier development

200-299 status codes (HTTP),
508

300-399 status codes (HTTP),
508

400-499 status codes (HTTP),
508

500-599 status codes (HTTP),
508

A
<A> tag (HTML), 511
absolute URLs (Uniform

Resource Locators), 475
abstract accessor methods,

274-275
abstract classes, 273
abstract schema names, 294
accessing data, 22

data access logic, 12

Data Access Object pattern,

804-806

createJob() method,

810-811

DirectJobDAOImpl

implementation,

807-809

JobDAO interface, 806

JobValueObject object,

806-807

EJB services, 131

servlet variables, 575

UDDI (Universal

Description, Discovery,

and Interaction)

JAXR (Java API for

XML Registries),

934-937

locally hosted registries,

929

public production reg-

istries, 929

public test registries, 929

UDDI4J, 929-932

WSKT Client API, 932-

934

ACID test, 336
acknowledgements

AUTO_

ACKNOWLEDGE, 437

DUPS_OK_

ACKNOWLEDGE, 438

actions, 558
activating Entity EJBs

(Enterprise JavaBeans), 235

Symbols

& (ampersand), 990
<> (angle brackets), 509, 558,

990
* (asterisk), 993
, (comma), 993
— (double hyphens), 710
“ (double quotes), 101, 990
/ (forward slash), 100-101
() (parenthesis), 993
% (percent sign), 565
| (pipe character), 993
+ (plus sign), 993
? (question mark), 993
‘ (single quote), 101, 990
<!— —> tag

HTML (Hypertext Markup

Language), 511

XML (Extensible Markup

Language), 709

100-199 status codes (HTTP),
508

2PC (two phase commit) pro-
tocol, 354-356, 359-360

2-tier design
disadvantages, 12-13

layers, 11-12

INDEX

31 0672323842 Index 3/20/02 9:35 AM Page 1025

activations (Sequence dia-
grams), 973

Active Directory, 19
actors, 967
adapters

Adapter classes, 204-205

resource adapters, 835-836

add() method, 287
addAll() method, 287
addAttachmentPart()

method, 951
addBodyElement() method,

948
addBodyPart() method,

477-478, 482
addChildElement() method,

948
addCookie() method, 533
addElement() method, 736
addNamingListener()

method, 120
addRecipient() method, 469
addresses (e-mail)

HTML e-mail, 473

recipient addresses, 469

sender addresses, 469

admin.jsp file, 815
administered objects, 399
administration tool, 65
Advertise interface, 801-802
advertise.jsp page, 592-594,

632-634, 693
AdvertiseValueObject object,

803
afterBegin() method, 352
Agency case study, 72-76, 585,

734
Agency directory, 76

AgencyTable servlet,

546-552

CaseStudy directory, 76

CMP support, 276-277

customer list, 644

database installation, 77-78

declarative authorization

network security require-

ments, 689-690

roles, 685

security constraints,

686-691

deploying, 156-157

ERD diagram, 72-73

examining, 154-155

Examples directory, 76

Exercise directory, 76-77

jobSummary document

attributes, 708-709

code listing, 708

DTD (document type

declaration), 713

namespace, 714-715

XML Schema, 716-717

Message-driven beans, 447

AgencyBean, 449-450,

735-736

ApplicantMatch bean,

737-739

ApplicationMatch bean,

451-456

deploying, 456-457

MessageSender class,

736-737

queues, 456

RegisterBean, 449-450

sender helper class,

447-449

testing, 457

one-to-many relationships,

284

patterns, 797-798, 822

client-side proxies and

delegates, 820-821

data access without

EJBs (Enterprise

JavaBeans), 804-811

data exchange and Value

Objects, 800-804

entity creation, 812-813

JSP (JavaServer Page)

creation, 813-817

JSPs (JavaServer Pages)

and separation of con-

cerns, 817-820

messages and asynchro-

nous activation, 811

service location,

821-822

Session Facades,

798-800

programmatic authorization

advertise.jsp customer

name selection, 693

agency.jsp customer

options, 692

role references, 693-694

programmatic security, 682

AgencyBean.java, 681

ejbCreate() method, 679

role references, 680

roles, 675, 686

Solution directory, 76

testing, 158-160

troubleshooting, 160-161

Web interface

advertise.jsp page,

592-594, 632-634, 693

agency.css style sheet,

589

agency.jsp page,

589-590, 692, 814

agency.ldif configuration

file, 105-106

AgencyBean.java,

582-584

agencyName.jsp page,

581-582

dateBanner.jsp page, 570

deploying, 597-600

EJB references, 598

errorPage.jsp, 595-597

look and feel, 588-592

name.jsp page, 572-573

1026 activations (Sequence diagrams)

31 0672323842 Index 3/20/02 9:35 AM Page 1026

portal page, 587

skills.jsp, 627-628

structure and navigation,

585-587

table.jsp page, 576-577

tableForm.jsp page, 576

updateCustomer.jsp,

594-595

XML Schema, 734

Agency directory, 76
Agency EJG, 133
Agency Session bean, 172
agency.css style sheet, 589
agency.jsp page, 589-590, 692,

814
agency.ldif configuration file,

105-106
AgencyBean bean, 449-450,

582-584, 735-736, 817-818
agencyName.jsp page,

581-582
AgencyTable servlet, 546-552
Alexander, Christopher,

788-790
algorithms

checksums, 660

message digests, 660

symmetric encryption,

657-658

Allaire ColdFusion, 24
ALTER TABLE statement

(SQL), 978-979
ampersand (&), 990
analysis patterns, 791
ancestor axis (XPath), 763
angle brackets (<>), 509, 558,

990
anonymous security, 121
ANSWERED flag (e-mail),

489
ANY keyword, 712
Apache

Axis toolkit, 877, 881-883

Jakarta Project, 604, 646

appendChild() method, 731
applets

applet clients, 51

JNDI (Java Naming and

Directory Interface) para-

meters, 90

ApplicantMatch bean,
737-739

applicantXML() method, 736
Application Assemblers, 63
Application Component

Providers, 63
Application Deployers, 64
application development,

9-10
Enterprise Computing

Model, 17-18

lifecycle, 18

naming, 18-19

persistence, 18

security, 19-20

transactions, 19

monolithic development

disadvantages, 10-11

structure, 10

transitioning to n-tier, 26

n-tier design, 13-14, 28, 38

advantages, 16-17

business tier, 39-44

client tier, 49-54

component frameworks,

15-16

modularity, 14-16

presentation tier, 44-49

transitioning to, 26

two-tier design

disadvantages, 12-13

layers, 11-12

Application object, 575
application scope, 618
Application Server Enterprise

Edition (iPlanet), 24
application-level exceptions,

351

application.xml file, 146
ApplicationMatch bean, 451

code listing, 453-456

deleteByApplicant()

method, 452

deploying, 456-457

ejbCreate() method, 451

ejbRemove() method, 451

findByLocation() method,

452

getLocation() method, 452

getSkills() method, 453

InitialContext interface, 451

onMessage() method, 452

skillMatch counter, 453

testing, 457

applications. See also specific
application names

B2B (business to business),

129

deploying, 66-67

deployment descriptors,

67-68, 526-527

EARs (Enterprise

Application Archives),

67

EJB-JAR files, 69

filters, 538-541

listeners, 543-545

Tag Libraries, 612-614

WAR (Web Archive)

files, 70

developing. See application

development

EAI (Enterprise Application

Integration), 129

EJB-based, 126

enterprise applications

component relationship

descriptions, 146-147

deploying, 193, 322-323

exceptions, 179

J2EE Blueprints, 23-24

applications 1027

31 0672323842 Index 3/20/02 9:35 AM Page 1027

JNDI (Java Naming and

Directory Interface) prop-

erties, 89

identity, 386

modeling, 127

packaging, 66-67

deployment descriptors,

67-68

EARs (Enterprise

Application Archives),

67

EJB-JAR files, 69

WAR (Web Archive)

files, 70

servlets

accessing, 518

code listing, 514-515

deploying, 515-518

HttpServletRequest

interface, 515

HttpServletResponse

interface, 515

thick clients, 129

Web applications

deployment descriptors,

526-527

directory structure,

525-526

EJBs (Enterprise

JavaBeans), 128

applying patterns, 793-794
case study analysis,

797-798, 822

client-side proxies and

delegates, 820-821

data access without

EJBs (Enterprise

JavaBeans), 804-811

data exchange and Value

Objects, 800-804

entity creation, 812-813

JSP (Java ServerPage)

creation, 813-817

JSPs (Java ServerPages)

and separation of con-

cerns, 817-820

messages and asynchro-

nous activation, 811

service location,

821-822

Session Facades,

798-800

refactoring, 794, 822-823

architectural patterns, 790
archives

EARs (Enterprise

Application Archives), 67

WAR (Web Archive) files,

70, 909

ARRAY data type, 367
<assembly-descriptor> tag,

340, 668
associations, 969-970
asterisk (*), 993
asymmetric encryption,

658-659
asynchronous message-based

Web Services, 939
asynchronous messaging

exception handling, 415

main() method, 415

MessageListener interface,

414

onMessage() method,

414-415

setMessageListener()

method, 414

atomic units, 336
attachments (e-mail)

creating, 482-483

retrieving, 490

processPart() method,

491

RetrieveAttachment

application, 492-494

writeFile() method, 491

writeTo() method, 492

sending, 483-485

SOAP messages, 951-952

<attribute> tag, 616
attributes

Class diagrams, 970-971

DTDs (document type dec-

larations)

attribute types, 712-713

default values, 713

defining, 712

LDAP (Lightweight

Directory Access

Protocol)

defined, 102

modifying, 112-114

reading, 108-109

XML (Extensible Markup

Language), 708-709

declaring, 993-994

lookup tag example,

615-617

processing, 765-766

transforming, 770-771,

774-776

validating, 635-637

XPath, 764

AuditFilter servlet
code listing, 537-538

doFilter() method, 544-545

audits
auditing filter

code listing, 537-538

doFilter() method,

544-545

defined, 656

AuthenticateRetrieveMail
application, 495-497

authentication
Basic authentication,

683-685

client authentication, 655

defined, 19, 654

Digest authentication, 683

Digest MD5, 696

1028 applications

31 0672323842 Index 3/20/02 9:35 AM Page 1028

external, 122, 696

forms-based authentication,

683

GSSAPI, 696

HTTPS client authentica-

tion, 684

initial identification, 654

JAAS (Java Authentication

and Authorization

Service), 58

JavaMail

AuthenticateRetrieveMai

l application, 495-497

Authenticator class, 494

MyAuthenticator class,

494-495

PasswordAuthentication

object, 495

LDAP (Lightweight

Directory Access

Protocol), 696

SASL (Simple

Authentication and

Security Layer)

jndi.properties file,

697-698

ListSASL.java example,

696-697

secure authentication

schemes, 694

user credentials, 655

authentication property
(JNDI), 121, 695

Authenticator class, 494, 499
authorization

declarative authorization

network security

requirements,

689-690

roles, 685

security constraints,

686-691

defined, 19, 655

JAAS (Java Authentication

and Authorization

Service), 58

programmatic authorization

Agency case study,

692-694

getRemoteUser()

method, 692

getUserPrincipal()

method, 691

isUserInRole() method,

691

AUTO_ACKNOWLEDGE
message, 437

Axis toolkit, 877, 881-883

B

B2B (business to business)
applications, 129

Bacchus Normal Form (BNF),
293

backslash (\), 101
Basic HTTP (Hypertext

Transfer Protocol) authenti-
cation, 683-685

BEA Weblogic Server, 24
bean class, 431
bean-managed persistence

(BMP), 217
bean-managed transactions,

436-437
deployment, 349

restrictions, 345

Session EJBs (Enterprise

JavaBeans), 345-349

BeanOrderServer.java file,
915

beans
creating, 579

declarative security

method permissions,

670-674

role mappings, 674-676

roles, 666-668

security identity,

668-670, 676-678

defined, 578

EJBs (Enterprise

JavaBeans). See EJBs

parts of, 134

initializing, 581

JAF (JavaBeans Activation

Framework), 59

programmatic security, 678

Agency case study,

679-682

getCallerPrincipal()

method, 678

isCallerInRole() method,

678

properties

retrieving, 579-580

setting, 580-581

security, 666

BeanSerializers, 912-919
BeanOrderServer.java, 915

BeanOrderService client,

916-918

BeanOrderService serializer

definition, 915

LineItemBean.java, 914

beforeCompletion() method,
352

begin() method, 346, 845
beginTransactionIfRequired()

method, 349
bidirectional assocation, 970
<BIG> tag (HTML), 511
bin directory, adding to

search path, 30
bind() method, 91, 853
binding objects, 90-91

bind() method, 91

example, 91

name persistence, 92

potential problems, 91-92

binding objects 1029

31 0672323842 Index 3/20/02 9:35 AM Page 1029

rebinding, 92

unbinding, 92-93

bindingTemplate structure,
928

BLOB data type, 366, 375
Blueprints, 23-24
BMP (bean-managed persis-

tence), 217
configuring, 248-252

defining interfaces, 225-230

implementing, 231-248

lifecycle, 220-224

obtaining references, 252

BNF (Bacchus Normal Form),
293

<BODY> tag (HTML), 511
body types (JMS), 409
<body-content> tag, 608
BodyPart objects, 477-478
BodyTag interface, 608
BodyTagSupport class, 609,

622
Book class, 115
Book Manager application,

836-837
BookManagerClient.java,

843

BookManagerClient2.java,

848

BookManagerEJB.java,

841-842

BookManagerEJB2.java,

846-847

CceConnectionSpec class,

838

home interface, 837

IndexedRecord object, 840

InteractionSpec interface,

839

LocalTransaction interface,

845

MappedRecord object, 840

methods

begin(), 845

close(), 841

createInteraction(), 839

execute(), 840, 845

getConnection(), 839

getRecordFactory(), 839

insertBook(), 837

iterator(), 845

listTitles(), 844

lookup(), 838

rollback(), 846

setSessionContext(), 838

remote interface, 837

BookFactory.java file, 118
BookManagerClient.java file,

843
BookManagerClient2.java

file, 848
BookManagerEJB.java file,

841-842
BookManagerEJB2.java file,

846-847
BookRef.java file, 117-118
books

Design Patterns - Elements

of Reusable Object-

Oriented Software, 791

The Timeless Way of

Building, 788

UML Distilled, Second

Edition, 966

boolean type, 717

 tag (HTML), 511
bulletin board application

publisher, 417-418

subscriber, 418-420

Business Delegate pattern
case study analysis,

820-821

defined, 796

maintainability, 821

performance, 821

reliability, 821

business interface (EJB), 264
implementing, 135-138

methods, 132

patterns, 203

business logic, 12, 134
Entity and Session EJBs

(Enterprise JavaBeans),

212-213

separating from presentation

tier, 130-131

business-tier patterns
Business Delegate

case study analysis,

820-821

defined, 796

maintainability, 821

performance, 821

reliability, 821

Composite Entity

case study analysis,

812-813

defined, 796

flexibility, 813

maintainability, 813

performance, 813

Fast Lane Reader, 796

Page-by-page Iterator, 796

Session Façade

case study analysis,

798-800

defined, 795

flexibility, 799

maintainability, 799

performance, 799

security, 799

Value List Handler, 796

Value Object

case study analysis,

800-804

defined, 796

Partial Value Object, 804

Value Object Builder, 796

business-to-business (B2B)
applications, 129

1030 binding objects

31 0672323842 Index 3/20/02 9:35 AM Page 1030

BusinessLifeCycleManager
interface, 936

BusinessQueryManager inter-
face, 937

<BUTTON> tag (HTML),
511

BytesMessage message type,
409

C

caches, 384-387
Caesar cipher, 656-657
calling RPC-style Web

Services
ServiceClient class, 891

SOAP (Simple Object

Access Protocol),

889-891

cardinality, 281
CAs (Certification

Authorities), 660
cascade delete relationships,

312
cascade nulls, 281
<cascade-delete> tag, 317
case sensitivity (XML), 988
case study. See Agency case

study
CaseStudy directory, 76
catalogs of patterns, 792
CceConnectionSpec class, 838
CCI application, 836-837

BookManagerClient.java,

843

BookManagerClient2.java,

848

BookManagerEJB.java,

841-842

BookManagerEJB2.java,

846-847

CceConnectionSpec class,

838

home interface, 837

IndexedRecord objects, 840

InteractionSpec interface,

839

LocalTransaction interface,

845

MappedRecord objects, 840

methods

begin(), 845

close(), 841

createInteraction(), 839

execute(), 840, 845

getConnection(), 839

getRecordFactory(), 839

insertBook(), 837

iterator(), 845

listTitles(), 844

lookup(), 838

rollback(), 846

setSessionContext(), 838

remote interface, 837

CD-ROM
Agency directory, 76

CaseStudy directory, 76

Examples directory, 76

Exercise directory, 76-77

Solution directory, 76

CDATA attribute type, 713,
994

certificate realm, 664
certificates (digital), 660-661
Certification Authorities

(CAs), 660
characters() method, 723
checksums, 660
child axis (XPath), 762
<choose> tag, 645
cipher keys, 657
Class diagrams

associations, 969-970

attributes, 970-971

constraints, 973

generalization, 972

operations, 971-972

classes, 15
abstract, 273

Adapter, 204-205

Authenticator, 494, 499

bean, 431

BodyTagSupport, 609, 622

Book, 115

CceConnectionSpec, 838

custom primary keys,

227-229

dependent value, 259-261

DirContext, 108

Factory, 117

InitialContext, 86

installing as jar files, 374

javax.ejb package,

167-168

JDO (Java Data Objects),

387-389

loading from code bases,

114

MessageSender, 448-449,

736-737

MyAuthenticator, 494-495

PTPReceiver, 413-414

PTPSender, 410-411

RecipientType, 498

ServiceClient, 891

ServiceDefinition, 933

ServiceProvider, 932

ServiceRegistryProxy, 932

servlet class hierarchy, 513

SessionContext, 168

SQLj Part 0, 368

super and sub, 381

TagSupport, 609

TEI (Tag Extra Info),

635-637

UDDIProxy, 931

UnicastRemoteObject, 853

wrapping as Web Services

deployment descriptors,

895-896

classes 1031

31 0672323842 Index 3/20/02 9:35 AM Page 1031

deployment information,

897-898

SimpleOrderServer.java

example, 894-895

XALAN, 748

XSLT (Extensible

Stylesheet

Transformations), 751-755

CLASSPATH environment
variable, 31, 85

clauses (SQL)
FROM, 983

GROUP BY, 984

HAVING, 984

ORDER BY, 984-985

WHERE, 983-984

cleanup tool, 65
client tier

applet clients, 51

dynamic HTML clients,

50-51

mobile devices, 51

non-Java clients, 54

peer-to-peer communica-

tion, 53

standalone clients, 52-53

static HTML clients, 49-50

Web Services, 54

client-demarcated transac-
tions, 350

client-side proxies, 820-821
clients, 49

applet clients, 51

authentication, 655

BeanOrderService client,

916-918

BookManagerClient.java,

843

BookManagerClient2.java,

848

dynamic HTML clients,

50-51

EJBs (Enterprise

JavaBeans), 126, 129

HelloUserClient.java, 855,

859

JAXM (Java API for XML

Messaging), 941

JMS (Java Message

Service), 399

message sender clients,

445-449

message-based Web

Services, 938-939

JAXMOrderServer.java,

952-954

JAXMOrderService

Client.java, 943-944

ProcessingServlet.java,

960-961

running, 947

SubmittingServlet.java,

957-959

Message-driven beans and,

430-431

mobile devices, 51

non-Java clients, 54

peer-to-peer communica-

tion, 53

redirecting, 529

remote clients, 127

running EJBs (Enterprise

JavaBeans), 150-151

standalone clients, 52-53

static HTML clients,

49-50

thin clients, 9, 13

user credentials, 655

Web Service clients

SimpleOrderClient.java

example, 899-900

WSDL (Web Services

Description Language)

descriptions, 898-899

Web Services, 54

XML (Extensible Markup

Language) data, 742-743

CLOB data type, 366, 375
cloneNode() method, 731
close() method, 448, 487, 841
closing

JMS (Java Message

Service) connections, 410

RI (Reference

Implementation), 37

Cloudscape
Cloudscape Server tool, 65

diagnostic messages, 34

starting, 34

troubleshooting, 34

read-only installation

directory, 35

refused connections,

36-37

server port conflicts,

35-36

CMP (container-managed
persistence), 217, 271-273

Agency database, 276-277

Entity EJBs (Enterprise

JavaBeans)

abstract accessor meth-

ods, 274-275

abstract classes, 273

CMR (container-

managed relation-

ships), 279

cmr-fields, 282-285

configuring, 313-322

lifecycle management,

277-279

local interface, 301

LocalHome interface,

301

manipulating relation-

ships, 286-291

relationship navigability,

282

relationship types,

280-281

1032 classes

31 0672323842 Index 3/20/02 9:35 AM Page 1032

cmp-fields
exposing, 324-325

naming restrictions, 275

CMR (container-managed
relationships), 273, 279

cmr-fields, 282-285

exposing, 325-326

naming restrictions, 283

relationships, 282-285

manipulating relationships,

286-291

relationship navigability,

282

relationship types, 280-281

<cmr-field-name> tag, 318
<cmr-field-type> tag, 318
cmr-fields

exposing, 325-326

naming restrictions, 283

relationships, 282-285

code bases
defining, 114-117

Book.java class, 115

JNDICodebase.java,

115-116

JNDILookupBook.java,

116-117

loading classes from, 114

code listings
acquire late, release early

database connections, 262

Advertise interface, 801-802

advertise.jsp, 592-594,

632-634, 693

AdvertiseBean.ejbCreate()

method, 197

AdvertiseBus interface, 204

AdvertiseJob bean

deployment descriptor,

339

updateDetails() method,

255-256

updateDetails() method

BMTD implementa-

tion, 347-349

updateDetails() method

with Entity bean layer,

256-257

AdvertiseValueObject

object, 803

agency.css, 589

agency.jsp, 590, 692

agency.ldif, 105

AgencyBean

AgencyBean.java,

582-584, 817-819

business method imple-

mentation, 136-137

createCustomer()

method, 681

deleteCustomer()

method, 681

deployment descriptor,

144-145

ejbCreate() method, 175

home interface, 140

getLocations() method,

177-178

lifecycle methods, 139

agencyName.jsp, 581

AgencyTable servlet,

550-552

ApplicantMatch bean,

454-456

ApplyXSLT.java, 752-753

<assembly-descriptor> tag,

668

AuditFilter servlet

doFilter() method, 545

source code, 537-538

banner.html, 571

basicHTML.xsl, 757

BeanOrderServer.java, 915

BeanOrderService

client, 916-918

serializer definition, 915

Book.java, 115

BookFactory.java, 118

BookManagerClient.java,

843

BookManagerClient2.java,

848

BookManagerEJB.java,

841-842

BookManagerEJB2.java,

846-847

BookRef.java, 117-118

bulletin board program

publisher, 417-418

subscriber, 418-420

Cloudscape startup diagnos-

tics, 34

CMP Entity EJB abstract

accessor methods, 274

color attribute validation,

636-637

createJob() method, 811

date.jsp, 560

dateBanner.jsp, 570

dd.xml, 772

demo.tld, 606

deploy.xml, 902-903

DirectJobDEOImpl imple-

mentation, 807-809

DOM Parser, 728-731

dynamic pages

as JSP (JavaServer

Page), 557

as servlet, 556

ejbActivate() and

ejbPassivate() methods,

235, 304

ejbCreate() method, 305,

679

ejbCreater() and

ejbPostCreate() methods,

235, 237

ejbHomeDeleteByCustomer

() method, 310

code listings 1033

31 0672323842 Index 3/20/02 9:35 AM Page 1033

ejbLoad() method, 232-234,

303, 369-370

ejbRemove() method,

238-239, 307

ejbStore() method, 232-234,

303

Entity beans, referencing,

257

<entity> tag, 250, 314-316

errorPage.jsp, 595-596

finder methods, 239-240

footer.jsf, 591

foreach.jcp, 643

ForEachTag.java

source code, 623-624,

628-629

TLD (tag library

descriptor), 625,

630-631

getCustomerObj() method,

313

GetCustTag.java, 620-621

header.jsf, 588

hello.jsp, 605

HelloServer.java, 887

HelloServerClient.java, 888

HelloServerPortType.java,

886

HelloTag.java, 611

HelloUser.java, 852

HelloUserClient.java, 855,

859

HelloUserImpl.java, 854,

858

HelloWorld.java, 863

HTML (Hypertext Markup

Language) form, 511-512

HTML (Hypertext Markup

Language) page, 510

HTMLPage with counter,

541

Imp.c, 864

JavaMail

AuthenticateRetrieve

Mail application,

496-497

RetrieveAttachment

application, 492-494

SendAttachmentMail.

java, 483-484

SendHTMLMail.java,

474-475

SendMail.java, 470-471,

475

SendMultiPartMail.java,

480-481

JAXMOrderServer.java,

953-954

JAXMOrderServiceClient.

