
Download from Wow! eBook <www.wowebook.com>

What Readers Are Saying About Using JRuby

I was very happy to discover the JRuby project, my favorite program-

ming language running on what’s probably the best virtual machine

in the world. This book really covers every in and out of this fantastic

project.

Peter Lind

Technical consultant, Valtech

I was floored by the amount of technical detail the authors managed

to cram in here! And they did it with such an approachable and read-

able tone that this book was both easy and fun to read. I can’t remem-

ber the last technical book that did that for me. The breadth of cover-

age is astounding, too.

Kent R. Spillner

My JRuby apps will go live in two weeks. Without your book and the

Ruby community, I would never have gotten this far.

Pinit Asavanuchit

Intersol Consulting Co., Ltd.

I really liked the clear structure of the book and all the covered

libraries/dependencies (like Rake, Ant, Maven, testing frameworks).

This clearly outlines the whole JRuby universe so that new users will

immediately see what’s available and how to start using it.

Vladimir Sizikov

Senior engineer, Oracle

This book will open the eyes of any Java programmer who wants to

take their art to the next level. Read it.

Geoff Drake

Owner, Managed Design

Download from Wow! eBook <www.wowebook.com>

This is one of those books that you don’t want to put down and you

can’t wait to get back to. For a technical publication, that is extremely

rare. Usually I find myself having a hard time trying to stay awake.

After reading this book, I can say I have a very good understanding of

what JRuby is, how it interacts with Java, and a working knowledge

of many of the supporting tools to accomplish a wide range of tasks.

The way this book is organized, it makes a great reference for future

development.

Gale Straney

Senior software design engineer, Tektronix

This book makes a compelling case for JRuby. A must-have to bring

some Ruby goodness to your Java powerhouse.

Fred Daoud

Author, Stripes...and Java Web Development Is Fun Again, and

Getting Started with Apache Click

This book is an excellent resource for JRuby and will without a doubt

facilitate JRuby adoption in Java-centric enterprises.

Bharat Ruparel

Senior information architect, America’s Test Kitchen

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Using JRuby
Bringing Ruby to Java

Charles O Nutter

Nick Sieger

Thomas Enebo

Ola Bini

Ian Dees

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Download from Wow! eBook <www.wowebook.com>

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Jacquelyn Carter

Indexing: Potomac Indexing, LLC

Copy edit: Kim Wimpsett

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2011 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-65-4

ISBN-13: 978-1-934356-65-4

Printed on acid-free paper.

