

What readers are saying about

The Definitive ANTLR Reference

Over the past few years ANTLR has proven itself as a solid parser gen-

erator. This book is a fine guide to making the best use of it.

Martin Fowler

Chief Scientist, ThoughtWorks

The Definitive ANTLR Reference deserves a place in the bookshelf of

anyone who ever has to parse or translate text. ANTLR is not just for

language designers anymore.

Bob McWhirter

Founder of the JBoss Rules Project (a.k.a. Drools), JBoss.org

Over the course of a career, developers move through a few stages

of sophistication: becoming effective with a single programming lan-

guage, learning which of several programming languages to use,

and finally learning to tailor the language to the task at hand. This

approach was previously reserved for those with an education in com-

piler development. Now, The Definitive ANTLR Reference reveals that

it doesn’t take a PhD to develop your own domain-specific languages,

and you would be surprised how often it is worth doing. Take the next

step in your career, and buy this book.

Neal Gafter

Java Evangelist and Compiler Guru, Google (formerly at Sun

Microsystems)

This book, especially the first section, really gave me a much better

understanding of the principles of language recognition as a whole.

I recommend this book to anyone without a background in language

recognition looking to start using ANTLR or trying to understand the

concept of language recognition.

Steve Ebersole

Hibernate Lead Developer, Hibernate.org

Eclipse IDE users have become accustomed to cool features such as

single-click navigation between symbol references and declarations,

not to mention intelligent content assist. ANTLR v3 with its LL(*) pars-

ing algorithm will help you immensely in building highly complex

parsers to support these features. This book is a critical resource for

Eclipse developers and others who want to take full advantage of the

power of the new features in ANTLR.

Doug Schaefer

Eclipse CDT Project Lead, Tools PMC Member, QNX Software

Systems

Terence’s new book is an excellent guide to ANTLR v3. It is very well

written, with both the student and the developer in mind. The book

does not assume compiler design experience. It provides the neces-

sary background, from a pragmatic rather than a theoretical perspec-

tive, and it then eases the new user, whether someone with previous

compiler design experience or not, into the use of the ANTLR tools. I

recommend this book highly for anyone who needs to incorporate lan-

guage capabilities into their software design.

Jesse Grodnik

Software Development Manager, Sun Microsystems, Inc.

ANTLR v3 and The Definitive ANTLR Reference present a compelling

package: an intuitive tool that handles complex recognition and trans-

lation tasks with ease and a clear book detailing how to get the most

from it. The book provides an in-depth account of language transla-

tion utilizing the new powerful LL(*) parsing strategy. If you’re develop-

ing translators, you can’t afford to ignore this book!

Dermot O’Neill

Senior Developer, Oracle Corporation

Whether you are a compiler newbie itching to write your own language

or a jaded YACC veteran tired of shift-reduce conflicts, keep this book

by your side. It is at once a tutorial, a reference, and an insider’s view-

point.

Sriram Srinivasan

Formerly Principal Engineer, BEA/WebLogic

The Definitive ANTLR Reference
Building Domain-Specific Languages

Terence Parr

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 Terence Parr.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-5-6

ISBN-13: 978-09787392-4-9

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, May 2007

Version: 2007-5-17

http://www.pragmaticprogrammer.com

This is Tom’s fault.

Contents
Acknowledgments 13

Preface 14

Why a Completely New Version of ANTLR? 16

Who Is This Book For? . 18

What’s in This Book? . 18

I Introducing ANTLR and Computer Language Translation

20

1 Getting Started with ANTLR 21

1.1 The Big Picture . 22

1.2 An A-mazing Analogy . 26

1.3 Installing ANTLR . 27

1.4 Executing ANTLR and Invoking Recognizers 28

1.5 ANTLRWorks Grammar Development Environment . . 30

2 The Nature of Computer Languages 34

2.1 Generating Sentences with State Machines 35

2.2 The Requirements for Generating Complex Language . 38

2.3 The Tree Structure of Sentences 39

2.4 Enforcing Sentence Tree Structure 40

2.5 Ambiguous Languages 43

2.6 Vocabulary Symbols Are Structured Too 44

2.7 Recognizing Computer Language Sentences 48

3 A Quick Tour for the Impatient 59

3.1 Recognizing Language Syntax 60

3.2 Using Syntax to Drive Action Execution 68

3.3 Evaluating Expressions via an AST Intermediate Form. 73

CONTENTS 10

II ANTLR Reference 85

4 ANTLR Grammars 86

4.1 Describing Languages with Formal Grammars 87

4.2 Overall ANTLR Grammar File Structure 89

4.3 Rules . 94

4.4 Tokens Specification . 114

4.5 Global Dynamic Attribute Scopes 114

4.6 Grammar Actions . 116

5 ANTLR Grammar-Level Options 117

5.1 language Option . 119

5.2 output Option . 120

5.3 backtrack Option . 121

5.4 memoize Option . 122

5.5 tokenVocab Option . 122

5.6 rewrite Option . 124

5.7 superClass Option . 125

5.8 filter Option . 126

5.9 ASTLabelType Option 127

5.10 TokenLabelType Option 128

5.11 k Option . 129

6 Attributes and Actions 130

6.1 Introducing Actions, Attributes, and Scopes 131

6.2 Grammar Actions . 134

6.3 Token Attributes . 138

6.4 Rule Attributes . 141

6.5 Dynamic Attribute Scopes for Interrule Communication 148

6.6 References to Attributes within Actions 159

7 Tree Construction 162

7.1 Proper AST Structure 163

7.2 Implementing Abstract Syntax Trees 168

7.3 Default AST Construction 170

7.4 Constructing ASTs Using Operators 174

7.5 Constructing ASTs with Rewrite Rules 177

8 Tree Grammars 191

8.1 Moving from Parser Grammar to Tree Grammar 192

8.2 Building a Parser Grammar for the C- Language 195

8.3 Building a Tree Grammar for the C- Language 199

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=10

CONTENTS 11

9 Generating Structured Text with Templates and Grammars 206

9.1 Why Templates Are Better Than Print Statements . . . 207

9.2 Embedded Actions and Template Construction Rules . 209

9.3 A Brief Introduction to StringTemplate 213

9.4 The ANTLR StringTemplate Interface 214

9.5 Rewriters vs. Generators 217

9.6 A Java Bytecode Generator Using a Tree Grammar and Templates219

9.7 Rewriting the Token Buffer In-Place 228

9.8 Rewriting the Token Buffer with Tree Grammars . . . 234

9.9 References to Template Expressions within Actions . . 238

10 Error Reporting and Recovery 241

10.1 A Parade of Errors . 242

10.2 Enriching Error Messages during Debugging 245

10.3 Altering Recognizer Error Messages 247

10.4 Exiting the Recognizer upon First Error 251

10.5 Manually Specifying Exception Handlers 253

10.6 Errors in Lexers and Tree Parsers 254

10.7 Automatic Error Recovery Strategy 256

III Understanding Predicated-LL(*) Grammars 261

11 LL(*) Parsing 262

11.1 The Relationship between Grammars and Recognizers 263

11.2 Why You Need LL(*) . 264

11.3 Toward LL(*) from LL(k) 266

11.4 LL(*) and Automatic Arbitrary Regular Lookahead . . . 268

11.5 Ambiguities and Nondeterminisms 273

12 Using Semantic and Syntactic Predicates 292

12.1 Syntactic Ambiguities with Semantic Predicates 293

12.2 Resolving Ambiguities and Nondeterminisms 306

13 Semantic Predicates 317

13.1 Resolving Non-LL(*) Conflicts 318

13.2 Gated Semantic Predicates Switching Rules Dynamically325

13.3 Validating Semantic Predicates 327

13.4 Limitations on Semantic Predicate Expressions 328

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=11

CONTENTS 12

14 Syntactic Predicates 331

14.1 How ANTLR Implements Syntactic Predicates 332

14.2 Using ANTLRWorks to Understand Syntactic Predicates 336

14.3 Nested Backtracking . 337

14.4 Auto-backtracking . 340

14.5 Memoization . 343

14.6 Grammar Hazards with Syntactic Predicates 348

14.7 Issues with Actions and Syntactic Predicates 353

A Bibliography 357

Index 359

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=12

Acknowledgments
A researcher once told me after a talk I had given that “It was clear

there was a single mind behind these tools.” In reality, there are many

minds behind the ideas in my language tools and research, though I’m

a benevolent dictator with specific opinions about how ANTLR should

work. At the least, dozens of people let me bounce ideas off them, and I

get a lot of great ideas from the people on the ANTLR interest list.1

Concerning the ANTLR v3 tool, I want to acknowledge the following con-

tributors for helping with the design and functional requirements: Sri-

ram Srinivasan (Sriram had a knack for finding holes in my LL(*) algo-

rithm), Loring Craymer, Monty Zukowski, John Mitchell, Ric Klaren,

Jean Bovet, and Kay Roepke. Matt Benson converted all my unit tests

to use JUnit and is a big help with Ant files and other goodies. Juer-

gen Pfundt contributed the ANTLR v3 task for Ant. I sing Jean Bovet’s

praises every day for his wonderful ANTLRWorks grammar development

environment. Next comes the troop of hardworking ANTLR language

target authors, most of whom contribute ideas regularly to ANTLR:2

Jim Idle, Michael Jordan (no not that one), Ric Klaren, Benjamin Nie-

mann, Kunle Odutola, Kay Roepke, and Martin Traverso.

I also want to thank (then Purdue) professors Hank Dietz and Russell

Quong for their support early in my career. Russell also played a key

role in designing the semantic and syntactic predicates mechanism.

The following humans provided technical reviews: Mark Bednarczyk,

John Mitchell, Dermot O’Neill, Karl Pfalzer, Kay Roepke, Sriram Srini-

vasan, Bill Venners, and Oliver Ziegermann. John Snyders, Jeff Wilcox,

and Kevin Ruland deserve special attention for their amazingly detailed

feedback. Finally, I want to mention my excellent development editor

Susannah Davidson Pfalzer. She made this a much better book.

1. See http://www.antlr.org:8080/pipermail/antlr-interest/.
2. See http://www.antlr.org/wiki/display/ANTLR3/Code+Generation+Targets.

http://www.antlr.org:8080/pipermail/antlr-interest/
http://www.antlr.org/wiki/display/ANTLR3/Code+Generation+Targets

Preface
In August 1993, I finished school and drove my overloaded moving van

to Minnesota to start working. My office mate was a curmudgeonly

astrophysicist named Kevin, who has since become a good friend. Kevin

has told me on multiple occasions that only physicists do real work and

that programmers merely support physicists. Because all I do is build

language tools to support programmers, I am at least two levels of indi-

rection away from doing anything useful.3 Now, Kevin also claims that

Fortran 77 is a good enough language for anybody and, for that mat-

ter, that Fortran 66 is probably sufficient, so one might question his

judgment. But, concerning my usefulness, he was right—I am funda-

mentally lazy and would much rather work on something that made

other people productive than actually do anything useful myself. This

attitude has led to my guiding principle:4

Why program by hand in five days what you can spend five years of

your life automating?

Here’s the point: The first time you encounter a problem, writing a for-

mal, general, and automatic mechanism is expensive and is usually

overkill. From then on, though, you are much faster and better at solv-

ing similar problems because of your automated tool. Building tools can

also be much more fun than your real job. Now that I’m a professor, I

have the luxury of avoiding real work for a living.

3. The irony is that, as Kevin will proudly tell you, he actually played solitaire for at

least a decade instead of doing research for his boss—well, when he wasn’t scowling at

the other researchers, at least. He claimed to have a winning streak stretching into the

many thousands, but one day Kevin was caught overwriting the game log file to erase a

loss (apparently per his usual habit). A holiday was called, and much revelry ensued.
4. Even as a young boy, I was fascinated with automation. I can remember endlessly

building model ships and then trying to motorize them so that they would move around

automatically. Naturally, I proceeded to blow them out of the water with firecrackers and

rockets, but that’s a separate issue.

PREFACE 15

My passion for the last two decades has been ANTLR, ANother Tool for

Language Recognition. ANTLR is a parser generator that automates the

construction of language recognizers. It is a program that writes other

programs.

From a formal language description, ANTLR generates a program that

determines whether sentences conform to that language. By adding

code snippets to the grammar, the recognizer becomes a translator.

The code snippets compute output phrases based upon computations

on input phrases. ANTLR is suitable for the simplest and the most com-

plicated language recognition and translation problems. With each new

release, ANTLR becomes more sophisticated and easier to use. ANTLR

is extremely popular with 5,000 downloads a month and is included on

all Linux and OS X distributions. It is widely used because it:

• Generates human-readable code that is easy to fold into other

applications

• Generates powerful recursive-descent recognizers using LL(*), an

extension to LL(k) that uses arbitrary lookahead to make decisions

• Tightly integrates StringTemplate,5 a template engine specifically

designed to generate structured text such as source code

• Has a graphical grammar development environment called ANTL-

RWorks6 that can debug parsers generated in any ANTLR target

language

• Is actively supported with a good project website and a high-traffic

mailing list7

• Comes with complete source under the BSD license

• Is extremely flexible and automates or formalizes many common

tasks

• Supports multiple target languages such as Java, C#, Python,

Ruby, Objective-C, C, and C++

Perhaps most importantly, ANTLR is much easier to understand and

use than many other parser generators. It generates essentially what

you would write by hand when building a recognizer and uses technol-

ogy that mimics how your brain generates and recognizes language (see

Chapter 2, The Nature of Computer Languages, on page 34).

5. See http://www.stringtemplate.org.
6. See http://www.antlr.org/works.
7. See http://www.antlr.org:8080/pipermail/antlr-interest/.

http://www.stringtemplate.org
http://www.antlr.org/works
http://www.antlr.org:8080/pipermail/antlr-interest/
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=15

WHY A COMPLETELY NEW VERSION OF ANTLR? 16

You generate and recognize sentences by walking their implicit tree

structure, from the most abstract concept at the root to the vocabulary

symbols at the leaves. Each subtree represents a phrase of a sentence

and maps directly to a rule in your grammar. ANTLR’s grammars and

resulting top-down recursive-descent recognizers thus feel very nat-

ural. ANTLR’s fundamental approach dovetails your innate language

process.

Why a Completely New Version of ANTLR?

For the past four years, I have been working feverishly to design and

build ANTLR v3, the subject of this book. ANTLR v3 is a completely

rewritten version and represents the culmination of twenty years of

language research. Most ANTLR users will instantly find it familiar,

but many of the details are different. ANTLR retains its strong mojo

in this new version while correcting a number of deficiencies, quirks,

and weaknesses of ANTLR v2 (I felt free to break backward compatibil-

ity in order to achieve this). Specifically, I didn’t like the following about

v2:8

• The v2 lexers were very slow albeit powerful.

• There were no unit tests for v2.

• The v2 code base was impenetrable. The code was never refactored

to clean it up, partially for fear of breaking it without unit tests.

• The linear approximate LL(k) parsing strategy was a bit weak.

• Building a new language target duplicated vast swaths of logic and

print statements.

• The AST construction mechanism was too informal.

• A number of common tasks were not easy (such as obtaining the

text matched by a parser rule).

• It lacked the semantic predicates hoisting of ANTLR v1 (PCCTS).

• The v2 license/contributor trail was loose and made big compa-

nies afraid to use it.

ANTLR v3 is my answer to the issues in v2. ANTLR v3 has a very clean

and well-organized code base with lots of unit tests. ANTLR generates

extremely powerful LL(*) recognizers that are fast and easy to read.

8. See http://www.antlr.org/blog/antlr3/antlr2.bashing.tml for notes on what people did not like

about v2. ANTLR v2 also suffered because it was designed and built while I was under

the workload and stress of a new start-up (jGuru.com).

http://www.antlr.org/blog/antlr3/antlr2.bashing.tml
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=16

WHY A COMPLETELY NEW VERSION OF ANTLR? 17

Many common tasks are now easy by default. For example, reading

in some input, tweaking it, and writing it back out while preserving

whitespace is easy. ANTLR v3 also reintroduces semantic predicates

hoisting. ANTLR’s license is now BSD, and all contributors must sign

a “certificate of origin.”9 ANTLR v3 provides significant functionality

beyond v2 as well:

• Powerful LL(*) parsing strategy that supports more natural gram-

mars and makes it easier to build them

• Auto-backtracking mode that shuts off all grammar analysis

warnings, forcing the generated parser to simply figure things out

at runtime

• Partial parsing result memoization to guarantee linear time com-

plexity during backtracking at the cost of some memory

• Jean Bovet’s ANTLRWorks GUI grammar development environ-

ment

• StringTemplate template engine integration that makes generating

structured text such as source code easy

• Formal AST construction rules that map input grammar alterna-

tives to tree grammar fragments, making actions that manually

construct ASTs no longer necessary

• Dynamically scoped attributes that allow distant rules to commu-

nicate

• Improved error reporting and recovery for generated recognizers

• Truly retargetable code generator; building a new target is a mat-

ter of defining StringTemplate templates that tell ANTLR how to

generate grammar elements such as rule and token references

This book also provides a serious advantage to v3 over v2. Profession-

ally edited and complete documentation is a big deal to developers. You

can find more information about the history of ANTLR and its contri-

butions to parsing theory on the ANTLR website.10,11

Look for Improved in v3 and New in v3 notes in the margin that highlight

improvements or additions to v2.

9. See http://www.antlr.org/license.html.
10. See http://www.antlr.org/history.html.
11. See http://www.antlr.org/contributions.html.

http://www.antlr.org/license.html
http://www.antlr.org/history.html
http://www.antlr.org/contributions.html
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=17

WHO IS THIS BOOK FOR? 18

Who Is This Book For?

The primary audience for this book is the practicing software developer,

though it is suitable for junior and senior computer science under-

graduates. This book is specifically targeted at any programmer inter-

ested in learning to use ANTLR to build interpreters and translators for

domain-specific languages. Beginners and experts alike will need this

book to use ANTLR v3 effectively. For the most part, the level of discus-

sion is accessible to the average programmer. Portions of Part III, how-

ever, require some language experience to fully appreciate. Although

the examples in this book are written in Java, their substance applies

equally well to the other language targets such as C, C++, Objective-C,

Python, C#, and so on. Readers should know Java to get the most out

of the book.

What’s in This Book?

This book is the best, most complete source of information on ANTLR

v3 that you’ll find anywhere. The free, online documentation provides

enough to learn the basic grammar syntax and semantics but doesn’t

explain ANTLR concepts in detail. This book helps you get the most

out of ANTLR and is required reading to become an advanced user.

In particular, Part III provides the only thorough explanation available

anywhere of ANTLR’s LL(*) parsing strategy.

This book is organized as follows. Part I introduces ANTLR, describes

how the nature of computer languages dictates the nature of language

recognizers, and provides a complete calculator example. Part II is the

main reference section and provides all the details you’ll need to build

large and complex grammars and translators. Part III treks through

ANTLR’s predicated-LL(*) parsing strategy and explains the grammar

analysis errors you might encounter. Predicated-LL(*) is a totally new

parsing strategy, and Part III is essentially the only written documen-

tation you’ll find for it. You’ll need to be familiar with the contents in

order to build complicated translators.

Readers who are totally new to grammars and language tools should

follow the chapter sequence in Part I as is. Chapter 1, Getting Started

with ANTLR, on page 21 will familiarize you with ANTLR’s basic idea;

Chapter 2, The Nature of Computer Languages, on page 34 gets you

ready to study grammars more formally in Part II; and Chapter 3, A

Quick Tour for the Impatient, on page 59 gives your brain something

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=18

WHAT’S IN THIS BOOK? 19

concrete to consider. Familiarize yourself with the ANTLR details in

Part II, but I suggest trying to modify an existing grammar as soon

as you can. After you become comfortable with ANTLR’s functionality,

you can attempt your own translator from scratch. When you get gram-

mar analysis errors from ANTLR that you don’t understand, then you

need to dive into Part III to learn more about LL(*).

Those readers familiar with ANTLR v2 should probably skip directly to

Chapter 3, A Quick Tour for the Impatient, on page 59 to figure out how

v3 differs. Chapter 4, ANTLR Grammars, on page 86 is also a good place

to look for features that v3 changes or improves on.

If you are familiar with an older tool, such as YACC [Joh79], I recom-

mend starting from the beginning of the book as if you were totally

new to grammars and language tools. If you’re used to JavaCC12 or

another top-down parser generator, you can probably skip Chapter 2,

The Nature of Computer Languages, on page 34, though it is one of my

favorite chapters.

I hope you enjoy this book and ANTLR v3 as much as I have enjoyed

writing them!

Terence Parr

March 2007
University of San Francisco

12. See https://javacc.dev.java.net.

https://javacc.dev.java.net
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=19

Part I

Introducing ANTLR and

Computer Language Translation

Chapter 1

Getting Started with ANTLR
This is a reference guide for ANTLR: a sophisticated parser generator

you can use to implement language interpreters, compilers, and other

translators. This is not a compiler book, and it is not a language theory

textbook. Although you can find many good books about compilers and

their theoretical foundations, the vast majority of language applications

are not compilers. This book is more directly useful and practical for

building common, everyday language applications. It is densely packed

with examples, explanations, and reference material focused on a single

language tool and methodology.

Programmers most often use ANTLR to build translators and inter-

preters for domain-specific languages (DSLs). DSLs are generally very

high-level languages tailored to specific tasks. They are designed to

make their users particularly effective in a specific domain. DSLs in-

clude a wide range of applications, many of which you might not con-

sider languages. DSLs include data formats, configuration file formats,

network protocols, text-processing languages, protein patterns, gene

sequences, space probe control languages, and domain-specific pro-

gramming languages.

DSLs are particularly important to software development because they

represent a more natural, high-fidelity, robust, and maintainable

means of encoding a problem than simply writing software in a general-

purpose language. For example, NASA uses domain-specific command

languages for space missions to improve reliability, reduce risk, reduce

cost, and increase the speed of development. Even the first Apollo guid-

ance control computer from the 1960s used a DSL that supported vec-

tor computations.1

1. See http://www.ibiblio.org/apollo/assembly_language_manual.html.

http://www.ibiblio.org/apollo/assembly_language_manual.html

THE BIG PICTURE 22

This chapter introduces the main ANTLR components and explains how

they all fit together. You’ll see how the overall DSL translation problem

easily factors into multiple, smaller problems. These smaller problems

map to well-defined translation phases (lexing, parsing, and tree pars-

ing) that communicate using well-defined data types and structures

(characters, tokens, trees, and ancillary structures such as symbol

tables). After this chapter, you’ll be broadly familiar with all transla-

tor components and will be ready to tackle the detailed discussions in

subsequent chapters. Let’s start with the big picture.

1.1 The Big Picture

A translator maps each input sentence of a language to an output sen-

tence. To perform the mapping, the translator executes some code you

provide that operates on the input symbols and emits some output. A

translator must perform different actions for different sentences, which

means it must be able to recognize the various sentences.

Recognition is much easier if you break it into two similar but dis-

tinct tasks or phases. The separate phases mirror how your brain reads

English text. You don’t read a sentence character by character. Instead,

you perceive a sentence as a stream of words. The human brain sub-

consciously groups character sequences into words and looks them

up in a dictionary before recognizing grammatical structure. The first

translation phase is called lexical analysis and operates on the incom-

ing character stream. The second phase is called parsing and oper-

ates on a stream of vocabulary symbols, called tokens, emanating from

the lexical analyzer. ANTLR automatically generates the lexical analyzer

and parser for you by analyzing the grammar you provide.

Performing a translation often means just embedding actions (code)

within the grammar. ANTLR executes an action according to its posi-

tion within the grammar. In this way, you can execute different code for

different phrases (sentence fragments). For example, an action within,

say, an expression rule is executed only when the parser is recognizing

an expression.

Some translations should be broken down into even more phases. Often

the translation requires multiple passes, and in other cases, the trans-

lation is just a heck of a lot easier to code in multiple phases. Rather

than reparse the input characters for each phase, it is more convenient

to construct an intermediate form to pass between phases.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=22

THE BIG PICTURE 23

Language Translation Can Help You Avoid Work

In 1988, I worked in Paris for a robotics company. At the time,
the company had a fairly demanding coding standard that
required very formal and structured comments on each C func-
tion and file.

After finishing my compiler project, I was ready to head back
to the United States and continue with my graduate studies.
Unfortunately, the company was withholding my bonus until I
followed its coding standard. The standard required all sorts
of tedious information such as which functions were called in
each function, the list of parameters, list of local variables,
which functions existed in this file, and so on. As the company
dangled the bonus check in front me, I blurted out, “All of that
can be automatically generated!” Something clicked in my
mind. Of course. Build a quick C parser that is capable of read-
ing all my source code and generating the appropriate com-
ments. I would have to go back and enter the written descrip-
tions, but my translator would do the rest.

I built a parser by hand (this was right before I started working
on ANTLR) and created template files for the various documen-
tation standards. There were holes that my parser could fill in
with parameters, variable lists, and so on. It took me two days
to build the translator. I started it up, went to lunch, and came
back to commented source code. I quickly entered the neces-
sary descriptions, collected my bonus, and flew back to Purdue
University with a smirk on my face.

The point is that knowing about computer languages and lan-
guage technology such as ANTLR will make your coding life
much easier. Don’t be afraid to build a human-readable con-
figuration file (I implore everyone to please stop using XML as
a human interface!) or to build domain-specific languages to
make yourself more efficient. Designing new languages and
building translators for existing languages, when appropriate,
is the hallmark of a sophisticated developer.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=23

THE BIG PICTURE 24

lexer parsercharacters
tokens

output

AST

tree
walker

ancillary data
structures: symbol
table, flow graph, ...

Figure 1.1: Overall translation data flow; edges represent data structure

flow, and squares represent translation phases

This intermediate form is usually a tree data structure, called an ab-

stract syntax tree (AST), and is a highly processed, condensed version

of the input. Each phase collects more information or performs more

computations. A final phase, called the emitter, ultimately emits output

using all the data structures and computations from previous phases.

Figure 1.1 illustrates the basic data flow of a translator that accepts

characters and emits output. The lexical analyzer, or lexer, breaks up

the input stream into tokens. The parser feeds off this token stream

and tries to recognize the sentence structure. The simplest translators

execute actions that immediately emit output, bypassing any further

phases.

Another kind of simple translator just constructs an internal data

structure—it doesn’t actually emit output. A configuration file reader is

the best example of this kind of translator. More complicated transla-

tors use the parser only to construct ASTs. Multiple tree parsers (depth-

first tree walkers) then scramble over the ASTs, computing other data

structures and information needed by future phases. Although it is not

shown in this figure, the final emitter phase can use templates to gen-

erate structured text output.

A template is just a text document with holes in it that an emitter can

fill with values. These holes can also be expressions that operate on the

incoming data values. ANTLR formally integrates the StringTemplate

engine to make it easier for you to build emitters (see Chapter 9, Gen-

erating Structured Text with Templates and Grammars, on page 206).

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=24

THE BIG PICTURE 25

StringTemplate is a domain-specific language for generating structured

text from internal data structures that has the flavor of an output gram-

mar. Features include template group inheritance, template polymor-

phism, lazy evaluation, recursion, output autoindentation, and the new

notions of group interfaces and template regions.2 StringTemplate’s fea-

ture set is driven by solving real problems encountered in complicated

systems. Indeed, ANTLR makes heavy use of StringTemplate to trans-

late grammars to executable recognizers. Each ANTLR language target

is purely a set of templates and fed by ANTLR’s internal retargetable

code generator.

Now, let’s take a closer look at the data objects passed between the

various phases in Figure 1.1, on the previous page. Figure 1.2, on the

following page, illustrates the relationship between characters, tokens,

and ASTs. Lexers feed off characters provided by a CharStream such as

ANTLRStringStream or ANTLRFileStream. These predefined streams assume

that the entire input will fit into memory and, consequently, buffer up

all characters. Rather than creating a separate string object per token,

tokens can more efficiently track indexes into the character buffer.

Similarly, rather than copying data from tokens into tree nodes, ANTLR

AST nodes can simply point at the token from which they were created.

CommonTree, for example, is a predefined node containing a Token pay-

load. The type of an ANTLR AST node is treated as an Object so that

there are no restrictions whatsoever on your tree data types. In fact, you

can even make your Token objects double as AST nodes to avoid extra

object instantiations. The relationship between the data types described

in Figure 1.2, on the next page, is very efficient and flexible.

The tokens in the figure with checkboxes reside on a hidden channel

that the parser does not see. The parser tunes to a single channel and,

hence, ignores tokens on any other channel. With a simple action in the

lexer, you can send different tokens to the parser on different channels.

For example, you might want whitespace and regular comments on one

channel and Javadoc comments on another when parsing Java. The

token buffer preserves the relative token order regardless of the token

channel numbers. The token channel mechanism is an elegant solution

to the problem of ignoring but not throwing away whitespace and com-

ments (some translators need to preserve formatting and comments).

2. Please see http://www.stringtemplate.org for more details. I mention these terms to entice

readers to learn more about StringTemplate.

http://www.stringtemplate.org
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=25

AN A-MAZING ANALOGY 26

w i d t h = 2 0 0 ; \n

=WSID WS INT WS;

=

ID INT

characters
(CharStream)

tokens
(Token)

AST
(CommonTree)

x x x
......

Figure 1.2: Relationship between characters, tokens, and ASTs;

CharStream, Token, and CommonTree are ANTLR runtime types

As you work through the examples and discussions later in this book,

it may help to keep in mind the analogy described in the next section.

1.2 An A-mazing Analogy

This book focuses primarily on two topics: the discovery of the implicit

tree structure behind input sentences and the generation of structured

text. At first glance, some of the language terminology and technol-

ogy in this book will be unfamiliar. Don’t worry. I’ll define and explain

everything, but it helps to keep in mind a simple analogy as you read.

Imagine a maze with a single entrance and single exit that has words

written on the floor. Every path from entrance to exit generates a sen-

tence by “saying” the words in sequence. In a sense, the maze is analo-

gous to a grammar that defines a language.

You can also think of a maze as a sentence recognizer. Given a sentence,

you can match its words in sequence with the words along the floor. Any

sentence that successfully guides you to the exit is a valid sentence (a

passphrase) in the language defined by the maze.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=26

INSTALLING ANTLR 27

Language recognizers must discover a sentence’s implicit tree struc-

ture piecemeal, one word at a time. At almost every word, the recog-

nizer must make a decision about the interpretation of a phrase or

subphrase. Sometimes these decisions are very complicated. For exam-

ple, some decisions require information about previous decision choices

or even future choices. Most of the time, however, decisions need just

a little bit of lookahead information. Lookahead information is analo-

gous to the first word or words down each path that you can see from a

given fork in the maze. At a fork, the next words in your input sentence

will tell you which path to take because the words along each path are

different. Chapter 2, The Nature of Computer Languages, on page 34

describes the nature of computer languages in more detail using this

analogy. You can either read that chapter first or move immediately to

the quick ANTLR tour in Chapter 3, A Quick Tour for the Impatient, on

page 59.

In the next two sections, you’ll see how to map the big picture diagram

in Figure 1.1, on page 24, into Java code and also learn how to execute

ANTLR.

1.3 Installing ANTLR

ANTLR is written in Java, so you must have Java installed on your

machine even if you are going to use ANTLR with, say, Python. ANTLR

requires a Java version of 1.4 or higher. Before you can run ANTLR on

your grammar, you must install ANTLR by downloading it3 and extract-

ing it into an appropriate directory. You do not need to run a configu-

ration script or alter an ANTLR configuration file to properly install

ANTLR. If you want to install ANTLR in /usr/local/antlr-3.0, do the follow-

ing:

$ cd /usr/local

$ tar xvfz antlr-3.0.tar.gz

antlr-3.0/

antlr-3.0/build/

antlr-3.0/build.properties

antlr-3.0/build.xml

antlr-3.0/lib/

antlr-3.0/lib/antlr-3.0.jar

...

$

3. See http://www.antlr.org/download.html.

http://www.antlr.org/download.html
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=27

EXECUTING ANTLR AND INVOKING RECOGNIZERS 28

As of 3.0, ANTLR v3 is still written in the previous version of ANTLR,

2.7.7, and with StringTemplate 3.0. This means you need both of those

libraries to run the ANTLR v3 tool. You do not need the ANTLR 2.7.7

JAR to run your generated parser, and you do not need the StringTem-

plate JAR to run your parser unless you use template construction

rules. (See Chapter 9, Generating Structured Text with Templates and

Grammars, on page 206.) Java scans the CLASSPATH environment vari-

able looking for JAR files and directories containing Java .class files. You

must update your CLASSPATH to include the antlr-2.7.7.jar, stringtemplate-

3.0.jar, and antlr-3.0.jar libraries.

Just about the only thing that can go wrong with installation is setting

your CLASSPATH improperly or having another version of ANTLR in the

CLASSPATH. Note that some of your other Java libraries might use ANTLR

(such as BEA’s WebLogic) without your knowledge.

To set the CLASSPATH on Mac OS X or any other Unix-flavored box with

the bash shell, you can do the following:

$ export CLASSPATH="$CLASSPATH:/usr/local/antlr-3.0/lib/antlr-3.0.jar:\

/usr/local/antlr-3.0/lib/stringtemplate-3.0.jar:\

/usr/local/antlr-3.0/lib/antlr-2.7.7.jar"

$

Don’t forget the export. Without this, subprocesses you launch such as

Java will not see the environment variable.

To set the CLASSPATH on Microsoft Windows XP, you’ll have to set the

environment variable using the System control panel in the Advanced

subpanel. Click Environment Variables, and then click New in the top

variable list. Also note that the path separator is a semicolon (;), not a

colon (:), for Windows.

At this point, ANTLR should be ready to run. The next section provides

a simple grammar you can use to check whether you have installed

ANTLR properly.

1.4 Executing ANTLR and Invoking Recognizers

Once you have installed ANTLR, you can use it to translate grammars

to executable Java code. Here is a sample grammar:

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=28

EXECUTING ANTLR AND INVOKING RECOGNIZERS 29

Download Introduction/T.g

grammar T;

/** Match things like "call foo;" */

r : 'call' ID ';' {System.out.println("invoke "+$ID.text);} ;

ID: 'a'..'z'+ ;

WS: (' '|'\n'|'\r')+ {$channel=HIDDEN;} ; // ignore whitespace

Java class Tool in package org.antlr contains the main program, so you

execute ANTLR on grammar file T.g as follows:

$ java org.antlr.Tool T.g

ANTLR Parser Generator Version 3.0 1989-2007

$ ls

T.g TLexer.java T__.g

T.tokens TParser.java

$

As you can see, ANTLR generates a number of support files as well

as the lexer, TLexer.java, and the parser, TParser.java, in the current

directory.

To test the grammar, you’ll need a main program that invokes start rule

r from the grammar and reads from standard input. Here is program

Test.java that embodies part of the data flow shown in Figure 1.1, on

page 24:

Download Introduction/Test.java

import org.antlr.runtime.*;

public class Test {

public static void main(String[] args) throws Exception {

// create a CharStream that reads from standard input

ANTLRInputStream input = new ANTLRInputStream(System.in);

// create a lexer that feeds off of input CharStream

TLexer lexer = new TLexer(input);

// create a buffer of tokens pulled from the lexer

CommonTokenStream tokens = new CommonTokenStream(lexer);

// create a parser that feeds off the tokens buffer

TParser parser = new TParser(tokens);

// begin parsing at rule r

parser.r();

}

}

http://media.pragprog.com/titles/tpantlr/code/Introduction/T.g
http://media.pragprog.com/titles/tpantlr/code/Introduction/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=29

ANTLRWORKS GRAMMAR DEVELOPMENT ENVIRONMENT 30

What’s Available at the ANTLR Website?

At the http://www.antlr.org website, you will find a great deal
of information and support for ANTLR. The site contains the
ANTLR download, the ANTLRWorks graphical user interface
(GUI) development environment, the ANTLR documentation,
prebuilt grammars, examples, articles, a file-sharing area, the
tech support mailing list, the wiki, and much more.

To compile everything and run the test rig, do the following (don’t type

the $ symbol—that’s the command prompt):

⇐ $ javac TLexer.java TParser.java Test.java
⇐ $ java Test

⇐ call foo;

⇐ EOF

⇒ invoke foo

$

In response to input call foo; followed by the newline, the translator

emits invoke foo followed by the newline. Note that you must type the

end-of-file character to terminate reading from standard input; other-

wise, the program will stare at you for eternity.

This simple example does not include any ancillary data structures or

intermediate-form trees. The embedded grammar action directly emits

output invoke foo. See Chapter 7, Tree Construction, on page 162 and

Chapter 8, Tree Grammars, on page 191 for a number of test rig exam-

ples that instantiate and launch tree walkers.

Before you begin developing a grammar, you should become familiar

with ANTLRWorks, the subject of the next section. This ANTLR GUI will

make your life much easier when building or debugging grammars.

1.5 ANTLRWorks Grammar Development Environment

ANTLRWorks is a GUI development environment written by Jean Bovet4

that sits on top of ANTLR and helps you edit, navigate, and debug

4. See http://www.antlr.org/works. Bovet is the developer of ANTLRWorks, with some func-

tional requirements from me. He began development during his master’s degree at the

University of San Francisco but is continuing to develop the tool.

http://www.antlr.org
http://www.antlr.org/works
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=30

ANTLRWORKS GRAMMAR DEVELOPMENT ENVIRONMENT 31

Figure 1.3: ANTLRWorks grammar development environment; grammar

editor view

grammars. Perhaps most important, ANTLRWorks helps you resolve

grammar analysis errors, which can be tricky to figure out manually.

ANTLRWorks currently has the following main features:

• Grammar-aware editor

• Syntax diagram grammar view

• Interpreter for rapid prototyping

• Language-agnostic debugger for isolating grammar errors

• Nondeterministic path highlighter for the syntax diagram view

• Decision lookahead (DFA) visualization

• Refactoring patterns for many common operations such as

“remove left-recursion” and “in-line rule”

• Dynamic parse tree view

• Dynamic AST view

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=31

ANTLRWORKS GRAMMAR DEVELOPMENT ENVIRONMENT 32

Figure 1.4: ANTLRWorks debugger while parsing Java code; the input,

parse tree, and grammar are synched at all times

ANTLRWorks is written entirely in highly portable Java (using Swing)

and is available as open source under the BSD license. Because ANTLR-

Works communicates with running parsers via sockets, the ANTLR-

Works debugger works with any ANTLR language target (assuming that

the target runtime library has the necessary support code). At this

point, ANTLRWorks has a prototype plug-in for IntelliJ5 but nothing

yet for Eclipse.

Figure 1.3, on the previous page, shows ANTLRWorks’ editor in action

with the Go To Rule pop-up dialog box. As you would expect, ANTLR-

Works has the usual rule and token name autocompletion as well as

syntax highlighting. The lower pane shows the syntax diagram for rule

field from a Java grammar. When you have ambiguities in other non-

5. See http://plugins.intellij.net/plugin/?id=953.

http://plugins.intellij.net/plugin/?id=953
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=32

ANTLRWORKS GRAMMAR DEVELOPMENT ENVIRONMENT 33

determinisms in your grammar, the syntax diagram shows the multi-

ple paths that can recognize the same input. From this visualization,

you will find it straightforward to resolve the nondeterminisms. Part

III of this book discusses ANTLR’s LL(*) parsing strategy in detail and

makes extensive use of the ambiguous path displays provided by ANTL-

RWorks.

Figure 1.4, on the preceding page, illustrates ANTLRWorks’ debugger.

The debugger provides a wealth of information and, as you can see,

always keeps the various views in sync. In this case, the grammar

matches input identifier lexer with grammar element Identifier; the parse

tree pane shows the implicit tree structure of the input. For more infor-

mation about ANTLRWorks, please see the user guide.6

This introduction gave you an overall view of what ANTLR does and

how to use it. The next chapter illustrates how the nature of language

leads to the use of grammars for language specification. The final chap-

ter in Part I—Chapter 3, A Quick Tour for the Impatient, on page 59—

demonstrates more of ANTLR’s features by showing you how to build a

calculator.

6. See http://www.antlr.org/works/doc/antlrworks.pdf.

http://www.antlr.org/works/doc/antlrworks.pdf
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=33

Chapter 2

The Nature of
Computer Languages

This book is about building translators with ANTLR rather than resort-

ing to informal, arbitrary code. Building translators with ANTLR re-

quires you to use a formal language specification called a grammar. To

understand grammars and to understand their capabilities and limita-

tions, you need to learn about the nature of computer languages. As

you might expect, the nature of computer languages dictates the way

you specify languages with grammars.

The whole point of writing a grammar is so ANTLR can automatically

build a program for you that recognizes sentences in that language.

Unfortunately, starting the learning process with grammars and lan-

guage recognition is difficult (from my own experience and from the

questions I get from ANTLR users). The purpose of this chapter is to

teach you first about language generation and then, at the very end, to

describe language recognition. Your brain understands language gen-

eration very well, and recognition is the dual of generation. Once you

understand language generation, learning about grammars and lan-

guage recognition is straightforward.

Here is the central question you must address concerning generation:

how can you write a stream of words that transmits information beyond

a simple list of items? In English, for example, how can a stream of

words convey ideas about time, geometry, and why people don’t use

turn signals? It all boils down to the fact that sentences are not just

clever sequences of words, as Steven Pinker points out in The Lan-

guage Instinct [Pin94]. The implicit structure of the sentence, not just

GENERATING SENTENCES WITH STATE MACHINES 35

Example Demonstrating That Structure Imparts Meaning

Humans are hardwired to recognized the implicit structure
within a sentence (a linear sequence of words). Consider this
English sentence:

“Terence says Sriram likes chicken tikka.”

The sentence’s subject is “Terence,” and the verb is “says.” Now,
interpret the sentence differently using “likes” as the verb:

“Terence, says Sriram, likes chicken tikka.”

The commas alter the sentence structure in the same way that
parentheses alter operator precedence in expressions. The key
observation is that the same sequence of words means two dif-
ferent things depending on the structure you assume.

the words and the sequence, imparts the meaning. What exactly is sen-

tence structure? Unfortunately, the answer requires some background

to answer properly. On the bright side, the search for a precise defini-

tion unveils some important concepts, terminology, and language tech-

nology along the way. In this chapter, we’ll cover the following topics:

• State machines (DFAs)

• Sentence word order and dependencies that govern complex lan-

guage generation

• Sentence tree structure

• Pushdown machines (syntax diagrams)

• Language ambiguities

• Lexical phrase structure

• What we mean by “recognizing a sentence”

Let’s begin by demonstrating that generating sentences is not as simple

as picking appropriate words in a sequence.

2.1 Generating Sentences with State Machines

When I was a suffering undergraduate student at Purdue University

(back before GUIs), I ran across a sophisticated documentation gener-

ator that automatically produced verbose, formal-sounding manuals.

You could read about half a paragraph before your mind said, “Whoa!

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=35

GENERATING SENTENCES WITH STATE MACHINES 36

s4s3
and

s0 s1
my

your
s2

wife

truck

dog

is

lazy

ugly
sad

Figure 2.1: A state machine that generates blues lyrics

That doesn’t make sense.” Still, it was amazing that a program could

produce a document that, at first glance, was human-generated. How

could that program generate English sentences? Believe it or not, even

a simple “machine” can generate a large number of proper sentences.

Consider the blues lyrics machine in Figure 2.1 that generates such

valid sentences as “My wife is sad” and “My dog is ugly and lazy.”1,2

The state machine has states (circles) and transitions (arrows) labeled

with vocabulary symbols. The transitions are directed (one-way) con-

nections that govern navigation among the states. Machine execution

begins in state s0, the start state, and stops in s4, the accept state.

Transitioning from one state to another emits the label on the tran-

sition. At each state, pick a transition, “say” the label, and move to

the target state. The full name for this machine is deterministic finite

automaton (DFA). You’ll see the acronym DFA used extensively in Chap-

ter 11, LL(*) Parsing, on page 262.

DFAs are relatively easy to understand and seem to generate some

sophisticated sentences, but they aren’t powerful enough to generate

all programming language constructs. The next section points out why

DFAs are underpowered.

1. Pinker’s book has greatly influenced my thinking about languages. This state machine

and related discussion were inspired by the machines in The Language Instinct.
2. What happens if you run the blues machine backward? As the old joke goes, “You get

your dog back, your wife back. . . .”

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=36

GENERATING SENTENCES WITH STATE MACHINES 37

The Maze as a Language Generator

A state machine is analogous to a maze with words written on
the floor. The words along each path through the maze from
the entrance to the exit represent a sentence. The set of all
paths through the maze represents the set of all sentences and,
hence, defines the language.

Imagine that at least one loopback exists along some path
in the maze. You could walk around forever, generating an
infinitely long sentence. The maze can, therefore, simulate a
finite or infinite language generator just like a state machine.

Finite State Machines

The blues lyrics state machine is called a finite state automaton.
An automaton is another word for machine, and finite implies
the machine has a fixed number of states. Note that even
though there are only five states, the machine can generate an
infinite number of sentences because of the “and” loop transi-
tion from s4 to s3. Because of that transition, the machine is con-
sidered cyclic. All cyclic machines generate an infinite number
of sentences, and all acyclic machines generate a finite set of
sentences. ANTLR’s LL(*) parsing strategy, described in detail in
Part III, is stronger than traditional LL(k) because LL(*) uses cyclic
prediction machines whereas LL(k) uses acyclic machines.

One of the most common acronyms you’ll see in Part III of this
book is DFA, which stands for deterministic finite automaton.
A deterministic automaton (state machine) is an automaton
where all transition labels emanating from any single state are
unique. In other words, every state transitions to exactly one
other state for a given label.

A final note about state machines. They do not have a memory.
States do not know which states, if any, the machine has visited
previously. This weakness is central to why state machines gen-
erate some invalid sentences. Analogously, state machines are
too weak to recognize many common language constructs.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=37

THE REQUIREMENTS FOR GENERATING COMPLEX LANGUAGE 38

2.2 The Requirements for Generating Complex Language

Is the lyrics state machine correct in the sense it generates valid blues

sentences and only valid sentences? Unfortunately, no. The machine

can also generate invalid sentences, such as “Your truck is sad and

sad.” Rather than choose words (transitions) at random in each state,

you could use known probabilities for how often words follow one an-

other. That would help, but no matter how good your statistics were, the

machine could still generate an invalid sentence. Apparently, human

brains do something more sophisticated than this simple state machine

approach to generate sentences.

State machines generate invalid sentences for the following reasons:3

• Grammatical does not imply sensible. For example, “Dogs revert

vacuum bags” is grammatically OK but doesn’t make any sense. In

English, this is self-evident. In a computer program, you also know

that a syntactically valid assignment such as employeeName=

milesPerGallon; might make no sense. The variable types and mean-

ing could be a problem. The meaning of a sentence is referred to as

the semantics. The next two characteristics are related to syntax.

• There are dependencies between the words of a sentence. When

confronted with a], every programmer in the world has an invol-

untary response to look for the opening [.

• There are order requirements between the words of a sentence.

You immediately see “(a[i+3)]” as invalid because you expect the]

and) to be in a particular order (I even found it hard to type).

So, walking the states of a state machine is too simple an approach for

the generation of complex language. There are word dependencies and

order requirements among the output words that it cannot satisfy. For-

mally, we say that state machines can generate only the class of regular

languages. As this section points out, programming languages fall into

a more complicated, demanding class, the context-free languages. The

difference between the regular and context-free languages is the differ-

ence between a state machine and the more sophisticated machines in

the next section. The essential weakness of a state machine is that it

has no memory of what it generated in the past. What do we need to

remember in order to generate complex language?

3. These are Pinker’s reasons from pp. 93–97 in The Language Instinct but rephrased in

a computer language context.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=38

THE TREE STRUCTURE OF SENTENCES 39

2.3 The Tree Structure of Sentences

To reveal the memory system necessary to generate complex language,

consider how you would write a book. You don’t start by typing “the” or

whatever the first word of the book is. You start with the concept of a

book and then write an outline, which becomes the chapter list. Then

you work on the sections within each chapter and finally start writ-

ing the sentences of your paragraphs. The phrase that best describes

the organization of a book is not “sequence of words.” Yes, you can

read a book one word at a time, but the book is structured: chap-

ters nested within the book, sections nested with the chapters, and

paragraphs nested within the sections. Moreover, the substructures

are ordered: chapter i must appear before chapter i+1. “Nested and

ordered” screams tree structure. The components of a book are tree

structured with “book” at the root, chapters at the second level, and so

on.

Interestingly, even individual sentences are tree structured. To demon-

strate this, think about the way you write software. You start with a

concept and then work your way down to words, albeit very quickly

and unconsciously using a top-down approach. For example, how do

you get your fingers to type statement x=0; into an editor? Your first

thought is not to type x. You think “I need to reset x to 0” and then

decide you need an assignment with x on the left and 0 on the right. You

finally add the ; because you know all statements in Java end with ;. The

image in Figure 2.2, on the following page, represents the implicit tree

structure of the assignment statement. Such trees are called derivation

trees when generating sentences and parse trees when recognizing sen-

tences. So, instead of directly emitting x=0;, your brain does something

akin to the following Java code:

void statement() {

assignment();

System.out.println(";");

}

void assignment() {

System.out.println("x");

System.out.println("=");

expr();

}

void expr() {

System.out.println("0");

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=39

ENFORCING SENTENCE TREE STRUCTURE 40

x

0

=

;

statement

assignment

expr

Figure 2.2: “x=0;” assignment statement tree structure

Each method represents a level in the sentence tree structure, and the

print statements represent leaf nodes. The leaves are the vocabulary

symbols of the sentence.

Each subtree in a sentence tree represents a phrase of a sentence. In

other words, sentences decompose into phrases, subphrases, subsub-

phrases, and so on. For example, the statements in a Java method are

phrases of the method, which is itself a phrase of the overall class defi-

nition sentence.

This section exposed the tree-structured nature of sentences. The next

section shows how a simple addition to a state machine creates a much

more powerful machine. This more powerful machine is able to generate

complex valid sentences and only valid sentences.

2.4 Enforcing Sentence Tree Structure with Pushdown Machines

The method call chain for the code fragment in Section 2.3, The Tree

Structure of Sentences, on the previous page gives a big hint about the

memory system we need to enforce sentence structure. Compare the

tree structure in Figure 2.2 with the method call graph in Figure 2.3,

on the next page, for this code snippet. The trees match up perfectly.

Yep, adding a method call and return mechanism to a state machine

turns it into a sophisticated language generator.

It turns out that the humble stack is the perfect memory structure to

solve both word dependency and order problems.4 Adding a stack to a

4. Method call mechanisms use a stack to save and restore return addresses.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=40

ENFORCING SENTENCE TREE STRUCTURE 41

println

println println

println

statement

assignment

expr

Figure 2.3: Method Call Graph for “x=0;” assignment statement gener-

ation

statement

assignment

expr

Figure 2.4: Syntax diagram for assignment statement sentence struc-

ture

state machine turns it into a pushdown machine (pushdown automa-

ton). A state machine is analogous to a stream of instructions trapped

within a single method, unable to make method calls. A pushdown

machine, on the other hand, is free to invoke other parts of the machine

and return just like a method call. The stack allows you to partition a

machine into submachines. These submachines map directly to the

rules in a grammar.

Representing pushdown machines requires a different visualization

called a syntax diagram, which looks like a flowchart. There is a flow-

chart-like submachine per phrase (tree structure subtree). Figure 2.4,

illustrates the syntax diagram for the assignment statement sentence

structure. The rectangular elements generate vocabulary symbols, and

the rounded elements invoke the indicated submachine. Like a method

call, the pushdown machine returns from a submachine invocation

upon reaching the end of that submachine.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=41

ENFORCING SENTENCE TREE STRUCTURE 42

expr

Figure 2.5: Syntax diagram for recursive expression generation

Let’s take a look at how a syntax diagram enforces word dependencies

and word order. Consider the problem of pairing up square brackets

and parentheses with the proper nesting. For example, you must close

a bracketed subexpression and do so before the closing outer parenthe-

sized expression. Figure 2.5, shows the syntax diagram for an expres-

sion generation pushdown machine. The pushdown machine can gen-

erate expressions like 29342, a[12], (89), a[(1)], and (a[a[1]]).

The pushdown machine satisfies bracket symbol dependencies because

for every [the machine has no choice but to generate a] later. The same

is true for parentheses. But what about enforcing the proper word order

for nested expressions?

Look at the second alternative of the machine. The machine must gen-

erate the] after the index expression. Any structure that the nested

index expression generates must terminate before the]. Similarly, the

third alternative guarantees that the) occurs after the structure gen-

erated by the enclosed expression. That is, the pushdown machine

ensures that grouping symbols are properly nested.

Nested phrases can be recursive—they can refer to themselves as the

expression syntax diagram does. For example, the pushdown machine

generates the nested (1) phrase within a[(1)] using recursion because

it invokes itself. Figure 2.6, on the following page shows the deriva-

tion tree. The nested expr invocations represent recursive submachine

invocations. Do not let recursion bother you. Languages are highly

recursive by their nature—you cannot generate arbitrarily nested code

blocks, for example, without recursion. Besides, as L. Peter Deutsch

says, “To iterate is human, to recurse divine.”5

5. I’ve also seen another play on the same phrase, “To err is human, to moo bovine.”

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=42

AMBIGUOUS LANGUAGES 43

a []

()

1

expr

expr

expr

Figure 2.6: Recursive tree structure for expression a[(1)]

This section demonstrated that pushdown machines generate syntacti-

cally valid sentences. In other words, each sentence that the pushdown

machine generates has a valid interpretation. The next section demon-

strates that, unfortunately, some valid sentences have more than one

interpretation.

2.5 Ambiguous Languages

As we all know, English and other natural languages can be delight-

fully ambiguous. Any language with an ambiguous sentence is consid-

ered ambiguous, and any sentence with more than a single meaning

is ambiguous. Sentences are ambiguous if at least one of its phrases

is ambiguous. Here is an ambiguous faux newspaper headline: “Bush

appeals to democrats.” In this case, the verb appeals has two mean-

ings: “is attractive to” and “requests help from.” This is analogous to

operator overloading in computer languages, which makes programs

hard to understand just like overloaded words do in English.6

Ambiguity is a source of humor in English but the bane of computing.

Computers must always know exactly how to interpret every phrase. At

the lowest level, computers must always make decisions deterministi-

cally—they must know exactly which path to take. A classic example

of an ambiguous computer phrase relates to arithmetic expressions.

6. A friend put the following dedication into his PhD thesis referring to the advisor he

disliked: “To my advisor, for whom no thanks is too much.” The Language Instinct cites

a marvelously ambiguous statement by Groucho Marx: “I once shot an elephant in my

pajamas. How he got into my pajamas I’ll never know.”

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=43

VOCABULARY SYMBOLS ARE STRUCTURED TOO 44

The expression 3+4*5 is not ambiguous to an adult human. It means

multiply 4 by 5 and add 3, yielding 23. An elementary school student

doing the operations from left to right might ask, “Why is the result not

35?” Indeed, why not? Because mathematicians have decreed it so. In

fact, German mathematician Leopold Kronecker went so far as to say,

“God made the natural numbers; all else is the work of man.” So, the

language is ambiguous, but syntax and some precedence rules make it

unambiguous.

Within a syntax diagram, an ambiguous sentence or phase is one that

the diagram can generate following more than one path. For example,

a syntax diagram for C can generate statement i*j; following the path

for both a multiplicative expression and a variable definition (in other

words, j is a pointer to type i). To learn more about the relationship

of ambiguous languages to ANTLR grammars, see Section 11.5, Ambi-

guities and Nondeterminisms, on page 273. For example, Section 11.5,

Arithmetic Expression Grammars, on page 275 has an in-depth discus-

sion of the arithmetic expression ambiguity.

Although syntax is sometimes insufficient to interpret sentences, the

informal language definition usually has some extra rules such as pre-

cedence that disambiguate the sentences. Chapter 13, Semantic Predi-

cates, on page 317 illustrates how to use semantic predicates to enforce

these nonsyntactic rules. Semantic predicates are boolean expressions,

evaluated at runtime, that guide recognition.

Before turning to the last subject of this chapter, sentence recognition,

let’s examine the structure of vocabulary symbols themselves. Recog-

nizing sentences is actually a two-level problem: breaking up the input

character stream into vocabulary symbols and then applying syntactic

structure to the vocabulary symbol sequence.

2.6 Vocabulary Symbols Are Structured Too

Just as sentences consist of phrases, vocabulary symbols have struc-

ture. In English, for example, a linguist sees the word destabilize as

“de.stabil.ize.”7 Similarly, the real number 92.5 is two integers sepa-

rated by a dot. Humans unconsciously scan sentences with these char-

acters and group them into words.

7. See http://en.wikipedia.org/wiki/Stem_(linguistics).

http://en.wikipedia.org/wiki/Stem_(linguistics)
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=44

VOCABULARY SYMBOLS ARE STRUCTURED TOO 45

Sentences are actually sequences of characters, but your brain sees

them as sequences of words as if they were complete symbols like Chi-

nese characters. This happens no matter how long the words are. For

example, the word for the Hawaiian state fish (Humuhumunukunukua-

pua’a) is pretty long, but you read it as one symbol (pronouncing it is a

lot harder). Your brain somehow implicitly forms words from the char-

acters and looks them up in a dictionary of sorts.

Reading Morse code makes this process even more obvious because

it is clear you are combining dots and dashes, representing letters,

into words before reading the sentence. For example, what does the

following say (using international Morse code)?

._ _. _ ._.. ._. _._. ___ ___ ._..

If you guessed “ANTLR is cool,” you’d be right (and are either an obse-

quious ANTLR fan or a ham radio operator). Here is the character-by-

character translation:8

._ _. _ ._.. ._. _._. ___ ___ ._..

A N T L R I S C O O L

To mimic the technique your brain uses to recognize sentences, you

need to separate the language-level processing from the vocabulary-

level processing into two complete recognizers. The language-level rec-

ognizer is usually called the parser, and the vocabulary recognizer is

usually called the scanner, lexical analyzer, or lexer. Lexers create

tokens9 (vocabulary symbols) and pass them to the parser. The only

difference between the two recognizers is that the parser recognizes

grammatical structure in a stream of tokens while the lexer recognizes

structure in a stream of characters. Both perform essentially the same

task, and ANTLR implements both using the same strategy.

As an example, consider the following simple Java statement:

width=200;

The lexer scans the individual characters, grouping the letters into an ID

token type and grouping the digits into an INT token type. The punctua-

8. Amazingly, experienced operators can receive and decode Morse code without the

help of pen and paper and can generate twenty or thirty words per minute!
9. In practice, tokens consist of at least two pieces of information: the token type (which

lexical structure) and the text matched by the lexer. You can put anything you want into

the token structure. ANTLR’s default CommonToken objects include start/stop indexes

into the character buffer, the line number, and the token’s character position within that

line, among other things.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=45

VOCABULARY SYMBOLS ARE STRUCTURED TOO 46

w i d t h = 2 0 0 ; \n

=ID INT ;

characters

(CharStream)

tokens

(Token)

......

Figure 2.7: Tokens and character buffer. Tokens use character indexes

to mark start/stop of tokens in buffer. The lexer does not create tokens

for whitespace characters. CharStream and Token are ANTLR runtime

types

tion symbols exist as their own token types (that is, no other characters

map to that token type). The lexer sees the newline character following

the semicolon but throws it out instead of passing it to the parser.

The parser therefore sees a sequence of four tokens: ID, ’=’, INT, and ’;’,

as illustrated in Figure 2.7. The dotted lines represent the character

indexes stored in the tokens that refer to the start and stop character

positions (single-character tokens are represented with a single dotted

line for clarity).

Separating the parser and lexer might seem like an unnecessary com-

plication if you’re used to building recognizers by hand; however, the

separation reduces what you have to worry about at each language

level. You also get several implementation advantages:

• The parser can treat arbitrarily long character sequences as sin-

gle tokens. Further, the lexer can group related tokens into token

“classes” or token types such as INT (integers), ID (identifiers), FLOAT

(floating-point numbers), and so on. The lexer groups vocabulary

symbols into types when the parser doesn’t care about the indi-

vidual symbols, just the type. For example, the parser doesn’t care

which integer is approaching on the input stream, just that it is

an integer. Also, the parser does not have to wonder whether the

next vocabulary symbol is an integer or floating-point number.

The lexer can figure this out beforehand and send token type INT

or FLOAT accordingly, allowing the parser to be much simpler.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=46

VOCABULARY SYMBOLS ARE STRUCTURED TOO 47

w i d t h = 2 0 0 ; \n

=WSID WS INT WS;

characters
(CharStream)

tokens
(Token) x x x

......

Figure 2.8: Token buffer with hidden tokens. The lexer creates tokens

even for whitespace, but puts them on a hidden channel (tokens shown

with checkbox)

• The parser sees a pipeline of tokens, which isolates it from the

token source. The source of the tokens is irrelevant. For efficiency

reasons, you want to save the results of lexing a character stream

in a number of situations. For example, interpreters walk the

same program statements multiple times during a loop. Once your

lexer has tokenized the input, the parser can walk the same token

buffer over and over. Some compilers (C and C++ come to mind)

can even save tokenized header files to avoid repeatedly tokenizing

them.

• The lexer can filter the input, sending only tokens of interest to

the parser. This feature makes it easy to handle whitespace, com-

ments, and other lexical structures that you want to discard. For

example, if comments were passed to the parser, the parser would

have to constantly check for comment tokens and filter them out.

Instead, the lexer can simply throw them out, as shown in Fig-

ure 2.7, on the previous page, or pass them to the parser on a

hidden channel, as shown in Figure 2.8. The tokens on the hid-

den channel are marked with an “x.” Note that the channel is

an integer and you can put tokens on any channel you want,

but the parser listens to only one channel. For more information

about token channels, see Section 4.3, Lexical Rules, on page 107

and classes Token, CommonToken, and CommonTokenStream in the

org.antlr.runtime package.

At this point, you have the entire language generation picture. Sen-

tences are not ingenious word sequences. Complex language genera-

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=47

RECOGNIZING COMPUTER LANGUAGE SENTENCES 48

tion enforces word dependencies and order requirements. Your brain

enforces these constraints by subconsciously creating a tree structure.

It does not generate sentences by thinking about the first word, the

second word, and so on, like a simple state machine. It starts with the

overall sentence concept, the root of the tree structure. From there the

brain creates phrases and subphrases until it reaches the leaves of the

tree structure. From a computer scientist’s point of view, generating a

sentence is a matter of performing a depth-first tree walk and “saying”

the words represented by the leaves. The implicit tree structure conveys

the meaning.

Sentence recognition occurs in reverse. Your eyes see a simple list of

words, but your brain subconsciously conjures up the implicit tree

structure used by the person who generated the sentence. Now you see

why language recognition is the dual of language generation. ANTLR

builds recognizers that mimic how your brain recognizes sentences.

The next section gives you an intuitive feel for what sentence recog-

nition by computer means. Afterward, you will be in good shape for

Chapter 4, ANTLR Grammars, on page 86.

2.7 Recognizing Computer Language Sentences

Recognizing a sentence means identifying its implicit tree structure, but

how do you do that with a program? Many possible solutions exist, but

ANTLR generates recognizers with a method for every grammar rule.

The methods match symbols and decide which other methods to invoke

based upon what they see on the input stream. This is similar to mak-

ing decisions in the maze based upon the words in the passphrase.

The beauty of this implementation is in its simplicity—the method call

graph of the recognizer mirrors the parse tree structure. Recall how

the call graph in Figure 2.3, on page 41, overlays the tree structure in

Figure 2.2, on page 40, perfectly.

To get the most out of Part II of this book, you’ll need a basic under-

standing of language recognition technology and the definition of a few

important terms. This section answers three fundamental questions:

• What is the difference between loading a data file into memory and

actually recognizing what’s in the file?

• From which grammars can ANTLR generate a valid recognizer?

• Can you define the syntax of every language using grammar rules,

and if not, what can you use?

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=48

RECOGNIZING COMPUTER LANGUAGE SENTENCES 49

The Difference between Reading and Recognizing Input

To characterize what it means for a computer to recognize input, this

section compares two small programs. The first program reads a file

full of random characters, and the second reads a file of letters and

digits. We’ll see that the first program doesn’t recognize anything, but

the second one does. From there, we’ll look at the grammar equivalent

of the second program and then morph it into something that ANTLR

would generate.

To read the file of random characters into memory, we can use the

following Java code:

BufferedReader f = new BufferedReader(new FileReader("random.txt"));

int c = f.read(); // get the first char

StringBuffer s = new StringBuffer();

while (c != -1) {

s.append((char)c);

c = f.read();

}

You could say that the file has no structure or that the structure is sim-

ply “one or more characters.” Now, consider an input file that contains

a series of letters followed by a series of digits such as this:

acefbetqd392293

We can read in this structured input with something like this:

BufferedReader f =

new BufferedReader(new FileReader("lettersAndDigits.txt"));

int c = f.read(); // get the first char

StringBuffer letters = new StringBuffer();

StringBuffer digits = new StringBuffer();

// read the letters

while (Character.isLetter((char)c)) {

letters.append((char)c);

c = f.read();

}

// read the digits

while (Character.isDigit((char)c)) {

digits.append((char)c);

c = f.read();

}

On the other hand, the previous simple loop would also read in the

letters and digits. The difference lies in the fact that the previous loop

would not recognize the structure of the input. Recognizing structure

involves comparing the input against a series of constraints dictated by

the structure.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=49

RECOGNIZING COMPUTER LANGUAGE SENTENCES 50

In this example, recognition implies that the program verifies that the

input consists of letters followed by digits. The previous example veri-

fies no constraints. Another way to think about recognition is that, after

recognizing some input, the program can provide the groups of charac-

ters associated with the various elements of the structure. In English,

this is analogous to being able to identify the subject, verb, and object

after reading a sentence. In this case, the second program could pro-

vide the letters and digits whereas the first program could not. Simply

munching up all the input does not identify the input substructures in

any way.

In grammar form, the difference between the two recognizer programs

stands out more clearly. The first program, which simply consumes all

characters, is equivalent to the following grammar:

/** Read this as "a file is defined to be one-or-more characters." The

* dot is the wildcard character and the plus means one or more.

*/

file : .+ ; // consume until EOF

The second program that matches a bunch of letters followed by digits

is equivalent to the following grammar:

file: LETTERS DIGITS ;

LETTERS: 'a'..'z'* ; // zero or more lowercase letters

DIGITS : '0'..'9'* ; // zero or more digits

Clearly, the first grammar tells us nothing about the input format,

whereas the second grammar explicitly defines the input file language

structure.

Now, let’s look at the kind of code that ANTLR generates. If we break up

the stream of instructions into multiple methods, the second program

parallels the second grammar:

void file() {

LETTERS(); // go match the letters

DIGITS(); // go match the digits

}

void LETTERS() {

while (Character.isLetter((char)c)) {

c = f.read();

}

}

void DIGITS() {

while (Character.isDigit((char)c)) {

c = f.read();

}

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=50

RECOGNIZING COMPUTER LANGUAGE SENTENCES 51

This is not exactly what ANTLR would generate, but it illustrates the

type of recognizer ANTLR generates. Once you get used to seeing gram-

mars, you will find them easier to write and understand than unstruc-

tured, hand-built recognizers. Can ANTLR always generate a recognizer

from a grammar, though? Unfortunately, the answer is no. The next

section describes the different kinds of recognizers, discusses the rela-

tionship between grammars and recognizers, and illustrates the kinds

of recognizers ANTLR can build.

Categorizing Recognizers

Recognizers that begin the recognition process at the most abstract

language level are called top-down recognizers. The formal term for a

top-down recognizer is LL.10 Within the top-down category, the most

common implementation is called a recursive-descent recognizer. These

recognizers have one (possibly recursive) method per rule and are what

programmers build by hand. The method call graph traces out the

implicit sentence tree structure (the parse tree). This is how top-down

recognizers conjure up tree structure without actually building a tree.

You can think of top-down recognizers as walking sentence tree struc-

tures in a depth-first manner. The root of the tree for the sentence in

the previous section is the file level. The root has two children: LETTERS

and DIGITS.

Unfortunately, ANTLR cannot generate a top-down recognizer for every

grammar—LL recognizers restrict the class of acceptable grammars

somewhat. For example, ANTLR cannot accept left-recursive grammars

such as the following (see Section 11.5, Left-Recursive Grammars, on

page 274):

/** An expression is defined to be an expression followed by '++' */

expr : expr '++'

;

ANTLR translates this grammar to a recursive method called expr() that

immediately invokes itself:

void expr() {

expr();

match("++");

}

10. See http://en.wikipedia.org/wiki/LL_parser. LL means “recognize input from left to right

using a leftmost derivation.” You can interpret “leftmost derivation” as attempting rule

references within alternative from left to right. For our purposes, simply consider LL a

synonym for a top-down recognizer.

http://en.wikipedia.org/wiki/LL_parser
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=51

RECOGNIZING COMPUTER LANGUAGE SENTENCES 52

Comparing Bottom-Up and Top-Down Recognizers

The other major class of recognizers is called LR because these
recognizers perform rightmost derivations rather than leftmost
(YACC builds LR-based recognizers). LR recognizers are called
bottom-up recognizers because they try to match the leaves
of the parse tree and then work their way up toward the start-
ing rule at the root. Loosely speaking, LR recognizers consume
input symbols until they find a matching complete alternative.
In contrast, LL recognizers are goal-oriented. They start with a
rule in mind and then try to match the alternatives. For this rea-
son, LL is easier for humans to understand because it mirrors our
own innate language recognition mechanism.

Another grammar restriction stems from the fact that the recognition

strategy might be too weak to handle a particular grammar. The

strength of an LL-based recognizer depends on the amount of looka-

head it has.

Lookahead refers to scanning ahead in the input stream one or more

symbols in order to make decisions. In the maze, you match the word

under your feet with the next word of lookahead in your passphrase.

If you reach a fork where the same word begins both paths, you must

use more lookahead to figure out which path to take. Most top-down

recognizers use a fixed amount of lookahead, k, and are called LL(k) rec-

ognizers. LL(k) recognizers look up to k words down each path hoping

to find a distinguishing word or sequence of words. Here is an exam-

ple of an LL(3) grammar (a grammar for which you can build an LL(3)

recognizer):

/** A decl is 'int' followed by an identifier followed by

* an initializer or ';'.

*/

decl : 'int' ID '=' INT ';' // E.g., "int x = 3;"

| 'int' ID ';' // E.g., "int x;"

;

With less than three lookahead symbols, the recognizer cannot see past

the type name and ID token to the assignment operator or the semicolon

beyond. Depth k=3 distinguishes the two alternatives. This grammar

is not LL(1) or LL(2). Although this grammar needs three symbols of

lookahead, that does not mean you can’t alter the grammar so that it

is LL(1).