java, 943-944

JAXR client initialization

code, 935

JDO (Java Data Objects)

classes, creating, 389

criteria-based searching,

390

jndi.properties file, 697

JNDIAttributes.java,

108-109

JNDIBind.java application,

91

JNDIBindBookRef.java,

119

JNDICodeBase.java,

115-116

JNDICreate.java, 99

JNDIDestroy.java, 100

JNDIFilter.java, 111

JNDIListSAMS.java, 96-97

JNDILookup.java, 93-94

JNDILookupAny.java, 107

JNDILookupBook.java,

116-117

JNDILookupBookRef.

java, 119-120

JNDILookupSAMS.java,

94-95

JNDIModify.java, 112-113

JNDISearch.java, 110

JNDITree.java, 98

job.xml, 749

Job/Skill relationship, 319

JobBean

business methods, 242

ejbHomeDeleteBy

Customer() method,

241

setEntityContext()

method, 231-232

JobDAO interface, 806

JobData class Job bean state

information, 379

JobLocal interface, 230, 301

JobLocalHome interface,

225, 301

JobPK class, 227-228, 309

jobSummary document

attributes, 709

DTD (document type

declaration), 714

initial source code, 708

namespace, 714-715

XML Schema, 716-717

JobValueObject object,

806-807

jobs.xml

applying basicHTML to,

757-758

applying textHTML.xsl

to, 760-761

LineItemBean.java, 914

list() method, 96-97

listBindings() method,

97-98

listcust.jsp, 644

ListSASL.java, 697

loadDetails method,

803-804

1034 code listings

31 0672323842 Index 3/20/02 9:35 AM Page 1034

Location/Job relationship,

318

<login-config> tag, 685

lookup.jsp, 615

LookupTag.java, 616-617

MDBPrintMessage bean

deployment descriptor,

444-446, 455

source code, 440

<method-identity> tag, 671

MyHelloService.wsdl,

883-884

name.jsp, 572-573

NamingListener object, 121

narrow() method, 96

OptionTag.java

source code, 629-630

TLD (tag library

descriptor), 630-631

OptionTagTEI.java, 636

Order.java, 948-950

point-to-point messaging

queue receiver, 413-414

queue sender, 410-411

port conflict error message,

35-36

ProcessingServlet.java,

960-961

RegisterBusiness.java,

930-931

Remote interface for

Agency EJB, 133-134

remote interface for stateful

Advertise bean, 198

RI (Reference

Implementation) startup

diagnostics, 33-36, 78-79

role references, 680, 694

<run-as> tag, 676

SAX Parser, 722-723

<security-constraint> tag,

690-691

<security-identity> tag, 670

select.jsp, 638

SelectTag.java, 638-639

Servlets application,

514-515

session.xls, 773

session.xml, applying to

dd.xml, 774

SessionSimpleOrderServer.j

ava, 906

client code, 907-908

deployment descriptor,

906-907

setEntityContext() and

unsetEntityContext()

methods, 302-303

simple.xsl, 746

SimpleOrderClient.java,

899-900

SimpleOrderServer.java,

895

SimpleOrderServer2.jws,

903-904

SimpleOrderServerSoap

BindingImpl.java file, 902

SimpleOrderServerSoap

BindingSkeleton.java file,

901-902

SimpleOrderService

deployed services,

897-898

deployment descriptor,

895

simpleSpace.xsl, 768

simpleStrip.xsl, 767

skills.jsp, 627-628

SoapSayHello.java, 889-890

SQL (Standard Query

Language)

transaction fragment, 338

UDFs, 374

SQLj version of ejbLoad(),

371-372

stateless Agency bean

remote interface, 174

static methods as SQL

stored procedures, 376

SubmittingServlet.java,

957-959

table.jsp, 576-577

table.xsl, 765

tableForm.jsp, 576

tableStyle.xsl, 776

tag library, 820

textHTML.xsl, 759

updateCustomer.jsp, 595

UserTransaction objects,

obtaining, 350

valid XML (Extensible

Markup Language) ele-

ments, 706

VerifyData servlet

parameters, 521

VerifyForm HTML

page, 520

Web application deployment

descriptor, 526

XLAN from the command

line, 750

XML (Extensible Markup

Language) example, 705

XSL-FO document, 744

xsltForm.html, 754

ColdFusion, 24
Collection interface, 287
comma (,), 993
Command design pattern,

205, 794
commands. See also methods

deploytool, 405-406

j2eeadmin, 404-405

slapadd, 106

slatcat, 106

comment() function, 763
comments

JSPs (JavaServer Pages),

560

comments 1035

31 0672323842 Index 3/20/02 9:35 AM Page 1035

XML (Extensible Markup

Language), 709-710,

769-770, 990

commit() method, 346,
423-424

common client interface
(Connector architecture),
834

Common Object Request
Broker Architecture. See
CORBA

Common Object Services
(COS), 18

compatibility of servers,
24-25

compilation errors, 567-568
compilers, 780-781
completeTransactionIf

Required() method, 349
complex type mapping,

912-919
BeanOrderServer.java, 915

BeanOrderService client,

916-918

BeanOrderService serializer

definition, 915

LineItemBean.java, 914

complex types, 717
composing

entities, 812-813

JSPs (Java Server Pages),

813-817

Composite Entity pattern
case study analysis, 812-813

defined, 796

flexibility, 813

maintainability, 813

performance, 813

composite names, 100-101
Composite View pattern

case study analysis,

813-817

admin.jsp, 815

agency.jsp, 814

flexibility, 816

footer.jsf, 815

header.jsf, 814

maintainability, 816

manageability, 816

performance, 817

defined, 795

compound names, 101
Concept interface, 936
conceptual level (UML), 966
confidential option (network

security requirements), 690
confidentiality, 655
config object, 575
configuring

Basic authentication,

684-685

EJBs (Enterprise

JavaBeans)

BMP (bean-managed

persistence), 248-252

CMP (container-

managed persistence),

313-322

metadata, 141-142

stateful EJBs, 200

stateless EJBs, 180-181

environment variables

CLASSPATH, 31

JAVA_HOME, 29-30

PATH, 30-31

JavaBean properties,

580-581

JAXM (Java API for XML

Messaging), 941-942

JNDI (Java Naming and

Directory Interface),

85-88

applet parameters, 90

application properties, 89

CLASSPATH variable,

85

hard-coded properties, 90

J2EE RI for Linux and

Unix, 86

J2EE RI for Windows,

85-86

jndi.properties file,

88-89

server startup, 86

transactions

deploytool, 342

XADataSource interface,

357

XALAN, 748-749

conflicts (server port), 35-36
connect() method, 486, 494
ConnectException exception,

36-37
connection contract

(Connector architecture),
831

connection factories, 403
Connection interface, 356-358
connection pooling, 357
Connection Refused error

message, 36-37
ConnectionFactory object,

403
ConnectionPoolDataSource

interface, 357
connections

databases, 177

JMS (Java Message

Service), 399

closing, 410

ObjectConnection

object, 416

refused connections, 36-37

SQLj, 372

connectivity technologies,
848-849

choosing, 865

CORBA (Common Object

Request Broker

Architecture), 849-851

1036 comments

31 0672323842 Index 3/20/02 9:35 AM Page 1036

IDL (Interface

Definition Language),

850

IIOP (Internet Inter-

ORB Protocol), 850

Naming Service, 851

ORB (Object Request

Broker), 850

J2EE Connector architec-

ture. See Connector archi-

tecture

Java IDL (Interface

Definition Language), 851

JNI (Java Native Interface),

860-865

HelloWorld.java exam-

ple, 863

HelloWorldImp.c exam-

ple, 864

when to use, 865

legacy connectivity, 22

RMI (Remote Method

Invocation), 851-852

RMI over IIOP, 857-860

RMI over JRMP,

852-857

when to use, 865

Connector architecture, 62,
829-830

CCI application, 836-837

BookManagerClient.

java, 843

BookManagerClient2.

java, 848

BookManagerEJB.java,

841-842

BookManagerEJB2.

java, 846-847

CceConnectionSpec

class, 838

home interface, 837

IndexedRecord objects,

840

InteractionSpec inter-

face, 839

MappedRecord objects,

840

methods, 837-841,

844-846

remote interface, 837

common client interface,

834

connection contract, 831

EIS (Enterprise Information

Systems) interaction,

834-835

resource adapter installa-

tion, 835-836

roles, 830-831

security contract, 833-834

transaction management,

843

begin() method, 845

BookManagerClient2.

java example, 848

BookManagerEJB2.

java example,

846-847

contract, 832-833

execute() method, 845

iterator() method, 845

listTitles() method, 844

LocalTransaction inter-

face, 845

rollback() method, 846

Web site, 831

when to use, 865

constants, Status interface,
346, 360

constraints, 686, 973
creating, 687-689

<security-constraint> tag,

690-691

consuming messages
JMS (Java Message

Service), 411-412

Message-driven beans,

435-436

container-managed persis-
tence. See CMP

container-managed relation-
ships. See CMR

container-managed transac-
tion demarcation, 338-344,
352, 392, 436-437

<container-transaction> tag,
340

containers, 20-21, 55-56. See
also CMP (container-
managed persistence); CMR
(container-managed rela-
tionships)

EJBs (Enterprise

JavaBeans)

deploying, 147-148

EJB 2.0 specification,

172performance tun-

ing, 247-248

services, 126, 131-132

servlet containers, 513

content types
e-mail, 469, 479

HTTP (Hypertext Transfer

Protocol) responses, 508

Content-Disposition header
(MIME), 490, 498

Context object. See contexts
contextDestroyed() method,

542
contextInitialized() method,

542
contexts

changing, 94-95

creating, 98-99

destroying

destroySubcontext()

method, 99

JNDIDestroy.java appli-

cation, 99-100

directory contexts, 108

contexts 1037

31 0672323842 Index 3/20/02 9:35 AM Page 1037

initial contexts

creating, 86

naming exceptions,

86-87

listing

JNDIListSAMS.java

example, 96-97

JNDITree.java example,

98

list() method, 96-97

listBindings() method,

97-98

Message-driven beans, 433

naming exceptions, 86-87

ServletContext interface,

524

contracts (Connector archi-
tecture)

connection, 831

security, 833-834

transaction management,

832-833

cookies, 532-533
creating, 533-534

retrieving information from,

534

cooperating tags
hierarchical tag structures

advertise.jsp page,

632-634

findAncestorWithClass()

method, 627

<forEach> tag, 628-630

getParent() method, 627

<option> tag, 629-631

skills.jsp page, 627-628

shared script variables, 626

copyrights, 29
CORBA (Common Object

Request Broker
Architecture), 849-851

COS (Common Object

Services), 18

IDL (Interface Definition

Language), 850

IIOP (Internet Inter-ORB

Protocol), 850

Naming Service, 851

ORB (Object Request

Broker), 850

COS (Common Object
Services), 18

CREATE TABLE statement
(SQL), 979

CREATE VIEW statement
(SQL), 979-980

create() method, 140, 173
CreateAgency.bat file, 77
CreateAgency.class file, 76
CreateAgency.java file, 76
CreateAgency.sh file, 77
createAttachment() method,

951
createCustomer() method,

681
createDurableSubscriber()

method, 420-421
createInteraction() method,

839
createJob() method, 810-811
createReceiver() method, 412
createSubcontext() method,

99
createSubscriber() method,

420-422
createTextMessage() method,

409
credentials, 655
credentials property (JNDI),

122, 695
CROSS JOIN statement

(SQL), 982
cross joins, 982
cryptography

Caesar cipher, 656-657

JCE (Java Cryptography

Extension), 698

CSS (Cascading Stylesheets),
742

custom tags
attributes

lookup tag example,

615-617

request time expressions,

616

TLDs (tag library

descriptors), 616

validating, 635-637

example, 605-606, 611-612

hierarchical tag structures

advertise.jsp page,

632-634

findAncestorWithClass()

method, 627

<forEach> tag, 628-630

getParent() method, 627

<option> tag, 629-631

skills.jsp page, 627-628

interfaces, 608

iterative tags, 622

body content, 622-623

BodyTagSupport class,

622

<forEachJob> tag exam-

ple, 623-626

IterationTag interface,

622

lifecycle

doAfterBody() method,

610-611

doEndTag() method, 610

doInitBody() method,

611

doStartTag() method,

610

release() method, 610

script variables, 618

adding to page contexts,

618

defining, 637

1038 contexts

31 0672323842 Index 3/20/02 9:35 AM Page 1038

<getCust> tag example,

619-622

sharing, 626

TLDs (tag library

descriptors), 618-619

support classes, 609

tag body processing

doSelect() method, 640

<select> tag example,

637-639

TLDs (tag library descrip-

tors)

attributes, 616

creating, 606-608

example, 606

file location, 614

<forEach> tag, 630

script variables, 618-619

D

data access, 22
data access logic, 12

Data Access Object pattern,

804-806

createJob method,

810-811

DirectJobDAOImpl

implentation,

807-809

JobDAO interface, 806

JobValueObject object,

806-807

EJB services, 131

servlet variables, 575

UDDI (Universal

Description, Discovery,

and Interaction)

JAXR (Java API for

XML Registries),

934-937

locally hosted registries,

929

public production reg-

istries, 929

public test registries, 929

UDDI4J, 929-932

WSKT Client API,

932-934

Data Access Object pattern
case study analysis,

804-811

createJob method,

DirectJobDAOImpl

implementation,

807-809

JobDAO interface, 806

JobValueObject object,

806-807

defined, 796

flexibility, 805, 811

maintainability, 805, 811

performance, 811

data exchange. See Value
Object pattern

data integrity
checksums, 660

defined, 655-656

message digests, 660

data store transactions, 385
data types, 717

SQL1999, 366

type mapping

serializers, 912-919

SOAP/WSDL types,

911-912

databases
Agency

CMP support, 276-277

installing, 77-78

Cloudscape

diagnostic messages, 34

starting, 34

troubleshooting, 34-37

Entity EJBs (Enterprise

JavaBeans), 214-215,

262-263

JDBC (Java Database

Connectivity), 57

joins

cross joins, 982

full joins, 983

inner joins, 981

left outer joins, 982

right outer joins, 982

manipulating, 177

object modeling, 215

RDBMS technology, 213

SQLj, 372

tables

adding rows to, 980-981

creating, 979

deleting rows from, 980

dropping, 980

editing, 978-979

retrieving data from, 981

updating, 229, 983

views

creating, 979-980

dropping, 980

DataSource object
connection pooling, 357

container-managed persis-

tence, 217

date type, 717
date.jsp file, 560-563
date/time information, gener-

ating, 560-563
dateBanner.jsp page, 570
debugging RPC-style Web

Services, 892-894
declarations

JSPs (JavaServer Pages),

559

XML (Extensible Markup

Language), 706, 989-994

declarative authorization
network security require-

ments, 689-690

roles, 685

security constraints,

686-691

declarative authorization 1039

31 0672323842 Index 3/20/02 9:35 AM Page 1039

declarative security, 661
<declare> tag, 619
declaring. See defining
Decorator pattern, 794
default realm, 664
DefaultHandler methods,

723-724
defining

attributes, 616, 712

code bases, 114-117

Book.java class, 115

JNDICodebase.java,

115-116

JNDILookupBook.java,

116-117

elements, 711-712

environment variables

CLASSPATH, 31

JAVA_HOME, 29-30

PATH, 30-31

JNDI (Java Naming and

Directory Interface),

87-88

applet parameters, 90

application properties,

89

hard-coded properties,

90

jndi.properties file,

88-89

roles, 666-668

script variables, 637

XML (Extensible Markup

Language) attributes,

993-994

XML (Extensible Markup

Language) elements,

992-993

delegates, 820-821
DELETE statement (SQL),

507, 980

deleteByApplicant() method,
452

deleteCustomer() method, 681
DELETED flag (e-mail), 489
deleting

e-mail messages, 489-490

table rows, 980

dependent value classes,
259-261

deploy.xml file, 902-903
deployable components, 143
deployment. See also deploy-

ment descriptors
bean-managed transaction

demarcation, 349

deployable components, 143

EARs (Enterprise

Application Archives), 67

EJB-JAR files, 69

EJBs (Enterprise

JavaBeans)

containers, 147-148

J2EE RI, 151

stateful EJBs, 200

vendor options, 181

enterprise applications, 193,

322-323

filters, 538, 540-541

JSPs (JavaServer Pages),

597-600

listeners, 543, 545

Message-driven beans,

442-445, 456-457

servlets, 515-518

Tag Libraries, 612, 614

WAR (Web Archive) files,

70

deployment descriptors, 67-68
EJBs (Enterprise

JavaBeans), 142-146

CMP (container-

managed persistence)

EJBs, 313-322

configuring, 180

EJB references, 188-189

Entity EJBs, 248-251

environment entries,

187-188

resource environment

references, 192-193

resource references,

190-192

vendor-specific, 186

XML (Extensible

Markup Language)

documents, 182-186

enterprise applications,

146-147

JDO (Java Data Objects),

391

limitations, 321

transactions, 339, 343

Web applications, 526-527

deploytool, 405-406, 664
deployment settings,

677-678

EJB (Enterprise JavaBeans),

152, 181-182

agency application,

154-157

CMP (container-

managed persistence)

EJBs, 316

Entity EJBs, 251-252

limitations, 181

method permissions,

670-674

role mappings, 674-676

security identity, 669-670

transaction configuration,

342

XADataSource interface,

357

descendent axis (XPath), 763
descendent-or-self axis

(XPath), 763

1040 declarative security

31 0672323842 Index 3/20/02 9:35 AM Page 1040

descriptors, 67-68
deployment. See deploy-

ment descriptors

TLDs (tag library descrip-

tors)

attributes, 616

creating, 606-608

example, 606

file location, 614

forEach tag, 630

option tag, 630

script variables,

618-619

Web applications, 526-527

design patterns. See patterns
Design Patterns - Elements of

Reusable Object-Oriented
Software, 791

destinations
J2EE RI, 404

JBoss, 403-404

destroy() method, 523, 537
destroying contexts

destroySubcontext()

method, 99

JNDIDestroy.java applica-

tion, 99-100

destroySubcontext() method,
99

DeveloperWorks Web site,
792

development, 9-10
Enterprise Computing

Model, 17-18

lifecycle, 18

naming, 18-19

persistence, 18

security, 19-20

transactions, 19

monolithic development

disadvantages, 10-11

structure, 10

transitioning to n-tier, 26

n-tier design, 13-14, 28, 38

advantages, 16-17

business tier, 39-44

client tier, 49-54

component frameworks,

15-16

modularity, 14-16

presentation tier, 44-49

transitioning to, 26

two-tier design

disadvantages, 12-13

layers, 11-12

diagnostic messages
Cloudscape, 34

RI (Reference

Implementation), 33-34,

78-79

diagrams
Class diagrams

associations, 969-970

attributes, 970-971

constraints, 973

generalization, 972

operations, 971-972

Sequence diagrams

activations, 973

example, 974-975

lifelines, 973

messages, 973

Use Case diagrams,

967-969

actors, 967

<<extend>> notation,

968

generalization notation,

968

<<include>> notation,

967

notation, 967

dialog boxes
Environment Variable, 30

New System Variable, 30

Digest authentication, 683
Digest MD5 authentication,

696

digests, 660
digital certificates, 660-661
digital signatures, 658
DirContext class, 108
directives

defined, 558

include, 570-571

page, 571-575

syntax, 570

DirectJobDAOImpl implenta-
tion, 807-809

directories. See also directory
services

Active Directory, 19

Agency, 76

bin, 30

CaseStudy, 76

Examples, 76

Exercise, 76-77

JNDI (Java Naming and

Directory Interface), 59

read-only installation direc-

tory, 35

Solution, 76

Web applications, 525-526

directory services, 22. See
also JNDI (Java Naming
and Directory Interface)

defined, 82

LDAP (Lightweight

Directory Access

Protocol), 84

attributes, 102, 108-109,

112-114

obtaining, 103

OpenLDAP, 104-106

Service Providers,

106-107

testing, 107-108

X.500 names, 102-103

NDS (Novell Directory

Services), 83

discovery, 148-149
Dispatcher View pattern, 795

Dispatcher View pattern 1041

31 0672323842 Index 3/20/02 9:35 AM Page 1041

<display-name> tag, 183, 527
displayHelloWorld() method,

864
disposal of EJBs (Enterprise

JavaBeans), 150
distribution via proxies, 131
DNS (Domain Name System),

19, 83
doAfterBody() method,

610-611, 622-624
<!DOCTYPE> tag, 527, 711,

992
Document interface

appendChild() method, 731

cloneNode() method, 731

getAttributes() method,

726-728

getChildNodes() method,

727

getDocumentElement()

method, 727

getElementsByTagName()

method, 727

getFirstChild() method, 727

getLastChild() method, 727

getNamespaceURI()

method, 726-728

getNodeName() method,

726-728

getNodeType() method,

726-728

getNodeValue() method,

726-728

getParentNode() method,

727

getPreviousSibling()

method, 727

hasAttributes() method, 728

hasChildNodes() method,

728

normalize() method, 726

removeChild() method, 731

Document Object Model
parsers. See DOM parsers

document roots, 525
document type declarations.

See DTDs
Document Type Definitions.

See DTDs
documentation

J2EE SDK (Software

Developers Kit), 20, 32

patterns, 789

SQL (Standard Query

Language), 977

DocumentBuilderFactory
interface, 725

documents (HTML)
compared to XML, 705

HTML form example,

511-512

simple HTML page exam-

ple, 510

VerifyForm page, 520

documents (XML), 701-702,
987-988. See also tags

advantages, 703

attributes, 708-709, 712-713

case sensitivity, 988

comments, 709-710, 990

compared to HTML, 705

declarations, 706

defined, 988

deployment descriptors,

67-68

DTDs (document type dec-

larations), 710-711,

989-990

attributes, 712-713

defined, 706

element content, 712

element type declara-

tions, 711-712

example, 713-714

DTDs (Document Type

Definitions), 992-995

attribute declarations,

993-994

deployment descriptors,

182, 249

element declarations,

992-993

EJB (Enterprise

JavaBeans) references,

188-189

entity references,

994-995

environment entries,

187-188

example, 992

resource environment

references, 192-193

resource references,

190-192

presentation elements,

183-184

Session element,

184-186

enforcing structure of, 991

DTDs (Document Type

Definitions), 992-995

XML Schemas, 995-997

history of, 703-704

JASB (Java Architecture for

XML Binding), 732-733

JAXM (Java APIs for XML

Messaging), 25

JAXP (Java API for XML

Parsing), 58-59, 718-720

JAXR (Java APIs for XML

Registries), 25

jobSummary document

attributes, 708-709

code listing, 708

DTD (document type

declaration), 713

namespace, 714-715

XML Schema, 716-717

1042 <display-name> tag

31 0672323842 Index 3/20/02 9:35 AM Page 1042

namespaces, 714-715, 991

online documentation, 997

parsing with DOM

(Document Object Model)

accessing tree nodes,

726-728

Document interface

methods, 725-728,

731-732

DocumentBuilder

Factory interface, 725

DOM Parser application,

728-731

modifying tree nodes,

731-732

parse() method, 725

parsing with SAX (Simple

API for XML), 719-720

DefaultHandler methods,

723-724

endElement() method,

721

SAX Parser application,

721-723

SAXParseFactory inter-

face, 720

startElement() method,

720-721

platform-independent data

exchange, 702-703

prologs, 990

root elements, 705-706

special characters,

990-991

support for, 22

tags

<assembly-descriptor>,

340, 668

<attribute>, 616

attributes, 615-617,

635-637

<body-content>, 608

<cascade-delete>, 317

<choose>, 645

<cmr-field-name>, 318

<cmr-field-type>, 318

content, 712

custom tags, 608-609

<declare>, 619

declaring, 992-993

<display-name>, 527

<!DOCTYPE> tag, 527,

711, 992

element type declara-

tions, 711-712

<error-page>, 527-528

example, 605-606, 611-

612

<forEach>, 628-630,

643-644

<forEachJob>, 623-626

<forTokens>, 645

<getCust>, 619-622

<hello>, 605-606,

611-612

hierarchical tag struc-

tures, 627-634

<if>, 645

<init-param>, 527

iterative tags, 622-626

<jobSummary>, 708

lifecycle, 610-611

<login-config>, 685

<lookup>, 615-617

<method-intf>, 671

<method-permissions>,

670-671

<name-from-attribute>,

618

<name-given>, 618

nesting, 707

<option>, 629-631

<param-name>, 527

<param-value>, 527

<run-as>, 676

scope, 619

script variables,

618-622, 626

<security-constraint>,

690-691

<security-identity>, 670

<servlet-class>, 527

<servlet-mapping>, 527

<servlet-name>, 527

<session-config>, 527

special characters, 707

structure of, 988-989

<tag>, 608

tag body processing,

637-640

<taglib>, 607

TLDs (tag library

descriptors), 606-608,

614-619, 630

<transaction-type>, 437

<variable>, 618-619

<variable-class>, 619

valid elements, 706

XSLT, 779-780

<web-app>, 527

transformations, 742,

746-747

adding comments,

769-770

attribute values, 770-771

compilers, 780-781

creating elements,

771-774

defining attributes,

bv774-776

elements, 779-780

numbering elements,

777-778

whitespace, 767-769

valid documents, 704

validating, 705

well-formed documents,

704, 708

XML Schemas, 715-716,

995-997

Agency case study, 734

example, 716-717

documents (XML) 1043

31 0672323842 Index 3/20/02 9:35 AM Page 1043

schema type definitions,

717-718

validator, 716

XPath, 997-998

XPointer, 997

doEndTag() method, 610
Does Not Exist state

(Message-driven beans), 432
doFilter() method, 535-536,

544-545
doGet() method, 522, 959
doInitBody() method, 611
DOM (Document Object

Model) parsers
Document interface meth-

ods

appendChild(), 731

cloneNode(), 731

getAttributes(),

726-728

getChildNodes(), 727

getDocument

Element(), 727

getElementsByTag

Name(), 727

getFirstChild(), 727

getLastChild(), 727

getNamespaceURI(),

726-728

getNodeName(),

726-728

getNodeType(),

726-728

getNodeValue(),

726-728

getParentNode(), 727

getPreviousSibling(),

727

hasAttributes(), 728

hasChildNodes(), 728

normalize(), 726

removeChild(), 731

DocumentBuilderFactory

interface, 725

DOM Parser application,

728-731

parse() method, 725

Domain Name System (DNS),
19, 83

domains
DNS (Domain Name

System), 19, 83

JMS (Java Message

Service)

defined, 399

point-to-point, 400-402

publish/subscribe, 401,

415-416

doPost() method, 522, 954
doSelect() method, 640
doStartTag() method, 610,

621, 624
double quote (“), 101, 990
downloading

J2EE SDK (Software

Developers Kit), 30

JSPTL (JavaServer Pages

Standard Tag Library),

641

LDAP (Lightweight

Directory Access

Protocol), 103

DRAFT flag (e-mail), 489
DROP TABLE statement

(SQL), 980
DROP VIEW statement

(SQL), 980
dropping tables/views, 980
DTDs (document type decla-

rations), 710-711,
989-990

attributes

attribute types, 712-713

default values, 713

defining, 712

defined, 706

element content, 712

element type declarations,

711-712

example, 713-714

DTDs (Document Type
Definitions), 992-995

attribute declarations,

993-994

deployment descriptors,

182, 249

EJB (Enterprise

JavaBeans) references,

188-189

environment entries,

187-188

presentation elements,

183-184

resource environment

references, 192-193

resource references,

190-192

Session element,

184-186

element declarations,

992-993

entity references, 994-995

example, 992

DuplicateKeyException
exception, 306

DUPS_OK_
ACKNOWLEDGE message,
423, 438

durable subscriptions,
420-421

E

EAI (Enterprise Application
Integration) applications,
129

EARs (Enterprise Application
Archives), 67

ebXML (Electronic Business
XML), 873

1044 documents (XML)

31 0672323842 Index 3/20/02 9:35 AM Page 1044

ebXML R&R (Registry and
Repository), 926-927

e-commerce applications, 129
editing

attributes

JNDIModify.java appli-

cation, 112-114

ModificationItem

objects, 112

ModifyAttributes()

method, 112

tables, 978-979

efficiency of servlets, 503
EIS (Enterprise Information

Systems)
CORBA (Common Object

Request Broker

Architecture), 849-851

IDL (Interface

Definition Language),

850

IIOP (Internet Inter-

ORB Protocol), 850

Naming Service, 851

ORB (Object Request

Broker), 850

guidelines, 865

J2EE Connector architec-

ture, 829-830

CCI application,

836-843

common client interface,

834

connection contract, 831

EIS interaction,

834-835

resource adapter installa-

tion, 835-836

roles, 830-831

security contract,

833-834

transaction management,

843-848

transaction management

contract,

832-833

Web site, 831

when to uses, 865

Java IDL (Interface

Definition Language), 851

JNI (Java Native Interface),

860-865

HelloWorld.java exam-

ple, 863

HelloWorldImp.c exam-

ple, 864

when to use, 865

RMI (Remote Method

Invocation), 851-852

RMI over IIOP,

857-860

RMI over JRMP,

852-857

when to use, 865

EJB Observer pattern, 796
EJB QL

from clause, 293-295

functions, 299

input parameters, 298

OO/relational impedance

mismatch, 300

operators, 297-299

select clause, 291-297

syntax, 293

where clause, 297-300

wildcards, 298

EJB servers, 126
<ejb-class> tag, 145, 185
ejb-jar 2 0.dtd file, 182
<ejb-jar> tag, 182, 248
EJB-JAR files, 69

CMR (container-managed

relationships), 280

deployment descriptors, 146

<ejb-name> tag, 145
<ejb-name> tag, 185
<ejb-relation> tag, 317

<ejb-relationship-role> tag,
317

ejbActivate() method, 172,
198, 221, 223, 279, 304

EJBContext interface, 168,
343

ejbCreate() method, 170, 173,
176, 197, 222,
235-237, 278, 305, 433-434,
439, 451, 679

EJBException exception, 180
ejbFindByPrimaryKey()

method, 224-226, 240
EJBHome interface, 167
ejbHomeDeleteBy

Customer() method, 303
EJBHomeHandle interface,

168
ejbLoad() method, 221-223,

232, 279, 303
EJBLocalHome interface,

167, 218, 225-229
EJBLocalObject interface,

167
EJBObject interface, 132,

135, 167
ejbPassivate() method, 172,

198, 221-223, 279, 304
ejbPostCreate() method,

221-222, 235-237
ejbRemove() method, 171,

177, 223, 279, 307, 435, 439,
451

EJBs (Enterprise JavaBeans),
21, 40-43, 126. See also
Entity EJBs; Session EJBs

Adapter classes, 204-205

Agency case study

deploying, 156-157

remote interface, 133

testing, 158-160

troubleshooting,

160-161

EJBs (Enterprise JavaBeans) 1045

31 0672323842 Index 3/20/02 9:35 AM Page 1045

applications deployment,

193

application development

modeling, 127

ApplicationMatch example

code listing, 453-456

deleteByApplicant()

method, 452

ejbCreate() method, 451

ejbRemove() method,

451

findByLocation()

method, 452

getLocation() method,

452

getSkills() method, 453

InitialContext interface,

451

onMessage() method, 452

skillMatch counter, 453

bean-managed transaction

demarcation

deployment, 349

restrictions, 345

Session EJBs, 345-349

BookManager application

BookManagerClient.

java, 843

BookManagerClient2.

java, 848

BookManagerEJB.java,

841-842

BookManagerEJB2.

java, 846-847

business interface

implementing, 135-138

methods, 132

patterns, 203

business logic, 130-131, 134

classes, 128

clients

client-demarcated trans-

actions, 350

types of, 129

common uses, 128-129

configuration information,

141-142

containers, 126

container-managed

transaction demarca-

tion, 338-344

performance tuning,

247-248

services, 126, 131-132

creation cycle, 142-143

creation restrictions, 143

declarative security

method permissions,

670-674

role mappings, 674-676

roles, 666-668

security identity,

668-670, 676-678

deploying. See also deploy-

tool

containers, 147-148

deployable components,

143

J2EE RI, 151

vendor options, 181

deployment descriptors,

142-146, 180

application component

relationships, 146-147

EJB references, 188-189

environment entries,

187-188

resource environment

references, 192-193

resource references,

190-192

vendor-specific, 186

XML document presen-

tation elements,

183-184

XML document Session

element, 184-186

XML documents,

182-183

EJB 2.0 specification, 143,

172

EJB QL

from clause, 293-295

functions, 299

input parameters, 298

OO/relational impedance

mismatch, 300

operators, 297-299

select clause, 291-297

syntax, 293

where clause, 297-300

wildcards, 298

external resource names,

145

factories, 140

file I/O (input/output), 143

HOME environment vari-

able, 152

home interface, 140-141

implementing

discovery step, 148-149

disposal step, 150

retrieval step, 149

running, 150-151

J2EE Blueprints, 127

lifecycle management,

138-140

Message-driven beans,

429-430

Agency case study,

447-457, 735-736

alternative architectures,

457-458

ApplicantMatch bean,

737-739

clients, 430-431

compared to Session and

Entity beans, 431

context, 433

creating, 434, 439-440

1046 EJBs (Enterprise JavaBeans)

31 0672323842 Index 3/20/02 9:35 AM Page 1046

defined, 430

deploying, 442-445,

456-457

exception handling, 436

interface implementa-

tion, 439-440

interfaces, 431-432

life cycle, 432-433

MDBPrintMessage

bean, 440, 443-445

message acknowledge-

ments, 437-438

message handling,

435-436

message selectors, 438

MessageSender class,

736-737

method-ready pool,

434-435

queues, 441, 456

removing, 435

sender clients, 445-449

state, 431-432

testing, 457

transactions, 436-437

methods

exceptions, 138

invoking, 169

restrictions, 143

programmatic security, 666

Agency case study,

679-682

getCallerPrincipal()

method, 678

isCallerInRole() method,

678

programming advantages,

130

servers, 126

services, 205

static member variables, 143

threads, 143

transactions

exceptions, 350-351

stateful Session beans,

352-353

types, 128

usefulness, 129

ejbStore() method, 221-223,
232, 279, 303

Electronic Business XML. See
ebXML

<!ELEMENT> tag, 992
elements (XML). See tags
e-mail (JavaMail), 22,

461-465
addressing, 473

attachments

creating, 482-483

retrieving, 490-494

sending, 483-485

deleting, 489-490

development environment,

465-466

HTML e-mail

absolute URLs, 475

addressing, 473

body text, 473

java.io package, 472

sending, 473-475

IMAP (Internet Message

Access Protocol), 464

mail sessions, 468

message flags, 489

MIME (Multipurpose

Internet Mail Extensions),

464-465

multi-part messages, 476

body text, 477

BodyPart objects,

477-478

content type, 479

creating, 476-479

headers, 479

images, 479

MimeMultipart objects,

478-479

sending, 479-482

NNTP (Network News

Transport Protocol), 464

plain text e-mail, 466

addressing, 469

body text, 469

content type, 469

mail environment prop-

erties, 467-468

main() method, 467

MimeMessage objects,

468

sending, 470-471

SMTP host access, 467

subjects, 469

POP3 (Post Office

Protocol), 463-464

retrieving, 485

attachments, 490-494

close() method, 487

connect() method, 486

getFolder() method, 486

getMessage() method,

486

getMessages() method,

486

getStore() method, 486

open() method, 486

RetrieveMail applica-

tion, 487-488

writeTo() method, 487

SMTP (Simple Mail

Transfer Protocol), 463

user authentication

AuthenticateRetrieveMai

l application, 495-497

Authenticator class, 494

MyAuthenticator class,

494-495

Password

Authentication object,

495

e-mail (JavaMail) 1047

31 0672323842 Index 3/20/02 9:35 AM Page 1047

EMPTY content type (XML),
993

Empty value (<body-content>
tag), 608

encodeUrl() method, 535
encrytion

asymmetric, 658-659

symmetric

algorithms, 657-658

Caesar cipher, 656-657

endDocument() method, 723
endElement() method, 721,

723
endPrefixMapping() method,

723
enforcing XML (Extensible

Markup Language) docu-
ment structure, 991

DTDs (Document Type

Definitions), 992-995

attribute declarations,

993-994

element declarations,

992-993

entity references, 994-995

example, 992

XML Schemas, 995-997

Entensible Stylesheet
Language. See XSL

Enterprise Application
Archives (EARs), 67

Enterprise Application
Integration (EAI), 129

enterprise applications
component relationship

descriptions, 146-147

deploying, 193, 322-323

Enterprise Computing Model,
17-18

lifecycle, 18

naming, 18-19

persistence, 18

security, 19-20

transactions, 19

Enterprise Information
Systems. See EIS

Enterprise JavaBeans. See
EJBs

enterprise program develop-
ment, 9-10

Enterprise Computing

Model, 17-18

lifecycle, 18

naming, 18-19

persistence, 18

security, 19-20

transactions, 19

monolithic development

disadvantages, 10-11

structure, 10

transitioning to n-tier, 26

n-tier design, 13-14, 28, 38

advantages, 16-17

business tier, 39-44

client tier, 49-54

component frameworks,

15-16

modularity, 14-16

presentation tier, 44-49

transitioning to, 26

two-tier design

disadvantages, 12-13

layers, 11-12

<enterprise-beans> tag, 183,
340

ENTITIES attribute type,
713, 994

ENTITY attribute type, 713,
994

Entity EJBs (Enterprise Java
Beans), 43-44, 128, 211-212

accessing, 258-259

BMP (bean-managed persis-

tence)

configuring, 248-252

defining interfaces,

225-230

implementing, 231-248

business interface, 264

business logic, 212-213

checklist, 264

CMP (container-managed

persistence), 271-273

abstract accessor meth-

ods, 274-275

abstract classes, 273

checklist, 328

CMR (container-

managed relation-

ships), 279

cmr-fields, 282-285

configuring, 313-322

defining local interface,

301

defining LocalHome

interface, 301

lifecycle management,

277-279

manipulating relation-

ships, 286-291

relationship navigability,

282

relationship types,

280-281

compared to Message-

driven beans, 431

compared to RDBMS tech-

nology, 213

composite primary keys,

284

creating, 222

databases

connections, 262-263

updating, 229

deployment descriptors,

248-251

entity element,

313-316

relationships element,

317-322

encapsulating fields,

261-262

1048 EMPTY content type (XML)

31 0672323842 Index 3/20/02 9:35 AM Page 1048

Entity relationship diagram

(ERD), 214

Façade pattern, 258

finder methods, 224,

239-240, 245-247

granularity, 245

identifying, 214-215

javax.ejb package,

216-217

local interfaces, 217-219

passivation, 223-235

primary keys, 214, 222, 227

references, 252

SQLj support, 382-383

state persistence, 259-261

surrogate keys, 243-245

system exceptions, 254

types, 217

updating, 223

<entity> tag, 249, 313-316
entity references (XML),

994-995
EntityBean interface

implementing, 220,

231-235, 302-305

lifecycle management,

219-224

enumeration return type, 262
<env-entry> tag, 145
environment entries (XML

EJB deployment descrip-
tors), 187-188

Environment Variable dialog
box, 30

environment variables
CLASSPATH, 31, 85

J2EE HOME, 152

JAVA_HOME, 29-30

PATH, 30-31

equals() method, 228
EquiJoins, 981
ERDs (Entity relationship

diagrams), 214

error handling. See also
exceptions

Agency case study,

595-597

Connection Refused error

message, 36-37

exceptions

application, 179

asynchronous messag-

ing, 415

bean methods, 138

ConnectException,

36-37

DuplicateKeyException,

306

EJBException, 180

Entity EJBs (Enterprise

JavaBeans), 226

initial content naming

exceptions, 86-87

Message-driven beans,

436

NoPermission

Exception, 112

NoSuchEntity

Exception, 234

NoSuchObjectLocal

Exception, 253

RemoteException, 134,

180, 853

servlets, 529-530

Session EJB (Enterprise

JavaBeans), 201-202

stateless EJBs

(Enterprise

JavaBeans), 174,

179-180

system, 179, 254

transactions, 350-351

JSPs (JavaServer Pages),

563-565

compilation errors,

567-568

HTML presentation

errors, 568-569

translation errors,

565-567

servlets

HTTP errors, 528-529

servlet exceptions,

529-530

error() method, 180, 723
error page (Agency case

study), 595-597
<error-page> tag, 527-528
errorPage directive, 572
errorPage.jsp page, 595-597
event handling

event listeners

deploying, 543-545

HttpSessionActivation

Listener, 542

HttpSessionAttribute

Listener, 542

HttpSessionListener, 542

NamespaceChange

Listener, 120

ObjectChangeListener,

120

ServletContext

AttributeListener, 542

ServletContextListener,

542

JNDI (Java Naming and

Directory Interface)

addNamingListener()

method, 120

NamespaceChange

Listener event listener,

120

NamingEvent object,

120

NamingListener object,

120-121

ObjectChangeListener

event listener, 120

event handling 1049

31 0672323842 Index 3/20/02 9:35 AM Page 1049

examineHeaderElements
method, 951

Examples directory, 76
exceptions

application, 179

asynchronous messaging,

415

bean methods, 138

ConnectException, 36-37

DuplicateKeyException,

306

EJBException, 180

Entity EJBs (Enterprise

JavaBeans), 226

initial content naming

exceptions, 86-87

Message-driven beans, 436

NoPermissionException,

112

NoSuchEntityException,

234

NoSuchObjectLocalExcepti

on, 253

RemoteException, 134, 180,

853

servlets, 529-530

Session EJB (Enterprise

JavaBeans), 201-202

stateless EJBs (Enterprise

JavaBeans), 174,

179-180

system, 179, 254

transactions, 350-351

execute() method, 840, 845
executing

JAXM (Java API for XML

Messaging) clients, 947

JSPs (JavaServer Pages),

557

Executive Committees (JCP),
1001

Exercise directory, 76-77
Expert Groups (JCP), 1000

exporting EJB (Enterprise
JavaBeans) services, 127

expressions, 559, 763
<<extend>> notation (Use

Cases), 968
Extensible Markup

Language. See XML
external authentication, 122,

696
external resources, 828-829

Connector architecture,

829-830

CCI application,

836-843

common client interface,

834

connection contract, 831

EIS (Enterprise

Information Systems)

interaction, 834-835

resource adapter installa-

tion, 835-836

roles, 830-831

security contract,

833-834

transaction management,

832-833,

843-848

Web site, 831

when to use, 865

CORBA (Common Object

Request Broker

Architecture), 849-851

IDL (Interface

Definition Language),

850

IIOP (Internet Inter-

ORB Protocol), 850

Naming Service, 851

ORB (Object Request

Broker), 850

guidelines, 865

Java IDL (Interface

Definition Language), 851

JNI (Java Native Interface),

860-865

HelloWorld.java exam-

ple, 863

HelloWorldImp.c exam-

ple, 864

when to use, 865

names, 145

RMI (Remote Method

Invocation), 851-852

RMI over IIOP,

857-860

RMI over JRMP,

852-857

when to use, 865

F

Façade pattern, 258, 794
factories

BookFactory.java, 118

Factory class, 117

ObjectConnectionFactory

object, 416

QueueConnection object,

402

QueueConnectionFactory

object, 402

RMIConnectionFactory, 403

RMIXAConnection

Factory, 403

UILConnectionFactory, 403

UILXAConnection

Factory, 403

XAConnectionFactory, 403

Factory class, 117
Fast Lane Reader pattern,

796
FatalError() method, 723
fields

hidden form fields, 532

JMS (Java Message

Service) headers, 408

1050 examineHeaderElements method

31 0672323842 Index 3/20/02 9:35 AM Page 1050

file I/O (input/output), 143
files. See also code listings

EARs (Enterprise

Application Archives), 67

EJB-JAR, 69

CMR (container-

managed relation-

ships), 280

deployment descriptors,

146

ejb-jar 2 0.dtd, 182

JWS (Java Web Service)

files

generated WSDL,

904-905

SimpleOrderServer2.jws

example, 903-904

transaction logs, 337

filesystems, NTFS, 337
filters

AuditFilter example

code listing, 537-538

doFilter() method,

544-545

deploying, 538-541

filter chains, 536

JNDI (Java Naming and

Directory Interface), 111

methods, 535-537

findAncestorWithClass()
method, 627

findByLocation() method, 452
findByPrimaryKey() method,

226, 304
finder methods

Entity EJBs (Enterprise

JavaBeans), 224, 239-240,

272, 277

BMP (bean-managed

persistence) beans, 226

dangers, 245-247

EJB QL, 291-293

LocalHome interface,

308-309

finding
objects

JNDIFilter.java applica-

tion, 111

JNDISearch.java appli-

cation, 110

search() method,

109-111

patterns, 792

services, 821-822

#FIXED value (DTD attribut-
es), 713, 994

FLAGGED flag (e-mail), 489
flat transactions, 337
flexibility

Composite View pattern,

816

Data Access Object pattern,

805

Session Façade pattern, 799

Value Object pattern, 804

View Helper pattern, 820

float type, 717
 tag (HTML), 511
footer.jsf file, 815
footers (Agency Web site),

591-592
forces, 789
<forEach> tag, 643-644

code listing, 628-629

TLDs (tag library descrip-

tors), 630

<forEachJob> tag, 623-626
<FORM> tag (HTML), 511
formatting XML (Extensible

Markup Language) docu-
ments

applying stylesheets, 746

browser support, 747

on servers, 747

storing transformed data,

746-747

XSL-FO, 744-745

XSLT (XSL

Transformations), 745-746

template rules, 756-761

Transformer class,

751-755

forms
hidden form fields, 532

HTML (Hypertext Markup

Language), 511-512

forms-based authentication,
683

<forTokens >tag, 645
forward slash (/), 100-101
FROM clause, 293-295, 983
Front Controller pattern, 795
FULL JOIN statement

(SQL), 983
full joins, 983
function aliases, 375
functions. See also methods

EJB QL, 299

XPath, 763

future
of J2EE, 25

of patterns, 823

G

“Gang of Four” book, 791
generalization (Class dia-

grams), 972
generalization notation (Use

Cases), 968
generic patterns

Command, 794

Decorator, 794

Façade, 794

Iterator, 794

Observer, 794

Proxy, 794, 797

Singleton, 794, 797

generic patterns 1051

31 0672323842 Index 3/20/02 9:35 AM Page 1051

GenericLifeCycleManager
interface, 937

GET method, 506-507, 520
GET requests (HTTP), 505
getAttribute() method, 531,

626
getAttributes() method,

108-109, 726-728
getAttributeString() method,

637
getCallerPrincipal() method,

433, 678
getChildNodes() method, 727
getConnection() method, 357,

839
getCreationTime() method,

531
getCurrentValue() method,

629
<getCust> tag, 619-622
getDefaultInstance() method,

468, 494
getDisposition() method, 491
getDocumentElement()

method, 727
getEJBHome() method, 433
getEJBLocalHome() method,

433
getElementsByTagName()

method, 727
getFileName() method, 491
getFirstChild() method, 727
getFolder() method, 486
getId() method, 530
getInstance() method, 468
getLastAccessedTime()

method, 530
getLastChild() method, 727
getLocalHome() method, 303
getLocalTransaction()

method, 845
getLocation() method, 452
getLocations() method, 177

getMaxInactiveInterval()
method, 531

getMessage() method, 486
getMessages() method, 486
getName() method, 620
getNamespaceURI() method,

726-728
getNodeName() method,

726-728
getNodeType() method,

726-728
getNodeValue() method,

726-728
getObjectInstance() method,

118-119
getParameter() method, 520,

577
getParent() method, 627
getParentNode() method, 727
getPassword

Authentication() method,
495

getPreviousSibling() method,
727

getPrimaryKey() method, 253
<getProperty> tag, 579-580
getPropertyNames() method,

408
getRecordFactory() method,

839
getReference() method, 117
getRemoteUser() method, 692
getRequestURI() method, 534
getResourceAsStream()

method, 754
getRollbackOnly() method,

344, 437
getSession() method, 531
getSkills() method, 453
getStatus() method, 346
getStore() method, 486
getUserPrincipal() method,

691

getUserTransaction() method,
344-346, 437

getValue() method, 534, 951
global registries, 925
GoF (“Gang of Four” book),

791
granularity, 245, 273
GROUP BY clause (SQL),

984
groups, 664-666
GSSAPI authentication, 696

H

Handle interface, 168
hard-coded properties

(JNDI), 90
hasAttributes() method, 728
hasChildNodes() method, 728
hashCode() method, 228
HAVING clause (SQL), 984
HEAD method, 507
<HEAD> tag (HTML), 511
header.jsf file, 814
headers

Agency Web site, 588

HTTP (Hypertext Transfer

Protocol), 505, 508-509

JMS (Java Message

Service), 408

multi-part e-mail messages,

479

SOAP messages, 951-952

Hello service
HelloServer.java, 886-887

HelloServerClient.java, 888

HelloServerPortType.java,

886

HelloServerSoapBinding

Stub.java, 886

MyHelloService.wsdl,

883-884

SoapSayHello.java,

889-890

1052 GenericLifeCycleManager interface

31 0672323842 Index 3/20/02 9:35 AM Page 1052

<hello> tag, 605-606, 611-612
HelloServer.java file, 886-887
HelloServerClient.java file,