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=52

RECOGNIZING COMPUTER LANGUAGE SENTENCES 53

To be precise, the syntax is LL(1), but that particular grammar for it is

LL(3). Refactoring the grammar is more work and yields a less natural-

looking grammar:

/** LL(1) version of decl; less lookahead, but less natural */

decl : 'int' ID ('=' INT)? ';' // optionally match initializer

;

Increasing the lookahead depth from 1 to k significantly increases the

decision-making power of a recognizer. With more power comes a larger

class of grammars, which means you’ll find it easier to write grammars

acceptable to ANTLR. Still, some natural grammars are not LL(k) for

even large values of k.

Extending the previous grammar to allow a sequence of modifiers before

the type renders it non-LL(k) for any fixed k:

decl : // E.g., "int x = 3;", "static int x = 3;"

modifier* 'int' ID '=' INT ';'

| // E.g., "int x;", "static int x;", "static register int x;",

// "static static register int x;" (weird but grammar says legal)

modifier* 'int' ID ';'

;

modifier // match a single 'static' or 'register' keyword

: 'static'

| 'register'

;

Because the grammar allows a prefix of zero or more modifier symbols,

no fixed amount of lookahead will be able to see past the modifiers. One

of ANTLR v3’s key features is its powerful extension to LL(k) called LL(*)

that allows lookahead to roam arbitrarily far ahead (see Section 11.2,

Why You Need LL(*), on page 264). For rule decl, ANTLR generates some-

thing similar to the following (assume lookahead() is a method that

returns the lookahead at the indicated depth):

void decl() {

// PREDICT EITHER ALT 1 or 2

int alt;

int k = 1; // start with k=1

// scan past all the modifiers; LL(k) for fixed k cannot do this!

while (lookahead(k) is a modifier) { k++; }

k++; // scan past 'int'

k++; // scan past ID

if (lookahead(k) is '=') alt = 1; // predict alternative 1

else alt = 2; // else predict alternative 2

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=53

RECOGNIZING COMPUTER LANGUAGE SENTENCES 54

// MATCH ONE OF THE ALTS

switch (alt) {

case 1 :

// match modifier* 'int' ID '=' INT ';'

break;

case 2 :

// match modifier* 'int' ID ';'

break;

}

}

LL(*)’s arbitrary lookahead is like bringing a trained monkey along in

the maze. The monkey can race ahead of you down the various paths

emanating from a fork. It looks for some simple word sequences from

your passphrase that distinguish the paths. LL(*) represents a sig-

nificant step forward in recognizer technology because it dramatically

increases the number of acceptable grammars without incurring a large

runtime speed penalty. Nonetheless, even LL(*) is not enough to handle

some useful grammars. LL(*) cannot see past nested structures because

it uses a DFA, not a pushdown machine, to scan ahead. This means it

cannot handle some decisions whose alternatives have recursive rule

references. In the following grammar, rule decl allows C-like declara-

tors instead of simple identifiers:

decl : 'int' declarator '=' INT ';' // E.g., "int **x=3;"

| 'int' declarator ';' // E.g., "int *x;"

;

declarator // E.g., "x", "*x", "**x", "***x"

: ID

| '*' declarator

;

Rule decl is not LL(*), but don’t worry. ANTLR has an even more pow-

erful strategy that can deal with just about any grammar for a slight

reduction in recognition speed.

When ANTLR cannot generate a valid LL(*) recognizer from a grammar,

you can tell ANTLR to simply try the alternatives in the order specified

(see Section 5.3, backtrack Option, on page 121). If the first alternative

fails, ANTLR rewinds the input stream and tries the second alternative,

and so on, until it finds a match. In the maze, this is analogous to

trying the alternative paths until you find one that leads to the exit.

Such a mechanism is called backtracking and is very powerful, but it

comes at an exponential speed complexity in the worst case. The speed

penalty arises from having to repeatedly evaluate a rule for the same

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=54

RECOGNIZING COMPUTER LANGUAGE SENTENCES 55

input position. A decision can have multiple alternatives that begin with

the same rule reference, say, expression. Backtracking over several of

these alternatives means repeatedly invoking rule expression at the left

edge. Because the input position will always be the same, evaluating

expression again and again is a waste of time.

Surprisingly, using a technique called memoization,11 ANTLR can com-

pletely eliminate such redundant computation at the cost of some mem-

ory (see Section 14.5, Memoization, on page 343). By recording the

result of invoking expression while attempting the first alternative, the

remaining alternatives can reuse that result. Memoization plus back-

tracking provides all the power you need with fast recognition speed.

So, ANTLR can usually build a recognizer from a grammar, but can you

always define a grammar for a given language? The answer is no. Well,

you can’t always define one purely with the grammar rules themselves.

The next section describes language constructs that are easy to define

in English language descriptions, but difficult to express in a straight-

forward grammar.

Encoding Phrase Context and Precedence

Some languages have phrases that only make sense in the context of

other phrases, which is sometimes difficult to encode properly with a

grammar. For example, some phrase x of sentence s might make sense

only if preceded (or succeeded) by the phrase p; i.e., s=“. . . p. . . x. . . ”.

This case abstracts some common programming language recognition

problems. Take arithmetic expressions that reference variables. Ex-

pressions must have corresponding definitions for those variables, such

as s=“. . . int i;. . . i+1. . . ”. In English, this is analogous to x=“open it”,

which only makes sense in the context of another phrase p that defines

“it.” Is “it” a window or a bottle of German dunkel beer? Here, the mean-

ing of the phrase is clear; you just need to know what to open according

to p.

Computer recognizers typically record variable definitions such as i in

dictionaries called symbol tables that map variable names to their type

and scope. Later, user-defined actions embedded within the expression

rules can look up i in the symbol table to see whether i has been defined.

11. See http://en.wikipedia.org/wiki/Memoization. Bryan Ford applied memoization to parsing,

calling it packrat parsing.

http://en.wikipedia.org/wiki/Memoization
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=55

RECOGNIZING COMPUTER LANGUAGE SENTENCES 56

Some Sentences Force Humans to Backtrack

Sometimes you have to see an entire sentence to get the
proper meaning for the initial phrase(s). In some English sen-
tences, you find a word halfway through that is inconsistent with
your current understanding. You have to restart from the begin-
ning of the sentence. Trueswell et al in [TTG94] performed exper-
iments that tracked people’s eye movements as they read the
following sentence:

“The defendant examined by the lawyer turned out to be unre-
liable.”

People paused at by because their initial interpretation was
that the defendant examined something. The researchers
found that people have a strong preference to interpret exam-
ined as the main verb upon first reading of the sentence. After
seeing by, people usually backtracked to the beginning of
the sentence to begin a new interpretation. Adding commas
allows your brain to interpret the sentence properly in one pass:

“The defendant, examined by the lawyer, turned out to be
unreliable.”

Just like adding commas in an English sentence, adding new
symbols to computer language phrases can often reduce the
need for backtracking. If you are in control of the language
definition, try to make statements as clear as possible. Use extra
vocabulary symbols if necessary.

See Section 6.5, Rule Scopes, on page 150 for a grammar that looks up

variable definitions in a symbol table. For an in-depth discussion, see

Symbol Tables and Scopes.12

What if you can’t interpret a phrase at all without examining a previous

or future phrase? For example, in C++, expression T(i) is either a func-

tion call or a constructor-style typecast (as in (T)i). If T is defined else-

where as a function, then the expression is a function call. If T is defined

as a class or other type, then the expression is a typecast. Such phrases

are context-sensitive. Without the context information, the phrase is

ambiguous. The problem is that grammars, as we’ve defined them, have

12. See http://www.cs.usfca.edu/~parrt/course/652/lectures/symtab.html.

http://www.cs.usfca.edu/~parrt/course/652/lectures/symtab.html
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=56

RECOGNIZING COMPUTER LANGUAGE SENTENCES 57

no way to restrict the context in which rules can be applied. The gram-

mars we’ve examined are called context-free grammars (CFGs). Each

grammar rule has a name and list of alternatives, and that’s it—no

context constraints.

To recognize context-sensitive language constructs, ANTLR augments

CFGs with semantic predicates (see Chapter 13, Semantic Predicates,

on page 317). Semantic predicates are boolean expressions, evaluated

at parse time, that basically turn alternatives on and off. If a semantic

predicate evaluates to false, then the associated alternative disappears

from the set of viable alternatives. You can use semantic predicates to

ask questions about context in order to encode context-sensitivity. In

the following rule, both alternatives can match expression T(i), but the

predicates turn off the alternative that makes no sense in the current

context:

expr : {«lookahead(1) is function»}? functionCall

| {«lookahead(1) is type»}? ctorTypecast

;

The predicates are the actions with question marks on the left edge of

the alternatives. If T, the first symbol of lookahead, is a function, the

recognizer will attempt the first alternative; otherwise, it will attempt

the second. This easily resolves the ambiguity.

Even with context information, some phrases are still ambiguous. For

example, even if you know that T is a type, you can interpret statement

T(i); in two ways: as a constructor-style typecast expression statement

and as a variable declaration statement (as in T i;). Multiple alternatives

within the statement rule are able to match the same input phrase. The

C++ language specification resolves the ambiguity by stating that if a

statement can be both a declaration and an expression, interpret it as

a declaration. This is not an ambiguity arising from lack of context—it

is an ambiguity in the language syntax itself. Consequently, semantic

predicates won’t help in this situation.

To encode the C++ language specification’s resolution of this ambiguity,

we need a way to encode the precedence of the alternatives. ANTLR pro-

vides syntactic predicates that order a rule’s alternatives, effectively let-

ting us specify their precedence (see Chapter 14, Syntactic Predicates,

on page 331). Syntactic predicates are grammar fragments enclosed in

parentheses followed by =>.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=57

RECOGNIZING COMPUTER LANGUAGE SENTENCES 58

In the following rule, the first alternative has a syntactic predicate that

means, “If the current statement looks like a declaration, it is.” Even if

both alternatives can match the same input phrase, the first alternative

will always take precedence.

stat : (declaration)=> declaration

| expression

;

By adding semantic and syntactic predicates to an LL(*) grammar, you

can usually convince ANTLR to build a valid recognizer for even the

nastiest computer language.

This chapter demonstrated that a sentence’s implicit tree structure

conveys much of its meaning—it’s not just the words and word se-

quence. You learned that your brain generates word sequences using

an implicit tree structure and that computers can mimic that behav-

ior with a pushdown machine. Pushdown machines use a stack to re-

create sentence tree structure—the submachine invocation trace mir-

rors the sentence tree structure.

Sentence recognition is the dual of sentence generation. Recognition

means identifying the phrases and subphrases within a sentence. To

do this, a computer must find the implicit tree structure appropriate

for the input sentence. Finding the implicit tree structure is a matter of

finding subtrees that match the various phrases.

Rather than writing arbitrary code to recognize implicit sentence tree

structure, we’ll use formal grammars to define languages. Grammars

conform to a domain-specific language that is particularly good at spec-

ifying sentence structure. The first chapter of Part II will explain why

we use grammars and describes ANTLR’s specific grammar notation.

Before diving into the reference section of this book, we’ll look at a com-

plete example to give your brain something concrete to consider. The

next chapter illustrates ANTLR’s main components by showing how to

build a simple calculator.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=58

Chapter 3

A Quick Tour for the Impatient
The best way to learn about ANTLR is to walk through a simple but

useful example. In this chapter, we’ll build an arithmetic expression

evaluator that supports a few operators and variable assignments. In

fact, we’ll implement the evaluator in two different ways. First, we’ll

build a parser grammar to recognize the expression language and then

add actions to actually evaluate and print the result. Second, we’ll mod-

ify the parser grammar to build an intermediate-form tree data struc-

ture instead of immediately computing the result. We’ll then build a

tree grammar to walk those trees, adding actions to evaluate and print

the result. When you’re through with this chapter, you’ll have a good

overall view of how to build translators with ANTLR. You’ll learn about

parser grammars, tokens, actions, ASTs, and tree grammars by exam-

ple, which will make the ensuing chapters easier to understand. This chapter is not the

ideal starting point for

programmers who are

completely new to

languages and language

tools. Those

programmers should

begin by studying this

book’s introduction.

To keep it simple, we’ll restrict the expression language to support the

following constructs:

• Operators plus, minus, and multiply with the usual order of oper-

ator evaluation, allowing expressions such as this one:
3+4*5-1

• Parenthesized expressions to alter the order of operator evalua-

tion, allowing expressions such as this one:
(3+4)*5

• Variable assignments and references, allowing expressions such

as these:
Download tour/basic/input

a=3

b=4

2+a*b

http://media.pragprog.com/titles/tpantlr/code/tour/basic/input

RECOGNIZING LANGUAGE SYNTAX 60

Here’s what we want the translator to do: when it sees 3+4, it should

emit 7. When it sees dogs=21, it should map dogs to value 21. If the

translator ever sees dogs again, it should pretend we typed 21 instead

of dogs. How do we even start to solve this problem? Well, there are two

overall tasks: A parser triggers an

embedded action after

seeing the element to its

left.
1. Build a grammar that describes the overall syntactic structure of

expressions and assignments. The result of that effort is a recog-

nizer that answers yes or no as to whether the input was a valid

expression or assignment.

2. Embed code among the grammar elements at appropriate posi-

tions to evaluate pieces of the expression. For example, given input

3, the translator must execute an action that converts the charac-

ter to its integer value. For input 3+4, the translator must execute

an action that adds the results from two previous action execu-

tions, namely, the actions that converted characters 3 and 4 to

their integer equivalents.

After completing those two large tasks, we’ll have a translator that

translates expressions to the usual arithmetic value. In the following

sections, we’ll walk through those tasks in detail. We’ll follow this pro-

cess:

1. Build the expression grammar.

2. Examine the files generated by ANTLR.

3. Build a test rig and test the recognizer.

4. Add actions to the grammar to evaluate expressions and emit

results.

5. Augment the test rig and test the translator.

Now that we’ve defined the language, let’s build an ANTLR grammar

that recognizes sentences in that language and computes results.

3.1 Recognizing Language Syntax

We need to build a grammar that completely describes the syntax of

our expression language, including the form of identifiers and integers.

From the grammar, ANTLR will generate a program that recognizes

valid expressions, automatically issuing errors for invalid expressions.

Begin by thinking about the overall structure of the input, and then

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=60

RECOGNIZING LANGUAGE SYNTAX 61

break that structure down into substructures, and so on, until you

reach a structure that you can’t break down any further. In this case,

the overall input consists of a series of expressions and assignments,

which we’ll break down into more detail as we proceed.

Ok, let’s begin your first ANTLR grammar. The most common ANTLR

grammar is a combined grammar that specifies both the parser and

lexer rules. These rules specify an expression’s grammatical structure

as well as its lexical structure (the so-called tokens). For example, an

assignment is an identifier, followed by an equals sign, followed by an

expression, and terminated with a newline; an identifier is a sequence

of letters. Define a combined grammar by naming it using the grammar

keyword:

grammar Expr;

«rules»

Put this grammar in file Expr.g because the filename must match the

grammar name.

A program in this language looks like a series of statements followed

by the newline character (newline by itself is an empty statement and

ignored). More formally, these English rules look like the following when

written in ANTLR notation where : starts a rule definition and | sepa-

rates rule alternatives:

Download tour/basic/Expr.g

prog: stat+ ;

stat: expr NEWLINE

| ID '=' expr NEWLINE

| NEWLINE

;

A grammar rule is a named list of one or more alternatives such as prog

and stat. Read prog as follows: a prog is a list of stat rules. Read rule stat

as follows: a stat is one of the three alternatives:

• An expr followed by a newline (token NEWLINE)

• The sequence ID (an identifier), ’=’, expr, NEWLINE

• A NEWLINE token

Now we have to define what an expression, rule expr, looks like. It turns

out that there is a grammar design pattern for arithmetic expressions

(see Section 11.5, Arithmetic Expression Grammars, on page 275). The

pattern prescribes a series of rules, one for each operator precedence

http://media.pragprog.com/titles/tpantlr/code/tour/basic/Expr.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=61

RECOGNIZING LANGUAGE SYNTAX 62

level and one for the lowest level describing expression atoms such as

integers. Start with an overall rule called expr that represents a com-

plete expression. Rule expr will match operators with the weakest prece-

dence, plus and minus, and will refer to a rule that matches subexpres-

sions for operators with the next highest precedence. In this case, that

next operator is multiply. We can call the rule multExpr. Rules expr, mul-

tExpr, and atom look like this:

Download tour/basic/Expr.g

expr: multExpr (('+'|'-') multExpr)*
;

multExpr

: atom ('*' atom)*
;

atom: INT

| ID

| '(' expr ')'

;

Turning to the lexical level, let’s define the vocabulary symbols (tokens):

identifiers, integers, and the newline character. Any other whitespace is

ignored. Lexical rules all begin with an uppercase letter in ANTLR and

typically refer to character and string literals, not tokens, as parser

rules do. Here are all the lexical rules we’ll need:

Download tour/basic/Expr.g

ID : ('a'..'z'|'A'..'Z')+ ;

INT : '0'..'9'+ ;

NEWLINE:'\r'? '\n' ;

WS : (' '|'\t'|'\n'|'\r')+ {skip();} ;

Rule WS (whitespace) is the only one with an action (skip();) that tells

ANTLR to throw out what it just matched and look for another token.

The easiest way to work with ANTLR grammars is to use ANTLRWorks,1

which provides a sophisticated development environment (see also Sec-

tion 1.5, ANTLRWorks Grammar Development Environment, on page 30).

Figure 3.1, on the following page, shows what grammar Expr looks

like inside ANTLRWorks. Notice that the syntax diagram view of a rule

makes it easy to understand exactly what the rule matches.

At this point, we have no Java code to execute. All we have is an ANTLR

grammar. To convert the ANTLR grammar to Java, invoke ANTLR from

1. See http://www.antlr.org/works.

http://media.pragprog.com/titles/tpantlr/code/tour/basic/Expr.g
http://media.pragprog.com/titles/tpantlr/code/tour/basic/Expr.g
http://www.antlr.org/works
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=62

RECOGNIZING LANGUAGE SYNTAX 63

Figure 3.1: ANTLRWorks GUI grammar development tool showing Expr.g

and syntax diagram for rule stat

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=63

RECOGNIZING LANGUAGE SYNTAX 64

the command line (make sure antlr-3.0.jar, antlr-2.7.7, and stringtemplate-

3.0.jar are in your CLASSPATH):

$ java org.antlr.Tool Expr.g

ANTLR Parser Generator Version 3.0 1989-2007

$

You can also use ANTLRWorks to generate code using the Generate

menu’s Generate Code option, which will generate code in the same

directory as your grammar file. In the next section, we will see what

ANTLR generates from the grammar.

What Does ANTLR Generate?

From a combined grammar, ANTLR generates a parser and lexer (writ-

ten in Java, in this case) that you can compile. Better yet, the code

ANTLR generates is human-readable. I strongly suggest you look at the

generated code because it will really help demystify ANTLR. ANTLR will

generate the following files: ANTLR generates

recognizers that mimic

the recursive-descent

parsers that you would

build by hand; most

other parser generators,

on the other hand,

generate tables full of

integers because they

simulate state machines.

Generated File Description

ExprParser.java The recursive-descent parser generated from the

grammar. From grammar Expr, ANTLR generates

ExprParser and ExprLexer.

Expr.tokens The list of token-name, token-type assignments such

as INT=6.

Expr__.g The automatically generated lexer grammar that

ANTLR derived from the combined grammar. The

generated file begins with a header: lexer grammar

Expr;.

ExprLexer.java The recursive-descent lexer generated from Expr__.g.

If you look inside ExprParser.java, for example, you will see a method for

every rule defined in the grammar. The code for rule multExpr looks like

the following pseudocode:

void multExpr() {

try {

atom();

while («next input symbol is *») {

match('*');

atom();

}

}

catch (RecognitionException re) {

reportError(re); // automatic error reporting and recovery

recover(input,re);

}

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=64

RECOGNIZING LANGUAGE SYNTAX 65

The pseudocode for rule atom looks like this:

void atom() {

try {

// predict which alternative will succeed

// by looking at next (lookahead) symbol: input.LA(1)

int alt=3;

switch («next input symbol») {

case INT: alt=1; break;

case ID: alt=2; break;

case '(': alt=3; break;

default: «throw NoViableAltException»

}

// now we know which alt will succeed, jump to it

switch (alt) {

case 1 : match(INT); break;

case 2 : match(ID); break;

case 3 :

match('(');

expr(); // invoke rule expr

match(')');

break;

}

}

catch (RecognitionException re) {

reportError(re); // automatic error reporting and recovery

recover(input,re);

}

}

Notice that rule references are translated to method calls, and token

references are translated to match(TOKEN) calls. The generated code here

is general and more

complicated than

necessary for this simple

parser. A future version

of ANTLR will optimize

these common situations

down to simpler code.

For example, clearly, the

two switch statements

could be collapsed into a

single one.

All the FOLLOW_multExpr_in_expr160 variable and pushFollow() method ref-

erences are part of the error recovery strategy, which always wants

to know what tokens could come next. In case of a missing or extra

token, the recognizer will resynchronize by skipping tokens until it sees

a token in the proper “following” set. See Chapter 10, Error Reporting

and Recovery, on page 241 for more information.

ANTLR generates a file containing the token types just in case another

grammar wants to use the same token type definitions, as you will do in

Section 3.3, Evaluating Expressions Encoded in ASTs, on page 79 when

building a tree parser.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=65

RECOGNIZING LANGUAGE SYNTAX 66

Token types are integers that represent the “kind” of token, just like

ASCII values represent characters:

Download tour/basic/Expr.tokens

INT=6

WS=7

NEWLINE=4

ID=5

'('=12

')'=13

'*'=11

'='=8

'-'=10

'+'=9

Testing the Recognizer

Running ANTLR on the grammar just generates the lexer and parser,

ExprParser and ExprLexer. To actually try the grammar on some input, we

need a test rig with a main() method such as this one:

Download tour/basic/Test.java

import org.antlr.runtime.*;

public class Test {

public static void main(String[] args) throws Exception {

// Create an input character stream from standard in

ANTLRInputStream input = new ANTLRInputStream(System.in);

// Create an ExprLexer that feeds from that stream

ExprLexer lexer = new ExprLexer(input);

// Create a stream of tokens fed by the lexer

CommonTokenStream tokens = new CommonTokenStream(lexer);

// Create a parser that feeds off the token stream

ExprParser parser = new ExprParser(tokens);

// Begin parsing at rule prog

parser.prog();

}

}

Classes ANTLRInputStream and CommonTokenStream are standard ANTLR

classes in the org.antlr.runtime package. ANTLR generated all the other

classes instantiated in the test rig.

Once you have compiled the generated code and the test rig, Test.java,

run Test, and type a simple expression followed by newline and then the

end-of-file character appropriate for your platform:2

2. The end-of-file character is Ctrl+D on Unix and Ctrl+Z on Windows.

http://media.pragprog.com/titles/tpantlr/code/tour/basic/Expr.tokens
http://media.pragprog.com/titles/tpantlr/code/tour/basic/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=66

RECOGNIZING LANGUAGE SYNTAX 67

⇐ $ javac Test.java ExprLexer.java ExprParser.java

⇐ $ java Test
⇐ (3+4)*5

⇐ EOF

⇒ $

ANTLR doesn’t emit any output because there are no actions and gram-

mar. If, however, you type an invalid expression—one that does not fol-

low the grammar—the ANTLR-generated parser will emit an error. The

parser will also try to recover and continue matching expressions. The

same is true of the generated lexer. For example, upon seeing invalid

character @, the lexer reports the following:

⇐ $ java Test

⇐ 3+@

⇐ EOF

⇒ line 1:2 no viable alternative at character '@'

line 1:3 no viable alternative at input '\n'

$

The recognizer found two errors in this case. The first error is a lexi-

cal error: an invalid character, @. The second error is a parser error: a

missing atom (the parser saw 3+\n, not a valid atom such as an inte-

ger). A lexer or parser emits the phrase “no viable alternative” when it

can’t figure out what to do when confronted with a list of alternatives.

This means that the next input symbols don’t seem to fit any of the

alternatives.

For mismatched tokens, recognizers indicate the incorrect token found

on the input stream and the expected token:

⇐ $ java Test

⇐ (3

⇐ EOF

⇒ line 1:2 mismatched input '\n' expecting ')'

$

The error message is saying that the newline token was unexpected

and that the parser expected) instead. The 1:2 error prefix indicates

that the error occurred on line 1 and in character position 2 within that

line. Because the character position starts from 0, position 2 means the

third character.

At this point we have a program that will accept valid input or complain

if we give it invalid input. In the next section, you will learn how to add

actions to the grammar so you can actually evaluate the expressions.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=67

USING SYNTAX TO DRIVE ACTION EXECUTION 68

3.2 Using Syntax to Drive Action Execution

You’ve made significant progress at this point because you’ve got a

parser and lexer, all without writing any Java code! As you can see, writ-

ing a grammar is much easier than writing your own parsing code. You

can think of ANTLR’s notation as a domain-specific language specifi-

cally designed to make recognizers and translators easy to build.

To move from a recognizer to a translator or interpreter, we need to

add actions to the grammar, but which actions and where? For our

purposes here, we’ll need to perform the following actions:

1. Define a hashtable called memory to store a variable-to-value map.

2. Upon expression, print the result of evaluating it.

3. Upon assignment, evaluate the right-side expression, and map the

variable on the left side to the result. Store the results in memory.

4. Upon INT, return its integer value as a result.

5. Upon ID, return the value stored in memory for the variable. If the

variable has not been defined, emit an error message.

6. Upon parenthesized expression, return the result of the nested

expression as a result.

7. Upon multiplication of two atoms, return the multiplication of the

two atoms’ results.

8. Upon addition of two multiplicative subexpressions, return the

addition of the two subexpressions’ results.

9. Upon subtraction of two multiplicative subexpressions, return the

subtraction of the two subexpressions’ results.

We now just have to implement these actions in Java and place them in

the grammar according to the location implied by the “Upon. . . ” phrase.

Begin by defining the memory used to map variables to their values

(action 1):

Download tour/eval/Expr.g

@header {

import java.util.HashMap;

}

@members {

/** Map variable name to Integer object holding value */

HashMap memory = new HashMap();

}

http://media.pragprog.com/titles/tpantlr/code/tour/eval/Expr.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=68

USING SYNTAX TO DRIVE ACTION EXECUTION 69

We don’t need an action for rule prog because it just tells the parser to

look for one or more stat constructs. Actions 2 and 3 from the previous

itemized list need to go in stat to print and store expression results:

Download tour/eval/Expr.g

prog: stat+ ;

stat: // evaluate expr and emit result

// $expr.value is return attribute 'value' from expr call

expr NEWLINE {System.out.println($expr.value);}

// match assignment and stored value

// $ID.text is text property of token matched for ID reference

| ID '=' expr NEWLINE

{memory.put($ID.text, new Integer($expr.value));}

// do nothing: empty statement

| NEWLINE

;

For the rules involved in evaluating expressions, it’s really convenient

to have them return the value of the subexpression they match. So,

each rule will match and evaluate a piece of the expression, returning

the result as a method return value. Look at atom, the simplest subex-

pression first:

Download tour/eval/Expr.g

atom returns [int value]

: // value of an INT is the int computed from char sequence

INT {$value = Integer.parseInt($INT.text);}

| ID // variable reference

{

// look up value of variable

Integer v = (Integer)memory.get($ID.text);

// if found, set return value else error

if (v!=null) $value = v.intValue();

else System.err.println("undefined variable "+$ID.text);

}

// value of parenthesized expression is just the expr value

| '(' expr ')' {$value = $expr.value;}

;

Per the fourth action from the itemized list earlier, the result of an

INT atom is just the integer value of the INT token’s text. An INT token

with text 91 results in the value 91. Action 5 tells us to look up the ID

token’s text in the memory map to see whether it has a value.

http://media.pragprog.com/titles/tpantlr/code/tour/eval/Expr.g
http://media.pragprog.com/titles/tpantlr/code/tour/eval/Expr.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=69

USING SYNTAX TO DRIVE ACTION EXECUTION 70

If so, just return the integer value stored in the map, or else print an

error. Rule atom’s third alternative recursively invokes rule expr. There

is nothing to compute, so the result of this atom evaluation is just the

result of calling expr(); this satisfies action 6. As you can see, $value

is the result variable as defined in the returns clause; $expr.value is the

result computed by a call to expr. Moving on to multiplicative subex-

pressions, here is rule multExpr:

Download tour/eval/Expr.g

/** return the value of an atom or, if '*' present, return

* multiplication of results from both atom references.

* $value is the return value of this method, $e.value

* is the return value of the rule labeled with e.

*/

multExpr returns [int value]

: e=atom {$value = $e.value;} ('*' e=atom {$value *= $e.value;})*
;

Rule multExpr matches an atom optionally followed by a sequence of *

operators and atom operands. If there is no * operator following the first

atom, then the result of multExpr is just the atom’s result. For any multi-

plications that follow the first atom, all we have to do is keep updating

the multExpr result, $value, per action 7. Every time we see a * and an

atom, we multiply the multExpr result by the atom result.

The actions in rule expr, the outermost expression rule, mirror the

actions in multExpr except that we are adding and subtracting instead of

multiplying:

Download tour/eval/Expr.g

/** return value of multExpr or, if '+'|'-' present, return

* multiplication of results from both multExpr references.

*/

expr returns [int value]

: e=multExpr {$value = $e.value;}

('+' e=multExpr {$value += $e.value;}

| '-' e=multExpr {$value -= $e.value;}

)*
;

These actions satisfy the last actions, 8 and 9, from the itemized list

earlier in this section. One of the big lessons to learn here is that syntax

drives the evaluation of actions in the parser. The structure of an input

sequence indicates what kind of thing it is. Therefore, to execute actions

only for a particular construct, all we have to do is place actions in the

grammar alternative that matches that construct.

http://media.pragprog.com/titles/tpantlr/code/tour/eval/Expr.g
http://media.pragprog.com/titles/tpantlr/code/tour/eval/Expr.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=70

USING SYNTAX TO DRIVE ACTION EXECUTION 71

What does ANTLR do with grammar actions? ANTLR simply inserts

actions right after it generates code for the preceding element—parsers

must execute embedded actions after matching the preceding gram-

mar element. ANTLR spits them out verbatim except for the special

attribute and template reference translations (see Section 6.6, Refer-

ences to Attributes within Actions, on page 159 and Section 9.9, Refer-

ences to Template Expressions within Actions, on page 238).

ANTLR’s handling of actions is straightforward. For example, ANTLR

translates rule return specifications such as this:

multExpr returns [int value]

: ...

;

to the following Java code:

public int expr() throws RecognitionException {

int value = 0; // rule return value, $value

...

return value;

}

ANTLR translates labels on rule references, such as e=multExpr, to

method call assignments, such as e=multExpr(). References to rule return

values, such as $e.value, become e when there is only one return value

and e.value when there are multiple return values.

Take a look at the pseudocode for rule expr. The highlighted lines in the

output derive from embedded actions:

public int expr() {

int value = 0; // our return value, automatically initialized

int e = 0;

try {

e=multExpr();

value = e; // if no + or -, set value to result of multExpr

// Expr.g:27:9: ('+' e= multExpr | '-' e= multExpr)*
loop3:

while (true) {

int alt=3;

if («next input symbol is +») { alt=1; }

else if («next input symbol is -») { alt=2; }

switch (alt) {

case 1 :

match('+');

e=multExpr();

value += e; // add in result of multExpr

break;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=71

USING SYNTAX TO DRIVE ACTION EXECUTION 72

case 2 :

match('-');

e=multExpr();

value -= e; // subtract out result of multExpr

break;

default :

break loop3;

}

}

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

return value;

}

OK, we’re ready to test the grammar. We have added actions only to

the grammar, so the main() program in Test can stay the same. It still

just invokes the prog start rule. Note that if we change the grammar,

we have to recompile the generated files, such as ExprParser.java and

ExprLexer.java. Running expressions into the program now returns the

expected computations:

⇐ $ java Test

⇐ 3+4*5

⇐ EOF

⇒ 23
⇐ $ java Test

⇐ (3+4)*5
⇐ EOF

⇒ 35

$

Variable assignments will store expression results, and then we can

pull the results back later by referencing the variable, as shown in the

following input file:

Download tour/eval/input

a=3

b=4

2+a*b

Running those expressions into the test rig with IO redirection gives the

proper result:

$ java Test < input

14

$

http://media.pragprog.com/titles/tpantlr/code/tour/eval/input
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=72

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 73

Upon invalid input, ANTLR reports an error and attempts to recover.

Recovering from an error means resynchronizing the parser and pre-

tending that nothing happened. This means the parser should still exe-

cute actions after recovering from an error. For example, if you type

3++4, the parser fails at the second + because it can’t match it against

atom:

⇐ $ java Test

⇐ 3++4

⇐ EOF

⇒ line 1:2 no viable alternative at input '+'

7

$

The parser recovers by throwing out tokens until it sees a valid atom,

which is 4 in this case. It can also recover from missing symbols by pre-

tending to insert them. For example, if you leave off a right parenthesis,

the parser reports an error but then continues as if you had typed the

):

⇐ $ java Test

⇐ (3
⇐ EOF

⇒ line 1:2 mismatched input '\n' expecting ')'

3

$

This concludes your first complete ANTLR example. The program uses

a grammar to match expressions and uses embedded actions to evalu-

ate expressions. Now let’s look at a more sophisticated solution to the

same problem. The solution is more complicated but worth the trouble

because it demonstrates how to build a tree data structure and walk

it with another grammar. This multipass strategy is useful for compli-

cated translations because they are much easier to handle if you break

them down into multiple, simple pieces.

3.3 Evaluating Expressions Using an AST Intermediate Form

Now that you’ve seen how to build a grammar and add actions to imple-

ment a translation, this section will guide you through building the

same functionality but using an extra step involving trees. We’ll use

that same parser grammar to build an intermediate data structure,

replacing the embedded actions with tree construction rules. Once we

have that tree, we’ll use a tree parser to walk the tree and execute

embedded actions.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=73

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 74

ANTLR will generate a tree parser from a tree grammar automatically

for us. The parser grammar converts a token stream into a tree that the

tree grammar parses and evaluates.

Although the previous section’s approach was more straightforward, it

does not scale well to a full programming language. Adding constructs

such as function calls or while loops to the language means that the

interpreter must execute the same bits of code multiple times. Every

time the input program invoked a method, the interpreter would have

to reparse that method. That approach works but is not as flexible as

building an intermediate representation such as an abstract syntax

tree (AST) and then walking that data structure to interpret the expres-

sions and assignments. Repeatedly walking an intermediate-form tree

is much faster than reparsing an input program. See Section 1.1, The

Big Picture, on page 22 for more about ASTs.

An intermediate representation is usually a tree of some flavor and

records not only the input symbols but also the relationship between

those symbols as dictated by the grammatical structure. For example,

the following AST represents expression 3+4:

+

3 4

In many cases, you’ll see trees represented in text form. For example,

the text representation of 3+4 is (+ 3 4). The first symbol after the (is the

root and the subsequent symbols or its children. The AST for expression

3+4*5 has the text form (+ 3 (* 4 5)) and looks like this:

+

3 *

4 5

As you can see, the structure of the tree implicitly encodes the prece-

dence of the operators. Here, the multiplication must be done first

because the addition operation needs the multiplication result as its

right operand.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=74

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 75

Figure 3.2: Parse tree for 3+4

An AST is to be distinguished from a parse tree, which represents the

sequence of rule invocations used to match an input stream. Figure 3.2

shows the parse tree for 3+4 (created by ANTLRWorks).

The leaves of a parse tree are input symbols, and the nonleaves are rule

names (the very top node, <grammarExpr>, is something ANTLRWorks

adds to show you what grammar the parse tree comes from). The top

rule node, prog, indicates that 3+4 is a prog overall. More specifically,

it is a stat, which in turn is an expr followed by a newline, and so on.

So the parse tree records how the recognizer navigates the rules of the

grammar to match the input. Compare this to the much smaller and

simpler AST for 3+4 where all nodes in the AST are input symbol nodes.

The structure of the tree encodes the meaning that ’+’ is an operator

with two children. This is much easier to see without all of the “noise”

introduced by the grammar rule nodes.

In practice, it is also useful to decouple the grammar from the trees

that it yields; hence, ASTs are superior to parse trees. A tweak in a

grammar usually alters the structure of a parse tree while leaving an

AST unaffected, which can make a big difference to the code that walks

your trees.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=75

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 76

Once you have the tree, you can walk it in multiple ways in order

to evaluate the tree that the expression represents. In general, I rec-

ommend using a grammar to describe the tree structure just as you

use a parser grammar to describe a one-dimensional input language.

From the tree grammar, ANTLR can generate a tree walker using the

same top-down recursive-descent parsing strategy used for lexers and

parsers.

In the following sections, you’ll learn how to build ASTs, how to walk

them with a tree grammar, and how to embed actions within a tree

grammar to emit a translation. At the end, you’ll have a translator that

is functionally equivalent to the previous one.

Building ASTs with a Grammar

Building ASTs with ANTLR is straightforward. Just add AST construc-

tion rules to the parser grammar that indicate what tree shape you

want to build. This declarative approach is much smaller and faster to

read and write than the informal alternative of using arbitrary embed-

ded actions. When you use the output=AST option, each of the grammar

rules will implicitly return a node or subtree. The tree you get from

invoking the starting rule is the complete AST.

Let’s take the raw parser grammar without actions from Section 3.1,

Recognizing Language Syntax, on page 60 and augment it to build a

suitable AST. As you we along, we’ll discuss the appropriate AST struc-

ture. We begin by telling ANTLR to build a tree node for every token

matched on the input stream:

grammar Expr;

options {

output=AST;

// ANTLR can handle literally any tree node type.

// For convenience, specify the Java type

ASTLabelType=CommonTree; // type of $stat.tree ref etc...

}

...

For each token the recognizer matches, it will create a single AST node.

Given no instructions to the contrary, the generated recognizer will

build a flat tree (a linked list) of those nodes. To specify a tree structure,

simply indicate which tokens should be considered operators (subtree

roots) and which tokens should be excluded from the tree. Use the ∧

and ! token reference suffixes, respectively.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=76

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 77

Starting with the raw parser grammar without actions, modify the ex-

pression rules as follows:

Download tour/trees/Expr.g

expr: multExpr (('+'^|'-'^) multExpr)*
;

multExpr

: atom ('*'^ atom)*
;

atom: INT

| ID

| '('! expr ')'!

;

We only need to add AST operators to tokens +, -, (, and). The ! operator

suffix on the parentheses tells ANTLR to avoid building nodes for those

tokens. Parentheses alter the normal operator precedence by chang-

ing the order of rule method calls. The structure of the generated tree,

therefore, encodes the arithmetic operator precedence, so we don’t need

parentheses in the tree.

For the prog and stat rule, let’s use tree rewrite syntax (see Section 4.3,

Rewrite Rules, on page 103) because it is clearer. For each alternative,

add a -> AST construction rule as follows:

Download tour/trees/Expr.g

/** Match a series of stat rules and, for each one, print out

* the tree stat returns, $stat.tree. toStringTree() prints

* the tree out in form: (root child1 ... childN)

* ANTLR's default tree construction mechanism will build a list

* (flat tree) of the stat result trees. This tree will be the input

* to the tree parser.

*/

prog: (stat {System.out.println($stat.tree.toStringTree());})+ ;

stat: expr NEWLINE -> expr

| ID '=' expr NEWLINE -> ^('=' ID expr)

| NEWLINE ->

;

The grammar elements to the right of the -> operator are tree grammar

fragments that indicate the structure of the tree you want to build.

The first element within a ∧(...) tree specification is the root of the tree.

The remaining elements are children of that root. You can think of the

rewrite rules as grammar-to-grammar transformations. We’ll see in a

moment that those exact tree construction rules become alternatives in

http://media.pragprog.com/titles/tpantlr/code/tour/trees/Expr.g
http://media.pragprog.com/titles/tpantlr/code/tour/trees/Expr.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=77

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 78

the tree grammar. The prog rule just prints the trees and, further, does

not need any explicit tree construction. The default tree construction

behavior for prog builds what you want: a list of statement trees to

parse with the tree grammar.

The rewrite rule for the first alternative says that stat’s return value

is the tree returned from calling expr. The second alternative’s rewrite

says to build a tree with ’=’ at the root and ID as the first child. The tree

returned from calling expr is the second child. The empty rewrite for the

third alternative simply means don’t create a tree at all.

The lexical rules and the main program in Test do not need any changes.

Let’s see what the translator does with the previous file, input:

Download tour/trees/input

a=3

b=4

2+a*b

First ask ANTLR to translate Expr.g to Java code and compile as you did

for the previous solution:

$ java org.antlr.Tool Expr.g

ANTLR Parser Generator Version 3.0 1989-2007

$ javac Test.java ExprParser.java ExprLexer.java

$

Now, redirect file input into the test rig, and you will see three trees

printed, one for each input assignment or expression. The test rig prints

the tree returned from start rule prog in text form:

$ java Test < input

(= a 3)

(= b 4)

(+ 2 (* a b))

$

The complete AST built by the parser (and returned from prog) looks

like the following in memory:

=

a 3

=

b 4

a b

nil

+

2 *

http://media.pragprog.com/titles/tpantlr/code/tour/trees/input
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=78

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 79

The nil node represents a list of subtrees. The children of the nil node

track the elements in a list.

Now we have a parser that builds appropriate ASTs, and we need a way

to walk those trees to evaluate the expressions they represent. The next

section shows you how to build a tree grammar that describes the AST

structure and how to embed actions, like you did in Section 3.2, Using

Syntax to Drive Action Execution, on page 68.

Evaluating Expressions Encoded in ASTs

In this section, we’ll write a tree grammar to describe the structure

of the ASTs we built using a parser grammar in the previous section.

Then, we’ll add actions to compute subexpression results. Like the pre-

vious solution, each expression rule will return these partial results.

From this augmented grammar, ANTLR will build a tree parser that

executes your embedded actions.

Parsing a tree is a matter of walking it and verifying that it has not only

the proper nodes but also the proper two-dimensional structure. Since

it is harder to build parsers that directly recognize tree structures,

ANTLR uses a one-dimensional stream of tree nodes computed by iter-

ating over the nodes in a tree via a depth-first walk. ANTLR inserts

special imaginary UP and DOWN nodes to indicate when the original tree

dropped down to a child list or finished walking a child list. In this

manner, ANTLR reduces tree parsing to conventional one-dimensional

token stream parsing. For example, the following table summarizes how

ANTLR serializes two sample input trees.

AST Node Stream
+

3 4 + DOWN 3 4 UP

+

3 *

4 5 + DOWN 3 * DOWN 4 5 UP UP

The ANTLR notation for a tree grammar is identical to the notation for a

regular grammar except for the introduction of a two-dimensional tree

construct. The beauty of this is that we can make a tree grammar by

cutting and pasting from the parser grammar. We just have to remove

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=79

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 80

recognition grammar elements to the left of the -> operator, leaving the

AST rewrite fragments. These fragments build ASTs in the parser gram-

mar and recognize that structure in the tree grammar.

Let’s build your first tree grammar in a separate file, which we’ll call

Eval.g. Tree grammars begin very much like parser grammars with a

grammar header and some options:

tree grammar Eval; // yields Eval.java

options {

tokenVocab=Expr; // read token types from Expr.tokens file

ASTLabelType=CommonTree; // what is Java type of nodes?

}

...

The tokenVocab option indicates that the tree grammar should preload

the token names and associated token types defined in Expr.tokens.

(ANTLR generates that file after processing Expr.g.) When we say ID in

the tree grammar, we want the resulting recognizer to use the same

token type that the parser used. ID in the tree parser must match the

same token type it did in the parser.

Before writing the rules, define a memory hashtable to store variable

values, like we did for the parser grammar solution:

Download tour/trees/Eval.g

@header {

import java.util.HashMap;

}

@members {

/** Map variable name to Integer object holding value */

HashMap memory = new HashMap();

}

As you’ll learn in Section 7.1, Proper AST Structure, on page 163, ASTs

should be simplified and normalized versions of the token stream that

implicitly encode grammatical structure. Consequently, tree grammars

are usually much simpler than the associated parser grammars that

build their trees. In fact, in this case, all the expression rules from the

parser grammar collapse to a single expr rule in the tree grammar (see

Section 8.3, Building a Tree Grammar for the C- Language, on page 199

for more about the expression grammar design pattern). This parser

grammar normalizes expression trees to have an operator at the root

and its two operands as children. We need an expr rule that reflects

this structure:

http://media.pragprog.com/titles/tpantlr/code/tour/trees/Eval.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=80

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 81

Download tour/trees/Eval.g

expr returns [int value]

: ^('+' a=expr b=expr) {$value = a+b;}

| ^('-' a=expr b=expr) {$value = a-b;}

| ^('*' a=expr b=expr) {$value = a*b;}

| ID

{

Integer v = (Integer)memory.get($ID.text);

if (v!=null) $value = v.intValue();

else System.err.println("undefined variable "+$ID.text);

}

| INT {$value = Integer.parseInt($INT.text);}

;

Rule expr indicates that an expression tree is either a simple node cre-

ated from an ID or an INT token or that an expression tree is an operator

subtree. With the simplification of the grammar comes a simplification

of the associated actions. The expr rule normalizes all computations to

be of the form “result = a <operator> b.” The actions for ID and INT nodes

are identical to the actions we used in the parser grammar’s atom rule.

The actions for rules prog and stat are identical to the previous solu-

tion. Rule prog doesn’t have an action—it just matches a sequence of

expression or assignment trees. Rule stat does one of two things:

1. It matches an expression and prints the result.

2. It matches an assignment and maps the result to the indicated

variable.

Here is how to say that in ANTLR notation:

Download tour/trees/Eval.g

prog: stat+ ;

stat: expr

{System.out.println($expr.value);}

| ^('=' ID expr)

{memory.put($ID.text, new Integer($expr.value));}

;

Rule stat does not have a third alternative to match the NEWLINE (empty)

expression like the previous solution. The parser strips out empty ex-

pressions by not building trees for them.

What about lexical rules? It turns out you don’t need any because tree

grammars feed off a stream of tree nodes, not tokens.

http://media.pragprog.com/titles/tpantlr/code/tour/trees/Eval.g
http://media.pragprog.com/titles/tpantlr/code/tour/trees/Eval.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=81

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 82

At this point, we have a parser grammar that builds an AST and a

tree grammar that recognizes the tree structure, executing actions to

evaluate expressions. Before we can test the grammars, we have to

ask ANTLR to translate the Eval.g grammar to Java code. Execute the

following command line:

$ java org.antlr.Tool Eval.g

ANTLR Parser Generator Version 3.0 1989-2007

$

This results in the following two files:

Generated File Description

Eval.java The recursive-descent tree parser generated from the

grammar.

Eval.tokens The list of token-name, token-type assignments such

as INT=6. Nobody will be using this file in this case,

but ANTLR always generates a token vocabulary file.

We now need to modify the test rig so that it walks the tree built by the

parser. At this point, all it does is launch the parser, so we must add

code to extract the result tree from the parser, create a tree walker of

type Eval, and start walking the tree with rule prog. Here is the complete

test rig that does everything we need:

Download tour/trees/Test.java

import org.antlr.runtime.*;

import org.antlr.runtime.tree.*;

public class Test {

public static void main(String[] args) throws Exception {

// Create an input character stream from standard in

ANTLRInputStream input = new ANTLRInputStream(System.in);

// Create an ExprLexer that feeds from that stream

ExprLexer lexer = new ExprLexer(input);

// Create a stream of tokens fed by the lexer

CommonTokenStream tokens = new CommonTokenStream(lexer);

// Create a parser that feeds off the token stream

ExprParser parser = new ExprParser(tokens);

// Begin parsing at rule prog, get return value structure

ExprParser.prog_return r = parser.prog();

// WALK RESULTING TREE

CommonTree t = (CommonTree)r.getTree(); // get tree from parser

// Create a tree node stream from resulting tree

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

Eval walker = new Eval(nodes); // create a tree parser

walker.prog(); // launch at start rule prog

}

}

http://media.pragprog.com/titles/tpantlr/code/tour/trees/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=82

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 83

The test rig extracts the AST from the parser by getting it from the

return value object prog returns. This object is of type prog_return, which

ANTLR generates within ExprParser:

// from the parser that builds AST for the tree grammar

public static class prog_return extends ParserRuleReturnScope {

CommonTree tree;

public Object getTree() { return tree; }

};

In this case, rule prog does not have a user-defined return value, so the

constructed tree is the sole return value.

We have a complete expression evaluator now, so we can try it. Enter

some expressions via standard input:

⇐ $ java Test

⇐ 3+4
⇐ EOF

⇒ (+ 3 4)

7
⇐ $ java Test

⇐ 3*(4+5)*10

⇐ EOF

⇒ (* (* 3 (+ 4 5)) 10)

270

$

You can also redirect file input into the test rig:

$ java Test < input

(= a 3)

(= b 4)

(+ 2 (* a b))

14

$

The output of the test rig first shows the tree structure (in serialized

form) for each input statement. Serialized form (= a 3) represents the

tree built for a=3;. The tree has = at the root and two children: a and 3.

The rig then emits the expression value computed by the tree parser.

In this chapter, we built two equivalent expression evaluators. The first

implementation evaluated expressions directly in a parser grammar,

which works great for simpler translations and is the fastest way to

build a translator. The second implementation separated parsing and

evaluation into two phases. The first phase parsed as before but built

ASTs instead of evaluating expressions immediately. The second phase

walked the resulting trees to do the evaluation. You will need this sec-

ond approach when building complicated translators that are easier to

understand when broken into subproblems.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=83

EVALUATING EXPRESSIONS VIA AN AST INTERMEDIATE FORM 84

In fact, some language tasks, such as programming language inter-

preters, need to repeatedly walk the input by their very nature. Building

a simple and concise intermediate form is much faster than repeatedly

parsing the token stream.

At this point, you have an overall sense of how to work with ANTLR and

how to write simple grammars to recognize and translate input sen-

tences. But, you have a lot more to learn, as you will see in the next few

chapters. In particular, the first two chapters of Part II are important

because they explain more about ANTLR grammars, embedded actions,

and attributes. If you’d like to jump deeper into ANTLR before reading

more of this reference guide, please see the tree-based interpreter tuto-

rial on the wiki, which extends this expression evaluator to support

function definitions and function calls.3

3. See http://www.antlr.org/wiki/display/ANTLR3/Simple+tree-based+interpeter.

http://www.antlr.org/wiki/display/ANTLR3/Simple+tree-based+interpeter
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=84

Part II

ANTLR Reference

Chapter 4

ANTLR Grammars
ANTLR’s highest-level construct is a grammar, which is essentially a

list of rules describing the structure of a particular language. From

this list of rules, ANTLR generates a recursive-descent parser that rec-

ognizes sentences in that language (recursive-descent parsers are the

kind of parsers you write by hand). The language might be a program-

ming language or simply a data format, but ANTLR does not intuitively

know anything about the language described by the grammar. ANTLR is

merely building a recognizer that can answer this question: is an input

sequence a valid sentence according to the grammar? In other words,

does the input follow the rules of the language described by the gram-

mar? You must embed code within the grammar to extract information,

perform a translation, or interpret the incoming symbols in some other

way according to the intended application.

This chapter defines the syntax of ANTLR grammars and begins with

an introduction to the specification of languages with formal grammars.

This chapter covers the following:

• Overall ANTLR file structure

• Grammar lexical elements such as comments, rule names, token

names, and so on

• Individual rule syntax including parameters and return values

• Rule elements, actions, alternatives, and EBNF subrules

• Rewrite rule syntax

• Lexical and tree matching rules

• Dynamically scoped attribute syntax

• Grammar-level actions

DESCRIBING LANGUAGES WITH FORMAL GRAMMARS 87

You’ll need to learn the information in this chapter well because build-

ing grammar rules and embedding actions will be your core activities.

Readers familiar with v2 can scan through looking for margin notes.

These notes identify new, improved, and modified features for v3. The

wiki also has a good migration page.1 If you’re unfamiliar with ANTLR

altogether, you should do an initial quick scan of this chapter and the

next to familiarize yourself with the general pieces. Then try modifying

a few existing v3 grammar examples.2

4.1 Describing Languages with Formal Grammars

Before diving into the actual syntax of ANTLR, let’s discuss the general

idea of describing languages with grammars and define some common

terms. We’ll start by explicitly stating the behavior of a translator.

A translator is a program that reads some input and emits some out-

put. By input, we mean a sequence of vocabulary symbols, not ran-

dom characters. The vocabulary symbols are analogous to the words

in the English language. An input sequence is formally called a sen-

tence. Technically, each sentence represents a complete input sequence

implicitly followed by the end-of-file symbol. For example, a complete

Java class definition file is a sentence, as is a data file full of comma-

separated values. A language then is simply a well-defined set of sen-

tences. A translator is a program that maps each input sentence, s, in

its input language to a specific output sentence, t.3

Translating complete sentences such as Java class definitions in a

single step is generally impractical. Translators decompose sentences

into multiple subsequences, or phrases, that are easier to translate.

A phrase, x, exists somewhere in sentence s, s=“. . . x. . . ” (at the out-

ermost level, s=“x”). Translators further decompose phrases into sub-

phrases, subsubphrases, and so on. For example, the statements in a

Java method are phrases of the method, which is itself a phrase of the

overall class definition sentence. Breaking sentences down into phrases

and subphrases is analogous to breaking large methods into smaller,

more manageable methods.

1. See http://www.antlr.org/wiki/display/ANTLR3/Migrating+from+ANTLR+2+to+ANTLR+3.
2. See http://www.antlr.org/v3.
3. This translator definition covers compilers, interpreters, and in some sense almost

any program that generates output.

http://www.antlr.org/wiki/display/ANTLR3/Migrating+from+ANTLR+2+to+ANTLR+3
http://www.antlr.org/v3
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=87

DESCRIBING LANGUAGES WITH FORMAL GRAMMARS 88

To map each phrase x to some output phrase y, a translator computes

y as a function of x. The mapping function can be anything from a

simple lookup to an involved computation. A lookup might map input

symbol x=“int” to y=“integer” and a computation might map x=“i+1-1” to

y=“i”. In order to execute the correct mapping function, the translator

needs to identify x. Identifying x within a sentence means recognizing it

or distinguishing it from the other phrases within a linear sequence of

symbols.

To recognize phrase x, a translator needs to know what x looks like.

The best way to tell a computer what phrases and sentences look like

is to use a formal, text-based description called a grammar. Grammars

conform to a DSL that was specifically designed for describing other

languages. Such a DSL is called a metalanguage. English is just too

loose to describe other languages, and besides, computers can’t yet

grok English prose.

A grammar describe the syntax of a language. We say that a grammar

“generates a language” because we use grammars to describe what lan-

guages look like. In practice, however, the goal of formally describing a

language is to obtain a program that recognizes sentences in the lan-

guage. ANTLR converts grammars to such recognizers.

A grammar is a set of rules where each rule describes some phrase

(subsentence) of the language. The rule where parsing begins is called

the start rule (in ANTLR grammars, any and all rules can be the starting

rule). Each rule consists of one or more alternatives.

For example, a rule called variableDef might have two alternatives, one

for a simple definition and another for a definition with an initializa-

tion expression. Often the rules in a grammar correspond to abstract

language phrases such as statement and expression. There will also be

a number of finer-grained helper rules, such as multiplicativeExpression

and declarator. Rules reference other rules as well as tokens to match

the phrase and subphrase structure of the various sentences.

The most common grammar notation is called Backus-Naur Form (BNF).

ANTLR uses a grammar dialect derived from YACC [Joh79] where rules

begin with a lowercase letter and token types begin with an uppercase

letter.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=88

OVERALL ANTLR GRAMMAR FILE STRUCTURE 89

Here is a sample rule with two alternatives:

/** Match either a simple declaration followed by ';' or match

* a declaration followed by an initialization expression.

* Rules: variableDef, declaration, expr.

* Tokens: SEMICOLON, EQUALS

*/

variableDef

: declaration SEMICOLON

| declaration EQUALS expr SEMICOLON

;

BNF notation is cumbersome for specifying things like repeated ele-

ments because you must use recursion. ANTLR supports Extended BNF

(EBNF) notation that allows optional and repeated elements. EBNF also

supports parenthesized groups of grammar elements called subrules.

See Section 4.3, Extended BNF Subrules, on page 98 and, in particular,

Figure 4.3, on page 99.

EBNF grammars are called context-free grammars (CFGs). They are

called context-free because we can’t restrict rules to certain contexts.

For example, we can’t constrain an expression rule to situations where

the recognizer has matched or will match another rule. Such a grammar

is called context-sensitive grammar, but no one uses them in practice

because there is no efficient context-sensitive recognition algorithm.

Instead, we’ll use semantic and syntactic predicates to achieve the

same effect (see Chapter 13, Semantic Predicates, on page 317 and

Chapter 14, Syntactic Predicates, on page 331).

The remainder of this chapter describes ANTLR’s EBNF grammar syn-

tax using the concepts and terminology defined in this section.

4.2 Overall ANTLR Grammar File Structure

ANTLR generates recognizers that apply grammatical structure to a

stream of input symbols, which can be characters, tokens, or tree

nodes. ANTLR presents you with a single, consistent syntax for lex-

ing, parsing, and tree parsing. In fact, ANTLR generates the same kind

of recognizer for all three. Contrast this with having to use different

syntax for lexer and parser as you do with tools lex [Les75] and YACC

[Joh79].

This section describes ANTLR’s consistent grammar syntax for the four

kinds of ANTLR grammars (grammarType): lexer, parser, tree, and com-

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=89

OVERALL ANTLR GRAMMAR FILE STRUCTURE 90

bined lexer and parser (no modifier). All grammars have the same basic

structure:

/** This is a document comment */

grammarType grammar name;

«optionsSpec»

«tokensSpec»

«attributeScopes»

«actions»

/** doc comment */

rule1 : ... | ... | ... ;

rule2 : ... | ... | ... ;

...

The order of the grammar sections must be as shown, with the rules

appearing after all the other sections.

From a grammar T, ANTLR generates a recognizer with a name indicat-

ing its role. Using the Java language target, ANTLR generates TLexer.java,

TParser.java, and T.java for lexer, parser, and tree grammars, respectively.

For combined grammars, ANTLR generates both TLexer.java and

TParser.java as well as an intermediate temporary file, T__.g, containing

the lexer specification extracted from the combined grammar. ANTLR

always generates a vocabulary file in addition, called T.tokens, that other

grammars use to keep their token types in sync with T. A target is one of the

languages in which

ANTLR knows how to

generate code.
The following simple (combined) grammar illustrates some of the basic

features of ANTLR grammars:

Download grammars/simple/T.g

grammar T;

options {

language=Java;

}

@members {

String s;

}

r : ID '#' {s = $ID.text; System.out.println("found "+s);} ;

ID: 'a'..'z'+ ;

WS: (' '|'\n'|'\r')+ {skip();} ; // ignore whitespace

Grammar T matches an identifier followed by a pound symbol. The

action sets an instance variable and prints the text matched for the

identifier. There is another action, this one in the lexer. {skip();} tells the

lexer to skip the whitespace token and look for another.

http://media.pragprog.com/titles/tpantlr/code/grammars/simple/T.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=90

OVERALL ANTLR GRAMMAR FILE STRUCTURE 91

To have ANTLR translate grammar T to Java code (or any other target

according to the grammar’s language option in T.g), use the following

command line:

$ java org.antlr.Tool T.g

ANTLR Parser Generator Version 3.0 1989-2007

$

The following main program illustrates how to have grammar T parse

data from the standard input stream.

Download grammars/simple/Test.java

import org.antlr.runtime.*;

public class Test {

public static void main(String[] args) throws Exception {

ANTLRInputStream input = new ANTLRInputStream(System.in);

TLexer lexer = new TLexer(input);

CommonTokenStream tokens = new CommonTokenStream(lexer);

TParser parser = new TParser(tokens);

parser.r();

}

}

Support classes ANTLRInputStream and CommonTokenStream provide

streams of characters and tokens to the lexer and parser. Parsers begin

parsing when control programs, such as Test, invoke one of the methods

generated from grammar rules. The first rule invoked is usually called

the start symbol. By convention, the first rule is usually the start sym-

bol, though you can invoke any rule first. Here, parser.r() invokes rule r

as the start symbol.

To test some input against grammar T, launch Java class Test in the

usual way, and then type an identifier followed by space and then #

and then a newline. To close standard input, do not forget to type the

end-of-file character appropriate for your operating system, such as

Ctrl+D on Unix. Here is a sample session:

⇐ $ java Test

⇐ abc #

⇐ EOF

⇒ found abc

$

Grammar Lexicon

The lexicon of ANTLR is familiar to most programmers because it follows

the syntax of C and its derivatives with some extensions for grammati-

cal descriptions.

http://media.pragprog.com/titles/tpantlr/code/grammars/simple/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=91

OVERALL ANTLR GRAMMAR FILE STRUCTURE 92

Comments

There are single-line, multiline, and Javadoc-style comments:

/** This grammar is an example illustrating the three kinds

* of comments.

*/

grammar T;

/* a multi-line

comment

*/

/** This rule matches a declarator for my language */

decl : ID ; // match a variable name

Identifiers

Token names always start with a capital letter and so do lexer rules.

Nonlexer rule names always start with a lowercase letter. The initial

character can be followed by uppercase and lowercase letters, digits,

and underscores. Only ASCII characters are allowed in ANTLR names.

Here are some sample names:

ID, LPAREN, RIGHT_CURLY // token names/rules

expr, simpleDeclarator, d2, header_file // rule names

Literals

ANTLR does not distinguish between character and string literals as

most languages do. All literal strings one or more characters in length

are enclosed in single quotes such as ’;’, ’if’, ’>=’, and ’\” (refers to

the one-character string containing the single quote character). Literals

never contain regular expressions. This changed in v3. In

v2, char literals used

single quotes, and string

literals used double

quotes.

Literals can contain Unicode escape sequences of the form \uXXXX,

where XXXX is the hexadecimal Unicode character value. For exam-

ple, ’\u00E8’ is the French letter e with a grave accent: ’è’. ANTLR

also understands the usual special escape sequences: ’\n’ (newline),

’\r’ (carriage return), ’\b’ (backspace), and ’\f’ (form feed). ANTLR itself

does not currently allow non-ASCII input characters. If you need non-

ASCII characters within a literal, you must use the Unicode escape

sequences at the moment.

The recognizers that ANTLR generates, however, assume a character

vocabulary containing all Unicode characters.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=92

OVERALL ANTLR GRAMMAR FILE STRUCTURE 93

Actions

Actions are code blocks written in the target language. You can use

actions in a number of places within a grammar, but the syntax is

always the same: arbitrary text surrounded by curly braces. To get the

close curly character, escape it with a backslash: {System.out.println("\}");}.

The action text should conform to the target language as specified with

the language option.

The only interpretation ANTLR does inside actions relates to symbols

for grammar attribute and output template references. See Chapter 6,

Attributes and Actions, on page 130.

Templates

To emit structured text, such as source code, from a translator, use

StringTemplate templates (see Chapter 9, Generating Structured Text

with Templates and Grammars, on page 206). Set the output option

to template. Each parser or tree parser rule then implicitly returns

a template, which you can set with template rewrites. These rewrite

templates are most often references to template names defined in a

StringTemplate group elsewhere, but you can also specify in-line tem-

plate literals. Template literals are either single-line strings in double

quotes, "...", or multiline strings in double angle brackets, <<...>>, as

shown in the highlighted section in the following grammar: New in v3.

/** Insert implied "this." on front of method call */

methodCall

: ID '(' ')' -> template(m={$ID.text}) "this.<m>();"

;

methodBody

: '{' ACTION '}'

-> template(body={$ACTION.text})

<<

{

<body>

}

>>

;

We’ll explore the full syntax for template construction rules that follow

the -> operator in Chapter 9, Generating Structured Text with Templates

and Grammars, on page 206. For now, just be aware that templates are

enclosed in either double quotes or double angle brackets.

The next section describes how to define rules within a grammar.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=93

RULES 94

4.3 Rules

The rules of a grammar collectively define the set of valid sentences

in a language. An individual rule, then, describes a partial sentence

(sometimes called a phrase or substructure). Each rule has one or more

alternatives. The alternatives can, in turn, reference other rules just as

one function can call another function in a programming language. If a

rule directly or indirectly invokes itself, the rule is considered recursive.

The syntax for rules in lexers, parsers, and tree parsers is the same

except that tree grammar rules may use tree structure elements, as

we’ll see below. Because of ANTLR’s

unified recognition

strategy, lexer grammar

rules can also use

recursion. Recursive

rules in the lexer are

useful for matching

things such as nested

comments; contrast this

with most lexer

generators such as lex

that are limited to

nonrecursive regular

expressions rather than

full grammars.

Besides specifying syntactic phrase structure, ANTLR rules have a

number of components for specifying options, attributes, exception

handling, tree construction, and template construction. The general

structure of a rule looks like the following:

/** comment */

access-modifier rule-name[«arguments»] returns [«return-values»]

«throws-spec»

«options-spec»

«rule-attribute-scopes»

«rule-actions»

: «alternative-1» -> «rewrite-rule-1»

| «alternative-2» -> «rewrite-rule-2»

...

| «alternative-n» -> «rewrite-rule-n»

;

«exceptions-spec»

The simplest rules specify pure syntactic structure:

/** A decl is a type followed by ID followed by 0 or more

* ',' ID sequences.

*/

decl: type ID (',' ID)* ; // E.g., "int a", "int a,b"

type: 'int' // match either an int or float keyword

| 'float'

;

ID : 'a'..'z'+ ;

As an optimization, ANTLR collapses rules and subrules, whose alter-

natives are single token references without actions, into token sets, as

demonstrated in the following rule:

type: 'int' | 'float' | 'void' ;

ANTLR generates a bit set test or token type range check instead of a

switch statement.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=94

RULES 95

Elements within Alternatives

The elements within an alternative specify what to do at any moment

just like statements in a programming language. Elements either match

a construct on the input stream or execute an action. These actions

perform a translation or aid in the recognition process, such as updat-

ing or testing a symbol table. You can suffix elements with opera-

tors that alter the recognition of that element or specify what kind of

abstract syntax tree to create (see Chapter 7, Tree Construction, on

page 162). Figure 4.1, on the following page, summarizes the core ele-

ments and their variations.

Element Sets

Token and character elements can be combined into sets using subrule

notation, a range operator, or the “not” operator, as summarized in the

following table.

Syntax Description

’x ’..’y’ Lexer. Match any single character between range

x and y, inclusively.

(A | B | . . . | C) Parser or tree parser. Match any token from the

list of tokens within the subrule. These subrules

are collapsed to a set only when there are no

actions and each alternative is exactly one token

reference.

(’x ’..’y’ | ’a’ | . . . | ’b’) Lexer. Match any single character from the list

of characters and ranges within the subrule.

~x Any grammar. Match any single character or

token not in x where x can be a single element,

a range, or a subrule set.

Element Labels

Actions that need to refer to rule, token, or character references within

a grammar can do so by referencing labels attached to those elements.

To label an element, assign the element to a label name: x=T. For exam-

ple, the following rule defines labels on a string literal, a token refer-

ence, and a rule reference:

classDef

: c='class' name=ID '{' m=members '}'

;

Actions can reference these labels via $c, $name, and $m, where the first

two labels have type Token and the last label has type members_return.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=95

RULES 96

Syntax Description

T Parser or tree parser. Match token T at the current input

position. Tokens always begin with a capital letter.

T Lexer. Invoke lexer rule T.

T [«args»] Lexer. Invoke fragment lexer rule T, passing in a list of argu-

ments. It does not work for non-fragment rules.

’literal’ Any grammar. Match the string literal at the current input

position. A string literal is simply a token with a fixed string.

r Parser or tree parser. Match rule r at current input position,

which amounts to invoking the rule just like a function call.

r [«args»] Parser or tree parser. Match rule r at current input position,

passing in a list of arguments just like a function call. The

arguments inside the square brackets are in the syntax of

the target language and are usually a comma-separated list

of expressions.

. Any grammar. The wildcard. Match a single token in a

parser. Match any single character in a lexer. In a tree

parser, match an entire subtree. For example, the follow-

ing rule matches a function without parsing the body: func :
∧(FUNC ID args .) ;. The wildcard skips the entire last child (the

body subtree).

{«action»} Any grammar. Execute an action immediately after the pre-

ceding alternative element and immediately before the fol-

lowing alternative element. The action conforms to the syn-

tax of the target language. ANTLR ignores what is inside the

action except for attribute and template references such as

$x.y. Actions are not executed if the parser is backtracking;

instead, the parser rewinds the input after backtracking and

reparses in order to execute the actions once it knows which

alternatives will match.

{«p»}? Any grammar. Evaluate semantic predicate «p». Throw Failed-

PredicateException if «p» evaluates to false at parse time. Ex-

pression «p» conforms to the target language syntax. ANTLR

might also hoist semantic predicates into parsing decisions

to guide the parse. These predicates are invaluable when

symbol table information is needed to disambiguate syn-

tactically ambiguous alternatives. Cf. Chapter 13, Semantic

Predicates, on page 317 for more information.

Figure 4.1: ANTLR rule elements

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=96

RULES 97

ANTLR generates members_return while generating code for rule mem-

bers. See Chapter 6, Attributes and Actions, on page 130 for more infor-

mation about the predefined properties of token and rule labels.

When an action must refer to a collection of tokens matched by an alter-

native, ANTLR provides a convenient labeling mechanism that automat-

ically adds elements to a list in the order they are matched, for example,

x+=T.4 In the following example, all ID tokens are added to a single list

called ids. New in v3.

decl: type ids+=ID (',' ids+=ID)* ';'

;

In an action, the type of ids is List and will contain all Token objects

associated with ID tokens matched at the time of reference. ANTLR gen-

erates the following code for rule decl where the highlighted sections

result from the ids label:

public void decl() throws RecognitionException {

Token ids=null;

List list_ids=null;

try {

// match type

type();

// match ids+=ID

ids=(Token)input.LT(1);

match(input,ID,FOLLOW_ID_in_decl13);

if (list_ids==null) list_ids=new ArrayList();

list_ids.add(ids);

...

}

catch (RecognitionException re) {

«error-handling»

}

}

You can also collect rule AST or template return values using the +=

operator:

options {output=AST;} // or output=template

// collect ASTs from expr into a list called $e

elist: e+=expr (',' e+=expr)* ;

ANTLR will emit an error if you use a += label without the output option.

In an action, the type of e will be List and will contain either tree nodes

(for example, CommonTree) or StringTemplate instances.