888
HelloServerPortType.java file,

886
HelloServerSoapBinding

Stub.java file, 886
HelloUser.java file, 852
HelloUserClient.java file, 855,

859
HelloUserImpl.java file,

853-854, 858
HelloWorld.java file, 863
HelloWorldImp.c file, 864
hidden form fields, 532
hierarchical tag structures

advertise.jsp page, 632-634

findAncestorWithClass()

method, 627

<forEach> tag

code listing, 628-629

TLDs (tag library

descriptors), 630

getParent() method, 627

<option> tag, 631

code listing, 629-630

TLDs (tag library

descriptors), 630

skills.jsp page, 627-628

Hillside Web site, 792
history

of patterns, 788

of XML (Extensible

Markup Language),

703-704

<Hn> tag (HTML), 511
<home> tag, 145, 185
home interface

EJB (Enterprise JavaBeans)

implementation, 140-141,

148, 172

method implementation,

175-176

home methods
Entity EJBs, 229

implementing, 327

LocalHome interface,

310-312

HTML (Hypertext Markup
Language), 509

clients

dynamic, 50-51

static, 49-50

compared to XML

(Extensible Markup

Language), 705

documents

HTML form example,

511-512

simple HTML page

example, 510

VerifyForm page, 520

HTML e-mail

absolute URLs, 475

addressing, 473

body text, 473

java.io package, 472

multi-part messages,

476-482

sending, 473-475

tags

nesting, 509

syntax, 509

table of, 510-511

<HTML> tag (HTML), 511
HTTP (Hypertext Transfer

Protocol), 57, 504
Basic authentication,

683-685

clients

applet clients, 51

dynamic HTML clients,

50-51

mobile devices, 51

static HTML clients,

49-50

Digest authentication, 683

error handling

client redirection, 529

error-page tag, 528

status codes, 529

HTTPS (HTTP over SSL),

57

methods

DELETE, 507

GET, 506-507

HEAD, 507

OPTIONS, 507

POST, 506

PUT, 507

TRACE, 507

MIME content types, 508

requests

body, 505

GET, 505

headers, 505

parameters, 576-577

request lines, 504

responses, 504-505

body, 505

example, 507

headers, 505, 508-509

response lines, 504

servlet variables, 575

statelessness, 504

status codes

generating, 529

group codes, 508

table of, 508

URIs (Uniform Resource

Identifiers), 505-506

HTTPS (Hypertext Transfer
Protocol Secure), 659

HttpServletRequest interface,
515

HttpServletResponse inter-
face, 515

HttpSession object, 530-531

HttpSession object 1053

31 0672323842 Index 3/20/02 9:35 AM Page 1053

HttpSessionActivationListene
r interface, 542

HttpSessionAttributeListener
interface, 542

HttpSessionListener inter-
face, 542

Hypertext Markup Language.
See HTML

Hypertext Transfer Protocol
Secure (HTTPS), 659, 684

Hypertext Transfer Protocol.
See HTTP

hyphens (-), 710

I

IBM
DeveloperWorks, 792

Web site, 24

Websphere Commerce

Business Edition, 24

WSKT Client API,

932-934

WSTK (Web Services

Toolkit), 877

ID attribute type, 713, 994
identification variables

from clause, 294

select clause, 295

idioms, 790
IDL (Interface Definition

Language), 60-61, 850-851
IDREF attribute type, 713,

994
<if> tag, 645
IgnorableWhitespace()

method, 724
IIOP (Internet Inter-ORB

Protocol), 850
HelloUserClient.java exam-

ple, 859

HelloUserImpl.java exam-

ple, 858

InitialContext objects, 857

Java interpreter properties,

860

PortableRemoteObject

interface, 857

rebind() method, 858

RMI-IIOP, 61-62

Transient Name Server, 860

when to use, 865

images, multi-part e-mail
messages, 479

IMAP (Internet Message
Access Protocol), 464

 tag (HTML), 511
implementation level (UML),

966
implicit objects (JSPs), 575
#IMPLIED value (DTD

attributes), 713, 994
import directive, 572
importing java.io package,

472
in parameter (Class dia-

grams), 972
INCITs (InterNational

Committee for Information
Technology Standards) Web
site, 977

<<include>> notation (Use
Cases), 967

include directive, 570-571
IndexedRecord objects, 840
info directive, 571
init() method, 523, 536
<init-param> tag, 527
initial contexts (JNDI)

creating, 86

InitialContext class, 86,

160, 857

naming exceptions, 86-87

InitialContext class, 86, 160,
857

InitialContext() method, 86
initializing JavaBeans, 581

INNER JOIN statement
(SQL), 981-982

inner joins, 981
inout parameter (Class dia-

grams), 972
input parameters (EJB QL),

298
<INPUT> tag (HTML), 511
INSERT statement (SQL),

980-981
insertBook() method, 837
installing

Agency database, 77-78

J2EE SDK (Software

Developers Kit), 30-32

resource adapters, 835-836

integer type, 717
integral option (network secu-

rity requirements), 689
integrating external

resources. See external
resources

integration-tier patterns
Data Access Object

case study analysis,

804-811

defined, 796

flexibility, 805, 811

maintainability, 805, 811

performance, 811

EJB Observer, 796

Service Activator

availability, 812

case study analysis, 811

defined, 796

performance, 812

scalability, 812

integrity
checksums, 660

defined, 655-656

message digests, 660

InteractionSpec interface, 839
Intercepting Filter pattern,

795-797

1054 HttpSessionActivationListener interface

31 0672323842 Index 3/20/02 9:35 AM Page 1054

Interface Definition Language
(IDL), 60-61, 850-851

interfaces
Advertise, 801-802

BodyTag, 608

business, 264

BusinessLifeCycle

Manager, 936

BusinessQueryManager,

937

Collection, 287

Concept, 936

Connection, 356-358

ConnectionPoolData

Source, 357

defining, 301, 225-230

Document

appendChild() method,

731

cloneNode() method,

731

getAttributes() method,

726-728

getChildNodes()

method, 727

getDocumentElement()

method, 727

getElementsByTag

Name() method, 727

getFirstChild() method,

727

getLastChild() method,

727

getNamespaceURI()

method, 726-728

getNodeName() method,

726-728

getNodeType() method,

726-728

getNodeValue() method,

726-728

getParentNode() method,

727

getPreviousSibling()

method, 727

hasAttributes() method,

728

hasChildNodes()

method, 728

normalize() method, 726

removeChild() method,

731

DocumentBuilderFactory,

725

EJBContext, 168

EJBHome, 167

EJBHomeHandle, 168

EJBLocalHome, 167

EJBLocalObject, 167

EJBObject, 132, 167

EntityBean

implementing, 220,

231-235, 302-305

lifecycle management,

219-224

GenericLifeCycleManager,

937

Handle, 168

HttpServletRequest, 515

HttpServletResponse, 515

HttpSessionActivation

Listener, 542

HttpSessionAttribute

Listener, 542

HttpSessionListener, 542

InteractionSpec, 839

IterationTag, 622

IterationTag, 608

javax.ejb package, 167

JDO (Java Data Objects),

387-389

JobDAO, 806

local

accessing Entity EJBs,

258-259

implementing methods,

241-243, 312-313

LocalHome, 305-308

finder methods,

308-309

home methods,

310-312

implementing, 235-241

LocalTransaction, 845

Message-driven beans,

439-440

MessageDrivenContext, 433

MessageListener, 414

Organization, 936

PersistenceManager, 385

PortableRemoteObject, 857

remote, 340

RMI remote, 127

SAXParseFactory, 720

Service, 936

ServiceBinding, 936

ServletContext, 524

ServletContextAttribute

Listener, 542

ServletContextListener, 542

SessionBean, 168, 175

SingleThreadModel, 570

SQLQueryManager, 937

Status, 346, 360

Tag, 608

XADataSource, 357

InterNational Committee for
Information Technology
Standards (INCITs) Web
site, 977

International
Telecommunications Union
(ITU) Web site, 660

Internet Explorer, stylesheet
support, 747

Internet Inter-Orb Protocol.
See IIOP

Internet Message Access
Protocol (IMAP), 464

invalidate() method, 532, 542
invalidating sessions, 532

invalidating sessions 1055

31 0672323842 Index 3/20/02 9:35 AM Page 1055

invoke method, 891
iPlanet

Application Server

Enterprise Edition, 24

Web site, 24

IS NOT NULL operator, 297
IS [NOT] EMPTY operator,

299
IsCallerInRole() method, 433,

678
isEmployee() method, 974
isErrorPage directive, 572
isIdentical() method, 253
isNew() method, 531
isUserInRole() method, 691
isValid() method, 635
IterationTag interface, 608,

622
iterative tags

body content, 622-623

BodyTagSupport class, 622

<forEachJob> tag example,

623-626

IterationTag interface, 622

Iterator pattern, 794
iterator() method, 845
ITU (International

Telecommunications Union)
Web site, 660

J

J2EE administration tool, 65
J2EE Blueprints, 23-24, 127,

792
J2EE Connector architecture,

62, 829-830
CCI application, 836-837

BookManagerClient.

java, 843

BookManagerClient2.

java, 848

BookManagerEJB.java,

841-842

BookManagerEJB2.

java, 846-847

CceConnectionSpec

class, 838

home interface, 837

IndexedRecord objects,

840

InteractionSpec inter-

face, 839

MappedRecord objects,

840

methods, 837-841,

844-846

remote interface, 837

common client interface,

834

connection contract, 831

EIS (Enterprise Information

Systems) interaction,

834-835

resource adapter installa-

tion, 835-836

roles, 830-831

security contract, 833-834

transaction management,

843

begin() method, 845

BookManagerClient2.

java example, 848

BookManagerEJB2.

java example,

846-847

contract, 832-833

execute() method, 845

iterator() method, 845

listTitles() method, 844

LocalTransaction inter-

face, 845

rollback() method, 846

Web site, 831

when to use, 865

J2EE HOME environment
variable, 152

J2EE RI (Reference
Implementation)

deploytool, 405-406, 664

deployment settings,

677-678

EJB (Enterprise

JavaBeans), 152-157,

181-182, 251-252, 316

method permissions,

670-674

role mappings, 674-676

transaction configura-

tion, 342

security identity, 669-670

XADataSource interface,

357

J2EE RI for Linux and

Unix, 86

J2EE RI for Windows,

85-86

JMS (Java Message

Service) implementation,

404

connection factories, 404

destinations, 404

queues, 404-406

many-to-many link tables,

280

J2EE SDK (Software
Developers Kit), 28-29. See
also J2EE RI (Reference
Implementation)

Cloudscape

diagnostic messages, 34

starting, 34

troubleshooting, 34-37

documentation, 32

downloading, 30

installing, 30-32

licensing, 29

system requirements,

29-30

1056 invoke method

31 0672323842 Index 3/20/02 9:35 AM Page 1056

J2EE Server tool, 65
j2eeadmin command,

404-405
JAF (JavaBeans Activation

Framework), 59
Jakarta Project, 604, 646
jar files, installing classes as,

374
JASB (Java Architecture for

XML Binding), 732-733
Java 2 Platform Enterprise

Edition Specification, 346
Java applets, 51
Java API for XML Processing

(JAXP), 58-59, 718-720
Java API for XML Registries.

See JAXR
Java APIs for XML

Messaging. See JAXM
Java APIs for XML-based

RPC (JAX-RPC), 25, 876
Java Architecture for XML

Binding. (JASB), 732-733
Java Beans. See JavaBeans
Java Community Process. See

JCP
Java Cryptography Extension

(JCE), 698
Java Data Objects. See JDO
Java Database Connectivity

(JDBC), 57, 363-367
Java IDL (Interface

Definition Language),
60-61, 851

Java Message Service. See
JMS

Java Naming and Directory
Interface. See JNDI

Java Native Interface. See
JNI

Java Pet Store application,
23-24

Java Remote Method
Protocol. See JRMP

Java servlets, 47-48, 501
advantages, 47, 502-504

Agency case study,

546-552

class hierarchy, 513

containers (engines), 513

contexts, 524

cookies, 532-534

error handling, 528-530

event listeners, 541-545

filters, 535-541, 544-545

hidden form fields, 532

lifecycle, 522-523

passing parameters to,

519-522

sandboxes, 504, 546

Servlets example, 514-518

sessions, 530-532

single-thread model,

545-546

URL rewriting, 535

Web applications, 525-527

Java Specification Requests
(JSRs)

JSR archive, 1002

request process, 1001-1002

Java Transaction API. See
JTA

Java Transaction Services
(JTS), 361-363

Java Web Service (JWS) files
generated WSDL, 904-905

SimpleOrderServer2.jws

example, 903-904

java.io package, importing,
472

JavaBeans, 577
creating, 579

declarative security

method permissions,

670-674

role mappings, 674-676

roles, 666-668

security identity,

668-670, 676-678

defined, 578

EJBs (Enterprise

JavaBeans). See EJBs

parts of, 134

initializing, 581

JAF (JavaBeans Activation

Framework), 59

programmatic security

Agency case study,

679-682

getCallerPrincipal()

method, 678

isCallerInRole() method,

678

properties

retrieving, 579-580

setting, 580-581

security, 666

JavaBeans Activation
Framework (JAF), 59

JavaMail, 60, 461-465
addressing, 473

deleting messages,

489-490

development environment,

465-466

e-mail attachments

creating, 482-483

retrieving, 490-494

sending, 483-485

HTML e-mail

absolute URLs, 475

addressing, 473

body text, 473

java.io package, 472

sending, 473-475

IMAP (Internet Message

Access Protocol), 464

mail sessions, 468

message flags, 489

JavaMail 1057

31 0672323842 Index 3/20/02 9:35 AM Page 1057

MIME (Multipurpose

Internet Mail Extensions),

464-465

multi-part messages

body text, 477

BodyPart objects,

477-478

content type, 479

creating, 476-479

headers, 479

images, 479

MimeMultipart objects,

478-479

sending, 479-482

NNTP (Network News

Transport Protocol), 464

plain text messages, 466

addressing, 469

body text, 469

content type, 469

mail environment prop-

erties, 467-468

main() method, 467

MimeMessage objects,

468

sending, 470-471

SMTP host access, 467

subjects, 469

POP3 (Post Office

Protocol), 463-464

retrieving messages, 485

attachments, 490-494

close() method, 487

connect() method, 486

getFolder() method, 486

getMessage() method,

486

getMessages() method,

486

getStore() method, 486

open() method, 486

RetrieveMail applica-

tion, 487-488

writeTo() method, 487

SMTP (Simple Mail

Transfer Protocol), 463

user authentication

AuthenticateRetrieve

Mail application,

495-497

Authenticator class, 494

MyAuthenticator class,

494-495

PasswordAuthentication

object, 495

JavaServer Pages Standard
Tag Library. See JSPTL

JavaServer Pages. See JSPs
javax.ejb package, 167-168

Entity EJBs (Enterprise

JavaBeans), 216-217

EntityBean interface,

231-235, 302-305

exceptions, 179

JAVA_HOME environment
variable, 29-30

JAX Pack, 878
JAX-RPC (Java API for

XML-based RPC), 25, 876
JAXM (Java API for XML

Messaging), 25, 876, 939
clients, 941

configuring, 941-942

message attachments,

951-952

message headers, 951-952

populating messages,

947-951

profiles, 955-956

receiving message with,

959-962

sending message with,

957-959

Providers, 940-941

receiving messages

JAXM profiles, 959-962

simple JAXM client,

952-956

sending messages

JAXM profiles,

957-959

standalone JAXM

clients, 942-946

JAXMOrderServer.java file,
953-954

JAXMOrderServiceClient.
java file, 943-944

JAXP (Java API for XML
Processing), 58-59,
718-720

JAXR (Java API for XML
Registries), 25, 876

architecture, 934

client initialization code,

934-935

interfaces

BusinessLifeCycle

Manager, 936

BusinessQuery

Manager, 937

Concept, 936

GenericLifeCycle

Manager, 937

Organization, 936

Service, 936

ServiceBinding, 936

SQLQueryManager, 937

JBoss, 25
JMS (Java Message

Service) implementation,

402

connection factories, 403

destinations, 403-404

Web site, 402

JCE (Java Cryptography
Extension), 698

JCP (Java Community
Process), 999-1000

JSR (Java Specification

Request) process,

1001-1002

1058 JavaMail

31 0672323842 Index 3/20/02 9:35 AM Page 1058

membership structure

Executive Committees,

1001

Expert Groups, 1000

members, 1000

PMO (Public

Management Office),

1001

public involvement,

1000-1001

Web site, 25, 1002

JDBC (Java Database
Connectivity), 57, 363-367

JDO (Java Data Objects),
364, 383-384

caches, 384-387

classes and interfaces,

387-389

deployment descriptors, 391

identity, 387

lifecycle, 392

queries, 389-390

SCOs (Second Class

Objects), 391

transient transactional

objects, 392

JMS (Java Message Service),
60, 395, 430. See also J2EE
RI

administered objects, 399

clients, 399

connections

closing, 410

defined, 399

domains

defined, 399

point-to-point, 400-402

publish/subscribe, 401,

415-416

goals of, 397-398

JBoss implementation, 402

connection factories, 403

destinations, 403-404

message selectors, 422

messages, 407

body types, 409

consuming, 411-412

creating, 409

defined, 399

headers, 408

persistence, 423

properties, 408-409

sending, 409

multithreading, 425

point-to-point messaging,

396-397

asynchronous messag-

ing, 414-415

closing connections, 410

consuming messages,

411-412

creating messages, 409

message domains,

400-402

message structure,

407-409

PTPSender sample

application, 410-411

queues, 406-407

sending messages, 409

synchronous receivers,

412-414

providers, 399

publish/subscribe messag-

ing, 397, 415-416

bulleting board publisher

program,

417-418

bulleting board sub-

scriber program,

418-420

durable subscriptions,

420-421

message domains, 401,

415-416

ObjectConnection

object, 416

ObjectConnection

Factory object, 416

Topic object, 416

TopicPublisher object,

416

TopicSession object, 416

TopicSubscriber object,

416

queues, 404-407

creating with deploytool,

405-406

creating with j2ee

admin, 404-405

defined, 399

sessions

acknowledgement

modes, 422-423

defined, 399

support for, 398-399

topics, 399

transactions, 423-424

when to use, 396

XA support, 424

JMSCorrelationID field
(JMS), 408

JMSDeliveryMode field
(JMS), 408

JMSDestination field (JMS),
408

JMSExpiration field (JMS),
408

JMSMessageID field (JMS),
408

JMSPriority field (JMS), 408
JMSRedelivered field (JMS),

408
JMSReplyTo field (JMS), 408
JMSTimestamp field (JMS),

408
JMSType field (JMS), 408

JMSType field (JMS) 1059

31 0672323842 Index 3/20/02 9:35 AM Page 1059

JNDI (Java Naming and
Directory Interface), 59, 81,
85

architecture, 83

attributes

defined, 102

modifying, 112-114

reading, 108-109

code bases

defining, 114-117

loading classes from,

114

composite names, 100-101

compound names, 101

configuring

CLASSPATH variable,

85

J2EE RI for Linux and

Unix, 86

J2EE RI for Windows,

85-86

server startup, 86

contexts

changing, 94-95

creating, 98-99

destroying, 99-100

directory contexts, 108

initial contexts, 86-87

listing, 96-98

naming exceptions,

86-87

event handling

addNamingListener()

method, 120

NamespaceChange

Listener event listener,

120

NamingEvent object,

120

NamingListener object,

120-121

ObjectChangeListener

event listener, 120

InitialContext, 160

LDAP (Lightweight

Directory Access

Protocol)

obtaining, 103

OpenLDAP, 104-106

Service Providers,

106-107

testing, 107-108

X.500 names, 102-103

name lookup

JNDILookup.java, 93-94

lookup() method, 93

RMI-IIOP objects, 95-96

sub-contexts, 94-95

naming conventions, 84

objects

binding, 90-92

rebinding, 92

renaming, 93

searching for, 109-111

unbinding, 92-93

properties, 87-88

applet parameters, 90

application properties,

89

hard-coded properties,

90

jndi.properties file,

88-89

references

BookFactory.java appli-

cation, 118

BookRef.java applica-

tion, 117-118

getReference() method,

117

JNDIBindBookRef.

java application, 119

JNDILookupBookRef.

java application,

119-120

Referenceable objects,

117

security, 121-122

LDAP (Lightweight

Directory Access

Protocol) authentica-

tion, 696

properties, 695

SASL (Simple

Authentication and

Security Layer)

authentication,

696-698

special characters, 100

supported naming services,

83-84

URLs (Uniform Resource

Locators), 101

jndi.properties file, 88-89,
697-698

JNDIAttributes.java file,
108-109

JNDIBind.java file, 91
JNDIBindBookRef.java file,

119
JNDICodebase.java file,

115-116
JNDICreate.java file, 99
JNDIDestroy.java file,

99-100
JNDIFilter.java file, 111
JNDIListSAMS.java file,

96-97
JNDILookup.java file, 93-94
JNDILookupAny.java file,

107
JNDILookupBook.java file,

116-117
JNDILookupBookRef.java

file, 119-120
JNDIModify.java file, 112,

114
JNDISearch.java file, 110
JNDITree.java file, 98

1060 JNDI (Java Naming and Directory Interface)

31 0672323842 Index 3/20/02 9:35 AM Page 1060

JNI (Java Native Interface),
860-865

HelloWorld.java example,

863

HelloWorldImp.c example,

864

when to use, 865

Job Agency case study. See
Agency case study

JobDAO interface, 806
jobSummary document

attributes, 708-709

code listing, 708

DTD (document type decla-

ration), 713

namespace, 714-715

XML Schema, 716-717

<jobSummary> tag, 708
JobValueObject object,

806-807
JOD identity, 386
JOIN statement (SQL),

981-982
joins

cross joins, 982

full joins, 983

inner joins, 981

left outer joins, 982

right outer joins, 982

JRMP (Java Remote Method
Protocol)

bind() method, 853

HelloUser.java, 852

HelloUserClient.java, 855

HelloUserImpl.java,

853-854

Java interpreter, 856

lookup() method, 854

main() method, 853

rebind() method, 853

RemoteException excep-

tions, 853

unbind() method, 853

UnicastRemoteObject class,

853

JSP value (<body-content>
tag), 608

jspDestroy() method, 569
jspInit() method, 569
JSPs (JavaServer Pages),

46-47, 555-556. See also Tag
Libraries

actions, 558

Agency case study

advertise.jsp, 592-594,

632-634, 693

agency.jsp, 589-590,

692, 814

agencyName.jsp,

581-582

dateBanner.jsp, 570

errorPage.jsp, 595-597

name.jsp, 572-573

skills.jsp, 627-628

table.jsp, 576-577

tableForm.jsp, 576

updateCustomer.jsp,

594-595

compared to servlets,

600-601

sample Web pages,

556-557

separation of roles, 557

translation and execu-

tion, 557

Composite View pattern,

813-817

date.jsp example, 560-561,

563

defined, 556

directives

defined, 558

include, 570-571

page, 571-575

syntax, 570

errors, 563-565

compilation errors,

567-568

HTML presentation

errors, 568-569

translation errors,

565-567

implicit objects, 575

JavaBeans, 577

creating, 579

defined, 578

initializing, 581

properties, 579-581

lifecycle

jspDestroy() method,

569

jspInit() method, 569

translation and compila-

tion, 563-565

request parameters, 576-577

running, 557

scripting elements

comments, 560

declarations, 559

defined, 558

expressions, 559

scriptlets, 559-560

separation of concerns,

817-820

servlet variables, 575

structure, 557-558

thread safety, 570

JSPTL (JavaServer Pages
Standard Tag Library),
640-641

<choose> tag, 645

downloading, 641

<forEach> tag, 643-644

<forTokens> tag, 645

<if> tag, 645

including in applications,

641-642

scripting language support,

645-646

JSPTL (JavaServer Pages Standard Tag Library) 1061

31 0672323842 Index 3/20/02 9:35 AM Page 1061

<jsp:getProperty> tag,
579-580

<jsp:setProperty> tag,
580-581

<jsp:useBean> tag, 579-581
JSRs (Java Specification

Requests)
Implementing Enterprise

Web Services, 25

J2EE specification, 20

J2EE tools, 65-66

JAX-RPC (Java APIs for

XML-based RPC), 25,

876

JAXM (Java APIs for XML

Messaging), 25, 876

JAXR (Java APIs for XML

Registries), 25, 876

JSR archive, 1002

request process, 1001-1002

JTA (Java Transaction) API,
58, 361

compared to JTS (Java

Transaction Services),

362-363

Session beans, 345-349

XA-compliance, 356-358

JTS (Java Transaction
Services), 361-363

JWS (Java Web Service) files
generated WSDL, 904-905

SimpleOrderServer2.jws

example, 903-904

K-L

Kerberos, 696
key tool, 65
keys

cipher keys, 657

private keys, 658

public keys, 658

labels, formatting, 373
layers (two-tier design), 11-12
layout of Web sites, 586
LDAP (Lightweight Directory

Access Protocol), 19, 84
attributes

defined, 102

modifying, 112-114

reading, 108-109

authentication, 696

obtaining, 103

OpenLDAP, 104-106

Service Providers, 106-107

testing, 107-108

X.500 names, 102-103

LEFT JOIN statement (SQL),
982

left outer joins, 982
legacy connectivity, 22
legacy systems, 828-829. See

also external resources
legal issues, 29
levels (UML), 966
libraries. See Tag Libraries
licensing, 29
lifecycle

EJBs (Enterprise

JavaBeans)

bean creation restric-

tions, 143

Entity EJBs, 219-224,

277-279

methods, 138-140

services, 131

stateful Session beans,

193-195, 352-353

stateless Session beans,

168-172

JDO (Java Data Objects),

392

JSPs (JavaServer Pages)

jspDestroy() method,

569

jspInit() method, 569

translation and compila-

tion, 563-565

Message-driven beans,

432-433

servlets, 522-523

tags

doAfterBody() method,

610-611

doEndTag() method, 610

doInitBody() method,

611

doStartTag() method,

610

release() method, 610

lifelines (Sequence diagrams),
973

Lightweight Directory Access
Protocol. See LDAP

LineItemBean.java file, 914
link tables, 280
Linux

J2EE SDK (Software

Developers Kit) installa-

tion, 31-32

JNDI (Java Naming and

Directory Interface) con-

figuration, 86

list() method, 96-97
listBindings() method, 97-98
listeners

deploying, 543, 545

HttpSessionActivation

Listener interface, 542

HttpSessionAttribute

Listener interface, 542

HttpSessionListener inter-

face, 542

NamespaceChange

Listener, 120

ObjectChangeListener, 120

ServletContextAttribute

Listener interface, 542

ServletContextListener

interface, 542

1062 <jsp:getProperty> tag

31 0672323842 Index 3/20/02 9:35 AM Page 1062

listings. See code listings
ListSASL.java file, 696-697
listTitles() method, 844
loadDetails() method,

803-804
loading classes from code

bases, 114
loadLibrary() method, 862
<local> tag, 185
local interface

Entity EJBs (Enterprise

JavaBeans)

accessing, 258-259

BMP (bean-managed

persistence) Entity

EJBs, 230

CMP (container-

managed persistence)

Entity EJBs, 301

compared to remote

interfaces, 217-219

methods

implementing, 241-243

implementing, 312-313

<local-home> tag, 185
LocalHome interface

BMP (bean-managed persis-

tence) Entity EJBs

custom primary key

classes, 227-229

defining, 225

exceptions, 226

finder methods, 226

home methods, 229

CMP (container-managed

persistence) Entity EJBs,

301

implementing, 235-241

methods

finder methods, 308-309

home methods, 310-312

implementing, 305-308

locally hosted registries, 929
LocalTransaction interface,

845
log files, 337
<login-config> tag, 685
look and feel (Agency Web

site)
agency.css style sheet, 589

footers, 591-592

headers, 588

lookup (JNDI)
JNDILookup.java, 93-94

lookup() method, 93

RMI-IIOP objects, 95-96

sub-contexts, 94-95

<lookup> tag, 615-617
lookup() method, 93-94, 407,

838, 854

M

mail. See e-mail
mail.debug property, 468
mail.from property, 468
mail.host property, 468
mail.protocol.host property,

468
mail.protocol.user property,

468
mail.store.protocol property,

467
mail.transport.protocol prop-

erty, 467
mail.user property, 468
main() method

PTPListener application,

415

RMI over JRMP applica-

tion, 853

maintaining
patterns

Business Delegate pat-

tern, 821

Composite View pattern,

816

Data Access Object pat-

tern, 805

Service Locator pattern,

822

Session Façade pattern,

799

Value Object pattern,

804

View Helper pattern, 820

state, 905-908

client code, 907-908

deployment descriptors,

906

SessionSimpleOrderServ

er.java example, 906

many-to-many relationships,
280, 286

many-to-one relationships,
286

MapMessage message type,
409

MappedRecord objects, 840
mapping

serializers, 912-919

BeanOrderServer.java,

915

BeanOrderService

client, 916-918

BeanOrderService seri-

alizer definition, 915

LineItemBean.java, 914

principals to roles,

674-676

SOAP/WSDL types,

911-912

marketplace registries, 926
marshal() method, 945
MDBPrintMessage bean

code listing, 440

deployment descriptor,

443-445

members (JCP), 1000

members (JCP) 1063

31 0672323842 Index 3/20/02 9:35 AM Page 1063

membership structure (JCP)
Executive Committees, 1001

Expert Groups, 1000

JCP members, 1000

PMO (Public Management

Office), 1001

public involvement,

1000-1001

message acknowledgements
AUTO_ACKNOWLEDGE,

437

DUPS_OK_

ACKNOWLEDGE, 438

message digests, 660
message domains

defined, 399

point-to-point, 400-402

publish/subscribe, 401,

415-416

message persistence, 423
message selectors, 422, 438
<message> tag (WSDL), 885
message-based Web Services,

937. See also JAXM (Java
API for XML Messaging)

asynchronous services, 939

clients, 938-939

JAXMOrderServer

.java, 952-954

JAXMOrderService

Client.java, 943-944

ProcessingServlet.java,

960-961

running, 947

SubmittingServlet.java,

957-959

compared to RPC-style ser-

vices, 937

message attachments,

951-952

message headers, 951-952

populating messages,

947-951

receiving messages

JAXM profiles,

959-962

simple JAXM clients,

952-955

sending messages

JAXM profiles,

957-959

standalone JAXM

clients, 942-946

synchronous services, 939

Message-driven beans, 44,
128, 429-430

Agency case study, 447

AgencyBean, 449-450,

735-736

ApplicantMatch bean,

737-739

ApplicationMatch bean,

451-456

deployment, 456-457

MessageSender class,

736-737

queue, 456

RegisterBean, 449-450

sender helper class,

447-449

testing, 457

alternative architectures,

457-458

ApplicationMatch example

code listing, 453-456

deleteByApplicant()

method, 452

ejbCreate() method, 451

ejbRemove() method,

451

findByLocation()

method, 452

getLocation() method,

452

getSkills() method, 453

InitialContext interface,

451

onMessage() method,

452

skillMatch counter, 453

clients, 430-431

compared to Session and

Entity beans, 431

context, 433

creating, 434, 439-440

defined, 430

deploying, 442-457

exception handling, 436

interface implementation,

439-440

interfaces, 431-432

life cycle, 432-433

MDBPrintMessage bean

code listing, 440

deployment descriptor,

443-445

message acknowledgements

AUTO_

ACKNOWLEDGE,

437

DUPS_OK_

ACKNOWLEDGE,

438

message handling, 435-436

message selectors, 438

method-ready pool,

434-435

queues, 441, 456

removing, 435

sender clients, 445-447

close() method, 448

MessageSender helper

class, 448-449

MessageSender()

method, 447

sendApplicant() method,

448

state, 431-432

testing, 457

transactions, 436-437

1064 membership structure (JCP)

31 0672323842 Index 3/20/02 9:35 AM Page 1064

MessageDrivenContext inter-
face, 433

MessageListener interface,
414

messages. See also e-mail
consuming, 435-436

diagnostic messages

Cloudscape, 34

RI (Reference

Implementation),

33-34, 78-79

error messages, 36-37

JMS (Java Message Service,

407

body types, 409

consuming, 411-412

creating, 409

defined, 399

headers, 408

message persistence, 423

message selectors, 422

properties, 408-409

sending, 409

message acknowledgements

AUTO_

ACKNOWLEDGE,

437

DUPS_OK_

ACKNOWLEDGE,

438

Sequence diagrams, 973

MessageSender class,
736-737

MessageSender helper class,
448-449

MessageSender() method, 447
messaging, 22. See also mes-

sage-based Web Services;
Message-driven beans

e-mail, 461-465

attachments, 482-485,

490-494

content type, 479

deleting, 489-490

development environ-

ment, 465-466

headers, 479

HTML e-mail, 472-475

images, 479

IMAP (Internet Message

Access Protocol), 464

mail sessions, 468

message flags, 489

MIME (Multipurpose

Internet Mail

Extensions), 464-465

multi-part messages,

476-482

NNTP (Network News

Transport Protocol),

464

plain text e-mail,

466-471

POP3 (Post Office

Protocol), 463-464

retrieving, 485-488,

490-494

SMTP (Simple Mail

Transfer Protocol), 463

user authentication,

494-497

JAXM (Java API for XML

Messaging), 25, 939

clients, 941

configuring, 941-942

message attachments,

951-952

message headers,

951-952

populating messages,

947-951

profiles, 955-962

Providers, 940-941

receiving messages,

952-956, 959-962

sending messages,

942-946, 957-959

JAXR (Java APIs for XML

Registries), 25

JMS (Java Message

Service). See JMS

META-INF directory, 525
metadata, 141-142
<method> tag, 340
Method Ready Pool state

(Message-driven beans), 432
<method-intf> tag, 671
<method-permissions> tag,

670-671
method-ready pool, 434-435
methods

abstract, 274-275

add(), 287

addAll(), 287

addAttachmentPart(), 951

addBodyElement(), 948

addBodyPart(), 477-478,

482

addChildElement(), 948

addCookie(), 533

addElement(), 736

addNamingListener(), 120

addRecipient(), 469

afterBegin(), 352

appendChild(), 731

applicantXML(), 736

beforeCompletion(), 352

begin(), 346, 845

beginTransactionIf

Required(), 349

bind(), 91, 853

BMP Entity EJB interfaces,

225

characters(), 723

cloneNode(), 731

close(), 487, 841

close(), 448

commit(), 346, 423-424

completeTransactionIf

Required(), 349

connect(), 486, 494

methods 1065

31 0672323842 Index 3/20/02 9:35 AM Page 1065

contextDestroyed(), 542

contextInitialized(), 542

create(), 173

createAttachment(), 951

createCustomer(), 681

createDurableSubscriber(),

420-421

createInteraction(), 839

createJob(), 810-811

createReceiver(), 412

createSubcontext(), 99

createSubscriber(), 420-422

createTextMessage(), 409

ctx.getLocalHome(), 303

DELETE, 507

deleteByApplicant(), 452

deleteCustomer(), 681

destroy(), 523, 537

destroySubcontext(), 99

displayHelloWorld(), 864

doAfterBody(), 610-611,

622-624

doEndTag(), 610

doFilter(), 535-536, 544-545

doGet(), 522, 959

doInitBody(), 611

doPost(), 522, 954

doSelect(), 640

doStartTag(), 610, 621, 624

ejb prefix, 173

ejbActivate(), 172, 198,

221-223, 279, 304

ejbCreate(), 170, 173, 176,

197, 222, 235-237, 278,

305, 433-434, 439, 451,

679

ejbFindByPrimaryKey(),

224-226, 240

ejbHomeDeleteBy

Customer(), 303

ejbLoad(), 221, 223, 232,

279, 303

ejbPassivate(), 172, 198,

221-223, 279, 304

ejbPostCreate(), 221-222,

235-237

ejbRemove(), 171, 177, 223,

279, 307, 435, 439, 451

ejbStore(), 221, 223, 232,

279, 303

encodeURL(), 535

endDocument(), 723

endElement(), 721-723

endPrefixMapping(), 723

equals(), 228

error(), 180, 723

examineHeaderElements(),

951

execute(), 840, 845

FatalError(), 723

findAncestorWithClass(),

627

findByLocation(), 452

findByPrimaryKey(), 226,

304

finder methods, 226, 291-293

GET, 506-507, 520

getAttribute(), 531, 626

getAttributes(), 108-109,

726-728

getAttributeString(), 637

getCallerPrincipal(), 433,

678

getChildNodes(), 727

getConnection(), 357, 839

getCreationTime(), 531

getCurrentValue(), 629

getDefaultInstance(), 468,

494

getDisposition(), 491

getDocumentElement(), 727

getEJBHome(), 433

getEJBLocalHome(), 433

getElementsByTagName(),

727

getFileName(), 491

getFirstChild(), 727

getFolder(), 486

getId(), 530

getInstance(), 468

getLastAccessedTime(), 530

getLastChild(), 727

getLocalTransaction(), 845

getLocation(), 452

getLocations(), 177

getMaxInactiveInterval(),

531

getMessage(), 486

getMessages(), 486

getName(), 620

getNamespaceURI(),

726-728

getNodeName(), 726-728

getNodeType(), 726-728

getNodeValue(), 726,-728

getObjectInstance(), 118-119

getParameter(), 520, 577

getParent(), 627

getParentNode(), 727

getPassword

Authentication(), 495

getPreviousSibling(), 727

getPrimaryKey(), 253

getPropertyNames(), 408

getRecordFactory(), 839

getReference(), 117

getRemoteUser(), 692

getRequestURI(), 534

getResourceAsStream(),

754

getRollbackOnly(), 344,

437

getSession(), 531

getSkills(), 453

getStatus(), 346

getStore(), 486

getUserPrincipal(), 691

getUserTransaction(),

344-346, 437

getValue(), 534, 951

hasAttributes(), 728

hasChildNodes(), 728

1066 methods

31 0672323842 Index 3/20/02 9:35 AM Page 1066

hashCode(), 228

HEAD, 507

IgnorableWhitespace(), 724

init(), 523, 536

InitialContext(), 86

insertBook(), 837

invalidate(), 532, 542

invoke(), 891

IsCallerInRole(), 433, 678

isEmployee(), 974

isIdentical(), 253

isNew(), 531

isUserInRole(), 691

isValid(), 635

iterator(), 845

jspDestroy(), 569

jspInit(), 569

list(), 96-97

listBindings(), 97-98

listTitles(), 844

loadDetails(), 803-804

loadLibrary(), 862

lookup(), 93-94, 407, 838,

854

main()

PTPListener application,

415

RMI over JRMP appli-

cation, 853

marshal(), 945

MessageSender(), 447

MimeBodyPart(), 477

MimeMessage(), 468

ModifyAttributes(), 112

narrow(), 95, 859

newInstance(), 751, 945

newTransformer(), 751

normalize(), 726

notationDecl(), 724

onMessage(), 414-415,

435-436, 452

open(), 486

OPTIONS, 507

outputTable(), 548

parse(), 725

passing by value, 133

permissions, 670-674

POST, 506, 522

processingInstruction(), 724

processPart(), 491

PUT, 507

put(), 467

rebind(), 92, 853, 858

receive(), 412

receiveNoWait(), 413

release(), 610

removeChild(), 731

rename(), 93

resolveEntity(), 724

RMI (Remote Method

Invocation), 851-852

RMI over IIOP, 61-62,

857-860

RMI over JRMP,

852-857

when to use, 865

rollback(), 346, 423-424,

846

search(), 109-111

select(), 291-293

send(), 409, 470, 473, 735

sendApplicant(), 448,

735-737

sendRedirect(), 529

setAttribute(), 618

setContent(), 469, 473,

477-479

setDataHandler(), 479

setEntityContext(), 220,

231, 263, 278, 302, 343

setFileName(), 483

setFlag(), 489

setFrom(), 469

setHeader(), 479

setLocation(), 230

setLogin(), 620

setMaintainSession(), 907

setMaxAge(), 534

setMaxInactiveInterval(),

532

setMessageDriven

Context(), 433-434, 439

setMessageListener(), 414

setRef(), 625

setRollbackOnly(), 344, 437

setSessionContext(), 170,

343, 838

setSubject(), 469

setText(), 409, 469, 473,

482

setValue(), 534

showResource(), 754

skippedEntity(), 724

start(), 412

startDocument(), 723

startElement(), 720-723

startPrefixMapping(), 723

stored procedure definition,

376

submitOrder(), 905, 908

TRACE, 507

transform(), 751

unbind(), 93, 853

unmarshal, 951

unsetEntityContext(), 232,

263, 278

unsubscribe(), 421

updateDetails(), 255

Warning(), 724

writeFile(), 491

writeTo(), 487, 492, 498

Microsoft .NET framewrk, 26
Microsoft Active Directory, 19
Microsoft Developers

Network Web site, 705
MIME (Multipurpose

Internet Mail Extensions),
464-465

MimeBodyPart() method, 477
MimeMessage object, 468
MimeMessage() method, 468

MimeMessage() method 1067

31 0672323842 Index 3/20/02 9:35 AM Page 1067

MimeMultipart objects,
478-479

mobile devices, 51
modeling application develop-

ment, 127
modes, session acknowledge-

ment, 422-423
ModificationItem objects, 112
ModifyAttributes() method,

112
modifying attributes

JNDIModify.java applica-

tion, 112-114

ModificationItem objects,

112

ModifyAttributes() method,

112

modularity, 14-16
monolithic development

disadvantages, 10-11

structure, 10

transitioning to n-tier, 26

multi-part messages
body text, 477

BodyPart objects, 477-478

content type, 479

creating, 476-479

headers, 479

images, 479

MimeMultipart objects,

478-479

sending, 479-482

Multi-Schema XML
Validator, 705

multimedia e-mail
absolute URLs, 475

addressing, 473

body text, 473

java.io package, 472

multi-part messages

body text, 477

BodyPart objects,

477-478

content type, 479

creating, 476-479

headers, 479

images, 479

MimeMultipart objects,

478-479

sending, 479-482

sending, 473-475

multiplicity element, 317
Multipurpose Internet Mail

Extensions (MIME),
464-465

multithreading, 425, 503
MyAuthenticator class,

494-495
MyHelloService.wsdl file,

883-884

N

n-tier development, 9-10,
13-14, 28, 38

advantages, 16-17

business tier

advantages of business

components, 39-40

EJBs (Enterprise

JavaBeans), 40-43

Entity beans, 43-44

Message-driven beans,

44

Session beans, 43

client tier, 49

applet clients, 51

dynamic HTML clients,

50-51

mobile devices, 51

non-Java clients, 54

peer-to-peer communi-

cation, 53

standalone clients, 52-53

static HTML clients,

49-50

Web Services, 54

component frameworks,

15-16

Enterprise Computing

Model, 17-18

lifecycle, 18

naming, 18-19

persistence, 18

security, 19-20

transactions, 19

modularity, 14-16

presentation tier, 44-45

development tips,

48-49

JSPs (JavaServer Pages),

46-47

servlets, 47-48

Web-centric compo-

nents, 45-46

transitioning to, 26

name lookup (JNDI)
JNDILookup.java, 93-94

lookup() method, 93

RMI-IIOP objects, 95-96

sub-contexts, 94-95

name persistence, 92
name() function, 763
<name-from-attribute> tag,

618
<name-given> tag, 618
name.jsp page, 572-573
names, 18-19, 84. See also

naming services
cmp-fields, 275

cmr-fields, 283

composite names, 100-101

compound names, 101

name lookup (JNDI)

JNDILookup.java,

93-94

lookup() method, 93

RMI-IIOP objects,

95-96

sub-contexts, 94-95

objects, 93

1068 MimeMultipart objects

31 0672323842 Index 3/20/02 9:35 AM Page 1068

persistence, 92

URLs (Uniform Resource

Locators), 101

X.500, 102-103

NamespaceChangeListener
event listener, 120

namespaces, 714-715, 991
Naming Service (CORBA),

851
Naming Service (COS), 18
naming services, 131. See also

JNDI (Java Naming and
Directory Interface)

advantages of, 82-83

CORBA (Common Object

Request Broker

Architecture), 851

COS (Common Object

Services), 18

defined, 82

DNS (Domain Name

System), 83

naming conventions, 84

NIS (Network Information

Services), 83

support for, 83-84

NamingEvent object, 120
NamingListener object,

120-121
narrow() method, 95, 859
narrowing objects, 95-96
native clients (JMS), 399
NDS (Novell Directory

Services), 83
nesting. See also hierarchical

tag structures
elements, 707

HTML (Hypertext Markup

Language) tags, 509

transactions, 337

.NET framework, 26
Network Information Services

(NIS), 83

Network News Transport
Protocol (NNTP), 464

Network Security
Requirements options,
689-690

New System Variable dialog
box, 30

newInstance() method, 751,
945

newline elements, 751
newTransformer() method,

751
NIS (Network Information

Services), 83
NMTOKEN attribute type,

713, 994
NMTOKENS attribute type,

713, 994
NNTP (Network News

Transport Protocol), 464
node() function, 763
nodes

DOM (Document Object

Model)

accessing, 726-728

modifying, 731-732

XML (Extensible Markup

Language)

hierarchy, 763

identifying, 762-764

non-Java clients, 54
non-repudiation, 656
none option (network security

requirements), 689
NON_PERSISTENT delivery

mode, 423
NoPermissionException

exception, 112
normalization, 215
normalize() method, 726
NoSuchEntityException

exception, 234
NoSuchObjectLocal

Exception exception, 253

[NOT] MEMBER OF opera-
tor, 300

NOTATION attribute type,
713, 994

notationDecl() method, 724
Novell Directory Services

(NDS), 83
NTFS (NT File System), 337
nullable primitives, 298

O

Object Constraint Language
(OCL), 973

Object Request Broker
(ORB), 850

object-oriented (OO) model-
ing, 15, 300

object-oriented programming
(OOP), 15

ObjectChangeListener event
listener, 120

ObjectMessage message type,
409

objects
administered objects, 399

AdvertiseValueObject, 803

Application, 575

binding, 90-91

bind() method, 91

example, 91

name persistence, 92

potential problems,

91-92

BodyPart, 477-478

config, 575

ConnectionFactory, 403

Context. See Contexts, 86

DataSource, 217

HttpSession, 530-531

IndexedRecord, 840

InitialContext, 857

objects 1069

31 0672323842 Index 3/20/02 9:35 AM Page 1069

JobValueObject, 806-807

MappedRecord, 840

MimeMessage, 468

MimeMultipart, 478-479

ModificationItem, 112

name lookup

JNDILookup.java,

93-94

lookup() method, 93

RMI-IIOP objects, 95-96

sub-contexts, 94-95

NamingEvent, 120

NamingListener, 120-121

narrowing, 95-96

out, 575

PageContext, 575

PasswordAuthentication, 495

Queue, 402

QueueBrowser, 402

QueueConnection, 402

QueueConnectionFactory,

402

QueueReceiver, 402

createReceiver() method,

412

PTPReceiver example,

413-414

receive() method, 412

receiveNoWait() method,

413

start() method, 412

QueueSender, 402

QueueSession, 402

rebinding, 92

Referenceable, 117

renaming, 93

request, 575

RMIConnectionFactory, 403

RMIXAConnection

Factory, 403

searching for

JNDIFilter.java applica-

tion, 111

JNDISearch.java appli-

cation, 110

search() method,

109-111

serializable, 133

session, 575

Topic, 416

TopicConnection, 416

TopicConnectionFactory,

416

TopicPublisher, 416

TopicSession, 416

TopicSubscriber, 416

UILConnectionFactory, 403

UILXAConnectionFactory,

403

unbinding, 92-93

XAConnectionFactory, 403

Observer pattern, 794
OCL (Object Constraint

Language), 973
OMG

Enterprise Computing

Model, 17-18

lifecycle, 18

naming, 18-19

persistence, 18

security, 19-20

transactions, 19

Web site, 18

one-to-many relationships, 284
onMessage() method,

414-415, 435-436, 452
OO (object-oriented) model-

ing, 15, 300
OOP (object-oriented pro-

gramming), 15
open() method, 486
OpenLDAP, 104-106
operations, 971-972
operators

EJB QL where clause,

297-299

SQLj Part 2, 380

optimistic transactions, 385
<OPTION> tag (HTML), 511
<option> tag (XML), 631

code listing, 629-630

TLDs (tag library descrip-

tors), 630

optional software, 37-38
OPTIONS method, 507
ORB (Object Request

Broker), 850
ORDER BY clause (SQL),

984-985
Order.java file, 948-950
Organization interface, 936
out object, 575
out parameter (Class dia-

grams), 972
outer joins

full joins, 983

left outer joins, 982

right outer joins, 982

outputTable() method, 548

P

<P> tag (HTML), 511
packager, 65
packaging applications, 15,

66-67
deployment descriptors,

67-68

EARs (Enterprise

Application Archives), 67

EJB-JAR files, 69

WAR (Web Archive) files,

70

page directive, 571-575
page scope, 618
Page-by-page Iterator pat-

tern, 796
PageContext object, 575
<param-name> tag, 527

1070 objects

31 0672323842 Index 3/20/02 9:35 AM Page 1070

<param-value> tag, 527
parameters

passing to servlets, 519

GET method, 520

getParameter() method,

520

POST method, 522

VerifyData servlet exam-

ple, 520-521

RMI (Remote Method

Invocation) rules, 132

parent axis (XPath), 762
parenthesis (), 993
parse() method, 725
parsing XML (Extensible

Markup Language)
DOM (Document Object

Model), 725

accessing tree nodes,

726-728

Document interface

methods, 725-728,

731-732

DocumentBuilder

Factory interface, 725

DOM Parser application,

728-731

modifying tree nodes,

731-732

parse() method, 725

JAXP (Java API for XML

Parsing), 58-59

SAX (Simple API for

XML), 719-720

DefaultHandler methods,

723-724

endElement() method,

721

SAX Parser application,

721-723

SAXParseFactory inter-

face, 720

startElement() method,

720-721

Partial Value Object pattern,
804

passing parameters
to servlets, 519

GET method, 520

getParameter() method,

520

POST method, 522

VerifyData servlet exam-

ple, 520-521

by value, 133

passivation
Entity EJBs (Enterprise

JavaBeans), 223, 235

stateful Session EJBs

(Enterprise JavaBeans),

198-199

PasswordAuthentication
object, 495

PATH environment variable,
30-31

paths, search paths, 30
pattern catalogs, 792
pattern languages, 788
patterns, 787-792

advantages of, 790

analysis patterns, 791

applying, 793-794

architectural patterns, 790

Business Delegate

case study analysis,

820-821

defined, 796

maintainability, 821

performance, 821

reliability, 821

case study analysis, 797-798,

822

client-side proxies and

delegates, 820-821

data access without

EJBs (Enterprise

JavaBeans), 804-811

data exchange and Value

Objects, 800-804

entity creation, 812-813

JSP (JavaServer Page)

creation, 813-817

messages and asynchro-

nous activation, 811

separation of concerns,

817-820

service location, 821-822

Session Facades,

798-800

Command, 205, 794

Composite Entity

case study analysis,

812-813

defined, 796

flexibility, 813

maintainability, 813

performance, 813

Composite View

case study analysis,

813-817

admin.jsp, 815

agency.jsp, 814

flexibility, 816

footer.jsf, 815

header.jsf, 814

maintainability, 816

manageability, 816

performance, 817

defined, 795

Data Access Object

case study analysis,

804-811

defined, 796

flexibility, 805, 811

maintainability, 805, 811

performance, 811

Decorator, 794

defined, 789

design patterns, 790

Dispatcher View, 795

documentation, 789

patterns 1071

31 0672323842 Index 3/20/02 9:35 AM Page 1071

EJB Observer, 796

ejbLoad() and ejbStore()

methods, 323-324

EJBs (Enterprise

JavaBeans)