4. This was suggested by John D. Mitchell, a longtime supporter of ANTLR and research

collaborator.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=97

RULES 98

Syntax Description

T ! Parser. Match token T, but do not include a tree node for it in

the tree created for this rule.

r! Parser. Invoke rule r, but do not include its subtree in the

tree created for the enclosing rule.

T∧ Parser. Match token T and create an AST node using the

parser’s tree adapter. Make the node the root of the enclosing

rule’s tree regardless of whether T is in a subrule or at the

outermost level.

r∧ Parser. Invoke rule r, and make its return AST node the root

of the enclosing rule’s tree regardless of whether r is in a

subrule or at the outermost level. Rule r should must a single

node, not a subtree.

Figure 4.2: Tree construction operators for rule elements

Tree Operators

If you are building trees, you can suffix token and rule reference ele-

ments in parsers with AST construction operators. These operators

indicate the kind of node to create in the tree and its position rela-

tive to other nodes. These operators are extremely convenient in some

kinds of rules such as expression specifications. But, in general, the

rewrite rules provide a more readable tree construction specification.

Figure 4.2 summarizes the tree operators and rewrite rules.

See Chapter 7, Tree Construction, on page 162 for more information

about tree construction using these operators.

Extended BNF Subrules

ANTLR supports EBNF grammars: BNF grammars augmented with rep-

etition and optional operators as well as parenthesized subrules to sup-

port terse grammatical descriptions. All parenthesized blocks of gram-

mar elements are considered subrules. Because single elements suf-

fixed with an EBNF operator have implied parentheses around them,

they too are subrules. Subrules are like anonymous embedded rules

and support an options section. The ANTLR EBNF syntax is summa-

rized in Figure 4.3, on the next page.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=98

RULES 99

(«x»|«y»|«z»)

Match any alternative within the subrule exactly once.

x?

Element x is optional.

(«x»|«y»|«z»)?

Match nothing or any alternative within subrule.

x*

Match element x zero or more times.

(«x»|«y»|«z»)*

Match an alternative within subrule zero or more times.

x+

Match element x one or more times.

(«x»|«y»|«z»)+

Match an alternative within subrule one or more times.

Figure 4.3: EBNF grammar subrules where «...» represents a grammar

fragment

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=99

RULES 100

Here is an example that matches an optional else clause for an if state-

ment:

stat: 'if' '(' expr ')' ('else' stat)? // optional else clause

| ...

;

In the lexer, you will commonly use subrules to match repeated char-

acter groups. For example, here are two common rules for identifiers

and integers:

/** Match identifiers that must start with '_' or a letter. The first

* characters are followed by zero or more letters, digits, or '_'.

*/

ID : ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')* ;

INT: '0'..'9'+ ;

Subrules allow all the rule-level options listed in Figure 4.4, on page 113,

and use this syntax:

(options {«option-assignments»} : «subrule-alternatives»)

The only addition is the handy greedy option. This option alters how

ANTLR resolves nondeterminisms between subrule alternatives and the

subrule exit branch. A nondeterminism is a situation in which the rec-

ognizer cannot decide which path to take because an input symbol pre-

dicts taking multiple paths (see Section 11.5, Ambiguities and Nonde-

terminisms, on page 273). Greedy decisions match as much input as

possible in the current subrule even if the element following the sub-

rule can match that same input. A nongreedy decision instead chooses

to exit the subrule as soon as it sees input consistent with what follows

the subrule. This option is useful only when ANTLR detects a nonde-

terminism; otherwise, ANTLR knows there is only one viable path. The

default is to be greedy in all recognizer types.

You’ll use nongreedy subrules in rules that can match any character

until it sees some character sequence. For example, the following is a

rule that matches multiline comments. The subrule matches any char-

acter until it finds the final ’*/’:

ML_COMMENT

: '/*' (options {greedy=false;} : .)* '*/'

;

Because the subrule can also match ’*/’, ANTLR considers the sub-

rule nondeterministic. By telling ANTLR to be nongreedy, the subrule

matches characters until it sees the end of the comment.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=100

RULES 101

What you really want to type, though, and what you will see in other

systems, is the terse notation: ’.*’ and ’.+’. Unfortunately, following the

usual convention that all subrules are greedy makes this notation use-

less. Such greedy subrules would match all characters until the end of

file. Instead, ANTLR considers them idioms for “Match any symbol until

you see what lies beyond the subrule.” ANTLR automatically makes

these two subrules nongreedy. So, you can use ’.*’ instead of manually

specifying the option.

Actions Embedded within Rules

To execute an action before anything else in the rule and to define local

variables, use an init action. Similarly, to execute something after any

alternative has been executed and right before the rule returns, use an

after action. For example, here is a rule that initializes a return value

to zero before matching an alternative. It then prints the return value

after matching one of the alternatives: New in v3.

The after action is new,

and the init action was

simply a code block in

v2.

r returns [int n]

@init {

$n=0; // init return value

}

@after {

System.out.println("returning value n="+$n);

}

: ... {$n=23;}

| ... {$n=9;}

| ... {$n=1;}

| // use initialized value of n

;

One of the most common uses for the init action is to initialize return

values. See Chapter 6, Attributes and Actions, on page 130 for more

information.

Rule Arguments and Return Values

Just like function calls, ANTLR parser and tree parser rules can have

arguments and return values. ANTLR lexer rules cannot have return

values, and only fragment lexer rules (see Section 4.3, Lexical Rules, on

page 107) can have parameters. Those rules that can define return val-

ues can return multiple values, whereas functions in most languages

can return only a single value. For example, consider the following rule

with two arguments and two return values: New in v3. In v2, you

could have only one

return value.r[int a, String b] returns [int c, String d]

: ... {$c=$a; $d=$b;}

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=101

RULES 102

To set the return value, use the relevant attribute on the left side of an

assignment such as $c=...;. See Chapter 6, Attributes and Actions, on

page 130 for more information about the use of attributes.

For rule r, ANTLR generates the following code where the highlighted

executable lines derive from rule r’s parameters and return values:

public static class r_return extends ParserRuleReturnScope {

public int c;

public String d;

};

public r_return r(int a, String b) throws RecognitionException {

r_return retval = new r_return();

retval.start = input.LT(1);

try {

...

retval.c=a; retval.d=b;

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

finally {

retval.stop = input.LT(-1);

}

return retval;

}

Rule references use syntax similar to function calls. The only differ-

ence is that, instead of parentheses, you use square brackets to pass

rule parameters. For example, the following rule invokes rule r with two

parameters and then, in an action, accesses the second return value,

$v.d:

s : ... v=r[3,"test"] {System.out.println($v.d);}

;

Dynamic Rule Attribute Scopes

Besides the predefined rule attributes, rules can define scopes of attri-

butes that are visible to all rules invoked by a rule. Here’s a sim-

ple example that makes attribute name available to any rule invoked

directly or indirectly by method: New in v3.

method

@scope {

String name;

}

: 'void' ID {$method::name = $ID.text;} '(' args ')' body

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=102

RULES 103

Down in a deeply nested expression rule, for example, you can directly

access the method’s name without having to pass the method name all

the way down to that rule from method:

atom: ID {System.out.println("ref "+$ID.text+" in "+$method::name);}

;

If for some reason you wanted your language to allow nested method

definitions, each method definition would automatically get its own

name variable. Upon entry to method, the recognizer pushes the old

name value onto a stack and makes space for a new name. Upon exit,

method pops off the current name value. See Section 6.5, Dynamic

Attribute Scopes for Interrule Communication, on page 148 for more

information.

Rewrite Rules

ANTLR parsers can generate ASTs or StringTemplate templates by spec-

ifying an output option (AST and template, respectively). In either case, all

rules have an implied return value that is set manually in an action

or, more commonly, in a rewrite rule (rewrite alternative would be more

accurate, but rewrite rule sounds better). Every alternative, whether it New in v3.

is in a subrule or the outermost rule level, can have a rewrite rule.

Regardless of location, the rewrite rule always sets the return object for

the entire rule. Symbol -> begins each rewrite rule. For example, the

following rule matches the unary minus operator followed by an identi-

fier. The rewrite rule makes a tree with the operator at the root and the

identifier as the first and only child.

unaryID : '-' ID -> ^('-' ID) ;

As a more complicated example, consider the following rule that speci-

fies how to match a class definition. It also provides a rewrite rule that

describes the shape of the desired AST with ’class’ at the root and the

other elements as children.

classDefinition

: 'class' ID ('extends' sup=typename)?

('implements' i+=typename (',' i+=typename)*)?

'{'

(variableDefinition

| methodDefinition

| ctorDefinition

)*
'}'

-> ^('class' ID ^('extends' $sup)? ^('implements' $i+)?

variableDefinition* ctorDefinition* methodDefinition*
)

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=103

RULES 104

Rewrite rules for AST construction are parser-grammar-to-tree-gram-

mar mappings. When generating templates, on the other hand, rewrite

rules specify the template to create and a set of argument assignments

that set the attributes of the template. The following expression rule

from a tree grammar illustrates how to create template instances:

expr: ^(CALL c=expr args=exprList) -> call(m={$c.st},args={$args.st})

| ^(INDEX a=expr i=expr) -> index(list={$a.st},e={$i.st})

| primary -> {$primary.st} // return ST computed in primary

;

The rewrite rule in the first alternative of rule expr instantiates the tem-

plate called call and sets that template’s two attributes: m and args. The

argument list represents the interface between ANTLR and StringTem-

plate. The assignments reference arbitrary actions in order to set the

attribute values. In this case, m is set to the template returned from

invoking rule expr. args is set to the template returned from invoking

exprList. The third alternative’s rewrite rule does not reference a tem-

plate by name. Instead, the specified action evaluates to a StringTem-

plate instance. In this case, it evaluates to the template returned from

invoking primary.

The template definitions for call and index are defined elsewhere in a

StringTemplate group, but you can specify in-line templates if neces-

sary. Here are some sample templates in StringTemplate group format:

call(m,args) ::= "<m>(<args>)"

index(list,e) ::= "<list>[e]"

See Chapter 7, Tree Construction, on page 162 and Chapter 9, Gener-

ating Structured Text with Templates and Grammars, on page 206 for

details about using rewrite rules.

Rule Exception Handling

When an error occurs within a rule, ANTLR catches the exception,

reports the error, attempts to recover (possibly by consuming more

tokens), and then returns from the rule. In other words, every rule is

wrapped in a try/catch block:

void rule() throws RecognitionException {

try {

«rule-body»

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=104

RULES 105

To replace that catch clause, specify an exception after the rule defini-

tion:

r : ...

;

catch[RecognitionException e] { throw e; }

This example shows how to avoid reporting an error and avoid recov-

ering. This rule rethrows the exception, which is useful when it makes

more sense for a higher-level rule to report the error.

You can specify other exceptions as well:

r : ...

;

catch[FailedPredicateException fpe] { ... }

catch[RecognitionException e] { ...; }

When you need to execute an action even if an exception occurs (and

even when the parser is backtracking), put it into the finally clause:

r : ...

;

// catch blocks go first

finally { System.out.println("exit rule r"); }

The finally clause is the last part a rule executes before returning. The

clause executes after any dynamic scopes close and after memoization

occurs; see Section 6.5, Dynamic Attribute Scopes for Interrule Commu-

nication, on page 148 and Section 14.5, Memoization, on page 343.

If you want to execute an action after the rule finishes matching the

alternatives but before it does its cleanup work, use an after action

(Section 6.2, Embedding Actions within Rules, on page 137).

ANTLR also knows how to do single-token insertion and deletion in

order to recover in the middle of an alternative without having to exit

the surrounding rule. This all happens automatically.

See Chapter 10, Error Reporting and Recovery, on page 241 for a com-

plete list of exceptions and for more general information about their

reporting and recovery.

Syntactic Predicates

A syntactic predicate indicates the syntactic context that must be satis-

fied if an alternative is to match. It amounts to specifying the lookahead

language for an alternative (see Section 2.7, Categorizing Recognizers,

on page 51 for more information about lookahead). In general, a parser

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=105

RULES 106

will need to backtrack over the elements within a syntactic predicate to

properly test the predicate against the input stream. Alternatives pred-

icated with syntactic predicates are attempted in the order specified.

The first alternative that matches wins. The syntax of a syntactic pred-

icate looks like an ordinary subrule, but with a suffix operator of =>.

Syntactic predicates must be on the extreme left edge of an alternative.

For example, consider rule stat whose two alternatives are ambiguous:

stat: (decl)=>decl ';'

| expr ';'

;

The syntactic predicate on the first alternative tells ANTLR that a suc-

cessful match of decl predicts that alternative. The parser attempts rule

decl. If it matches, the parser rewinds the input and begins parsing the

first alternative. If the predicate fails, the parser assumes that the sec-

ond alternative matches.

This example illustrates the resolution of the C++ ambiguity that state-

ments such as T(i); can be either declarations or expressions syntac-

tically. To resolve the issue, the language reference says to choose

declaration over expression if both are valid. Because ANTLR chooses

the first alternative whose predicate matches, the decl ’;’ alternative

matches input T(i);.

The last alternative in a series of predicated alternatives does not need

a predicate because it is assumed to be the default if nothing else before

it matches. Alternatives that are not mutually ambiguous, even in the

same block alternatives, do not need syntactic predicates. For example,

adding a few more alternatives to rule stat does not confuse ANTLR:

stat: (decl)=>decl ';'

| expr ';'

| 'return' expr ';'

| 'break' ';'

;

Even when the second ambiguous alternative is last, ANTLR still knows

to choose it if the first alternative fails:

stat: (decl)=>decl ';'

| 'return' expr ';'

| 'break' ';'

| expr ';'

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=106

RULES 107

As a convenience and to promote clean-looking grammars, ANTLR pro-

vides the backtrack option. This option tells ANTLR to automatically

insert syntactic predicates where necessary to disambiguate decisions

that are not LL(*) (cf. Section 2.7, Categorizing Recognizers, on page 51).

Here is an alternative, functionally equivalent version of rule stat:

stat

options {

backtrack=true;

}

: decl ';'

| 'return' expr ';'

| 'break' ';'

| expr ';'

;

See Chapter 14, Syntactic Predicates, on page 331 for more information

about how syntactic predicates guide the parse.

Lexical Rules

Lexer rules differ from parser and tree parser rules in a number of

important ways, though their syntax is almost identical. Most obvi-

ously, lexer rules are always token names and must begin with a capital

letter. For example, the following rule matches ASCII identifiers:

ID : ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')* ;

To distinguish methods generated from rules in the lexer from the token

type definitions, ANTLR prefixes methods with m. Rule ID’s method is

mID(), for example.

Unlike a parser grammar, there is no start symbol in a lexer grammar.

The grammar is simply a list of token definitions that the lexer can

match at any moment on the input stream. ANTLR generates a method

called nextToken() (that satisfies the TokenSource interface). nextToken()

amounts to a big switch statement that routes the lexer to one of the

lexer rules depending on which token is approaching.

Just as with parser grammars, it is useful to break up large rules into

smaller rules. This makes rules more readable and also reusable by

other rules. The next section describes how to factor rules into helper

rules.

Fragment Lexer Rules

Because ANTLR assumes that all lexer rules are valid tokens, you must

prefix factored “helper rules” with the fragment keyword. This keyword

tells ANTLR that you intend for this rule to be called only by other rules

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=107

RULES 108

and that it should not yield a token to the parser. The following rule

specifies the syntax of a Unicode character and uses a fragment rule to

match the actual hex digits: Changed in v3. v2 called

these helper

rules protected, a truly

horrible name.
UNICODE_CHAR

: '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT

;

fragment

HEX_DIGIT

: '0'..'9'|'a'..'f'|'A'..'F'

;

If UNICODE_CHAR were to be used only by another rule, such as STRING,

then it too would be a fragment rule.

It makes no sense to allow parameters and return values on token def-

inition rules because, in general, no one is invoking those rules explic-

itly. Method nextToken() is implicitly invoking those rules, and it would

not know what parameters to pass and could not use the return value.

fragment rules, on the other hand, are never implicitly invoked—other

lexer rules must explicitly invoke them. Consequently, fragment rules

can define parameters, though they can’t define return values because

lexer rules always return Token objects. For example, here is a rule

that matches (possibly nested) code blocks in curly braces and takes

a parameter dictating whether it should strip the curlies:

fragment

CODE[boolean stripCurlies]

: '{' (CODE[stripCurlies] | ~('{'|'}'))* '}'

{

if (stripCurlies) {

setText(getText().substring(1, getText().length()));

}

}

;

Another rule would invoke CODE via CODE[false] or CODE[true].

Also note that lexer rule CODE is recursive because it invokes itself.

This is the only way to properly match nested code blocks. You could

add embedded actions to count the number of open and close braces,

but that is inelegant. ANTLR generates recursive-descent recognizers

for lexers just as it does for parsers and tree parsers. Consequently,

ANTLR supports recursive lexer rules, unlike other tools such as lex.

Lexer rules can call other lexer rules, but that doesn’t change the token

type of the invoking rule. When lexer rule T calls another lexer rule or

fragment rule, the return type for T is still T, not the token type of the

other lexer rule.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=108

RULES 109

Ignoring Whitespace and Comments

One of the most difficult lexing issues to deal with is the paradox that

the parser must ignore whitespace and comments but at the same time

provide access to those tokens for use during translation. To solve this

problem, ANTLR allows each token object to exist on different chan-

nels, sort of like different radio frequencies. The parser can “tune” to

any single channel; hence, it ignores any off-channel tokens. Objects

implementing the TokenStream interface, such as CommonTokenStream,

provide access to these off-channel tokens for use by actions. The fol-

lowing token definition matches whitespace and specifies with an action

that the token should go on to the standard hidden channel (see class

Token for the definitions of DEFAULT_CHANNEL and HIDDEN_CHANNEL): Improved in v3.

WS : (' '|'\t'|'\r'|'\n')+ {$channel=HIDDEN;} ;

Character streams in the ANTLR runtime library automatically track

newlines so that you do not have to manually increment a line counter.

Further, the current character position within the current line is always

available via getCharPositionInLine() in Lexer. Character positions are

indexed from 0. Note that tab characters are not taken into considera-

tion—the character index tracks tabs as one character. Improved in v3.

For efficiency reasons, lexer rules can also indicate that the token

should be matched but no actual Token object should be created.

Method skip() in an embedded lexer rule action forces the lexer to throw

out the token and look for another. Most language applications can

ignore whitespace and comments, allowing you to take advantage of

this efficiency. Here is an example whitespace rule:

WS : (' '|'\t'|'\r'|'\n')+ {skip();} ;

Rather than throwing out tokens, sometimes you’d like to emit more

than a single token per lexer invocation.

Emitting More Than One Token per Lexer Rule

Lexer rules can force the lexer to emit more token per rule invocation

by manually invoking method emit(). This feature solves some fairly

difficult problems such as inserting imaginary tokens (tokens for which

there is no input counterpart). The best example is lexing Python. Be-

cause Python uses indentation to indicate code blocks, there are no

explicit begin and end tokens to group statements within a block. For

example, in the following Python code, the if statement and the method

call to g() are at the same outer level. The print statement and method

call to f() are the same inner, nested level.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=109

RULES 110

if foo:

print "foo is true"

f()

g()

Without begin and end tokens, parsing this input presents a problem

for the parser when it tries to group statements. The lexer needs to

emit imaginary INDENT and DEDENT tokens to indicate the begin and end

of code blocks. The token sequence must be as follows:

IF ID : NL INDENT PRINT STRINGLITERAL NL ID () NL DEDENT ID () NL

The parser rule for matching code blocks would look like this:

block : INDENT statement+ DEDENT ;

The lexer can emit the INDENT token when it sees whitespace that is

more deeply indented than the previous statement’s whitespace; how-

ever, there is no input character to trigger the DEDENT token. In fact, the

lexer must emit a DEDENT token when it sees less indentation than the

previous statement. The lexer might even have to emit multiple DEDENT

tokens depending on how far out the indentation has moved from the

previous statement. The INDENT rule in the lexer might look something

like this: New in v3. In v2, your

lexer could emit only one

token at a time.INDENT

: // turn on rule only if at left edge

{getCharPositionInLine()==0}?=>

(' '|'\t')+ // match whitespace

{

if («indentation-bigger-than-before») {

// can only indent one level at a time

emit(«INDENT-token»);

«track increased indentation»

}

else if («indentation-smaller-than-before») {

int d = «current-depth» - «previous-depth»;

// back out of d code blocks

for (int i=1; i<=d; i++) {

emit(«DEDENT-token»);

}

«reduce indentation»

}

}

;

After matching a lexer rule, if you have not emitted a token manually in

an action, nextToken() will emit a token for you. The token is based upon

the text and token type for the rule. Note that, for efficiency reasons, the

CommonTokenStream class does not support multiple token emissions

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=110

RULES 111

for the same invocation of nextToken(). Read the following from class

Lexer when you try to implement multiple token emission:

/** The goal of all lexer rules/methods is to create a token object.

* This is an instance variable as multiple rules may collaborate to

* create a single token. nextToken will return this object after

* matching lexer rule(s). If you subclass to allow multiple token

* emissions, then set this to the last token to be matched or

* something nonnull so that the auto token emit mechanism will not

* emit another token.

*/

protected Token token;

/** Currently does not support multiple emits per nextToken invocation

* for efficiency reasons. Subclass and override this method and

* nextToken (to push tokens into a list and pull from that list rather

* than a single variable as this implementation does).

*/

public void emit(Token token) {

this.token = token;

}

Tree Matching Rules

For translation problems that require multiple passes over the input

stream, you should create parsers that build ASTs. ASTs not only are a

terse representation of the input stream but also encode the grammat-

ical structure applied to that input string. Rather than building a tree

walker by hand or using a simple visitor pattern that has no contex-

tual information, use a tree grammar that specifies the two-dimensional

structure of the tree created by the parser. Again, ANTLR uses essen-

tially the same syntax with the addition of a new construct that speci-

fies the two-dimensional structure of a subtree: a root and one or more

children. The syntax uses parentheses with a caret symbol on the front

to distinguish it from an EBNF subrule: Changed in v3.

Using∧makes much

more sense than

the#symbol v2 used.
^(root child1 child2 ... childn)

For example, rule expr:

expr: ^('+' expr expr)

| ^('*' expr expr)

| INT

;

matches ASTs consisting of expression subtrees with ’+’ and ’*’ oper-

ators as interior nodes (subtree roots) and INT nodes as leaves. Here is

the tree for 3+4*5:

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=111

RULES 112

+

3 *

4 5

Trees have self-similar structures in that a small subtree and a big

subtree are identical in structure. In this case, they both have operators

at the root and two children as operands, which can also be subtrees.

That self-similar structure is reflected in the recursive nature of the

expr rule.

As a larger example, consider the following rules taken from a Java-like

language grammar:

expression

: ^(unary_op expression)

| ^(CALL expression expressionList)

| ^(INDEX expression expression)

| primary

;

unary_op

: UNARY_MINUS|UNARY_PLUS|UNARY_NOT|UNARY_BNOT

;

primary

: ID

| INT

| FLOAT

| 'null'

;

As you can see, tree grammars look like parser grammars with the

addition of a few tree expressions. If the input to a tree grammar were a

flat tree (a linked list), then the tree grammar would not have any tree

constructs and would look identical to a parser grammar. In that sense,

a tree grammar reduces to a parser grammar when the input looks like

a one-dimensional token stream.

Tree grammar rules can have parameters and return values just like

parser grammar rules, and actions can contain attribute references.

The difference is that references to $T for some token T yield pointers

to the tree node matched for that reference. Further, ANTLR v3 does

not allow tree grammars to create new trees. A future version will allow

this in order to support tree transformations.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=112

RULES 113

Option Description

backtrack When true, indicate that ANTLR should backtrack when

static LL(*) grammar analysis fails to yield a deterministic

decision for this rule or subrules within the rule. This is

usually used in conjunction with the memoize option. The

default is to use the grammar’s backtrack option. See Sec-

tion 5.3, backtrack Option, on page 121.

memoize Record partial parsing results to guarantee that, while

backtracking, the parser never parses a rule more than

once for a given input position. The default is to use

the grammar’s memoize option. See Section 5.4, memoize

Option, on page 122.

k Limit the decision generated for this rule, and any con-

tained subrules, to use a maximum, fixed-lookahead depth

of k. This turns off LL(*) analysis in favor of classical LL(k).

If the overall grammar has fixed lookahead, a rule can over-

ride this by setting k=*. The default is to use the grammar’s

k option. See Section 5.11, k Option, on page 129.

Figure 4.4: Summary of ANTLR rule-level options

See Section 5.5, tokenVocab Option, on page 122 for a sample test pro-

gram that invokes a tree parser.

Rule Options

Sometimes rules need options such as turning on memoization. The

syntax mirrors the options specification for grammars:

decl

options {

memoize=true;

}

: type ID (',' ID)*
;

The set of options available to rules are summarized in Figure 4.4.

The following sections return to the outer grammar level to discuss

tokens and scope specifications.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=113

TOKENS SPECIFICATION 114

4.4 Tokens Specification

Use the grammar tokens specification to introduce new tokens or to give

better names to token literals (see Section 2.6, Vocabulary Symbols Are

Structured Too, on page 44 for more about tokens). The tokens specifi-

cation has the following form:

tokens {

token-name1;

token-name2 = 'string-literal';

...

}

It allows you to introduce imaginary tokens, which are token names

that are not associated with any particular input character(s). Imagi-

nary tokens usually become subtree root nodes that act as operators

for a series of operands (children). For example, VARDEF is a convenient

root node for the declaration int i;. It would have the type (int) and vari-

able name (i) as children. Using ANTLR’s tree grammar notation, the

tree looks like this:

^(VARDEF int i)

and could be built with a parser grammar such as this:

grammar T;

tokens {

VARDEF;

}

var : type ID ';' -> ^(VARDEF type ID) ;

The tokens specification also allows you to provide an alias for a string

literal, which is useful when the alias is more descriptive than the lit-

eral. For example, token name MOD is more descriptive than the literal

’%’:

grammar T;

tokens {

MOD='%'; // alias MOD to '%'

}

expr : INT (MOD INT)* ;

4.5 Global Dynamic Attribute Scopes

Usually the only way to pass information from one rule to another is via

parameters and return values. Unfortunately, this can be particularly

inconvenient when rules are far away in the call chain. One of the best

examples is determining whether an identifier is defined in the current

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=114

GLOBAL DYNAMIC ATTRIBUTE SCOPES 115

scope. A rule deeply nested in the expression call chain such as atom

needs to access the current scope. The scope is probably updated in

multiple rules such as block, classDefinition, and methodDefinition. There

could be twenty rule invocations between classDefinition and atom. Pass-

ing the current scope down through all the twenty rules is a hassle and

makes the grammar harder to read.

In a manner similar to an instance variable, ANTLR allows you to define

global attribute scopes. These scopes are visible to actions in all rules.

The specification uses the following syntax: New in v3.

scope name {

type1 attribute-name1;

type2 attribute-name2;

...

}

So, for example, you might define a global scope to handle lists of sym-

bols:

scope SymbolScope {

List symbols;

}

Multiple rules would access that scope:

classDefinition

scope SymbolScope;

: ...

;

methodDefinition

scope SymbolScope;

: ...

;

block

scope SymbolScope;

: ...

;

The key difference between the symbols list in SymbolScope and an in-

stance variable is that the recognizer pushes a new list onto a stack of

scopes upon entry to each method that declares scope SymbolScope;. See

Chapter 6, Attributes and Actions, on page 130 for information about

the usage and purpose of global dynamic scopes.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=115

GRAMMAR ACTIONS 116

4.6 Grammar Actions

ANTLR generates a method for each rule in a grammar. The methods

are wrapped in a class definition for object-oriented target languages.

ANTLR provides named actions so you can insert fields and instance

methods into the generated class definition (or global variables in the

case of languages such as C). The syntax is as follows: Improved in v3. The new

name and scope based

scheme is much clearer

and more flexible than

the global action

mechanism in v2.

@action-name { ... }

@action-scope-name::action-name { ... }

The following example defines a field and method for the Java target

using the members action:

grammar T;

options {language=Java;}

@members {

int n;

public void foo() {...}

}

a : ID {n=34; foo();} ;

To place the generated code in a particular Java package, use action

header:

grammar T;

options {language=Java;}

@header {

package org.antlr.test;

}

When building a combined grammar, containing lexer and parser, you

need a way to set the members or header for both. To do this, prefix the

action with the action scope, which is one of the following: lexer, parser,

or treeparser. For example, @header {...} is shorthand for @parser::header

{...} if it is in a parser or combined parser. Here is how to add members

to the lexer from a combined grammar and also set the package for

both:

grammar T;

@header {import org.antlr.test;} // not auto-copied to lexer

@lexer::header{import org.antlr.test;}

@lexer::members{int aLexerField;}

See Section 6.2, Grammar Actions, on page 134 for more details. This

chapter described the general structure of an ANTLR grammar as well

as the details of the various grammar-level specifications. It also pro-

vided details on the structure of a rule, the rule elements, and the rule

operators. The next chapter describes the grammar-level options that

alter the way ANTLR generates code.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=116

Chapter 5

ANTLR Grammar-Level Options
In the options section of an ANTLR grammar, you can specify a series of

key/value assignments that alter the way ANTLR generates code. These

options globally affect all the elements contained within the grammar,

unless you override them in a rule. This chapter describes all the avail-

able options.

The options section must come after the grammar header and must have

the following form:

options {

name1 = value1;

name2 = value2;

...

}

Option names are always identifiers, but values can be identifiers,

single-quoted string literals, integers, and the special literal star, * (cur-

rently usable only with option k). Values are all literals and, conse-

quently, can’t refer to option names. For single-word string literals such

as ’Java’, you can use the shorthand Java, as shown here:

options {

language=Java;

}

The list following this paragraph summarizes ANTLR grammar-level

options. The subsections that follow describe them all in more detail;

they’re ordered from most commonly used to least commonly used.

language

Specify the target language in which ANTLR should generate rec-

ognizers. ANTLR uses the CLASSPATH to find directory org/antlr/

codegen/templates/Java, in this case, used to generate Java. The

default is Java. See Section 5.1, language Option, on page 119.

CHAPTER 5. ANTLR GRAMMAR-LEVEL OPTIONS 118

output

Generate output templates, template, or trees, AST. This is avail-

able only for combined, parser, and tree grammars. Tree grammars

cannot currently output trees, only templates. The default is to

generate nothing. See Section 5.2, output Option, on page 120.

backtrack

When true, indicates that ANTLR should backtrack when static

LL(*) grammar analysis fails to yield a deterministic decision. This

is usually used in conjunction with the memoize option. The de-

fault is false. See Section 5.3, backtrack Option, on page 121.

memoize

Record partial parsing results to guarantee that while backtrack-

ing the parser never parses the same input with the same rule

more than once. This guarantees linear parsing speed at the cost

of nonlinear memory. The default is false. See Section 5.4, memoize

Option, on page 122.

tokenVocab

Specify where ANTLR should get a set of predefined tokens and

token types. This is needed to have one grammar use the token

types of another. Typically a tree grammar will use the token types

of the parser grammar that creates its trees. The default is to not

import any token vocabulary. See Section 5.5, tokenVocab Option,

on page 122.

rewrite

When the output of your translator looks very much like the input,

the easiest solution involves modifying the input buffer in-place.

Re-creating the entire input with actions just to change a small

piece is too much work. rewrite works in conjunction with out-

put=template. Template construction actions usually just set the

return template for the surrounding rule (see Section 9.4, The

ANTLR StringTemplate Interface, on page 214). When you use

rewrite=true, the recognizer also replaces the input matched by

the rule with the template. See Section 5.6, rewrite Option, on

page 124. The default is false.

superClass

Specify the superclass of the generated recognizer. This is not

the supergrammar—it affects only code generation. The default

is Lexer, Parser, or TreeParser depending on the grammar type. See

Section 5.7, superClass Option, on page 125.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=118

LANGUAGE OPTION 119

filter

Lexer only. All lexer rules are tried in order specified, looking for

a match. Upon finding a matching rule, nextToken() returns that

rule’s Token object. If no rule matches, the lexer consumes a single

character and again looks for a matching rule. The default is not

to filter, false. See Section 5.8, filter Option, on page 126.

ASTLabelType

Set the target language type for all tree labels and tree-valued

expressions. The default is Object. See Section 5.9, ASTLabelType

Option, on page 127.

TokenLabelType

Set the target language type for all token labels and token-valued

expressions. The default is interface Token. Cf. Section 5.10, Token-

LabelType Option, on page 128.

k

Limit the recognizer generated from this grammar to use a maxi-

mum, fixed-lookahead depth of k. This turns off LL(*) analysis in

favor of classical LL(k). The default is * to engage LL(*). See Sec-

tion 5.11, k Option, on page 129.

5.1 language Option

The language option specifies the target language in which you want

ANTLR to generate code. By default, language is Java. You must write

your embedded grammar actions in the language you specify with the

language option. For example:

grammar T;

options {language=Java;}

a : ... {«action-in-Java-language»} ... ;

Because of ANTLR’s unique StringTemplate-based code generator, new

targets are relatively easy to build; hence, you can choose from numer-

ous languages such as Java, C, C++, C#, Objective-C, Python, and

Ruby.1

The language option value informs ANTLR that it should look for all

code generation templates in a directory with the same name such as

org/antlr/codegen/templates/Java or org/antlr/codegen/templates/C.

1. See http://www.antlr.org/wiki/display/ANTLR3/Code+Generation+Targets for the latest infor-

mation about ANTLR language targets.

http://www.antlr.org/wiki/display/ANTLR3/Code+Generation+Targets
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=119

OUTPUT OPTION 120

Inside this directory, you will find a set of StringTemplate group files

that tell ANTLR how to generate code for that language. For example,

file Java.stg contains all the templates needed to generate recognizers

in Java. To make a variation on an existing target, copy the directory

to a new directory, and tweak the template files within. If you move

files to directory TerenceJava, then say language=TerenceJava in your

grammar to use the altered templates. All target directories must have

a prefix of org/antlr/codegen/templates and be visible via the CLASSPATH

environment variable.

5.2 output Option

The output option controls the kind of data structure that your recog-

nizer will generate. Currently the only possibilities are to build abstract

syntax trees, AST, and StringTemplate templates, template. When this

option is used, every rule yields an AST or template.

Using output=AST allows you to use tree construction operators and

rewrite rules described in Chapter 7, Tree Construction, on page 162.

For example, the following simple grammar builds a tree with an imag-

inary root node, DECL, and a child node created from input token ID:

grammar T;

options {

output=AST;

}

decl : ID -> ^(DECL ID) ;

ID : 'a'..'z'+ ;

Rules without defined return values generally have void return types

unless the output option is used. For example, here is a piece of the

generated code for this grammar:

public static class decl_return extends ParserRuleReturnScope {

Object tree;

public Object getTree() { return tree; }

};

public decl_return decl() throws RecognitionException {...}

When using output=template, rule definitions yield templates instead of

trees:

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=120

BACKTRACK OPTION 121

public static class decl_return extends ParserRuleReturnScope {

public StringTemplate st;

/** To avoid unnecessary dependence on StringTemplate library,

* superclass uses Object not StringTemplate as return type.

*/

public Object getTemplate() { return st; }

};

public decl_return decl() throws RecognitionException {...}

For more about generating templates, see Chapter 9, Generating Struc-

tured Text with Templates and Grammars, on page 206.

This option is available only for combined, parser, or tree grammars.

5.3 backtrack Option

The backtrack option informs ANTLR that, should LL(*) analysis fail, it

should try the alternatives within the decision in the order specified at

parse time, choosing the first alternative that matches. Once the parser

chooses an alternative, it rewinds the input and matches the alternative

a second time, this time “with feeling” to execute any actions within that

alternative. Actions are not executed during the “guessing” phase of

backtracking because there is no general way to undo arbitrary actions

written in the target language. New in v3.

No nondeterminism warnings are reported by ANTLR during gram-

mar analysis time because, by definition, there is no uncertainty in

backtracking mode—ANTLR simply chooses the first alternative that

matches at parse time. You can look upon this option as a rapid pro-

totyping feature because ANTLR accepts just about any grammar you

give it. Later you can optimize your grammar so that it more closely

conforms to the needs of LL(*).

The nice aspect of using backtrack=true is that the generated recognizer

will backtrack only in decisions that are not LL(*). Even within decisions

that are not completely LL(*), a recognizer will backtrack only on those

input sequences that render the decision non-LL(*). ANTLR implements

this option by implicitly adding a syntactic predicate to the front of

every alternative that does not have a user-specified predicate there

already (see Chapter 14, Syntactic Predicates, on page 331 for more

information). The grammar analysis converts syntactic predicates to

semantic predicates.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=121

MEMOIZE OPTION 122

The analysis uses semantic predicates only when syntax alone is insuf-

ficient to distinguish between alternatives. Therefore, the generated

code uses backtracking (syntactic predicates) only when LL(*) fails.

You should use backtracking sparingly because it can turn the usual

linear parsing complexity into an exponential algorithm. It can mean

the difference between having a parser that terminates in your lifetime

and one that does not. To use the strength of backtracking but with the

speed of a linear parser at the cost of some memory utilization, use the

memoize option discussed in the next section.

5.4 memoize Option

Backtracking is expensive because of repeated rule evaluations for the

same input position. By recording the result of such evaluations, the

recognizer can avoid recomputing them in the future. This recording

process is a form of dynamic programming called memoization (see Sec-

tion 14.5, Memoization, on page 343). When the memoize option is true,

ANTLR generates code at the beginning of each parsing method to check

for prior attempts: New in v3.

if (backtracking>0 && alreadyParsedRule(input, rule-number)) {return;}

and inserts code at the end of the rule’s method to memoize whether

this rule completed successfully for the current input position:

if (backtracking>0) {

memoize(input, rule-number, rule-starting-input-position);

}

Using the memoize option at the grammar level turns on memoization

for each rule in the grammar. This results in considerable parsing over-

head to store partial results even when backtracking never invokes the

same rule at the same input position. It is often more efficient to turn

on the memoize option at the rule level rather than globally at the gram-

mar level. Options specified at the rule level override the same options

given at the grammar level. See Chapter 14, Syntactic Predicates, on

page 331 for more information.

5.5 tokenVocab Option

For large language projects, the parser typically creates an intermedi-

ate representation such as an abstract syntax tree (AST). This AST is

walked one or more times to perform analysis and ultimately generate

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=122

TOKENVOCAB OPTION 123

code. I highly recommend you use a tree grammar to walk ASTs over

a simple depth-first tree walk or visitor pattern (see Section 4.3, Tree

Matching Rules, on page 111). Because a tree grammar must live in a

different file than the parser that feeds it ASTs, there must be a way to

synchronize the token types. Referring to ID in the tree grammar must

have the same meaning as it does in the parser and lexer.

A grammar can import the vocabulary of another grammar using the

tokenVocab option. The value associated with this option is the name of

another grammar, not the name of a file. Consider the following simple

grammar:

Download grammars/vocab/P.g

grammar P;

options {

output=AST;

}

expr: INT ('+'^ INT)* ;

INT : '0'..'9'+;

WS : ' ' | '\r' | '\n' ;

From grammar P, ANTLR generates the recognizer files and a .tokens file

that contains a list of token name and token type pairs for all tokens

and string literals used in grammar P. There are two tokens in this case:

Download grammars/vocab/P.tokens

INT=4

WS=5

'+'=6

To walk the trees generated by P, a tree grammar must import the token

vocabulary using tokenVocab=P, as shown in the following simple tree

grammar:

Download grammars/vocab/Dump.g

tree grammar Dump;

options {

tokenVocab=P;

ASTLabelType=CommonTree;

}

expr: ^('+' expr {System.out.print('+');} expr)

| INT {System.out.print($INT.text);}

;

ANTLR looks for .tokens files in the library directory specified by the -lib

command-line option to ANTLR, which defaults to the current directory.

http://media.pragprog.com/titles/tpantlr/code/grammars/vocab/P.g
http://media.pragprog.com/titles/tpantlr/code/grammars/vocab/P.tokens
http://media.pragprog.com/titles/tpantlr/code/grammars/vocab/Dump.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=123

REWRITE OPTION 124

For example, to generate code for the tree grammar, use the following

(with or without the -lib option):

java org.antlr.Tool -lib . Dump.g

For completeness, here is a test program that prints the tree generated

by the parser and then invokes the tree parser to dump the expression

back out to text:

Download grammars/vocab/Test.java

// Create an input character stream from standard input

ANTLRInputStream input = new ANTLRInputStream(System.in);

PLexer lexer = new PLexer(input); // create lexer

// Create a buffer of tokens between the lexer and parser

CommonTokenStream tokens = new CommonTokenStream(lexer);

PParser parser = new PParser(tokens); // create parser

PParser.expr_return r = null;

r = parser.expr(); // parse rule expr and get return structure

CommonTree t = (CommonTree)r.getTree();// extract AST

System.out.println(t.toStringTree()); // print out

// Create a stream of nodes from a tree

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

Dump dumper = new Dump(nodes); // create tree parser

dumper.expr(); // parse expr

System.out.println();

Here is a sample session:

⇐ $ java Test

⇐ 3+4+5

⇐ EOF

⇒ (+ (+ 3 4) 5)

3+4+5

$

5.6 rewrite Option

For many translations, the output looks very different from the input.

The translator generates and then buffers up bits of translated input

that it subsequently organizes into larger and larger chunks. This leads

to the final chunk representing the complete output. In other cases,

however, the output looks very much like the input. The easiest ap-

proach is to have the translator just tweak the input. For example,

you might want to instrument source code for debugging, as shown in

Section 9.7, Rewriting the Token Buffer In-Place, on page 228. What you

want to do is rewrite a few pieces of the input buffer during translation

and then print the modified buffer.

http://media.pragprog.com/titles/tpantlr/code/grammars/vocab/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=124

SUPERCLASS OPTION 125

To get this functionality, set option rewrite to true. Recognizers in this

mode automatically copy the input to the output except where you

specify translations using template rewrite rules. This option works

only with output=template and in parsers or tree parsers. The follow-

ing grammar (minus the lexical rules) translates int tokens to Integer,

leaving the rest of the input alone:

Download grammars/rewrite/T.g

grammar T;

options {output=template; rewrite=true;}

decl: type ID ';' ; // no translation here

type: 'int' -> template() "Integer" // translate int to Integer

| ID // leave this alone

;

Input int i; becomes Integer i;, but String i; stays the same. Without using

rewrite mode, rule decl returns nothing because rules return noth-

ing by default. Rewrite mode, on the other hand, is altering the token

buffer—the main program can print the altered buffer. Here is the core

of a test rig:

Download grammars/rewrite/Test.java

ANTLRInputStream input = new ANTLRInputStream(System.in);

TLexer lexer = new TLexer(input);

// use TokenRewriteStream not CommonTokenStream!!

TokenRewriteStream tokens = new TokenRewriteStream(lexer);

TParser parser = new TParser(tokens);

parser.decl();

System.out.print(tokens.toString()); // emit rewritten source

Note that this mode works only with TokenRewriteStream, not CommonTo-

kenStream.

5.7 superClass Option

Sometimes it is useful to have your recognizers derive from a class

other than the standard ANTLR runtime superclasses. You might, for

example, define a class that overrides some of the standard methods to

alter the behavior of your recognizers.

The superClass option specifies the class name that ANTLR should use

as the superclass of the generated recognizer. The superclass is usually

Lexer, Parser, or TreeParser but is DebugParser or DebugTreeParser if you use

http://media.pragprog.com/titles/tpantlr/code/grammars/rewrite/T.g
http://media.pragprog.com/titles/tpantlr/code/grammars/rewrite/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=125

FILTER OPTION 126

the -debug command-line option. Whatever superclass you use instead

must derive from the appropriate class mentioned here in order for

the recognizer to compile and work properly. Here is a sample partial

grammar that defines a superclass:

grammar T;

options {

superClass=MyBaseParser;

}

ANTLR generates TParser as follows:

public class TParser extends MyBaseParser {...}

Naturally this option makes sense only for targets that are object-

oriented programming languages. Note that the superclass is not a

supergrammar—it is any Java class name.

5.8 filter Option

In general, programmers use ANTLR to specify the entire grammati-

cal structure of an input file they want to process, but this is often

overkill. Even for complicated files, sometimes it is possible to extract a

few items of interest without having to describe the entire grammatical

structure (as long as these items are lexically easy to identify). Some

people call this fuzzy parsing because the recognizer does not match

the exact structure of the input according to the full language syntax—

the recognizer matches only those constructs of interest.2

The idea is to provide a series of lexical rules as with a normal grammar

but have the lexer ignore any text that does not match one of the rules.

You can look at filter=true mode as a normal lexer that has an implicit

rule to catch and discard characters that do not match one of the other

rules. nextToken() keeps scanning until it finds a matching lexical rule The krugle.com code

search engine uses

ANTLR v3’s filter option

to extract variable,

method, and class

definitions from, for

example, Java and

Python code spidered

from the Internet.

at which point it returns a Token object. If more than one rule matches

the input starting from the current input position, the lexer resolves

the issue by accepting the rule specified first in the grammar file; in

other words, specify rules in the order of priority.

2. See http://www.antlr.org/download/examples-v3.tar.gz for a full fuzzy Java parser that

extracts class, method, and variable definitions as well as method call sites.

http://www.antlr.org/download/examples-v3.tar.gz
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=126

ASTLABELTYPE OPTION 127

The following lexer grammar illustrates how to extract Java method

calls:

lexer grammar FuzzyJava;

options {filter=true;}

CALL

: name=QID WS? '('

{System.out.println("found call "+$name.text);}

;

SL_COMMENT

: '//' .* '\n'

;

WS : (' '|'\t'|'\r'|'\n')+

;

fragment

QID : ID ('.' ID)*
;

fragment

ID : ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*
;

The SL_COMMENT rule is necessary because the program should not

track method calls within comments. The multiline comments and

strings would also be checked to do this for real.

Lexical rules can use skip() to force nextToken() to throw out the current

token and look for another. The lexer returns the first nonskipped token

to the parser.

Lexical filter mode is generally not used with a parser because the lexer

yields an incomplete stream of tokens.

5.9 ASTLabelType Option

ANTLR makes no assumption about the actual type of tree nodes built

during tree AST construction—by default, all node variables pointers

are of type Object. ANTLR relies on the TreeAdaptor interface to know

how to create nodes and hook them together to form trees (the Com-

monTreeAdaptor is a predefined implementation). Although this makes

ANTLR very flexible, it can make embedded grammar actions inconve-

nient because of constant typecasting.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=127

TOKENLABELTYPE OPTION 128

For example, in the following grammar, the type of expression $ID.tree

is Object by default:

grammar T;

options {output=AST;}

/** we are creating CommonTree nodes, but ANTLR can't be sure;

* it assumes Object.

*/

e : ID {CommonTree t = (CommonTree)$ID.tree;} ;

ID: 'a'..'z'+ ;

The generated code for matching the ID token and building the AST will

look something like this:

ID1=(Token)input.LT(1);

match(input,ID,FOLLOW_ID_in_e17);

ID1_tree = (Object)adaptor.create(ID1);

where ID1_tree is defined as follows:

Object ID1_tree=null;

The embedded action is translated to this:

CommonTree t = (CommonTree)ID1_tree;

To avoid having to use typecasts everywhere in your grammar actions,

specify the type of your tree nodes via the ASTLabelType option. For

example, if you are building CommonTree nodes with the

CommonTreeAdaptor class, use option ASTLabelType=CommonTree. ANTLR

will define variables such as ID1_tree to be of type CommonTree. And then

actions can refer to tree nodes with the proper type:

e : ID {CommonTree t = $ID.tree;} ;

5.10 TokenLabelType Option

By default, ANTLR generates lexers that create CommonToken objects. If

you have overridden Lexer method emit() to create special tokens, then

you will want to avoid lots of typecasts in your embedded actions by

using the TokenLabelType option. Here is a simple example:

grammar T;

options {TokenLabelType=MyToken;}

e : ID {$ID.methodFromMyToken();} ;

ID: 'a'..'z'+ ;

In this case, $ID will evaluate to type MyToken.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=128

K OPTION 129

5.11 k Option

Use the k option to limit ANTLR’s grammar analysis to classical LL(k)

parsing. This option is mostly useful for optimizing the speed of your

parser by limiting the amount of lookahead available to the parser. In

general, however, using this option will force alterations in the gram-

mar to avoid nondeterminism warnings, which can lead to unnatural

grammars.

The argument to the k option is either a star or an integer representing

the desired fixed-lookahead depth. By default, ANTLR assumes this:

grammar T;

options {

k=*;

}

...

This chapter described the various grammar-level options that alter

how ANTLR perceives input grammars and how it generates code. The

next chapter looks at grammar actions and where ANTLR inserts them

in the generated code. Further, it describes how actions can access

information about the rule elements matched on the input stream.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=129

Chapter 6

Attributes and Actions
In the previous two chapters, we examined the general structure of

ANTLR grammar files and how to properly build rules, but a grammar

by itself is not particularly useful. The resulting recognizer can answer

only yes or no as to whether an input sentence conforms to the lan-

guage specified by the grammar. To build something useful such as an

interpreter or translator, you must augment grammars with actions.

Grammar actions perform computations on the input symbols or emit

new output symbols.

This chapter describes the syntax of actions, the significance of their

locations, and the manner in which they can access data elements

derived from the recognition process. In addition, this chapter defines

dynamic scopes that allow distant rules to read and write mutually

accessible variables. Dynamic scopes allow rules to communicate with-

out having to define and pass parameters through intermediate rules.

In particular, this chapter answers all the following common questions:

• “How can we insert actions among the rule elements to perform a

translation or build an interpreter?”

• “How can we access information about the input symbols matched

by various rule elements?”

• “How can rules pass data back and forth?”

• “What information about rule references and token references

does ANTLR automatically create for us?”

INTRODUCING ACTIONS, ATTRIBUTES, AND SCOPES 131

6.1 Introducing Actions, Attributes, and Scopes

You must execute some code to do anything beyond recognizing the

syntax of a language. You must, therefore, embed code directly in your

grammar as actions. Actions usually directly operate on the input sym-

bols, but they can also trigger method calls to appropriate external

code.

Actions are blocks of text written in the target language and enclosed in

curly braces. The recognizer triggers them according to their locations

within the grammar. For example, the following rule emits found a decl

after the parser has seen a valid declaration:

decl: type ID ';' {System.out.println("found a decl");} ;

type: 'int' | 'float' ;

The action performs a translation, but it’s an uninteresting translation

because every declaration results in the same output. To perform a

useful translation, actions must refer to the input symbols. Token and

rule references both have predefined attributes associated with them

that are useful during translation. For example, you can access the

text matched for rule elements:

decl: type ID ';'

{System.out.println("var "+$ID.text+":"+$type.text+";");}

;

type: 'int' | 'float' ;

where text is a predefined attribute. $ID is a Token object, and $type is

a data aggregate that contains all the predefined properties for that

particular reference to rule type. Given input int x;, the translator emits

var x:int;.

When references to rule elements are unique, actions can use

$elementName to access the associated attributes. When there is more

than one reference to a rule element, $elementName is ambiguous, and

you must label the elements to resolve the ambiguity. For example, to

allow user-defined types in the language described by rule decl, you

could add another rule that matches two identifiers in a row. To access

both ID tokens, you must label them and then refer to their labels in

the action:

decl: type ID ';'

{System.out.println("var "+$ID.text+":"+$type.text+";");}

| t=ID id=ID ';'

{System.out.println("var "+$id.text+":"+$t.text+";");}

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=131

INTRODUCING ACTIONS, ATTRIBUTES, AND SCOPES 132

When a rule matches elements repeatedly, translators commonly need

to build a list of these elements. As a convenience, ANTLR provides the

+= label operator that automatically adds all associated elements to an New in v3.

ArrayList, whereas the = label operator always refers to the last element

matched. The following variation of rule decl captures all identifiers into

a list called ids for use by actions:

decl: type ids+=ID (',' ids+=ID)* ';' ; // ids is list of ID tokens

Beyond these predefined attributes, you can also define your own rule

attributes that behave like and are implemented as rule parameters and

return values (or inherited and synthesized attributes, as academics

refer to them). In the following example, rule declarator defines a param-

eter attribute called typeText that is available to actions as $typeText (see

Section 4.3, Rule Arguments and Return Values, on page 101 for more

about rule parameter and return value definition syntax):

decl: type declarator[$type.text] ';' ;

declarator[String typeText]

: '*' ID {System.out.println("var "+$ID.text+":^"+$typeText+";");}

| ID {System.out.println("var "+$ID.text+":"+$typeText+";");}

;

Rule references use square brackets instead of parentheses to pass

parameters. The text inside the square brackets is a comma-separated

expression list written in the target language. ANTLR does no interpre-

tation of the action except for the usual attribute reference translation

such as $type.text.

Actions can access rule return values just like predefined attributes:

field

: d=decl ';' {System.out.println("type "+$d.type+", vars="+$d.vars);}

;

decl returns [String type, List vars]

: t=type ids+=ID (',' ids+=ID)* {$type = $t.text; $vars = $ids;}

;

Given input int a, b;, the translator emits type int, vars=[a, b] (the square

brackets come from Java’s standard List toString()).

All the attributes described thus far are visible only in the rule that

defines them or as a return value. In many situations, however, you’ll

want to access tokens matched previously by other rules. For example,

consider a statement rule that needs to access the name of the immedi-

ately enclosing method.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=132

INTRODUCING ACTIONS, ATTRIBUTES, AND SCOPES 133

One solution involves defining an instance variable that is set by the

method rule and accessed by the statement rule:

@members {

String methodName;

}

method: type ID {methodName=$ID.text;} body

;

body: '{' statement+ '}' ;

statement

: decl {...methodName...} ';' // ref value set in method

| ...

;

In this way, you can avoid having to define and pass parameters all the

way down to rule statement. Because this sort of thing is so common,

ANTLR formalizes such communication by allowing you to define rule

attributes that any rule invoked can access (this notion is technically

called dynamic scoping). Here is the functionally equivalent version of

the earlier grammar using a dynamic rule scope:

method

scope {

String name;

}

: type ID {$method::name=$ID.text;} body

;

body: '{' statement+ '}' ;

statement

: decl {...$method::name...} ';' // ref value set in method

| ...

;

Note that the $method:: syntax clearly distinguishes a dynamically

scoped attribute from a normal rule attribute.

A rule scope acts exactly like a list of local variables that just hap-

pens to be visible to rules further down in the call chain. As such,

recursive indications of rule method each get their own copy of name,

which distinguishes it from the first, simpler implementation that used

just an instance variable. This feature turns out to be extremely use-

ful because distant rules can communicate without having to define

and pass arguments through the intermediate rules; see Section 6.5,

Dynamic Attribute Scopes for Interrule Communication, on page 148.

The following sections describe all the concepts introduced here in more

detail.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=133

GRAMMAR ACTIONS 134

6.2 Grammar Actions

Actions are snippets of code that you write in the target language and

embed in your grammar. ANTLR then inserts them into the gener-

ated recognizer according to their positions relative to the surrounding

grammar elements. ANTLR inserts the actions verbatim except for some

special expressions prefixed with $ or %.

Actions specified outside rules generally define global or class mem-

ber program elements such as variables and methods. Most transla-

tors need at least a few helper methods and instance variables. Actions

embedded within rules define executable statements, and the recog-

nizer executes them as it recognizes input symbols.

Consider the following simple grammar that illustrates most of the loca-

tions within a grammar where you can put actions:

parser grammar T;

@header {

package p;

}

@members {

int i;

public TParser(TokenStream input, int foo) {

this(input);

i = foo;

}

}

a[int x] returns [int y]

@init {int z=0;}

@after {System.out.println("after matching rule; before finally");}

: {«action1»} A {«action2»}

;

catch[RecognitionException re] {

System.err.println("error");

}

finally { «do-this-no-matter-what» }

ANTLR generates TParser.java from grammar T; the code on the next page

shows the surrounding infrastructure for class TParser where the high-

lighted lines indicate the actions copied from grammar T into the gen-

erated recognizer.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=134

GRAMMAR ACTIONS 135

Download attributes/actions/TParser.java

package p;

import org.antlr.runtime.*;

import java.util.Stack;

import java.util.List;

import java.util.ArrayList;

public class TParser extends Parser {

public static final String[] tokenNames = new String[] {

"<invalid>", "<EOR>", "<DOWN>", "<UP>", "A"

};

public static final int A=4;

public static final int EOF=-1;

public TParser(TokenStream input) {

super(input);

}

public String[] getTokenNames() { return tokenNames; }

public String getGrammarFileName() { return "T.g"; }

int i;

public TParser(TokenStream input, int foo) {

this(input);

i = foo;

}

For rule a, ANTLR generates the following method a() definition:

Download attributes/actions/TParser.java

// T.g:15:1: a[int x] returns [int y] : A ;

public int a(int x) throws RecognitionException {

int y = 0; // auto-initialized by ANTLR

int z=0;

try {

// T.g:18:4: A

action1

match(input,A,FOLLOW_A_in_a40);

action2

System.out.println("exiting");

}

catch (RecognitionException re) {

System.err.println("error");

}

finally {

do-this-no-matter-what

}

return y;

}

http://media.pragprog.com/titles/tpantlr/code/attributes/actions/TParser.java
http://media.pragprog.com/titles/tpantlr/code/attributes/actions/TParser.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=135

GRAMMAR ACTIONS 136

Action placement is fairly straightforward if you view grammars as pro-

grams in a very high-level domain-specific language. Actions outside

rules become member declarations, and actions with rules are exe-

cutable statements inserted into the generated rule methods. The next

two subsections describe actions and the significance of their locations

in more detail.

Using Named Global Actions

ANTLR gives names to all the locations in the generated code that you

can fill with user-defined code. The following list summarizes the action

names and their purposes: Improved in v3. Actions

are named to indicate

where in the output file

ANTLR inserts the

action.

header

Specify code that should appear before the class definition (this is

usually where package definitions and imports go).

members

Specify instance variables and methods.

rulecatch

Replace default catch clauses generated for syntax errors with this

action. Cf. Chapter 10, Error Reporting and Recovery, on page 241.

synpredgate

Replace the expression that gates actions on and off during syn-

tactic predicate evaluation. This indicates when it is OK to exe-

cute embedded user actions. By default, embedded actions are

executed by the recognizer only when the backtracking depth is 0:

if (backtracking==0) { «embedded-user-action» }

To change the condition, set the synpredgate action:

@synpredgate { «ok-to-execute-action-expression» }

This replaces the backtracking==0 default expression.

In combined grammars, header and members actions refer to the parser

component only, not the implicitly generated lexer. If you need to over-

ride this default, you can prefix these actions with an action scope

name. The action scope is one of lexer, parser, or treeparser. It specifies

to which recognizer you would like to associate the action. For example,

@header is shorthand for @parser::header in a combined grammar. Use

@lexer::header to specify packages and other header code needed by the

lexer.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=136

GRAMMAR ACTIONS 137

The various action names might differ depending on the ANTLR target

language, but they all support at least the previously mentioned action

names. Also note that some targets might not support the treeparser

action scope.

Embedding Actions within Rules

Actions are treated like any other rule elements and, as such, can

appear just about anywhere among the alternatives of a rule. Actions

are executed immediately after the preceding rule element and imme-

diately before the following rule element. For example, in the following

rule, an action is executed after each reference to token ID:

@members {

Map symbols = new HashMap();

}

decl: type a=ID {symbols.put($a,$type.text);}

(',' b=ID {symbols.put($b,$type.text);})* ';'

;

The goal of this code is to map Token objects to the text name of their

type, implementing a primitive symbol table. The first action,

symbols.put($a,$type.text), is executed only once and immediately after

the recognition of the first ID token. The second action,symbols.

put($b,$type.text), is executed once for every iteration of the loop gen-

erated for the EBNF (...)* zero-or-more subrule. Every time through the

loop $b points to the most recently matched identifier. Given input float

a, b, c;, rule decl yields a hashtable where all three Token objects asso-

ciated with a,b, and c point at the string float.

Because Java allows you to define variables in-line as opposed to the

start of a code block, you can define variables inside any action. The

variables are visible to the immediately surrounding alternative, but

not other alternatives and not surrounding alternatives if the action is

within a subrule. Targets such as the C target, however, are limited to

defining variables with init actions.

Beyond the actions executed among the rule elements, some special

actions execute just before the rule starts, just after the rule finishes,

and upon syntax error within the rule.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=137

TOKEN ATTRIBUTES 138

The following example shows the utility of the init and after actions:

@members {

boolean inMethod = false;

}

methodDefinition returns [int numStats]

@init {

inMethod = true;

}

@after {

inMethod = false;

}

: ...

;

Any rule invoked from the methodDefinition rule can use the boolean

instance variable inMethod to test its context (that is, whether the rule

is being matched within the context of a method). This is a good way to

distinguish between local variables and fields of a class definition, for

example.

ANTLR inserts init actions after all definitions and initialization gen-

erated for the rule and right before the code generated for the rule

body. ANTLR inserts after actions after all the rule cleanup code that

sets return values and so on. The after action can, for example, access

the tree computed by the rule. ANTLR inserts after actions before the

code that cleans up the dynamic scopes used by the rule; see Sec-

tion 6.5, Rule Scopes, on page 150 for an example that illustrates the

after action’s position relative to dynamic scope cleanup code. Subrules

can’t define init or after actions.

For completeness, note that rules can also specify actions as part of

the exception handlers, but please see Chapter 10, Error Reporting and

Recovery, on page 241 for more information.

6.3 Token Attributes

All tokens matched by parser and lexer rules have a collection of pre-

defined, read-only attributes. The attributes include useful token prop-

erties such as the token type and text matched for a token. Actions

can access these attributes via $label.attribute where label labels a

token reference. As shorthand, actions can use $T.attribute where T

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=138

TOKEN ATTRIBUTES 139

is a unique token reference visible to the action. The following example

illustrates token attribute expression syntax: Improved in v3. Token

references now have a

rich set of predefined

attributes.
r : INT {int x = $INT.line;}

(ID {if ($INT.line == $ID.line) ...;})?

a=FLOAT b=FLOAT {if ($a.line == $b.line) ...;}

;

The action within the (...)? subrule can see the INT token matched before

it in the outer level.

Because there are two references to the FLOAT token, a reference to

$FLOAT in an action is not unique; you must use labels to specify which

token reference you are interested in.

Token references within different alternatives are unique because only

one of them can be matched for any invocation of the rule. For exam-

ple, in the following rule, actions in both alternatives can reference $ID

directly without using a label:

r : ... ID {System.out.println($ID.text);}

| ... ID {System.out.println($ID.text);}

;

To access the tokens matched for literals, you must use a label:

stat: r='return' expr ';' {System.out.println("line="+$r.line);} ;

Most of the time you access the attributes of the token, but sometimes

it is useful to access the Token object itself because it aggregates all the

attributes. Further, you can use it to test whether an optional subrule

matched a token:

stat: 'if' expr 'then' stat (el='else' stat)?

{if ($el!=null) System.out.println("found an else");}

| ...

;

Figure 6.1, on the next page, summarizes the attributes available for

tokens; this includes lexer rule references in a lexer.

For lexer rules, note that labels on elements are sometimes characters,

not tokens. Therefore, you can’t reference token attributes on all labels.

For example, the following rule defines three labels, of which $a and $c

are character labels and evaluate to type int, not Token. If the literal is

more than a single character like ’hi’, then the label is a token reference,

not a character reference:

lexer grammar T;

R : a='c' b='hi' c=. {$a, $b.text, $c} ;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=139

TOKEN ATTRIBUTES 140

Attribute Type Description

text String The text matched for the token; translates to a call

to getText().

type int The token type (nonzero positive integer) of the

token such as INT; translates to a call to getType().

line int The line number on which the token occurs,

counting from 1; translates to a call to getLine().

pos int The character position within the line at which the

token’s first character occurs counting from zero;

translates to a call to getCharPositionInLine().

index int The overall index of this token in the token stream,

counting from zero; translates to a call to getTo-

kenIndex().

channel int The token’s channel number. The parser tunes

to only one channel, effectively ignoring off-

channel tokens. The default channel is 0

(Token.DEFAULT_CHANNEL), and the default hidden

channel is Token.HIDDEN_CHANNEL.

tree Object When building trees, this attribute points to the

tree node created for the token; translates to a

local variable reference that points to the node,

and therefore, this attribute does not live inside

the Token object itself.

Figure 6.1: Predefined token and lexer rule attributes

ANTLR generates the following code for the body of the method:

// a='c'

int a = input.LA(1);

match('c');

// b='hi'

int bStart = getCharIndex();

match("hi");

Token b = new CommonToken(input, Token.INVALID_TOKEN_TYPE,

Token.DEFAULT_CHANNEL, bStart, getCharIndex()-1);

// c=.

int c = input.LA(1);

matchAny();

// {$a, $b.text, $c}

a, b.getText(), c

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=140

RULE ATTRIBUTES 141

6.4 Rule Attributes

When a recognizer matches a rule, it gathers a few useful attributes

such as the text matched for the entire rule (text), the first symbol

matched for the rule (start), and the last symbol matched by the rule

(stop). The recognizer automatically sets the attributes for you. With a

few exceptions, you cannot write to these attributes. You can, however,

define more attributes in the form of rule parameters and return values.

Actions within the rule use them to pass data between rules. User-

defined attributes behave exactly like method parameters and return

values except that rules can have multiple return values. The following

subsections describe the predefined attributes and how to create rule

parameters and return values. Improved in v3. Rules

now have a richer set of

predefined attributes,

and the general attribute

mechanism is more

consistent in v3.

Predefined Rule Attributes

For translation applications, actions often need to know about the com-

plete input text matched by a rule. When generating trees or templates,

actions also need to get the subtree or subtemplate created by a rule

invocation. ANTLR predefines a number of read-only attributes asso-

ciated with rule references that are available to actions. As you might

expect, actions can access rule attributes only for references that pre-

cede the action. The syntax is $r.attribute for rule name r or a label

assigned to a rule reference. For example, $expr.text returns the com-

plete text matched by a preceding invocation of rule expr.

The predefined attributes of the currently executing rule are also avail-

able via shorthand: $attribute or $enclosingRuleName.attribute. Con-

sider the following rule that illustrates where you can put actions:

r

@init {

Token myFirstToken = $start; // do me first

}

@after {

Token myLastToken = $r.stop; // do me after rule matches

}

: ID {String s = $r.text;} INT {String t = $text;}

;

In the generated code, you will see that these attribute references trans-

late to field accesses of the retval aggregate. For example, the init action

is translated as follows:

Token myFirstToken = ((Token)retval.start);

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=141

RULE ATTRIBUTES 142

The recognizer automatically computes the predefined attributes, and

your actions should not attempt to modify them. One exception is that

your after action can set attributes tree and st when generating ASTs (see

Chapter 7, Tree Construction, on page 162) or templates (see Chap-

ter 9, Generating Structured Text with Templates and Grammars, on

page 206). Setting them in any other action has no effect because they

are set by the rule’s bookkeeping code right before the after action.

Figure 6.2, on the following page, describes the predefined attributes

that are available to actions.

Predefined Lexer Rule Attributes

Lexer rules always have an implicit return value of type Token that is

sent back to the parser. However, lexer rules that refer to other lexer

rules can access those portions of the overall token matched by the

other rules and returned as implicit tokens. The following rule illus-

trates a composite lexer rule that reuses another token definition:

PREPROC_CMD

: '#' ID {System.out.println("cmd="+$ID.text);}

;

ID : ('a'..'z'|'A'..'Z')+

;

ANTLR translates rule PREPROC_CMD’s production to the following code

that creates a temporary token for use by the embedded action (note

that $ID.text is automatically translated to ID1.getText()):

match('#');

int ID1Start = getCharIndex();

mID();

Token ID1 = new CommonToken(

input, ID, Token.DEFAULT_CHANNEL, ID1Start, getCharIndex()-1);

System.out.println("cmd="+ID1.getText());

The attributes of a lexer rule reference are the same as a token reference

in a parser grammar (see Section 6.3, Token Attributes, on page 138).

The only exception is that index is undefined. The lexer does not know

where in the token stream the token will eventually appear. Figure 6.3,

on page 144 summarizes the attributes available to attribute expres-

sions referring to the surrounding rule.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=142

RULE ATTRIBUTES 143

Attribute Type Description

text String The text matched from the start of the rule

up until the point of the $text expression

evaluation. Note that this includes the text

for all tokens including those on hidden

channels, which is what you want because

usually that has all the whitespace and

comments. When referring to the current

rule, this attribute is available in any action

including any exception actions.

start Token The first token to be potentially matched by

the rule that is on the main token chan-

nel; in other words, this attribute is never a

hidden token. For rules that end up match-

ing no tokens, this attribute points at the

first token that could have been matched

by this rule. When referring to the current

rule, this attribute is available to any action

within the rule.

stop Token The last nonhidden channel token to be

matched by the rule. When referring to the

current rule, this attribute is available only

to the after action.

tree Object The AST computed for this rule, normally

the result of a -> rewrite rule. When refer-

ring to the current rule, this attribute is

available only to the after action.

st StringTemplate The template computed for this rule, usu-

ally the result of a -> rewrite rule. When

referring to the current rule, this attribute

is available only to the after action.

Figure 6.2: Predefined parser rule attributes

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=143

RULE ATTRIBUTES 144

Attribute Type Description

text String The text matched thus far from the start of the

token at the outermost rule nesting level; trans-

lated to getText().

type int The token type of the surrounding rule, even if this

rule does not emit a token (because it is invoked

from another rule).

line int The line number, counting from 1, of this rule’s first

character.

pos int The character position in the line, counting from 0,

of this rule’s first character.

channel int The default channel number, 0, unless you set it in

an action in this rule.

Figure 6.3: Lexer rule attributes available to expressions

Predefined Tree Grammar Rule Attributes

Tree grammar rules have the same attributes as parser grammar rules

except that the input symbols are tree nodes instead of tokens and

stop is not defined. So, for example, $ID refers to the tree node matched

for token ID rather than a Token object. Figure 6.4, on the next page,

summarizes the predefined attributes for tree grammar rules.

Rule Parameters

Besides the predefined attributes, rules can define user-defined attri-

butes in the form of parameters whose values are set by invoking rules.