Adapter classes,

204-205

business interface, 203

Entity EJBs, 258

services, 205

Façade, 794

Fast Lane Reader, 796

finding, 792

Front Controller, 795

future of, 823

history of, 788

idioms, 790

Intercepting Filter, 795, 797

Iterator, 794

Observer, 794

online resources

Alexander, Christopher,

789-790

DeveloperWorks, 792

Hillside, 792

J2EE Blueprints, 792

TheServerSide.com, 792

Page-by-page Iterator, 796

pattern catalogs, 792

patterns within patterns, 791

process patterns, 791

Proxy, 794, 797

recommended reading

Design Patterns -

Elements of Reusable

Object-Oriented

Software, 791

The Timeless Way of

Building, 788

refactoring, 794, 822-823

Service Activator

availability, 812

case study analysis, 811

defined, 796

performance, 812

scalability, 812

Service Locator

availability, 822

case study analysis,

821-822

defined, 795

maintainability, 822

performance, 821

reliability, 822

Service to Worker, 795

Session Façade

case study analysis,

798-800

defined, 795

flexibility, 799

maintainability, 799

performance, 799

security, 799

Singleton, 794, 797

structure, 789

Value List Handler, 796

Value Object

case study analysis,

800-804

defined, 796

flexibility, 804

maintainability, 804

Partial Value Object, 804

performance, 804

scalability, 804

Value Object Builder, 796

View Helper

case study analysis,

817-820

defined, 795

flexibility, 820

maintainability, 820

performance, 820

#PCDATA content type, 712,
993

peer-to-peer communication,
53

percent sign (%), 565
performance

Business Delegate pattern,

821

Composite View pattern,

817

EJB (Enterprise JavaBean)

containers, 247-248

Service Activator, 812

Service Locator pattern, 821

Session Façade pattern, 799

Value Object pattern, 804

View Helper pattern, 820

permissions, 670-674
persistence, 363-365

bound objects, 92

EJB (Enterprise JavaBean)

services, 132

Enterprise Computing

Model, 18

JDBC (Java Databasse

Connectivity), 365-367

JDO (Java Data Objects),

383-384

caches, 384-387

classes and interfaces,

387-389

deployment descriptors,

391

lifecycle, 392

queries, 389-390

SCOs (Second Class

Objects), 391

transient transactional

objects, 392

JMS (Java Message

Service), 423

object/relational mapping

products, 364

OODBMSs, 364

persistent data stores, 336

1072 patterns

31 0672323842 Index 3/20/02 9:35 AM Page 1072

PowerTier Release 7, 25

SQLj, 367-368

Part 0, 368-373

Part 1, 373-378

Part 2, 378-383

PersistenceManager interface,
385

persistent data stores, 336
PERSISTENT delivery mode,

423
pessimistic locking, 385
Pet Store application, 23-24
pipe character (|), 993
plain text e-mail, 466

addressing, 469

body text, 469

content type, 469

mail environment proper-

ties, 467-468

main() message, 467

MimeMessage objects, 468

sending

send() method, 470

SendMail application,

470-471

SMTP host access, 467

subjects, 469

platform independence, 702
platform roles, 62

Application Assemblers, 63

Application Component

Providers, 63

Application Deployers, 64

Product Providers, 63

Systems Administrators, 64

Tool Providers, 65

plus sign (+), 993
PMO (Public Management

Office), 1001
point-to-point message

domains, 400-402

point-to-point messaging,
396-397, 406

asynchronous messaging

exception handling, 415

main() method, 415

MessageListener inter-

face, 414

onMessage() method,

414-415

setMessageListener()

method, 414

closing connections, 410

consuming messages,

411-412

creating messages, 409

message domains, 400-402

message structure, 407

body types, 409

headers, 408

properties, 408-409

PTPSender sample applica-

tion, 410-411

queues, 406-407

sending messages, 409

synchronous receivers

createReceiver() method,

412

PTPReceiver example,

413-414

receive() method, 412

receiveNoWait() method,

413

start() method, 412

POP3 (Post Office Protocol),
463-464

populating messages, 947-951
PortableRemoteObject inter-

face, 857
portal pages, 587
porting EJBs (Enterprise

JavaBeans), 181
ports, server port conflicts,

35-36

<portType> tag (WSDL), 885
POST method, 506, 522
Post Office Protocol (POP3),

463-464
PowerTier Release 7, 25
presentation elements,

183-184
presentation errors, 568-569
presentation logic, 12
presentation tier, 44-45

development tips, 48-49

JSPs (JavaServer Pages),

46-47

patterns

Composite View, 795,

813-817

Dispatcher View, 795

Front Controller, 795

Intercepting Filter,

795-797

Service Locator, 795,

821-822

Service to Worker, 795

View Helper, 795,

817-820

separating from business

logic, 130-131

servlets, 47-49

Web-centric components,

45-46

presentation-tier patterns
Composite View

case study analysis,

813-817

defined, 795

Dispatcher View, 795

Front Controller, 795

Intercepting Filter,

795-797

Service Locator

availability, 822

case study analysis,

821-822

presentation-tier patterns 1073

31 0672323842 Index 3/20/02 9:35 AM Page 1073

defined, 795

maintainability, 822

performance, 821

reliability, 822

Service to Worker, 795

View Helper

case study analysis,

817-820

defined, 795

flexibility, 820

maintainability, 820

performance, 820

primary keys
composite, 284

Entity EJBs (Enterprise

JavaBeans), 214

CMP (container-

managed persistence)

Entity EJBs, 272

creating, 222

custom classes, 227-229

field restrictions, 227

immutability, 222

surrogate keys, 243-245

<primkey-field> tag, 308
principal property (JNDI),

121, 695
principals

defined, 661-662

mapping to roles, 674-676

private keys, 658
private registries, 926
process patterns, 791
processingInstruction()

method, 724
ProcessingServlet.java file,

960-961
processPart() method, 491
Product Providers, 63
profiles (JAXM), 955-956

receiving messages with,

959-962

sending messages with,

957-959

program development. See
application development

program listings. See code
listings

programmatic authorization
Agency case study

advertise.jsp customer

name selection, 693

agency.jsp customer

options, 692

role references, 693-694

getRemoteUser() method,

692

getUserPrincipal() method,

691

isUserInRole() method, 691

programmatic security, 661
Agency case study,

679-682

EJBs (Enterprise

JavaBeans), 678

prologs (XML documents),
990

properties
JavaBean properties

retrieving, 579-580

setting, 580-581

JMS (Java Message

Service), 408-409

JNDI (Java Naming and

Directory Interface),

87-88

applet parameters, 90

application properties,

89

hard-coded properties,

90

jndi.properties file,

88-89

mail environment proper-

ties, 467-468

protocols. See specific protocol
names (for example, HTTP)

Providers (JAXM), 940-941
providers (JMS), 399
proxies

client-side proxies

Business Delegates,

820-821

creating, 885-888

Proxy pattern, 794, 797
PTPReceiver class, 413-414
PTPSender sample applica-

tion, 410-411
public involvement in (Java

Community Process),
1000-1001

public key encryption,
658-659

public keys, 658
Public Management Office

(PMO), 1001
public production registries,

929
public test registries, 929
publish/subscribe message

domains, 401, 415-416
publish/subscribe messaging,

397, 415-416
bulletin board publisher pro-

gram, 417-418

bulletin board subscriber

program, 418-420

durable subscriptions,

420-421

message domains, 401,

415-416

ObjectConnection object,

416

ObjectConnectionFactory

object, 416

Topic object, 416

TopicPublisher object, 416

TopicSession object, 416

TopicSubscriber object, 416

1074 presentation-tier patterns

31 0672323842 Index 3/20/02 9:35 AM Page 1074

publishers
bulletin board publisher pro-

gram, 417-418

defined, 397

push messaging model, 396
PUT method, 507
put() method, 467

Q

queries
EJB QL syntax, 293

JDO (Java Data Objects),

389-390

<query> tag, 316
question mark (?), 993
Queue object, 402
QueueBrowser object, 402
QueueConnection object, 402
QueueConnectionFactory

object, 402
QueueReceiver object, 402

createReceiver() method,

412

PTPReceiver example,

413-414

receive() method, 412

receiveNoWait() method,

413

start() method, 412

queues
creating, 406-407, 441, 456

with deploytool,

405-406

with j2eeadmin,

404-405

defined, 396, 399

J2EE RI, 404-406

QueueSender object, 402
QueueSession object, 402
quotation marks (“), 101, 990

R

Rational Unified Process
(RUP), 966

read-only installation directo-
ry, 35

reading attributes, 108-109
realms, 664
realmtool, 65, 664
rebind() method, 92, 853, 858
rebinding objects, 92
receive() method, 412
receiveNoWait() method, 413
receivers (synchronous)

createReceiver() method,

412

PTPReceiver example,

413-414

receive() method, 412

receiveNoWait() method,

413

start() method, 412

receiving messages, 952-956,
959-962

RECENT flag (e-mail), 489
RecipientType class, 498
recommended reading. See

books
redirecting clients, 529
REF data type, 367, 381
refactoring, 794, 822-823
Reference Implementation.

See RI
Referenceable objects, 117
references

JNDI (Java Naming and

Directory Interface)

BookFactory.java appli-

cation, 118

BookRef.java applica-

tion, 117-118

getReference() method,

117

JNDIBindBookRef.

java application, 119

JNDILookupBookRef.

java application,

119-120

Referenceable objects,

117

role references, 662

referential integrity, 326
refused connections, trou-

bleshooting, 36-37
RegisterBean bean, 449-450
RegisterBusiness.java file,

930-931
registration (EJB services),

131
registries, 923-924

advantages of, 924-925

defined, 924

ebXML R&R (Registry and

Repository), 926-927

global registries, 925

JAXR (Java API for XML

Registries), 25, 876

architecture, 934

client initialization code,

934-935

interfaces, 936-937

marketplace registries, 926

private registries, 926

searching, 925

site-specific registries, 926

UDDI (Universal

Description, Discovery,

and Integration)

accessing with JAXR

(Java API for XML

Registries), 934-937

accessing with UDDI4J,

929-932

accessing with WSKT

Client API, 932-934

bindingTemplate struc-

ture, 928

registries 1075

31 0672323842 Index 3/20/02 9:35 AM Page 1075

locally hosted registries,

929

public production reg-

istries, 929

public test registries, 929

service information, 933

tModel structure, 928

relational entities, 215
relationships

cardinality, 281

cascade delete, 312

cascade null, 281

CMP (container-managed

persistence) Entity EJBs,

273

cmr-fields, 282-285

manipulating, 286-291

navigability, 282

types, 280-281

composite primary keys,

284

many-to-many, 286

many-to-one, 286

referential integrity, 326

<relationships> tag,
317-320, 322

release() method, 610
reliability

Business Delegate pattern,

821

Service Locator pattern, 822

remote clients, 127
<remote> tag, 145, 185
remote interface, 177-178
remote interfaces

compared to local inter-

faces, 217-219

Entity EJBs (Enterprise

JavaBeans), 283

exporting, 127

stateless Session EJBs

(Enterprise JavaBeans),

172

transactions, 340

Remote Method Invocation.
See RMI

RemoteException exception,
134, 180, 853

remove() method, 150
removeChild() method, 731
rename() method, 93
renaming objects, 93
request object, 575
request scope, 618
request time expressions, 616
requests (HTTP)

body, 505

GET, 505

headers, 505

parameters, 576-577

request lines, 504

#REQUIRED value (DTD
attributes), 713, 994

<res-auth> tag, 191
<res-ref-name> tag, 190
<res-sharing> tag, 191
<res-type> element, 190
resolveEntity() method, 724
resource adapters, 835-836
<resource-ref> tag, 145
resource environment refer-

ences, 192-193
resource managers, 338,

354-356, 359-360
resource names, 145
resource references, 190-192
responses (HTTP)

body, 505

example, 507

headers, 505, 508-509

response lines, 504

<result-type-mapping> ele-
ment, 316

RetrieveMail application,
487-488

retrieving
EJBs (Enterprise

JavaBeans), 149

e-mail messages, 485

attachments, 490-494

close() method, 487

connect() method, 486

getFolder() method, 486

getMessage() method,

486

getMessages() method,

486

getStore() method, 486

open() method, 486

RetrieveMail applica-

tion, 487-488

writeTo() method, 487

JavaBean properties,

579-580

table data, 981

return types
ejbCreate() method, 226

ejbFind() method, 226

Enumeration, 262

null, 307

RMI (Remote Method

Invocation) rules, 132

rewriting URLs (Uniform
Resource Locators), 535

RI (Reference
Implementation), 32

diagnostic messages,

33-34, 78-79

J2EE RI for Linux and

Unix, 86

J2EE RI for Windows,

85-86

security, 663

groups, 664-666

realms, 664

users, 664-666

shutting down, 37

software components, 32

starting, 33-34

troubleshooting, 34

read-only installation

directory, 35

1076 registries

31 0672323842 Index 3/20/02 9:35 AM Page 1076

refused connections,

36-37

server port conflicts,

35-36

RIGHT JOIN statement
(SQL), 982

right outer joins, 982
RMI (Remote Method

Invocation), 851-852
EJB services, exporting to

remote clients, 127

methods, 132

RMI over IIOP, 61-62,

95-96

HelloUserClient.java

example, 859

HelloUserImpl.java

example, 858

InitialContext objects,

857

Java interpreter proper-

ties, 860

PortableRemoteObject

interface, 857

rebind() method, 858

Transient Name Server,

860

RMI over JRMP

bind() method, 853

HelloUser.java, 852

HelloUserClient.java,

855

HelloUserImpl.java,

853-854

Java interpreter, 856

Java interpreter proper-

ties, 856

lookup() method, 854

main() method, 853

rebind() method, 853

RemoteException excep-

tions, 853

unbind() method, 853

UnicastRemoteObject

class, 853

when to use, 865

RMIConnectionFactory
object, 403

RMIXAConnectionFactory
object, 403

roles, 62, 969
Agency case study, 675, 686

Application Assemblers, 63

Application Component

Providers, 63

Application Deployers, 64

as security identities,

676-678

Connector architecture,

830-831

creating, 666-668

defined, 662

mapping principals to,

674-676

Product Providers, 63

references, 662

Systems Administrators, 64

Tool Providers, 65

rollback() method, 346,
423-424, 846

<root> elements, 705-706
rows

adding to tables, 980-981

deleting, 980

RPC (Remote Procedure
Call) Web Services,
879-881. See also
SimpleOrderServer

Axis toolkit, 881-883

calling

ServiceClient class, 891

SOAP (Simple Object

Access Protocol),

889-891

clients

SimpleOrderClient.java

example, 899-900

WSDL (Web Services

Description Language)

descriptions, 898-899

debugging, 892-894

Hello service. See Hello ser-

vice

implementation require-

ments, 894

Java proxies, 885-888

JWS (Java Web Service)

files

generated WSDL,

904-905

SimpleOrderServer2.

jws example, 903-904

service description informa-

tion, 883

starting with Wsdl2java too

deploy.xml example,

902-903

SimpleOrderServer

SoapBindingImpl.

java example, 902

SimpleOrderServer

SoapBindingSkeleton.

java example, 901-902

starting with Wsdl2java

tool, 900-903

state maintenance, 905-908

client code, 907-908

deployment descriptors,

906

SessionSimpleOrder

Server.java example,

906

type mapping

serializers, 912-919

SOAP/WSDL types,

911-912

wrapping existing J2EE

components as, 909-911

wrapping Java classes as

deployment descriptors,

895-896

RPC (Remote Procedure Call) Web Services 1077

31 0672323842 Index 3/20/02 9:35 AM Page 1077

deployment information,

897-898

SimpleOrderServer.java

example, 894-895

WSDL (Web Services

Description Language)

documents, 883-885

<run-as> tag, 676
runclient script, 65
running

JAXM (Java API for XML

Messaging) clients, 947

JSPs (JavaServer Pages), 557

RUP (Rational Unified
Process), 966

S

Sams Teach Yourself J2EE in
21 Days CD-ROM

Agency directory, 76

CaseStudy directory, 76

Examples directory, 76

Exercise directory, 76-77

Solution directory, 76

sandboxes, 504, 546
SASL (Simple Authentication

and Security Layer)
jndi.properties file,

697-698

ListSASL.java example,

696-697

SAX (Simple API for XML),
719-720

DefaultHandler methods,

723-724

endElement() method, 721

SAX Parser application,

721-723

SAXParseFactory interface,

720

startElement() method,

720-721

SAXParseFactory interface,
720

scalability
EJB-based applications, 126

Service Activator, 812

servlets, 503

Value Object pattern, 804

Schemas (XML), 715-716,
995-997

Agency case study, 734

example, 716-717

schema type definitions,

717-718

validator, 716

scope, 618
scope attribute (<useBean>

tag), 579
<scope> tag, 619
SCOs (Second Class Objects),

391
script variables

adding to page contexts,

618

defining, 637

<getCust> tag example,

619-622

sharing, 626

TLDs (tag library descrip-

tors), 618-619

scripting elements (JSP)
comments, 560

declarations, 559

defined, 558

expressions, 559

scriptlets, 559-560

scripting languages, 645-646
scriptlets, 559-560
scripts

runclient, 65

script variables

adding to page contexts,

618

defining, 637

<getCust> tag example,

619-622

sharing, 626

TLDs (tag library

descriptors), 618-619

scripting elements (JSP)

comments, 560

declarations, 559

defined, 558

expressions, 559

scriptlets, 559-560

scripting languages,

645-646

SDK (Software Developers
Kit). See J2EE SDK

search paths, adding bin
directory to, 30

search() method, 109-111
searching

for objects

JNDIFilter.java applica-

tion, 111

JNDISearch.java appli-

cation, 110

search() method,

109-111

Web Services, 925

Secure Authentication and
Security Layer. See SASL

secure authentication
schemes, 694

Secure Sockets Layer (SSL),
659

security, 19-20, 22, 653-654
auditing, 656

authentication

Basic authentication,

683-685

client authentication,

655

defined, 654

Digest authentication,

683

1078 RPC (Remote Procedure Call) Web Services

31 0672323842 Index 3/20/02 9:35 AM Page 1078

Digest MD5, 696

external, 122, 696

forms-based authentica-

tion, 683

GSSAPI, 696

HTTPS client authenti-

cation, 684

initial identification, 654

JavaMail, 494-497

LDAP (Lightweight

Directory Access

Protocol), 696

SASL (Simple

Authentication and

Security Layer),

696-698

secure authentication

schemes, 694

user credentials, 655

authorization

declarative authoriza-

tion, 685-691

defined, 655

programmatic authoriza-

tion, 691-694

checksums, 660

confidentiality, 655

constraints, 686

creating, 687-689

security-constraint ele-

ment, 690-691

data integrity, 655-656

declarative, 661

digital certificates, 660-661

EJBs (Enterprise

JavaBeans), 131, 666

method permissions,

670-674

programmatic security,

678-682

role mappings, 674-676

roles, 666-668

security identity,

668-670, 676-678

encryption

asymmetric, 658-659

symmetric, 656-658

HTTPS (Hypertext Transfer

Protocol Secure), 659

JAAS (Java Authentication

and Authorization

Service), 58

JCE (Java Cryptography

Extension), 698

JNDI (Java Naming and

Directory Interface),

121-122, 695

LDAP (Lightweight

Directory Access

Protocol) authentica-

tion, 696

properties, 695

SASL (Simple

Authentication and

Security Layer)

authentication, 696-698

message digests, 660

non-repudiation, 656

principals

defined, 661-662

mapping to roles,

674-676

programmatic, 661

RI (Reference

Implementation), 663

groups, 664-666

realms, 664

users, 664-666

roles

Agency case study, 675,

686

as security identities,

676-678

creating, 666-668

defined, 662

mapping principals to,

674-676

references, 662

sandboxes, 546

security constraints, 686

creating, 687-689

<security-constraint>

tag, 690-691

security identities

defining, 668-670

roles as, 676-678

Session Façade pattern, 799

SSL (Secure Sockets

Layer), 57, 659

Web applications, 682

Basic authentication,

683-685

declarative authoriza-

tion, 685-691

Digest authentication,

683

forms-based authentica-

tion, 683

HTTPS client authenti-

cation, 684

programmatic authoriza-

tion, 691

Agency case study,

692-694

getRemoteUser()

method, 692

getUserPrincipal()

method, 691

isUserInRole() method,

691

secure authentication

schemes, 694

security constraints, 686
creating, 687-689

<security-constraint> tag,

690-691

security contract (Connector
architecture), 833-834

security identities
defining, 668-670

roles as, 676-678

security identities 1079

31 0672323842 Index 3/20/02 9:35 AM Page 1079

<security-constraint> tag,
690-691

<security-identity> tag, 670
SEEN flag (e-mail), 489
select clause (EJB QL),

295-297
select methods

EJB QL, 291-293

finder method alternative,

311

home methods, 327

SELECT statement (SQL),
981

<SELECT> tag, 511,
637-639

selectors, 438
self axis (XPath), 762
self-calls, 975
send() method, 409, 470, 473,

735
sendApplicant() method, 448,

735-737
SendAttachmentMail applica-

tion, 483-485
sender clients, 445-447

close() method, 448

MessageSender helper class,

448-449

MessageSender() method,

447

sendApplicant() method,

448

SendHTMLMail application,
473-475

sending
e-mail

e-mail attachments, 483-

485

HTML e-mail, 473-475

multi-part messages,

479-482

plain text e-mail,

470-471

messages

JAXM (Java API for

XML Messaging),

942-946, 957-959

JMS (Java Message

Service), 409

SendMail application,
470-471

SendMultiPartMail applica-
tion, 479-482

sendRedirect() method, 529
separation of concerns (JSPs),

817-820
Sequence diagrams

activations, 973

example, 974-975

lifelines, 973

messages, 973

ser files, 368
serializable objects, 133
serializers, 912-919

BeanOrderServer.java, 915

BeanOrderService client,

916-918

BeanOrderService serializer

definition, 915

LineItemBean.java, 914

servers
BEA Weblogic Server, 24

Cloudscape

diagnostic messages, 34

starting, 34

troubleshooting, 34-37

ColdFusion, 24

compatibility, 24-25

EJBs (Enterprise

JavaBeans), 126

iPlanet Application Server

Enterprise Edition, 24

J2EE RI (Reference

Implementation)

diagnostic messages,

33-34, 78-79

starting, 33-34

troubleshooting, 34-37

JBoss, 25

LDAP (Lightweight

Directory Access

Protocol)

attributes, 102

obtaining, 103

OpenLDAP, 104-106

Service Providers,

106-107

testing, 107-108

X.500 names, 102-103

port conflicts, 35-36

PowerTier Release 7, 25

Transient Name Server, 860

Websphere Commerce

Business Edition, 24

XML documents, trans-

forming on, 747

Service Activator pattern
availability, 812

case study analysis, 811

defined, 796

performance, 812

scalability, 812

Service interface, 936
Service Locator pattern

availability, 822

case study analysis,

821-822

defined, 795

maintainability, 822

performance, 821

reliability, 822

Service Providers, 106-107
<service> tag (WSDL), 885
Service to Worker pattern,

795
ServiceBinding interface, 936
ServiceClient class, 891
ServiceDefinition class, 933
ServiceProvider class, 932

1080 <security-constraint> tag

31 0672323842 Index 3/20/02 9:35 AM Page 1080

ServiceRegistryProxy class,
932

services, 56. See also specific
service names (for example,
NDS)

connectivity, 22

data access, 22

finding, 821-822

legacy connectivity, 22

servlet engines, 513
<servlet-class> tag, 527
<servlet-mapping> tag, 527
<servlet-name> tag, 527
ServletContext object, 524
ServletContextAttribute

Listener interface, 542
ServletContextListener inter-

face, 542
servlets, 47-48, 501. See also

JSPs (JavaServer Pages)
advantages, 47

efficiency, 503

platform independence,

503

scalability, 503

server independence, 503

server interaction,

503-504

tailored for Web applica-

tions, 502-503

Agency case study, 546-552

class hierarchy, 513

compared to JSPs

(JavaServer Pages), 556,

600-601

sample Web pages,

556-557

separation of roles, 557

translation and execu-

tion, 557

compared to Session beans,

171

containers (engines), 513

contexts, 524

cookies, 532-533

creating, 533-534

retrieving information

from, 534

error handling

HTTP errors, 528-529

servlet exceptions,

529-530

event listeners, 541

deploying, 543-545

example, 542-543

HttpSessionActivation

Listener, 542

HttpSessionAttribute

Listener, 542

HttpSessionListener, 542

ServletContext

AttributeListener, 542

ServletContextListener,

542

filters

AuditFilter example,

537-538, 544-545

deploying, 538-541

filter chains, 536

methods, 535-537

single-thread model,

545-546

hidden form fields, 532

lifecycle, 522-523

passing parameters to, 519

GET method, 520

getParameter() method,

520

POST method, 522

VerifyData servlet exam-

ple, 520-521

sandboxes, 504, 546

Servlets example

accessing, 518

code listing, 514-515

deploying, 515-518

HttpServletRequest

interface, 515

HttpServletResponse

interface, 515

sessions

creating, 531

HttpSession object,

530-531

invalidating, 532

URL rewriting, 535

variables, 575

Web applications

deployment descriptors,

526-527

directory structure,

525-526

when to use, 49

Servlets application
accessing, 518

code listing, 514-515

deploying, 515-518

HttpServletRequest inter-

face, 515

HttpServletResponse inter-

face, 515

session acknowledgement
modes, 422-423

session beans, 43
Session EJBs (Enterprise

JavaBeans), 128, 165-166
bean-managed transaction

demarcation, 345-349

business logic, 212

checklist, 205-206

compared to Message-

driven beans, 431

compared to servlets, 171

container-managed transac-

tion demarcation, 392

exceptions, 201-202

javax.ejb package, 167-168

local interfaces, 218

stateful, 166

configuring, 200

lifecycle, 193-195

transactions, 352-353

Session EJBs (Enterprise JavaBeans) 1081

31 0672323842 Index 3/20/02 9:35 AM Page 1081

stateless, 166

changing state, 200

compared to stateful, 201

configuring, 180-181

create() method, 201

defining, 172-175,

196-198

exceptions, 179-180

implementing, 175-178

lifecycle, 168-172

passivation, 198-199

remove() method, 201

timeouts, 199

timeouts, 195

<session> tag, 145, 184-186
Session Façade pattern

case study analysis,

798-800

defined, 795

flexibility, 799

maintainability, 799

performance, 799

security, 799

session object, 575
session scope, 618
<session-config> tag, 527
<session-type> tag, 185
SessionBean interface, 168, 175
SessionContext class, 168
sessions

e-mail sessions, 468

JMS (Java Message

Service), 399

QueueSession object,

402

session acknowledge-

ment modes, 422-423

TopicSession object, 416

servlets

creating, 531

HttpSession object,

530-531

invalidating, 532

SessionSimpleOrderServer.
java deployment descriptor,
906

SessionSimpleOrderServer.
java file, 906

setAttribute() method, 618
setContent() method, 469,

473, 477-479
setDataHandler() method,

479
setEntityContext() method,

220, 231, 263, 278, 302, 343
setFileName() method, 483
setFlag() method, 489
setFrom() method, 469
setHeader() method, 479
setLocation() method, 230
setLogin() method, 620
setMaintainSession() method,

907
setMaxAge() method, 534
setMaxInactiveInterval()

method, 532
setMessageDrivenContext()

method, 433-434, 439
setMessageListener() method,

414
<setProperty> tag, 580-581
setRef() method, 625
setRollbackOnly() method,

344, 437
setSessionContext() method,

170, 343, 838
setSubject() method, 469
setText() method, 409, 469,

473, 482
setting. See configuring
setValue() method, 534
SGML (Standard

Generalized Markup
Language), 704

sharing script variables, 626
showResource() method, 754

shutting down RI (Reference
Implementation), 37

signatures, digital, 658
Simple API for XML. See

SAX
Simple Mail Transfer

Protocol (SMTP), 463
Simple Object Access

Protocol. See SOAP
simple security (LDAP), 121
simple types, 717
SimpleOrderClient.java file,

899-900
SimpleOrderServer

client, 899-900

deployment descriptor,

895-896

deployment information,

897-898

JWS (Java Web Service)

files

generated WSDL,

904-905

SimpleOrderServer2.

jws, 903-904

serializers

BeanOrderServer.java,

915

BeanOrderService

client, 916-918

BeanOrderService seri-

alizer definition, 915

LineItemBean.java, 914

SimpleOrderServer.java file,

894-895

starting with Wsdl2java

tool, 900

deploy.xml, 902-903

SimpleOrderServerSoap

BindingImpl.java, 902

SimpleOrderServerSoap

BindingSkeleton.

java, 901-902

1082 Session EJBs (Enterprise JavaBeans)

31 0672323842 Index 3/20/02 9:35 AM Page 1082

state maintenance

client code, 907-908

SessionSimpleOrder

Server.java deployment

descriptor, 906

SessionSimpleOrderServ

er.java file, 906

SimpleOrderServer2.jws file,
903-904

SimpleOrderServerSoap
BindingImpl.java file, 902

SimpleOrderServerSoap
BindingSkeleton.java file,
901-902

single quote (‘), 101, 990
single-thread model, 545-546
single valued path expres-

sions, 296
SingleThreadModel interface,

570
Singleton pattern, 794, 797
site-specific registries, 926
skillMatch counter, 453
skills.jsp page, 627-628
skippedEntity() method, 724
slapadd command, 106
slapcat command, 106
slash (/), 100-101
SMTP (Simple Mail Transfer

Protocol), 463
SOAP (Simple Object Access

Protocol), 873
calling Web Services with,

889-891

debugging interactions,

892-894

messages

attachments, 951-952

headers, 951-952

populating, 947-951

receiving, 952-956,

959-962

sending, 942-946,

957-959

type mapping, 911-912

SoapSayHello.java file,
889-890

sockets, SSL (Secure Sockets
Layer), 57, 659

Software Developers Kit. See
J2EE SDK

software development. See
application development

Solaris, J2EE SDK (Software
Developers Kit) installation,
31

Solution directory, 76
source code listings. See code

listings
spaghetti code, 10
specification level (UML), 966
SQL (Structured Query

Language), 977-978
ALTER TABLE statement,

978-979

CREATE TABLE statement,

979

CREATE VIEW statement,

979-980

CROSS JOIN statement,

982

DELETE statement, 980

documentation, 977

DROP TABLE statement,

980

DROP VIEW statement,

980

FROM clause, 983

FULL JOIN statement, 983

GROUP BY clause, 984

HAVING clause, 984

INNER JOIN statement,

981-982

INSERT statement,

980-981

JOIN statement, 981-982

LEFT JOIN statement, 982

ORDER BY clause, 984-985

RIGHT JOIN statement,

982

SELECT statement, 981

standards, 977

structured data types, 366

UPDATE statement, 983

WHERE clause, 983-984

SQL3. See SQL (Structured
Query Language)

SQL99. See SQL (Structured
Query Language)

SQLj, 363
BMP Entity EJBs, 382-383

overview, 367-368

Part 0, 368-373

Part 1, 373-378

Part 2, 378-383

SQLQueryManager interface,
937

SSL (Secure Sockets Layer),
57, 659

standalone clients, 52-53, 941
Standard Generalized

Markup Language (SGML),
704

Standard Tag Library. See
JSPTL

start() method, 412
startDocument() method, 723
startElement() method,

720-723
starting

Cloudscape, 34

RI (Reference

Implementation), 33-34

Web Services, 900-903

startPrefixMapping() method,
723

state
ejbRemove() method, 308

Entity EJBs (Enterprise

JavaBeans), 275

state 1083

31 0672323842 Index 3/20/02 9:35 AM Page 1083

Message-driven beans,

431-432

persisting, 259-261, 272, 275

servlets

cookies, 532-534

hidden form fields, 532

sessions, 530-532

URL rewriting, 535

Web Services, 905-908

client code, 907-908

deployment descriptors,

906

SessionSimpleOrder

Server.java example,

906

stateful Session EJBs
(Enterprise JavaBeans), 166

compared to stateless, 201

lifecycle, 193-195

stateless Session EJBs
(Enterprise JavaBeans), 166

compared to stateful, 201

create() method, 201

lifecycle, 168-172

remove() method, 201

statements (SQL)
ALTER TABLE, 978-979

CREATE TABLE, 979

CREATE VIEW, 979-980

CROSS JOIN, 982

DELETE, 980

DROP TABLE, 980

DROP VIEW, 980

FULL JOIN, 983

INNER JOIN, 981-982

INSERT, 980-981

JOIN, 981-982

LEFT JOIN, 982

RIGHT JOIN, 982

SELECT, 981

UPDATE, 983

static member variables, 143

status codes (HTTP)
generating, 529

group codes, 508

table of, 508

Status interface, 346, 360
stored procedures

compared to Session beans,

166

SQLj, 375

StreamMessage message type,
409

string type, 717
 tag, 759
Structured Query Language.

See SQL
stylesheets

default rules, 764-765

validity, 757

XSL (Extensible Stylesheet

Language), 744, 997

stylesheets, applying,

746

transformations,

767-778

XSL-FO (Extensible

Stylesheet Language-

Formatting Objects),

744-745

XSLT (Extensible

Stylesheet

Transformations),

745-746, 997

compilers, 780-781

default rules, 764-765

elements, 779-780

template rules, 756-761

Transformer class,

751-755

XML nodes, 762-764

subjects (e-mail), 469
submitOrder method, 905, 908
SubmittingServlet.java file,

957-959

subscribers (JMS)
bulletin board subscriber

program, 418-420

defined, 397

durable subscriptions,

420-421

Sun Microsystems Multi-
Schema XML Validator, 705

surrogate keys, 243-245
symmetric encryption

algorithms, 657-658

Caesar cipher, 656-657

synchronous message-based
Web Services, 939

synchronous receivers
createReceiver() method,

412

PTPReceiver example,

413-414

receive() method, 412

receiveNoWait() method,

413

start() method, 412

system exceptions, 179, 254
system-level exceptions, 351
system requirements, 20,

29-30
Systems Administrators, 64
systems design. See patterns

T

<TABLE> tag (HTML), 511
table.jsp page, 576-577
tableForm.jsp page, 576
tables

adding rows to, 980-981

creating, 979

deleting rows from, 980

dropping, 980

editing, 978-979

1084 state

31 0672323842 Index 3/20/02 9:35 AM Page 1084

joins

cross joins, 982

full joins, 983

inner joins, 981

left outer joins, 982

right outer joins, 982

retrieving data from, 981

updating, 983

Tag Extra Info (TEI) class,
635-637

Tag interface, 608
Tag Libraries, 603-604

application deployment,

612, 614

Jakarta Project, 604, 646

JSPTL (JavaServer Pages

Standard Tag Library),

640-641

choose tag, 645

downloading, 641

<forEach> tag, 643-644

<forTokens> tag, 645

<if> tag, 645

including in applica-

tions, 641-642

scripting language sup-

port, 645-646

support for, 604

tags, 605

attributes, 615-617, 635

custom tags, 608-609

example, 605-606,

611-612

hierarchical tag struc-

tures, 627-634

iterative tags, 622-626

lifecycle, 610-611

script variables,

618-622, 626, 637

tag body processing,

637-640

TLDs (tag library descrip-

tors)

attributes, 616

creating, 606-608

example, 606

file location, 614

<forEach> tag, 630

<option> tag, 630

script variables,

618-619

tag library descriptors. See
TLDs

<tag> tag, 608
tagdependent value (<body-

content> tag), 608
<taglib> tag, 607
TagLibs. See Tag Libraries
tags

HTML (Hypertext Markup

Language)

nesting, 509

syntax, 509

table of, 510-511

JSP (JavaServer Pages)

<jsp:getProperty>,

579-580

<jsp:setProperty>,

580-581

<jsp:useBean>,

579-581

WSDL (Web Services

Description Language),

885

XML (Extensible Markup

Language), 706. See also

Tag Libraries

<assembly-descriptor>,

340, 668

<attribute>, 616

attributes, 615-617,

635-637

<body-content>, 608

<cascade-delete>, 317

<choose>, 645

<cmr-field-name>, 318

<cmr-field-type>, 318

content, 712

custom tags, 608-609

<declare>, 619

declaring, 992-993

<display-name>, 527

<!DOCTYPE> tag, 527,

711, 992

element type declara-

tions, 711-712

<error-page>, 527-528

example, 605-606,

611-612

<forEach>, 628-630,

643-644

<forEachJob>, 623-626

<forTokens>, 645

<getCust>, 619-622

<hello>, 605-606,

611-612

hierarchical tag struc-

tures, 627-634

<if>, 645

<init-param>, 527

iterative tags, 622-626

<jobSummary>, 708

lifecycle, 610-611

<login-config>, 685

<lookup>, 615-617

<method-intf>, 671

<method-permissions>,

670-671

<name-from-attribute>,

618

<name-given>, 618

nesting, 707

<option>, 629-631

<param-name>, 527

<param-value>, 527

<run-as>, 676

scope, 619

tags 1085

31 0672323842 Index 3/20/02 9:35 AM Page 1085

script variables, 618-622,

626

<security-constraint>,

690-691

<security-identity>, 670

<servlet-class>, 527

<servlet-mapping>, 527

<servlet-name>, 527

<session-config?, 527

special characters, 707

structure of, 988-989

<tag>, 608

tag body processing,

637-640

<taglib>, 607

TLDs (tag library

descriptors), 606-608,

614-619, 630

<transaction-type>, 437

<variable>, 618-619

<variable-class>, 619

valid elements, 706

XSLT, 779-780

<web-app>, 527

TagSupport class, 609
tcpmon tool, 892, 894
<TD> tag (HTML), 511
TEI (Tag Extra Info) class,

635-637
testing

EJBs (Enterprise

JavaBeans), 158-160

LDAP (Lightweight

Directory Access

Protocol), 107-108

Message-driven beans, 457

text, adding to e-mail, 469,
473

text() function, 763
TextMessage message type,

409
<TH> tag (HTML), 511
TheServerSide.com Web site,

792

thick clients, 129
thin clients, 9, 13
threads

EJBs (Enterprise

JavaBeans), 143

JSPs (JavaServer Pages),

570

servlets, 545-546

three-tier development. See n-
tier development

tiers
business

advantages of business

components, 39-40

EJBs (Enterprise

JavaBeans), 40-43

entity beans, 43-44

Message-driven beans,

44

session beans, 43

client, 49

applet clients, 51

dynamic HTML clients,

50-51

mobile devices, 51

non-Java clients, 54

peer-to-peer communi-

cation, 53

standalone clients,

52-53

static HTML clients,

49-50

Web Services, 54

presentation, 44-45

development tips, 48-49

JSPs (JavaServer Pages),

46-47

servlets, 47-48

Web-centric compo-

nents, 45-46

The Timeless Way of Building,
788

timeouts
Session EJBs (Enterprise

JavaBeans), 195

stateful Session EJBs

(Enterprise JavaBeans),

199

TLDs (tag library descrip-
tors)

attributes, 616

creating, 606-608

example, 606

file location, 614

<forEach> tag, 630

<option> tag, 630

script variables, 618-619

tModel structure, 928
Tomcat

Axis toolkit installation,

881-883

installing, 882

Tool Providers, 65
tools

Axis toolkit, 877, 881-883

cleanup tool, 65

Cloudscape Server tool, 65

deployment tool, 65

deploytool, 664

deployment settings,

677-678

method permissions,

670-674

role mappings, 674-676

security identity,

669-670

future of, 65-66

J2EE administration tool, 65

J2EE Server tool, 65

JAX Pack, 878

JSRs (Java Specification

Requests), 65-66

key tool, 65

packager, 65

1086 tags

31 0672323842 Index 3/20/02 9:35 AM Page 1086

realm tool, 65

realmtool, 664

runclient script, 65

tcpmon, 892, 894

Tool Providers, 65

verifier, 65

Wsdl2java, 900-903

WSTK (Web Services

Toolkit), 877

Topic object, 416
TopicConnection object, 416
TopicConnectionFactory

object, 416
TopicPublisher object, 416
topics (JMS), 399
TopicSession object, 416
TopicSubscriber object, 416
<TR> tag (HTML), 511
TRACE method, 507
<trans-attribute> tag, 341-342
transaction coordinators, 338
transaction logs, 337
transaction managers, 338,

354-356
<transaction-type> tag, 185,

340, 437
transactions, 19, 22, 131, 336

2PC protocol, 359-360

aborting, 344

bean-managed, 345-349,

436-437

client-demarcated transac-

tions, 350

configuring, 342

connection pooling, 357

container-managed,

338-344, 436-437

deployment descriptors,

340-343

EJBContext, 343

exceptions, 350-351

flat, 337

HTTP (Hypertext Transfer

Protocol)

MIME content types, 508

requests, 504-505

responses, 504-509

status codes, 508, 529

J2EE Connector architec-

ture, 843

begin() method, 845

BookManagerClient2.

java example, 848

BookManagerEJB2.

java example, 846-847

execute() method, 845

iterator() method, 845

listTitles() method, 844

LocalTransaction inter-

face, 845

rollback() method, 846

Java 2 Platform Enterprise

Edition Specification, 346

JMS (Java Message

Service), 423-424

JTA (Java Transaction API),

58

nested, 337

pessimistic locking, 385

remote interfaces, 340

starting, 346

stateful Session EJBs

(Enterprise JavaBeans),

352-353

syntax, 337

transaction management

contract, 832-833

XA-compliance, 355-358

transform() method, 751
Transformer class (XSLT),

751-755
Transient Name Server, 860
transient transactional

objects, 392

transient variables, 198
translation errors (JSPs),

565-567
transparent persistence, 384
troubleshooting

2PC protocol, 359-360

Cloudscape

diagnostic messages, 34

read-only installation

directory, 35

refused connections,

36-37

server port conflicts,

35-36

object binding, 91-92

RI (Reference

Implementation)

diagnostic messages,

33-34, 78-79

read-only installation

directory, 35

refused connections,

36-37

server port conflicts,

35-36

two phase commit protocol,
354-356, 359-360

two-tier design
disadvantages, 12-13

layers, 11-12

type mapping
serializers, 912-919

BeanOrderServer.java,

915

BeanOrderService

client, 916-918

BeanOrderService seri-

alizer definition, 915

LineItemBean.java, 914

SOAP/WSDL types,

911-912

type mapping 1087

31 0672323842 Index 3/20/02 9:35 AM Page 1087

U

UDDI (Universal Description,
Discovery, and Integration)
registries, 873

accessing with JAXR (Java

API for XML Registries)

client initialization code,

934-935

interfaces, 936-937

JAXR architecture, 934

accessing with UDDI4J,

929-932

accessing with WSKT

Client API, 932-934

bindingTemplate structure,

928

locally hosted registries,

929

public production registries,

929

public test registries, 929

service information, 933

tModel structure, 928

UDDI4J, 929-932
UDDIProxy class, 931
UILConnectionFactory

object, 403
UILXAConnectionFactory

object, 403
UML (Unified Modeling

Language), 965-967
advantages, 966

application development,

127

Class diagrams

associations, 969-970

attributes, 970-971

constraints, 973

generalization, 972

operations, 971-972

conceptual level, 966

implementation level, 966

Sequence diagram

activations, 973

example, 974-975

lifelines, 973

messages, 973

specification level, 966

Use Case diagrams,

967-969

actors, 967

<<extend>> notation,

968

generalization notation,

968

<<include>> notation,

967

notation, 967

Session EJBs, 167

Web site, 966

UML Distilled, Second
Edition, 966

unbind() method, 93, 853
unbinding objects, 92-93
UnicastRemoteObject class,

853
Unified Modeling Language.

See UML
Uniform Resource Locators

(URLs), 101, 505-506
absolute URLs, 475

URL rewriting, 535

Universal Description,
Discovery, and Integration.
See UDDI

Unix
Agency database, 277

J2EE RI for Windows, 86

J2EE SDK installation,

31-32

unmarshal() method, 951
unsetEntityContext() method,

232, 263, 278
unsubscribe() method, 421
UPDATE statement (SQL),

983

updateCustomer.jsp page,
594-595

updateDetails() method, 255
updating

Entity EJBs, 223

tables, 983

URLs (Uniform Resource
Locators), 101, 505-506

absolute URLs, 475

URL rewriting, 535

Use Case diagrams, 967-969
actors, 967

<<extend>> notation, 968

generalization notation, 968

<<include>> notation, 967

notation, 967

<useBean> tag (JSPs), 579,
581

user authentication
Basic authentication,

683-685

client authentication, 655

defined, 19, 654

Digest authentication, 683

Digest MD5, 696

external, 122, 696

forms-based authentication,

683

GSSAPI, 696

HTTPS client authentica-

tion, 684

initial identification, 654

JAAS (Java Authentication

and Authorization

Service), 58

JavaMail

AuthenticateRetrieveMai

l application,

495-497

Authenticator class, 494

MyAuthenticator class,

494-495

PasswordAuthentication

object, 495

1088 UDDI (Universal Description, Discovery, and Integration) registries

31 0672323842 Index 3/20/02 9:35 AM Page 1088

LDAP (Lightweight

Directory Access

Protocol), 696

SASL (Simple

Authentication and

Security Layer)

jndi.properties file,

697-698

ListSASL.java example,

696-697

secure authentication

schemes, 694

user credentials, 655

user authorization
declarative authorization

network security

requirements,

689-690

roles, 685

security constraints,

686-691

defined, 19, 655

JAAS (Java Authentication

and Authorization

Service), 58

programmatic authorization

Agency case study,

692-694

getRemoteUser()

method, 692

getUserPrincipal()

method, 691

isUserInRole() method,

691

user credentials, 655
USER flag (e-mail), 489
utilities. See tools

V

valid XML (Extensible
Markup Language) docu-
ments, 704

validating
attributes

example, 635-637

isValid() method, 635

XML (Extensible Markup

Language) documents,

705

Value List Handler pattern,
796

Value Object Builder pattern,
796

Value Object pattern
case study analysis,

800-804

Advertise interface,

801-802

AdvertiseValueObject

object, 803

loadDetails method,

803-804

defined, 796

flexibility, 804

maintainability, 804

Partial Value Object, 804

performance, 804

scalability, 804

<variable> tag, 618-619
<variable-class> tag, 619
variables

environment variables

CLASSPATH, 31, 85

JAVA_HOME, 29-30

PATH, 30-31

identification variables

from clause, 294

select clause, 295

script variables

adding to page contexts,

618

defining, 637

<getCust> tag example,

619-622

sharing, 626

TLDs (tag library

descriptors), 618-619

servlet variables, 575

static variables, 143

transient variables, 198

verifier, 65
VerifyData servlet

parameters, 521

VerifyForm HTML page,

520

VerifyForm page, 520
View Helper pattern

case study analysis, 817-820

AgencyBean use,

818-819

AgencyBean.java,

817-818

tag library, 819-820

defined, 795

flexibility, 820

maintainability, 820

performance, 820

views
creating, 979-980

dropping, 980

W

W3C Web site, 997
WAR (Web Archive) files, 70,

909
Warning() method, 724
Web applications

deployment descriptors,

526-527

directory structure, 525-526

EJBs (Enterprise

JavaBeans), 128

security, 682

Basic authentication,

683-685

declarative authoriza-

tion, 685-691

Web applications 1089

31 0672323842 Index 3/20/02 9:35 AM Page 1089

Digest authentication,

683

forms-based authentica-

tion, 683

HTTPS client authenti-

cation, 684

programmatic authoriza-

tion, 691-694

secure authentication

schemes, 694

Web Archive (WAR) files, 70,
909

Web authentication
Basic authentication,

683-685

Digest authentication, 683

forms-based authentication,

683

HTTPS client authentica-

tion, 684

secure authentication

schemes, 694

Web authorization
declarative authorization

network security

requirements,

689-690

roles, 685

security constraints,

686-691

programmatic authorization

Agency case study,

692-694

getRemoteUser()

method, 692

getUserPrincipal()

method, 691

isUserInRole() method,

691

Web browsers, 743
Web components, 21

Web interface (Agency case
study)