For example, the following rule has a single parameter that the embed-

ded action uses to generate output:

declarator[String typeName]

: ID {System.out.println($ID.text+" has type "+$typeName);}

;

Rule parameters often contain information about the rule’s context. The

rule can use that information to guide the parse.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=144

RULE ATTRIBUTES 145

Attribute Type Description

text String The text derived from the first node

matched by this rule. Each tree node

knows the range of input tokens from

which it was created. Parsers automati-

cally set this range to the first and last

token matched by the rule that created the

tree (see Section 7.3, Default AST Construc-

tion, on page 170). This attribute includes

the text for all tokens including those on

hidden channels, which is what you want

because usually that has all the whitespace

and comments. When referring to the cur-

rent rule, this attribute is available in any

action including exception actions. Note

that text is not well defined for rules like

this:
slist : stat+ ;

because stat is not a single node or rooted

with a single node. $slist.text gets only the

first stat tree.

start Object The first tree node to be potentially

matched by the rule. For rules that end

up matching no nodes, this attribute points

at the first node that could have been

matched by this rule. When referring to the

current rule, this attribute is available to

any action within the rule.

st StringTemplate The template computed for this rule, usu-

ally the result of a -> rewrite rule. When

referring to the current rule, this attribute

is available only to the after action.

Figure 6.4: Predefined attributes for tree grammar rules

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=145

RULE ATTRIBUTES 146

To illustrate this, consider the following rule with parameter needBody

that indicates whether a body is expected after the method header:

methodDefinition[boolean needBody]

: modifiers typename ID '(' formalArgs ')'

({$needBody}?=> body

| {!$needBody}?=> ';' // abstract method

)

;

where {$needBody}?=> is a gated semantic predicates that turns on the

associated alternative according to the value of parameter needBody.

ANTLR generates the following method structure for rule methodDefini-

tion:

public void methodDefinition(boolean needBody)

throws RecognitionException {

...

}

These parameter attributes are visible to the entire rule including ex-

ception, init, and after actions.

In lexers, only fragment rules can have parameters because they are the

only rules you can explicitly invoke in the lexer. Non-fragment rules are

implicitly invoked from the automatically generated nextToken rule.

Use square brackets to surround parameter lists. For example, here is

a rule that invokes methodDefinition:

classDefinition

: methodDefinition[true]

| fieldDefinition

;

Although it is probably not very good form, you are able to set parame-

ter values in actions. Naturally, actions can’t access the parameters of

rule references; here, $methodDefinition.needBody makes no sense.

Rule Return Values

Rules can define user-defined attributes in the form of rule return val-

ues. Actions access these return values via rule label properties.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=146

RULE ATTRIBUTES 147

For example, the following grammar defines rule field that invokes rule

decl and accesses its return values: Improved in v3. You can

now return multiple

return values from a

rule.
field

: d=decl {System.out.println("type "+$d.type+", vars="+$d.vars);}

;

/** Compute and return a list of variables and their type. */

decl returns [String type, List vars]

: t=type ids+=ID (',' ids+=ID)* ';'

{$type = $t.text; $vars = $ids;}

;

ANTLR generates the following (slightly cleaned up) code for rule field:

public void field() throws RecognitionException {

decl_return d = null;

try {

d=decl();

System.out.println("type "+d.type+", vars="+d.vars);

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

}

and generates a return value structure to represent the multiple return

values of rule decl:

public static class decl_return extends RuleReturnScope {

public String type;

public List vars;

};

Rule decl then creates a new instance of this aggregate to hold the

return values temporarily:

public decl_return decl() throws RecognitionException {

// create return value data aggregate

decl_return retval = new decl_return();

retval.start = input.LT(1);

try {

...

// set $stop to previous token (last symbol matched by rule)

retval.stop = input.LT(-1);

retval.type = input.toString(t.start,t.stop); // $type = $t.text

retval.vars = list_ids; // $vars = $ids

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

return retval;

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=147

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 148

The highlighted lines are generated directly or indirectly from the em-

bedded action and use of the += label operator. In the future, expect

ANTLR to optimize the

object creation away if

only one return value is

used or set.

Actions within decl that access return values translate to field refer-

ences of this data aggregate; they can read and write these values.

Invoking rules can’t set return values. Here, executing $d.type="int"; from

within rule field makes no sense.

6.5 Dynamic Attribute Scopes for Interrule Communication

Rule attributes have very limited visibility—rule r can pass informa-

tion (via parameters) only to rule s if r directly invokes s. Similarly, s

can pass information back to only that rule that directly invokes s (via

return values). This is analogous to the normal programming language

functionality whereby methods communicate directly through param-

eters and return values. For example, the following reference to local

variable x from a deeply nested method call is illegal in Java: New in v3.

void f() {

int x = 0;

g();

}

void g() {

h();

}

void h() {

int y = x; // INVALID reference to f's local variable x

}

Variable x is available only within the scope of f(), which is the text lex-

ically delimited by curly brackets. For this reason, Java is said to use

lexical scoping. Lexical scoping is the norm for most programming lan-

guages.1 Languages that allow methods further down in the call chain

to access local variables defined earlier are said to use dynamic scoping.

The term dynamic refers to the fact that a compiler cannot statically

determine the set of visible variables. This is because the set of vari-

ables visible to a method changes depending on who calls that method.

For general programming languages, I am opposed to dynamic scoping,

as are most people, because it is often difficult to decide which variable

you are actually accessing. Languages such as Lisp and Perl have been

criticized for dynamic scoping. New in v3.

1. See http://en.wikipedia.org/wiki/Scope_(programming)#Static_scoping.

http://en.wikipedia.org/wiki/Scope_(programming)#Static_scoping
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=148

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 149

In a general-purpose language like Java, to allow h() to access x, either

you have to pass x all the way down as a parameter, which is very

inconvenient, or you can define an instance variable that f() and h()

can both access:

int x;

void f() {

x = 0; // same as this.x = 0

g();

}

void g() {

h();

}

void h() {

int y = x; // no problem, x is this.x

}

It turns out that, in the grammar realm, distant rules often need to

communicate with each other, mostly to provide context information to

rules matched below in the rule invocation chain (that is, below in the

parse tree). For example, an expression might want to know whether

an identifier was previously defined. An expression might want to know

whether it is an assignment right-side or a loop conditional. For the

first problem, a symbol table instance variable works nicely, but for the

latter problem, it is bad “information hiding” programming practice to

define a bunch of instance variables visible to all rules just to provide

context to a specific few. Further, the definition of the context variable

is often far from the rule that sets its value.

Recognizing the importance of context in language translation prob-

lems, ANTLR gives you both locality of definition and wide visibility

through dynamic scoping.2 ANTLR allows you to define rule attributes

that look like local variables but that are visible to any rule invoked

from that rule no matter how deeply nested. The following grammar is

functionally equivalent to the earlier Java code: New in v3.

f

scope {int x;}

: {$f::x = 0;} g

;

g : h ;

h : {int y = $f::x;} ;

Here, $f::x accesses the dynamically scoped attribute x defined in rule f.

2. See http://en.wikipedia.org/wiki/Scope_(programming)#Dynamic_scoping.

http://en.wikipedia.org/wiki/Scope_(programming)#Dynamic_scoping
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=149

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 150

In contrast to unrestricted dynamic scoping, all references to dynam-

ically scoped attributes must include the scope containing the defini-

tion. This syntax neatly sidesteps the primary concern that it is difficult

to decide which dynamically scoped variable is being accessed. The $f::

prefix on dynamically scoped references also highlights that it is a non-

local reference.

Rule Scopes

To define a dynamic scope of attributes in a rule, specify a list of vari-

able definitions without initialization values inside a scope action:

r

scope {

«attribute1»;

«attribute2»;

...

«attributeN»;

}

: ...

;

To illustrate the use of dynamic scopes, consider the real problem

of defining variables and ensuring that variables in expressions are

defined. The following grammar defines the symbols attribute where it

belongs in the block rule but adds variable names to it in rule decl. Rule

expr then consults the list to see whether variables have been defined.

Download attributes/rulescope/T.g

grammar T;

prog: block

;

block

scope {

/** List of symbols defined within this block */

List symbols;

}

@init {

// initialize symbol list

$block::symbols = new ArrayList();

}

: '{' decl* stat+ '}'

// print out all symbols found in block

// $block::symbols evaluates to a List as defined in scope

{System.out.println("symbols="+$block::symbols);}

;

http://media.pragprog.com/titles/tpantlr/code/attributes/rulescope/T.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=150

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 151

/** Match a declaration and add identifier name to list of symbols */

decl: 'int' ID {$block::symbols.add($ID.text);} ';'

;

/** Match an assignment then test list of symbols to verify

* that it contains the variable on the left side of the assignment.

* Method contains() is List.contains() because $block::symbols

* is a List.

*/

stat: ID '=' INT ';'

{

if (!$block::symbols.contains($ID.text)) {

System.err.println("undefined variable: "+$ID.text);

}

}

;

ID : 'a'..'z'+ ;

INT : '0'..'9'+ ;

WS : (' '|'\n'|'\r')+ {$channel = HIDDEN;} ;

Here’s the given input:

{

int i;

int j;

i = 0;

}

The translator emits the following:

symbols=[i, j]

Given this input:

Download attributes/rulescope-recursive/input2

{

int i;

int j;

i = 0;

x = 4;

}

the translator gives an error message about the undefined variable ref-

erence:

undefined variable: x

symbols=[i, j]

In this example, defining symbols as an instance variable would also

work, but it is not the same solution as using a dynamically scoped

variable. Dynamically scoped variables act more like a local variable.

http://media.pragprog.com/titles/tpantlr/code/attributes/rulescope-recursive/input2
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=151

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 152

There is a copy of symbols for each invocation of rule block, whereas

there is only one copy of an instance variable per grammar. This might

not be a problem in general, but having only a single copy of symbols

would not work if block were invoked recursively. For nested blocks,

you want each block to have its own list of variable definitions so that

you can reuse the same variable name in an inner block. For example,

the following nested code block redefines i in the inner scope. This new

definition must hide the definition in the outer scope.

Download attributes/rulescope-recursive/input

{

int i;

int j;

i = 0;

{

int i;

int x;

x = 5;

}

x = 3;

}

The following modified grammar supports nested code blocks by allow-

ing rule stat to recursively invoke block. The invocation of block auto-

matically creates an entirely new copy of the symbols attribute. The

invocation still pushes symbols on the same stack, though, so that it

maintains a single stack of all scopes.

Download attributes/rulescope-recursive/T.g

grammar T;

@members {

/** Track the nesting level for better messages */

int level=0;

}

prog: block

;

block

scope {

List symbols;

}

@init {

$block::symbols = new ArrayList();

level++;

}

http://media.pragprog.com/titles/tpantlr/code/attributes/rulescope-recursive/input
http://media.pragprog.com/titles/tpantlr/code/attributes/rulescope-recursive/T.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=152

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 153

@after {

System.out.println("symbols level "+level+" = "+$block::symbols);

level--;

}

: '{' decl* stat+ '}'

;

decl: 'int' ID {$block::symbols.add($ID.text);} ';'

;

stat: ID '=' INT ';'

{

if (!$block::symbols.contains($ID.text)) {

System.err.println("undefined variable level "+level+

": "+$ID.text);

}

}

| block

;

ID : 'a'..'z'+ ;

INT : '0'..'9'+ ;

WS : (' '|'\n'|'\r')+ {$channel = HIDDEN;} ;

Instance variable level tracks the recursion level of rule block so that

the print action can identify the level in which the symbols are defined.

The print action is also now in an after action for symmetry with the init

action. For the earlier input, the translator emits the following:

symbols level 2 = [i, x]

undefined variable level 1: x

symbols level 1 = [i, j]

Note that the undefined variable message is still there because the list

of symbols for the inner block disappears just like a local variable after

the invocation of that recursive invocation of rule block.

This example is a nice illustration of dynamically scoped variables, but

for completeness, the check for undefined variables should really look

at all scopes on the stack rather than just the current scope. For exam-

ple, a reference to j within the nested code block yields an undefined

variable error. The action needs to walk backward up the stack of sym-

bols attributes until it finds a scope containing variable reference. If the

search reaches the bottom of the stack, then the variable is undefined

in any scope.

To access elements other than the top of the dynamically scoped attri-

bute stack, use syntax $x [i]::y where x is the scope name, y is the

attribute name, and i is the absolute index into the stack with 0 being

the bottom of the stack. Expression $x .size()-1 is the index of the top of

the stack. The following method, defined in the members action, com-

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=153

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 154

putes whether a variable is defined in the current scope or any earlier

scope:

boolean isDefined(String id) {

for (int s=level-1; s>=0; s--) {

if ($block[s]::symbols.contains(id)) {

System.out.println(id+" found in nesting level "+(s+1));

return true;

}

}

return false;

}

Then rule stat should reference the method to properly identify unde-

fined variables:

stat: ID '=' INT ';'

{

if (!isDefined($ID.text)) {

System.err.println("undefined variable level "+level+

": "+$ID.text);

}

}

| block

;

Given the following input:

Download attributes/rulescope-resolve/input

{

int i;

int j;

{

int i;

int x;

x = 5;

i = 9;

j = 4;

}

x = 3;

}

the program emits this:

x found in nesting level 2

i found in nesting level 2

j found in nesting level 1

symbols level 2 = [i, x]

undefined variable level 1: x

symbols level 1 = [i, j]

http://media.pragprog.com/titles/tpantlr/code/attributes/rulescope-resolve/input
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=154

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 155

The next section describes how to handle the case where multiple rules

need to share dynamically scoped attributes.

Global Scopes

There is a separate attribute stack for each rule that defines a dynamic

scope. In the previous section, only rule block defined a scope; there-

fore, there was only one stack of scopes. Each invocation of block

pushed a new symbols list onto the stack. The isDefined() method walked

up the single stack trying to resolve variable references. This simple

technique works because there is only one kind of variable definition

scope in the language described by the grammar: code blocks enclosed

in curly braces.

Consider the scoping rules of the C programming language. Ignoring

struct definitions and parameters for simplicity, there are a global scope,

function scopes, and nested code blocks. The following extension to the

previous grammar matches a language with the flavor of C:

prog: decl* func*
;

func: 'void' ID '(' ')' '{' decl* stat+ '}'

;

...

This deceptively simple grammar matches input such as the following:

Download attributes/globalscope/input

int i;

void f()

{

int i;

{

int i;

i = 2;

}

i = 1;

}

void g() {

i = 0;

}

Variable i is defined in three different nested scopes: at the global level,

in function f(), and in a nested code block. When trying to resolve ref-

erences to i, you need to look in the closest enclosing scope and then in

outer scopes. For example, the reference to i in i=1; should be resolved in

f()’s scope rather than the preceding nested code block. The reference

to i in g() should resolve to the global definition.

http://media.pragprog.com/titles/tpantlr/code/attributes/globalscope/input
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=155

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 156

Your first attempt at using dynamic scopes to solve this problem might

involve defining a dynamic scope in each rule that matches declara-

tions:

prog

scope {

List symbols;

}

: decl* func*
;

func

scope {

List symbols;

}

: 'void' ID '(' ')' '{' decl* stat+ '}'

;

block

scope {

List symbols;

}

: '{' decl* stat+ '}'

;

...

The problem with this solution is that there are three different stacks,

one for each C language scope. To properly resolve variable references,

however, you must maintain a single stack of variable scopes (as is

clear by examining method isDefined()).

ANTLR provides a mechanism for multiple rules to share the same

dynamic scope stack. Simply define a named scope outside any rule.

In this case, define CScope with two attributes: In the future, expect

ANTLR to allow

initialization code

within scope definitions

such as constructors.

Download attributes/globalscope/T.g

// rules prog, func, and block share the same global scope

// and, therefore, push their scopes onto the same stack

// of scopes as you would expect for C (a code block's

// scope hides the function scope, which in turn, hides

// the global scope).

scope CScope {

String name;

List symbols;

}

where attribute name records the name of the scope such as “global” or

the associated function name.

http://media.pragprog.com/titles/tpantlr/code/attributes/globalscope/T.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=156

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 157

Method isDefined() can then print a more specific name rather than just

the level number:

Download attributes/globalscope/T.g

@members {

/** Is id defined in a CScope? Walk from top of stack

* downwards looking for a symbols list containing id.

*/

boolean isDefined(String id) {

for (int s=$CScope.size()-1; s>=0; s--) {

if ($CScope[s]::symbols.contains(id)) {

System.out.println(id+" found in "+$CScope[s]::name);

return true;

}

}

return false;

}

}

Instead of manually tracking the scope level, you can use $CScope.size()-

1 as isDefined() does.

The rules that define variables within a C scope (prog, func, and block)

must indicate that they want to share this scope by specifying scope

CScope;. The following rules properly use a global dynamic scope to

share a single stack of attributes:

Download attributes/globalscope/T.g

prog

scope CScope;

@init {

// initialize a scope for overall C program

$CScope::symbols = new ArrayList();

$CScope::name = "global";

}

@after {

// dump global symbols after matching entire program

System.out.println("global symbols = "+$CScope::symbols);

}

: decl* func*
;

func

scope CScope;

@init {

// initialize a scope for this function

$CScope::symbols = new ArrayList();

}

http://media.pragprog.com/titles/tpantlr/code/attributes/globalscope/T.g
http://media.pragprog.com/titles/tpantlr/code/attributes/globalscope/T.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=157

DYNAMIC ATTRIBUTE SCOPES FOR INTERRULE COMMUNICATION 158

@after {

// dump variables defined within the function itself

System.out.println("function "+$CScope::name+" symbols = "+

$CScope::symbols);

}

: 'void' ID {$CScope::name=$ID.text;} '(' ')' '{' decl* stat+ '}'

;

block

scope CScope;

@init {

// initialize a scope for this code block

$CScope::symbols = new ArrayList();

$CScope::name = "level "+$CScope.size();

}

@after {

// dump variables defined within this code block

System.out.println("code block level "+$CScope.size()+" = "+

$CScope::symbols);

}

: '{' decl* stat+ '}'

;

These rules push a new attribute scope onto the stack (identified by

$CScope) upon invocation and pop the scope off upon returning. For

example, here is the code generated for the global scope, the stack of

scopes, and the prog rule:

/** Put all elements within a scope into a class */

protected static class CScope_scope {

String name;

List symbols;

}

/** The stack of scopes; each element is of type CScope_scope */

protected Stack CScope_stack = new Stack();

/** Code generated for rule prog */

public void prog() throws RecognitionException {

CScope_stack.push(new CScope_scope());

((CScope_scope)CScope_stack.peek()).symbols = new ArrayList();

((CScope_scope)CScope_stack.peek()).name = "global";

try {

...

// from @after action

System.out.println("global symbols = "+

((CScope_scope)CScope_stack.peek()).symbols);

CScope_stack.pop();

}

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=158

REFERENCES TO ATTRIBUTES WITHIN ACTIONS 159

where the highlighted code is the init action from rule prog. init actions

are executed after the new scope becomes available, and after actions

are executed right before the scope disappears.

The global dynamic scope mechanism works well for many simple sym-

bol table implementation such as this, but in general, a more sophisti-

cated symbol table is required for real applications (for example, symbol

table scopes generally must persist beyond parser completion).3

The following, final section summarizes all the special symbols related

to attributes and scopes that you can reference within actions.

6.6 References to Attributes within Actions

ANTLR ignores everything inside user-defined actions except for expres-

sions beginning with $ and %. The list that follows summarizes the spe-

cial symbols and expressions that ANTLR recognizes and translates to

code in the target language. % references are template expressions and

are described in Section 9.9, References to Template Expressions within

Actions, on page 238.

$tokenRef

An expression of type Token that points at the Token object matched

by the indicated grammar token reference, which is identified

either by a token label or a reference to a token name mentioned

in the rule. This is useful to test whether a token was matched in

an optional subrule also. Example: ID {$ID} (ELSE stat)? {if ($ELSE!=null)

...}

$tokenRef.attr

Refers to the predefined token attribute attr of the referenced

token, identified either by a token label or by a reference to a

token name mentioned in the rule. See Figure 6.1, on page 140

for the list of valid attributes. Example: id=ID {$id.text} INT {$INT.line}

$listLabel

An expression that evaluates to type List and is a list of all elements

collected thus far by the listLabel. A list label is identified by labels

using the += operator; this is valid only within a parser or tree

grammar. Example: ids+=ID (’,’ ids+=ID)* {$ids}

3. See http://www.cs.usfca.edu/~parrt/course/652/lectures/symtab.html for more information

about symbol tables.

http://www.cs.usfca.edu/~parrt/course/652/lectures/symtab.html
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=159

REFERENCES TO ATTRIBUTES WITHIN ACTIONS 160

$ruleRef

Isolated $rulename is not allowed in a parser or tree grammar

unless the rule has a dynamic scope and there is no reference

to rulename in the enclosing alternative, which would be ambigu-

ous. The expression is of type Stack. Example (checks how deeply

nested rule block is): $block.size()

$ruleRef.attr

Refers to the predefined or user-defined attribute of the referenced

rule, which is identified either by a rule label or by a reference to a

rule mentioned in the rule. See Figure 6.2, on page 143 for the list

of available rule attributes. Example: e=expr {$e.value, $expr.tree}

$lexerRuleRef

Within a lexer, this is an expression of type Token that contains

all the predefined properties of the token except the token stream

index matched by invoking the lexer rule. The lexer rule refer-

ence can be either a rule label or a reference to a lexer rule men-

tioned within the rule. As with token references, you can refer to

predefined attributes of the returns token. Example: (DIGIT {$DIGIT,

$DIGIT.text})+

$attr

attr is a return value, parameter, or predefined rule property of

the enclosing rule. Example: r[int x] returns [Token t]: {$t=$start; $x} ;

$enclosingRule.attr

The fully qualified name of a return value, parameter, or prede-

fined property. Example: r[int x] returns [Token t]: {$r.t=$r.start; $r.x;} ;

$globalScopeName

An isolated global dynamic scope reference. This is useful when

code needs to walk the stack of scopes or check its size. Example:

$symbols.size()

$x::y

Refer to the y attribute within the dynamic scope identified by x,

which can either be a rule scope or be a global scope. In all cases,

the scope prefix is required when referencing a dynamic attribute.

Example: $CScope::symbols

$x [-1]::y

Attribute y (just under top of stack) of the previous x scope. Exam-

ple: $block[-1]::symbols

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=160

REFERENCES TO ATTRIBUTES WITHIN ACTIONS 161

$x [-i]::y

Attribute y of a previous scope of x. The previous scope is i down

from the top of stack. The minus sign must be present; that is, i

cannot simply be negative. You must use the minus sign! Exam-

ple: $block[-level]::symbols

$x [i]::y

Attribute y of a the scope of x up from the bottom of the stack. In

other words, i is an absolute index in the range 0..size-1. Example:

$block[2]::symbols

$x [0]::y

Attribute y of a bottommost scope of x. Example: $block[0]::symbols

In general, most attributes are writable, but attributes of token and rule

references are read-only. Further, predefined rule attributes other than

tree and st are read-only. The following example illustrates the writable

and readable attributes:

r : s[42]

{$s.x} // INVALID: cannot access parameter

{$s.y=3;} // INVALID: cannot set return value

{$r.text="ick";} // INVALID: cannot set predefined attribute

ID

{$ID.text="ick";} // INVALID: cannot set predefined attribute

;

s[int x] returns [int y, int z]

@init {$y=0; $z=0;}

: {$y = $x*2;} {Token t = $start;} {$tree = ...;}

{$start = ...;} // INVALID: cannot set predefined attribute

;

This chapter described embedded actions and attributes in detail.

Together with Chapter 4, ANTLR Grammars, on page 86, you’ve now

learned all the basic building blocks for constructing grammars. Most

language applications need more infrastructure from ANTLR, however,

than simple actions. Complicated translators typically involve multiple

passes over the input. A parser grammar builds an intermediate-form

tree, and then one or more tree grammars walk that tree. In a final

stage, a tree grammar emits output via template construction rules. In

the next three chapters, we’ll examine how to construct a tree, how to

walk a tree via tree grammars, and how to emit output via templates.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=161

Chapter 7

Tree Construction
Complex problems are much easier to solve when you break them down

into several, smaller problems. This is particularly true when build-

ing language translators. Translators usually have logically separate

phases that execute one after the other like the stages in a processor’s

pipeline. It is just too difficult to translate one programming language

to another in one step, for example. Each phase computes some infor-

mation, fills a data structure, or emits output.

In fact, many language problems cannot even be solved with a single

pass. Resolving references to programming language variables defined

further ahead is the most obvious example. A translator must walk the

input program once to get variable definitions and a second time to

resolve references to those variables. Rather than repeatedly rescan-

ning the characters and reparsing the token stream, it is much more

efficient to construct and walk a condensed version of the input. This

condensed version is called an intermediate form and is usually some

kind of tree data structure. The tree not only records the input symbols,

but it also records the structure used to match them.

Encoding structure in the intermediate-form tree makes walking it

much easier and faster than scanning a linear list of symbols as a

parser does. Figuring out that 3+4 is an expression from token stream

INT + INT is much harder for a computer than looking at a tree node that

explicitly says “Hi, I’m an addition expression with two operands.” The

most convenient way to encode input structure is with a special tree

called an abstract syntax tree (AST). ASTs contain only those nodes

associated with input symbols and are, therefore, not parse trees.

PROPER AST STRUCTURE 163

Parse trees also record input structure, but they have nodes for all rule

references used to recognize the input. Parse trees are much bigger and

highly sensitive to changes to the parser grammar.

Translators pass an AST between phases, and consequently, all of the

phases following the AST-building parser are tree walkers. These

phases can alter or simply extract information from the AST. For exam-

ple, the first tree-walking phase might update a symbol table to record

variable and method definitions. The next phase might alter the AST so

that nodes created from variable and method references point to their

symbol table entries. The final phase typically emits output using all

the information collected during previous phases.

This chapter describes how to structure ASTs and then defines the

tree node types ANTLR can deal with. Once you are familiar with those

details, you need to learn how to use AST operators, AST rewrite rules,

and actions within your parser grammar to build trees. In the next

chapter, we’ll build tree-walking translator phases using tree gram-

mars.

7.1 Proper AST Structure

Before learning to build ASTs, let’s consider what ASTs should look like

for various input structures. Keep in mind the following primary goals

as you read this section and when you design ASTs in general. ASTs

should do the following:

• Record the meaningful input tokens (and only the meaningful

tokens)

• Encode, in the two-dimensional structure of the tree, the gram-

matical structure used by the parser to match the associated to-

kens but not the superfluous rule names themselves

• Be easy for the computer to recognize and navigate

These goals give general guidance but do not directly dictate tree struc-

ture. For that, think about how computers deal with programs most

naturally: as simple instruction streams. The next two sections describe

how to break high-level programming language constructs into sub-

trees with simple instructions as root nodes.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=163

PROPER AST STRUCTURE 164

Encoding Arithmetic Expressions

Although humans prefer to think of arithmetic expressions using nota-

tion such as 3+4*5, computers prefer to think about the canonical oper-

ations needed to compute the result. The following pseudomachine

instruction sequence multiplies 4 and 5 (storing the result in register

r1) and then adds 3 to r1 (storing the result in register r2):

mul 4, 5, r1

add 3, r1, r2

Compilers do not generate such machine instructions directly from the

input symbols—that would be way too complex to implement in one

step. Compilers and other translators break down such difficult trans- Think of that machine

instruction sequence as

a “dismembered” tree

with r1 as a symbolic

reference to another

subtree.

lations into multiple steps. The first step is to create a tree intermediate

representation that is somewhere between source code and machine

code in precision. Trees are much more convenient to examine and

manipulate than low-level machine code. Here is what the typical AST

looks like for 3+4*5:

+

3 *

4 5

The structure of this tree dictates the order of operations because you

cannot compute the addition without knowing both operands. The right

operand is itself a multiply operation, and therefore, you must compute

the multiply first.

Working backward from the machine instructions toward the AST, sub-

stitute the multiply instruction for r1 in the add (second) operation, and

replace the instruction names with the operators:

+ 3, (* 4, 5), r2

If you consider the operators to be subtree roots, you get the following

AST using ANTLR tree notation (the tree itself represents r2, so the r2

reference on the end is unnecessary):

^('+' 3 ^('*' 4 5))

This notation is merely a text representation of the previous AST image

and has the following form:

^(root child1 child2 ... childN)

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=164

PROPER AST STRUCTURE 165

Most people have no problem agreeing that this AST is an accept-

able way to represent the expression in memory, but what about more

abstract concepts such as variable definitions like int i;?

Encoding Abstract Instructions

To deal with language constructs that are more abstract than expres-

sions, we need to invent some high-level pseudomachine instructions

that represent the operation implied by the source language construct.

Each subtree should be like an imperative command in English with a

verb and object such as “define an integer variable i.” Always think of

subtrees as operations with operands that tell the computer precisely

what to do, just like we saw with the expression AST above. The follow-

ing AST is one possible representation of the variable definition:

VARDEF

int i

The VARDEF root node is an imaginary node, a node containing a token

type for which there is no corresponding input symbol. int i; is implicitly

a definition operation by its grammatical structure rather than explic-

itly because of an input symbol such as plus or multiply. For language

constructs more abstract than expressions and statements, expect to

invent pseudo-operations and the associated imaginary nodes.

Source code is meant for human consumption; hence, a single source-

level construct often represents multiple lower-level operations. Con-

sider a variation on the variable definition syntax that allows you to

define multiple variables without having to repeat the type: int i,j;. You

must unravel this into two operations when building an AST where the

AST does not include the comma and semicolon.

VARDEF

int i

and VARDEF

int j

The punctuation characters are not included because they only exist to

make the syntax clear to the parser (that is, to make a programmer’s

intentions clear). Once the parser has identified the structure, though,

the punctuation symbols are superfluous and should not be included

in the tree.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=165

PROPER AST STRUCTURE 166

The VARDEF subtrees are in keeping with the third goal, that of creating

trees that are easy to process. “Easy to process” usually means the node

has an obvious operation and structure. To illustrate this, consider that

Fortran syntax, a(i), is identical for both array indexes and function

calls. Because the syntax alone does not dictate the operation, you will

typically define semantic predicates in your parser grammar that query

the symbol table to distinguish between the two based upon the type of

the identifier (array or function name). The identifier type dictates the

operation. Once you have discovered this information, do not throw it

away. Use it to create different AST operation nodes. For example, the

following AST does not satisfy the third goal because the operation is

not obvious—the operation is still ambiguous.

’(’

a i

The ’(’ token also just does not make much sense as an operator.

Instead, build an AST that makes the operation clear such as an array

index:

INDEX

a i

or a function call:

CALL

a i

Besides nodes created from tokens and imaginary root nodes, you will

also create lists of nodes and subtrees. Usually there is some obvious

root node to which you should add the list elements as children. For

example, the earlier variable definitions might be children of a class

definition root node that also groups together method definitions:

VARDEF

int i

VARDEF

int j

CLASS

T METHOD ...

...

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=166

PROPER AST STRUCTURE 167

Using ANTLR’s tree description language, that tree is written like this:

^(CLASS ID ^(VARDEF int i) ^(VARDEF int j) ^(METHOD ...) ...)

During construction, you will often have a rule that creates a list of sub-

trees. Until a valid root node can take on the list elements as children,

you must use a special “nil operation” root node (trees must always

have a single root node). Consider the variable definition subtrees cre-

ated by, say, rule definitions. This rule would simulate a list using a tree

with a nil root:

^(nil ^(VARDEF int i) ^(VARDEF int j))

There is another situation in which you will want to create an imagi-

nary node: to represent optional but missing subtrees. In general, you

should not put something into the AST unless there is a corresponding

input construct, but sometimes you must add extra nodes in order to

remove ambiguity; remember, one of your goals is to make the subtrees

easy to recognize during subsequent phases. Consider the for loop in

Java, which has the following basic form:

forStat

: 'for' '(' declaration? ';' expression? ';' expression? ')'

slist

;

Because every element is optional, you might be tempted to leave miss-

ing expressions out of the AST. Unfortunately, this makes the AST

ambiguous. If the tree has only one expression child, which is it? The

conditional or the update expression? Instead, you need to leave a

marker representing a missing expression (or variable definition). For

the input for (int i=0; ; i++) {...}, create a tree that looks like the follow-

ing where an imaginary node, EXPR, represents the missing conditional

expression:

i i

FOR

VARDEF EXPR ++

int 0

Similarly, if the initializer were missing from the variable definition,

you could include an EXPR node on the end in its place. In this case,

however, the optional initializer expression is last, and simply leaving it

off would not be a problem.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=167

IMPLEMENTING ABSTRACT SYNTAX TREES 168

You might also consider adding an EXPR node on top of all expressions

because it might be a good place to squirrel away computation results

or other information about the expression after it.

In summary, your goal is to identify and break apart the input con-

structs into simple operations and encode them in the AST. Your AST

will contain nodes created from tokens, nodes with imaginary token

types, subtrees with a root and children, and lists of these. Subtree

roots represent operations, real or abstract, and subtree children rep-

resent operands. Do not include syntactic sugar tokens, such as semi-

colons, from the source language in the AST.

Now that you know something about what AST structures look like,

let’s examine the contents and types of the nodes themselves and how

they are assembled into trees.

7.2 Implementing Abstract Syntax Trees

ANTLR assumes nothing about the actual Java type and implementa-

tion of your AST nodes and tree structure but requires that you specify

or implement a TreeAdaptor. The adaptor plays the role of both fac-

tory and tree navigator. ANTLR-generated parsers can build trees, and

tree parsers can walk them through the use of a single adapter object.

Because ANTLR assumes tree nodes are of type Object, you could even

make your Token objects double as AST nodes, thus avoiding a second

allocation for the tree nodes associated with tokens. Improved in v3. ANTLR

v2 used cumbersome

child-sibling trees for

memory efficiency

reasons, but v3 uses a

simpler “list of children”

approach.

ANTLR allows you to define your own tree nodes but provides a default

tree node implementation, CommonTree, that is useful in most situa-

tions. Each node has a list of children and a payload consisting of the

token from which the node was created.

For imaginary nodes, the parser creates a CommonToken object using

the imaginary token type and uses that as the payload. CommonTree

Adaptor creates CommonTree objects, which satisfy interface Tree. Tree

has, among a few other things, the ability to add and get children:

/** Get ith child indexed from 0..getChildCount()-1 */

Tree getChild(int i);

/** How many children does this node have? */

int getChildCount();

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=168

IMPLEMENTING ABSTRACT SYNTAX TREES 169

/** Add t as a child to this node. If t is null, do nothing. If t

* is nil, add all children of t to this node's children.

*/

void addChild(Tree t);

/** Indicates the node is a nil node but may still have children,

* meaning the tree is a flat list.

*/

boolean isNil();

The generic Tree functionality of CommonTree that has nothing to do with

payload is contained in BaseTree, a Tree implementation with no user

data. CommonTreeAdaptor works with any tree node that implements

Tree. BaseTree is useful if you want the core tree functionality but with a

payload other than the Token.

An example makes the use of a tree adapter clearer. The following sim-

ple program creates a list of identifiers via create() and prints it via

toStringTree(). The root node of a list is a “nil” node, which the adapter

creates using nil().

Download trees/XYZList.java

import org.antlr.runtime.tree.*;

public class XYZList {

public static void main(String[] args) {

int ID = 1; // define a fictional token type

// create a tree adapter to use for tree construction

TreeAdaptor adaptor = new CommonTreeAdaptor();

// a list has no root, creating a nil node

CommonTree list = (CommonTree)adaptor.nil();

// create a Token with type ID, text "x" then use as payload

// in AST node; this variation on create does both.

list.addChild((CommonTree)adaptor.create(ID,"x"));

list.addChild((CommonTree)adaptor.create(ID,"y"));

list.addChild((CommonTree)adaptor.create(ID,"z"));

// recursively print the tree using ANTLR notation

// ^(nil x y z) is shown as just x y z

System.out.println(list.toStringTree());

}

}

The unrestricted tree node data type comes at the cost of using the

adapter to create and connect nodes, which is not the simplest means

of building trees. Since you annotate grammars to build trees instead

of manually coding the tree construction, this is not a burden.

http://media.pragprog.com/titles/tpantlr/code/trees/XYZList.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=169

DEFAULT AST CONSTRUCTION 170

When executed, the program emits the following:

$ java XYZList

x y z

$

If you’d like to use your own tree node type because you want to add

some fields to each node, define your node as a subclass of CommonTree:

Download trees/MyNode.java

import org.antlr.runtime.tree.*;

import org.antlr.runtime.Token;

public class MyNode extends CommonTree {

/** If this is an ID node, symbol points at the corresponding

* symbol table entry.

*/

public Symbol symbol;

public MyNode(Token t) {

super(t);

}

}

Then, subclass CommonTreeAdaptor, and override create() so that it

builds your special nodes:

/** Custom adaptor to create MyNode nodes */

class MyNodeAdaptor extends CommonTreeAdaptor {

public Object create(Token payload) {

return new MyNode(payload);

}

}

Finally, you must inform ANTLR that it should use your custom adap-

ter:

MyParser parser = new MParser(tokens,symtab); // create parser

MyNodeAdaptor adaptor = new MyNodeAdaptor(); // create adaptor

parser.setTreeAdaptor(adaptor); // use my adaptor

parser.startRule(); // launch!

If you’d like to build radically different trees or use an existing, say,

XML DOM tree, then you will have to build a custom TreeAdaptor so

ANTLR knows how to create and navigate those trees.

7.3 Default AST Construction

By default, ANTLR does not create ASTs, so you first need to set option

output to AST. Without instructions to the contrary, ANTLR will simply

http://media.pragprog.com/titles/tpantlr/code/trees/MyNode.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=170

DEFAULT AST CONSTRUCTION 171

build a flat tree (a linked list) containing pointers to all the input token

objects. Upon this basic default mechanism, you will add AST con-

struction operators and AST rewrite rules as described in the following

sections. Before going into those specifications, however, you need to

learn a little bit about the AST implementation mechanism, which is

fairly involved for even a small grammar but is not difficult to under-

stand. The details are important for your overall understanding, and

this section provides an in-depth look, but you can initially skim this

section and refer to it later. The two sections that follow, on AST oper-

ators and rewrite rules, move back to the user level and show you how

to annotate grammars in order to build trees.

To explore ANTLR’s AST implementation mechanism, consider the fol-

lowing grammar that matches a list of identifiers and integers. Rule r

yields a nil-rooted tree with the ID and INT nodes as children:

Download trees/List.g

grammar List;

options {output=AST;}

r : (ID|INT)+ ;

ID : 'a'..'z'+ ;

INT : '0'..'9'+;

WS : (' '|'\n'|'\r') {$channel=HIDDEN;} ;

The following code is a typical test harness that gets the return value

data aggregate from rule r, extracts the tree created by r, and prints it:

Download trees/TestList.java

import org.antlr.runtime.*;

import org.antlr.runtime.tree.*;

public class TestList {

public static void main(String[] args) throws Exception {

// create the lexer attached to stdin

ANTLRInputStream input = new ANTLRInputStream(System.in);

ListLexer lexer = new ListLexer(input);

// create the buffer of tokens between the lexer and parser

CommonTokenStream tokens = new CommonTokenStream(lexer);

// create the parser attached to the token buffer

ListParser parser = new ListParser(tokens);

// launch the parser starting at rule r, get return object

ListParser.r_return result = parser.r();

// pull out the tree and cast it

Tree t = (Tree)result.getTree();

System.out.println(t.toStringTree()); // print out the tree

}

}

http://media.pragprog.com/titles/tpantlr/code/trees/List.g
http://media.pragprog.com/titles/tpantlr/code/trees/TestList.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=171

DEFAULT AST CONSTRUCTION 172

All rules return a tree when you specify output=AST. In this case, ANTLR

generates the following return value structure for rule r:

public static class r_return extends ParserRuleReturnScope {

Object tree;

public Object getTree() { return tree; }

}

Here is a sample execution:

⇐ $ java TestList

⇐ abc 34 2 x
⇐ EOF

⇒ abc 34 2 x

$

ANTLR’s basic strategy is straightforward. In this case, the rules are as

follows:

1. Create a root pointer for each rule.

2. For each token, create a tree node as a function of the token.

3. Add each tree node to the enclosing rule’s current root.

The generated parser accordingly performs the following operations (in

pseudocode):

define a root pointer for rule, root_0

root_0 = adaptor.nil(); // make a nil root for rule

create a node for abc (element of ID|INT set)

add node as child of root_0

create a node for 34

add node as child of root_0

create a node for 2

add node as child of root_0

create a node for x

add node as child of root_0

return root_0 as r's tree attribute

As usual, the best way to figure out exactly what ANTLR is doing is

to examine the code it generates. Here is the general structure of the

rule’s corresponding implementation method:

// match rule r and return a r_return object

public r_return r() throws RecognitionException {

r_return retval = new r_return(); // create return value struct

retval.start = input.LT(1); // compute $r.start

Object root_0 = null; // define r's root node

try {

root_0 = (Object)adaptor.nil(); // create nil root

«r-prediction»

«r-matching-and-tree-construction»

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=172

DEFAULT AST CONSTRUCTION 173

// rule cleanup next

retval.stop = input.LT(-1); // compute $r.stop

// set $r.tree to root_0 after postprocessing

// by default, this just converts ^(nil x) to x

retval.tree = (Object)adaptor.rulePostProcessing(root_0);

adaptor.setTokenBoundaries(retval.tree, retval.start, retval.stop);

}

catch (RecognitionException re) {

«error-recovery»

}

return retval;

}

The highlighted lines derive from the AST construction mechanism. The

code to build tree nodes and add them to the tree is interspersed with

the code that matches the set within the (. . .)+ subrule:

// This code happens every iteration of the subrule

set1=(Token)input.LT(1); // track the input token

if ((input.LA(1)>=ID && input.LA(1)<=INT)) {

// we found an ID or INT; create node from set1

// then ask the adapter to add it as a child of

// rule's root node.

adaptor.addChild(root_0, adaptor.create(set1));

input.consume(); // move to next input symbol

errorRecovery=false; // ignore this (just ANTLR error bookkeeping)

}

else

«throw-exception»

// finished matching the alternative within (...)+

After all tree construction for a rule, the rule notifies the adapter that

it should perform any necessary postprocessing on the tree before the

rule returns it. This gives you a general hook to do whatever processing

your trees might need on a per-rule basis. At minimum, the postpro-

cessing needs to convert nil-rooted trees with a single child node to

a simple node; that is, the postprocessing must convert ∧(nil x) to x.

Otherwise, the resulting tree will be filled with superfluous nil nodes.

Remember that nil is used only to represent the dummy root node for

lists.

Also as part of the final rule tree processing, the parser automatically

computes and stores the range of tokens associated with the subtree

created for that rule. This information is extremely useful later when

generating code. Sometimes you want to replace sections of the input

with a translation computed from the tree. To do that, you need to know

the corresponding input tokens to replace. For example, consider the

expression x + y (including the spaces). The root plus node will store

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=173

CONSTRUCTING ASTS USING OPERATORS 174

token boundaries 0..4, assuming that the expression is the only input

and that it consists of five tokens:

0 1 2 3 4 Token index

INT SPACE + SPACE INT Token sequence

The AST nodes will have start and stop token index boundaries, as

shown in the following image:

+
[0..4]

x
[0..0]

y
[4..4]

The token range of the root node will include all hidden channel tokens

(whitespace in this case) that happen to be between the first and last

nonhidden tokens. Also note that, because each node has the token

from which it was created as payload, each node knows its correspond-

ing position in the original input stream. So, the + node has a token

whose index is 2. These boundaries and indexes allow you to print

or replace the associated construct in the original input stream. This

assumes that you keep around a buffer of all tokens in input order,

which CommonTokenStream does.

The details presented in this section give you a deeper understanding

of how ANTLR builds ASTs, but initially you need only a basic under-

standing that ANTLR uses an adapter to create nodes, hooks nodes

together to form trees, and uses nil-rooted trees to represent lists. The

following sections move back to the user level and describe how you

annotate grammars in order to build the trees you want.

7.4 Constructing ASTs Using Operators

The nice aspect of the automatic AST construction mechanism is that

you can just turn it on and it builds a tree, albeit a flat one. With just

a little work, however, you can add AST construction operators to have

the parser incrementally build the trees you want. These AST operators

force you to think about the emergent behavior of a set of operations,

but they can be an extremely terse means of specifying AST structure.

They work great for some common constructs such as expressions

and statements. For other AST structures, though, the rewrite rules

described in the next section are more effective.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=174

CONSTRUCTING ASTS USING OPERATORS 175

The operators work like this. First turn on output=AST and assume, by

the automatic mechanism, that the parser adds nodes for all tokens to

the tree as siblings of the current rule’s root. Then, if you do not want

the parser to create a node for a particular token, suffix it with the !

operator. If you want certain tokens to become subtree roots (operators

or pseudo-operators), suffix the token reference with ∧. An example

makes all this clear. Consider the following statement rule that has ∧

and ! operators in order to build reasonable AST structures:

statement

: // the result of compoundStatement is statement result

// equivalent to -> compoundStatement

compoundStatement

// equivalent to -> ^('assert' $x $y?)

| 'assert'^ x=expression (':'! y=expression)? ';'!

// equivalent to -> ^('if' expression $s1 $s2?)

| 'if'^ expression s1=statement ('else'! s2=statement)?

// equivalent to -> ^('while' expression statement)

| 'while'^ expression statement

// equivalent to -> ^('return' expression?)

| 'return'^ expression? ';'!

;

The comments provide the equivalent rewrite rules, which we’ll examine

in detail later. Generally, the rewrite rules are the clearest. For demon-

strating the AST construction operators, though, statements are a good

place to start.

The place where AST construction operators really shine is in expres-

sion rules. Consider the following rule that matches an integer or sum

of integers:

expr : INT ('+'^ INT)* ;

The rule says that the INT nodes are always children and that the ’+’

node is always a subtree root. The tree becomes one level higher for

each iteration of the (. . .)* subrule. You should look at these as oper-

ators that alter the tree during recognition, not tree structure declara-

tions that happen after recognition. As the parser recognizes INT tokens,

it builds nodes for them and adds them as children of the current root

node. The ∧ operator takes the node created for the ’+’ token and makes

it the new root, relegating the old root to be a child of the new root.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=175

CONSTRUCTING ASTS USING OPERATORS 176

Operator Description

! Do not include node or subtree (if referencing a rule) in

rule’s tree. Without any suffix, all elements are added as

children of current rule’s root.
∧ Make node root of subtree created for entire enclosing rule.

Height of tree is increased by 1. Next nonsuffixed element’s

node or subtree becomes the first child of this root node. If

the next element has a ∧ suffix, then this node becomes the

first child of that next element. If the suffixed element is a

rule reference, that rule must return a single node, not a

subtree. The result must become a root node.

Figure 7.1: AST construction operators

Given input 1, rule expr builds a single-node tree: INT. Input 1+2 yields
∧(’+’ 1 2), and 1+2+3 yields ∧(+ ∧(+ 1 2) 3). Graphically, the latter tree looks

like this:

+

1 2

+

3

After matching 1+2, rule expr’s root pointer points to the three-node tree:
∧(’+’ 1 2). After seeing the second plus operator, expr’s root pointer will

point at a new plus node. The old ∧(’+’ 1 2) tree will be the first child.

Then, after seeing the final 3 token, the tree will be complete—the final

token will be the second child of the topmost plus operator.

The AST construction operators work great for left-associative operators

such as plus and multiply, but what about right-associative operators

such as exponentiation? Per Section 11.5, Arithmetic Expression Gram-

mars, on page 275, to handle right-associative arithmetic operators,

use tail recursion to the enclosing rule. To make the exponential oper-

ator a subtree root, use the ∧ suffix (do not confuse the input symbol

’∧’, which means exponent in arithmetic expressions, with the ∧ AST

construction operator; they just happen to be the same symbol):

pow : INT ('^'^ pow)? ; // right-associative via tail recursion

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=176

CONSTRUCTING ASTS WITH REWRITE RULES 177

Given input 1∧2∧3, the parser will build the following AST:

^

^1

2 3

Compare this to the earlier AST built for left-associative operator plus,

and input 1+2+3. The operations are effectively swapped as you would

expect because the exponent operator is right-associative and should

do the 2∧3 operation first. The table in Figure 7.1, on the preceding

page, summarizes the two AST operators.

The automatic mechanism, in combination with a few AST construction

operators, provides a viable and extremely terse means of specifying

trees. Except for building ASTs for expressions, however, the AST con-

struction operators are not the best solution. The next section describes

a declarative tree construction approach that is more powerful and is

usually more obvious than using operators.

7.5 Constructing ASTs with Rewrite Rules

The recommended way to build ASTs is to add rewrite rules to your

grammar. Rewrite rules are like output alternatives that specify the

grammatical, two-dimensional structure of the tree you want to build

from the input tokens. The notation is as follows: New in v3.

rule: «alt1» -> «build-this-from-alt1»

| «alt2» -> «build-this-from-alt2»

...

| «altN» -> «build-this-from-altN»

;

For example, here is a rule that performs an identity transformation.

From the INT input token, the parser builds a single-node tree with the

INT token as payload:

e : INT -> INT ;

Each rule returns a single AST that you can set zero or more times

using the -> operator; generally, you will use the rewrite operator once

per rule invocation. The resulting tree is available to invoking rules as

a predefined attribute.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=177

CONSTRUCTING ASTS WITH REWRITE RULES 178

For example, here is a rule that invokes e and prints the resulting node:

r : e {System.out.println($e.tree);} ;

While parser grammars specify how to recognize input tokens, rewrite

rules are generational grammars that specify how to generate trees.

ANTLR figures out how to map input to output grammars automati-

cally. Rules queue up the elements on the left and then use them as

input streams to the generational grammar on the right that specifies

tree structure.

While designing this new rewrite mechanism,1 I carefully studied many

existing ANTLR v2 grammars to categorize and generalize the kind of

input grammar to tree structure transformations programmers were

doing. The following subsections describe the operations I found.

Omitting Input Elements

Languages use many input symbols, such as comma, semicolons,

colons, curlies, parentheses, and so on, to indicate structure in the

input. These symbols are not useful in the AST. The following (unre-

lated) rules delete superfluous tokens from the AST simply by omitting

them from the rewrite specification:

stat: 'break' ';' -> 'break' ; // delete by omission

expr: '(' expr ')' -> expr // omit parentheses

| INT -> INT

;

a : ID -> ; // return no AST

Reordering Input Elements

Sometimes the order of input that humans want to use is not the most

convenient processing order for the AST. Reorder elements by specify-

ing a new order in the rewrite rule:

/** flip order of ID, type; omit 'var', ':' */

decl : 'var' ID ':' type -> type ID ;

Making Input Elements the Root of Others

To specify two-dimensional structure, you must indicate which tokens

should become subtree roots. Rewrite rules use ∧(...) syntax where the

1. I am grateful to Loring Craymer, Monty Zukowski, and John Mitchell (longtime

research collaborators) for their help in designing the tree rewrite mechanism.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=178

CONSTRUCTING ASTS WITH REWRITE RULES 179

first element is the root of the remaining (child) elements, as shown in

the following rules:

/** Make 'return' the root of expr's result AST */

stat : 'return' expr ';' -> ^('return' expr) ;

/** Use 'var' as root of type, ID; flip over of type, ID */

decl : 'var' ID ':' type -> ^('var' type ID) ;

Adding Imaginary Nodes

As discussed in Section 7.1, Proper AST Structure, on page 163, you

will create imaginary nodes to represent pseudo-operations such as

“declare variable,” “declare method,” etc. To create an imaginary node

in the AST, simply refer to its token type, and ANTLR will create a Token

object with that token type and make it the payload of a new tree node:

/** Create a tree with imaginary node VARDEF as root and

* type, ID as children.

*/

decl : type ID ';' -> ^(VARDEF type ID) ;

/** Ensure that there is always an EXPR imaginary node for

* a loop conditional even when there is no expression.

*/

forLoopConditional

: expression -> ^(EXPR expression)

| -> EXPR // return EXPR root w/o children

;

An imaginary token reference is a token reference for which there is

no corresponding token reference on the left side of the -> operator.

The imaginary token must be defined elsewhere in a grammar or in the

tokens section.

Collecting Input Elements and Emitting Together

You can collect various input symbols and ASTs created by other rules

to include them as a single list. You can also include a list of repeated

symbols from the input grammar, as shown in the following rules:

/** Collect all IDs and create list of ID nodes; omit ',' */

list : ID (',' ID)* -> ID+ ; // create AST with 1 or more IDs

/** Collect the result trees from all formalArg invocations

* and put into an AST list.

*/

formalArgs

: formalArg (',' formalArg)* -> formalArg+

|

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=179

CONSTRUCTING ASTS WITH REWRITE RULES 180

/** Collect all IDs and create a tree with 'int' at the root

* and all ID nodes as children.

*/

decl : 'int' ID (',' ID)* -> ^('int' ID+) ;

/** Match a complete Java file and build a tree with a UNIT

* imaginary root node and package, import, and type definitions

* as children. A package definition is optional in the input

* and, therefore, must be optional in the rewrite rule. In

* general, the ‘‘cardinality'' of the rewrite element must match

* how many input elements the rule can match.

*/

compilationUnit

: packageDef? importDef* typeDef+

-> ^(UNIT packageDef? importDef* typeDef+)

;

Duplicating Nodes and Trees

When breaking a single source construct into multiple operations in

your AST, you will often need to include pieces of the input in each of

the operations. ANTLR will automatically duplicate nodes and trees as

necessary, as demonstrated in the following examples:

/** Make a flat list consisting of two INT nodes pointing

* at the same INT token payload. The AST nodes are duplicates,

* but they refer to the same token.

*/

dup : INT -> INT INT ;

/** Create multiple trees of form ^('int' ID), one for each input

* ID. E.g., "int x,y" yields a list with two trees:

* ^(int x) ^(int y)

* The 'int' node is automatically duplicated.

* Note: to be distinguished from ^('int' ID+), which makes a

* single tree with all IDs as children.

*/

decl : 'int' ID (',' ID)* -> ^('int' ID)+ ;

/** Like previous but duplicate tree returned from type */

decl : type ID (',' ID)* -> ^(type ID)+ ;

/** Include a duplicate of modifier if present in input.

* Trees look like:

* ^(int public x) ^(int public y)

* or

* ^(int x) ^(int y)

*/

decl : modifier? type ID (',' ID)* -> ^(type modifier? ID)+ ;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=180

CONSTRUCTING ASTS WITH REWRITE RULES 181

The advantage of always creating duplicates for elements that you ref-

erence multiple times is that there is no possibility of creating cycles in

the tree. Recall that a tree must not have children that point upward in

the tree.

Otherwise, tree walkers (visitors, tree grammars, and so on) will get

stuck in an infinite loop; for example, the AST resulting from

t.addChild(t); will prevent a tree walker from terminating. Without

automatic duplication, the following rule would be equivalent to

t.addChild(t);:

a : ID -> ^(ID ID) ; // no cycle

ANTLR generates the following code for the rewrite rule:

// make dummy nil root for ^(...)

Object root_1 = adaptor.nil();

// make a node created from INT the root

root_1 = adaptor.becomeRoot((Token)list_INT.get(i_0), root_1);

// make another node created from INT as child

adaptor.addChild(root_1, (Token)list_INT.get(i_0));

// add rewrite ^(...) tree to rule result

adaptor.addChild(root_0, root_1);

In a rewrite rule, ANTLR duplicates any element with cardinality one

(that is, one node or one tree) when referenced more than once or

encountered more than once because of an EBNF * or + suffix oper-

ator. See Section 7.5, Rewrite Rule Element Cardinality, on page 184.

Choosing between Tree Structures at Runtime

Sometimes you do not know which AST structure to create for a partic-

ular alternative until runtime. Just list the multiple structures with a

semantic predicate in front that indicates the runtime validity of apply-

ing the rewrite rule. The predicates are tested in the order specified.

The rewrite rule associated with the first true predicate generates the

rule’s return tree:

/** A field or local variable. At runtime, boolean inMethod

* determines which of the two rewrite rules the parser applies.

*/

variableDefinition

: modifiers type ID ('=' expression)? ';'

-> {inMethod}? ^(VARIABLE ID modifier* type expression?)

-> ^(FIELD ID modifier* type expression?)

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=181

CONSTRUCTING ASTS WITH REWRITE RULES 182

You may specify a default rewrite as the last unpredicated rewrite:

a[int which] // pass in parameter indicating which to build

: ID INT -> {which==1}? ID

-> {which==2}? INT

-> // yield nothing as else-clause

;

Referring to Labels in Rewrite Rules

The previous sections enumerated the operations you will likely need

when building ASTs and identified, by example, the kinds of rewrite

rule elements you can use. The example rewrite rules used token and

rule references.

The problem with token and rule references is that they grab all ele-

ments on the left side of the -> operator with the same name. What if

you want only some of the ID references, for example? Using ID+ in the

rewrite rule yields a list of all ID tokens matched on the left side.

Use labels for more precise control over which input symbols the parser

adds to the AST. Imagine that a program in some language is a list

of methods where the first method is considered the main method in

which execution begins. The AST you create should clearly mark which

method is the main method with an imaginary root node; otherwise,

you will get a list of undifferentiated methods.

The following rule splits the usual method+ grammar construct into

two pieces, method method*, identified with labels so that the rewrite

rule can treat the first method separately:

prog: main=method others+=method* -> ^(MAIN $main) $others* ;

As another example, consider that you might want to encode the ex-

pressions in a for loop differently in the AST. The following rule illus-

trates how to refer to two different expressions via labels:

forStat

: 'for' '(' decl? ';' cond=expr? ';' iter=expr? ')' slist

-> ^('for' decl? ^(CONDITION $cond)? ^(ITERATE $iter)?)

;

You can use labels anywhere you would usually use a token or rule

reference.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=182

CONSTRUCTING ASTS WITH REWRITE RULES 183

Creating Nodes with Arbitrary Actions

As a “safety blanket,” ANTLR provides a way for you to specify tree

nodes via an arbitrary action written in the target language, as shown

in the following rule:

/** Convert INT into a FLOAT with text = $INT.text + ".0" */

a : INT -> {new CommonTree(new CommonToken(FLOAT,$INT.text+".0"))} ;

An action can appear anywhere that a token reference can appear, but

you cannot suffix actions with cardinality operators such as + and *.

You can use arbitrary actions to access trees created elsewhere in a

grammar. For example, when building class definitions for a Java-like

language, the most natural grammar might match modifiers outside

the rule that builds the AST for class definitions. The typeDefinition rule

matches the modifiers and passes the resulting tree to the classDefinition

rule:

typeDefinition

: modifiers! classDefinition[$modifiers.tree]

| modifiers! interfaceDefinition[$modifiers.tree]

;

The result AST of the modifiers rule is not included in the tree for typeDef-

inition because of the ! operator. The result of typeDefinition is, therefore,

purely the result of either classDefinition or interfaceDefinition.

The rewrite rule in classDefinition illustrates a number of techniques

described by the previous sections. The rule returns a tree rooted by the

’class’ token. The children are the class name, the modifiers, the super-

class, the potentially multiple interface implementations, the variables,

the constructors, and the method definitions:

/** Match a class definition and pass in the tree of modifiers

* if any.

*/

classDefinition[CommonTree mod]

: 'class' ID ('extends' sup=typename)?

('implements' i+=typename (',' i+=typename)*)?

'{'

(variableDefinition

| methodDefinition

| ctorDefinition

)*
'}'

-> ^('class' ID {$mod} ^('extends' $sup)? ^('implements' $i+)?

variableDefinition* ctorDefinition* methodDefinition*
)

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=183

CONSTRUCTING ASTS WITH REWRITE RULES 184

Regardless of the input order of the member definitions, the tree orders

them first by variable, then by constructor, and then by method. The

action referencing $mod simply inserts that parameter as the second

child of the resulting AST. Because you can reference rule elements

only within a rewrite rule, you must enclose attribute references such

as $mod in the curly braces of an action.

The third child, ∧(’extends’ $sup)?, is a nested subtree whose child is

the superclass. If the (’extends’ typename)? input clause matches no

input, the third child will evaluate to an empty tree. The fourth child

similarly represents a nested tree with any interface implementations

as children. The subtree evaluates to an empty tree if there were no

implementations found on the input stream. The next section describes

how EBNF operators such as ? can result in empty trees.

Rewrite Rule Element Cardinality

You can suffix rewrite rule elements with the EBNF subrule operators

(?, *, or +) as you have seen, and, for the most part, their semantics are

natural and clear. For example, ID+ and atom* obviously generate lists of

one or more ID nodes and zero or more rule atom results, respectively.

The parser throws a runtime exception if there is not at least one ID

token from which to generate a node.

Also, if the parser sees more than one ID node during an ID? rewrite, it

will also throw a runtime exception. Things get a little more complicated

when the suffixed element is within a tree such as ∧(VARDEF atom+).

That subtree builds a single VARDEF-rooted tree with all atom results as

children.

What about (’int’ ID)+ where the + is now around a group of elements and

not the individual ID element? This requires a more formal definition of

what the EBNF operators do. The best way to think about rewrite rules

is that they are the dual of parsing rules. Just imagine the rewrite rule

matching input instead of generating output, and things usually make

more sense. If you tried to match that closure operation, you would

clearly need as many ’int’ keywords as identifiers on the input stream.

Similarly, when generating output, ANTLR must create as many ’int’

as ID nodes, even if it means replicating one or the other to match

cardinalities. If the input grammar matched ’int’ only once, for example,

the AST construction mechanism would duplicate it once for every ID

found on the input stream.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=184

CONSTRUCTING ASTS WITH REWRITE RULES 185

An Analogy to Explain Rewrite Rule Cardinality

Rewrite rule element cardinalities must match up just like stuff-
ing letters into envelopes and stamping them. If you have one
letter, you must have one envelope and one stamp. In gen-
eral, you must match up the number of letters, envelopes, and
stamps. The following rule captures that analogy:

/** Match a letter for each envelope and stamp, create trees with

* the letter as the root and the envelopes, stamps as children.

*/
pile : (letter envelope stamp)+ -> ^(letter envelope stamp)+ ;

Now, if you have only one letter but you want to send it to many
people, you must duplicate the letter once for every addressed
and stamped envelope:

/** Like duplicating one letter to put in multiple envelopes.

* The rule generates one tree for every stamped envelope with

* the letter node duplicated across them all.

*/
formLetter:letter (envelope stamp)+ -> ^(letter envelope stamp)+ ;

A closure operator such as + builds n nodes or trees according to the

suffixed element where n is the maximum of the cardinalities of the

element or elements within. Revisiting some previous examples, let’s Cardinality means how

many of a particular

element there are.identify the cardinality of the elements:

// cardinality of both type and ID is 1

decl : type ID ';' -> ^(VARDEF type ID) ;

// cardinality of ID is >= 1

list : ID (',' ID)* -> ID+ ;

Now consider the case where the + operator suffixes a tree:

// cardinality of ID is >= 1

decl : 'int' ID (',' ID)* ';' -> ^(VARDEF ID)+ ;

How many times does the + operator loop in the rewrite rule? That is,

how many trees does the rule generate? The answer lies in the cardi-

nality of elements referenced within. If all elements have cardinality of

1, then n=1, and the rule will generate one tree. If at least one element

has cardinality greater than 1, then n is equal to that element’s cardi-

nality. All elements with cardinality greater than 1 must have exactly

the same cardinality.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=185

CONSTRUCTING ASTS WITH REWRITE RULES 186

When there are some elements with cardinality one and others with

cardinality greater than one, the elements with cardinality one are

duplicated as the parser creates the tree. In the following rule, the ’int’

token has cardinality one and is replicated for every ID token found on

the input stream:

decl : 'int' ID (',' ID)* -> ^('int' ID)+ ;

Naturally, when the cardinality of the elements within a suffixed ele-

ment is zero, the parser does not create a tree at all:

// if there is no "int ID" then no tree will be generated

decl : ('int' ID)? -> ^('int' ID)? ;

What about imaginary nodes, which always have cardinality one? Do

they force the construction of trees even when the real elements within

the tree have cardinality zero? No. Trees or subrules suffixed with EBNF

operators yield trees only when at least one real element within the tree

has cardinality greater than zero. For example, consider the following

rule and AST rewrite rule:

initValue : expr? -> ^(EXPR expr)? ;

Rewrite ∧(EXPR expr)? yields no tree when the expr on the left side returns

no tree (the cardinality is zero). To be clear, ∧(EXPR expr?) always yields

at least an EXPR node. But, ∧(EXPR expr)?, with the suffix on the entire

tree, will not yield a tree at all if expr matched no input on the left side.

Most of the time the rewrite rules behave as you expect, given that they

are the dual of recognition rules. Just keep in mind that the cardinal-

ity of the elements within suffixed subrules and trees must always be

the same if their cardinality is greater than one. Also, if any element’s

cardinality is greater than one, the parser replicates any elements with

cardinality one.

Rewrite Rules in Subrules

Even when a rewrite rule is not at the outermost level in a rule, it still

sets the rule’s result AST. For example, the following rule matches if

statements and uses syntax to drive tree construction. The presence or

absence of an else clause dictates which rewrite rule in the subrule to

execute.

ifstat

: 'if' '(' equalityExpression ')' s1=statement

('else' s2=statement -> ^('if' ^(EXPR equalityExpression) $s1 $s2)

| -> ^('if' ^(EXPR equalityExpression) $s1)

)

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=186

CONSTRUCTING ASTS WITH REWRITE RULES 187

Here is another example where you might want to drive AST construc-

tion with syntax in a subrule:

decl: type

(ID '=' INT -> ^(DECL_WITH_INIT type ID INT)

| ID -> ^(DECL type ID)

)

;

Referencing Previous Rule ASTs in Rewrite Rules

Sometimes you can’t build the proper AST in a purely declarative man-

ner. In other words, executing a single rewrite after the parser has

matched everything in a rule is insufficient. Sometimes you need to

iteratively build up the AST (which is the primary motivation for the

automatic AST construction operators described in Section 7.4, Con-

structing ASTs Using Operators, on page 174). To iteratively build an

AST, you need to be able to reference the previous value of the current

rule’s AST. You can reference the previous value by using $r within

a rewrite rule where r is the enclosing rule. For example, the follow-

ing rule matches either a single integer or a series of integers added

together:

expr : (INT -> INT) ('+' i=INT -> ^('+' $expr $i))* ;

The (INT->INT) subrule looks odd but makes sense. It says to match INT

and then make its AST node the result of expr. This sets a result AST

in case the (. . .)* subrule that follows matches nothing. To add another

integer to an existing AST, you need to make a new ’+’ root node that

has the previous expression as the left child and the new integer as the

right child. The following image portrays the AST that the rewrite rule

in the subrule creates for an iteration matching +3. After each iteration,

$expr has a new value, and the tree is one level taller.

+

$expr 3

Input 1 results in a single node tree with token type INT containing 1.

Input 1+2 results in the following:

+

1 2

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=187

CONSTRUCTING ASTS WITH REWRITE RULES 188

And, input 1+2+3 results in the following:

+

1 2

+

3

That grammar with embedded rewrite rules recognizes the same input

and generates the same tree as the following version that uses the con-

struction operators:

expr : INT ('+'^ INT)* ;

The version with operators is much easier to read, but sometimes you’ll

find embedded rewrite rules easier. Here is a larger example where a

looping subrule must reference previous values of the rule’s AST incre-

mentally:

postfixExpression

: (primary->primary) // set return tree to just primary

('(' args=expressionList ')'

-> ^(CALL $postfixExpression $args)

| '[' ie=expression ']'

-> ^(INDEX $postfixExpression $ie)

| '.' p=primary

-> ^(FIELDACCESS $postfixExpression $p)

)*
;

Again, the (primary->primary) subrule matches primary and then makes

its result tree the result of postfixExpression in case nothing is matched in

the (. . .)* subrule. Notice that the last rewrite rule must use a label to

specifically target the proper primary reference (there are two references

to primary in the rule).

Deriving Imaginary Nodes from Real Tokens

You will create a lot of imaginary nodes to represent pseudo-operations

in your language. A problem with these imaginary nodes is that, be-

cause they are not created from real tokens, they have no line and

column information or token index pointing into the input stream. This

information is useful in a number of situations such as generating error

messages from tree walkers. It’s also generally nice to know from where

in the input stream the parser derived an AST construct.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=188

CONSTRUCTING ASTS WITH REWRITE RULES 189

ANTLR allows you to create imaginary nodes with a constructor-like

syntax so you can derive imaginary nodes from existing tokens. The

following rule creates an SLIST imaginary node, copying information from

the ’{’ real token:

compoundStatement

: lc='{' statement* '}' -> ^(SLIST[$lc] statement*)

;

The SLIST node gets the line and column information from the left curly’s

information.

You can also set the text of an imaginary node to something more

appropriate than a left curly by adding a second parameter to the imag-

inary node constructor: SLIST[$lc,"statements"]. The following table sum-

marizes the possible imaginary node constructors and how they are

implemented.

Imaginary Node Constructor Tree Adapter Invocation

T adaptor.create(T, "T")

T [] adaptor.create(T, "T")

T [token-ref] adaptor.create(T, token-ref)

T [token-ref, "text"] adaptor.create(T, token-ref, "text")

Combining Rewrite Rules and Automatic AST Construction

By default, output=AST in your parser causes each rule to build up a

list of the nodes and subtrees created by its elements. Rewrite rules,

though, turn off this automatic tree construction mechanism. You are

indicating that you want to specify the tree manually. In many cases,

though, you might want to combine the automatic mechanism with

rewrite rules in the same rule. Or, you might want to have some rules

use the automatic mechanism and others use rewrite rules. For exam-

ple, in the following rule, there is no point in specifying rewrite rules

because the automatic mechanism correctly builds a node from the

modifier tokens:

modifier

: 'public'

| 'static'

| 'abstract'

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=189

CONSTRUCTING ASTS WITH REWRITE RULES 190

The same is true for rules that reference other rules:

typename

: classname

| builtInType

;

The following rule illustrates when you might want to use a rewrite rule

in one alternative and the automatic mechanism in another alternative:

primary

: INT

| FLOAT

| '(' expression ')' -> expression

;

In general, the automatic mechanism works well for alternatives with

single elements or repeated constructs such as method+.

This chapter described the kinds of tree structures to build for various

input constructs,2 how ANTLR implements tree construction, and how

to annotate grammars with rewrite rules and construction operators

to build ASTs. In the next chapter, we’ll construct a complete parser

grammar that builds ASTs for a subset of C and a tree grammar that

walks those trees.

2. Readers familiar with ANTLR v2 might be curious about building dif-

ferent Java node types depending on the token type or might want to

build simple parse trees. Please see the wiki entries on heterogeneous trees

at http://www.antlr.org/wiki/pages/viewpage.action?pageId=1760 and parse trees at

http://www.antlr.org/wiki/pages/viewpage.action?pageId=1763.

http://www.antlr.org/wiki/pages/viewpage.action?pageId=1760
http://www.antlr.org/wiki/pages/viewpage.action?pageId=1763
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=190

Chapter 8

Tree Grammars
One of the most common questions programmers have when building

a translator is, “What do I do with my AST now that I’ve built it?” Their

first reaction is often to use a visitor pattern1 that essentially does a

depth-first walk of the tree, executing an action method at each node.