advertise.jsp page,

592-594, 632-634, 693

agency.css style sheet, 589

agency.jsp page, 589-590,

692, 814

agency.ldif configuration

file, 105-106

AgencyBean.java, 582-584

agencyName.jsp page,

581-582

dateBanner.jsp page, 570

deploying, 597-600

EJB references, 598

errorPage.jsp, 595-597

look and feel, 588-592

agency.css style sheet,

589

footers, 591-592

headers, 588

name.jsp page, 572-573

portal page, 587

skills.jsp, 627-628

structure and navigation,

585-587

table.jsp page, 576-577

tableForm.jsp page, 576

updateCustomer.jsp,

594-595

Web Service Flow Language
(WSFL), 873

Web Service registries,
923-924

advantages of, 924-925

defined, 924

ebXML R&R (Registry and

Repository), 926-927

global registries, 925

marketplace registries, 926

private registries, 926

searching, 925

site-specific registries, 926

UDDI (Universal

Description, Discovery,

and Interaction), 928

accessing with JAXR

(Java API for XML

Registries), 934-937

accessing with UDDI4J,

929-932

accessing with WSKT

Client API, 932-934

bindingTemplate struc-

ture, 928

locally hosted registries,

929

public production reg-

istries, 929

public test registries, 929

service information, 933

tModel structure, 928

Web Services, 54, 869-870.
See also Web Service reg-
istries

advantages of, 872

architecture

customer/service interac-

tion, 873-874

service implementations,

875

defined, 870-872

J2EE Web Services

architecture, 875-876

integrating with existing

components, 878-879

JSRs (Java Specification

Requests), 876-877

toolkits, 877-878

message-based, 937. See

also JAXM (Java API for

XML Messaging)

asynchronous services,

939

clients, 938-939

compared to RPC-style

services, 937

1090 Web applications

31 0672323842 Index 3/20/02 9:35 AM Page 1090

message attachments,

951-952

message headers,

951-952

populating messages,

947-951

receiving messages,

952-955, 959-962

sending messages,

942-946, 957-959

synchronous services,

939

protocols

ebXML (Electronic

Business XML), 873

SOAP (Simple Object

Access Protocol), 873

UDDI (Universal

Description,

Discovery, and

Integration), 873

WSDL (Web Services

Description

Language), 873,

883-885

WSFL (Web Service

Flow Language), 873

RPC-style Web Services,

879-881. See also

SimpleOrderServer

Axis toolkit, 881-883

calling, 889-891

clients, 898-900

debugging, 892-894

Hello service. See Hello

service

implementation require-

ments, 894

Java proxies, 885-888

JWS (Java Web Service)

files, 903-905

service description infor-

mation, 883

starting with Wsdl2java

tool, 900-903

state maintenance,

905-908

wrapping existing J2EE

components as,

909-911

wrapping Java classes

as, 894-898

WSDL (Web Services

Description Language)

documents, 883-885

type mapping

serializers, 912-919

SOAP/WSDL types,

911-912

Web sites, 870

Web Services Description
Language (WSDL), 873

MyHelloService.wsdl,

883-885

type mapping, 911-912

Web Services Toolkit
(WSTK), 877

Web sites
Active Directory, 19

Alexander, Christopher,

789-790

Apache Jakarta Project, 604,

646

Axis toolkit, 877

BEA Weblogic Server, 24

ColdFusion, 24

Connector architecture, 831

DeveloperWorks, 792

DNS (Domain Name

System), 19

ebXML (Electronic

Business XML), 873

EJB 2.0 specification, 143

Hillside, 792

IBM, 24

INCITS (InterNational

Committee for

Information Technology

Standards), 977

iPlanet, 24

ITU (International

Telecommunications

Union), 660

J2EE Blueprints, 23, 792

J2EE compatibility suite, 24

J2EE SDK (Software

Developers Kit), 30

J2EE specification, 20

Jakarta Project, 646

JBoss, 25, 402

JCP (Java Community

Process), 25, 1002

JDBC 3.0, 366

JSR (Java Specification

Requests) archive, 1002

LDAP (Lightweight

Directory Access

Protocol), 19

Microsoft Developers

Network, 705

Multi-Schema XML

Validator, 705

OOMG, 18

Persistence, 25

RUP (Rational Unified

Process), 966

SOAP (Simple Object

Access Protocol), 873

TheServerSide.com, 792

UDDI (Universal

Description, Discovery,

and Integration), 873

UML (Unified Modeling

Language), 966

W3C, 997

WSDL (Web Services

Description Language),

873

Web sites 1091

31 0672323842 Index 3/20/02 9:35 AM Page 1091

WSFL (Web Service Flow

Language), 873

X.500, 19

XALAN, 748

<web-app> tag, 527
Web-centric components,

45-46
WEB-INF directory, 525
Weblogic Server, 24
Websphere Commerce

Business Edition, 24
well-formed XML (Extensible

Markup Language) docu-
ments, 704, 708

where clause (EJB QL),
297-300

WHERE clause (SQL),
983-984

whitespace, 767-769
wildcards, 298
Windows

Agency database, 277

J2EE RI for Windows,

85-86

J2EE SDK installation, 31

wizards, 166
wrapping

J2EE components as Web

Services, 909-911

Java classes as Web

Services

deployment descriptors,

895-896

deployment information,

897-898

SimpleOrderServer.java

example, 894-895

writeFile() method, 491
writeTo() method, 487, 492,

498

WSDL (Web Services
Description Language), 873

MyHelloService.wsdl exam-

ple, 883-885

type mapping, 911-912

Wsdl2java tool, starting Web
Services with,
900-903

deploy.xml example,

902-903

SimpleOrderServerSoap

BindingImpl.java exam-

ple, 902

SimpleOrderServerSoap

BindingSkeleton.java

example, 901-902

WSFL (Web Service Flow
Language), 873

WSTK (Web Services
Toolkit), 877, 932-934

X-Z

X.500 protocol, 19, 102-103
X/Open XA, 424
XA-compliance, 355-358, 424
XAConnectionFactory object,

403
XADataSource interface, 357
XALAN

command line operation,

750

configuring, 748-749

newline elements, 751

XML documents, trans-

forming, 749

XML (Extensible Markup
Language) documents, 701-
702, 987-988. See also tags

advantages, 703

attributes, 708-709, 712-713

case sensitivity, 988

comments, 709-710, 990

compared to HTML, 705

declarations, 706

defined, 988

deployment descriptors,

67-68

DTDs (document type dec-

larations), 710-711,

989-990

attributes, 712-713

defined, 706

element content, 712

element type declara-

tions, 711-712

example, 713-714

DTDs (Document Type

Definitions), 992-995

attribute declarations,

993-994

deployment descriptors,

182, 249

element declarations,

992-993

EJB (Enterprise

JavaBeans) references,

188-189

entity references,

994-995

environment entries,

187-188

example, 992

resource environment

references, 192-193

resource references,

190-192

presentation elements,

183-184

Session element,

184-186

enforcing structure of, 991

DTDs (Document Type

Definitions), 992-995

XML Schemas, 995-997

history of, 703-704

1092 Web sites

31 0672323842 Index 3/20/02 9:35 AM Page 1092

JASB (Java Architecture for

XML Binding),

732-733

JAXM (Java APIs for XML

Messaging), 25

JAXP (Java API for XML

Parsing), 58-59, 718-720

JAXR (Java APIs for XML

Registries), 25

jobSummary document

attributes, 708-709

code listing, 708

DTD (document type

declaration), 713

namespace, 714-715

XML Schema, 716-717

namespaces, 714-715, 991

online documentation, 997

parsing with DOM

(Document Object Model)

accessing tree nodes,

726-728

Document interface

methods, 725-728,

731-732

DocumentBuilder

Factory interface, 725

DOM Parser application,

728-731

modifying tree nodes,

731-732

parse() method, 725

parsing with SAX (Simple

API for XML), 719-720

DefaultHandler methods,

723-724

endElement() method,

721

SAX Parser application,

721-723

SAXParseFactory inter-

face, 720

startElement() method,

720-721

platform-independent data

exchange, 702-703

prologs, 990

root elements, 705-706

special characters, 990-991

support for, 22

tags

<assembly-descriptor>,

340, 668

<attribute>, 616

attributes, 615-617,

635-637

<body-content>, 608

<cascade-delete>, 317

<choose>, 645

<cmr-field-name>, 318

<cmr-field-type>, 318

content, 712

custom tags, 608-609

<declare>, 619

declaring, 992-993

<display-name>, 527

<!DOCTYPE> tag, 527,

711, 992

element type declara-

tions, 711-712

<error-page>, 527-528

example, 605-606,

611-612

<forEach>, 628-630,

643-644

<forEachJob>, 623-626

<forTokens>, 645

<getCust>, 619-622

<hello>, 605-606,

611-612

hierarchical tag struc-

tures, 627-634

<if>, 645

<init-param>, 527

iterative tags, 622-626

<jobSummary>, 708

lifecycle, 610-611

<login-config>, 685

<lookup>, 615-617

<method-intf>, 671

<method-permissions>,

670-671

<name-from-attribute>,

618

<name-given>, 618

nesting, 707

<option>, 629-631

<param-name>, 527

<param-value>, 527

<run-as>, 676

scope, 619

script variables,

618-622, 626

<security-constraint>,

690-691

<security-identity>, 670

<servlet-class>, 527

<servlet-mapping>, 527

<servlet-name>, 527

<session-config>, 527

special characters, 707

structure of, 988-989

<tag>, 608

tag body processing,

637-640

<taglib>, 607

TLDs (tag library

descriptors), 606-608,

614-619, 630

<transaction-type>, 437

<variable>, 618-619

<variable-class>, 619

valid elements, 706

XSLT, 779-780

<web-app>, 527

transformations, 742,

746-747

adding comments,

769-770

attribute values, 770-771

compilers, 780-781

XML (Extensible Markup Language) documents 1093

31 0672323842 Index 3/20/02 9:35 AM Page 1093

creating elements,

771-774

defining attributes,

774-776

elements, 779-780

numbering elements,

777-778

whitespace, 767-769

valid documents, 704

validating, 705

well-formed documents,

704, 708

XML Schemas, 715-716,

995-997

Agency case study, 734

example, 716-717

schema type definitions,

717-718

validator, 716

XPath, 762-764, 997-998

XPointer, 762, 997

XML-RPC, 25
XPath, 762-764, 997-998
XPointer, 762, 997
XSL (Extensible Stylesheet

Language), 744, 997
elements, 765-769,

775-780

stylesheets, applying, 746

transformations

adding comments,

769-770

attribute values,

770-771

creating elements,

771-774

defining attributes,

774-776

numbering elements,

777-778

whitespace, 767-769

XSL-FO (Extensible
Stylesheet Language-
Formatting Objects),
744-745

XSLT (Extensible Stylesheet
Transformations), 745-746,
997

compilers, 780-781

elements, 779-780

stylesheets, 755

default rules, 764-765

template rules, 756-761

Transformer class,

751-755

XML nodes, 762-764

1094 XML (Extensible Markup Language) documents

31 0672323842 Index 3/20/02 9:35 AM Page 1094

JAVA 2 SOFTWARE DEVELOPMENT KIT
STANDARD EDITION VERSION 1.3 SUPPLE-
MENTAL LICENSE TERMS

These supplemental license terms (“Supplemental Terms”) add to or modify the terms of
the Binary Code License Agreement (collectively, the “Agreement”). Capitalized terms
not defined in these Supplemental Terms shall have the same meanings ascribed to them
in the Agreement. These Supplemental Terms shall supersede any inconsistent or con-
flicting terms in the Agreement, or in any license contained within the Software.

1. Internal Use and Development License Grant. Subject to the terms and condi-
tions of this Agreement, including, but not limited to, Section 2 (Redistributables)
and Section 4 (Java Technology Restrictions) of these Supplemental Terms, Sun
grants you a non-exclusive, non-transferable, limited license to reproduce the
Software for internal use only for the sole purpose of development of your
Javaapplet and application (“Program”), provided that you do not redistribute the
Software in whole or in part, either separately or included with any Program.

2.. Redistributables. In addition to the license granted in Paragraph 1above, Sun
grants you a nonexclusive, non-. transferable, limited license to reproduce and dis-
tribute, only as part of your separate copy of JAVA 2 RUNTIME ENVIRON-
MENT STANDARD EDITION VERSION 1.3 software, those files specifically
identified as redistributable in the JAVA 2 RUNTIME ENVIRONMENT STAN-
DARD EDITION VERSION 1.3 “README” file (the “Redistributables”) provid-
ed that: (a) you distribute the Redistributables complete and unmodified (unless
otherwise specified in the applicable README file), and only bundled as part of
the JavaTM applets and applications that you develop (the “Programs:); (b) you do
not distribute additional software intended to supersede any component(s) of the
Redistributables; (c) you do not remove or alter any proprietary legends or notices
contained in or on the Redistributables; (d) you only distribute the Redistributables
pursuant to a license agreement that protects Sun’s interests consistent with the
terms contained in the Agreement, and (e) you agree to defend and indemnify Sun
and its licensors from and against any damages, costs, liabilities, settlement
amounts and/or expenses (including attorneys’ fees) incurred in connection with
any claim, lawsuit or action by any third party that arises or results from the use or
distribution of any and all Programs and/or Software.

3. Separate Distribution License Required. You understand and agree that you must
first obtain a separate license from Sun prior to reproducing or modifying any por-
tion of the Software other than as provided with respect to Redistributables in
Paragraph 2 above.

32 0672323842 JDK Lic 3/20/02 9:28 AM Page 1095

4. Java Technology Restrictions. You may not modify the Java Platform Interface
(“JPI”, identified as classes contained within the “java” package or any subpack-
ages of the “java” package), by creating additional classes within the JPI or other-
wise causing the addition to or modification of the classes in the JPI. In the event
that you create an additional class and associated API(s) which (i) extends the
functionality of a Java environment, and (ii) is exposed to third party software
developers for the purpose of developing additional software which invokes such
additional API, you must promptly publish broadly an accurate specification for
such API for free use by all developers. You may not create, or authorize your
licensees to create additional classes, interfaces, or subpackages that are in any way
identified as “java”, “javax”, “sun” or similar convention as specified by Sun in any
class file naming convention. Refer to the appropriate version of the Java Runtime
Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code which
may be distributed with Java applets and applications.

5. Trademarks and Logos. You acknowledge and agree as between you and Sun that
Sun owns the Java trademark and all Java.related trademarks, service marks, logos
and other brand designations including the Coffee Cup logo and Duke logo (“Java
Marks”), and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks. Any
use you make of the Java Marks inures to Sun’s benefit.

6. Source Code. Software may contain source code that is provided solely for refer-
ence purposes pursuant to the terms of this Agreement.

7. Termination. Sun may terminate this Agreement immediately should any Software
become, or in Sun’s opinion be likely to become, the subject of a claim of infringe-
ment of a patent, trade secret, copyright or other intellectual property right.

JAVA DEVELOPMENT TOOLS FORTE FOR
JAVA, RELEASE 3.0, COMMUNITY EDITION
SUPPLEMENTAL LICENSE TERMS

These supplemental license terms (“Supplemental Terms”) add to or modify the terms of
the Binary Code License Agreement (collectively, the “Agreement”). Capitalized terms
not defined in these Supplemental Terms shall have the same meanings ascribed to them
in the Agreement. These Supplemental Terms shall supersede any inconsistent or con-
flicting terms in the Agreement, or in any license contained within the Software.

32 0672323842 JDK Lic 3/20/02 9:28 AM Page 1096

1. Software Internal Use and Development License Grant. Subject to the terms
and conditions of this Agreement, including, but not limited to Section 3
(Java(TM) Technology Restrictions) of these Supplemental Terms, Sun grants you
a non-exclusive, non-transferable, limited license to reproduce internally and use
internally the binary form of the Software complete and unmodified for the sole
purpose of designing, developing and testing your [Java applets and] applications
intended to run on the Java platform (“Programs”).

2. License to Distribute Redistributables. In addition to the license granted in
Section 1 (Redistributables Internal Use and Development License Grant) of these
Supplemental Terms, subject to the terms and conditions of this Agreement, includ-
ing but not limited to Section 3 (Java Technology Restrictions) of these
Supplemental Terms, Sun grants you a non-exclusive, non-transferable, limited
license to reproduce and distribute those files specifically identified as redistrib-
utable in the Software “README” file (“Redistributables”) provided that: (i) you
distribute the Redistributables complete and unmodified (unless otherwise specified
in the applicable README file), and only bundled as part of your Programs, (ii)
you do not distribute additional software intended to supersede any component(s)
of the Redistributables, (iii) you do not remove or alter any proprietary legends or
notices contained in or on the Redistributables, (iv) for a particular version of the
Java platform, any executable output generated by a compiler that is contained in
the Software must (a) only be compiled from source code that conforms to the cor-
responding version of the OEM Java Language Specification; (b) be in the class
file format defined by the corresponding version of the OEM Java Virtual Machine
Specification; and (c) execute properly on a reference runtime, as specified by Sun,
associated with such version of the Java platform, (v) you only distribute the
Redistributables pursuant to a license agreement that protects Sun’s interests con-
sistent with the terms contained in the Agreement, and (vi) you agree to defend and
indemnify Sun and its licensors from and against any damages, costs, liabilities,
settlement amounts and/or expenses (including attorneys’ fees) incurred in connec-
tion with any claim, lawsuit or action by any third party that arises or results from
the use or distribution of any and all Programs and/or Software.

3. Java Technology Restrictions. You may not modify the Java Platform Interface
(“JPI”, identified as classes contained within the “java” package or any subpackages
of the “java” package), by creating additional classes within the JPI or otherwise
causing the addition to or modification of the classes in the JPI. In the event that
you create an additional class and associated API(s) which (i) extends the function-
ality of the Java platform, and (ii) is exposed to third party software developers for
the purpose of developing additional software which invokes such additional API,

32 0672323842 JDK Lic 3/20/02 9:28 AM Page 1097

you must promptly publish broadly an accurate specification for such API for free
use by all developers. You may not create, or authorize your licensees to create,
additional classes, interfaces, or subpackages that are in any way identified as
“java”, “javax”, “sun” or similar convention as specified by Sun in any naming con-
vention designation.

4. Java Runtime Availability. Refer to the appropriate version of the Java Runtime
Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code which
may be distributed with Java applets and applications.

5. Trademarks and Logos. You acknowledge and agree as between you and Sun that
Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, STAROFFICE, STARPOR-
TAL and iPLANET trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE,
STAROFFICE, STARPORTAL and iPLANET.related trademarks, service marks,
logos and other brand designations (“Sun Marks”), and you agree to comply with
the Sun Trademark and Logo Usage Requirements currently located at
http://www.sun.com/policies/trademarks. Any use you make of the Sun Marks
inures to Sun’s benefit.

6. Source Code. Software may contain source code that is provided solely for refer-
ence purposes pursuant to the terms of this Agreement. Source code may not be
redistributed unless expressly provided for in this Agreement.

7. Termination for Infringement. Either party may terminate this Agreement imme-
diately should any Software become, or in either party’s opinion be likely to
become, the subject of a claim of infringement of any intellectual property right.

For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto,
California 94303

32 0672323842 JDK Lic 3/20/02 9:28 AM Page 1098

Hey, you’ve got enough worries.

Get on the fast track to IT training at InformIT,
your total Information Technology training network.

www.informit.com

� Hundreds of timely articles on dozens of topics � Discounts on IT books

from all our publishing partners, including Sams Publishing � Free, unabridged

books from the InformIT Free Library � “Expert Q&A”—our live, online chat

with IT experts � Faster, easier certification and training from our Web- or

classroom-based training programs � Current IT news � Software downloads

� Career-enhancing resources

Don’t let IT training be one of them.

InformIT is a registered trademark of Pearson. Copyright ©2001 by Pearson.
Copyright ©2001 by Sams Publishing.

Sams InformIT ad STD. 1/5/01 2:08 PM Page 1

Java Web Services
Unleashed
Robert Brunner,
Frank Cohen,
Francisco Curbera,
Darren Govoni,
Steven Haines,
Matthias Kloppmann,
Benoît Marchal,
K. Scott Morrison,
Arthur Ryman,
Joseph Weber,
Mark Wutka

0-672-32363-X
49.99 4/19/2002

www.samspublishing.com

JXTA: Java P2P
Programming

Daniel Brookshier,
Darren Govoni,
Navaneeth Krishnan,
Juan Carlos Soto
0-672-32366-4
39.99 3/22/2002

Sams Teach Yourself
XSLT in 21 Days

Michael van Otegem
0-672-32318-4
39.99 2/2002

Other Related Titles

All prices are subject to change.

Java P2P Unleashed
Robert Flenner,
Michael Abbott,
Toufic Boubez,
Navaneeth Krishnan,
Rajam Ramamurti,
Frank Sommers
0-672-32399-0
49.99 6/14/2002

Building Web Services
with Java: Making
Sense of XML, SOAP,
WSDL and UDDI

Steve Graham,
Simeon Simeonov,
Toufic Boubez,
Doug Davis,
Glen Daniels,
Yuichi Nakamura,
Ryo Neyama
0-672-32181-5
49.99 12/12/2001

Sams Teach Yourself
Wireless Java with
J2ME in 21 Days

Michael Morrison
0-672-32142-4
39.99 6/27/2001

Java Connector
Architecture: Building
Enterprise Adaptors

Atul Apte
0-672-32310-9
49.99 5/6/2002

Jini and JavaSpaces
Application Development

Robert Flenner
0-672-32258-7
49.99 12/5/2001

JMX: Managing J2EE
with Java Management
Extensions

Marc Fleury,
Juha Lindfors,
The Jboss Group
0-672-32288-9
39.99 1/31/2002

JBoss Administration
and Development

Scott Stark,
Marc Fluery
0672323478
49.99 3/28/2002

Enhydra XMLC Java
Presentation
Development

David H. Young
0-672-32211-0
39.99 1/15/2002

33 0672323842 Related ad 3/20/02 9:26 AM Page 1

What’s on the CD-ROM
The companion CD-ROM contains Sun Microsystem’s Java Software Development Kit
(SDK) version 1.3, Forte 3.0 Community Edition, JBoss, BEA’s WebLogic Server, and
more software tools plus the source code from the book.

Windows Installation Instructions
1. Insert the disc into your CD-ROM drive.

2. From the Windows desktop, double-click on the My Computer icon.

3. Double-click on the icon representing your CD-ROM drive.

4. Double-click on the icon titled START.EXE to run the installation program.

5. Follow the on-screen prompts to finish the installation.

Linux, Mac OS X, and UNIX Installation Instructions
1. Insert the disc into your CD-ROM drive.

2. If you have a volume manager on your UNIX workstation, the disc will be auto-
matically mounted. If you do not have a volume manager, you need to manually
mount the CD-ROM. For example, if you were mounting the CD-ROM on a Linux
workstation, you would type mount –tiso9660 /dev/cdrom /mnt/cdrom

3. Follow the instructions in readme.html or readme.txt to install the software com-
ponents.

If you have the AutoPlay feature enabled, the START.EXE program starts
automatically whenever you insert the disc into your CD-ROM drive.

Note

The mount point on your UNIX workstation must exist before mounting the
CD-ROM to it. The mount point in the example is the usual mount point for
a CD-ROM, but you can use any existing directory as a mount point. If you
are having difficulty or insufficient permission rights to mount a CD-ROM,
please review the man page for mount or talk to your system administrator.

Note

35 0672323842 Install 3/20/02 9:32 AM Page 1101

Use of this software is subject to the Sun Microsystems, Inc. Binary Code License Agreement
contained on page ___ of the accompanying book. Read this agreement carefully. By opening
this package, you are agreeing to be bound by the terms and conditions of this agreement.

By opening this package, you are also agreeing to be bound by the following agreement:

You may not copy or redistribute the entire CD-ROM as a whole, Copying and redistrib-
ution of individual software programs on the CD-ROM is governed by terms set by indi-
vidual copyright holders.

The installer and code from the author(s) are copyrighted by the publisher and the
author(s). Individual programs and other items on the CD-ROM are copyrighted or are
under an Open Source license by their various authors or other copyright holders.

This software is sold as-is without warranty of any kind, either expressed or implied,
including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Neither the publisher nor its dealers or distributors assumes any lia-
bility for any alleged or actual damages arising from the use of this program. (Some
states do not allow for the exclusion of implied warranties, so the exclusion may not
apply to you.)

NOTE: This CD-ROM uses long and mixed-case filenames requiring the use of a
protected-mode CD-ROM Driver.

36 0672323842 CD Lic 3/20/02 9:32 AM Page 1

	Title Page
	Copyright Page
	Contents at a Glance
	Introduction
	Week 1 -- Introducing J2EE and EJBs
	Day 1 -- The Challenge of N-Tier Development
	Day 2 -- The J2EE Platform and Roles
	Day 3 -- Naming and Directory Services
	Day 4 -- Introduction to EJBs
	Day 5 -- Session EJBs
	Day 6 -- Entity EJBs
	Day 7 -- CMP and EJB QL

	Week 2 -- Developing J2EE Applications
	Day 8 -- Transactions and Persistence
	Day 9 -- Java Message Service
	Day 10 -- Message-Driven Beans
	Day 11 -- JavaMail
	Day 12 -- Servlets
	Day 13 -- JavaServer Pages
	Day 14 -- JSP Tag Libraries

	Week 3 -- Integrating J2EE into the Enterprise
	Day 15 -- Security
	Day 16 -- Integrating XML with J2EE
	Day 17 -- Transforming XML Documents
	Day 18 -- Patterns
	Day 19 -- Integrating with External Resources
	Day 20 -- Using RPC-Style Web Services with J2EE
	Day 21 -- Web Service Registries and Message-Style Web Services

	Appendix A -- An Introduction to UML
	Appendix B -- SQL Reference
	Appendix C -- An Overview of XML
	Appendix D -- The Java Community Process
	Glossary
	Index