Although easy to understand, this approach is useful only for the sim-

plest of translators. It does not validate tree structure, and actions are

isolated “event triggers” that do not have any context information. The

actions know only about the current node and know nothing about the

surrounding tree structure. For example, visitor actions do not know

whether an ID node is in a variable definition or an expression. A good way to think of

tree grammars are as

executable

documentation, formally

describing complete tree

structure.

The next step is to write a tree walker that manually checks the struc-

ture. The walker is aware of context either implicitly by passing infor-

mation down the tree during the walk or by setting globally visible vari-

ables such as instance variables. Rather than build a tree walker by

hand, though, you should use a tree grammar just like you do when

building a text parser. To execute actions for certain subtrees of inter-

est, just embed actions in your grammar at the right location. Improved in v3.

ANTLR implements tree parsers with the same mechanism used to

parse token streams. When you look at the generated code for a tree

parser, it looks almost identical to a token parser. The tree parser

expects a one-dimensional stream of nodes with embedded UP and

DOWN imaginary nodes to mark the beginning and end of child lists,

as described in Section 3.3, Evaluating Expressions Encoded in ASTs,

on page 79.

1. See http://en.wikipedia.org/wiki/Visitor_pattern.

http://en.wikipedia.org/wiki/Visitor_pattern

MOVING FROM PARSER GRAMMAR TO TREE GRAMMAR 192

The CommonTreeNodeStream class will serialize the tree for the tree

parser, as shown in the following code template:

CommonTreeNodeStream nodes = new CommonTreeNodeStream(tree);

treeGrammarName walker = new treeGrammarName(nodes);

walker.start-symbol();

The three sections in this chapter describe the basic approach to writ-

ing a tree grammar (by copying and then altering the parser grammar)

and then illustrate a complete parser grammar and tree grammar for a

simple C-like language.

8.1 Moving from Parser Grammar to Tree Grammar

Once you have a grammar that builds ASTs, you need to build one

or more tree grammars to extract information, compute ancillary data

structures, or generate a translation. In general, your tree grammar will

have the following preamble:

tree grammar treeGrammarName;

options {

tokenVocab=parserGrammarName; // reuse token types

ASTLabelType=CommonTree; // $label will have type CommonTree

}

...

Then it is a matter of describing the trees built by the parser gram-

mar with a tree grammar. AST rewrite rules are actually generational

grammars that describe the trees that the parser grammar rule should

construct. To build the tree grammar, you can reuse these rewrite rules

as tree matching rules. The easiest way to build your tree grammar then

is simply to copy and paste your parser grammar into a tree grammar

and to remove the original parser grammar components (leaving only

the rewrite rules). For example, given the following parser grammar

rule:

grammar T;

...

decl : 'int' ID (',' ID)* -> ^('int' ID+) ;

translate it to this tree grammar:

tree grammar T;

...

decl : ^('int' ID+) ;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=192

MOVING FROM PARSER GRAMMAR TO TREE GRAMMAR 193

Parser rules that have AST rewrite rules within subrules also trans-

late easily because rewrite rules always set the rule’s result tree. The

following rule:

grammar T;

...

ifstat

: 'if' '(' equalityExpression ')' s1=stat

('else' s2=stat -> ^('if' ^(EXPR equalityExpression) $s1 $s2)

| -> ^('if' ^(EXPR equalityExpression) $s1)

)

;

translates to this:

tree grammar T;

...

ifstat

: ^('if' ^(EXPR equalityExpression) stat stat?)

;

which merges the two possible tree structures for simplicity. Note that

$s1 in the parser grammar becomes the first stat reference in the tree

grammar. $s2 becomes the second stat reference if the parser rule

matches an else clause.

If the parser rule decides at runtime which tree structure to build using

a semantic predicate, there is no problem for the tree grammar. The tree

will be either one of those alternatives—just list them. For example, the

following grammar:

grammar T;

...

variableDefinition

: modifiers type ID ('=' expression)? ';'

-> {inMethod}? ^(VARIABLE ID modifier* type expression?)

-> ^(FIELD ID modifier* type expression?)

;

translates to the following:

tree grammar T;

...

variableDefinition

: ^(VARIABLE ID modifier* type expression?)

| ^(FIELD ID modifier* type expression?)

;

The AST construction operators are a little trickier, which is why you

should use the AST rewrite rules where possible.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=193

MOVING FROM PARSER GRAMMAR TO TREE GRAMMAR 194

The ! operator is usually straightforward to translate because you can

simply leave that element out of the tree grammar. For example, in the

following rule, the semicolons are not present in the tree grammar:

grammar T;

...

stat: forStat

| expr ';'!

| block

| assignStat ';'!

| ';'!

;

The tree grammar looks like this:

tree grammar T;

...

stat: forStat

| expr

| block

| assignStat

;

where the final parser rule alternative is absent from the tree grammar

because, after removing the semicolon, there are no more elements to

match (see the next section for an example rule that contains the ∧

operator).

Finally, you can usually copy rules verbatim to the tree grammar that

neither have elements modified with AST construction operators nor

have rewrite rules. Here are two such rules:

tree grammar T;

...

/** Match one or more declaration subtrees */

program

: declaration+

;

/** Match a single node representing the data type */

type: 'int'

| 'char'

| ID

;

The best way to learn about tree grammars is by example. The next sec-

tion illustrates a complete AST-building parser grammar for a simple

programming language.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=194

BUILDING A PARSER GRAMMAR FOR THE C- LANGUAGE 195

The section following the next section builds a tree grammar to walk

those trees and print the variable and function names defined in the

input.

8.2 Building a Parser Grammar for the C- Language

This section presents a complete parser grammar with annotations to

build ASTs for a small subset of the C programming language that we

can call “C-” in honor of the grades I received as an undergraduate.2

The next section presents a tree grammar that describes all the possible

AST structures emitted from the parser. The tree grammar has a few

actions to print variable and function definitions just to be sure that

the test rig actually invokes the tree walker.

Where appropriate, this section describes the transformation from

parser grammar to tree grammar because that is the best way to build

tree grammars for ASTs created by parser grammars.

First, define the language itself. Here is some sample input:

Download trees/CMinus/t.cm

char c;

int x;

int foo(int y, char d) {

int i;

for (i=0; i!=3; i=i+1) {

x=3;

y=5;

}

}

C- has variable and function definitions and types int and char. State-

ments are limited to for, function calls, assignments, nested code

blocks, and the empty statement signified by a semicolon. Expressions

are restricted to conditionals, addition, multiplication, and parenthe-

sized expressions.

The combined parser and lexer grammar for C- begins with the grammar

header, an options section to turn on AST construction, and a tokens

2. See also http://www.codegeneration.net/tiki-read_article.php?articleId=77, which has an

ANTLR v2 version of the same parser grammar. This might be useful for those familiar

with v2 wanting to upgrade to v3.

http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/t.cm
http://www.codegeneration.net/tiki-read_article.php?articleId=77
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=195

BUILDING A PARSER GRAMMAR FOR THE C- LANGUAGE 196

section to define the list of imaginary tokens that represent pseudo-

operations in C-:

Download trees/CMinus/CMinus.g

/** Recognize and build trees for C-

* Results in CMinusParser.java, CMinusLexer.java,

* and the token definition file CMinus.tokens used by

* the tree grammar to ensure token types are the same.

*/

grammar CMinus;

options {output=AST;} // build trees

tokens {

VAR; // variable definition

FUNC; // function definition

ARG; // formal argument

SLIST; // statement list

}

A C- program is a list of declarations. Declarations can be either vari-

ables or functions, as shown in the next chunk of the grammar:

Download trees/CMinus/CMinus.g

program

: declaration+

;

declaration

: variable

| function

;

variable

: type ID ';' -> ^(VAR type ID)

;

type: 'int'

| 'char'

;

Functions look like this:

Download trees/CMinus/CMinus.g

// E.g., int f(int x, char y) { ... }

function

: type ID

'(' (formalParameter (',' formalParameter)*)? ')'

block

-> ^(FUNC type ID formalParameter* block)

;

http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinus.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=196

BUILDING A PARSER GRAMMAR FOR THE C- LANGUAGE 197

formalParameter

: type ID -> ^(ARG type ID)

;

The parser uses the VAR imaginary node to represent variable declara-

tions and FUNC to represent function declarations. Arguments use ARG

nodes. Rule function builds trees that look like this:

FUNC

int foo ARG ARG SLIST

int y char d ...

Notice rules program, declaration, and type do not need either AST con-

struction operators or rewrite rules because the default action to build

a list of nodes works in each case.

Here are the rules related to statements in C-:

Download trees/CMinus/CMinus.g

block

: lc='{' variable* stat* '}'

-> ^(SLIST[$lc,"SLIST"] variable* stat*)

;

stat: forStat

| expr ';'!

| block

| assignStat ';'!

| ';'!

;

forStat

: 'for' '(' first=assignStat ';' expr ';' inc=assignStat ')' block

-> ^('for' $first expr $inc block)

;

assignStat

: ID '=' expr -> ^('=' ID expr)

;

Statement blocks in curly braces result in an AST rooted with the

SLIST imaginary node. The SLIST node is derived from the left curly so

that line and column information is copied into the imaginary node for

error messages and debugging. The node constructor also changes the

text from { to SLIST. Rule stat uses the ! AST construction operator

to quickly and easily prevent the parser from creating nodes for

http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinus.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=197

BUILDING A PARSER GRAMMAR FOR THE C- LANGUAGE 198

semicolons. Semicolons make it easier for parsers to recognize state-

ments but are not needed in the tree.

The expression rules use AST construction operators almost exclusively

because they are much more terse than rewrite rules:

Download trees/CMinus/CMinus.g

expr: condExpr ;

condExpr

: aexpr (('=='^|'!='^) aexpr)?

;

aexpr

: mexpr ('+'^ mexpr)*
;

mexpr

: atom ('*'^ atom)*
;

atom: ID

| INT

| '(' expr ')' -> expr

;

All nonsuffixed tokens are subtree leaf nodes (operands), and the ele-

ments suffixed with ∧ are subtree root nodes (operators). The only rule

that uses a rewrite is atom. The parenthesized expression alternative is

much clearer when you say explicitly -> expr rather than putting ! on

the left parenthesis and right parenthesis tokens.

There are only three lexical rules, which match identifiers, integers, and

whitespace. The whitespace is sent to the parser on a hidden channel

and is, therefore, available to the translator. Using skip() instead would

throw out the whitespace tokens rather than just hiding them:

Download trees/CMinus/CMinus.g

ID : ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'0'..'9'|'_')* ;

INT : ('0'..'9')+ ;

WS : (' ' | '\t' | '\r' | '\n')+ { $channel = HIDDEN; } ;

The following key elements of the test rig create the lexer attached to

standard input, create the parser attached to a token stream from the

lexer, invoke the start symbol program, and print the resulting AST (the

full test rig appears in the next section):

http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinus.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=198

BUILDING A TREE GRAMMAR FOR THE C- LANGUAGE 199

ANTLRInputStream input = new ANTLRInputStream(System.in);

CMinusLexer lexer = new CMinusLexer(input);

CommonTokenStream tokens = new CommonTokenStream(lexer);

CMinusParser parser = new CMinusParser(tokens);

CMinusParser.program_return r = parser.program();

CommonTree t = (CommonTree)r.getTree();

System.out.println(t.toStringTree());

Given the previous input, this test rig emits the following textual ver-

sion of the AST (formatted and annotated with the corresponding input

symbols to be more readable):

(VAR char c) // char c;

(VAR int x) // int x;

(FUNC int foo // int foo(...)

(ARG int y) (ARG char d) // int y, char d

(SLIST

(VAR int i) // int i;

(for (= i 0) (!= i 3) (= i 0) // for (int i=0; i!=3; i=i+1)

(SLIST (= x 3) (= y 5)) // x=3; y=5;

)

)

)

At this point, we have a complete parser grammar that builds ASTs.

Now imagine that we want to find and print all the variable and func-

tion definitions with their associated types. One approach would be to

simply build a visitor that looks for the VAR and FUNC nodes so conve-

niently identified by the parser. Then, the visitor action code could pull

apart the operands (children) to extract the type and identifier, but that

would be manually building a recognizer for ∧(VAR type ID) and ∧(FUNC

type ID ...). A better solution is to describe the AST structure formally

with a grammar. Not only does this create nice documentation, but it

lets you use a domain-specific language to describe your tree structures

rather than arbitrary code. The next section describes how you build a

tree grammar by copying and transforming your parser grammar.

8.3 Building a Tree Grammar for the C- Language

Before building the tree grammar, take a step back and think about

the relationship between your parser that builds ASTs and the tree

parser that walks the ASTs. Your parser grammar describes the one-

dimensional structure of the input token stream and defines the (usu-

ally infinite) set of valid sentences. You should design your ASTs so that

they are a condensed and highly processed representation of the input

stream.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=199

BUILDING A TREE GRAMMAR FOR THE C- LANGUAGE 200

Where there can be some tricky constructs in the input language and

constructs that represent multiple operations, all subtrees in the AST

should represent single operations. These operations should have obvi-

ous root node types that clearly differentiate the various subtrees.

For example, both variable and function declarations in the C- lan-

guage begin with the same sequence, type ID, but in the tree grammar

they have unique root nodes, VAR and FUNC, that make them easy to

distinguish. So, your tree grammar should match a simpler and two-

dimensional version of the same input stream as the parser grammar.

Consequently, your tree grammar should look a lot like your parser

grammar, as you will see in this section.

Again, begin by examining the input language for your grammar. The

following image represents a sample input AST generated for the t.cm

file shown in the previous section:

nil

VAR VAR FUNC

char c int x int foo ARG ARG SLIST

int y char d VAR for

int i = != = SLIST

i 0 i 3 i 0 = =

x 3 y 5

The goal is to generate output such as the following to identify the

variables and functions defined in the input.

$ java TestCMinus < t.cm

define char c

define int x

define int i

define int foo()

$

Because the tree grammar should look very much like the parser gram-

mar, begin by copying the parser grammar from CMinus.g to

CMinusWalker.g and then altering the header per Section 8.1, Moving

from Parser Grammar to Tree Grammar, on page 192:

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=200

BUILDING A TREE GRAMMAR FOR THE C- LANGUAGE 201

Download trees/CMinus/CMinusWalker.g

tree grammar CMinusWalker;

options {

tokenVocab=CMinus; // import tokens from CMinus.g

ASTLabelType=CommonTree;

}

You do not need the imaginary token definitions in the tree grammar

because the tokenVocab=CMinus option imports the token type defini-

tions from the parser grammar, CMinus.g, via the CMinus.tokens file.

In the following declarations area of the grammar, the program, decla-

ration, and type rules are identical to their counterparts in the parser

grammar because they did not use rewrite rules or AST construction

operators to create a two-dimensional structure. These rules merely

created nodes or lists of nodes, and therefore, the tree grammar

matches the same one-dimensional structure. The remaining rules

match the trees built by the rules in the parser grammar with the same

name:

Download trees/CMinus/CMinusWalker.g

program

: declaration+

;

declaration

: variable

| function

;

variable

: ^(VAR type ID)

{System.out.println("define "+$type.text+" "+$ID.text);}

;

type: 'int'

| 'char'

;

function

: ^(FUNC type ID formalParameter* block)

{System.out.println("define "+$type.text+" "+$ID.text+"()");}

;

formalParameter

: ^(ARG type ID)

;

http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinusWalker.g
http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinusWalker.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=201

BUILDING A TREE GRAMMAR FOR THE C- LANGUAGE 202

For the statements area of the grammar, transform the rules from the

parser grammar simply by removing the elements to the left of the ->

rewrite operator:

Download trees/CMinus/CMinusWalker.g

block

: ^(SLIST variable* stat*)

;

stat: forStat

| expr

| block

| assignStat

;

forStat

: ^('for' assignStat expr assignStat block)

;

assignStat

: ^('=' ID expr)

;

Rule stat has three ! operators, and to transform that parser gram-

mar to a tree grammar, remove the suffixed elements, as shown pre-

viously. The empty statement alternative containing just a semicolon

disappears from the tree grammar. Once you remove the semicolon ref-

erence, nothing is left in that alternative. You do not want to create an

empty alternative, which would make statements optional in the tree.

They are not optional in the input and should not be optional in the

tree grammar. Also of note is that SLIST[$lc,"SLIST"] becomes purely a token

type reference, SLIST, in a tree grammar because you are matching, not

creating, that node in the tree grammar.

The expressions area of the tree grammar is more interesting. All of the

expression rules from the parser grammar collapse into a single recur-

sive rule in the tree grammar. The parser constructs ASTs for expres-

sions that encode the order of operations by their very structure. The

tree grammar does not need to repeat the multilevel expression gram-

mar pattern used by parser grammars to deal with different levels of

precedence. A tree grammar can just list the possibilities, yielding a

much simpler description for expressions than a parser grammar can

use. Also notice that the parentheses used for nested expressions in

the parser grammar are absent from the tree grammar because those

exist only to override precedence in the parser grammar.

http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinusWalker.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=202

BUILDING A TREE GRAMMAR FOR THE C- LANGUAGE 203

Parentheses alter the generated AST to change the order of operations

but do not change the kinds of subtree structures found for expres-

sions. Hence, the tree grammar is unaffected: Collapsing all expression

parser rules into a single

recursive tree grammar

rule is a general

grammar design pattern.

Download trees/CMinus/CMinusWalker.g

expr: ^('==' expr expr)

| ^('!=' expr expr)

| ^('+' expr expr)

| ^('*' expr expr)

| ID

| INT

;

Finally, there are no lexer rules in the tree grammar because you are

parsing tree nodes, not tokens or characters.

Here is a complete test rig that invokes the parser to create an AST and

then creates an instance of the tree parser, CMinusWalker, and invokes

its program start symbol. The program spits out the text presentation of

the AST unless you use the -dot option, which generates DOT3 format

files (that option was used to generate the AST images shown in this

chapter).

Download trees/CMinus/TestCMinus.java

// Create input stream from standard input

ANTLRInputStream input = new ANTLRInputStream(System.in);

// Create a lexer attached to that input stream

CMinusLexer lexer = new CMinusLexer(input);

// Create a stream of tokens pulled from the lexer

CommonTokenStream tokens = new CommonTokenStream(lexer);

// Create a parser attached to the token stream

CMinusParser parser = new CMinusParser(tokens);

// Invoke the program rule in get return value

CMinusParser.program_return r = parser.program();

CommonTree t = (CommonTree)r.getTree();

// If -dot option then generate DOT diagram for AST

if (args.length>0 && args[0].equals("-dot")) {

DOTTreeGenerator gen = new DOTTreeGenerator();

StringTemplate st = gen.toDOT(t);

System.out.println(st);

}

else {

System.out.println(t.toStringTree());

}

3. See http://www.graphviz.org.

http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/CMinusWalker.g
http://media.pragprog.com/titles/tpantlr/code/trees/CMinus/TestCMinus.java
http://www.graphviz.org
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=203

BUILDING A TREE GRAMMAR FOR THE C- LANGUAGE 204

// Walk resulting tree; create treenode stream first

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

// AST nodes have payloads that point into token stream

nodes.setTokenStream(tokens);

// Create a tree Walker attached to the nodes stream

CMinusWalker walker = new CMinusWalker(nodes);

// Invoke the start symbol, rule program

walker.program();

To build recognizers from these two grammar files, invoke ANTLR on

the two grammar files and then compile:

$ java org.antlr.Tool CMinus.g CMinusWalker.g

$ javac TestCMinus.java # compiles the lexer, parser, tree parser too

$

The following session shows the output from running the test rig on the

t.cm file:

$ java TestCMinus < t.cm

(VAR char c) (VAR int x) (FUNC int foo (ARG int y) (ARG char d) ...)

define char c

define int x

define int i

define int foo()

$

If your tree grammar is wrong or, for some reason, the input AST is

improperly structured, the ANTLR-generated recognizer will emit an

error message. For example, if you forgot the second expr reference on

the != alternative of the atom:

expr: ...

| ^('!=' expr) // should be ^('!=' expr expr)

...

;

and ran the input into the test rig, you would see the following error

message:

(VAR char c) (VAR int x) (FUNC int foo (ARG int y) (ARG char d) ...)

CMinusWalker.g:line 5:15 mismatched tree node: 3; expecting type <UP> Improved in v3. The tree

parser error messages in

v2 were useless.The ∧(!= i 3) subtree does not match the alternative because the alterna-

tive is looking for the UP token signifying the end of the child list. The

input, on the other hand, correctly has the INT node containing 3 before

the UP token.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=204

BUILDING A TREE GRAMMAR FOR THE C- LANGUAGE 205

The first part of the error message shows the stack of rules the tree

parser had entered (starting from the start symbol) at the time of the

error message. This is mainly for programmers to figure out where the

problem is, and you can alter these messages to be more user-friendly

(that is, have less information); see Chapter 10, Error Reporting and

Recovery, on page 241.

This chapter provided a sample parser grammar and tree grammar for

a small subset of C that prints the list of declarations as a simple trans-

lation.4 It demonstrated that creating a tree grammar is just a matter of

copying and transforming the parser grammar. A real application might

have multiple copies of the grammar5 for multiple passes such as sym-

bol definition, symbol resolution, semantic analysis, and finally code

generation. In the next chapter, we’ll discover how to emit text source

code via StringTemplate templates in order to build code generators.

4. For a tree grammar that executes some real actions, see the interpreter tutorial at

http://www.antlr.org/wiki/display/ANTLR3/Simple+tree-based+interpeter on the wiki.
5. Managing multiple copies of the same grammar but with different actions is an oner-

ous task currently, and discussing the solutions is beyond the scope of this reference

guide. I anticipate building tools similar to revision control systems to help programmers

deal with multiple tree grammars.

http://www.antlr.org/wiki/display/ANTLR3/Simple+tree-based+interpeter
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=205

Chapter 9

Generating Structured Text with
Templates and Grammars

At the most abstract level, translators map input sentences to output

sentences. Translators can be as simple as data extraction programs

that count the number of input lines or as complicated as language

compilers. The complexity of the translation dictates the architecture

of the translator, but no translator can escape the final phase: gener-

ating structured text from an internal data structures.1 The translator

component that emits structured text is called the emitter.

This chapter shows how to build emitters using ANTLR and the

StringTemplate template engine. In particular, we’ll see the following:

• Collectively, a group of templates represents a formal emitter spec-

ification.

• Templates are easier to build and understand than a collection of

print statements in embedded grammar actions.

• Isolating the emitter from the code generation logic allows us to

build retargetable code generators and follows good software engi-

neering practice.

• There are two general classes of translators: rewriters and gener-

ators.

1. Compilers generate text assembly code and then use an assembler to translate to

binary. Some translators actually do generate binary output, but they are in the minority.

WHY TEMPLATES ARE BETTER THAN PRINT STATEMENTS 207

• Template construction rules let us specify the text to emit for any

given grammar rule; these templates rules parallel the AST con-

struction rules described in Section 7.5, Constructing ASTs with

Rewrite Rules, on page 177.

• StringTemplate has a simple but powerful syntax with a functional

language flavor.

• ANTLR and StringTemplate complement each other; translators

use ANTLR to recognize input and then use StringTemplate to emit

output.

Without a template engine such as StringTemplate, translators must

resort to emitting code with print statements. As we’ll see in this chap-

ter, using arbitrary code to generate output is not very satisfying.

StringTemplate is a separate library, and naturally, we could embed

template construction actions in a grammar just like any other action.

To make using StringTemplate easier, ANTLR provides special notation

that lets us specify output templates among the grammar rules.

To illustrate ANTLR’s integration of StringTemplate, this chapter shows

how to build a generator and a rewriter. The generator is a Java byte-

code generator for the simple calculator language from Chapter 3, A

Quick Tour for the Impatient, on page 59. The rewriter is a code instru-

mentor for the subset of C defined in Chapter 7, Tree Construction, on

page 162. We’ll build the code instrumentor first with a simple parser

grammar and template construction rules and then solve it with a tree

parser grammar that does the same thing. Before diving into the imple-

mentations, let’s look at why templates provide a good solution, and see

how ANTLR integrates StringTemplate.

9.1 Why Templates Are Better Than Print Statements

Emitters built with print statements scattered all over the grammar are

more difficult to write, to read, and to retarget. Emitters built with tem-

plates, on the other hand, are easier to write and read because you

can directly specify the output structure. You do not have to imagine

the emergent behavior of each rule to conjure up the output structure.

Template-based emitters are easier to maintain because the templates

act as executable documentation describing the output structure. Fur-

ther, by specifying the output structure separately, you can more easily

retarget the translator. You can provide a separate group of templates

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=207

WHY TEMPLATES ARE BETTER THAN PRINT STATEMENTS 208

for each language target without having to alter your code generation

logic. Indeed, you don’t even need to recompile the translator to incor-

porate a new language target. This section argues for the use of for-

mal template-based emitter specifications by appealing to your software

engineering sense.

Consider the abstract behavior of a translator. Each output sentence

is a function of input sentence data and computations on that data.

For example, a translator’s emitter might reference a variable’s name

and ask, “Is this variable defined and assigned to within the current

scope?” An understanding of this behavior does not directly suggest

a translator architecture, though. Programmers typically fall back on

what they know—arbitrary embedded grammar actions that emit out-

put as a function of the input symbols.

Most emitters are arbitrary, unstructured blobs of code that contain

print statements interspersed with generation logic and computations.

These emitters violate the important software engineering principle of

“separation of concerns.” In the terminology of design patterns, such

informal emitters violate model-view-controller separation.2 The collec-

tion of emitter output phrases comprises the view. Unfortunately, most

emitters entangle the view with the controller (parser or visitor pattern)

and often the model (internal data structures). The only exceptions are

programming language compilers.

Modern compilers use a specialized emitter called an instruction gener-

ator such as BURG [FHP92], a tree-walking pattern matcher similar in

concept to ANTLR’s tree parsers. Instruction generators force a sepa-

rate, formal output specification that maps intermediate-form subtrees

to appropriate instruction sequences. In this way, a compiler can iso-

late the view from the code generation logic. Retargeting a compiler to a

new processor is usually a matter of providing a new set of instruction

templates.

Following the lead of compilers, other translators should use formal

specifications to describe their output languages. Generated text is

structured, not random, and therefore, output sentences conform to

a language. It seems reasonable to think about specifying the output

structure with a grammar or group of templates.

2. For an in-depth discussion, see “Enforcing Strict Model-View Separation in Template

Engines” at http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf.

http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=208

EMBEDDED ACTIONS AND TEMPLATE CONSTRUCTION RULES 209

To process this high-level specification, you need an “unparser genera-

tor” or template engine with the flavor of a generational grammar such

as StringTemplate. To encourage the use of separate output specifi-

cations, ANTLR integrates StringTemplate by providing template con-

struction rules. These rules let you specify the text to emit for any

given grammar rule in a manner that parallels the AST construction

rules described in Section 7.5, Constructing ASTs with Rewrite Rules,

on page 177. Collectively, the templates represent a formal emitter

specification similar to the formal specification compilers used to emit

machine instructions. By separating the templates from the translation

logic, you can trivially swap out one group of templates for another. This

means you can usually retarget the translators you build with ANTLR

and StringTemplate; that is, the same translator can emit output in

more than one language. New in v3.

ANTLR uses templates to generate the various back ends (such as Java,

C, Objective-C, Python, and so on). Each back end has a separate

template group. There is not a single print statement in the ANTLR

code generator—everything is done with templates. The language tar-

get option tells ANTLR which group of templates to load. Building a

new ANTLR language target is purely a matter of defining templates

and building the runtime library.

Isolating your translator’s emitter from the code generation logic and

computations make sense from a software engineering point of view.

Moreover, ANTLR v3’s retargetable emitter proves that you can make

it work well in practice. The next section drives the point home by

showing you the difference between embedded actions and template

construction rules.

9.2 Comparing Embedded Actions to Template Construction

Rules

Translating the input matched by a rule without a template engine is

painful and error prone. You must embed actions in the rule to trans-

late and then emit or buffer up each rule element. A few example gram-

mars comparing embedded actions with template construction rules

makes this abundantly clear.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=209

EMBEDDED ACTIONS AND TEMPLATE CONSTRUCTION RULES 210

The Dream Is Alive!

During the development of the ANTLR v1 (PCCTS) and ANTLR
v2 code generators, I harbored an extremely uncomfortable
feeling. I knew that the undignified blobs of code generation
logic and print statements were the wrong approach, but I had
no idea how to solve the problem.

Oddly enough, the key idea germinated while building the sec-
ond incarnation of a big nasty web server called jGuru.com.
Tom Burns (jGuru CEO) and I designed StringTemplate in
response to the entangled JSP pages used in the first server
version. We wanted to physically prevent programmers from
embedding logic and computations in HTML pages. In the
back of my mind, I mused about turning StringTemplate into
a sophisticated code generator.

When designing ANTLR v3, I dreamt of a code generator where
each language target was purely a group of templates. Tar-
get developers would not have to know anything about the
internals of the grammar analysis or code generation logic.
StringTemplate evolved to satisfy the requirements of ANTLR v3’s
retargetable code generator. The dream is now reality. Every
single character of output comes from a template, not a print
statement. Contrast this with v2 where building a new target
amounts to copying an entire Java file (thereby duplicating the
generator logic code) and tweaking the print statements. The
v2 generators represent 39% of the total lines (roughly 4,000 lines
for each language target). In v3, the code generation logic is
now only 4,000 lines (8% of the total). Each new language tar-
get is about 2,000 lines, a 50% reduction over v2. More impor-
tant, v3 targets are pure templates, not code, making it much
easier and faster to build a robust target.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=210

EMBEDDED ACTIONS AND TEMPLATE CONSTRUCTION RULES 211

Consider the following two rules from a Java tree grammar that contain

embedded actions to spit Java code back out based upon the input

symbols where emit() is essentially a print statement that emits output

sensitive to some indentation level:

methodHead

: IDENT {emit(" "+$IDENT.text+"(");}

^(PARAMETERS

(p=parameterDef

{if (there-is-another-parameter) emit(",");}

)*
)

{emit(") ");}

throwsClause?

;

throwsClause

: ^("throws" {emit("throws ");}

(identifier

{if (there-is-another-id) emit(", ");}

)*
)

;

To figure out what these rules generate, you must imagine what the

output looks like by “executing” the arbitrary embedded actions in your

mind. Embedding all those actions in a grammar is tedious and often

makes it hard to read the grammar.

A better approach is to simply specify what the output looks like in

the form of templates, which are akin to output grammar rules. The

following version of the same rules uses the -> template construction

operator to specify templates in double quotes:

methodHead

: IDENT ^(PARAMETERS (p+=parameterDef)*) throwsClause?

-> template(name={$IDENT.text},

args={$p},

throws={$throwsClause.st})

"<name>(<args; separator=\", \">) <throws>"

;

throwsClause

: ^("throws" (ids+=identifier)*)

-> template(exceptions={$ids})

"throws <exceptions; separator=\", \">"

;

Everything inside a template is pure output text except for the expres-

sions enclosed in angle brackets. For most people, seeing a template

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=211

EMBEDDED ACTIONS AND TEMPLATE CONSTRUCTION RULES 212

instead of print statements makes a rule’s output much clearer. The

template shows the overall structure of the output and has “holes” for

computations or data from the input.

Aside from allowing you to specify output constructs in a more declar-

ative and formal fashion, StringTemplate provides a number of great

text generation features such as autoindentation. Here is a rule from a

Java tree grammar that uses print statements to emit array initializers

with the elements indented relative to the curlies that surround them:

arrayInitializer

: ^(ARRAY_INIT

{emit("{"); nl(); indent();}

(init:initializer

{if (there-is-another-value) emit(", ");}

)*
{undent(); nl(); emit("}");}

)

;

where indent() and undent() are methods that increase and decrease the

indentation level used by emit(). nl() emits a newline.

Notice that the actions must take care of indentation manually.

StringTemplate, on the other hand, automatically tracks and generates

indentation. The following version of arrayInitializer generates the same

output with the array initialization values indented two spaces (relative

to the curlies) automatically:

arrayInitializer

: ^(ARRAY_INIT (v+=initializer)*)

-> template(values={$v})

<<

{

<values; separator=", ">

}

>>

;

This section illustrates the convenience of using templates to specify

output. The next section describes the StringTemplate template engine

in more detail. You’ll learn more about what goes inside the templates.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=212

A BRIEF INTRODUCTION TO STRINGTEMPLATE 213

9.3 A Brief Introduction to StringTemplate

StringTemplate3 is a sophisticated template engine, and you should

familiarize yourself with it by referring to its documentation4 before you

build a translator, but this section explains its basic operation. You will

learn enough to understand the templates used in the large examples

in Section 9.6, A Java Bytecode Generator Using a Tree Grammar and

Templates, on page 219, Section 9.7, Rewriting the Token Buffer In-

Place, on page 228, and Section 9.8, Rewriting the Token Buffer with

Tree Grammars, on page 234. You should at least skim this section

before proceeding to the examples.

Templates are strings or “documents” with holes that you can fill in

with template expressions that are a function of attributes. You can

think of attributes as the parameters passed to a template (but don’t

confuse template attributes with the grammar attributes described in

Chapter 6, Attributes and Actions, on page 130). StringTemplate breaks

up your template into chunks of text and attribute expressions, which

are by default enclosed in angle brackets: <«attribute-expression»>. String-

Template ignores everything outside attribute expressions, treating

them as just text to spit out.

StringTemplate is not a system or server—it is just a library with two

primary classes of interest: StringTemplate and StringTemplateGroup. You

can directly create a template in code, you can load a template from

a file, and you can load a single file with many templates (a template

group file). Here is the core of a “Hello World” example that defines a

template, sets its sole attribute (name), and prints it:

import org.antlr.stringtemplate.*;

...

StringTemplate hello = new StringTemplate("Hello <name>");

hello.setAttribute("name", "World");

System.out.println(hello.toString());

The output is Hello World. StringTemplate calls toString() on each object to

render it to text. In this case, the name attribute holds a String already.

If an attribute is multivalued, such as an instance of a list, or if you set

attribute name multiple times, the expression emits the elements one

after the other.

3. See http://www.stringtemplate.org.
4. See http://www.antlr.org/wiki/display/ST/StringTemplate+3.0+Documentation.

http://www.stringtemplate.org
http://www.antlr.org/wiki/display/ST/StringTemplate+3.0+Documentation
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=213

THE ANTLR STRINGTEMPLATE INTERFACE 214

For example, the following change to the earlier code sample sets the

name attribute to an array:

...

String[] names = {"Jim", "Kay", "Sriram"};

hello.setAttribute("name", names);

System.out.println(hello.toString());

The output is Hello JimKaySriram, but if you change the template defini-

tion to include a separator string, you can emit better-looking output:

StringTemplate hello =

new StringTemplate("Hello <name; separator=\", \">");

Now, the output is Hello Jim, Kay, Sriram.

One final operation that you will see is template application. Applying

a template to an attribute or multivalued attribute using the : operator

is essentially a map operation. A map operation passes the elements in

the attribute one at a time to the template as if it were a method. The

following example applies an anonymous template to a list of numbers

(anonymous templates are enclosed in curly brackets). The n variable

defined between the left curly and the | operator is a parameter for

the anonymous template. n is the iterated value moving through the

numbers.

<numbers:{ n | sum += <n>; }>

Assuming the numbers attribute held the values 11, 29, and 5 (in a list,

array, or anything else multivalued), then the template would emit the

following when evaluated:

sum += 11; sum += 29; sum += 5;

Rather than having to create instances of templates in actions manu-

ally, grammars can use template construction rules, as demonstrated

in the next section.

9.4 The ANTLR StringTemplate Interface

Grammars that set option output=template can use the -> operator to

specify the enclosing rule’s template return value. The basic syntax

mirrors AST construction rules:

rule: «alt1» -> «alt1-template»

| «alt2» -> «alt2-template»

...

| «altN» -> «altN-template»

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=214

THE ANTLR STRINGTEMPLATE INTERFACE 215

Each rule’s template specification creates a template using the following

syntax (for the common case):

... -> template-name(«attribute-assignment-list»)

The resulting recognizer looks up template-name in the StringTemplate-

Group that you pass in from your invoking program via setTemplateLib().

A StringTemplateGroup is a group of templates and acts like a dictio-

nary that maps template names to template definitions. The attribute

assignment list is the interface between the parsing element values

and the attributes used by the template. ANTLR translates the assign-

ment list to a series of setAttribute() calls. For example, attribute assign-

ment a={«expr»} translates to the following where retval.st is the template

return value for the rule:

retval.st.setAttribute("a", «expr»);

As a more concrete example, consider the following grammar that

matches simple assignments and generates an equivalent assignment

using the Pascal := assignment operator:

Download templates/T.g

grammar T;

options {output=template;}

s : ID '=' INT ';' -> assign(x={$ID.text},y={$INT.text}) ;

ID: 'a'..'z'+ ;

INT:'0'..'9'+ ;

WS :(' '|'\t'|'\n'|'\r') {skip();} ;

Rule s matches a simple assignment statement and then creates an

instance of template assign, setting its x and y attributes to the text of

the identifier and integer, respectively. Here is a group file that defines

template assign:

Download templates/T.stg

group T;

assign(x,y) ::= "<x> := <y>;"

The following code is a simple test rig that loads the StringTemplate

group from a file (T.stg), instantiates the parser, invokes rule s, gets the

result template, and prints it:

Download templates/Test.java

import org.antlr.runtime.*;

import org.antlr.stringtemplate.*;

import java.io.*;

http://media.pragprog.com/titles/tpantlr/code/templates/T.g
http://media.pragprog.com/titles/tpantlr/code/templates/T.stg
http://media.pragprog.com/titles/tpantlr/code/templates/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=215

THE ANTLR STRINGTEMPLATE INTERFACE 216

public class Test {

public static void main(String[] args) throws Exception {

// load in T.stg template group, put in templates variable

FileReader groupFileR = new FileReader("T.stg");

StringTemplateGroup templates =

new StringTemplateGroup(groupFileR);

groupFileR.close();

// PARSE INPUT AND COMPUTE TEMPLATE

ANTLRInputStream input = new ANTLRInputStream(System.in);

TLexer lexer = new TLexer(input); // create lexer

CommonTokenStream tokens = new CommonTokenStream(lexer);

TParser parser = new TParser(tokens); // create parser

parser.setTemplateLib(templates); // give parser templates

TParser.s_return r = parser.s(); // parse rule s

StringTemplate output = r.getTemplate();

System.out.println(output.toString());// emit translation

}

}

The test program accepts an assignment from standard input and emits

the translation to standard output:

⇐ $ java Test

⇐ x=101;
⇐ EOF

⇒ x := 101;

$

Most of the time you will place your templates in another file (a

StringTemplateGroup file5) to separate your parser from your output

rules. This separation makes it easy to retarget your translator because

you can simply swap out one group of templates for another to gener-

ate different output. For simple translators, however, you might want

to specify templates in-line among the rules instead. In-line templates

use notation like this:

... -> template(«attribute-assignment-list») "in-line-template"

or like this:

... -> template(«attribute-assignment-list»)

<<

«in-line-template-spanning-multiple-lines»

>>

5. See http://www.antlr.org/wiki/display/ST/Group+Files.

http://www.antlr.org/wiki/display/ST/Group+Files
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=216

REWRITERS VS. GENERATORS 217

You can also use an arbitrary action that evaluates to a template as the

template specification:

... -> {«arbitrary-template-expression»}

Now that you have some understanding of what templates look like and

how to use them in a grammar, you’re about ready to tackle some real

examples. The first example generates Java bytecodes for simple arith-

metic expressions. The second example instruments C code to track

function calls and variable assignments. On the surface, the two appli-

cations appear to be similar because they both use templates to specify

the output. What they do with the templates, however, is very different.

The Java bytecode generator combines template results computed from

input phrases into an overall template. In contrast, the C instrumen-

tor gets away with just tweaking the input. For example, when it sees

an assignment statement, the translator can simply append an instru-

mentation call. Rebuilding the whole C file complete with whitespace

and comments is much more difficult. Before diving into the examples,

let’s examine the two fundamental translator categories they represent.

9.5 Rewriters vs. Generators

A translator’s input to output relationship classifies it into one of two

overall categories in the translation taxonomy: either the output looks

very much like the input, or it does not, which says a lot about the most

natural implementation, as we’ll see in a moment. Examples abound for

each category.

In the first category, the output looks very much like the input, and the

translator is usually just tweaking the input or, when reading source

code, instrumenting it for debugging, code coverage, or profiling pur-

poses. I would include in this category translators that keep the same

output structure and data elements but that do a fair bit of augmenta-

tion. A wiki-to-HTML translator is a good example of this. Let’s call this

the rewriter category. Generally speaking, the

more different the output

is from the input, the

more difficult it is to

build the translator.

In the second category, the output looks very different from the input.

The translator might condense the input into a report such as a set of

source code metrics or might generate Javadoc comments from Java

source code. Compilers and other tools in this category such as ANTLR

generate an equivalent version of the input but a version that looks

totally different because it has been highly processed and reorganized.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=217

REWRITERS VS. GENERATORS 218

In other cases, the output is similar to the input, but the relative order

of the elements is different in the output. For example, translating from

a language where declaration order doesn’t matter to a language where

it does means that the translator must topologically sort the declara-

tions according to their referential dependencies (declarations that refer

to type T must occur after the declaration for T). Because the majority

of the text emitted by translators in this category is not directly present

in the input or has been significantly rebuilt, let’s call this category the

generator category.

The translation category often dictates which general approach to use:

• Rewriters. I recommend modifying input constructs in-place,

meaning rewriting sections of the input buffer during transla-

tion. At the end of translation, you can simply print the modi-

fied buffer to get the desired output. ANTLR provides an excellent

token buffer called TokenRewriteStream that is specifically designed

to efficiently handle multiple in-place insertions, deletions, and

replacements.

• Generators. This category generates and then buffers up bits of

translated input that it subsequently organizes into larger and

larger chunks, leading to the final chunk representing the com-

plete output.

For both rewriters and generators, you’ll use grammars to direct the

translation. You’ll embed actions and template construction rules (us-

ing operator ->) to perform computations and create pieces of the out-

put. Rewriters will directly replace portions of the original input buffer

with these output pieces, whereas generators will combine output pie-

ces to form the overall output without touching the input buffer. Your

translator might even have multiple grammars because, for complicated

translations, you might need to break the problem down into multiple

phases to make the translator easier to build and maintain. This means

creating an AST intermediate form and making multiple passes over the

AST to gather information and possibly to alter the AST.

How do you know whether you need multiple grammars (one parser

grammar and multiple tree grammars) or whether you can get away

with just a single parser grammar? Answering this question before

attempting to build the actual translator requires a good deal of expe-

rience.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=218

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 219

Generally speaking, though, you can usually get away with a single

parser grammar if your translator can generate all output pieces with-

out needing information from further ahead in the input stream and

without needing information from another input file. For example, you

can generate Javadoc comments just by looking at the method itself,

and you can compute word and line counts by looking at the current

and previous lines. On the other hand, compilers for object-oriented

languages typically allow forward references and references to classes

and methods in other files. The possibility of forward references alone

is sufficient to require multiple passes, necessitating an intermediate

form such as an AST and tree grammars.

The remainder of this chapter provides a Java bytecode generator as

an example in the generator category and a code instrumentor as an

example in the rewriter category. Let’s begin with the generator category

because the rewriter category is just a special case of a generator.

9.6 Building a Java Bytecode Generator Using a Tree Grammar

and Templates

In Chapter 3, A Quick Tour for the Impatient, on page 59, we saw how

to build an interpreter for some simple arithmetic expressions. This

section illustrates how to build a Java bytecode generator for those

same expressions.

As before, the input to the translator is a series of expressions and

assignments. The output is a Java bytecode sequence in bytecode as-

sembler format. Then Jasmin6 can translate the text-based bytecode

assembly program to a binary Java .class file. Once you have the .class

file, you can directly execute expressions via the Java virtual machine.

In a sense, the generator is a Java compiler for an extremely limited

subset of Java. Naturally, a real compiler would be vastly more compli-

cated, and I am not suggesting that you build compilers this way—

generating Java bytecodes is merely an interesting and educational

demonstration of template construction.

Before exploring how to build the generator, you need to know some-

thing about Java bytecodes and the underlying stack machine.

6. See http://jasmin.sourceforge.net.

http://jasmin.sourceforge.net
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=219

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 220

Java Bytecodes Needed for Expressions

The executable instructions you will use for the translator are limited

to the following:

Bytecode Instruction Description

ldc integer-constant Push constant onto stack.

imul Multiply top two integers on stack and leave

result on the stack. Stack depth is one

less than before the instruction. Executes

push(pop*pop).

iadd Add top two integers on stack and leave

result on the stack. Stack depth is one

less than before the instruction. Executes

push(pop+pop).

isub Subtract top two integers on stack and leave

result on the stack. Stack depth is one less

than before the instruction. Executes b=pop;

a=pop; push(a-b).

istore local-var-num Store top of stack in local variable and pop

that element off the stack. Stack depth is one

less than before the instruction.

iload local-var-num Push local variable onto stack. Stack depth is

one more than before the instruction.

The Java bytecode generator accepts input:

Download templates/generator/1pass/input

3+4*5

and generates the following bytecodes:

ldc 3 ; push integer 3

ldc 4 ; push 4

ldc 5 ; push 5

imul ; pop 2 elements, multiply; leave 4*5 on stack

iadd ; pop 2 elements, 3 and (4*5), add, leave on stack

What about storing and retrieving local variables? This input:

Download templates/generator/1pass/input2

a=3+4

a

http://media.pragprog.com/titles/tpantlr/code/templates/generator/1pass/input
http://media.pragprog.com/titles/tpantlr/code/templates/generator/1pass/input2
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=220

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 221

results in the following bytecodes:

Download templates/generator/1pass/input2.j

; code translated from input stream

; compute 3+4

ldc 3

ldc 4

iadd

istore 1 ; a=3+4

; compute a

iload 1 ; a

The Java virtual machine places local variables and method parameters

on the stack. The bytecodes must allocate space for both at the start

of each method. Also, the method must have space for the operands

pushed onto the stack by the instructions. The proper way to com-

pute stack space needed by a method is too much to go into here. The

generator simply estimates how much operand stack space it will need

according to the number of operator instructions.

All Java code must exist within a method, and all methods must exist

within a class. The generator must emit the bytecode equivalent of this:

public class Calc {

public static void main(String[]) {

System.out.println(«executable-bytecodes-from-expression»);

}

}

Unfortunately, the overall bytecode infrastructure just to wrap the byte-

code in a main() method is fairly heavy. For example, given input 3+4*5,

the generator must emit the following complete assembly file:

Download templates/generator/1pass/input.j

; public class Calc extends Object { ...}

.class public Calc

.super java/lang/Object

; public Calc() { super(); } // calls java.lang.Object()

.method public ()V

aload_0

invokenonvirtual java/lang/Object/()V

return

.end method

; main(): Expr.g will generate bytecode in this method

.method public static main([Ljava/lang/String;)V

.limit stack 4 ; how much stack space do we need?

.limit locals 1 ; how many locals do we need?

http://media.pragprog.com/titles/tpantlr/code/templates/generator/1pass/input2.j
http://media.pragprog.com/titles/tpantlr/code/templates/generator/1pass/input.j
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=221

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 222

getstatic java/lang/System/out Ljava/io/PrintStream;

; code translated from input stream

; compute 3+4*5

ldc 3

ldc 4

ldc 5

imul

iadd

; print result on top of stack

invokevirtual java/io/PrintStream/println(I)V

return

.end method

The generator modifies or emits the highlighted lines. The getstatic and

invokevirtual bytecodes implement the System.out.println(expr) statement:

; get System.out on stack

getstatic java/lang/System/out Ljava/io/PrintStream;

«compute-expr-leaving-on-stack»

; invoke println on System.out (object 1 below top of stack)

invokevirtual java/io/PrintStream/println(I)V

To execute the generated code, you must first run the Jasmin assem-

bler, which converts bytecode file input.j into Calc.class. Calc is the class

definition surrounding the expression bytecodes. Installing Jasmin is

easy. Just download and unzip the ZIP file. The key file is jasmin-2.3/

jasmin.jar, which you can add to your CLASSPATH or just reference directly

on the command line. Here is a sample session that “executes” the ear-

lier input.j file using Jasmin and then the Java interpreter:

$ java -jar /usr/local/jasmin-2.3/jasmin.jar input.j

Generated: Calc.class

$ java Calc

23

$

That big file of bytecodes looks complicated to generate, but if you break

it down into the individual pieces, the overall generator is straightfor-

ward. Each rule maps an input sentence phrase to an output template.

Combining the templates results in the output assembly file. The fol-

lowing section shows how to implement the translator.

Generating Bytecode Templates with a Tree Grammar

This section shows you how to build a Java bytecode generator for a

simple calculator language. The implementation uses the parser and

tree grammars given in Chapter 3, A Quick Tour for the Impatient, on

page 59. The parser, Expr, creates ASTs and fills a symbol table with

variable definitions. A second pass, specified with tree grammar Gen,

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=222

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 223

constructs templates for the various subtrees. There is a template con-

struction for just about every rule in a generator category translator.

Generators must literally generate output for even the simplest input

constructs such as comma-separated lists. Generating templates

behaves just like

generating trees using

rewrite rules.Each rule

implicitly returns a

template or tree, and

the -> rewrite operator

declares the output

structure.

Grammar Expr is the same as the tree construction grammar given in

Chapter 3, A Quick Tour for the Impatient, on page 59, except for the

actions tracking the number of operations and computing the locals

symbol table. Here is the grammar header that contains the infrastruc-

ture instance variables:

Download templates/generator/2pass/Expr.g

/** Create AST and compute ID -> local variable number map */

grammar Expr;

options {

output=AST;

ASTLabelType=CommonTree; // type of $stat.tree ref etc...

}

@header {

import java.util.HashMap;

}

@members {

int numOps = 0; // track operations for stack size purposes

HashMap locals = new HashMap(); // map ID to local var number

/* Count local variables, but don't use 0, which in this case

* is the String[] args parameter of the main method.

*/

int localVarNum = 1;

}

The prog and stat rules create trees with AST rewrite rules as before:

Download templates/generator/2pass/Expr.g

prog: stat+ ;

stat: expr NEWLINE -> expr

| ID '=' expr NEWLINE

{

if (locals.get($ID.text)==null) {

locals.put($ID.text, new Integer(localVarNum++));

}

}

-> ^('=' ID expr)

| NEWLINE ->

;

http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/Expr.g
http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/Expr.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=223

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 224

Do You Ever Need to Return a List of Templates?

Some of you will see rules such as this:

prog : stat+ ;

and question why slist should not return a list of templates.
Remember that for translators in the generator category, you
must literally specify what to emit for every input construct even
if it is just a list of input elements. The proper generated output
for prog is in fact a template that represents a list of statements.
For example, you might use something akin to this:

prog : (s+=stat)+ -> template(stats={$s}) "<stats>"

Upon an assignment statement, though, the recognizer must track im-

plicit local variable definitions by using the locals HashMap. Each vari-

able in a list of input expressions receives a unique local variable num-

ber.

The expression rules are as before except for the addition of code to

track the number of operations (to estimate stack size):

Download templates/generator/2pass/Expr.g

expr: multExpr (('+'^|'-'^) multExpr {numOps++;})*
;

multExpr

: atom ('*'^ atom {numOps++;})*
;

atom: INT

| ID

| '('! expr ')'!

;

Once you have a parser grammar that builds the appropriate trees and

computes the number of operations and locals map, you can pass that

information to the tree grammar. The tree grammar will create a tem-

plate for each subtree in order to emit bytecodes. Start rule prog’s tem-

plate return value represents the template for the entire assembly file.

The grammar itself is identical to the Eval tree grammar from Chapter 3,

A Quick Tour for the Impatient, on page 59, but of course the actions are

different.

http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/Expr.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=224

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 225

Here is the start of the Gen tree grammar:

Download templates/generator/2pass/Gen.g

tree grammar Gen;

options {

tokenVocab=Expr; // use the vocabulary from the parser

ASTLabelType=CommonTree; // what kind of trees are we walking?

output=template; // generate templates

}

@header {

import java.util.HashMap;

}

@members {

/** Points at locals table built by the parser */

HashMap locals;

}

The test rig pulls necessary data out of the parser after parsing is com-

plete and passes it to the tree grammar via prog rule parameters:

Download templates/generator/2pass/Gen.g

/** Match entire tree representing the arithmetic expressions. Pass in

* the number of operations and the locals table that the parser computed.

* Number of elements on stack is roughly number of operations + 1 and

* add one for the address of the System.out object. Number of locals =

* number of locals + parameters plus 'this' if non-static method.

*/

prog[int numOps, HashMap locals]

@init {

this.locals = locals; // point at map created in parser

}

: (s+=stat)+ -> jasminFile(instructions={$s},

maxStackDepth={numOps+1+1},

maxLocals={locals.size()+1})

;

The stat rule creates an instance of template exprStat or assign, depend-

ing on which alternative matches:

Download templates/generator/2pass/Gen.g

stat: expr -> exprStat(v={$expr.st}, descr={$expr.text})

| ^('=' ID expr)

-> assign(id={$ID.text},

descr={$text},

varNum={locals.get($ID.text)},

v={$expr.st})

;

The template specifications compute template attributes from grammar

attributes and members such as locals.

http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/Gen.g
http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/Gen.g
http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/Gen.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=225

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 226

Here are the templates used by rule stat:

Download templates/generator/2pass/ByteCode.stg

assign(varNum,v,descr,id) ::= <<

; compute <descr>

<v>

istore <varNum> ; <id>

>>

exprStat(v, descr) ::= <<

; compute <descr>

<v>

>>

All the expression-related rules in the parser grammar collapse into a

single expr rule in the tree grammar:

Download templates/generator/2pass/Gen.g

expr returns [int value]

: ^('+' a=expr b=expr) -> add(a={$a.st},b={$b.st})

| ^('-' a=expr b=expr) -> sub(a={$a.st},b={$b.st})

| ^('*' a=expr b=expr) -> mult(a={$a.st},b={$b.st})

| INT -> int(v={$INT.text})

| ID -> var(id={$ID.text}, varNum={locals.get($ID.text)})

;

Each subtree results in a different template instance; here are the tem-

plate definitions used by rule expr:

Download templates/generator/2pass/ByteCode.stg

add(a,b) ::= <<

<a>

iadd

>>

sub(a,b) ::= <<

<a>

isub

>>

mult(a,b) ::= <<

<a>

imul

>>

int(v) ::= "ldc <v>"

var(id, varNum) ::= "iload <varNum> ; <id>"

http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/ByteCode.stg
http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/Gen.g
http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/ByteCode.stg
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=226

A JAVA BYTECODE GENERATOR USING A TREE GRAMMAR AND TEMPLATES 227

The operation templates do the obvious: push both operands and then

do the operation.

Finally, here is a test rig with in-line comments to explain the various

operations:

Download templates/generator/2pass/Test.java

import org.antlr.runtime.*;

import org.antlr.runtime.tree.*;

import org.antlr.stringtemplate.*;

import java.io.*;

public class Test {

public static void main(String[] args) throws Exception {

// load the group file ByteCode.stg, put in templates var

FileReader groupFileR = new FileReader("ByteCode.stg");

StringTemplateGroup templates =

new StringTemplateGroup(groupFileR);

groupFileR.close();

// PARSE INPUT AND BUILD AST

ANTLRInputStream input = new ANTLRInputStream(System.in);

ExprLexer lexer = new ExprLexer(input); // create lexer

// create a buffer of tokens pulled from the lexer

CommonTokenStream tokens = new CommonTokenStream(lexer);

ExprParser parser = new ExprParser(tokens); // create parser

ExprParser.prog_return r = parser.prog(); // parse rule prog

// WALK TREE

// get the tree from the return structure for rule prog

CommonTree t = (CommonTree)r.getTree();

// create a stream of tree nodes from AST built by parser

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

// tell it where it can find the token objects

nodes.setTokenStream(tokens);

Gen walker = new Gen(nodes); // create the tree Walker

walker.setTemplateLib(templates); // where to find templates

// invoke rule prog, passing in information from parser

Gen.prog_return r2 = walker.prog(parser.numOps, parser.locals);

// EMIT BYTE CODES

// get template from return values struct

StringTemplate output = r2.getTemplate();

System.out.println(output.toString()); // render full template

}

}

The one key piece that is different from a usual parser and tree parser

test rig is that, in order to access the text for a tree, you must tell the

tree node stream where it can find the token stream:

http://media.pragprog.com/titles/tpantlr/code/templates/generator/2pass/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=227

REWRITING THE TOKEN BUFFER IN-PLACE 228

CommonTokenStream tokens = new CommonTokenStream(lexer);

...

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

nodes.setTokenStream(tokens);

References such as $expr.text in rule stat in the tree parser make no

sense unless it knows where to find the stream of token objects. Recall

that $expr.text provides the text matched by the parser rule that created

this subtree.

In this section, you learned how to generate output by adding template

construction rules to a tree grammar. This generator category transla-

tor emits an output phrase for every input phrase. In the following two

sections, you’ll learn how to rewrite pieces of the input instead of gener-

ating an entirely new output file. You’ll again use template construction

rules, but this time the templates will replace input phrases.

9.7 Rewriting the Token Buffer In-Place

Traditionally, one of the most difficult tasks in language translation

has been to read in some source code and write out a slightly altered

version, all while preserving whitespace and comments. This is hard

because translators typically throw out whitespace and comments

since the parser has to ignore them. Somehow you must get the parser

to ignore those tokens without throwing them away and without losing

their original place in the input stream.

A further hassle involves the mechanism used to emit the tweaked

source code. As you saw earlier, adding a bunch of print statements

to your grammar is not a very good solution. Even using templates and

the generator strategy, you have to specify a lot of unnecessary template

construction rules. The generated recognizer performs a lot of unnec-

essary work. If the output is identical to the input most of the time,

adding template construction actions to each rule is highly inefficient

and error prone. You need a specification whose size is commensurate

with the amount of work done by the translator.

In this section and the next, you’ll see two different solutions to a source

code rewriting problem, one using a parser and the next using a parser

and tree parser combination. The task is to instrument simplified C

source code with code snippets that track function calls and variable

assignments. The translator must pass through whitespace and com-

ments unmolested.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=228

REWRITING THE TOKEN BUFFER IN-PLACE 229

For example, it must rewrite this input:

Download templates/rewriter/1pass/input

int x;

/* A simple function foo */

void foo() {

int y;

y = 1;

/* start */ g(34,y); /* end of line comment */

x = h(/* inside */);

}

to be the following:

Download templates/rewriter/1pass/output

int x;

/* A simple function foo */

void foo() {

int y;

y = 1; write_to("y",y);

/* start */ g(34,y); call("g"); /* end of line comment */

x = eval("h",h(/* inside */)); write_to("x",x);

}

where call() tracks “procedure” calls, eval tracks function calls, and

write_to() tracks variable assignments. The rule that translates func-

tion calls will have to use context to know whether the invocation is

part of an assignment or is an isolated “procedure” (function without a

return value) statement.

The way you’ll solve this code instrumentation problem is with ANTLR’s

rewrite mode (see Section 5.6, rewrite Option, on page 124). This mode

automatically copies the input to the output except where you have

specified translations using template rewrite rules. In other words, no

matter how big your grammar is, if you need to translate only one input

phrase, you will probably need to specify only one template rewrite rule.

The “magic” behind ANTLR’s rewrite mode is a fiendishly clever little

token buffer called TokenRewriteStream that supports insert, delete, and

replace operations. As recognition progresses, actions in your grammar

or template rewrite rules can issue instructions to the token stream

that are queued up as commands. The stream does not actually exe-

cute the commands until you invoke toString(), which avoids any physi-

cal modification of the token buffer. As toString() walks the buffer emit-

ting each token’s text, it looks for commands to be executed at that

particular token index.

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/1pass/input
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/1pass/output
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=229

REWRITING THE TOKEN BUFFER IN-PLACE 230

How ANTLR Differs from Perl and awk for Rewriting

Those familiar with common text-processing tools such as Perl
or the Unix utility awk (or even sed) might disagree with me that
tweaking source code is difficult while preserving whitespace
and comments. Those tools are, in fact, specifically designed
for translation, but lexical, not grammatical, translation. They
are good at recognizing and translating structures that you can
identify with regular expressions but not so good at recogniz-
ing grammatical structure, while ANTLR is. You can look at it like
ANTLR is designed to handle “heavy lifting” translation tasks, but
Perl and sed are better for simple tasks.

That is not to say that you can’t amaze your family and friends
with awk. For example, here’s a Unix one-liner that generates
Java class hierarchy diagrams in DOT (graphviz) format using
only the Unix utilities cat, grep, and awk (try it—it’s amazing!):

pulls out superclass and class as $5 and $3:
public class A extends B . . .
only works for public classes and usual formatting
Run the output into dot tool
cat *.java | grep 'public class' $1 | \

awk 'BEGIN {print "digraph foo {";} \
{print $5 "->" $3;} \
END {print "}"}'

Although this is impressive, it is not perfect because it cannot
handle class definitions on multiple lines and so on. More impor-
tant, the strategy is not scalable because these tools do not
have grammatical context like ANTLR does. Consider how you
would alter the command so that it ignored inner classes. You
would have to add a context variable that says “I am in a
class definition already,” which would require knowing when
class definitions begin and end. Computing that requires that
you track open and close curlies, which means ignoring them
inside multiline comments and strings; eventually you will con-
clude that using a formal grammar is your best solution. Com-
plicated translators built without the benefit of a grammar are
usually hard to write, read, and maintain.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=230

REWRITING THE TOKEN BUFFER IN-PLACE 231

If the command is a replace operation, for example, toString() simply

emits the replacement text instead of the original token (or token range).

Because the operations are done lazily at toString() execution time, com-

mands do not scramble the token indexes. An insert operation at token

index i does not change the index values for tokens i+1..n-1. Also,

because operations never actually alter the buffer, you can always get

back the original token stream, and you can easily simulate transac-

tions to roll back any changes. You can also have multiple command

queues to get multiple rewrites from a single pass over the input such

as generating both a C file and its header file (see the TokenRewriteStream

Javadoc for an example).

To recognize the small subset of C, you will use a variation of the CMi-

nus grammar from Section 8.2, Building a Parser Grammar for the C-

Language, on page 195 (this variation adds function calls and removes

a few statements). The grammar starts with the options to generate

templates and turn on rewrite mode:

Download templates/rewriter/1pass/CMinus.g

grammar CMinus;

options {output=template; rewrite=true;}

The declarations are the same:

Download templates/rewriter/1pass/CMinus.g

program

: declaration+

;

declaration

: variable

| function

;

variable

: type ID ';'

;

function

: type ID '(' (formalParameter (',' formalParameter)*)? ')' block

;

formalParameter

: type ID

;

type: 'int'

| 'void'

;

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/1pass/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/1pass/CMinus.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=231

REWRITING THE TOKEN BUFFER IN-PLACE 232

The translator must rewrite assignments. The alternative that matches

assignments in rule stat must, therefore, have a template rewrite rule:

Download templates/rewriter/1pass/CMinus.g

stat

scope {

boolean isAssign;

}

: expr ';'

| block

| ID '=' {$stat::isAssign=true;} expr ';'

-> template(id={$ID.text},assign={$text})

"<assign> write_to(\"<id>\",<id>);"

| ';'

;

block

: '{' variable* stat* '}'

;

Because this application is going from C to C and the number of tem-

plates is very small, it is OK to in-line the templates rather than ref-

erencing templates stored in a group file as the bytecode generator

example did. The assignment rewrite just emits the original assign-

ment (available as $text, the text matched for the entire rule) and then

makes a call to write_to() with the name of the variable written to. Rule

stat tracks whether it is in the process of recognizing an assignment.

Rule stat’s dynamic scope makes that context information available to

the rules it invokes directly or indirectly.

The expr rule must translate function calls in two different ways, de-

pending on whether the expression is the right side of an assignment

or an isolated procedure call in an expression statement:

Download templates/rewriter/1pass/CMinus.g

expr: ID

| INT

| ID '(' (expr (',' expr)*)? ')'

-> {$stat::isAssign}? template(id={$ID.text},e={$text})

"eval(\"<id>\",<e>)" // rewrite ...=f(3) as eval("f",f(3))

-> template(id={$ID.text},e={$text})

"<e>; call(\"<id>\")" // rewrite ...f(3) as f(3); call("f")

| '(' expr ')'

;

As with AST rewrite rules, you can prefix rewrites with semantic pred-

icates that indicate which of the rewrite rules to apply. Both templates

spit the expression back out verbatim but with surrounding instru-

mentation code. Note that the text for the function call, available as

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/1pass/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/1pass/CMinus.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=232

REWRITING THE TOKEN BUFFER IN-PLACE 233

$text, will include any whitespace and comments matched in between

the first and last real (nonhidden) tokens encountered by rule expr. The

translator can use the usual token definitions:
Download templates/rewriter/1pass/CMinus.g

ID : ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'0'..'9'|'_')*
;

INT : ('0'..'9')+

;

CMT : '/*' (options {greedy=false;} : .)* '*/' {$channel = HIDDEN;} ;

WS : (' ' | '\t' | '\r' | '\n')+ {$channel = HIDDEN;}

;

The only thing to highlight in the token rules is that they must pass the

whitespace and comments tokens to the parser on a hidden channel

rather than throwing them out (with skip()). This is an excellent solution

because, in order to tweak two constructs, only two rules of the gram-

mar need template specifications. Perl aficionados might ask why you

need all the other grammar rules. Can’t you just look for function call

patterns that match and translate constructs like g(34,y)? The unfor-

tunate answer is no. The expressions within the argument list can be

arbitrarily complex, and the regular expressions of Perl cannot match

nested parentheses, brackets, and so on, that might appear inside the

argument list. Avoiding code in comments and strings further compli-

cates the issue. Just to drive the point home, if you change the problem

slightly so that the translator should track only global variable access,

not local variables and parameters, you will need a symbol table and

context to properly solve the problem. The best you can do in general

is to use a complete grammar with a rewrite mode that minimizes pro-

grammer effort and maximizes translator efficiency. For completeness,

here is the core of a test rig:

Download templates/rewriter/1pass/Test.java

ANTLRInputStream input = new ANTLRInputStream(System.in);

CMinusLexer lexer = new CMinusLexer(input);

// rewrite=true only works with TokenRewriteStream

// not CommonTokenStream!

TokenRewriteStream tokens = new TokenRewriteStream(lexer);

CMinusParser parser = new CMinusParser(tokens);

parser.program();

System.out.println(tokens.toString()); // emit rewritten source

The next section solves the same problem using a two-pass parser and

tree parser combination.

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/1pass/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/1pass/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=233

REWRITING THE TOKEN BUFFER WITH TREE GRAMMARS 234

9.8 Rewriting the Token Buffer with Tree Grammars

Complicated translators need to use a multipass approach. In this sit-

uation, the parser grammar merely builds ASTs that one or more tree

grammars examine. A final tree grammar pass must perform the rewrit-

ing instead of the parser grammar. Fortunately, tree grammars can gen-

erate templates just as easily as parser grammars because tree gram-

mars also have access to the TokenRewriteStream object (via the TreeNode-

Stream).

This section solves the same source code instrumentation problem as

the previous section but uses the parser grammar to build ASTs. We’ll

then walk the trees with a tree parser to perform the rewrites using the

TokenRewriteStream. Let’s start by building the AST for your simple sub-

set of C. Here is the parser grammar again from Section 8.2, Building a

Parser Grammar for the C- Language, on page 195 for your convenience:

Download templates/rewriter/2pass/CMinus.g

grammar CMinus;

options {output=AST;}

tokens {

VAR; // variable definition

FUNC; // function definition

ARG; // formal argument

SLIST; // statement list

CALL; // function call

}

Download templates/rewriter/2pass/CMinus.g

program

: declaration+

;

declaration

: variable

| function

;

variable

: type ID ';' -> ^(VAR type ID)

;

function

: type ID '(' (formalParameter (',' formalParameter)*)? ')' block

-> ^(FUNC type ID formalParameter* block)

;

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/CMinus.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=234

REWRITING THE TOKEN BUFFER WITH TREE GRAMMARS 235

formalParameter

: type ID -> ^(ARG type ID)

;

type: 'int'

| 'void'

;

This variation of the grammar has a simplified stat rule—the for state-

ment is gone:

Download templates/rewriter/2pass/CMinus.g

block

: lc='{' variable* stat* '}'

-> ^(SLIST[$lc,"SLIST"] variable* stat*)

;

stat

: expr ';'!

| block

| ID '=' expr ';' -> ^('=' ID expr)

| ';'!

;

Rule expr has an additional alternative to match function calls and gen-

erate ASTs with the CALL imaginary node:

Download templates/rewriter/2pass/CMinus.g

expr: ID

| INT

| ID '(' (expr (',' expr)*)? ')' -> ^(CALL ID expr*)

| '(' expr ')' -> expr

;

Here is the relevant piece of the test rig that launches the parser to

build an AST:

Download templates/rewriter/2pass/Test.java

// PARSE INPUT AND BUILD AST

ANTLRInputStream input = new ANTLRInputStream(System.in);

CMinusLexer lexer = new CMinusLexer(input); // create lexer

// create a buffer of tokens pulled from the lexer

// Must use TokenRewriteStream not CommonTokenStream!

TokenRewriteStream tokens = new TokenRewriteStream(lexer);

CMinusParser parser = new CMinusParser(tokens); // create parser

CMinusParser.program_return r = parser.program(); // parse program

Once you have a parser that builds valid ASTs, you can build the tree

grammar that alters the token buffer. The template rewrite rules to

tweak assignments and function calls are identical to the rewrite rules

in the parser grammar from the last section. You can simply move them

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/CMinus.g
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=235

REWRITING THE TOKEN BUFFER WITH TREE GRAMMARS 236

from the parser to the tree parser at the equivalent grammar locations.

The tree grammar starts out very much like the tree grammar above in

Section 9.6, Generating Bytecode Templates with a Tree Grammar, on

page 222 with the addition of the rewrite=true option:

Download templates/rewriter/2pass/Gen.g

tree grammar Gen;

options {

tokenVocab=CMinus; // import tokens from CMinus.g

ASTLabelType=CommonTree;

output=template;

rewrite=true;

}

The tree matching rules for declarations do not have any template

rewrite rules because the translator does not need to tweak those

phrases:7

Download templates/rewriter/2pass/Gen.g

program

: declaration+

;

declaration

: variable

| function

;

variable

: ^(VAR type ID)

;

function

: ^(FUNC type ID formalParameter* block)

;

formalParameter

: ^(ARG type ID)

;

type: 'int'

| 'void'

;

7. Unlike the parser grammar solution, you might be able to get away with just the tree

grammar rules that specify rewrite templates. The AST is a highly processed version of

the token stream, so it is much easier to identify constructs of interest. Future research

should yield a way to avoid having to specify superfluous tree grammar rules for rewriting

applications.

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/Gen.g
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/Gen.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=236

REWRITING THE TOKEN BUFFER WITH TREE GRAMMARS 237

Rule stat defines the dynamic scope with isAssign like the parser grammar

did. stat also specifies a template that rewrites the text from which the

parser created the AST. In other words, parser grammar rule stat builds

an assignment AST with token ’=’ at the root. stat records the token

range it matches in its result AST’s root node. For input x=3;, the root

of the AST would contain token index range i..i+3 where i is the index

of the x. Rule stat in the tree grammar then also knows this token range

just by asking the root of the AST it matches. This is how template

construction rewrite rules in a tree grammar know which tokens to

replace in the input stream.

Download templates/rewriter/2pass/Gen.g

block

: ^(SLIST variable* stat*)

;

stat

scope {

boolean isAssign;

}

: expr

| block

| ^('=' ID {$stat::isAssign=true;} expr)

-> template(id={$ID.text},assign={$text})

"<assign> write_to(\"<id>\",<id>);"

;

A word of caution: if an alternative matches a list instead of a single

subtree, ANTLR will not give you the right result for $text. That attribute

expression is defined as the text for the first subtree a rule matches.

This might seem a little odd, but it works well in practice.

Rule expr performs the same translation based upon context as did the

solution in the previous section:

Download templates/rewriter/2pass/Gen.g

expr: ID

| INT

| ^(CALL ID expr*)

-> {$stat::isAssign}? template(id={$ID.text},e={$text})

"eval(\"<id>\",<e>)"

-> template(id={$ID.text},e={$text})

"<e> call(\"<id>\")"

;

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/Gen.g
http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/Gen.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=237

REFERENCES TO TEMPLATE EXPRESSIONS WITHIN ACTIONS 238

Here is the final piece of the test rig that walks the tree, rewrites the

token buffer, and finally emits the altered token buffer:

Download templates/rewriter/2pass/Test.java

// WALK TREE AND REWRITE TOKEN BUFFER

// get the tree from the return structure for rule prog

CommonTree t = (CommonTree)r.getTree();

// create a stream of tree nodes from AST built by parser

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

// tell it where it can find the token objects

nodes.setTokenStream(tokens);

Gen gen = new Gen(nodes);

gen.program(); // invoke rule program

System.out.println(tokens.toString()); // emit tweaked token buffer

At this point, you’ve seen one generator and two rewriter category exam-

ples. You know how to use template construction rules in both a parser

grammar and a tree grammar. The type of grammar to use depends

on the complexity of a translator. More complicated translators need

multiple passes and, consequently, create templates in tree grammars.

For the most part, the examples given in this chapter avoid constructing

templates with actions and do not set template attributes manually.

Sometimes, however, the translation is complicated enough that you

want to use arbitrary actions to create or modify templates. The next

section describes the special symbols related to templates that you can

use in actions as shorthand notation.

9.9 References to Template Expressions within Actions

In some rare cases, you might need to build templates and set their

attributes in actions rather than using the template rewrite rules. For

your convenience in this situation, ANTLR provides some template

shorthand notation for use in embedded actions. All template-related

special symbols start with % to distinguish them from normal attribute

notation that uses $.

Consider the following grammar that uses a template rewrite rule:

s : ID '=' INT ';' -> assign(x={$ID.text},y={$INT.text})

;

http://media.pragprog.com/titles/tpantlr/code/templates/rewriter/2pass/Test.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=238

REFERENCES TO TEMPLATE EXPRESSIONS WITHIN ACTIONS 239

Syntax Description

%foo(a={},b={},. . .) Template construction syntax. Create

instance of template foo, setting attribute

arguments a, b,

%({«nameExpr»})(a={},. . .) Indirect template constructor reference.

nameExpr evaluates to a String name that

indicates which template to instantiate. Oth-

erwise, it is identical to the other template

construction syntax.

%x.y = «z»; Set template attribute y of template x to

z. Languages such as Python without semi-

colon statement terminators must still use

them here. The code generator is free to

remove them during code generation.

%{«expr»}.y = «z»; Set template attribute y of StringTemplate

typed expression expr to expression z.

%{«stringExpr»} Create an anonymous template from

String stringExpr.

Figure 9.1: Template shorthand notation available in grammar actions

You can get the same functionality using an action almost as tersely:

s : ID '=' INT ';' {$st = %assign(x={$ID.text},y={$INT.text});}

;

Or, you can create the template and then manually set the attributes

using the attribute assignment notation:

s : ID '=' INT ';'

{

$st = %assign(); // set $st to instance of assign

%{$st}.x=$ID.text; // set attribute x of $st

%{$st}.y=$INT.text;

}

;

ANTLR translates that action to the following:

retval.st = templateLib.getInstanceOf("assign");

(retval.st).setAttribute("x",ID3.getText());

(retval.st).setAttribute("y",INT4.getText());

The table in Figure 9.1 summarizes the template shorthand notation

available to you in embedded actions.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=239

REFERENCES TO TEMPLATE EXPRESSIONS WITHIN ACTIONS 240

This chapter demonstrated that using StringTemplate templates in con-

junction with ANTLR grammars is a great way to build both generators

and rewriters. ANTLR v3’s new rewrite mode is especially effective for

those applications that need to tweak the input slightly but otherwise

pass most of it through to the output.

The next chapter discusses an important part of any professional trans-

lator: error reporting and recovery.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=240

Chapter 10

Error Reporting and Recovery
The quality of a language application’s error messages and recovery

strategy often makes the difference between a professional application

and an amateurish application. Error recovery is the process of recov-

ering from a syntax error by altering the input stream or consuming

symbols until the parser can restart in a known state. Many hand-built

and many non-LL-based recognizers emit less than optimal error mes-

sages, whereas ANTLR-generated recognizers automatically emit very

good error messages and recover intelligently, as shown in this chap-

ter. ANTLR’s error handling facility is even useful during development.

During the development cycle, you will have a lot of mistakes in your

grammar. The resulting parser will not recognize all valid sentences

until you finish and debug your grammar. In the meantime, informa-

tive error messages help you track down grammar problems. Once you

have a correct grammar, you then have to deal with ungrammatical sen-

tences entered by users or even ungrammatical sentences generated by

other programs gone awry.

In both situations, the manner in which your parser responds to un-

grammatical input is an important productivity consideration. In other

words, a parser that responds with “Eh?” and bails out upon the first

syntax error is not very useful during development or for the people

who have to use the resulting parser. For example, some SQL engines

can only tell you the general vicinity where an error occurred rather

than exactly what is wrong and where, making query development a

trial-and-error process.

A PARADE OF ERRORS 242

Developers using ANTLR get a good error reporting facility and a sophis-

ticated error recovery strategy for free. ANTLR automatically generates

recognizers that emit rich error messages upon syntax error and suc-

cessfully resynchronize much of the time. The recognizers even avoid

generating more than a single error message for each syntax error. New in v3.

This chapter describes the automatic error reporting and recovery strat-

egy used by ANTLR-generated recognizers and shows how to alter the

default mechanism to suit your particular needs.

10.1 A Parade of Errors

The best way to describe ANTLR’s error recovery strategy is to show

you how ANTLR-generated recognizers respond to the most common

syntax errors: mismatched token, no viable alternative, and early exit

from an EBNF (. . .)+ subrule loop. Consider the following grammar for

simple statements and expressions, which we’ll use as the core for the

examples in this section and the remainder of the chapter:

Download errors/E.g

grammar E;

prog: stat+ ;

stat: expr ';'

{System.out.println("found expr: "+$stat.text);}

| ID '=' expr ';'

{System.out.println("found assign: "+$stat.text);}

;

expr: multExpr (('+'|'-') multExpr)*
;

multExpr

: atom ('*' atom)*
;

atom: INT

| '(' expr ')'

;

ID : ('a'..'z'|'A'..'Z')+ ;

INT : '0'..'9'+ ;

WS : (' '|'\t'|'\n'|'\r')+ {skip();} ;

http://media.pragprog.com/titles/tpantlr/code/errors/E.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=242

A PARADE OF ERRORS 243

And here is the usual test rig that invokes rule prog:

Download errors/TestE.java

import org.antlr.runtime.*;

public class TestE {

public static void main(String[] args) throws Exception {

ANTLRInputStream input = new ANTLRInputStream(System.in);

ELexer lexer = new ELexer(input);

CommonTokenStream tokens = new CommonTokenStream(lexer);

EParser parser = new EParser(tokens);

parser.prog();

}

}

First run some valid input into the parser to figure out what the normal

behavior is:

⇐ $ java TestE

⇐ (3);

⇐ EOF

⇒ found expr: (3);

$

Upon either expression statement or assignment statement, the trans-

lator prints a message indicating the text matched for rule stat. In this

case, (3); is an expression, not an assignment, as shown in the output.

Now, leaving off the final), the parser detects a mismatched token

because rule atom was looking for the right parenthesis to match the

left parenthesis:

⇐ $ java TestE
⇐ (3;

⇐ EOF

⇒ line 1:2 mismatched input ';' expecting ')'

found expr: (3;

$

The line 1:2 component of the error message indicates that the error

occurred on the first line and at the third character position in that line

(indexed from zero, hence, index 2).

Generating that error message is straightforward, but how does the

parser successfully match the ; and execute the print action in the first

alternative of rule stat after getting a syntax error all the way down in

atom? How did the parser successfully recover from that mismatched

token to continue as if nothing happened? This error recovery feature

is called single token insertion because the parser pretends to insert the

http://media.pragprog.com/titles/tpantlr/code/errors/TestE.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=243

A PARADE OF ERRORS 244

missing) and keep going. We’ll examine the mechanism in Section 10.7,

Recovery by Single Symbol Insertion, on page 258. Notice that with mul-

tiple expressions, the parser successfully continues and matches the

second alternative without error:

⇐ $ java TestE

⇐ (3;

⇐ 1+2;
⇐ EOF

⇒ line 1:2 mismatched input ';' expecting ')'

found expr: (3;

found expr: 1+2;

$

ANTLR also avoids generating cascading error messages if possible.

That is, recognizers try to emit a single error message for each syntax

error. In the following sample run, the first expression has two errors:

the missing) and the missing ;. The parser normally emits only the first

error message, suppressing the second message that has the [SPURIOUS]

prefix:

⇐ $ java TestE

⇐ (3
⇐ a=1;

⇐ EOF

⇒ line 2:0 mismatched input 'a' expecting ')'

[SPURIOUS] line 2:0 mismatched input 'a' expecting ';'

found expr: (3

found assign: a=1;

$

Another common syntax error occurs when the parser is at a deci-

sion point and the current lookahead is not consistent with any of the

alternatives of that rule or subrule. For example, the decision in rule

atom must choose between an integer and the start of a parenthesized

expression. Input 1+; is missing the second operand, and rule atom

would see ; instead, causing a “no viable alternative exception:”

⇐ $ java TestE

⇐ 1+;

⇐ EOF

⇒ line 1:2 no viable alternative at input ';'

found expr: 1+;

$

The parser successfully recovers by scanning ahead to look for a symbol

that can follow a reference to atom or a rule that has invoked atom. In

this case, the ; is a viable symbol following a reference to atom (and

therefore expr). The parser consumes no tokens and simply exits from

atom knowing that it is probably correctly resynchronized.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=244

ENRICHING ERROR MESSAGES DURING DEBUGGING 245

Back When You Could Almost Parse C++

In the early 1990s, I was consulting at NeXT and was helping
Sumana Srinivasan build a C++ code browser using ANTLR v1
(ANTLR is still used in NeXTStep, er, Mac OS X today). The man-
ager, Steve Naroff, insisted that the ANTLR-generated parser
provide the same high-quality error messages as his hand-built
C parser did. Because of this, I introduced the notion of parser
exception handling (the analog of the familiar programming
exception handling) and created a simple single-token dele-
tion mechanism. Ironically, the ANTLR-generated C++ recog-
nizer emitted better messages in some circumstances than the
hand-built parser because ANTLR never got tired of computing
token sets and generating error recovery code—humans, on
the other hand, often get sick of this tedious job.

You will also run into early subrule exit exceptions where a one-or-more

(. . .)+ subrule matched no input. For example, if you send in an empty

input stream, the parser has nothing to match in the stat+ loop:

⇐ $ java TestE
⇐ EOF

⇒ line 0:-1 required (..)+ loop did not match anything at input '<EOF>'

$

The line and character position information for EOF is meaningless;

hence, you see the odd 0:-1 position information.

This section gave you a taste of ANTLR’s default error reporting and

recovery capabilities (see Section 10.7, Automatic Error Recovery Strat-

egy, on page 256 for details about the automatic error recovery mech-

anism). The next few sections describe how you can alter the standard

error messages to help with grammar debugging and to provide better

messages for your users.

10.2 Enriching Error Messages during Debugging

By default, recognizers emit error messages that are most useful to

users of your software. The messages include information only about

what was found and what was expected such as in the following:

line 10:22 mismatched input INT expecting ID

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=245

ENRICHING ERROR MESSAGES DURING DEBUGGING 246

Unfortunately, your grammar has probably 200 references to token ID.

Where in the grammar was the parser when it found the INT instead

of the ID? You can use the debugger in ANTLRWorks to set a break-

point upon exception and then just look to see where in the grammar

the parser is. Sometimes, though, sending text error messages to the

console can be more convenient because you do not have to start the

debugger.

With a little bit of work, you can override the standard error reporting

mechanism to include information about the rule invocation stack. The

invocation stack is the nested list of rules entered by the parser at any

given moment, that is, the stack trace. You can also add more informa-

tion about the mismatched token. For no viable alternative errors, you

can do even more. For example, the following run illustrates a rich, no

viable alternative error message that is much more useful for debugging

grammars than the default:

⇐ $ java TestE2

⇐ 1+;

⇐ EOF

⇒ line 1:2 [prog, stat, expr, multExpr, atom] no viable alternative,

token=[@2,2:2=';',<7>,1:2] (decision=5 state 0)

decision=<<35:1: atom : (INT | '(' expr ')');>>

found expr: 1+;

$

The message includes a rule invocation stack trace where the last rule

mentioned is the rule the parser was in when it encountered the syn-

tax error. The error includes a detailed report on the token itself that

includes the token index, a character index range into the input stream,

the token type, and the line and character position within the line.

Finally, for no viable alternative exceptions such as this, the message

includes information about the decision in a grammar: the decision

number, the state within the decision’s lookahead DFA, and a chunk

of the grammar that describes the decision. To use the decision and

state information, turn on ANTLR option -dfa, which will generate DOT

(graphviz) descriptions you can display. Filenames are encoded with the

grammar name and the decision number, so, for example, the DOT file

for decision 5 of grammar E is E_dec-5.dot and looks like the following:

s0

s1=>1
INT

s2=>2

’(’

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=246

ALTERING RECOGNIZER ERROR MESSAGES 247

The state 0 mentioned in the error message is s0 in the diagram. In

this case, the parser had a lookahead of ; that clearly does not match

either alternative emanating from s0; hence, you have the no viable

alternative exception.

To get these rich error messages, override two methods from BaseRecog-

nizer, displayRecognitionError() and getTokenErrorDisplay(), where the gram-

mar itself stays the same:

Download errors/E2.g

grammar E2;

@members {

public String getErrorMessage(RecognitionException e,

String[] tokenNames)

{

List stack = getRuleInvocationStack(e, this.getClass().getName());

String msg = null;

if (e instanceof NoViableAltException) {

NoViableAltException nvae = (NoViableAltException)e;

msg = " no viable alt; token="+e.token+

" (decision="+nvae.decisionNumber+

" state "+nvae.stateNumber+")"+

" decision=<<"+nvae.grammarDecisionDescription+">>";

}

else {

msg = super.getErrorMessage(e, tokenNames);

}

return stack+" "+msg;

}

public String getTokenErrorDisplay(Token t) {

return t.toString();

}

}

The next section describes how to improve error messages for your

users rather than for yourself during debugging.

10.3 Altering Recognizer Error Messages

This section describes the information available to you when gener-

ating error messages and provides an example that illustrates how to

enrich error messages with context information from the grammar.For

each problem that can occur during sentence recognition, the recog-

nizer creates an exception object derived from RecognitionException.

http://media.pragprog.com/titles/tpantlr/code/errors/E2.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=247

ALTERING RECOGNIZER ERROR MESSAGES 248

RecognitionException

The superclass of all exceptions thrown by an ANTLR-generated recog-

nizer. It tracks the input stream; the index of the symbol (character,

token, or tree node) the recognizer was looking at when the error occurred;

the erroneous symbol pointer (int, Token, or Object); the line; and the char-

acter position within that line.

MismatchedTokenException

Indicates that the parser was looking for a particular symbol that it did

not find at the current input position. In addition to the usual fields, this

object tracks the expected token type (or character code).

MismatchedTreeNodeException

Indicates that the tree parser was looking for a node with a particular

token type and did not find it. This is the analog of a mismatched token

exception for a token stream parser. It tracks the expected token type.

NoViableAltException

The recognizer came to a decision point, but the lookahead was not con-

sistent with any of the alternatives. It tracks the decision number and

state number within the lookahead DFA where the problem occurred and

also stores a chunk of the grammar from which ANTLR generated the

decision.

EarlyExitException

The recognizer came to a (..)+ EBNF subrule that must match an alterna-

tive at least once, but the subrule did not match anything. It tracks the

decision number but not the state number because it is obviously not in

the middle of the lookahead DFA; the whole thing was skipped.

FailedPredicateException

A validating semantic predicates evaluated to false. It tracks the name of

the rule in which the predicate failed as well as the text of the predicate

itself from your grammar.

MismatchedRangeException

The recognizer tried to match a range of symbols, usually characters, but

could not. It tracks the minimum and maximum element in the range.

MismatchedSetException

The recognizer attempted to match a set of symbols but could not. It

tracks the set of elements in which the recognizer was interested.

MismatchedNotSetException

The recognizer attempted to match the inverse of a set (using the ~ oper-

ator) but could not.

Figure 10.1: ANTLR recognition exceptions

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=248

ALTERING RECOGNIZER ERROR MESSAGES 249

These exception objects contain information about what was found on

the input stream, what was expected, and sometimes information about

the location in the grammar associated with the erroneous parser state.

To avoid forcing English-only error messages and to generally make

things as flexible as possible, the recognizer does not create exception

objects with string messages. Instead, it tracks the information neces-

sary to generate an error.

Then the various reporting methods in BaseRecognizer generate a local-

ized error message, or you can override them. Do not expect the excep-

tion getMessage() methods to return anything. The table in Figure 10.1,

on the preceding page, summarizes the exception classes and the infor-

mation they contain. Improved in v3.

Beyond the information in these exception objects, you can collect any

useful information you want via actions in the grammar and then use

it to provide better error messages for your users.

One of the most useful enhancements to error messages is to include

information about the kind of abstract construct the parser was rec-

ognizing when it encountered an error. For example, instead of just

saying “missing ID,” it is better to say “missing ID in expression.” You

could use the literal rule name such as “multExpr,” but that is usually

meaningless to users.

You can think of this as a paraphrase mechanism because you are rep-

resenting a collection of grammar rules with a short description. What

you want is a map from all rules associated with a particular abstract

language construct (that is, declarations, statements, and expressions)

to a user-friendly string such as “expression.” In v2, there was

a paraphrase option that

automated this.The easiest way to implement a paraphrase mechanism is to push a

string onto a stack when you enter a rule that represents an abstract

construct in a language and then pop the value off when leaving the

rule. Do not push a paraphrase string for all rules. Just push a para-

phrase for the top-level rule such as expr, but not multExpr or atom.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=249

ALTERING RECOGNIZER ERROR MESSAGES 250

First, define a stack of paraphrases and override getErrorMessage() to

include the paraphrase at the end:

Download errors/P.g

/** This grammar demonstrates creating a "paraphrase" error reporting option. */

grammar P;

@members {

Stack paraphrases = new Stack();

public String getErrorMessage(RecognitionException e,

String[] tokenNames)

{

String msg = super.getErrorMessage(e, tokenNames);

if (paraphrases.size()>0) {

String paraphrase = (String)paraphrases.peek();

msg = msg+" "+paraphrase;

}

return msg;

}

}

Then, at the start of each rule that relates to an abstract concept in

your language, push and pop a paraphrased grammar location that

will be used in the error reporting:

Download errors/P.g

prog: stat+ ;

stat

@init { paraphrases.push("in statement"); }

@after { paraphrases.pop(); }

: expr ';'

{System.out.println("found expr: "+$stat.text);}

| ID '=' expr ';'

{System.out.println("found assign: "+$stat.text);}

;

expr

@init { paraphrases.push("in expression"); }

@after { paraphrases.pop(); }

: multExpr (('+'|'-') multExpr)*
;

multExpr

: atom ('*' atom)*
;

atom: INT

| '(' expr ')'

;

http://media.pragprog.com/titles/tpantlr/code/errors/P.g
http://media.pragprog.com/titles/tpantlr/code/errors/P.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=250

EXITING THE RECOGNIZER UPON FIRST ERROR 251

Here are three sample runs to illustrate the improved error messages

for the same invalid input used in previous sections:

⇐ $ java TestP

⇐ (3;
⇐ EOF

⇒ line 1:2 mismatched input ';' expecting ')' in expression

found expr: (3;
⇐ $ java TestP
⇐ 1+;

⇐ EOF

⇒ line 1:2 no viable alternative at input ';' in expression

found expr: 1+;
⇐ $ java TestP

⇐ a;
⇐ EOF

⇒ line 1:1 mismatched input ';' expecting '=' in statement

$

Recall that the parser detects the first error in atom but emits “in

expression” rather than the less useful “in atom” (the user does not

know what an atom is). All rules invoked from expr will use that para-

phrase. The last run did not execute the embedded action because the

parser could not recover using single symbol deletion or insertion and

it therefore had to bail out of rule stat.

What if you want the parser to bail out upon the first syntax error

without ever trying to recover? The next section describes how to make

the parser exit immediately upon the first syntax error.

10.4 Exiting the Recognizer upon First Error

Sometimes for invalid input you simply want to report an error and

exit without trying to recover and continue parsing. Examples include

unrecognized network protocol messages and expressions in spread-

sheets.

Most likely, your embedded actions will not be valid given the erroneous

input, so you might as well just report an error and ask the user to fix

the problem.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=251

EXITING THE RECOGNIZER UPON FIRST ERROR 252

To make your recognizer (parser or tree parser) exit immediately upon

recognition error, you must override two methods, mismatch() and recov-

erFromMismatchSet(), and alter how the parser responds to thrown

exceptions.

Download errors/Bail.g

grammar Bail;

@members {

protected void mismatch(IntStream input, int ttype, BitSet follow)

throws RecognitionException

{

throw new MismatchedTokenException(ttype, input);

}

public void recoverFromMismatchedSet(IntStream input,

RecognitionException e,

BitSet follow)

throws RecognitionException

{

throw e;

}

}

// Alter code generation so catch-clauses get replace with

// this action.

@rulecatch {

catch (RecognitionException e) {

throw e;

}

}

As usual, the remainder of the grammar is the same. Here is a sample

run using the typical test rig:

⇐ $ java TestBail

⇐ (3;

⇐ 1+2;
⇐ EOF

⇒ Exception in thread "main" MismatchedTokenException(7!=13)

at BailParser.mismatch(BailParser.java:29)

at org.antlr.runtime.BaseRecognizer.match(BaseRecognizer.java:92)

at BailParser.atom(BailParser.java:307)

at BailParser.multExpr(BailParser.java:226)

at BailParser.expr(BailParser.java:163)

at BailParser.stat(BailParser.java:117)

at BailParser.prog(BailParser.java:57)

at TestBail.main(TestBail.java:9)

The parser throws an exception rather than recovering, and Java dis-

plays the uncaught exception emanating from the main program.

http://media.pragprog.com/titles/tpantlr/code/errors/Bail.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=252

MANUALLY SPECIFYING EXCEPTION HANDLERS 253

The rulecatch action changes the default code ANTLR generates at the

end of each rule’s method. In this case, it will change this code:

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

to the code in the rulecatch action:

catch (RecognitionException re) {

throw e;

}

Note that because ANTLR traps exceptions only under RecognitionExcep-

tion, your parser will exit if you throw an exception that is not under this

hierarchy such as a RuntimeException.

You have control over whether a recognizer throws an exception and

what to do if it does. This even allows you to do context-sensitive error

recovery by putting a conditional in the rulecatch action. In this way,

some rules in your grammar could do automatic recovery where it

makes sense, leaving the other rules to bail out of the parser.

The rulecatch alters the default code generation for all rules, but some-

times you want to alter exception handling for just one rule; the follow-

ing section describes how to use individual exception handlers.

10.5 Manually Specifying Exception Handlers

You can trap any exception you want in any rule of your grammar by

specifying manual exception handlers after the semicolon at the end of

the rule. You can trap any Java exception. The basic idea is to force all

errors to throw an exception and then catch the exception where you

think it is appropriate. Given the same rulecatch action and method

overrides from Bail.g in the previous section, here is how to catch all

recognition exceptions in rule stat:

Download errors/Exc.g

stat: expr ';'

{System.out.println("found expr: "+$stat.text);}

| ID '=' expr ';'

{System.out.println("found assign: "+$stat.text);}

;

catch [RecognitionException re] {

reportError(re);

consumeUntil(input, SEMI); // throw away all until ';'

input.consume(); // eat the ';'

}

http://media.pragprog.com/titles/tpantlr/code/errors/Exc.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=253

ERRORS IN LEXERS AND TREE PARSERS 254

The exception action reports the errors as usual but manually recovers

by just killing everything until the semicolon. Also, the grammar needs

a tokens specification so that the exception action can refer to the SEMI

token type:

tokens { SEMI=';' }

Here are some sample runs:

⇐ $ java TestExc

⇐ (3;
⇐ a=1;

⇐ EOF

⇒ line 1:2 mismatched input ';' expecting ')'

found assign: a=1;
⇐ $ java TestExc

⇐ 3+;

⇐ a=1;
⇐ EOF

⇒ line 1:2 no viable alternative at input ';'

found assign: a=1;

$

This strategy does not do as well as ANTLR’s default because it gobbles

input more aggressively. In the following run, the mismatched token for

the expression 3 forces the exception handler to consume until it sees

a semicolon, effectively tossing out the second line of input:

⇐ $ java TestExc

⇐ 3
⇐ a=1;

⇐ x=2;

⇐ EOF

⇒ line 2:0 mismatched input 'a' expecting SEMI

found assign: x=2;

$

The default mechanism would recover properly and match the first

assignment correctly, but this example illustrates how to specify your

own exceptions.

10.6 Errors in Lexers and Tree Parsers

So far this chapter has focused primarily on parsers, but errors can

occur in lexers and tree parsers as well, of course. For example, return-

ing to the original E grammar from the beginning of this chapter, enter-

ing an invalid character such as & results in a no viable alternative

exception:

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=254

ERRORS IN LEXERS AND TREE PARSERS 255

⇐ $ java TestE

⇐ &3;
⇐ EOF

⇒ line 1:0 no viable alternative at character '&'

found expr: 3;

$

The only difference is that the error message says “character” instead of

“input.” In between tokens, lexers recover by blindly killing the offend-

ing character and looking for another token. Once the lexer has recov-

ered, it is free to send the next token to the parser. You can see that the

parser finds a valid expression after the offending character and prints

the expression, 3;, as usual.

Within a token definition rule, however, mismatched character errors

can also occur, which are analogous to mismatched token errors. For

example, if you forget to terminate a string, the lexer might consume

until the end of file and would emit something like the following error:

line 129:0 mismatched character '<EOF>' expecting '"'

Turning to tree parsers now, recall that they are really just parsers

that read streams of nodes instead of streams of tokens. Recall the

expression evaluator from Chapter 3, A Quick Tour for the Impatient,

on page 59. Imagine that, while developing a grammar, you forget to

“delete” parentheses in rule atom (that is, you forgot to add the ! opera-

tors):

Download errors/Expr.g

atom: INT

| ID

| '(' expr ')' // should have ! ops or use "-> expr"

;

Now if you rebuild and run with sample input a=(3), the parser will

no longer build a proper tree. It will leave in the parenthesis tokens,

which will cause syntax errors in the tree parser. The following session

illustrates the error message emitted by the tree parser:

⇐ $ java org.antlr.Tool Expr.g Eval.g

⇐ $ javac TestEval.java # compiles all files

⇐ $ java TestEval

⇐ a=(3)
⇐ EOF

⇒ (= a (3)) // note the extra (and) around '3'

Eval.g: node from line 1:2 no viable alternative at input '('

3

$

http://media.pragprog.com/titles/tpantlr/code/errors/Expr.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=255

AUTOMATIC ERROR RECOVERY STRATEGY 256

Tree parsers have slightly different error headers (the “tree-grammar-

name: node from” prefix) to indicate that a tree parser emitted the

error rather than a normal parser. Tree parsers emit error messages

with the grammar name because the message is always intended for

the programmer—a malformed tree is the programmer’s fault, not the

user’s.

Naturally for development, you can augment these messages to indicate

where in the grammar the tree parser had a problem just like with

parser grammars. You can even print the offending subtree because

the RecognitionException object contains the appropriate node pointer.

10.7 Automatic Error Recovery Strategy

ANTLR’s error recovery mechanism is based upon Niklaus Wirth’s early

ideas in Algorithms + Data Structures = Programs [Wir78] (as well as

Rodney Topor’s A Note on Error Recovery in Recursive Descent Parsers

[Top82]) but also includes Josef Grosch’s good ideas from his CoCo

parser generator (Efficient and Comfortable Error Recovery in Recur-

sive Descent Parsers [Gro90]). Essentially, recognizers perform single-

symbol insertion and deletion upon mismatched symbol errors (as

described in a moment) if possible. If not, recognizers gobble up sym-

bols until the lookahead is a member of the resynchronization set and

then exit the rule. The resynchronization set is the set of input symbols

that can legally follow references to the current rule and references to

any invoking rules up the call chain. Similarly, if the recognizer cannot

choose any of the alternatives from the start of a rule, the recognizer

again uses the gobble-and-exit strategy.

This “consume until symbol in resynchronization set” strategy makes

sense because the recognizer knows there is something wrong with the

input that should match for the current rule. It decides to throw out

tokens until the lookahead is consistent with something that should

match after the recognizer exits from the rule. For example, if there is

a syntax error within an assignment statement, it makes a great deal

of sense to throw out tokens until the parser sees a semicolon or other

statement terminator.

Another idea from Grosch that ANTLR implements is to emit only a

single message per syntax error to prevent spurious, cascading errors.

Through the use of a simple boolean variable, set upon syntax error,

the recognizer can avoid emitting further errors until the recognizer

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=256

AUTOMATIC ERROR RECOVERY STRATEGY 257

Language Theory Humor

Apparently, the great Niklaus Wirth∗ had an excellent sense
of humor. He used to joke that in Europe people called him
by “reference” (properly pronouncing his name “Ni-klaus Virt”)
and that in America people called him by “value” (pronounc-
ing his name “Nickle-less Worth”).

At the Compiler Construction 1994 conference, Kristen
Nygaard† (inventor of Simula) told a story about how, while
teaching a language theory course, he commented that
“Strong typing is fascism,” referring to his preference for lan-
guages that are loose with types. A student came up to him
afterward and asked why typing hard on the keyboard was fas-
cism.

∗. See http://en.wikipedia.org/wiki/Niklaus_Wirth.
†. See http://en.wikipedia.org/wiki/Kristen_Nygaard.

successfully matches a symbol and resets the variable. See field error-

Recovery in BaseRecognizer. The following three sections describe

ANTLR’s automatic error recovery system in more detail.

Recovery by Single Symbol Deletion

Consider erroneous expression (3));. The parser responds with this:

⇐ $ java TestE

⇐ (3));

⇐ EOF

⇒ line 1:3 mismatched input ')' expecting ';'

found expr: (3));

$

Even though there is an extra right parenthesis, the parser is able to

continue, implicitly deleting the extra symbol. Instead of giving up on

the rule, the parser can examine the next symbol of lookahead to see

whether that symbol is the one it wanted to find. If the next symbol is

exactly what it was looking for, the parser assumes the current sym-

bol is a junk token, executes a consume() call, and continues. If the

parser fails to resynchronize by deleting a symbol, it attempts to insert

a symbol instead.

http://en.wikipedia.org/wiki/Niklaus_Wirth
http://en.wikipedia.org/wiki/Kristen_Nygaard
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=257

AUTOMATIC ERROR RECOVERY STRATEGY 258

Recovery by Single Symbol Insertion

Consider the erroneous input (3; discussed at the start of this chapter.

The parser continued parsing and executed the embedded action even

though it complained that it was expecting ’)’ but it found ’;’:

⇐ $ java TestE

⇐ (3;
⇐ EOF

⇒ line 1:2 mismatched input ';' expecting ')'

found expr: (3;

$

The parser first tries single-token deletion but finds that the next sym-

bol of lookahead, EOF, is not what it was looking for—deleting it and

continuing would be wrong. Instead, it tries the opposite: is the cur-

rent token consistent with what could come after the expected token?

In this case, the parser expects to see a semicolon next, which is in fact

the current token. In this case, the parser can assume that the user

simply forgot the expected token and can continue, implicitly inserting

the missing token.

If single-symbol deletion and insertion both fail, the parser has no

choice but to attempt to resynchronize using the aggressive strategy

described in the next section.

Recovery by Scanning for Following Symbols

When within-rule error recovery fails or upon a no viable alternative sit-

uation, the best recovery strategy is to consume tokens until the parser

sees a token in the set of tokens that can legally follow the current rule.

These following symbols are those that appear after a reference to the

current rule or any rule invocation that led to the current rule. That set

of tokens is called the resynchronization set.

It is worthwhile going through an example to understand how ANTLR

recovers via resynchronization sets. Consider the following grammar

and imagine that, at each rule invocation, the parser pushes the set of

tokens that could follow that rule invocation onto a stack:

s : '[' b ']'

| '(' b ')'

;

b : c '^' INT ;

c : ID

| INT

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=258

AUTOMATIC ERROR RECOVERY STRATEGY 259

Here are the following sets: ’]’ follows the first reference to b in s, ’)’

follows the reference to b in the second alternative, and ’∧’ follows the

reference to c in b.

With the erroneous input [], the call chain is as follows: s calls b calls c.

In c, the parser discovers that the lookahead, ’]’, is not consistent with

either alternative of c. The following table summarizes the call stack

and associated resynchronization set context for each rule invocation.

Call Depth Resynchronization Set In Rule

0 EOF main()

1 EOF s

2 ’]’ b

3 ’∧’ c

The complete resynchronization set for the current rule is the union

of all resynchronization sets walking up the call chain. Rule c’s resyn-

chronization set is therefore { ’∧’, ’]’, EOF }. To resynchronize, the parser

consumes tokens until it finds that the lookahead is consistent with the

resynchronization set. In this case, lookahead ’]’ starts out as a mem-

ber of the resynchronization set, and the parser won’t actually consume

any symbols.

After resynchronization, the parser exits rule c and returns to rule b

but immediately discovers that it does not have the ’∧’ symbol. The

process repeats itself, and the parser consumes tokens until it finds

something in the resynchronization set for rule b, which is { ’]’, EOF

}. Again, the parser does not consume anything and exits b, returning

to the first alternative of rule s. Now, the parser finds exactly what it

is looking for, successfully matching the ’]’. The parser is now properly

resynchronized.

Those familiar with language theory will wonder whether the resyn-

chronization set for rule c is just FOLLOW (c), the set of all viable sym-

bols that can follow references to c in some context. It is not that sim-

ple, unfortunately, and the resynchronization sets must be computed

dynamically to get the set of symbols that can follow the rule in a partic-

ular context rather than in all contexts.1FOLLOW (b) is { ’)’, ’]’ }, which

includes all symbols that can follow references to b in both contexts

1. In the generated source code, the partial resynchronization sets look like

FOLLOW_b_in_s7. Every rule invocation is surrounded by something like pushFol-

low(FOLLOW_expr_in_expr334); expr(); _fsp- -;. This code pushes the exact set of symbols that

can follow the rule reference.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=259

AUTOMATIC ERROR RECOVERY STRATEGY 260

(alternatives one and two of s). Clearly, though at runtime, the parser

can call b from only one location at a time. Note that FOLLOW (c) is ’∧’,

and if the parser resynchronized to that token instead of the resynchro-

nization set, it would consume until the end of file because there is no

’∧’ on the input stream.

ANTLR provides good error reporting for both the developer and the

users of the deployed language application. Further, ANTLR’s automatic

error recovery mechanism resynchronizes recognizers very well, again

yielding an excellent experience for your users.

This chapter concludes Part II of the book, which focused on explaining

the various syntax and semantics of ANTLR grammars. Part III of this

book explains and illustrates ANTLR’s sophisticated new LL(*) parsing

strategy and the use of semantic and syntactic predicates.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=260

Part III

Understanding Predicated-LL(*)

Grammars

Chapter 11

LL(*) Parsing
The chapters in the third part of this book represent a thorough study of

ANTLR’s predicated-LL(*) parsing mechanism. Unfortunately, this topic

is not easy and typically requires an advanced parsing background to

fully understand. The discussion is as clear and easy to follow as pos-

sible, but you’ll still have to read some sections multiple times, which

is typical of any dense technical material. This reference book includes

such an advanced discussion because it is simply not available any-

where else, and ultimately, you’ll want a deep understanding of exactly

how ANTLR recognizers work. You’ll be able to resolve grammar anal-

ysis warnings more easily, build simpler grammars, and tackle more

challenging language problems. You don’t need these chapters to get

started using ANTLR, but you should read them when you run into

grammar analysis errors or have trouble designing a grammar for a

tricky language construct.

This chapter defines ANTLR’s LL(*) parsing, describes how it works, and

characterizes the kinds of grammars that are LL(*) conformant. More

important, this chapter emphasizes grammars that are not LL(*) and

tells you how to deal with them. When ANTLR accepts your grammar,

you will not notice ANTLR’s underlying parsing strategy—it is only when

you get a warning that you need to know more about how LL(*) works.

Although LL(*) increases the fundamental power of ANTLR’s parsing

strategy beyond LL(k)’s fixed lookahead parsing, sometimes you will

need more power than even LL(*) can provide. The three chapters on

predicated-LL(*) parsing following this chapter discuss how to handle

non-LL(*) grammars for context-sensitive, ambiguous, and other prob-

lematic languages.

THE RELATIONSHIP BETWEEN GRAMMARS AND RECOGNIZERS 263

Let’s begin the discussion of LL(*) by covering the difference between a

grammar and the program that recognizes sentences in the language

described by that grammar.

11.1 The Relationship between Grammars and Recognizers

Building a grammar means creating a specification that not only con-

forms to a particular parser generator’s grammar metalanguage (per

Chapter 4, ANTLR Grammars, on page 86) but that also conforms to

its underlying parsing strategy. The stronger the parsing strategy, the

more grammars that the parser generator will accept, thus making it

easier to describe your language with a natural, easy-to-read grammar.

Ideally a parser generator would accept any grammar, but there are

two reasons why such parser generators are not commonly used. First,

parsing strategies that accept any grammar are usually less efficient

and more difficult to understand.1 Second, some syntactically valid

grammars are ambiguous in that the grammar can match the same

input following multiple paths through the grammar, which makes it

difficult for actions to interpret or translate the input. Should the parser

execute actions found along all paths or just one? If along just one path,

which one? Computers only deal well with deterministic languages: lan-

guages that have exactly one meaning for each statement. It has been

the focus of my research for more than fifteen years to make parsing as

powerful as possible without allowing ambiguous grammars or sacri-

ficing accessibility, simplicity, and efficiency—ANTLR is constrained by

what most programmers can and will use.

ANTLR v3 introduces a new parsing strategy called LL(*) parsing2 that

is much more powerful than traditional LL(k)-based parsers, which are

limited to a finite amount of lookahead, k. LL(*), in contrast, allows the

lookahead to roam arbitrarily far ahead, relieving you of the responsi-

bility of specifying k. LL(*) does not alter the recursive-descent parsing

strategy itself at all—it just enhances an LL decision’s predictive capa-

bilities, which we’ll explore in a moment. You will find that building

grammars for ANTLR v3 is much easier than for ANTLR v2 or any other

1. Generalized LR (GLR) parsing [Tom87] is the latest parsing technology that handles

any context-free grammar.
2. The LL(*) term was coined by Sriram Srinivasan, a friend who helped me think

through this new parsing strategy. See http://www.antlr.org/blog/antlr3/lookahead.tml for more

information about the LL(*) algorithm.

http://www.antlr.org/blog/antlr3/lookahead.tml
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=263

WHY YOU NEED LL(*) 264

LL-based parser generator. For example, LL(*) lets you build grammars

the way you want and then automatically does left-factoring to gen-

erate efficient decisions. LL(*) is also much more flexible in terms of

attributes and actions than bottom-up LR-based tools, such as YACC

and its derivatives,3 yet has as much or more parsing power.

Another great aspect of ANTLR is that it unifies the notions of lexing,

parsing, and tree parsing. It doesn’t matter whether you are parsing

a stream of characters, tokens, or tree nodes: ANTLR uses the same

recognition strategy. The generated recognizers even derive from the

same base class, BaseRecognizer. This implies that lexers have the power

of context-free grammars rather than simple regular expressions4—you

can match recursive structures such as nested comments inside the

lexer. Discussions of LL(*) apply equally well to any ANTLR grammar.

Before detailing how LL(*) works, let’s zero in on the weaknesses of

LL(k) that provided the impetus for the development of LL(*).

11.2 Why You Need LL(*)

Natural grammars are sometimes not LL(k). For example, the following

easy-to-read grammar specifies the syntax of both abstract and con-

crete methods:

method

: type ID '(' args ')' ';' // E.g., "int f(int x,int y);"

| type ID '(' args ')' '{' body '}' // E.g., "int f() {...}"

;

type: 'void' | 'int' ;

args: arg (',' arg)* ; // E.g., "int x, int y, int z, ..."

arg : 'int' ID ;

body: ... ;

The grammar is valid in the general sense because the rules follow the

syntax of the ANTLR metalanguage and because the grammar is unam-

biguous (the grammar cannot match the same sentence in more than

3. LR-based parsers can use only synthesized attributes, analogous to return values,

whereas LL-based parsers can pass inherited attributes (parameters) to rules and use

synthesized attributes. Further, introducing an action into an LR grammar can cause a

grammar nondeterminism, which cannot happen in an LL grammar.
4. Regular expressions are essentially grammars that cannot invoke other rules. These

expressions are said to match the “regular” languages, which are a subset of the context-

free languages matched by context-free grammars. See Section 2.2, The Requirements for

Generating Complex Language, on page 38 and Section 4.1, Describing Languages with

Formal Grammars, on page 87 for more about context-free grammars.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=264

WHY YOU NEED LL(*) 265

one way). According to the requirements of LL(k) parsing technology,

however, the grammar is not LL(k) for any fixed value of k. From the

left edge of method’s alternatives, the amount of lookahead necessary

to see the distinguishing input symbol, ’;’ or ’{’, is unbounded because

the incoming method definition can have an arbitrary number of argu-

ments. At runtime, though, “arbitrary” does not imply “infinite,” and

the required lookahead is usually from five to ten symbols for this deci-

sion. You will see in a moment that LL(*) takes advantage of this prac-

tical limit to generate efficient parsing decisions that, in theory, could

require infinite lookahead.

The traditional way to resolve this LL(k) conflict is to left-factor offend-

ing rule method into an equivalent LL(k)-conformant rule. Left-factoring

means to combine two or more alternatives into a single alternative by

merging their common left prefix:

method

: type ID '(' args ')' (';' | '{' body '}')

;

Unfortunately, this version is less readable. Worse, in the presence of

embedded actions, it can be difficult to merge alternatives. You have to

delay actions until after the recognizer sees ’;’ or ’{’.

Consider another natural grammar that matches class and interface

definitions:

def : modifier* classDef // E.g., public class T {...}

| modifier* interfaceDef // E.g., interface U {...}

;

Again, you could refactor the rule, but it is not always possible and

leads to unnatural grammars:

def : modifiers* (classDef|interfaceDef) ;

When building grammars for really difficult languages such as C++,

engineers often leave the grammar in a natural condition and then add

semantic predicates (see Chapter 13, Semantic Predicates, on page 317)

to manually scan ahead looking for the distinguishing symbol:

def : {findAhead(CLASS_TOKEN)}? modifier* classDef

| {findAhead(INTERFACE_TOKEN)}? modifier* interfaceDef

;

where findAhead() is a loop that scans ahead in the input stream looking

for a particular token. This solution works but requires manual coding

and is sometimes difficult to get right.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=265

TOWARD LL(*) FROM LL(k) 266

In this case, for example, the findAhead() method must stop when it sees

a ’{’, lest it look past the current type declaration to the next declara-

tion beyond. The next two sections describe how ANTLR automatically

generates a similar lookahead mechanism that is correct and efficient.

11.3 Toward LL(*) from LL(k)

Building a parser generator is easy except for the static grammar analy-

sis that computes the lookahead sets needed to make parsing decisions.

For BNF grammars, grammars with just rule and token references,

the code generation templates are straightforward. References to rule

r become method calls, r();. References to token T become match(T);.

match() checks that the current input symbol is T and moves to the

next symbol. Rule definitions themselves are a little more complicated;

an arbitrary rule r definition with multiple alternatives translates to

this:

void r() {

if («lookahead-consistent-with-alt1») { «code-for-alt-1»; }

else if («lookahead-consistent-with-alt2») { «code-for-alt-2»; }

...

else error;

}

The series of if expressions represents the parsing decision for r. There-

fore, the power of these expressions dictates the strength of your parser.

When building such recursive-descent parsers (see Section 2.7, Recog-

nizing Computer Language Sentences, on page 48) by hand, you are free

to use any expression you want, but a parser generator must divine

these expressions from the grammar. The smarter the grammar analy-

sis algorithm, the more powerful the expressions it can generate.

Until the ANTLR v1.0 release fifteen years ago, all practical parser gen-

erators were limited to one symbol of lookahead (k=1). Top-down parser

generators were therefore limited to LL(1), which is pretty weak. For

example, the following simple grammar is not LL(1) because rule stat’s

parsing decision cannot distinguish between its two alternatives look-

ing only at the first symbol, ID:

stat : ID '=' expr

| ID ':' stat

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=266

TOWARD LL(*) FROM LL(k) 267

Rule stat is, however, LL(2). By looking two symbols ahead, the parsing

decision can see either the ’=’ or the ’:’. ANTLR v1.0 could generate Java

code like the following to implement rule stat using k=2:

void stat() {

if (LA(1)==ID&&LA(2)==EQUALS) { // PREDICT

match(ID); // MATCH

match(EQUALS);

expr();

}

else if (LA(1)==ID&&LA(2)==COLON) { // PREDICT

match(ID); // MATCh

match(COLON);

stat();

}

else «error»;

}

Method LA() evaluates to the int token type of the token at the specified

lookahead depth. As is often the case, it is not the sequence of looka-

head symbols that distinguishes alternatives—it is a token (or tokens)

at a particular lookahead depth that matters. Here, the first token ID

does not help distinguish between the alternatives because it is com-

mon to both. Consider the following alternative implementation that

focuses on the second symbol of lookahead:

void stat() {

// PREDICTION CODE; yield an alternative number

int alt=0;

if (LA(1)==ID) {

if (LA(2)==EQUALS) alt=1; // predict alternative 1

else if (LA(2)==COLON) alt=2; // predict alternative 2

}

// MATCH PREDICTED ALTERNATIVE

switch (alt) {

case 1 : // match alternative 1

match(ID);

match(EQUALS);

expr();

break;

case 2 : // match alternative 2

match(ID);

match(COLON);

stat();

break;

default : «error»;

}

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=267

LL(*) AND AUTOMATIC ARBITRARY REGULAR LOOKAHEAD 268

This implementation style factors out the parsing decision to the front

of the rule, which now yields an alternative number. The rest of the rule

is just a switch on the predicted alternative number. In this style, the

true form of the parsing decision becomes clear, as illustrated in the

following DFA:

s0 s1ID

s2=>2
’:’

s3=>1

’=’

This DFA encodes that lookahead sequence ID ’=’ predicts alternative

one by traversing states s0, s1, s3. s3 is an accept state that indi-

cates the predicted alternative. The DFA encodes one other lookahead

sequence, ID ’:’, that predicts alternative two by traversing states s0, s1,

s2.

Lookahead decisions that use fixed lookahead, such as LL(k) decisions,

always have acyclic DFA.5 The next section describes the cyclic DFA

LL(*) uses to support arbitrary lookahead.6

11.4 LL(*) and Automatic Arbitrary Regular Lookahead

LL(*) extends LL(k) by allowing cyclic DFA, DFA with loops, that can

scan arbitrarily far ahead looking for input sequences that distinguish

alternatives. Using the maze analogy, LL(*)’s arbitrary lookahead is like

bringing a trained monkey along that can race ahead at each maze fork.

If two paths emanating from a fork have the same initial words, you

can send the monkey down both paths looking for a few of the future

words in your passphrase. One of the most obvious benefits of LL(*) is

that you do not have to specify the lookahead depth as you do with

LL(k)—ANTLR simply figures out the minimum lookahead necessary to

distinguish between alternatives. In the maze, LL(k) decision makers do

not have trained monkeys and have limited information. They can see

only the next k words along the paths emanating from a fork.

5. An acyclic DFA is one that matches a finite set of input sequences because there are

no loops to match repeated, arbitrarily long sequences. While traversing an acyclic DFA,

you can never revisit a state.
6. Cyclic DFA allows states to transition to previously visited states.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=268

LL(*) AND AUTOMATIC ARBITRARY REGULAR LOOKAHEAD 269

Reconsider the non-LL(k) class or interface definition grammar shown in

the previous section:

def : modifier* classDef

| modifier* interfaceDef

;

A cyclic DFA can easily skip ahead past the modifiers to the class or Using ANTLRWorks, you

can look at the DFA

created for a decision by

right-clicking a rule or

subrule and selecting

Show Decision DFA.

interface keyword beyond, as illustrated by the following DFA:

s1 ’public’..’abstract’

s3=>2

’interface’

s2=>1

’class’

In this case, a simple while loop implements rule def’s prediction DFA:

void def() {

int alt=0;

while (LA(1) in modifier) consume(); // scan past modifiers

if (LA(1)==CLASS) alt=1; // 'class'?

else if (LA(1)==INTERFACE) alt=2; // 'interface'?

switch (alt) {

case 1 : ...

case 2 : ...

default : error;

}

}

Just as with the earlier LL(2) solution, the initial modifier symbols do not

help distinguish between the alternatives. The loop (trained monkey)

simply scans past those tokens to the important token that follows.

Notice that the decision DFA looks like a left-factored version of rule

def.

It is important to point out that ANTLR is not approximating the entire

grammar with a DFA. DFAs, which are equivalent to regular expres-

sions, are not as powerful as context-free grammars (see Section 2.2,

The Requirements for Generating Complex Language, on page 38).

ANTLR is using the DFAs only to distinguish between alternatives. In

the earlier example, ANTLR creates a DFA that stops matching at the

class or interface keyword. ANTLR does not build a DFA that matches the

entire classDef rule or interfaceDef rule. Once def predicts which alter-

native will succeed, it can begin parsing like any normal LL parser.

As another example, here is the DFA for the grammar in Section 11.2,

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=269

LL(*) AND AUTOMATIC ARBITRARY REGULAR LOOKAHEAD 270

Why You Need LL(*), on page 264 that predicts abstract vs. concrete

methods:

s0 s1

’void’
..’int’ s2ID s3’(’ s4’int’ s5ID

s6’,’

s7

’)’

s8
’int’

s11

ID

’,’
’)’

s9=>1
’;’

s10=>2

’{’

This DFA matches the start of a method definition, splits for the op-

tional arguments, and then pinches back to state s7. s7 then splits

upon either the ’;’ or the ’{’ to distinguish between abstract and con-

crete methods. State s9 predicts alternative one (“s9=>1”), and state s10

predicts alternative two. Input void foo(int i); predicts alternative one by

following this path: s0, s1, s2, s3, s4, s5, s7, s9. Input void foo(int i) {...

predicts alternative two by following this path: s0, s1, s2, s3, s4, s5, s7,

s10. Because the starting portion of these two inputs is identical, the

state sequence is identical until the DFA reaches the critical s7 state.

Sometimes these DFAs become complicated, but ultimately they simply

yield a predicted alternative number as in the previous example. DFAs

scan past common left prefixes looking for distinguishing symbols. The

following rule for a Java-like language has a subrule that matches the

variables and method definitions within an interface:

interfaceDef

: 'interface' ID ('extends' classname)?

'{'

(variableDefinition

| methodDefinition

)*
'}'

;

The DFA for the embedded subrule, shown in Figure 11.1, on page 272,

has some interesting characteristics. The details are not that impor-

tant—the DFA merely illustrates that ANTLR sometimes needs to build

a large DFA while looking for the few symbols that will differentiate

alternatives. The accept states s18 and s19 are the most interesting

states because the cloud of other states pinches back together into s16

and then splits on the single symbol that distinguishes between vari-

able and method definitions. The complicated cyclic states before that

just scan past tokens, as defined in the grammar, until the semicolon

or left curly.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=270

LL(*) AND AUTOMATIC ARBITRARY REGULAR LOOKAHEAD 271

Also note that upon seeing the right curly the DFA immediately pre-

dicts the third alternative via states s0 and s1, which is the implied exit

branch of the (. . .)* loop. State s1 is an accept state that predicts alter-

native 3. This DFA illustrates a case where a recognizer uses various

lookahead depths even within the same decision. The DFA uses more-

or-less lookahead for optimal efficiency, depending on what it finds on

the input stream.

A decision is LL(*) if a DFA exists that recognizes the decision’s exact

lookahead language and has the following: LL(*) degenerates to

LL(k) for a fixed k if your

grammar is LL(k). If it is

not LL(k), ANTLR

searches further ahead

in a grammar to find

tokens that will help it

make choices.

• No unreachable states

• No dangling states, that is, states that cannot reach an accept

state

• At least one accept state for each alternative

Each alternative has a lookahead language, and if the lookahead lan-

guages are disjoint for a decision, then the decision is LL(*). It is like

building a regular expression to describe what input predicts each

alternative and then verifying that there is no overlap between the input

matched by the regular expressions.

At this point, the reader might ask, “Isn’t this just backtracking?” No.

An LL(5) parser, for example, uses a maximum of five lookahead sym-

bols and is considered to have linear complexity, albeit with a bigger

constant in front than an LL(1) parser. Similarly, if an LL(*) parser can

guarantee in practice that it will never look ahead more than five sym-

bols, is it not effectively the same as LL(5)? Further, LL(*) is scanning

ahead with a DFA, not backtracking with the full parser. It is the dif-

ference between having a trained monkey in the maze racing ahead

looking for a few symbols and you having to laboriously backtrack

through each path emanating from a fork. The lookahead DFAs are

smaller and faster because they are not descending into deep rule invo-

cation chains. Each transition of the DFA matches a symbol, whereas

a backtracking parser might make twenty method calls without match-

ing a single symbol. The DFAs are efficiently coded and automatically

throttle down when less lookahead is needed. ANTLR is also not sucking

actions into lookahead DFAs. DFAs automatically avoid action execu-

tion during LL(*) prediction. Backtracking parsers, on the other hand,

must turn off actions or figure out how to unroll them.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=271

LL(*) AND AUTOMATIC ARBITRARY REGULAR LOOKAHEAD 272

s0

s1
=>3

’}’

s2

’public’
..’abstract’

s3

ID

s4

’object’ s5

’void’

s6

’char’

s7

’boolean’

s8

’int’

s9’float’

s10

’long’

s11

’double’

s12

’stream’

s13

’string’

s14’set’..’map’

’public’
..’abstract’

ID

’object’

’void’

’char’

’boolean’

’int’

’float’

’long’

’double’

’stream’

’string’

’set’
..’map’

s15

’::’

s16

ID

s17

ID

’::’

ID

s18
=>2’(’

s19
=>1

ASSIGN,
’;’

ID

ID

ID

ID

ID

ID

ID

ID

ID

ID

ID

Figure 11.1: Variable vs. method prediction DFA that illustrates a com-

plicated cloud of cyclic states that pinches back to a single state, s16,

to distinguish between variable and method definitions

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=272

AMBIGUITIES AND NONDETERMINISMS 273

Now that you know a little bit about LL(*) parsing decisions, it is time to

focus on non-LL(*) decisions because, in practice, that is when you care

about the underlying parsing strategy. It is only when ANTLR fails to

generate a deterministic LL(*) decision that you need to figure out why

ANTLR could not handle the decision. The next section explains what

can go wrong in detail.

11.5 Ambiguities and Nondeterminisms

When analyzing a grammar warning or error from ANTLR, your task is

to impersonate ANTLR’s grammar analysis algorithm and try to figure

out why the decision has a problem. There are two general categories of

issues. In the first category, you have specified a decision that either is

fundamentally incompatible with top-down recursive-descent parsing

or is non-LL(*) because the lookahead language is not regular (cannot

be described with a regular expression). This category always involves

recursive rules within the grammar. In the second category, ANTLR has

no problem building a DFA, but at least one input sequence can be

matched by more than one alternative within a decision. This category

therefore deals with recognizer nondeterminism, an inability to decide

which path to take. The following sections describe the issues in each

category in detail.

LL-Incompatible Decisions

Some grammars just simply do not make sense regardless of the pars-

ing tool. For example, here is a rule that can match only an infinite

sequence, which is obviously incompatible with a finite computer:

a : A a ;

The sequence of rule invocations, the derivation, for this rule looks like

the following:

a => A a

a => A A a

a => A A A a

...

where each occurrence of a on the right side is replaced with A a per the

definition of a. Rule a matches a token A followed by another reference

to a, which in turn can be a token A followed by another reference to a,

ad nauseam.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=273

AMBIGUITIES AND NONDETERMINISMS 274

This grammar is equivalent to the following Java code:

void a() {

match(A);

a();

}

Clearly, this will never terminate, and you will get a stack overflow

exception. As a general rule, grammar rules with recursive alternatives

must also include an alternative that is not recursive even if that alter-

native is an empty alternative. The following rewrite of the grammar is

probably more what is intended anyway:

a : A a

|

;

This grammar matches A*, and naturally, you should simply use this

EBNF construct in your grammar rather than tail recursion:7

a : A* ;

The two grammars are equivalent, but the tail-recursive version is less

efficient and less clear. A* clearly indicates repetition, whereas the pro-

grammer must imagine the tail recursion’s emergent behavior to figure

out what the grammar developer intends.

Left-Recursive Grammars

What if the recursion is on the left edge of an alternative or reachable

from the left edge without consuming an input symbol? Such a rule is

said to be left recursive. Left recursion is a perfectly acceptable grammar

for some parser generators, but not for ANTLR. Consider the reverse of

the previous tail recursive grammar that matches the same language:

a : a A

|

;

The derivation for AAA looks like this where the final reference to a on

the right side is replaced with the empty alternative:

a => a A

a => a A A

a => a A A A

a => A A A

7. A rule that uses tail recursion calls itself, or another rule that ultimately calls that

rule, at the end of an alternative. A rule that invokes itself loops via recursion.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=274

AMBIGUITIES AND NONDETERMINISMS 275

Unfortunately, although a valid grammar construct in general, an LL-

based top-down parser cannot deal with left-recursion. ANTLR reports

the following:

error(210): The following sets of rules are mutually left-recursive [a]

Be aware that left-recursion might not be direct and might involve a

chain of multiple rules:

a : b A

|

;

b : c ;

c : a ;

ANTLR reports the following:

error(210): The following sets of rules are mutually

left-recursive [a, c, b]

Arithmetic Expression Grammars

In my view, left-recursion is pretty unnatural (ENBF looping constructs

are easier to understand) except in one case: specifying the structure of

arithmetic expressions. In this case, bottom-up parser generators allow

a much more natural grammar than top-down parser generators, and

you will encounter this if you are trying to convert a grammar from,

say, YACC to ANTLR. The grammar usually looks something like this:

// non-LL yacc grammar

%left '+'

%left '*' // higher precedence than '+'

expr: expr '+' expr

| expr '*' expr

...

| ID

| INT

;

This might seem natural if you ignore that the grammar is left-recur-

sive. Without the precedence %left specifier, this grammar would be

ambiguous, and bottom-up parser generators require that you specify

the priority of those operators (as described in every compiler book ever

written). In a top-down parser generator, you must explicitly encode

the priorities of the operators by using different rules. The following

LL-compatible grammar matches the same language, but with explicit

priorities:

expr: mult ('+' mult)* ;

mult: atom ('*' atom)* ;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=275

AMBIGUITIES AND NONDETERMINISMS 276

atom: ID

| INT

;

The way to think about this grammar is from the highest level down-

ward. In rule expr, think of the references to mult as simply metatokens

separated by the ’+’ operator. View 3*4+5*6 as the addition of two meta-

tokens as if the expression were (3*4)+(5*6). Here is the parse tree as

generated by ANTLRWorks’ interpreter:

The deeper the nesting level, the higher the precedence of the operator

matched in that rule. The loop subrules, (...)*, match the addition of

repeated multiplicative metatokens such as 3*4+5+7.

Top-down parsers naturally associate operators left to right so that the

earlier operators are matched correctly using a natural grammar. But,

what about operators that are right-associative such as the exponen-

tiation operator? In this case, you must use tail recursion to get the

associativity right: Even if you do not

understand exactly how

the precedence and

associativity works, you

can blindly accept these

examples as grammar

design patterns during

the learning process.

expr: mult ('+' mult)* ; // left-associative via (...)*
mult: pow ('*' pow)* ;

pow : atom ('^' pow)? ; // right-associative via tail recursion

atom: ID

| INT

;

The grammar derives input 2*3∧4∧5 as follows:

expr => mult

expr => pow * pow

expr => 2 * pow

expr => 2 * atom ^ pow

expr => 2 * 3 ^ pow

expr => 2 * 3 ^ atom ^ pow

expr => 2 * 3 ^ 4 ^ pow

expr => 2 * 3 ^ 4 ^ 5

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=276

AMBIGUITIES AND NONDETERMINISMS 277

The parse tree is as follows:

The first exponent operator has a complete subtree (also containing

an exponent operator) as a right operand; consequently, the second

exponent is evaluated first. Expression tree nodes must evaluate their

children before they can perform the operation. This means the second

exponent operator executes before the first, providing the necessary

right associativity.

Non-LL(*) Decisions

Rule recursion can also cause trouble even when the rule references

are not left-recursive. Although LL(*) DFA construction takes the pars-

ing rule invocation stack into consideration, the resulting DFA will not

have a stack. Instead, the DFA must use sequences of states. Consider

the following grammar that allows zero or more labels on the front of

each statement. Because the reference to rule label is common to both

alternatives, ANTLR must try to see past it to the ID or ’return’ token in

order to distinguish between the alternatives.

grammar stat;

s : label ID '=' expr

| label 'return' expr

;

label

: ID ':' label // uses tail recursion to loop

|

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=277

AMBIGUITIES AND NONDETERMINISMS 278

ANTLR reports two problems:

error(211): stat.g:3:5: [fatal] rule s has non-LL(*) decision due to

recursive rule invocations reachable from alts 1,2. Resolve by

left-factoring or using syntactic predicates or using

backtrack=true option.

warning(200): stat.g:3:5: Decision can match input such as

"ID ':' ID ':'" using multiple alternatives: 1, 2

The first issue is that, without a stack, a DFA predictor cannot properly

recognize the language as described by rule label because of the tail

recursion. The second issue is derived from the fact that ANTLR tried

to create a DFA anyway but had to give up after recursing a few times.8

An easy fix for this grammar makes it trivially LL(*):

grammar stat;

s : label ID '=' expr

| label 'return' expr

;

label

: (ID ':')*
;

The language is the same, but rule label expresses its repetitious nature

with an EBNF construct rather than tail recursion. Figure 11.2, on the

following page, shows the DFA for the decision in rule s. The EBNF

looping construct maps to a cycle in the DFA between s1 and s4 and

is clearer than tail recursion because you are explicitly expressing your

intention to loop.

Generally, it is not possible to remove recursion because recursion

is indispensable for describing self-similar language constructs such

as nested parentheses (see Section 2.2, The Requirements for Generat-

ing Complex Language, on page 38). Imagine a simple language with

expressions followed by ’%’ (modulo) or ’!’ (factorial):

se: e '%'

| e '!'

;

e : '(' e ')'

| ID

;

8. To be precise, ANTLR’s analysis algorithm will follow recursive rule indications until

it hits constant MAX_SAME_RULE_INVOCATIONS_PER_NFA_CONFIG_STACK in NFAContext. You can

set this threshold using the -Xm option. After hitting the threshold, ANTLR will have

created a DFA containing a state reachable upon ID:ID: that predicts both alternatives one

and two of rule s. This nondeterminism results in the warning. Note that there might be

other states with problems in the DFA, but ANTLR tries to merge related warnings.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=278

AMBIGUITIES AND NONDETERMINISMS 279

s0

s1
ID

s2=>2’return’

s3=>1

’=’

s4

’:’

ID
’return’

Figure 11.2: DFA predicting alternatives in rule s matching (ID ’:’)*

Not only can rule e match infinitely long sequences, the sequences

must be properly nested, parenthesized expressions. There is no way

to describe this construct without recursion (hence, a regular expres-

sion is insufficient). ANTLR will generate a DFA that favors alternative

one in rule se unless it knows for sure that alternative two will suc-

ceed, such as when the input is ID!. ANTLR builds the DFA shown in

Figure 11.3, on the following page, and warns this:

warning(200): e2.g:3:5: Decision can match input such as

"'(' '('" using multiple alternatives: 1, 2

The DFA does, however, correctly predict alternatives for input sequen-

ces not requiring deep recursive invocation of rule e such as v and (v).

Without left-factoring rule se, the only way to resolve this non-LL(*)

decision is to allow ANTLR to backtrack over the reference to rule e, as

discussed later in Chapter 14, Syntactic Predicates, on page 331. In this

grammar, a parser could technically scan ahead looking for the ’%’ or

’!’, but in general this approach will not work. What if ’%’ were a valid

binary operator as well as a suffix unary operator as shown? The only

way to distinguish between the binary and unary suffix operators would

be to properly match the expressions as part of the lookahead. Scan-

ning ahead with a simple loop looking for the suffix operators amounts

to a much weaker strategy than actually recognizing the expressions.

In some cases, however, ANTLR can deal with recursion as long as only

one of the alternatives is recursive. The following grammar is LL(*) as

long as the internal recursion overflow constant (specified by -Xm) is

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=279

AMBIGUITIES AND NONDETERMINISMS 280

s0

s1

’(’

s2
ID

s3=>1
’(’

s4ID s6’)’
’%’

s5=>2

’!’

’%’

’!’

Figure 11.3: DFA predicting alternatives in rule se

sufficiently large; the default value is 4, meaning the analysis engine

can recurse four times before hitting the threshold:

grammar t;

a : L a R

| L L X

;

The analysis sees that L begins both alternatives and looks past it in

both alternatives to see whether there is something that follows that

will distinguish the two. In the first alternative, therefore, the analysis

must enter rule a again. The first symbol that it can see upon reen-

try is L. Hence, the algorithm must continue again past that L recur-

sively into rule a hoping for a lookahead symbol that will distinguish

the two alternatives. Ultimately, the algorithm sees the X in the second

alternative, which allows it to distinguish the two alternatives. Clearly,

though, if the second alternative were recursive as well, this process

would never terminate without a threshold. ANTLR generates the fol-

lowing DFA where state path s0, s1, s2, s3 predicts alternative two:

s0 s1L s2L

s3=>2
X

s4=>1

L

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=280

AMBIGUITIES AND NONDETERMINISMS 281

To illustrate what happens when you hit the recursion overflow thresh-

old, consider the following invocation of ANTLR on the same grammar.

The command-line option restricts the analysis engine so that it can

recurse to a exactly once:

$ java org.antlr.Tool -Xm 1 t.g

ANTLR Parser Generator Version 3.0 1989-2007

warning(206): t.g:2:5: Alternative 1: after matching input such as

L L decision cannot predict what comes next due to recursion

overflow to a from a

warning(201): t.g:2:5: The following alternatives are unreachable: 2

Because of the restriction that the analysis cannot recurse more than

once, the analysis cannot enter a a second time when computing looka-

head for the first alternative. It can’t see past L L to another L. One more

recursive examination of a would allow the analysis to distinguish the

first alternative’s lookahead from the L L X lookahead of the second.

The recursion overflow threshold restricts only the maximum recur-

sion depth, not the simple stack size of invoked rules, so it is not very

restrictive.9

Nondeterministic Decisions

Once you get used to LL top-down parsers, you will not make many

recursion mistakes. Most of your grammar problems will stem from

nondeterminisms: the parser can go down two or more different paths

given the same lookahead language.

Each lookahead sequence must uniquely predict an alternative. Just

like in a maze with words written on the floor, if the next few words

in your passphrase appear on the floor down both paths of a fork

in the maze, you will not know which path to take to reach the exit.

This section illustrates many of the common nondeterminisms you will

encounter.

Most nondeterminisms arise because of ambiguities; all grammar ambi-

guities result in parser nondeterminisms, but some nondeterminisms

are not related to ambiguities, as you will see in a moment.

9. The m=4 threshold makes sense because the Java grammar did not work with m=1

but did work with m=4. Recursion is sometimes needed to resolve some fixed lookahead

decisions. Note: m=0 implies the algorithm cannot ever jump to another rule during

analysis (stack size 0), m=1 implies you can make as many calls as you want as long

as they are not recursive, and m=2 implies that you are able to recurse exactly once (that

is, enter a rule twice from the same place).

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=281

AMBIGUITIES AND NONDETERMINISMS 282

Tracking Down Nondeterminisms

When tracking down nondeterminisms, the key is asking your-
self how the grammar can match the indicated lookahead
sequence in more than one way. ANTLRWorks was designed
to be particularly good at helping you understand nondeter-
minisms, so this is easier than it used to be. With a little bit of
experience, you will get good at figuring out what is wrong.

Once you discover exactly how the grammar can match a
lookahead sequence in more than one way, you must gener-
ally alter the grammar so that ANTLR sees exactly one path. If
you do not resolve a nondeterminism, ANTLR will always resolve
it for you by simply choosing the alternative specified first in a
decision.

Here is an obvious ambiguity:

r : ID {...}

| ID {...}

;

to which ANTLR responds as follows:

warning(200): t.g:3:5: Decision can match input such as

"ID" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

warning(201): t.g:3:5: The following alternatives are unreachable: 2

Clearly, ANTLR could match ID by entering either alternative. To resolve

the issue, ANTLR turns off alternative two for that input, which causes

the unreachable alternative error. After removing ID, no tokens predict

the second alternative; hence, it is unreachable. Figure 11.4, on the

following page, illustrates how ANTLRWorks highlights the two paths

(emphasized with thick lines here). You can trace the nondeterministic

paths by using the cursor keys in ANTLRWorks.

Such an obvious syntactic ambiguity is not as crazy as you might think.

In C++, for example, a typecast can look the same as a function call:

e : ID '(' exprList ')' // function-style typecast; E.g., "T(x)"

| ID '(' exprList ')' // function call; E.g., "foo(32)"

;

The reality is that the syntax is inherently ambiguous—there is no

amount of grammar shuffling that will overcome an ambiguity in the

language syntax definition.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=282

AMBIGUITIES AND NONDETERMINISMS 283

Figure 11.4: ANTLRWorks highlighting both paths predicted by ID

In the case of C++, however, knowledge about the ID’s type from the

symbol table (that is, whether it is a type name or function name) neatly

resolves the issue. Use a semantic predicate to consult the symbol table

per Chapter 13, Semantic Predicates, on page 317.

Consider a more subtle ambiguity problem. Imagine you want to build

a language with optional semicolons following statements (such as Py-

thon), but where semicolons can also be a statements:

grammar t;

slist

: (stat ';'?)+

;

stat: ID '=' expr

| ';'

;

The optional ’;’? subrule in rule slist cannot decide whether to match ’;’

immediately or to bypass the subrule and reenter stat to match it as a

proper, stand-alone statement. ANTLR reports this:

warning(200): t.g:3:11: Decision can match input such as

"';'" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

ANTLRWorks highlights both paths in the syntax diagram shown in

Figure 11.5, on the following page.

The solution is to either make semicolons required or make them only

statements. Semicolons should not be both statement terminators and

statements as shown previously. Naturally, a good language designer

would simply fix the language. With the grammar as is, though, ANTLR

automatically resolves the nondeterminism greedily (see Section 4.3,

Extended BNF Subrules, on page 98 for information about the greedy

option). In other words, ANTLR resolves the issue in favor of matching

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=283

AMBIGUITIES AND NONDETERMINISMS 284

Figure 11.5: Syntax diagrams for slist and stat

semicolons immediately following a statement if one exists. A greedy

decision is one that decides to match all possible input as soon as pos-

sible, rather than delegating the match to a future part of the grammar.

Input x=1; ; would match the first ’;’ in the optional ’;’? subrule and the

second as a statement in rule stat.

The most common form of this ambiguity, and one whose automatic

resolution is handled naturally by ANTLR, is the if-then-else ambiguity:

grammar t;

stat: 'if' expr 'then' stat ('else' stat)?

| ID '=' expr ';'

;

warning(200): <t.g>:2:29: Decision can match input such as

"'else'" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

warning(201): <t.g>21:29: The following alternatives are unreachable: 2

The issue is similar to the optional semicolon in that ANTLR cannot

decide whether to match ’else’ immediately or bypass the subrule and

match it to a previous ’if’. In other words, how should ANTLR interpret

the following input?

if done then

if alreadySaved then x=2;

else x=3;

Should else x=3; bind to the second and most recent if or to the first one?

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=284

AMBIGUITIES AND NONDETERMINISMS 285

The grammar allows both. Language designers have decided that it’s

most natural to bind to the most recent if (greedily), which is fortunately

the way ANTLR automatically resolves ambiguities. ANTLR generates a

warning, but you can safely ignore it.10

Sometimes the explicit alternatives (nonexit branches of an EBNF con-

struct) within a decision are ambiguous. Consider the following gram-

mar for a Java-like language that can have nested code blocks in state-

ments and also a code block at the class level that acts like a default

constructor (Java uses these for default constructors for anonymous

inner classes):

classDef

: 'class' ID '{' decl* '}'

;

slist: decl

| stat

;

decl: field

| method

| block // default ctor code block

;

stat: block // usual statement nested code block

| 'return' expr ';'

;

block: '{' slist '}'

;

Rule slist has a problem in that both alternatives eventually reach rule

block, making the decision totally ambiguous for code blocks. Should

ANTLR match a code block by entering rule decl or by entering stat? This

matters because you are likely to have very different actions depending

on the code block’s context.

In this case, the grammar is loosely written because decl should recog-

nize a code block only at the class level, not at the statement level. Any

code block within a statement should be interpreted simply as a nested

code block, not a constructor.

Tightening up the grammar to use context information makes it clearer

and removes the ambiguity:

10. At some point ANTLR will let you silence warnings for decisions that ANTLR properly

resolves.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=285

AMBIGUITIES AND NONDETERMINISMS 286

classDef

: 'class' ID '{' member* '}'

;

member

: decl

| block // default ctor code block

;

slist: decl

| stat

;

decl: field

| method

;

...

The addition of member makes it clear that the grammar should inter-

pret a code block matched within the class definition differently than a

code block matched via slist.

Sometimes a grammar is ambiguous but is the most natural and cor-

rect way to express the language. In the following grammar (pulled from

the larger Java grammar at http://www.antlr.org), rule castExpression indi-

cates that only typecasts based upon primitive type names such as int

can prefix expressions that have ’+’ or ’-’. Expressions such as (Book)+3

make no sense, and it is correct to make such cases illegal using the

syntax of the language. Rule castExpression is a natural way to express

the restriction, but it is ambiguous.

unaryExpression

: '+' unaryExpression

| '-' unaryExpression

| unaryExpressionNotPlusMinus

;

unaryExpressionNotPlusMinus

: '~' unaryExpression

| castExpression

| primary

;

castExpression

: '(' primitiveType ')' unaryExpression

| '(' type ')' unaryExpressionNotPlusMinus

;

primitiveType and type are defined as follows:

primitiveType

: 'int'

| 'float'

;

type: (primitiveType|ID) ('[' ']')*
;

http://www.antlr.org
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=286

AMBIGUITIES AND NONDETERMINISMS 287

The problem is that rule type is a superset of primitiveType, so both cast-

Expression alternatives can match (int)34, for example. Without making a

variant of type, there is no way to fix this ambiguity using pure LL(*). A

satisfying solution, however, involves syntactic predicates whereby you

can simply tell ANTLR to try the two alternatives. ANTLR chooses the

first alternative that succeeds (see Chapter 14, Syntactic Predicates, on

page 331):

castExpression

// backtrack=true means to just try out the alternatives. If

// the first alternative fails, attempt the second alternative.

options {backtrack=true;}

: '(' primitiveType ')' unaryExpression

| '(' type ')' unaryExpressionNotPlusMinus

;

For completeness, it is worth mentioning one of the rare situations in

which ANTLR reports a nondeterminism (as opposed to a recursion

issue) that is not related to a grammar ambiguity. It turns out that

when people say “LL,” they actually mean “SLL” (strongLL). The strong

term implies stronger constraints so that SLL(k) is weaker than LL(k) for

k>1 (surprisingly, they are identical in strength for k=1). ANTLR and all

other LL-based parser generators accept SLL grammars (grammars for

which an SLL parser can be built). Using the proper terminology, you

can say that the following grammar is LL(2), but it is not SLL(2):11

grammar t;

s : X r A B

| Y r B

;

r : A

|

;

Rule r cannot decide what to do upon lookahead sequence AB. The

parser can match A in r and then return to the second alternative of

s, matching B following the reference to r. Alternatively, the parser can

choose the empty alternative in r, returning to the first alternative of s

to match AB. The problem is that ANTLR has no idea which alternative

of s will be invoking r. It must consider all possible rule invocation sites

when building lookahead DFAs for rule r. ANTLR reports this:

warning(200): <t.g>:5:5: Decision can match input such as

"A A..B" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

11. Following convention, this book uses LL even though SLL is more proper.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=287

AMBIGUITIES AND NONDETERMINISMS 288

This message is correct for SLL(*), but it is a weakness in the parsing

strategy, due to a lack of context, rather than a grammar ambiguity

as described previously. Naturally, you could trivially rewrite the gram-

mar, duplicating rule r, or ANTLR could generate different methods for r

depending on the context. This transformation from LL to SLL is always

possible but in the worst case results in exponentially large grammars

and parsers.

ANTLR resolves nondeterminisms by predicting the first of multiple

alternatives that can match the same lookahead sequence. It removes

that lookahead sequence from the prediction set of the other alterna-

tives. If ANTLR must remove all lookahead sequences that predict a

particular alternative, then ANTLR warns you that the alternative is

unreachable.

In previous versions, ANTLR presented you with all possible lookahead

sequences for each nondeterminism. In v3, ANTLR displays a short Improved in v3.

lookahead sequence from the nondeterministic paths within the looka-

head DFA to make it easier for you to find the troublesome paths. ANTL-

RWorks highlights these paths for you in the syntax diagram and is a

great grammar debugging aid.

In summary, all grammar ambiguities lead to parser nondeterminisms,

but some nondeterminisms arise because of a weakness in the parsing

algorithm. In these cases, you should consider altering the grammar

rather than assuming that ANTLR will resolve things properly.

Lexer Grammar Ambiguities

Ambiguities result in nondeterministic lexers just like they do in par-

sers, but lexers have a special case not present in parsers. Recall that

ANTLR builds an implicit nextToken rule that has all non-fragment tokens

as alternatives. ANTLR builds a DFA that, at runtime, decides which

token is coming down the input stream and then jumps to that token

rule. Again, the nextToken prediction DFA examines only as much looka-

head as necessary to decide which token rule to jump to.

As with the parser, the lexer sometimes has some fundamentally ambi-

guous constructs that ANTLR handles naturally. Consider the following

grammar that defines a keyword and an identifier:

BEGIN : 'begin' ;

ID : 'a'..'z'+ ;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=288

AMBIGUITIES AND NONDETERMINISMS 289

s0

s1’b’

s2=>2

{’a’, ’c’..’z’}

s3
’e’

<EOT>

s4

’g’

<EOT>

s5
’i’

<EOT>

s6
’n’

<EOT>

s7=>1
<EOT>

’a’..’z’

Figure 11.6: Lexer rule prediction DFA for keyword rules BEGIN vs. ID

The implicitly constructed nextToken rule is as follows:

nextToken

: BEGIN

| ID

;

Rule nextToken’s two alternatives are ambiguous upon ’begin’ because

rule BEGIN is a special case of rule ID (keywords are also lexically identi-

fiers). This is such a common situation that ANTLR does not emit warn-

ings about these ambiguities. Just like in the parser, ANTLR resolves

the ambiguity by favoring the rule specified first in the grammar. Fig-

ure 11.6 shows the DFA that correctly predicts BEGIN vs. ID. The EOT

(end of token) DFA edge label means “anything else,” so input beg ”

(with a space character afterward) predicts the second alternative (rule

ID) via s0, s1, s3, s4, s2 since the space character is not i.

It is not always the case that specifying superset rules is OK. Using the

following two rules is a common mistake:

INT : DIGIT+ ;

DIGIT : '0'..'9' ; // needs to be fragment

ANTLR reports this:

warning(208): t.g:2:1: The following token definitions are

unreachable: DIGIT

The prediction DFA must choose which rule to match upon saying a

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=289

AMBIGUITIES AND NONDETERMINISMS 290

single-digit such as 4. When one rule directly references another rule

on the left edge, the referenced rule must usually be a fragment rule.

In this case, clearly DIGIT is only a helper rule, and the parser is not

expecting to see a DIGIT token. Make DIGIT a fragment rule:

INT : DIGIT+ ;

fragment

DIGIT : '0'..'9' ;

Another form of this same issue appears in the following grammar:

NUMBER : INT | FLOAT ;

INT : '0'..'9'+ ;

FLOAT : '0'..'9'+ ('.' '0'..'9'*)? ; // simplified

Both integers and floating-point numbers match, but they both match

via token NUMBER. Rules INT and FLOAT are unreachable. In this case,

however, the problem relates to the boundary between lexer and parser

rules. You should restrict lexer rules to matching single lexical con-

structs whereas rule NUMBER is one of two different lexical constructs.

That indicates you should draw the line between lexer and parser rules

differently, as follows, where rule number is now a parser rule and cor-

rectly indicates a set of tokens representing numbers:

number : INT | FLOAT ; // a parser rule

INT : '0'..'9'+ ;

FLOAT : '0'..'9'+ ('.' '0'..'9'*)? ; // simplified

The wildcard . operator is often ambiguous with every other rule but

can be very useful as an else clause rule if you use it last:

BEGIN : 'begin' ;

ID : 'a'..'z'+ ;

OTHER: . ; // match any other single character

Rule OTHER matches any single character that is not an ID. Be careful

not to use .+ as a greedy subrule all by itself without anything following

it. Such a subrule consumes all characters until the end of file. If you

put a grammar element after the .+ loop, it will consume only until it

finds that element.

Tree Grammar Ambiguities

Tree grammar ambiguity warnings sometimes reference two implicitly

defined tokens: UP and DOWN. ANTLR parses trees the same way it

parses token streams by serializing trees into streams of nodes. The

special imaginary tokens indicate the beginning and end of a child

list. Consider the following tree grammar rule where both alternatives

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=290

AMBIGUITIES AND NONDETERMINISMS 291

can match the same input tree node sequence, assuming type matches

matches ’int’:

a : ^(DECL 'int' ID)

| ^(DECL type ID)

;

Both alternatives can match a tree with the following structure and

token types:

DECL

’int’ ID

The associated tree node stream for that tree is as follows:

DECL DOWN 'int' ID UP

ANTLR reports this:

warning(200): u.g:3:5: Decision can match input such as

"DECL Token.DOWN 'int' ID Token.UP" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

After resolving grammar ambiguities, you can begin testing your gram-

mar for correctness. Unfortunately, a lack of grammar nondetermi-

nisms does not mean that the resulting parser will behave as you

want or expect. Checking your grammar for correctness can highlight

a number of other problems: Why is this grammar improperly match-

ing a particular input? Why is there a syntax error given this input?

Or even, why is there no syntax error given this ungrammatical input?

ANTLRWorks’ debugger is the best tool for answering these questions.

ANTLRWorks has breakpoints and single-step facilities that allow you

to stop the parser when it reaches an input construct of interest rather

than merely breaking at a grammar location. ANTLRWorks’ debugger

can even move backward in the parse after a syntax error to examine

the events leading up to it. ANTLRWorks’ interpreter is also useful for

figuring out how a particular input sequence matches.

This chapter described why you need LL(*) and how it works. It also

explained grammar ambiguities and recognizer nondeterminisms by

example. Used in conjunction with the semantic and syntactic predi-

cates described in the next three chapters, LL(*) is close to the most

powerful parsing algorithm that the average programmer will find ac-

cessible. The next chapter demonstrates how LL(*) augmented with

predicates can resolve some difficult language recognition problems.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=291

Chapter 12

Using Semantic and
Syntactic Predicates

LL(*) is a powerful extension to LL(k) that makes it much easier to write

natural grammars and build grammars for difficult languages. The pre-

vious chapter explained how LL(*) uses DFAs to scan arbitrarily far

ahead looking for input symbols and sequences that distinguish alter-

natives. LL(k), on the other hand, can see only fixed k symbols ahead.

Even though LL(*) is much better than LL(k), it still has its weaknesses,

particularly when it comes to recursive rules. This chapter illustrates

how to use two powerful constructs, syntactic and semantic predicates,

that boost the power of LL(*) to the point where it is essentially indis-

tinguishable from recognizers you could build by hand. Predicates alter

the parse based upon runtime information. As we’ll see in this chapter,

predicates help do the following:

• Distinguish syntactically identical language constructs such as

type names vs. variable or method names

• Resolve LL(*) recognizer nondeterminisms; that is, overcome weak-

nesses in LL(*)

• Resolve grammar ambiguities derived from true language ambigu-

ities by prioritizing alternatives

• Formally encode semantic, syntactic, and other contextual con-

straints written loosely in English

Predicated-LL(*) recognizers readily match almost any context-free

grammar and can even deal with context-sensitive language constructs.

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 293

ANTLR pioneered the use of predicates in practical parser generators,

and you will find it easier to build natural grammars in ANTLR than in

other parser generators—at least when it comes to embedding arbitrary

actions, supporting context-sensitive parsing, and resolving ambiguous

constructs.

Many real language problems require predicated parsers, but there is

essentially nothing written about the practical use of predicated pars-

ing. Worse, predicates can be a fairly complicated subject because they

are most useful for difficult language implementation problems. For

these reasons, it is worth devoting a significant portion of this book to

predicated parsing. The discussion is broken into three chapters: how

to use predicated parsing to solve real language recognition problems

followed by more formal treatments of semantic and syntactic predi-

cates in Chapter 13, Semantic Predicates, on page 317 and Chapter 14,

Syntactic Predicates, on page 331. The last two chapters explain all the

variations, hazards, and details concerning predicates, whereas this

chapter emphasizes the application of predicates. You should read this

chapter first to get the most out of the two subsequent chapters.

This chapter presents a number of situations in which pure LL(*) pars-

ing provides an unsatisfactory solution or is even completely insuffi-

cient without semantic or syntactic predicates. Let’s begin by examin-

ing the different kinds of semantic predicates and how they can resolve

syntactic ambiguities.

12.1 Resolving Syntactic Ambiguities with Semantic Predicates

Some languages are just plain nasty to parse such as C++ and Ruby,

because of context-sensitive constructs. Context-sensitive constructs

are constructs that translators cannot interpret without relying on

knowledge about surrounding statements. The unfortunate truth is

that we cannot build a correct context-free grammar for many lan-

guages (see Section 4.1, Describing Languages with Formal Grammars,

on page 87). We need the ability to drive recognition with runtime infor-

mation such as symbol table information. Using semantic predicates

to alter the parse is analogous to referring to a notebook (such as a

symbol table) while navigating the maze. The notebook might contain

information about where you’ve walked in the maze and how the maze

matched previous words in the passphrase. The following sections illus-

trate solutions to a number of difficult language recognition problems

that typically flummox everyone except language tool experts.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=293

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 294

First let’s demonstrate that some problems are hard to describe with a

pure context-free grammar (that is, a grammar without semantic pred-

icates).

The Three Semantic Predicate Variations

The semantics of a language refer, loosely, to everything beyond syntax.

Another way to look at it is that you specify syntax with a grammar

and semantics with embedded actions. Semantics can mean everything

from the relationship between input symbols to the interpretation of

statements. Although you can sometimes use the grammar to enforce

certain semantic rules, most of the time you’ll need semantic predicates

to encode semantic constraints and other language “rules.”

Consider the problem of matching an element at most four times. Sur-

prisingly, this is difficult to specify with syntax rules. Using a pure

context-free grammar (in other words, without semantic actions or

predicates), you must delineate the possible combinations:

data: BYTE BYTE BYTE BYTE

| BYTE BYTE BYTE

| BYTE BYTE

| BYTE

;

When four becomes a larger number, the delineation solution quickly

breaks down. An easier solution is to match as many BYTE tokens as

there are on the input stream and then, in an action, verify that there

are not too many:

data: (b+=BYTE)+ {if ($b.size()>4) «error»;}

;

Or, you can use the formal equivalent provided by ANTLR called a vali-

dating semantic predicate. A validating semantic predicate looks like an

action followed by a question mark:

data: (b+=BYTE)+ {$b.size()<=4}?

;

Validating semantic predicates are boolean expressions that the rec-

ognizer evaluates at runtime. If the expression is false, the semantic

predicate fails, and the recognizer throws a FailedPredicateException.

In other cases, no context-free grammar notation exists to specify what

you want because an alternative must be gated in or out depending on

runtime information. No amount of static grammar analysis will help.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=294

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 295

For example, certain languages have extensions that must be turned

on or off depending on a command-line switch. For example, Java has

enum and assert; GCC has C extensions. Naturally, the recognizer could

allow all extensions and then use an action to emit a syntax error if

it sees a disallowed extension. Instead, ANTLR provides a more for-

mal solution called a gated semantic predicate (see Section 13.2, Gated

Semantic Predicates Switching Rules Dynamically, on page 325). Gated

semantic predicates look like {...}?=> and enclose a boolean expression

that is evaluated at runtime. The gated semantic predicates dictates

whether the recognizer can choose that alternative. When false, the

alternative is invisible to the recognizer. The following rule fragment is

from the statement rule in a Java grammar. The gated semantic pred-

icate uses the boolean variable allowAssert to turn the assert statement

on and off dynamically. New in v3.

stat: ifStat

| {allowAssert}?=> assertStat

...

;

As another example, reconsider the earlier example matching four BYTE.

If you want a syntax error rather than a FailedPredicateException, you

can use a gated semantic predicate:

data

@init {int n=1;} // n becomes a local variable

: ({n<=4}?=> BYTE {n++;})+ // enter loop only if n<=4

;

The BYTE alternative becomes invisible after the parser has seen four

BYTE tokens. ANTLR generates the following code for the (...)+ subrule:

do {

int alt1=2;

int LA1_0 = input.LA(1);

// predict alternative one if lookahead is consistent with

// first (and only) alternative of loop and if gated predicate

// is true.

if ((LA1_0==BYTE) && (n<=4)) { // evaluate gated predicate

alt1=1;

}

switch (alt1) {

...

}

} while (true);

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=295

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 296

The gated semantic predicate is part of the decision expression that

decides whether to enter an alternative one. There are plenty of real-

world examples such as SQL and its vendor variations where you would

like to dynamically turn on and off subsets of the language. In this way,

you can create one large static grammar and then use gated semantic

predicates to selectively turn on and off subsets.

The final variant of the semantic predicate is called a disambiguat-

ing semantic predicate and looks like {«expression»}?. Disambiguating

semantic predicates are predicates that LL(*) recognizers include in pre-

diction decisions just like gated semantic predicates. The difference is

that decisions use disambiguating semantic predicates only when syn-

tax alone is insufficient to distinguish between alternatives. In two gen-

eral situations, disambiguating semantic predicates really help: when a

property of a token must dictate how the parser interprets it and when a

surrounding construct or some arbitrary boolean expression must alter

how the parser matches the current construct. The following sections

illustrate how to use disambiguating semantic predicates.

Keywords as Variables

Consider those twisted languages, written by social deviants, that allow

keywords to be used as variables like this: if if call call; or call if;. The con-

text dictates whether an identifier is a keyword or a variable. At the

beginning of a statement, if is a keyword, but it is a variable in an

expression. One possible solution is to treat all identifiers as variables

except in the specific cases where you know an identifier must be a

keyword. Because context-free grammars cannot test the attributes of

a token, you must use semantic predicates to check that the text of

an identifier matches a keyword. In the following grammar, the disam-

biguating semantic predicates indicate the semantic validity of match-

ing an identifier as a keyword:

Download predicates/keywords/Pred.g

prog: stat+ ;

/** ANTLR pulls predicates from keyIF and keyCALL into

* decision for this rule.

*/

stat: keyIF expr stat

| keyCALL ID ';'

| ';'

;

http://media.pragprog.com/titles/tpantlr/code/predicates/keywords/Pred.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=296

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 297

expr: ID

;

/** An ID whose text is "if" */

keyIF : {input.LT(1).getText().equals("if")}? ID ;

/** An ID whose text is "call" */

keyCALL : {input.LT(1).getText().equals("call")}? ID ;

In a mechanism unique to ANTLR, the semantic predicates in rules

keyIF and keyCALL are hoisted out of their native rules into the decision

for rule stat. More specifically, the lookahead prediction DFA shown in

Figure 12.1, on the following page incorporates semantic predicates

when it finds that syntax alone is insufficient to distinguish between

alternatives.

Notice that the DFA will evaluate the predicates only upon ambiguous

sequence ID ID ;. Input ID ID ID, for example, can be an if statement only

because it is too long to be a call statement. The DFA predicts alterna-

tive one without evaluating a predicate. For this grammar, the decision

needs to know only its grammatical context (“start of statement”) and

the next token’s text attribute.

Sometimes, however, a decision needs context information about how

the parser interpreted previous statements. Typically these previous

statements are variable, method, or type definitions. The next section

shows how to resolve a syntactic ambiguity in the Ruby language with

its optional method call parentheses.

Ruby Array Reference vs. Method Call

The Ruby language is nice, but it has some syntactic ambiguities. For

example, a[i] can be either an array reference or a method call with

an array return value. The proper interpretation depends on how the

program previously defines a.1 The following Ruby code fragment uses

a as an array; hence, a[i] is an array reference:

a = [20,30]

puts a[1]

1. The situation is made worse by the lack of static typing in Ruby because you must

look backward in the source code for a prior assignment to a even if it’s inside a nested

conditional. a [i] with a space after the variable name could even mean that [i] (a list with

i in it) is a parameter if a is a method.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=297

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 298

s0

s1
ID

s2=>3

’;’

s3ID

s4’;’

s5=>1ID

{is "if"}?

s6=>2
{is "call"}?

Figure 12.1: Prediction DFA for rule stat that distinguishes between if

and call statements when keywords can be variables

If a is defined as a method, then a[1] represents a method call (call the

method and then index into the array that it returns):

def a

return [20,30]

end

puts a[1]

In both cases, Ruby prints “30” to the console. At runtime, it is not

ambiguous because the [] (array reference) message is sent to whatever

object a is. But, imagine you want to perform static analysis of Ruby

source code and print all the method references. A simplified grammar

demonstrating this notation is as follows:

Download predicates/ruby/Ruby.g

grammar Ruby;

expr: atom ('+' atom)* // E.g., "a[i]+foo[i]"

;

atom: arrayIndex

| methodCall ('[' INT ']')? // E.g., "foo[i]" or "foo(3,4)[i]"

;

arrayIndex

: ID '[' INT ']' // E.g., "a[i]"

;

methodCall

: ID ('(' expr (',' expr)* ')')? // E.g., "foo" or "foo(3,4)"

;

//...

http://media.pragprog.com/titles/tpantlr/code/predicates/ruby/Ruby.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=298

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 299

Figure 12.2: syntax diagram illustrating the path ANTLR chooses for

ambiguous input ID [INT]

ANTLR reports this:

$ java org.antlr.Tool Ruby.g

ANTLR Parser Generator Version 3.0 1989-2007

warning(200): Ruby.g:6:9: Decision can match input such as

"ID '[' INT ']'" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

The syntax for an array index and the syntax for the method invocation

without parentheses are syntactically identical, so you cannot tell the

difference just by looking at the syntax. Rule atom is nondeterministic

because of the ambiguity. Figure 12.2 illustrates the path that the rec-

ognizer will take. Figure 12.3, on the following page illustrates the path

that is syntactically ambiguous with the first alternative and that the

recognizer will not take.

Adding semantic predicates resolves this ambiguity nicely where isAr-

ray() and isMethod() look up their token arguments in a symbol table

that records how variables are used:

arrayIndex

: {isArray(input.LT(1))}? ID '[' INT ']'

;

methodCall

: {isMethod(input.LT(1))}? ID ('(' expr (',' expr)* ')')?

;

During a parse, the two semantic predicates test to see whether the

next symbol is an array variable or a method.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=299

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 300

Figure 12.3: syntax diagram illustrating the path ANTLR does not

choose for ambiguous input ID [INT]

Here is the lookahead prediction DFA for rule atom that illustrates how

the parser incorporates the semantic predicates:

s0 s1ID

s2’[’

s3=>2
’(’

s4INT s5’]’

s6=>1
{isArray}?

{isMethod}?

Notice that upon ID ’(’, the decision immediately predicts alternative two

(via s0, s1, s3) because that input can begin only a method call.

This Ruby example illustrated how you can distinguish between two

alternatives. The next section uses an example from C to show how

semantic predicates can alter a looping subrule’s exit test.

C Type Names vs. Variables

C is another language whose grammar needs a semantic predicate. The

typedef keyword introduces new types that are available later in the

program:

typedef int I;

I a; // define a as an int

C also allows some rather strange-looking declaration-modifier order-

ings such as the following:

int register unsigned g;

I register i;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=300

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 301

The easiest way to encode this in a grammar is simply to loop around

the various declaration modifiers and types even if some combinations

are not semantically valid:

static register int i;

Using a pure context-free grammar, the only other way to deal with this

would be to try to delineate all possible combinations. That is tedious

and awkward because you would be trying to enforce semantics with

syntax. The more appropriate way to draw the line between syntax and

semantics for C is to allow the parser to match an arbitrary modifier

list and have the compiler’s semantic phase examine the list for non-

sensical combinations. The simplified and partial grammar for a C dec-

laration looks like this:

declaration

: declaration_specifiers declarator? ';' // E.g., "int x;"

;

declarator

: '*' declarator // E.g., "*p", "**p"

| ID

;

declaration_specifiers

: (storage_class_specifier // E.g., "register"

| type_specifier

| type_qualifier // E.g., "const", "volatile"

)+

;

type_specifier

: 'void'

| 'int'

| ...

| 'unsigned'

| struct_or_union_specifier // E.g., "struct {...}", "struct a"

| type_id

;

type_id

: ID

;

The problem is that the looping subrule in declarator_specifiers and rule

declarator can both begin with an ID token. Upon ID, the subrule loop

does not know whether to continue matching or to exit and match the

identifier in declarator. Now, we know as humans that x y; syntacti-

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=301

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 302

cally must be a variable declaration and, hence, that x must be a user-

defined type. Unfortunately, the (. . .)+ loop has no idea how many times

it has gone around. The definition of the EBNF construct simply does

not incorporate the notion of history. Syntax cannot resolve the recog-

nizer nondeterminism.

Semantic predicates provide a much simpler solution. You can use the

natural grammar with a small amount of semantic testing to tell ANTLR

when an identifier is a type name:

type_id

: {isTypeName(input.LT(1).getText())}? ID

;

The predicate is hoisted into the prediction DFA for the (...)+ subrule in

declaration_specifiers:

s0

s2ID

s10=>2

{’void’, ...}

s9=>1’extern’, ...

s21=>3

’const’, ...

s1=>4

{EOF,’;’,...}

{isTypeName}?

{true}?

Upon ID, the DFA reaches s2 and predicts alternative two (type_id) if the

identifier is defined as a type name. Otherwise, the DFA fixes alternative

four, which is the loop exit branch. In other words, the loop exits when

it sees an identifier that is not a type because this must be a variable

or method name (the declarator).

To make this semantic predicate work, other parts of the grammar must

add type names to a symbol table upon typedef. Unfortunately, tracking

C symbols properly is a bit involved, particularly using ANTLR’s fancy

dynamic scopes, as shown next. You can skip to the next section on

C++ if you don’t care about those details. The point related to semantic

predicates has already been made.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=302

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 303

To make life easier when passing information between rules, your solu-

tion can use dynamic scopes, as described in Section 6.5, Dynamic

Attribute Scopes for Interrule Communication, on page 148. You’ll need

a global dynamic scope to track type names because multiple rules will

share the same stack of scopes (rules translation_unit, function_definition,

struct_or_union_specifier, and compound_statement):

scope Symbols {

Set types; // track types only for example

}

In this way, the rules that represent C scopes use ANTLR specification

scope Symbols; to share the same stack of scopes. For example, here is

translation_unit:

translation_unit

scope Symbols; // entire file is a scope; pushes new scope

@init {

$Symbols::types = new HashSet(); // init new scope

}

: external_declaration+

;

Because of the distance between the typedef keyword and the actual

ID token recognition in rule declarator, you must pass information from

the declaration rule all the way down to declarator. The easiest way to

do that is to declare a rule-level dynamic scope with a boolean that

indicates whether the current declaration is a typedef:

declaration

scope {

boolean isTypedef;

}

@init {

$declaration::isTypedef = false;

}

: {$declaration::isTypedef=true;} // special case, look for typedef

'typedef' declaration_specifiers declarator ';'

| declaration_specifiers declarator? ';'

;

Any rule, such as declarator ultimately invoked from declaration, can

access the boolean via $declaration::isTypedef:

declarator

: '*' declarator // E.g., "*p", "**p"

| ID

{

// if we're called from declaration and it's a typedef.

// $declaration.size() is 0 if declaration is not currently

// being evaluated.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=303

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 304

if ($declaration.size()>0&&$declaration::isTypedef) {

// add ID to list of types for current scope

$Symbols::types.add($ID.text);

System.out.println("define type "+$ID.text);

}

}

;

This example illustrated how prior statements can affect future state-

ments in C. The next section provides an example where a phrase in

the future affects the interpretation of the current phrase.

C++ Typecast vs. Method Call

In C++, the proper interpretation of an expression might depend on

future constructs. For example, T(i) can be either a constructor-style

typecast or a method call depending on whether T is a type name or a

method. Because T might be defined below in a class definition file, prior

context is insufficient to properly interpret T(i). The recognizer needs

future context in a sense.

You can solve this dilemma in two ways. The first solution involves

using a parser generator based upon GLR [Tom87] that allows all con-

text-tree grammars including ambiguous grammars such as this one

for the typecast vs. method call ambiguity. The parser returns a parse

forest, rather than a single parse tree, that contains all possible inter-

pretations of the input. You must make a pass over the trees to define

methods and types and then make a second pass to choose which inter-

pretation is appropriate for each ambiguous construct.

Using ANTLR, you can implement a similar strategy. Build a single tree

for both constructs with a subtree root that represents both cases:

primary

: ID '(' exprList ')' // ctor-style typecast or method call

-> ^(TYPECAST_OR_CALL ID exprList)

| ID

| INT

...

;

Then, similar to the GLR solution, walk the tree, and flip the type of the

node once you have the complete symbol table information. The solu-

tion does not always work because some constructs need a completely

different tree. You must parse the input twice no matter how you want

to think about this problem because of forward references.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=304

SYNTACTIC AMBIGUITIES WITH SEMANTIC PREDICATES 305

The second solution, using ANTLR, is not particularly satisfying either.

You can parse a file twice, once to find the definitions and then a second

time to distinguish between syntactically ambiguous constructs. You

might even be able to do a quick initial “fuzzy” pass over the input file

just looking for method and type definitions to fill up your symbol table

and then parse the code again for real. Because lexing is expensive,

tokenize the input only once—pass the token buffer to the second pass

to avoid relexing the input characters.

No matter how you approach this problem, there is no escaping mul-

tiple passes. This example illustrates again that you can draw the line

between syntax and semantics in different places.

Once you have complete symbol table information, the second pass can

use semantic predicates to distinguish between typecasts and method

calls where isType() looks up its token argument to see whether it is

defined as a type in the symbol table:

primary

: {isType(input.LT(1))}? ID '(' expr ')' // ctor-style typecast

-> ^(TYPECAST ID expr)

| ID '(' exprList ')' // method call

-> ^(CALL ID exprList)

| ID

| INT

...

;

It is because of this ambiguity and many others that language imple-

menters loath C++.

Semantic predicates resolve context-sensitivity problems in grammars

but are sometimes used to examine the token stream ahead of the cur-

rent position in order to make parsing decisions. In a sense, such se-

mantic predicates are like manually specified lookahead DFA. Although

ultimately powerful because semantic predicates are unrestricted

actions in the target language, it is better to use a formal method to

describe arbitrary lookahead.

In the next section, we’ll look at formal solutions to a number of non-

LL(*) problems from Java, C, and C++ that require arbitrary lookahead.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=305

RESOLVING AMBIGUITIES AND NONDETERMINISMS 306

12.2 Resolving Ambiguities and Nondeterminisms with Syntactic

Predicates

ANTLR supports arbitrary lookahead in the form of syntactic predicates

that are similar to semantic predicates except that they specify the syn-

tactic validity of applying an alternative rather than the semantic valid-

ity. Both kinds of predicates alter the parse based upon information

available at runtime. The difference is that syntactic predicates auto-

matically examine future input symbols, whereas semantic predicates

test arbitrary programmer-specified expressions.

You can view syntactic predicates as a special case of semantic pred-

icates. Indeed, ANTLR implements syntactic predicates as special se-

mantic predicates that invoke parser backtracking methods. The back-

tracking methods compare the grammar fragments found in syntactic

predicates against the input stream. If a fragment matches, the syntac-

tic predicate is true, and the associated alternative is considered valid.

Syntactic predicates and normal LL(*) lookahead are similar in that

both support arbitrary lookahead. The difference lies in how much syn-

tactic, structural awareness the two methods have of the input. LL(*)

uses a DFA to examine the future input symbols, whereas syntac-

tic predicates use a pushdown machine, a full context-free language

parser (see Section 2.4, Enforcing Sentence Tree Structure, on page 40).

In Section 2.2, The Requirements for Generating Complex Language,

on page 38, you learned that DFAs are equivalent to regular expres-

sions, and therefore, DFAs are too weak to recognize many common

language constructs such as matched parentheses. For that, you need

a recognizer capable of matching nested, tree-structured constructs

(see Section 2.3, The Tree Structure of Sentences, on page 39). Syn-

tactic predicates contain context-free grammars, which were designed

specifically to deal with the tree-structured nature of sentences. The

result of all this is that syntactic predicates can recognize more compli-

cated sentential structures in the lookahead than DFAs. Consequently,

syntactic predicates dramatically increase the recognition strength of

LL(*) parsers. Better yet, backtracking is a simple and well-understood

mechanism.

Syntactic predicates are useful in two situations:

• When LL(*) cannot handle the grammar the way you would like to

write it

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=306

RESOLVING AMBIGUITIES AND NONDETERMINISMS 307

• When you must specify the precedence between two ambiguous

alternatives; ambiguous alternatives can both match the same

input sequence

This section shows three examples whose natural grammar is non-LL(*)

and then provides an example from C++ where a syntactic predicate

resolves an ambiguity between declarations and expression statements

by specifying the precedence.

How to Resolve Non-LL(*) Constructs with Syntactic Predicates

Let’s start with a simple non-LL(*) example that we can easily resolve

with a syntactic predicate. Consider the following natural grammar for

matching expressions followed by two different operators: percent and

factorial:

grammar x;

s : e '%'

| e '!'

;

e : '(' e ')'

| INT

;

INT : '0'..'9'+ ;

Rule s is non-LL(*) because the left prefix e is common to both alterna-

tives. Rule e is recursive, rendering a decision in s non-LL(*). Prediction

DFAs do not have stacks and, therefore, cannot match recursive con-

structs such as nested parentheses. ANTLR reports this:

$ java org.antlr.Tool x.g

ANTLR Parser Generator Version 3.0 1989-2007

x.g:3:5: [fatal] rule s has non-LL(*) decision due to recursive rule

invocations reachable from alts 1,2. Resolve by left-factoring or

using syntactic predicates or using backtrack=true option.

warning(200): x.g:3:5: Decision can match input such as "'(' '('"

using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

and builds a DFA:

s0

s1

’(’

s2
INT

s3=>1
’(’

s4INT s6’)’
’%’

s5=>2

’!’

’%’

’!’

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=307

RESOLVING AMBIGUITIES AND NONDETERMINISMS 308

DFAs vs. Backtracking in the Maze

The DFAs of LL(*) and the backtracking of syntactic predicates
both provide arbitrary lookahead. In the maze, the difference
lies in who is doing the lookahead. A DFA is analogous to
a trained monkey who can race ahead of you, looking for
a few symbols or simple sequences. When a trained monkey
isn’t smart enough, you must walk the alternative paths ema-
nating from a fork yourself to figure out exactly what is down
each path. You are smarter, but slower, than the agile trained
monkey.

The recognizer can’t match input such as ((x))!. ANTLR resolves nonde-

terministic input ((by choosing alternative one (via accepts state s3).

Notice that the DFA knows how to handle one invocation of rule e, (INT

), but cannot figure out what to do when e invokes itself.

Rather than left-factor the grammar, making it less readable, like this:

s : e ('%'|'!')

;

we can use a syntactic predicate that explicitly tells ANTLR when to

match alternative one:

s : (e '%')=> e '%'

| e '!'

;

This says, “If e ’%’ matches next on the input stream, then alternative

one will succeed; if not, try the next conflicting alternative.” ANTLR

generates the following prediction DFA:

s0

s1
’(’

s2

INT

s3
’(’

s4INT s5=>1

{synpred1}?

s6=>2

{true}?

s7’)’ ’%’

’!’

’%’

’!’

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=308

RESOLVING AMBIGUITIES AND NONDETERMINISMS 309

Notice that now, upon ((, the DFA evaluates synpred1, which asks the

parser to evaluate the syntactic predicate. You can think of the syntac-

tic predicates as forking another parser that tries to match the grammar

fragment in the predicate: e ’%’.

We do not need to put a predicate on the second alternative because

the parser always attempts the last conflicting alternative like an else

clause. In the DFA, the else clause is represented by the {true}? predi-

cate.

ANTLR also supports an auto-backtracking feature whereby ANTLR

inserts syntactic predicates on the left edge of every alternative (see Sec-

tion 14.4, Auto-backtracking, on page 340). The auto-backtracking does

not cost anything extra because the LL(*) algorithm incorporates these

predicates only when normal LL(*) grammar analysis fails to produce a

deterministic prediction DFA. Using the auto-backtracking feature, we

avoid cluttering the grammar with syntactic predicates:

grammar x;

options {backtrack=true;}

s : e '%'

| e '!'

;

...

The example in this section epitomizes a common situation in real

grammars where recursion renders a grammar non-LL(*). The follow-

ing sections provide more realistic examples from Java and C.

Java 1.5 For-Loop Specification

LL(*) cannot handle alternatives that reference recursive rules. For ex-

ample, the following rules describe the enhanced “foreach” for-loops in

Java 1.5:

// E.g., enhanced: "for (String n : names) {...}"

// old style: "for (int i; i<10; i++) {...}"

stat: 'for' '(' forControl ')' statement

...

;

// E.g., "String n : names" or "int i; i<10; i++"

// non-LL(*) because both alternatives can start by matching rule type

forControl

: forVarControl

| forInit? ';' expression? ';' forUpdate?

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=309

RESOLVING AMBIGUITIES AND NONDETERMINISMS 310

forInit

: 'final'? type variableDeclarators

| expressionList

;

forVarControl // new java 1.5 "foreach"

: 'final'? annotation? type Identifier ':' expression

;

forUpdate

: expressionList

;

Rule forControl is non-LL(*) because rule type is reachable at the start

of both forVarControl and forInit. This would not be a problem except that

type is self-recursive because of generics, which can have nested type

specifications such as List<List<int>>. For example, an LL(*) parser cannot

decide which alternative to match after seeing this input:

for (List<List<int>> data = ...

LL(*)’s DFAs cannot see past the recursive type structure.

Rewriting this grammar to be LL(*) might be possible, but it would mean

extra work and a less readable grammar. Inserting a single syntactic

predicate resolves the issue quickly and easily:

forControl

: (forVarControl)=> forVarControl

| forInit? ';' expression? ';' forUpdate?

;

To be clear, the alternatives have no valid sentence in common—it is

just that LL(*) by itself is too weak to distinguish between the two alter-

natives as written. ANTLR scales back the analysis to LL(1) from LL(*)

because it knows LL(*) will fail to yield a valid DFA. LL(1) plus a syntac-

tic predicate is sufficient, however.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=310

RESOLVING AMBIGUITIES AND NONDETERMINISMS 311

The DFA looks like this:

s0

s1’final’

s4=>2

start of expr

s2

Identifier

s3

’boolean’..’double’

s24=>1
{synpred159}?

{true}?

{true}?

s25=>1

{synpred159}?

{true}?

s26=>1

{synpred159}?

The DFA is not

minimized, as you can

see—a future version of

ANTLR will optimize the

generated DFA.

The DFA forces backtracking unless it is clear that the lookahead rep-

resents an expression. In that case, the parser knows that only the sec-

ond alternative would match. Although pure LL(*) fails, you can turn

on auto-backtracking mode and increase the fixed lookahead to LL(3)

in order to help ANTLR optimize the decision:

forControl

options {k=3; backtracking=true;}

: forVarControl

| forInit? ';' expression? ';' forUpdate?

;

Now, the DFA will not backtrack upon input such as Color c : colors

because it can see the ’:’ with three symbols of lookahead (the DFA

is too large to effectively show here). The functionality is the same,

but this particular decision is much faster for the common case. The

increased fixed lookahead prevents backtracking. Manually specified

syntactic predicates are always evaluated, but those implicitly added

by auto-backtracking mode are not. Auto-backtracking syntactic pred-

icates are evaluated only if LL(*) fails to predict an alternative.

The following section provides a similar situation from C where recur-

sive constructs stymie LL(*).

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=311

RESOLVING AMBIGUITIES AND NONDETERMINISMS 312

C Function Definition vs. Declaration

Section 11.2, Why You Need LL(*), on page 264 motivated the need for

LL(*) by showing a rule matching both abstract and concrete methods:

method

: type ID '(' args ')' ';' // E.g., "int f(int x,int y);"

| type ID '(' args ')' '{' body '}' // E.g., "int f() {...}"

;

The prediction DFA easily saw past the left common prefix to the ’;’ or

the ’{’ because neither type nor args is recursive. In C, however, argu-

ments are recursive constructs and can be arbitrarily long because of

nested parentheses. Here is a sample C function definition whose sin-

gle argument, p, is a pointer to a function returning int that has a float

argument:2

void f(int ((*p))(float)) { «body» }

The argument declarator can be arbitrarily nested, making it impossible

for a DFA to recognize the argument list in order to see past it properly:

external_declaration

: function_definition

| declaration

;

Although you could simply turn on the auto-backtracking feature, that

is unnecessarily inefficient because the parser will backtrack over the

entire function body:

external_declaration

options {backtrack=true;}

: function_definition // uses (function_definition)=> predicate

| declaration

;

The implicitly created syntactic predicate for the first alternative ref-

erences function_definition, which tells ANTLR to try to match the entire

function. A more efficient approach is to use a manually specified syn-

tactic predicate that provides the minimum necessary lookahead to dis-

tinguish the first alternative from the second:

external_declaration

: (declaration_specifiers? declarator declaration* '{')=>

function_definition

| declaration

;

2. See http://www.cs.usfca.edu/~parrt/course/652/lectures/cdecls.html for a complete descrip-

tion of how to easily read any C declaration.

http://www.cs.usfca.edu/~parrt/course/652/lectures/cdecls.html
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=312

RESOLVING AMBIGUITIES AND NONDETERMINISMS 313

With this predicate, the backtracking mechanism stops after seeing the

’{’ instead of parsing the entire function body. Another way to make the

decision efficient, without the manually specified syntactic predicate, is

to simply reorder the alternatives:

external_declaration

options {backtrack=true;}

: declaration

| function_definition

;

Now, even with the auto-backtracking, the parser will stop backtrack-

ing much sooner. The backtracking stops at the ’;’ in declaration (result-

ing in success) or the ’{’ in function_definition (resulting in failure). This

reordering works because the two alternatives do not have any valid

sentences in common.

In practice, ANTLR generates a very large (nonoptimized) DFA for this

decision even with the backtracking; turning on k=1 is a good idea to

reduce its size:

external_declaration

options {backtrack=true; k=1;}

: declaration

| function_definition

;

The previous three examples illustrated how to use syntactic predicates

to resolve grammar nondeterminisms arising from weaknesses in LL(*)’s

DFA-based lookahead. The next sections examine the second use of

syntactic predicates: resolving ambiguous alternatives. The examples

show constructs that result in grammars where two alternatives can

match the same input. The solutions use syntactic predicates to order

the ambiguous alternatives, giving precedence to the alternative with

the proper interpretation.

Resolving the If-Then-Else Ambiguity

Recall from Section 11.5, Nondeterministic Decisions, on page 281 that

all grammar ambiguities lead to parser nondeterminisms, meaning that

ambiguous decisions are not LL(*) and result in ANTLR warnings.

Sometimes, however, the syntax of the language makes a single sen-

tence consistent with two different interpretations. The language ref-

erence manual specifies which interpretation to use, but pure context-

free grammars have no way to encode the precedence. The most famous

example is the if-then-else ambiguity:

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=313

RESOLVING AMBIGUITIES AND NONDETERMINISMS 314

stat: 'if' expr 'then' stat ('else' stat)?

| ID '=' expr ';'

;

ANTLR reports that the grammar has two paths that match the else

clause. The parser can enter the (’else’ stat)? subrule or bypassing the

subrule to match the else clause to a previous if statement. ANTLR

resolves the conflict correctly by choosing to match the else clause

immediately, but you still get an analysis warning. To hush the warn-

ing, you can specify a syntactic predicate or turn on auto-backtracking.

The warning goes away because syntactic predicates specify the prece-

dence of the two alternatives. Simply put, the alternative that matches

first wins. The following rewrite of rule stat is not ambiguous because

it indicates that the parser should match the else clause immediately if

present:

stat

options {backtrack=true;}

: 'if' expr 'then' stat 'else' stat

| 'if' expr 'then' stat

| ID '=' expr ';'

;

The only problem is that the decision is now much less efficient because

of the backtracking. This example merely demonstrates how syntactic

predicates resolve true ambiguities by imposing order on alternatives.

For this situation, do not use syntactic predicates; let ANTLR resolve

the nondeterminism because it does the right thing with the k=1 looka-

head. The next section provides an example from C++ whose solution

absolutely requires a syntactic predicate.

Distinguishing C++ Declarations from Expressions

Some C++ expressions are valid statements such as x; or f();. Unfor-

tunately, some expressions require arbitrary lookahead to distinguish

from declarations. Quoting from Ellis and Stroustrup’s The Annotated

C++ Reference Manual [ES90], “There is an ambiguity in the grammar

involving expression-statements and declarations. . . The general cases

cannot be resolved without backtracking. . . In particular, the lookahead

needed to disambiguate this case is not limited.” The authors use the

following examples to make their point, where T represents a type:

T(*a)->m=7; // expression statement with type cast to T

T(*a)(int); // a is a pointer to function returning T with int argument

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=314

RESOLVING AMBIGUITIES AND NONDETERMINISMS 315

These statements illustrate that expression statements are not distin-

guishable from declarations without seeing all or most of the statement.

For example, in the previous expression statement, the ’->’ symbol is

the first indication that it is a statement. Syntactic predicates resolve

this nondeterminism by simply backtracking until the parser finds a

match.

It turns out that the situation in C++ gets much worse. Some sentences

can be both expressions and declarations, a true language syntactic

ambiguity. For example, in the following C++ code, I(x) is both a decla-

ration (x is an integer as in I x;) and an expression (cast x to type I as in

(I)x):3

typedef int I;

char x = 'a';

void foo() {

I(x); // read as "I x;" not "(I)x;" (hides global char x)

}

The C++ language definition resolves the ambiguity by saying you

should choose declaration over expression when a sentence is consis-

tent with both. To paraphrase Ellis and Stroustrup further, in a parser

with backtracking, the disambiguating rule can be stated simply as fol-

lows:

1. If it looks like a declaration, it is.

2. Otherwise, if it looks like an expression, it is.

3. Otherwise, it is a syntax error.

There is no way to encode these rules in a context-free grammar be-

cause there is no notion of order between alternatives. Syntactic pred-

icates, on the other hand, implicitly order alternatives. They provide

an exact formal means of encoding the precedence dictated by the C++

language reference:

stat: (declaration)=> declaration // if looks like declaration, it is

| expression // else its expression

;

The beauty of this solution is that a syntactic predicates handles both

cases: when the parser needs arbitrary lookahead to distinguish decla-

rations from expressions and when it needs to disambiguate sentences

that are both declarations and expressions.

3. T (x) for type T can be a constructor-style typecast in C++.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=315

RESOLVING AMBIGUITIES AND NONDETERMINISMS 316

In general, semantic and syntactic predicates overcome the weaknesses

of pure context-free grammars. Predicates allow you to formally encode

the constraints and rules described in English in a language reference

manual using an ANTLR grammar. Parser generators without predi-

cates force the use of ad hoc hacks, tweaks, and tricks. For example,

a common trick is to insert a smart token filter between the lexer and

parser that flips token types when necessary.

This chapter informally defined syntactic predicates, showed how to

use them, and demonstrated their power. This information will get you

started building predicated grammars, but ultimately you will need to

understand how ANTLR implements these predicates more precisely.

The next two chapters explain the important details about semantic

and syntactic predicates.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=316

Chapter 13

Semantic Predicates
Translators map input sentences to output sentences, which means

that the translator must establish a unique interpretation for each

input sentence. Some languages, unfortunately, have ambiguous

phrases whose syntax allows more than a single interpretation (Sec-

tion 2.5, Ambiguous Languages, on page 43). The proper interpreta-

tion depends on the phrase’s context. In C++, for example, T(i); syn-

tactically looks like a function call and a constructor-style typecast.

The proper interpretation depends on what kind of thing T is, which

in turn depends on how the input defines T elsewhere. Pure context-

free grammars are unable to impose such conditions on rules in order

to uniquely interpret that phrase. ANTLR gets around this problem by

augmenting context-free grammars with semantic predicates that can

alter the parse based upon context.

Semantic predicates are boolean expressions you can use to specify the

semantic validity of an alternative. The term predicate simply means

conditional, and the term semantic implies you are talking about arbi-

trary boolean expressions rather than a syntactic condition. In prac- Semantic predicates

have been in the

literature since the

1970s, but Russell

Quong and I extended

the functionality to

include hoisting,

whereby you can

incorporate a predicate

in one rule into the

prediction decision of

another rule.

tice, the rule is pretty simple: if a predicate’s expression is false, the

associated alternative is invalid. Because predicates can ask questions

about other input phrases, you can encode the context in which alter-

natives apply. For example, in Section 12.1, C++ Typecast vs. Method

Call, on page 304, you saw how to use semantic predicates to distin-

guish between C++ method calls and constructor-style typecasts.

Semantic predicates are available to any ANTLR grammar and have

three variations:

• Disambiguating semantic predicates, which disambiguate syntac-

tically identical statements

RESOLVING NON-LL(*) CONFLICTS 318

• Gated semantic predicates, which dynamically turn on and off

portions of a grammar

• Validating semantic predicates, which throw a recognition excep-

tion if the predicate fails

This chapter describes the functional details and limitations of seman-

tic predicates, whereas the previous chapter illustrated how to use

semantic predicates. Let’s begin with the most important kind of se-

mantic predicate: disambiguating semantic predicates that can resolve

nondeterministic LL(*) decisions.

13.1 Resolving Non-LL(*) Conflicts with Disambiguating Semantic

Predicates

Upon finding an LL(*) nondeterminism, ANTLR typically emits a gram-

mar analysis warning. In the presence of semantic predicates, however,

ANTLR tries to hoist them into the alternative prediction for that deci-

sion to resolve the conflict. More specifically, ANTLR hoists only those

semantic predicates that are reachable from the left edge without con-

suming an input symbol. When a prediction DFA evaluates a semantic

predicate, that predicate is called a disambiguating semantic predicate.

For efficiency reasons, ANTLR hoists predicates into DFAs only when

LL(*) lookahead alone is insufficient to distinguish alternatives.

For semantic predicates to fully resolve a nondeterminism, you must

cover all alternatives that contribute to the nondeterminism, as shown

in the following grammar:

a : {p}? A

| {q}? A

;

Predicates implicitly specify the precedence of the conflicting alterna-

tives. Those predicated alternatives specified earlier have precedence

over predicated alternatives specified later. Generally speaking, parsers

evaluate semantic predicates in the order specified among the alterna-

tives. For this grammar, ANTLR generates the following DFA:

s0 s1A

s2=>1
{p}?

s3=>2

{q}?

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=318

RESOLVING NON-LL(*) CONFLICTS 319

If A is the next symbol of lookahead and p evaluates to true, the DFA

predicts alternative one; otherwise, if A and q, the DFA predicts alterna-

tive two. The following Java implementation clarifies the functionality:

int alt1=2;

int LA1_0 = input.LA(1);

if ((LA1_0==A)) {

if ((p)) { alt1=1; }

else if ((q)) { alt1=2; }

else {

NoViableAltException nvae =

new NoViableAltException(

"2:1: a : ({...}? A | {...}? A);", 1, 1, input);

throw nvae;

}

}

ANTLR can also hoist a predicate out of its original rule into the predic-

tion decision for another rule. The following grammar is equivalent to

the previous version in that ANTLR generates the same prediction DFA

for rule a:

// ANTLR hoists {p}? and {q}? into a's prediction decision

a : b

| c

;

b : {p}? A ;

c : {q}? A ;

This nonlocal hoisting allows you to specify the semantics and syntax

for language constructs together in the same place. Here is a commonly

used rule that indicates when an identifier is a type name:

// typename when lookahead token is ID and isType says text is a type

typename : {isType(input.LT(1))}? ID ;

The next section explains what happens if you leave off one of the pred-

icates.

Alternatives That ANTLR Implicitly Covers

As a convenience, you can cover just n-1 alternatives with predicates

for n conflicting alternatives. The following rule is perfectly fine even

though it has two alternatives and just one predicate:

a : {p}? A

| A

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=319

RESOLVING NON-LL(*) CONFLICTS 320

ANTLR implicitly covers this special case of an uncovered final conflict-

ing alternative with {true}? as sort of an else clause. ANTLR computes a

DFA with one real predicate, p, and one implied predicate, true:

s0 s1A

s2=>1
{p}?

s3=>2

{true}?

lThis feature also automatically covers the exit branch of a looping sub-

rule, as shown in the following rule:

loop: ({p1}? A)+ A

;

Upon lookahead A and p, the rule stays in the loop. Because of the im-

plied order between conflicting alternatives, ANTLR cannot add {true}?

unless the uncovered alternatives is last. In general, ANTLR must as-

sume that the n
th predicate is the complement of the union of the other

n-1 predicates. Consider the same grammar as before, but with the

predicate on the second alternative instead of the first:

a : A

| {q}? A

;

ANTLR generates the following DFA:

s0 s1A

s2=>1
{!(q)}?

s3=>2

{q}?

If ANTLR assumed predicate true implicitly covered the first alternative,

the second alternative covered with q would be unreachable because

the first predicate would always win.

If you fail to cover all nondeterministic alternatives implicitly or explic-

itly, ANTLR will give you a nondeterminism warning. This rule:

a : {p}? A

| A

| A

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=320

RESOLVING NON-LL(*) CONFLICTS 321

results in the following warning:

warning(200): t.g:2:5: Decision can match input such as "A"

using multiple alternatives: 1, 2, 3

As a result, alternative(s) 3,2 were disabled for that input

warning(201): t.g:2:5: The following alternatives are unreachable: 2,3

Supplying a semantic predicate for all conflicting alternatives is not

always sufficient to resolve nondeterminisms because ANTLR can hoist

predicates out of their original rules. The next section illustrates a sit-

uation where a single predicate does not sufficiently cover a nondeter-

ministic lookahead sequence.

Insufficiently Covered Nondeterministic Lookahead Sequences

ANTLR assumes you know what you’re doing when you specify seman-

tic predicates that disambiguate alternatives, but it does its best to

identify situations where you have not given a complete solution.

ANTLR will warn you if you have insufficiently covered an alternative

rather than simply forgotten to add one.1 In the following grammar,

lookahead token A predicts both alternatives of rule a:

grammar T;

a : b

| A // implicitly covered with !predicates from first alternative

;

b : {q}? A

| A // alternative not covered

;

The pure LL(*) prediction DFA for a is, therefore, nondeterministic be-

cause A labels multiple transitions (predicts more than one alternative).

ANTLR looks for semantic predicates to resolve the conflict. It hoists {q}?

from b into the prediction DFA for a, but a problem still exists. ANTLR

warns the following:

warning(203): t.g:3:5: The following alternatives are insufficiently

covered with predicates: 2

warning(200): t.g:3:5: Decision can match input such as "A"

using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

warning(201): t.g:3:5: The following alternatives are unreachable: 2

1. Paul Lucas brought the issue of insufficiently covered alternatives to my attention at

the ANTLR2004 workshop at the University of San Francisco.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=321

RESOLVING NON-LL(*) CONFLICTS 322

ANTLR notices that not every path to an A token reachable from the

first alternative of a is covered by a predicate—only the first alternative

of b has a predicate. As a result, ANTLR warns you about the uncov-

ered nondeterministic lookahead sequence. Note that the lookahead

decision for rule b is OK because it has one predicate for two A alter-

natives. Without this “flow analysis,” subtle and difficult-to-find bugs

would appear in your grammars. The next section shows how ANTLR

combines predicates when it does find sufficient predicates to cover a

lookahead sequence.

Combining Multiple Predicates

When ANTLR finds more than one predicate reachable from a decision

left edge, it combines them with the && and || operators to preserve the

semantics. For example, in the following grammar, ANTLR can see two

predicates for the first alternative, p1 and p2:

a : {p1}? {p2}? A

| {q}? A

;

The grammar results in the following prediction DFA:

s0 s1A

s2=>1
{(p1&&p2)}?

s3=>2

{q}?

ANTLR combines sequences of predicates with the && operator. Looking

at the grammar, it is clear that the semantic validity of applying the first

alternative is p1&&p2. Both predicates must be true for the alternative

to be semantically valid.

When combining multiple predicates taken from different alternatives,

however, ANTLR combines the alternative predicates with the || opera-

tor. Consider the following grammar where rule a’s decision is nonde-

terministic upon token A:

a : b

| {p}? A

;

b : {q1}? A

| {q2}? A

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=322

RESOLVING NON-LL(*) CONFLICTS 323

ANTLR creates the following DFA:

s0 s1A

s2=>1
{(q2||q1)}?

s3=>2

{p}?

Rule b can match token A in either of two semantic contexts: q1 or q2;

hence, those predicates must be ||’d together to specify the semantic

applicability of the first alternative of rule a.

Naturally, combinations also work:

a : {r}? b

| {p}? A

;

b : {q1}? A

| {q2}? A

;

This results in the following DFA:

s0 s1A

s2=>1{((r&&q1)||(r&&q2))}?

s3=>2

{p}?

The DFA says that rule a can match an A via the first alternative if r

and q1 are true or r and q2 are true. Otherwise, rule a can match A via

the second alternative if p.

Decisions with Both Deterministic and Nondeterministic

Alternatives

ANTLR properly handles the case where a subset of the alternatives are

nondeterministic and when there are multiple conflicting alternatives.

The following grammar has three alternatives that match A, but there

are sufficient predicates to resolve the conflict:

a : {p}? A

| B

| A

| {q}? A

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=323

RESOLVING NON-LL(*) CONFLICTS 324

ANTLR generates the following prediction DFA:

s0

s1
A

s2=>2

B

s3=>1
{p}?

s4=>3{!((p||q))}?

s5=>4

{q}?

The important observation is that, upon input B, the DFA immediately

predicts the second alternative without evaluating a semantic predi-

cate. Upon token A, however, the DFA must evaluate the semantic pred-

icates in the order specified in the grammar. The second alternative is

semantically valid when the other A alternatives are invalid: !p and !q

or equivalently !(p||q).

The final issue related to disambiguating semantic predicates is that

DFAs must evaluate predicates within their syntactic context.

Evaluating Predicates in the Proper Syntactic Context

When ANTLR hoists semantic predicates into prediction DFAs, it must

carry along the syntactic context in which it found the predicates. Con-

sider the following grammar. ANTLR resolves rule a’s nondeterministic

prediction DFA with the predicates p1 and p2.

a : b

| {p2}? ID

;

b : {p1}? ID // evaluate only upon ID not INT

| INT

;

A predicate covers every path reaching an ID reference. But what about

INT? Both INT and ID syntactically predict the first alternative of rule a.

It turns out that it is important for the DFA to avoid evaluating p1 upon

INT. For example, p1 might look up the token in the symbol table, which

makes no sense for INT; worse, looking it up might cause an exception.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=324

GATED SEMANTIC PREDICATES SWITCHING RULES DYNAMICALLY 325

ANTLR generates the following DFA:

s0

s1
ID

s2=>1
INT

{p1}?

s3=>2
{p2}?

Token INT immediately predicts alternative one without using a predi-

cate. It is only after seeing ID in s1 that the DFA evaluates the predi-

cates.

As you have seen, ANTLR hoists disambiguating semantic predicates

only when the LL(*) lookahead is insufficient to distinguish between

alternatives. Sometimes, however, you always want ANTLR to hoist a

predicate into the decision DFA, as explained in the next section.

13.2 Turning Rules On and Off Dynamically with Gated Semantic

Predicates

Sometimes you want to distinguish between alternatives that are not

syntactically ambiguous. For example, you might want to turn off some

language features dynamically such as the Java assert keyword or GCC

C extensions. This requires a semantic predicate to turn off an alter-

native even though the enclosing decision is deterministic. But, disam-

biguating semantic predicates are not hoisted into deterministic deci-

sions. ANTLR introduces a new kind of predicate called a gated seman-

tic predicate that is always hoisted into the decision. Gated semantic

predicates use the syntax {pred}?=>, as the following grammar demon-

strates:

stat: 'if' ...

| {allowAssert}?=> 'assert' expr

...

;

To see the difference between disambiguating semantic predicates and

gated semantic predicates, contrast the following grammar:

a : A

| {p}? B

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=325

GATED SEMANTIC PREDICATES SWITCHING RULES DYNAMICALLY 326

with the following grammar:

a : A

| {p}?=> B

;

In the first version, with the disambiguating semantic predicate, ANTLR

ignores the predicate because syntax alone is sufficient to predict alter-

natives. In the second version, however, the gated semantic predicate

is included in rule a’s decision:

s0

s1=>1
A

s2=>2

B&&{p}?

The DFA predicts alternative two only when p is true. The transition

from s0 to s2 effectively disappears when p is false; the only viable

alternative would be the first one.

In general, gated predicates appear along the transitions along all paths

leading to the accept state predicting the associated gated alternative.

For example, the following grammar can match input .. either by match-

ing the first alternative of rule a once or by matching the second alter-

native twice:

a : {p}?=> ('.'|'-')+

| '.'

;

The grammar distinguishes between the two cases using the p gated

semantic predicate. The following DFA does the appropriate prediction:

s0

s1
’.’

s2=>1
’-’&&{p}?

{p}?

s3=>2
{true}?

The DFA guards access to accept state s2, predicting alternative one,

with gated predicate p. But, notice that the DFA doesn’t test p on the

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=326

VALIDATING SEMANTIC PREDICATES 327

transition from states s0 to s1. That transition is common to both alter-

natives one and two. When p is false, the DFA must still be able to

match . to alternative two.

Remember that ANTLR hoists predicates out of one rule to use in the

decision for another rule. In this respect, gated predicates behave just

like disambiguating semantic predicates. In the following grammar, the

predicate is hoisted from rule b into the prediction decision for rule a:

a : A

| b // as if you had used {p}?=> here too

;

b : {p}?=> B

;

ANTLR generates the following DFA:

s0

s1=>1
A

s2=>2

B&&{p}?

Even though syntax alone yields a deterministic prediction decision,

rule a’s DFA uses the gated semantic predicates hoisted from b.

The next section describes the third and final predicate variation.

13.3 Verifying Semantic Conditions with Validating Semantic

Predicates

Although most semantic analysis occurs in a separate phase for compli-

cated language applications, sometimes it is convenient to place seman-

tic checks within a grammar that throw an exception upon failure like

syntax errors do. For example, in the following grammar, the recognizer

throws a FailedPredicateException if the input program references a vari-

able without a prior definition where the highlighted region is the code

generated for the validating semantic predicate:

grammar t;

expr: INT

| ID {isDefined($ID.text)}?

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=327

LIMITATIONS ON SEMANTIC PREDICATE EXPRESSIONS 328

Such a predicate is called a validating semantic predicate, and ANTLR

generates the following code for rule expr:

public void expr() throws RecognitionException {

Token ID1=null;

try {

«alternative-prediction-code»

switch (alt1) {

case 1 :

// t.g:2:9: INT

match(input,INT,FOLLOW_INT_in_expr10);

break;

case 2 :

// t.g:3:7: ID {...}?

ID1=(Token)input.LT(1);

match(input,ID,FOLLOW_ID_in_expr18);

if (!(isDefined(ID1.getText()))) {

throw new FailedPredicateException(input,

"expr", "isDefined($ID.text)");

}

break;

}

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

}

All semantic predicates result in such predicate validation code regard-

less of how else ANTLR uses the predicates.

Validating semantic predicates do not alter the decision-making pro-

cess—they throw exceptions after the recognizer sees an erroneous

statement. The true power of semantic predicates, however, is their

ability to alter the parse upon runtime information. The next section

examines such disambiguating semantic predicates in detail.

At this point, you have all the details about how ANTLR uses semantic

predicates, but you need to know about some limitations imposed on

predicate expressions.

13.4 Limitations on Semantic Predicate Expressions

Semantic predicates must be free of side effects in that repeated eval-

uations must return the same result and not affect other predicates.

Further, the order in which DFAs evaluate predicates must not matter

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=328

LIMITATIONS ON SEMANTIC PREDICATE EXPRESSIONS 329

within the same decision. Alternatives specified first still have priority

over subsequent alternatives, but the DFA must be able to evaluate

predicates in any order. Here is an example grammar where the predi-

cate is not free of side effects:

a

@init {int i=0;}

: {i++==0}? A // BAD! side effects in predicate

| A

;

ANTLR generates the following code:

if ((LA1_0==A)) {

if ((i++==0)) { // increments i here

alt1=1;

}

// i is now 1

else if ((true)) { alt1=2; }

else «error»;

}

else «error»;

switch (alt1) {

case 1 :

// t.g:5:4: {...}? A

// i is not 0 anymore so exception will be thrown

if (!(i++==0)) { // tests i (and increments) again here

throw new FailedPredicateException(input, "a", "i++==0");

}

match(input,A,FOLLOW_A_in_a18);

break;

«alternative-two»

}

The highlighted lines derive from the predicate. The first time the DFA

evaluates the predicate i is 0, so it predicts alternative one. Upon reach-

ing the code for the first alternative, the recognizer evaluates the predi-

cate again as if it were a simple validating predicate. But i is 1, and the

validating predicate fails.

Another limitation on semantic predicates is that they should not ref-

erence local variables or parameters. In general, predicates should not

reference anything not visible to all rules just in case they are hoisted

out of one rule into another’s prediction DFA. If you are positive that the

predicate will not be hoisted out of the rule, you can use a parameter.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=329

LIMITATIONS ON SEMANTIC PREDICATE EXPRESSIONS 330

For example, here is a rule that alters prediction as a function of its

parameter:

/** Do not allow concrete methods (methods with bodies) unless

* parameter allowConcrete is true.

*/

method[boolean allowConcrete]

: {allowConcrete}?=> methodHead body

| methodHead ';'

;

If ANTLR hoists that predicate out of rule method, however, the tar-

get compiler will complain about undefined references. Technically,

this is a limitation of the target language, not a limitation of seman-

tic predicates or ANTLR. For example, you can usually use attributes

or dynamic scopes to overcome limitations related to using parameters

and semantic predicates.

Semantic predicates are a powerful means of recognizing context-sensi-

tive language structures by allowing runtime information to drive recog-

nition. But, they are also useful as an implementation vehicle for syn-

tactic predicates, the subject of the next chapter. As we’ll see, the fact

that ANTLR hoists semantic predicates into decisions only when LL(*)

fails automatically minimizes how often the recognizer needs to back-

track.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=330

Chapter 14

Syntactic Predicates
A syntactic predicate specifies the syntactic validity of applying an Syntactic predicates

have been available

since ANTLR v1.0 (since

the early 1990s) and are

certainly one of the big

reasons why ANTLR

became popular. Russell

Quong and I invented the

term and mechanism.

alternative just like a semantic predicate specifies the semantic valid-

ity of applying an alternative. Syntactic predicates, as we’ve seen, are

parenthesized grammar fragments followed by the => operator. If a syn-

tactic predicate matches, the associated alternative is valid. Syntactic

predicates are a simple way to dramatically improve the recognition

strength of any LL-based recognizer by providing arbitrary lookahead.

In practice, this means syntactic predicates let you use write grammars

that ANTLR would otherwise reject. For example, Section 12.2, Resolv-

ing Ambiguities and Nondeterminisms, on page 306 illustrated difficult-

to-parse language constructs from Java, C, and C++ that resolve nicely

with syntactic predicates.

Syntactic predicates also let you specify the precedence between two or

more ambiguous alternatives. If two alternatives can match the same

input, ANTLR ordinarily emits a grammar analysis warning. By adding

a syntactic predicate, you force the generated recognizer to try the alter-

natives in order. ANTLR resolves the ambiguity in favor of the first alter-

native whose predicate matches. Such precedence resolves the ambi-

guity, and ANTLR does not emit a warning. For example, Section 12.2,

Resolving the If-Then-Else Ambiguity, on page 313 illustrated how to

hush the warning from ANTLR stemming from the classic if-then-else

ambiguity.

Chapter 12, Using Semantic and Syntactic Predicates, on page 292 de-

lineated a number of examples that illustrated how to use syntactic

predicates and demonstrated their power. This chapter focuses on the

details of their implementation and other information necessary to fully

understand syntactic predicates. In particular, we’ll see the following:

HOW ANTLR IMPLEMENTS SYNTACTIC PREDICATES 332

• ANTLR implements syntactic predicates using semantic predi-

cates.

• Syntactic predicates force the parser to backtrack.

• ANTLRWorks has a number of visualizations that can help you

understand backtracking parsers.

• Parsers do not execute actions during the evaluation of syntactic

predicates to avoid having to undo them during backtracking.

• Auto-backtracking is a great rapid prototyping mode that auto-

matically inserts a syntactic predicate on the left edge of every

alternative.

• Memoization is a form of dynamic programming that squirrels

away partial parsing results and guarantees linear parsing com-

plexity.

• Syntactic predicates can hide true ambiguities in grammars.

• Backtracking does not generally affect the use of embedded gram-

mar actions.

Let’s begin with a discussion of how ANTLR incorporates syntactic pred-

icates into the parsing decision-making process.

14.1 How ANTLR Implements Syntactic Predicates

For each syntactic predicate, ANTLR defines a special method1 that

returns true or false depending on whether the predicate’s grammar

fragment matches the next input symbols. In this way, ANTLR can

implement syntactic predicates as semantic predicates that invoke spe-

cial boolean recognition methods. Consider the following simple non-

LL(*) grammar that requires backtracking because of the two ambigu-

ous alternatives. As with semantic predicates, you do not have to pred-

icate the final nondeterministic alternative.

a : (A)=>A {System.out.println("ok");}

| A {System.out.println("this can never be printed");}

;

ANTLR rephrases the problem in terms of gated semantic predicates by

translating the grammar to the following equivalent grammar:

a : {input.LA(1)==A}?=> A {System.out.println("ok");}

| A {System.out.println("this can never be printed");}

;

1. Unfortunately, because of a limitation in Java, the bookkeeping machinery cannot be

generalized with any kind of efficiency, resulting in code bloat.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=332

HOW ANTLR IMPLEMENTS SYNTACTIC PREDICATES 333

The “this can never be printed” Error

The “this can never be printed” error message (in the first gram-
mar example of Section 14.1, How ANTLR Implements Syntactic
Predicates, on the previous page) came out of some Unix pro-
gram I was using 20 years ago, but I can’t remember which
one. It cracked me up.

My favorite compiler of all time was the Apple MPW C com-
piler. If I remember correctly, it gave error messages such as the
following:

“Don’t you want a ’)’ to go with that ’(’?”

When it got really confused, it would say this:

“That ’;’ came as a complete surprise to me at this point your
program.”

Pure genius.

To be precise, manually specified syntactic predicates become gated

semantic predicates. These syntactic predicates are always evaluated

just like gated semantic predicates.

On the other hand, syntactic predicates implicitly added by auto-back-

tracking mode become regular semantic predicates. Such predicates

are evaluated only when LL(*) fails to predict an alternative.

The prediction DFA for rule a with the gated semantic predicate is as

follows:

s0 s1A

s2=>1
{synpred1}?

s3=>2

{true}?

where synpred1() is the method that ANTLR generates to evaluate the

syntactic predicate. The DFA indicates that, after seeing A, the syntactic

predicate chooses between alternative one (s2) and two (s3).

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=333

HOW ANTLR IMPLEMENTS SYNTACTIC PREDICATES 334

The following straightforward Java code implements the DFA:

int alt1=2;

int LA1_0 = input.LA(1); // get first symbol of lookahead

if ((LA1_0==A)) {

if ((synpred1())) { alt1=1; } // test syntactic predicate

else if ((true)) { alt1=2; } // default to alternative 2

else {

if (backtracking>0) {failed=true; return ;}

«throw-NoViableAltException» // throw only if not backtracking

}

}

else {

// no A found; error

if (backtracking>0) {failed=true; return ;}

«throw-NoViableAltException» // throw only if not backtracking

}

The highlighted sections specify what to do if the prediction code does

not find a match. The code indicates that the recognizer should throw

an exception unless it is backtracking. If backtracking, the recognizer Improved in v3.

sets a failed instance variable and returns, which is much faster than

throwing an exception in all target languages.2 ANTLR incorporates that

prediction decision code into the method that it generates for rule a:

public void a() throws RecognitionException {

«prediction-code»

try {

switch (alt1) {

case 1 :

match(input,A,FOLLOW_A_in_a14); if (failed) return ;

if (backtracking==0) {

System.out.println("ok");

}

break;

case 2 :

match(input,A,FOLLOW_A_in_a22); if (failed) return ;

if (backtracking==0) {

System.out.println("this can never be printed");

}

break;

}

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

}

2. According to the NetBeans C/C++ Development Pack team (http://www.netbeans.org),

removing exceptions from backtracking in ANTLR v2 sped up recognition rates by about

2.5 times.

http://www.netbeans.org
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=334

HOW ANTLR IMPLEMENTS SYNTACTIC PREDICATES 335

The highlighted chunks illustrate how ANTLR generates code for the

actions embedded in a grammar. Actions are not executed if the recog-

nizer is backtracking because there is no general mechanism to undo

actions (for example, how would you undo a print statement?).

If a syntactic predicate matches for an alternative, the recognizer re-

winds the input and matches the alternative again “with feeling.” The

recognizer rewinds and reparses so that it can execute any actions

embedded in the alternative. In this way, you do not really have to

worry about how backtracking affects your actions at the cost of some

time efficiency.

To avoid using exceptions during backtracking, ANTLR generates extra

code to test for recognition failure. For example, you will see code such

as the following after every call to a rule’s method and after every token

match:

if (failed) return;

In terms of the predicate, ANTLR generates a method that matches the

predicate grammar fragment:

public void synpred1_fragment() throws RecognitionException {

match(input,A,FOLLOW_A_in_synpred111); if (failed) return ;

}

It also generates method synpred1(), which the semantic predicate in-

vokes. Method synpred1() increases the backtracking level, tests the pred-

icate, rewinds the input, and decreases the backtracking level. backtrack-

ing is 0 upon entry to synpred1() unless the recognizer is already back-

tracking when it enters rule a.

public boolean synpred1() {

backtracking++;

int start = input.mark();

try {

synpred1_fragment(); // can never throw exception

} catch (RecognitionException re) {

System.err.println("impossible: "+re);

}

boolean success = !failed;

input.rewind(start);

backtracking--;

failed=false;

return success;

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=335

USING ANTLRWORKS TO UNDERSTAND SYNTACTIC PREDICATES 336

By examining the code ANTLR generates, you’ll understand precisely

how ANTLR implements syntactic predicates. In the next section, you’ll

see how ANTLRWorks makes syntactic predicates easier to understand

by visualizing parse trees and prediction DFAs.

14.2 Using ANTLRWorks to Understand Syntactic Predicates

ANTLRWorks provides an excellent means to become familiar with the

backtracking process. For example, in the following grammar, rule

backtrack is non-LL(*). It has three alternatives, each requiring arbi-

trary lookahead to see past the recursive structure in rules e and cast

to the symbols beyond.

Download synpred/b.g

grammar b;

backtrack

: (cast ';')=> cast ';'

| (e ';')=> e ';'

| e '.'

;

cast: '(' ID ')' ;

e : '(' e ')'

| ID

;

ID : 'a'..'z'+ ;

Rule backtrack matches input ((a)); with the second alternative; hence,

ANTLRWorks shows the parse tree3 for both the syntactic predicate and

the actual match for the alternative:

3. The lassos look like a four-year-old drew them on purpose—mainly I like the way they

look, but also their roundness makes it easy for you to distinguish them from the rigid,

automatically drawn diagrams.

http://media.pragprog.com/titles/tpantlr/code/synpred/b.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=336

NESTED BACKTRACKING 337

The first two subtrees of rule backtrack (the lassoed region) represent

the successful parse of ((a)); by the syntactic predicate (e ’;’)=> in the

second alternative. Note that the syntactic predicate in the first alter-

native is avoided altogether because ((at the start of the input cannot

begin a cast. The prediction DFA shown in Figure 14.1, on the following

page, illustrates this. The only input that routes through the DFA to

the syntactic predicate for alternative one (at s8) is (a);.

For input ((a))., however, the syntactic predicate in the second alter-

native fails. The trailing period does not match, and the recognizer

matches the third alternative instead. The successful parse yields a

parse tree with one (failed) predicate evaluation, followed by the actual

parse tree built from matching alternative three of rule backtrack:

The parser does not need to backtrack in order to choose between

alternatives two and three once the first predicate fails (input ((does

not match predicate cast ’;’. State s4 in the prediction DFA shown in

Figure 14.1, on the next page illustrates that if the second syntactic

predicates fails, the DFA can immediately predict alternative three by

traversing s2 to s6.

Using ANTLRWorks to visualize decision DFAs and parse trees helps

even more when your recognizer needs to start backtracking when it is

already backtracking, the subject of the next section.

14.3 Nested Backtracking

While attempting one syntactic predicate, the recognizer might encoun-

ter another decision that requires it to backtrack. In this case, the rec-

ognizer enters a nested backtracking situation. There are no imple-

mentation problems, but nested backtracking can be the source of

some confusion (and is the source of the worst-case exponential time

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=337

NESTED BACKTRACKING 338

s0

s1
’(’

s2

ID

s3

ID

s4’(’

s7
’)’

s8
’;’

s6=>3

’.’

s9=>1{synpred1}?

s5=>2

{synpred2}?

{synpred2}?

{true}?

’;’

’.’

Figure 14.1: The prediction DFA for rule backtrack illustrating when the

recognizer must evaluate syntactic predicates

complexity). The current nesting level is stored in instance variable

backtracking. Consider the following grammar that matches an expres-

sion followed by either ’;’ or ’.’. An expression, in turn, is either a type-

cast, a conventional nested expression, or a simple identifier.

Download synpred/nested.g

grammar nested;

a : (e ';')=> e ';'

| e '.'

;

e : ('(' e ')' e)=> '(' e ')' e // type cast

| '(' e ')' // nested expression

| ID

;

ID : 'a'..'z'+ ;

Input ((x))y; forces the recognizer to backtrack. Let’s examine how ANTL-

RWorks visualizes the backtracking. When the recognizer completes the

predicate in the first alternative of rule a and is about to match the

first alternative for real, ANTLRWorks shows the partial parse tree, as

shown in Figure 14.2, on the following page. The outer lasso shows all

the nodes associated with matching the predicate in rule a, and the

inner lasso shows the nodes associated with matching the predicate

http://media.pragprog.com/titles/tpantlr/code/synpred/nested.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=338

NESTED BACKTRACKING 339

Figure 14.2: Partial parse tree for ((x))y; showing speculation of syntactic

predicates in rules a and e

in the first alternative of rule e. At the outer level, rule a’s predicate

matches rule e followed by ’;’, which is what you see as the two chil-

dren of a’s parse tree node. The predicate in rule e matches ’(’ e ’)’ e,

which is what you see as the first four children of the topmost e node.

That topmost node shows the speculative match for the predicate and

then the real match for the first alternative of rule e.

Because ANTLR-generated recognizers parse each alternative predicted

by successful syntactic predicates twice, the full parse tree for input

((x))y; repeats the nodes in the outer lasso, making the tree twice as

wide, as shown in Figure 14.3, on the next page. Figure 14.3, on the

following page is the right half of the full parse tree, and Figure 14.2, is

the left half.

The recognizer does a lot of extra work during nested backtracks. For

example, the recognizer matches ((x))y against the predicate in the first

alternative of rule e twice. It also matches the inside of the typecast,

(x), multiple times. See Section 14.5, Memoization, on page 343 to learn

how ANTLR can save partial parsing results to avoid repeated parsing

at the cost of some memory.

Now consider input ((x)); that also matches alternative one in rule a.

While evaluating the outermost e invocation, the second alternative of

e matches input ((x)). This means the syntactic predicates in the first

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=339

AUTO-BACKTRACKING 340

Figure 14.3: Partial parse tree for ((x))y; showing reevaluation of syntac-

tic predicate in rule e

alternative of e fails. Figure 14.4, on the next page, shows the partial

parse tree for this input. The inner lasso (in red in the PDF version)

shows the nodes matched until the predicate failed. The outer lasso

shows that, nonetheless, the syntactic predicate in the first alternative

of rule a succeeded.

Specifying lots of predicates to resolve non-LL(*) decisions can be a

hassle and can make your grammar less readable. The next section

describes how you can simply turn on automatic backtracking, which

automatically engages backtracking for non-LL(*) decisions.

14.4 Auto-backtracking

Altering your grammar to suit the needs of the underlying LL(*) parsing

algorithm can be a hassle, but so can adding syntactic predicates all

over the place. Instead, you have the option to leave the grammar as is

and turn on the backtrack option:

grammar Cpp;

options {backtrack=true;}

...

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=340

AUTO-BACKTRACKING 341

Figure 14.4: Partial parse tree for ((x)); showing speculation of syntactic

predicates in rules a and e where the syntactic predicate in the first

alternative of e fails

The idea is that, when LL(*) analysis fails, the recognizers should auto-

matically backtrack at runtime to figure it out. This feature provides a

“newbie,” or rapid prototyping, mode that makes it fast to build a gram-

mar. After you have created a correct and readable grammar, you can

optimize the grammar a little to reduce the amount of backtracking by

tweaking rules to make them LL(*).

ANTLR implements the auto-backtracking mode by adding a syntactic

predicate to the left edge of every alternative. These implicit syntactic

predicates become regular (nongated) semantic predicates. LL(*) analy-

sis uses such semantic predicates only in non-LL(*) decisions; that is,

recognizers evaluate the predicates only when LL(*) fails.

In contrast, manually specified syntactic predicates become gated

semantic predicates; they are always evaluated when predicting the

associated alternative. By converting implicit syntactic predicates to

nongated semantic predicates, you get clarity, power, and efficiency.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=341

AUTO-BACKTRACKING 342

To illustrate this, here is a version of the nested grammar from earlier

rewritten to use auto-backtracking mode; it is much easier to read:

grammar nested;

options {backtrack=true;}

a : e ';'

| e '.'

;

e : '(' e ')' e // type cast

| '(' e ')' // nested expression

| ID

;

ID: 'a'..'z'+ ;

You still need manually specified syntactic predicates in some cases,

however. To illustrate how manually specified predicates differ from

auto-backtracking syntactic predicates, consider the following gram-

mar. It reflects a situation where you want to treat identifiers s and

sx differently depending on whether they followed by an integer. The

syntactic predicates examine more of the input than the associated

alternatives match (consume).

Download synpred/P.g

lexer grammar T;

/** For input s followed by INT, match only s; must exec action1.

* For sx followed by INT, match only sx; exec action2.

*/

ID : ('s' INT)=> 's' {action1;}

| ('sx' INT)=> 'sx' {action2;}

| 'a'..'z' ('a'..'z'|'0'..'9')* {action3;}

;

INT : '0'..'9'+ ;

Input s must trigger action3 unless followed by an integer. In that case,

s must trigger action1 but still consume only the s. The same is true

for input sx. Without the syntactic predicates, ANTLR emits a warning

about the same input predicting multiple alternatives. ANTLR resolves

the ambiguity by forcing s to always predict alternative one. sx would

always predict alternative two. Using auto-backtracking mode won’t

work in this case as a replacement for manually specified syntactic

predicates. Auto-backtracking adds predicates to each alternative, but

they would not have the INT reference in them. Clearly, you would not

get the desired functionality.

http://media.pragprog.com/titles/tpantlr/code/synpred/P.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=342

MEMOIZATION 343

When using auto-backtracking mode, ANTLR grammars behave like

Bryan Ford’s parser expression grammars (PEGs) [For04]. Several inter-

esting PEG-based parser generators are available, including Ford’s orig-

inal implementation [For02] and Robert Grimm’s Rats! [Gri06]. I also

want to mention James Cordy’s TXL [Cor06] that has ordered alterna-

tives but without syntactic predicates and without partial result mem-

oization, the topic of the next section.

Although auto-backtracking is useful, it can be very expensive in time.

The next section describes how recognizers can record partial parsing

results to guarantee linear time at the cost of memory.

14.5 Memoization New in v3.

Backtracking is an exponentially complex algorithm in the worst case.

The recognizer might have to try multiple alternatives in a decision,

which, in turn, might invoke rules that also must try their alternatives,

and so on. This nested backtracking yields a combinatorial explosion

of speculative parsing. For any given input position, a backtracking

parser might attempt the same rule many times, resulting in a lot of

wasted effort. In contrast, a parser without backtracking examines the

same input position at most once for a given rule, resulting in linear

time complexity.

If, on the other hand, the recognizer remembers the result of attempt-

ing rules at the various input positions, it can avoid all the wasted

effort. Saving partial results achieves linear complexity at the cost of

potentially large amounts of memory.

This process of remembering partial recognition results is a form of

dynamic programming called memoization or, more specifically in the

parsing arena, as packrat parsing [For02]. Bryan Ford introduced the

technology and coined the term.4 Because ANTLR uses packrat parsing

only when LL(*) fails, it often generates parsers that are substantially

more efficient in time and space than pure packrat parsers such as

Grimm’s Rats!

The easiest way to demonstrate the benefit of memoization is to exam-

ine the vivid differences in the parse trees for the same input with and

without memoization.

4. See http://pdos.csail.mit.edu/~baford/packrat for more information about packrat parsing.

http://pdos.csail.mit.edu/~baford/packrat
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=343

MEMOIZATION 344

Figure 14.5: parse tree for ((x))y; showing redundant parse subtree elim-

ination for two successful invocations of rule e during evaluation of e’s

syntactic predicate

Let’s revisit the nested syntactic predicate grammar from Section 14.3,

Nested Backtracking, on page 337 but with the addition of the memoize

option:

Download synpred/memoize.g

grammar memoize;

options {memoize=true;}

a : (e ';')=> e ';'

| e '.'

;

e : ('(' e ')' e)=> '(' e ')' e // type cast

| '(' e ')' // nested expression

| ID

;

ID: 'a'..'z'+ ;

Reexamine Figure 14.2, on page 339, and Figure 14.3, on page 340.

Again with input ((x))y;, compare those figures to Figure 14.5. Focus

on the overall shape of the parse trees here rather than the individual

nodes. Notice that the memoized version is missing redundant sub-

trees. The lassos indicate portions of the parse that the parser avoids

because of memoization. The thin lassos and arrows indicate which

partial results the parser reused. The nested syntactic predicate in rule

e succeeds, as does the outer syntactic predicates in the first alterna-

tive of rule a. When that outer predicate succeeds, rule a reenters e

during the actual parse of the first alternative of rule a. Rule e again

enters the (’(’ e ’)’ e)=> syntactic predicate. Thanks to memoization, the

http://media.pragprog.com/titles/tpantlr/code/synpred/memoize.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=344

MEMOIZATION 345

Figure 14.6: Parse tree for ((x)); showing redundant parse subtree elim-

ination for one successful and one failed invocation of rule e during

evaluation of e’s syntactic predicate

parser does not have to enter the two e references for that predicate. It

already knows they will succeed.

Memoization also records failures to avoid reparsing rules that it knows

won’t succeed. Compare Figure 14.4, on page 341, to Figure 14.6,

again with input ((x));. The syntactic predicate in rule a’s first alter-

native invokes rule e. Rule e then evaluates the syntactic predicate in

its first alternative. That syntactic predicate recursively invokes rule

e and records success for (x) (the ’(’ e ’)’ portion of the predicate).

Because no identifier comes after the parentheses and before the ’;’, the

parser records failure for the second invocation of rule e in the ’(’ e ’)’

e predicate. Failing the predicate, rule e matches its second alternative

instead. This allows the outer syntactic predicate in the first alternative

of rule a to succeed. During the subsequent real parse of a’s first alter-

native, the parser invokes e immediately and reencounters e’s syntactic

predicate in its first alternative. Memoization tells the parser that the

first e reference in the syntactic predicate will succeed, but the second

will fail. The parser fails just as it did before while evaluating a’s pred-

icate, but this time, the parser skips the redundant parse thanks to

memoization. The lassos in Figure 14.6, show redundant parse subtree

elimination and the original subtree computation.

To implement memoization, ANTLR inserts code at the beginning of

each rule recognition method to check for prior attempts. Naturally,

the parser can avoid parsing a rule only when backtracking:

if (backtracking>0 && alreadyParsedRule(input,rule-number)) {return;}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=345

MEMOIZATION 346

If the recognizer has already attempted this rule and at the same input

position, the recognizer seeks ahead to where the rule finished parsing

last time. Then the rule returns immediately, effectively skipping all

the previously done parsing work. Moreover, the parser has effectively

handled the rule in constant time. If the rule failed during the previ-

ous attempt, the rule also returns immediately but sets an error flag

indicating failure.

To do the actual memoization, ANTLR inserts code at the end of a rule.

This code records whether the rule completed successfully at this input

position:

if (backtracking>0) {

memoize(input, rule-number, rule-starting-input-position);

}

In other words, the memoize option alters code generation from this:

public void r() throws RecognitionException {

try {

«r-prediction»

«r-matching»

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

}

to the following:

public void r() throws RecognitionException {

int r_StartIndex = input.index();

try {

if (backtracking>0 && alreadyParsedRule(input,r-index)) {

return;

}

«r-prediction»

«r-matching»

}

catch (RecognitionException re) {

reportError(re);

recover(input,re);

}

finally {

if (backtracking>0) { memoize(input,r-index,r_StartIndex); }

}

}

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=346

MEMOIZATION 347

The «r-prediction» and «r-matching» code blocks are the same as is the

usual try/catch surrounding them to handle error recovery. The differ-

ence is that, when backtracking, the rule immediately returns if it has

already parsed the input starting from the current input position. If

there is no memoized result for this rule, the method memoizes suc-

cess or failure after it finishes parsing.

A word about memoization efficiency: thanks to LL(*) prediction DFA,

recognizers often avoid backtracking even in the presence of multiple

syntactic predicates. This has the side effect of requiring much less

storage space than a pure packrat parser because ANTLR-generated

parsers are not always backtracking. This does not mean, however, that

ANTLR optimizes away all unnecessary memoization. In the future, ANTLR will

have a “redundant

reevaluation hotspot

analysis” feature that

you can turn on at

runtime to figure out

which rules are invoked

repeatedly at the same

input position.

Recording the result of each rule invocation during backtracking is

expensive in memory and time, often actually slowing your recognizer

down instead of speeding it up. The general rule is that you should use

memoization on a rule-by-rule basis. Determining which rules to mem-

oize can be difficult just by looking at the grammar. In general, look for

sequences of syntactic predicates within the same decision that invoke

the same rule directly or indirectly, as shown in the following grammar:

/** This rule must backtrack because of the common left prefix

* that is not only arbitrarily long but has nested structure;

* hence non-LL(*).

*/

s

options {backtrack=true;}

: e ';' // invoke e once

| e '.' // invoke e twice at same position

| e '!' // default, invoke e "with feeling"

;

/** This rule should memoize parsing results because it is invoked

* repeatedly by rule s at the same input position.

*/

e

options {memoize=true;}

: '(' e ')'

| ID

;

You want to turn on memoization for the repeatedly invoked rule e,

not the invoking rule. In this grammar, input ((x))! causes the parser

to enter rule e from the implicit syntactic predicate in the first alter-

native of rule s. At the end of that invocation, the recognizer records

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=347

GRAMMAR HAZARDS WITH SYNTACTIC PREDICATES 348

the successful parse of e. The second invocation of e from the second

alternative of s can use that result to avoid reparsing e. The implicit

syntactic predicates for rule s’s first two alternatives fail because the

input ends with ’!’, not ’;’ or ’;’. After the syntactic predicate for alter-

native two of s fails, the parser begins nonspeculative matching of s’s

third alternative. At this point, the recognizer is no longer speculating

because the third alternative is clearly the final choice. Even though

the recognizer knows that rule e will succeed, it must enter rule e to

execute any potential embedded actions (none in this case).

In the previous sections, you saw that ANTLR can automatically back-

track to handle just about any grammar, and you saw how that can be

done in linear time. Unfortunately, automatic backtracking comes at

the cost of some potential pitfalls when you build grammars—automatic

backtracking can hide grammar ambiguities.

14.6 Grammar Hazards with Syntactic Predicates

If you turn on the backtrack option at the grammar level, you will not

get any static grammar analysis warnings because the generated rec-

ognizer can resolve any non-LL(*) decisions at runtime by backtracking.

Although this is a good way to rapidly prototype a language, the lack of

static analysis can hide a number of serious problems with your gram-

mar. Ultimately, your best bet is to selectively turn on backtracking at

the rule level to resolve non-LL(*) decisions (assuming you don’t want

to alter the grammar instead).

This section describes a number of situations where you will not get

what you want despite the lack of warnings from ANTLR. These hazards

are inherent to the backtracking strategy, not a limitation of ANTLR.

The simplest way to explain the problem is with the following example

grammar where the k option artificially constrains grammar analysis to

a single symbol of lookahead:

parser grammar t;

s

options {k=1;} // can't see past ID

: ID

| ID ';'

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=348

GRAMMAR HAZARDS WITH SYNTACTIC PREDICATES 349

ANTLR reports this:

warning(200): t.g:4:5: Decision can match input such as

"ID" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

warning(201): t.g:4:5: The following alternatives are

unreachable: 2

With only a single symbol of lookahead, the recognizer cannot see past

the ID in order to properly predict an alternative. Now, turn on auto-

backtracking to allow ANTLR to resolve the conflict at runtime with

backtracking:

parser grammar t;

options {backtracking=true;}

s

options {k=1;} // force backtracking

: ID

| ID ';' // unreachable

;

ANTLR issues no warnings, but the grammar can’t ever match input x;

even though that is clearly the intention. Syntactic predicates remove

ambiguity by ordering alternatives, but just because a decision is un-

ambiguous doesn’t mean you get what you expect. The second alter-

native of rule s is unreachable because the first alternative will always

win when ID is the next input symbol. The implied predicate on the first

alternative is (ID)=>, which says “match this alternative if the first sym-

bol of lookahead is an ID.” The way to fix this is simply to reorder the

alternatives:

parser grammar t;

options {backtracking=true;}

s

options {k=1;} // force backtracking

: ID ';'

| ID

;

These hazards typically emerge only after extensive unit testing. To

illustrate a less obvious hazard, recall the Java grammar from Sec-

tion 11.5, Nondeterministic Decisions, on page 281 that matched a code

block in rule decl as well as rule stat. Rule slist is ambiguous because

both alternatives can match the same input construct, {...}:

options {backtrack=true;}

...

slist: decl // can match {...} as default ctor

| stat // code block {...} is UNREACHABLE!

;

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=349

GRAMMAR HAZARDS WITH SYNTACTIC PREDICATES 350

Turning on auto-backtracking mode will hush any ANTLR grammar

warnings because ANTLR can then silently choose decl over stat for

input that matches both alternatives. Clearly, though, turning on auto-

backtracking is not the solution. You should refactor the grammar, as

shown in Section 11.5, Nondeterministic Decisions, on page 281. Most

grammars are unambiguous, and therefore, you do not want to hide

improperly resolved LL(*) nondeterminisms by choosing alternatives in

the order presented.

The next kind of grammar hazard involves optional rules and alterna-

tives, which are commonly used in grammars. Sometimes an optional

alternative renders further alternatives in that decision unreachable,

as illustrated in the following grammar that ANTLR processes without

warning:

Download synpred/unreachable.g

grammar unreachable;

slist

: (var)=>var ';' {System.out.println("slist alt 1");}

| ';' {System.out.println("slist alt 2");}

;

var

: 'int' ID {System.out.println("match var");}

| {System.out.println("bypass var");}

;

ID: 'a'..'z'+ ;

WS: (' '|'\n'|'\r')+ {skip();} ;

Because the first alternative invokes an optional rule, var, the recog-

nizer will not know what to do upon lookahead symbol ’;’ because both

alternatives match the simple ’;’. Because of the syntactic predicates,

ANTLR assumes you know what you’re doing and does not warn you

about the nondeterminism. The syntactic predicates assumes that you

mean to order the alternatives in terms of precedence. Without the syn-

tactic predicate, however, ANTLR does warn you:

$ java org.antlr.Tool unreachable.g

ANTLR Parser Generator Version 3.0 1989-2007

warning(200): unreachable.g:4:5: Decision can match input such as

"';'" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

warning(201): unreachable.g:4:5: The following alternatives are unreachable: 2

http://media.pragprog.com/titles/tpantlr/code/synpred/unreachable.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=350

GRAMMAR HAZARDS WITH SYNTACTIC PREDICATES 351

This highlights that you should use syntactic predicates as sparingly

as possible to avoid hiding grammar conflicts.

Take a look at the prediction DFA for the decision in rule slist:

s0
s1=>1’int’

s2

’;’
{synpred1}?

s3=>2

{true}?

The DFA transitions from s0 to s2 upon input ; and then uses the syn-

tactic predicate synpred1() to distinguish between alternatives one and

two (predicted by s1 and s3, respectively). The syntactic predicate will

always return true because even if the first alternative of rule var fails,

the second alternative will always succeed because it does not have to

match anything. Consequently, rule slist’s alternative two is unreach-

able. Input ; will always force the recognizer to match the second alter-

native of var and the first alternative of slist. You can use the following

test harness to verify this behavior:

Download synpred/TestUnreachable.java

import java.io.*;

import org.antlr.runtime.*;

public class TestUnreachable {

public static void main(String[] args) throws Exception {

unreachableLexer lex =

new unreachableLexer(new ANTLRInputStream(System.in));

CommonTokenStream tokens = new CommonTokenStream(lex);

unreachableParser p = new unreachableParser(tokens);

p.slist();

}

}

Sending in a valid variable declaration behaves as you would expect,

but sending in ; does not execute the action in the second alternative of

slist. Most likely, given that the grammar designer specifically provided

an alternative matching purely a semicolon, this behavior would be

unwelcome.

The worst-case scenario for the optional rule hazard results in an infi-

nite loop. Imagine that an EBNF looping construct must backtrack

to distinguish between an optional alternative and the implicit exit

branch.

http://media.pragprog.com/titles/tpantlr/code/synpred/TestUnreachable.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=351

GRAMMAR HAZARDS WITH SYNTACTIC PREDICATES 352

This loop will never terminate because you will always choose the optio-

nal alternative rather than the exit. The optional alternative matches

any symbol; hence, the syntactic predicate’s speculative parse will

always succeed. Since syntactic predicates tell the recognizer to choose

the first alternative that matches, the “stay in the loop” alternative

always wins. The following grammar matches an optional list of vari-

able definitions and illustrates exactly such an infinite loop situation:

Download synpred/infloop.g

grammar infloop;

slist

: ((var)=> var {System.out.println("in loop");})+

;

var

: 'int' ID ';' {System.out.println("match var");}

| {System.out.println("bypass var");}

;

ID: 'a'..'z'+ ;

WS: (' '|'\n'|'\r')+ {skip();} ;

It is worth looking at the prediction DFA:

s0

s1EOF

s2=>1
’int’

{synpred1}?

Clearly, the DFA can predict only alternative one, but the syntactic

predicate hushes the warning about alternative two being unreachable.

Here are the warnings ANTLR emits if the subrule were var+ (without

the syntactic predicates):

$ java org.antlr.Tool infloop.g

ANTLR Parser Generator Version 3.0 1989-2007

warning(200): infloop.g:4:44: Decision can match input such as

"{EOF, 'int'}" using multiple alternatives: 1, 2

As a result, alternative(s) 2 were disabled for that input

warning(201): infloop.g:4:44: The following alternatives are

unreachable: 2

$

http://media.pragprog.com/titles/tpantlr/code/synpred/infloop.g
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=352

ISSUES WITH ACTIONS AND SYNTACTIC PREDICATES 353

Backtracking and Action Execution in the Maze

While backtracking in the maze, you do not want to record
anything in your notebook as you speculatively explore the var-
ious paths emanating from a fork. It is difficult to remember
what you need to erase after each speculative walk. Worse,
some actions are impossible to undo such as print statements
or annoying your spouse from your cell phone as you walk the
maze. It is easier to ignore actions until you are sure which alter-
native path you will take. Then, you can write in your notebook
(execute actions) as you move down the correct path for the
second time.

Using the following test harness, you can verify that this program will

not terminate either on a valid variable definition or on an empty input

stream.

Download synpred/TestInfLoop.java

import java.io.*;

import org.antlr.runtime.*;

public class TestInfLoop {

public static void main(String[] args) throws Exception {

infloopLexer lex =

new infloopLexer(new ANTLRInputStream(System.in));

CommonTokenStream tokens = new CommonTokenStream(lex);

infloopParser p = new infloopParser(tokens);

p.slist();

}

}

Fortunately, these grammar hazards are not huge problems as long

as you are aware of them. As a general rule, use auto-backtracking

mode to resolve non-LL(*) conflicts and use manually specified syntactic

predicates to explicitly resolve grammar ambiguities. The next section

discusses one final potential difficulty when using syntactic predicates.

14.7 Issues with Actions and Syntactic Predicates

ANTLR allows you to embed arbitrary actions (written in the target lan-

guage) in your grammar, which is a really nice feature unavailable in

a lot of recent parser generators. The reason other tools do not sup-

port arbitrary actions is because actions often conflict with the parsing

http://media.pragprog.com/titles/tpantlr/code/synpred/TestInfLoop.java
http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=353

ISSUES WITH ACTIONS AND SYNTACTIC PREDICATES 354

strategy. As you saw earlier, ANTLR recognizers always match success-

ful alternatives twice—once during backtracking and once “with feeling”

to execute any actions.

To avoid executing actions while backtracking, ANTLR generates an if

statement around all embedded actions that turns the action off unless

the backtracking level is 0:

if (backtracking==0) { «action» }

This implies that you should not define local variables in actions other

than the init action because the scope of a variable is limited to the if

statement. ANTLR does not gate init actions in and out because they

typically include variable declarations. If you need to, you can define

your own special action gate expression with a global action:

@synpredgate { «my-expr-to-turn-on-actions» }

There is another important limitation that ANTLR must impose upon

your grammar actions and rules because of backtracking. Consider the

following grammar with non-LL(*) rule a that needs backtracking:

grammar t;

a

@init {int y=34;}

: (b[y] '.')=> b[y] '.'

| b[y] ':'

;

b[int i]

: '(' b[i] ')' {System.out.println(i);}

| 'z'

;

For syntactic predicate (b[y] ’.’)=> in the first alternative, ANTLR gener-

ates this:

public void synpred1_fragment() throws RecognitionException {

// t.g:5:5: b[y] '.'

b(y); // TROUBLE! local variable y undefined!

if (failed) return ;

// match '.'

match(input,4,FOLLOW_4_in_synpred144); if (failed) return ;

}

Unfortunately, this code will not compile because argument y passed

to rule b does not exist in synpred1_fragment()’s scope. That argument is

essentially an action, albeit a single expression, and ANTLR has taken

it out of its original context. ANTLR cannot simply leave it out because

the method for rule b requires a parameter. Without a parameter on b(),

synpred1_fragment() would still not compile.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=354

ISSUES WITH ACTIONS AND SYNTACTIC PREDICATES 355

Fortunately, this problem is not a limitation of the fundamental parsing

strategy, and there is a way out using dynamic scoping (Section 6.5,

Dynamic Attribute Scopes for Interrule Communication, on page 148).

We need a solution that does not require the use of method parameters

so that syntactic predicates, taken out of context, will compile. But, at

the same time, we must still be able to pass information from one rule

to another. ANTLR’s dynamic scopes are a perfect solution. Here is the

equivalent grammar using a dynamic scope in rule a:

grammar t;

a

scope {

int i;

}

@init {$a::i=34;}

: (b '.')=> b '.'

| b ':'

;

b : '(' b ')' {System.out.println($a::i);}

| 'z'

;

This version is not as explicit and is less conventional, but it does yield

a functionally equivalent recognizer that compiles.

Rule return values do not have the same problem because ANTLR can

simply avoid generating code that stores a return value. In the regular

code, ANTLR generates x=b();. For syntactic predicate fragments, how-

ever, ANTLR generates just b();.

In a nutshell, if you use backtracking and parameter passing a lot, you

might run into a situation where method arguments result in noncom-

pilable code. In such a situation, recode the arguments as dynamically

scoped variables.

Syntactic predicates, introduced more than 15 years ago, have become

a well-entrenched bit of parsing technology. Thanks to Bryan Ford,

we now have a formal language treatment in the form of PEGs and,

most important, the packrat parsing strategy that guarantees linear

parse time at the cost of nonlinear memory. ANTLR’s implementation

of packrat parsing is particularly efficient because it avoids backtrack-

ing whenever classical LL(k) lookahead or the new LL(*) lookahead is

capable of distinguishing between alternatives. Moreover, static LL(*)

grammar analysis provides useful ambiguity warnings that help avoid

grammar hazards; this analysis is not available to pure PEG parser

generators.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=355

ISSUES WITH ACTIONS AND SYNTACTIC PREDICATES 356

This chapter concludes a long (four-chapter) sequence representing a

complete course of study in predicated-LL(*) parsing. If you have read

and grokked most of this, you are well on your way to becoming a

practical parsing and grammar expert. The discussion is short on the-

ory but long on annotated examples because those are more valuable

to programmers trying to get their jobs done. At the same time, each

chapter contains sufficient details for someone to reimplement the tech-

nology in another parser generator. In the interest of friendly competi-

tion, I hope that the authors of other parser generators will incorporate

hoisted semantic predicates and something akin to LL(*) static grammar

analysis.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=356

Appendix A

Bibliography

[Cor06] James R. Cordy. The txl source transformation language.

Sci. Comput. Program., 61(3):190–210, 2006.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The annotated C++

reference manual. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1990.

[FHP92] Christopher W. Fraser, Robert R. Henry, and Todd A. Proeb-

sting. Burg: fast optimal instruction selection and tree pars-

ing. SIGPLAN Not., 27(4):68–76, 1992.

[For02] Bryan Ford. Packrat parsing:: simple, powerful, lazy, linear

time, functional pearl. In ICFP ’02: Proceedings of the sev-

enth ACM SIGPLAN international conference on Functional

programming, pages 36–47, New York, NY, USA, 2002. ACM

Press.

[For04] Bryan Ford. Parsing expression grammars: a recognition-

based syntactic foundation. In POPL ’04: Proceedings of the

31st ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 111–122, New York, NY, USA,

2004. ACM Press.

[Gri06] Robert Grimm. Better extensibility through modular syntax.

In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN confer-

ence on Programming language design and implementation,

pages 38–51, New York, NY, USA, 2006. ACM Press.

APPENDIX A. BIBLIOGRAPHY 358

[Gro90] Josef Grosch. Efficient and comfortable error recovery

in recursive descent parsers. Structured Programming,

11(3):129–140, 1990.

[Joh79] Steven C. Johnson. Yacc: Yet another compiler compiler. In

UNIX Programmer’s Manual, volume 2, pages 353–387. Holt,

Rinehart, and Winston, New York, NY, USA, 1979.

[Les75] M.E. Lesk. Lex - a lexical analyzer generator. Techni-

cal Report Computing Science Technical Report No.39, Bell

Telephone Laboratories, 1975.

[Pin94] S. Pinker. The Language Instinct: How the Mind Creates Lan-

guage. HarperCollins, New York, 1994.

[Tom87] Masaru Tomita. An efficient augmented-context-free pars-

ing algorithm. Comput. Linguist., 13(1-2):31–46, 1987.

[Top82] Rodney W. Topor. A note on error recovery in recursive

descent parsers. SIGPLAN Not., 17(2):37–40, 1982.

[TTG94] J. C. Trueswell, M. K. Tanenhaus, and S. M. Garnsey.

Semantic influences on parsing: Use of thematic role infor-

mation in syntactic ambiguity resolution. Journal of Memory

and Language, 33(3):285–318, June 1994.

[Wir78] Niklaus Wirth. Algorithms + Data Structures = Programs.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1978.

http://books.pragprog.com/titles/tpantlr/errata/add?pdf_page=358

Index
Symbols
! (token reference suffix), 76, 77

! operator, 194, 202

$attr, 160

$enclosingRule.attr, 160

$f::x, 150

$globalScopeName, 160

$lexerRuleRef , 160

$listLabel, 159

$ruleRef , 160

$ruleRef.attr, 160

$tokenRef , 159

$tokenRef.attr, 159

$x[-1]::y, 160

$x[-i]::y, 161

$x[0]::y, 161

$x[i]::y, 161

$x::y, 160

(...)+ subrule, 295, 302

* operators, 70

*/, 100

+ (token reference suffix), 77

+= operator, 132, 148

- (token reference suffix), 77

-> operator, 77, 103, 178, 202, 211

: (ANTLR rules), 61

: operator, 214

:= operator, 215

=> symbol, 57

$ symbol, 30

&& operator, 322

| (ANTLR rules), 61

| operator, 214

|| operator, 322, 323

backtrack, 338f

ˆ (token reference suffix), 76

ˆ operators, 198

{«action»}, 96

{«p»}, 96

A
Abstract syntax tree (AST), 24

building with a grammar, 76–79

construction of, 163–168

design concepts, 163

encoding abstract instructions,

165–168

encoding arithmetic expressions,

164–165

construction rules, 77

defaults, 171–174

designing, 200

evaluating expressions encoded in,

79–84

and expression evaluation, 75f,

74–84

implementation of, 168–170

operators, using, 176f, 174–177

vs. parse trees, 75, 162

relationships of, 26f

rewrite rules and, 177–190

adding imaginary nodes, 179

automatic construction, 189

collecting input elements, 179

duplicating nodes and trees, 180

element cardinality, 184

imaginary nodes, deriving, 188

input elements as roots, 179

labels in, 182

nodes with arbitrary actions, 183

omitting input elements, 178

referencing previous rule ASTs,

187

reordering input elements, 178

runtime and, 181

subrules, 186

tree grammar for, 122

Action scopes and global actions, 137

Actions, 93, 116

ACYCLIC DFA 360 CONTEXT

defined, 131

embedding in rules, 101, 137–138

and error messages, 249

global, 136

grammar, 134–138

placement of, 134–136

references to attributes in, 159–161

references to template expressions,

239f, 238–240

rule attributes and, 141–148

predefined, 143f, 141–144, 144f

tree grammar, 144, 145f

and rule parameters, 144–146

and rule return values, 147–148

and syntactic predicates, 354–355

and template construction rules,

211–212

Acyclic DFA, 268n

after, 101, 138

Algorithms + Data Structures =

Programs (Wirth), 256

Alternatives, 88

for elements, 95–96

rewrite rules for, 103–104

for rule stat, 106

Ambiguity, 43–44, 281–291, 313

see also Syntactic ambiguity

The Annotated C++ Reference Manual

(Ellis and Stroustrup), 314

ANTLR

and ANTLRWorks, 31–33

code generated by, 64–66

components of, 22–26

executing, 28–30

installation of, 27–28

maze analogy for, 26–27

vs. Perl and awk, 230

recognizers and, 48

and rewriting, 230

uses for, 21

website for, 30

ANTLRWorks

and ANTLR grammars, 63f, 62–64

debugger view, 32f

grammar development environment,

31f

introduced, 31–33

and syntactic predicates, 336–337,

338f

user guide for, 33n

Arithmetic expression evaluator, see

Expression evaluator

Arithmetic expression grammars,

275–277

AST, see Abstract syntax tree (AST)

ASTLabelType option, 119, 128

atom, 65, 69

Attributes, 130–161

overview of, 130

references to, 159–161

rule, 141–148

parameters, 144–146

predefined, 141, 143f

predefined lexer, 142–144, 144f

return values, 147–148

tree grammar, 144, 145f

and rule attributes, 132

scopes of, 102–103

synthesized, 264n

template expressions as, 213

token, 140f, 139–140

Auto-backtracking, 309, 313, 340–343

Auto-indentation, 212

Automatic AST construction, 189

B
backtrack, 118, 121–122, 336, 337, 348

Backtracking, 55, 56, 107, 113, 122,

279, 308, 332

and action execution, 353–355

auto-, 340–343

nested, 339f, 340f, 338–340, 341f

at rule level, 348

see also Auto-backtracking

Backus-Naur Form (BNF), 89

“Better Extensibility through Modular

Syntax” (Grimm), 343

block, 150–153

BNF, see Backus-Naur Form (BNF)

Bovet, Jean, 31

Burns, Tom, 210

C
Cardinality of elements, 184

Cascading error messages, 244

CLASSPATH, 28

Comments, 92

Compilers

error messages from, 333

and tree structure, 164

Context, 55–58

CONTEXT -FREE GRAMMARS (CFGS) 361 FILE STRUCTURE FOR GRAMMARS

Context-free grammars (CFGs), 57, 89

Cordy, James, 343

Craymer, Loring, 178n

Cyclic DFA, 268n

D
Debugging and enriching error

messages, 245–247

decl, 106, 148

Declarations, 196

DEDENT, 110

Derivation trees, 39

Deterministic finite automation, see

State machines (DFAs)

Deutsch, L. Peter, 42

DFAs, see State machines

Disambiguating semantic predicates,

318–325

alternatives ANTLR covers, 319–321

C type names vs. variables, 300–304

C++ typecast vs. method call,

304–305

combining multiple, 322–323

deterministic and nondeterministic

alternatives, 323–324

evaluating in proper syntactic

context, 324–325

introduced, 296

keywords as variables, 296–297,

298f

nondeterministic lookahead

sequences, 321–322

Ruby array vs. method call, 299f,

297–300

Domain-specific languages (DSLs),

importance of, 21

DOWN nodes, 79

Dynamic attribute scopes, 148–159

global scopes, 155–159

rule scopes, 150–155

Dynamic scoping, 133, 148, 149, 237,

355

E
EBNF, see Extended Backus-Naur

Form (EBNF)

Efficient and Comfortable Error

Recovery in Recursive Descent

Parsers (Grosch), 256

Element cardinality, 184

Element sets, 95

Elements

with alternatives, 95–96

labels, 95–97

rules, 96f

Ellis, Margaret A., 314, 315

Emitters, 206

embedded actions vs. template

construction rules, 211–212

print statements vs. templates,

207–209

and templates, 24

Error messages, 67, 73, 204, 243, 333

Error reporting, 241–260

automatic recovery strategy,

256–260

enriching in debugging, 245–247

exception handlers, manually

specifying, 253–254

exiting recognizer, 251–253

in lexers and tree parsers, 254–256

no viable alternative exception, 244

overriding, 246, 247

overview of, 241–242

recognition exceptions, 248f,

247–251

single vs. cascading error message,

244

of syntax errors, 242–245

Examples, see Expression evaluator

Exception handling, 104–105, 253–254

expr, 61, 62, 70, 71, 78, 81

Expression evaluator, 59–84

action execution with syntax, 68–73

and AST intermediate form, 75f,

74–84

language definitions for, 59–60

language syntax, recognizing, 63f,

61–67

Expression rules

in grammar tree, 203

in Java bytecode generator example,

224, 226

Extended Backus-Naur Form (EBNF),

89

looping concept, 278

operators, 184

subrules, 99f, 98–101

see also Grammars

F
File structure for grammars, 89–93

FILTER OPTION 362 INPUT ELEMENTS

filter option, 119, 126–127

finally, 105

Finite state automation, 37

Ford, Bryan, 55n, 343, 343n

Formal grammars, 87–89

fragment, 107–108

Fuzzy parsing, 126

G
Gated semantic predicates, 295,

325–327, 333

Generalized LR parsing, 263n

Generators vs. rewriters, 217–219

Global actions, 136

Global attribute scopes for grammars,

115

Global scopes, 155–159

grammar, 61

Grammars, 86–116

action placement, 134–136

actions, 116

adding actions to, 68–73

ambiguities, 286–291

arithmetic expression, 275–277

building

ASTs with, 76–79

language syntax recognition, 63f,

61–67

building for C- language, 195–199

context-free, 57

converting to Java, 64

describing AST structure with, 79–84

developing with ANTLRWorks, 31f,

32f, 31–33

file structure of, 89–93

formal, 87–89

global attribute scopes for, 115

and intermediate data structure,

75f, 74–84

and language generation, 36–48

left-recursive, 274–275

naming, 61

overview of, 86–87

and phrase context, 55–58

and predicate limitations, 329

and recognizers, 263–264

rule elements for, 96f

rules, 94–113

structuring text with, 206–239

embedded actions vs. template

construction, 211–212

Java bytecode generator example,

219–228

rewriters vs. generators, 217–219

rewriting token buffer in-place,

228–233

rewriting token buffer with tree

grammars, 234–238

StringTemplate, 213–214

StringTemplate interface, 214–217

templates vs. print statements,

207–209

syntactic predicates, hazards,

348–353

testing, 72

tokens specifications, 114

translating, 28–30, 91

tree, 191–205

building for C- language, 200–205

expression rules in, 203

moving to, from parser, 192–195

types of, 90

see also Rewrite rules

greedy option, 100, 284

Grimm, Robert, 343

Grosch, Josef, 256, 257

H
header, 136

I
Identifiers, 92

If-then-else ambiguity, 313–314

Imaginary nodes

adding, 179

deriving from tokens, 188

UP and DOWN, 192

VARDEF, 165

Imaginary tokens, 109, 114, 201

INDENT, 110

init action, 101, 138

Input

invalid, 67, 73

reading vs. recognition of, 48–51

testing recognizer with, 66–67

Input elements

arbitrary actions, creating nodes

with, 183

choosing at runtime, 181

collecting and emitting together, 179

imaginary nodes, 179

labels, referring to, 182

INSTALLATION 363 METHOD

node and tree duplication, 180

omitting, 178

reordering, 178

as roots, 179

Installation, 27–28

Instruction generators, 208

INT nodes, 176

IntelliJ plug-in, 32

Intermediate representations, 74

J
Jasmin, 219

Java 1.5 for-loop specification, 309–311

Java bytecode generator example,

219–228

for calculator language, 223–228

translator instructions for, 220

K
k, see Lookahead

k option, 119, 129

Kronecker, Leopold, 44

L
Language, 34–58

and ambiguity, 43–44

defined, 87

describing with formal grammars,

87–89

generation of, 36–48

and nesting, 42

overview of, 34–35, 58

recognition of, 48–58

categorizing, 51–55

context and, 55–58

vs. reading, 49–51

requirements for complex, 38

syntax, recognizing, 63f, 61–67

and vocabulary symbols, 46f, 47f,

44–48

see also Expression evaluator

The Language Instinct (Pinker), 34

language option, 117, 119–120

Left-factoring, 265

Left-recursive grammars, 274–275

Lexer rules

attributes, 139, 140f

in tree grammar, 203

Lexers

errors in, 254–256

role of, 25

separating from parser, 46–47

and whitespace characters, 46, 47f

see also Tokens

Lexical analysis, 22

Lexical analyzer, 24

Lexical rules, 62, 81, 107, 198

Lexical scoping, 148

Lexicon, 91–93

’literal’, 96

Literals, 92

LL recognizer, 51–55

LL(*) parsing, 262–291

ambiguity and nondeterminism,

273–291

arithmetic expression grammars,

275–277

incompatible decisions, 273–274

left-recursive grammars, 274–275

lexer grammar ambiguities, 289f,

288–289

non-LL(*) decisions, 279f, 280f,

277–281

nondeterministic decisions, 283f,

284f, 281–288

and automatic arbitrary regular

lookahead, 272f, 268–273

grammars and recognizers, 263–264

and lookahead mechanism, 266–268

need for, 264–266

overview of, 262–263

vs. strongLL, 287

see also Syntactic predicates

Lookahead

automatic arbitrary, 272f, 268–273

depth of, 129

introduced, 52–53

LL(*) from LL(k), 266–268

nondeterminisms, tracking down,

282

nondeterministic lookahead

sequences, 321–322

and syntactic predicates, 306

Lucas, Paul, 321n

M
members, 136

Memoization, 55, 113, 344f, 345f,

343–348

memoize option, 118, 122

method, 103

METHOD CALL GRAPH 364 PREDICATES

Method call graph, 41f

methodDefinition, 146

Mismatched token error, 243

Mitchell, John D., 97n, 178n

multExpr, 64, 70

N
n-1 alternatives, 319

Named global actions, 136

Naming

grammar files, 61

identifiers, 92

lexical rules, 62

recognizers, 90

StringTemplate templates, 216

Naroff, Steve, 245

Nested backtracking, 339f, 340f,

338–340, 341f

Nesting, 42, 155

NetBeans, 334n

NEWLINE token, 61

nil node, 79

No viable alternative exception, 244

Nodes

arbitrary actions, 183

and AST construction, 165–168

Nondeterminism, 100, 283f, 284f,

281–288

see also Semantic predicates

A note on error recovery in

recursive-descent parsers (Topor),

256

Nygaard, Kristen, 257

O
option, 171

Options, 113f, 113, 117–129

ASTLabelType, 128

TokenLabelType, 128

backtrack, 121–122

filter, 126–127

k, 129

language, 119–120

memoize, 122

output, 120–121

rewrite, 124–125

superClass, 125–126

tokenVocab, 122–124

overview, 117–119

summary of, 117–119

output option, 118, 120–121

P
Packrat parsing, 343

“Packrat Parsing: Simple, Powerful,

Lazy, Linear Time” (Ford), 343

Parse forest, 304

Parse tree vs. abstract syntax tree, 75

Parse trees, 39, 339–341f, 344, 345f

Parser exception handling, 245

Parser grammars

building for C- language, 195–199

moving to tree grammars from,

192–195

Parser rule attributes, 143f

Parsers

building ASTs with, 76–79

vs. lexer, 46–47

speed, 129

for trees, 79–84

see also LL(*) parsing

“Parsing Expression Grammars: A

Recognition-Based Syntactic

Foundation” (Ford), 343

Phrase context, 55–58

Pinker, Steve, 34

Precedence, 55–58

Predicates, 292–316

overview of, 292–293

semantic, 317–330

disambiguating semantic

predicates, 318–325

limitations on expressions,

329–330

overview of, 317–318

turning rules on and off

dynamically, 325–327

variations of, 317

verifying semantic conditions,

327–328

syntactic, 331–355

action issues with, 354–355

auto-backtracking, 340–343

grammar hazards with, 348–353

implementation, 332–336

memoization, 344f, 345f, 343–348

nested backtracking, 339f, 340f,

338–340, 341f

overview of, 331–332

understanding with ANTLRWorks,

336–337, 338f

syntactic ambiguities and semantic

predicates, 293–305

PRINT STATEMENT VS. TEMPLATES 365 RULES

C type names vs. variables,

300–304

C++ typecast vs. method call,

304–305

keywords as variables, 296–297,

298f

Ruby array reference vs. method

call, 299f, 297–300

variation, 294–296

syntactic predicates, 306–316

C function definition vs.

declaration, 312–313

C++ declarations vs. expressions,

314–315

for-loop in Java, 309–311

if-then-else ambiguity, 313–314

solving non-LL(*) constructs with,

307–309

Print statement vs. templates, 207–209

prog, 61, 77, 81, 82

Pushdown machines, 41f, 42f, 43f,

40–43

Python, 109–111

Q
Quong, Russell, 317n, 331

R
r[«args»], 96

Reading vs. recognizing input, 49–51

Recognition, 48–58

of language syntax, 63f, 61–67

vs. reading input, 49–51

Recognizers

altering error messages, 248f,

247–251

automatic error recovery strategy,

256

categories of, 51–55

error messages, 245

exiting upon first error, 251–253

and grammars, 263–264

invoking, 28–30

nested backtracking, 339f, 340f,

338–340, 341f

output option, 120

testing, 66–67

and tokens, 76

Recovery strategy

automatic system, 256–260

enriching error messages during

debugging, 245–247

overview of, 241–242

scanning for following symbols, 258

single symbol deletion, 257

single symbol insertion, 258

single token insertion, 244

of syntax errors, 242–245

Recursive tree structure, 43f

Recursive-descent recognizers, 51–55

References to attributes within actions,

159–161

Return values, 101–102

rewrite option, 118, 124–125

Rewrite mode, 229

Rewrite rules, 103–104

Rewrite rules for building ASTs,

177–190

adding imaginary nodes, 179

automatic construction, 189

collecting input elements, 179

duplicating nodes and trees, 180

element cardinality, 184

imaginary nodes, deriving, 188

input elements as roots, 179

labels in, 182

nodes with arbitrary actions, 183

omitting input elements, 178

referencing previous rule ASTs, 187

reordering input elements, 178

runtime and, 181

subrules, 186

Rule recursion, 277

Rule references, 132

Rule scope, 133

rulecatch, 136, 253

Rules

alternatives, 88–89

atom pseudocode, 65

attributes, 141–148

predefined, 141, 143f

predefined lexer, 142–144, 144f

tree grammar, 144, 145f

backtrack, 338f

elements, 96f

embedding actions in, 137–138

and expression evaluation, 69

grammar, 61, 94–113

actions embedded with, 101

arguments and return values,

101–102

SCANNER 366 STATE MACHINES (DFAS)

attribute scopes, 102–103

element labels, 95–97

element sets, 95

elements with alternatives, 95–96

exception handling, 104–105

extended BNF subrules, 99f,

98–101

fragment, 107–108

lexical, 107

multiple tokens, 109–111

options, 113f, 113

overview, 94

rewrite rules, 103–104

syntactic predicates, 105–107

tree matching rules, 113

tree operators, 98f, 98

whitespace, 109

lexical, 62, 81, 107

as method calls, 65

multExpr pseudocode, 64

parameters, 144–146

return specifications for, 71

return values for, 147–148

scopes, 150–155

start, 88, 91

for whitespace, 62

S
Scanner, see Lexical analyzer

Scopes

global, 155–159

for inter-rule communication, 303

for interrule communication,

148–159

overview of, 133

rule, 150–155, 303

Semantic predicates, 57, 317–330

disambiguating, resolving non-LL(*)

conflicts with, 318–325

alternatives ANTLR covers,

319–321

combining multiple predicates,

322–323

deterministic and

nondeterministic alternatives,

323–324

evaluating in proper syntactic

context, 324–325

hoisting, 319

nondeterministic lookahead

sequences, 321–322

limitations on expressions of,

329–330

overview of, 317–318

resolving syntactic ambiguities,

293–305

C type names vs. variables,

300–304

C++ typecast vs. method call,

304–305

keywords as variables, 296–297,

298f

Ruby array reference vs. method

call, 299f, 297–300

variations, 294–296

turning rules on and off

dynamically, 325–327

validating, 327–328

variations of, 317

Sentences

backtracking, 56

vs. characters, 45

defined, 87

generation of, 36–37

and pushdown machines, 41f, 42f,

43f, 40–43

semantics and syntax, 38

tree structure of, 40f, 39–40

Single token insertion, 244

Srinivasan, Sriram, 263n

Srinivasan, Sumana, 245

Stacks as memory structure, 41

Start rule, 88

Start symbol, 91

stat, 61, 77, 78, 81, 106, 202

State machines (DFAs)

and automatic arbitrary regular

lookahead, 270–273

and backtracking, 311

vs. backtracking, 308

and finite automation, 37

and gated semantic predicates, 326

and invalid sentences, 38

and lookahead, 268

predicting alternatives in rule

matching, 279, 280f

and pushdown machines, 41f, 42f,

43f, 40–43

and semantic predicates, 334

and sentence generation, 36–37

variable vs. method definitions, 272f

see also Predicates

STRINGTEMPLATE 367 TOKENS

StringTemplate

advantages of, 212

description of, 25

documentation for, 213n

files and naming, 216

interface, 214–217

origins of, 210

overview of, 213–214

rewriters vs. generators, 217–219

website for, 25n, 213n

StrongLL, 287

Stroustrup, Bjarne, 314, 315

Structure and meaning, 35

Subrules, rewrite in, 186

superClass option, 125–126

superClass option, 118

Symbol tables, 56

synpredgate, 136

Syntactic predicates, 331–355

action issues with, 354–355

auto-backtracking, 340–343

defined, 58

grammar hazards with, 348–353

and grammars, 105–107

implementation of, 332–336

memoization, 344f, 345f, 343–348

named global action for, 136

nested backtracking, 339f, 340f,

338–340, 341f

overview of, 331–332

resolving ambiguities and

nondeterminisms, 306–316

C function definition vs.

declaration, 312–313

C++ declarations vs. expressions,

314–315

for-loop in Java, 309–311

if-then-else, 313–314

non-LL(*) constructs, 307–309

understanding with ANTLRWorks,

336–337, 338f

usefulness of, 306

Syntax

and action execution, 68–73

of actions, 130–161

for ambiguity, 43–44

building a grammar for, 63f, 61–67

for grammar types, 89–93

vs. semantics, 301

Syntax diagram

ANTLR nonpath for ambiguous INPUT

ID, 300f

ANTLR path for ambiguous INPUT ID,

299f

assignment statement sentence

structure, 41f

described, 41

recursive expression generation, 42f

for slist and stat, 284f

Synthesized attributes, 264n

T
Tail recursion, 274, 276

T[«args»], 96

Templates, 206–239

embedded actions vs. template

construction rules, 211–212

and emitters, 24

Java bytecode generator example,

219–228

literals, 93

vs. print statements, 207–209

referencing within actions, 239f,

238–240

returning a list of, 224

rewriters vs. generators, 217–219

rewriting token buffer in-place,

228–233

rewriting token buffer with tree

grammars, 234–238

shorthand notation in grammar

actions, 239f

StringTemplate interface, 214–217

StringTemplate, using, 213–214

Test rig, modifying, 82–83

Testing

grammars, 72

the recognizer, 66–67

The “this can never be printed” error,

333

Token buffer, rewriting

in-place, 228–233

with tree grammars, 234–238

TokenLabelType option, 119, 128

TokenRewriteStream, 229

Tokens

and AST operators, 76, 77

attributes, 140f, 139–140

and character buffer, 46f

character errors in, 255

classes (grouping), 46

TOKENVOCAB OPTION 368 VARDEF

combining into sets, 95

components of, 45n

and exception actions, 254

grammar, 114

hidden, 47f

and hidden channels, 25

ID, 70

imaginary nodes from, 188

and lexer rules, 142

multiple per lexer rule, 109–111

NEWLINE, 61

relationships of, 26f

stream and tree node stream, 227

and tree construction, 174

types, 66

as vocabulary symbols, 44–48

whitespace, 109

tokenVocab option, 80, 118, 122–124

Top-down parsers, 275, 276

Top-down recognizers, see LL

recognizers

Topor, Rodney, 256

Translation

data flow in, 24f

of grammar, 91

phases of, 22

Translators

advantages of using, 23

components of, 22–26

data flow in, 24f

defined, 87

emitters, 206

and language description, 87–88

multi-pass approach, 234–238

rewriters vs. generators, 217–219

rewriting source code, 228–233

Tree construction, 162–190

AST construction, 163–168

design concepts, 163

encoding abstract instructions,

165–168

encoding arithmetic expressions,

164–165

AST defaults, 171–174

AST implementation, 168–170

AST operators, 176f, 174–177

overview of, 162–163

rewrite rules and, 177–190

adding imaginary nodes, 179

automatic construction, 189

collecting input elements, 179

duplicating nodes and trees, 180

element cardinality, 184

imaginary nodes, deriving, 188

input elements as roots, 179

labels in, 182

nodes with arbitrary actions, 183

omitting input elements, 178

referencing rule ASTs, 187

reordering input elements, 178

runtime and, 181

subrules, 186

Tree grammars, 79–84, 112, 191–205

ambiguities in, 291

for C- language, 200–205

expression rules in, 203

Java bytecode generator example,

219–228

moving to, from parser grammars,

192–195

overview of, 191–192

parser grammars for C-, 195–199

predefined rule attributes, 144, 145f

rewriting token buffer with, 234–238

website tutorial on, 205n

Tree operators, 98f, 98

Tree parsers, errors in, 254–256

Tree structure

analogy for, 26–27

assignment statement of, 40f

and evaluating expressions with,

75f, 74–84

matching rules, 113

and operator precedence, 74

pushdown machines and, 41f, 42f,

43f, 40–43

rewrite syntax for, 77

of sentences, 39–40

see also LL recognizers; Tree

construction

TreeAdaptor, 168

TreeAdaptor interface, 128

“The TXL Source Transformation

Language” (Cordy), 343

U
UP nodes, 79

V
Validating semantic predicates, 294,

327–328

VARDEF, 165

VARIABLES 369 ZUKOWSKI

Variables

vs. C type names, 300–304

C++ typecast vs. method call,

304–305

keywords as, 296–297, 298f

Visitor patterns, 191n

Vocabulary symbols, 46f, 47f, 44–48

W
Websites

for ANTLR download, 27n, 30

for ANTLRWorks, 30n

for ANTLRWorks user guide, 33n

for DOT format files, 203n

for dynamic scoping, 149n

for fuzzy Java parser, 126n

for heterogeneous trees, 190n

for IntelliJ plug-in, 32n

for Jasmin, 219n

for NetBeans, 334n

for packrat parsing, 343n

for parse trees, 190n

for static scoping, 148n

for StringTemplate, 25n, 213n

for symbol tables, 159n

for tree grammar tutorial, 205n

for tree-based interpreter tutorial,

84n

for visitor patterns, 191n

Whitespace

preserving, 228

rules, 62, 109

and token rules, 233

Wirth, Niklaus, 257

Z
Zukowski, Monty, 178n

	Contents
	Acknowledgments
	Preface
	Why a Completely New Version of ANTLR?
	Who Is This Book For?
	What's in This Book?

	Introducing ANTLR and Computer Language Translation
	Getting Started with ANTLR
	The Big Picture
	An A-mazing Analogy
	Installing ANTLR
	Executing ANTLR and Invoking Recognizers
	ANTLRWorks Grammar Development Environment

	The Nature of Computer Languages
	Generating Sentences with State Machines
	The Requirements for Generating Complex Language
	The Tree Structure of Sentences
	Enforcing Sentence Tree Structure
	Ambiguous Languages
	Vocabulary Symbols Are Structured Too
	Recognizing Computer Language Sentences

	A Quick Tour for the Impatient
	Recognizing Language Syntax
	Using Syntax to Drive Action Execution
	Evaluating Expressions via an AST Intermediate Form

	ANTLR Reference
	ANTLR Grammars
	Describing Languages with Formal Grammars
	Overall ANTLR Grammar File Structure
	Rules
	Tokens Specification
	Global Dynamic Attribute Scopes
	Grammar Actions

	ANTLR Grammar-Level Options
	language Option
	output Option
	backtrack Option
	memoize Option
	tokenVocab Option
	rewrite Option
	superClass Option
	filter Option
	ASTLabelType Option
	TokenLabelType Option
	k Option

	Attributes and Actions
	Introducing Actions, Attributes, and Scopes
	Grammar Actions
	Token Attributes
	Rule Attributes
	Dynamic Attribute Scopes for Interrule Communication
	References to Attributes within Actions

	Tree Construction
	Proper AST Structure
	Implementing Abstract Syntax Trees
	Default AST Construction
	Constructing ASTs Using Operators
	Constructing ASTs with Rewrite Rules

	Tree Grammars
	Moving from Parser Grammar to Tree Grammar
	Building a Parser Grammar for the C- Language
	Building a Tree Grammar for the C- Language

	Generating Structured Text with Templates and Grammars
	Why Templates Are Better Than Print Statements
	Embedded Actions and Template Construction Rules
	A Brief Introduction to StringTemplate
	The ANTLR StringTemplate Interface
	Rewriters vs. Generators
	A Java Bytecode Generator Using a Tree Grammar and Templates
	Rewriting the Token Buffer In-Place
	Rewriting the Token Buffer with Tree Grammars
	References to Template Expressions within Actions

	Error Reporting and Recovery
	A Parade of Errors
	Enriching Error Messages during Debugging
	Altering Recognizer Error Messages
	Exiting the Recognizer upon First Error
	Manually Specifying Exception Handlers
	Errors in Lexers and Tree Parsers
	Automatic Error Recovery Strategy

	Understanding Predicated-LL(*) Grammars
	LL(*) Parsing
	The Relationship between Grammars and Recognizers
	Why You Need LL(*)
	Toward LL(*) from LL(k)
	LL(*) and Automatic Arbitrary Regular Lookahead
	Ambiguities and Nondeterminisms

	Using Semantic and Syntactic Predicates
	Syntactic Ambiguities with Semantic Predicates
	Resolving Ambiguities and Nondeterminisms

	Semantic Predicates
	Resolving Non-LL(*) Conflicts
	Gated Semantic Predicates Switching Rules Dynamically
	Validating Semantic Predicates
	Limitations on Semantic Predicate Expressions

	Syntactic Predicates
	How ANTLR Implements Syntactic Predicates
	Using ANTLRWorks to Understand Syntactic Predicates
	Nested Backtracking
	Auto-backtracking
	Memoization
	Grammar Hazards with Syntactic Predicates
	Issues with Actions and Syntactic Predicates

	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