P1.0 printing, January 2011

Version: 2011-1-26

Download from Wow! eBook <www.wowebook.com>

http://www.pragprog.com

Contents
Foreword by Matz 11

Foreword by Bruce Tate 12

Preface 14

Why JRuby? . 14

What’s in This Book . 15

Who This Book Is For . 16

Online Resources . 16

Conventions . 17

Acknowledgments . 18

I JRuby Core 19

1 Getting to Know JRuby 20

1.1 Installing JRuby . 21

1.2 Kicking the Tires . 23

1.3 The Interactive Shell 24

1.4 The Command Line 24

1.5 IDEs . 26

1.6 The Compiler . 28

1.7 Java Integration . 29

1.8 Wrapping Up . 30

2 Driving Java from Ruby 31

2.1 Seeing Java Through Ruby Glasses 31

2.2 Dealing with the Classpath 38

2.3 Loading Classes . 41

2.4 Using Objects . 43

2.5 Passing Parameters 45

2.6 Calling Overloaded Methods 50

Download from Wow! eBook <www.wowebook.com>

CONTENTS 8

2.7 Implementing a Java Interface 54

2.8 Troubleshooting . 55

2.9 Wrapping Up . 58

3 Ruby from Java: Embedding JRuby 60

3.1 A Real-Life Example: Source Control 61

3.2 The Nitty-Gritty . 70

3.3 Embedding Strategies 74

3.4 Wrapping Up . 77

4 The JRuby Compiler 78

4.1 Compiler 101 . 78

4.2 A Simple Compiled Example 85

4.3 The Details . 91

4.4 Wrapping Up . 96

II JRuby and the World 97

5 Introduction to Rails 98

5.1 What Is Rails? . 98

5.2 Going Rouge . 105

5.3 Building Our Models 111

5.4 Restaurant Administration 101 118

5.5 Open to the Public 122

5.6 Wrapping Up . 132

6 JRuby and Relational Databases 133

6.1 Ruby Database Frameworks 133

6.2 Ribs . 154

6.3 JDBC . 161

6.4 Wrapping Up . 164

7 Building Software for Deployment 165

7.1 Rake . 165

7.2 Ant . 173

7.3 Maven . 180

7.4 Packaging for Deployment 183

7.5 Wrapping Up . 198

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=8

CONTENTS 9

8 Testing Your Code with JRuby 199

8.1 Ruby Test Frameworks 200

8.2 Going to the Next Level with ZenTest 212

8.3 Mocking and Stubbing 212

8.4 Wrapping Up . 217

9 Beyond Unit Tests 218

9.1 Writing High-Level Tests with Cucumber 218

9.2 Acceptance Testing 221

9.3 Plugging Into Java . 229

9.4 Wrapping Up . 239

10 Building GUIs with Swing 240

10.1 JRuby to the Rescue! 240

10.2 Swing . 241

10.3 Rubeus . 246

10.4 Monkeybars . 250

10.5 Limelight . 260

10.6 Wrapping Up . 268

III Reference 271

A Ruby 101 272

A.1 Meet Ruby . 272

A.2 A Closer Look . 275

A.3 Getting the Job Done 289

B Ruby/Java Interoperability 290

B.1 How Method Selection Works 290

B.2 Parameter Types . 291

B.3 Return Values . 292

C Configuring JRuby 294

C.1 Command-Line Options 294

C.2 Properties . 306

D Calling External C Code 309

D.1 Foreign-Function Interface 309

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=9

CONTENTS 10

E JRuby for Sysadmins 315

E.1 Automating Tasks . 315

E.2 Monitoring Applications 316

E.3 Wrapping Up . 321

F Limelight Example Source 322

G Bibliography 330

Index 332

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=10

Foreword by Matz
I love the term diversity. Di-ver-si-ty. Doesn’t that sound great? JRuby

surely embodies the value of diversity.

Some might think we can utilize our resources more efficiently without

diversity. But in the open source world, the number of resources (that

is, contributors) is not really limited. If a project is really attractive, we

can get more people interested in it. If we had a less diverse ecosystem

without projects like JRuby, I don’t think we would get more resources.

Instead, a lot of existing contributors would have dismissed Ruby for

lack of diversity.

I created Ruby to make my programming happier. Since its creation, it

has helped other programmers as well. I am proud that my masterpiece

has made the world of programming a little bit better. JRuby made

the Ruby language reach the Java world. JRuby made it possible to

run Ruby on platforms like Google App Engine and Android. For this

one thing, I will appreciate JRuby forever. Long live JRuby. Long live

diversity in the Ruby world.

I hope you will enjoy Ruby on the JVM. Ruby will be with you. Enjoy

programming, on whatever platform you love.

Yukihiro “Matz” Matsumoto

August 2010

Download from Wow! eBook <www.wowebook.com>

Foreword by Bruce Tate
In late 2004, I was a Java author riding on an airport bus with Dave

Thomas. At the time, I was frustrated with the increasing complexity of

the Java language but thinking it was the only game in town. Dave con-

vinced me to give Ruby a try. When I finally did, I found a language that

was more expressive and productive than anything I’d ever used before.

In a short year, I completed my first and second commercial Ruby appli-

cations and knew, beyond a shadow of a doubt, that Ruby was a better

language for the types of applications I was writing. I wanted to share

that idea with managers like the ones I encountered in my consulting

practice, so I wrote From Java to Ruby [Tat06] to emphasize that Ruby

wasn’t just a smart move for programmers. Ruby made business sense.

Thankfully, I didn’t have to lean solely on my own thin experience. To

make the most critical points, I interviewed some important experts

in complex areas such as design, adoption, and deployment. Among

these people were Thomas Enebo and Charles Nutter, two of the earliest

committers of the JRuby project. In those interviews, they elegantly

made the case that a mature Ruby implementation on the JVM would

lead to a powerful set of advantages.

You see, Ruby, the beautiful language, is only part of the story. Even

this powerful, productive language needs a story that goes beyond the

ideas embedded in the syntax and semantics. Real applications will

have requirements encompassing performance, politics, and deploy-

ment. Truth be told, in 2006, Ruby was sometimes difficult to sell into

the back office for some of these reasons.

What a difference four years makes. Thomas, Charles, and I have

leaned hard on Ruby for these four years, supported by a growing com-

munity of many thousands of Ruby developers and customers. We’ve

Download from Wow! eBook <www.wowebook.com>

FOREWORD BY BRUCE TATE 13

regularly run into each other in places like Austin, Texas, and Matsue,

Japan. Each time, I’ve delightfully followed the progress of JRuby. This

platform has delivered on every promise. Consider the following:

• JRuby is no longer a hobby. Though it holds fast to its open source

foundations, it now has aggressive corporate sponsorship. Engine

Yard has proven to be a wonderful steward, and several employees

are dedicated to its success.

• Big customers have deployed major applications on JRuby, open-

ing up the enterprise to Ruby. By allowing the back office to rely

on the robust, reliable JVM, deploying Ruby is no longer the risk it

once was. Each Ruby application becomes just bytecode, virtually

indistinguishable from other Java applications.

• JRuby supports the Java frameworks that you need to support.

Sure, the lower-level APIs are there, such as JDBC. But you can

also build your nimble Ruby user interface directly on your Hiber-

nate back end the way you want.

• ThoughtWorks, the dynamic consultancy that aggressively pushes

the boundaries of developer productivity in the context of difficult

problems, has used JRuby to deliver both products and customer

applications on far more aggressive schedules than they could

have with conventional languages.

So, JRuby is delivering on the promise of a marriage between the beau-

tiful language on the robust and reliable JVM, and we’ve come full cir-

cle. Now, I’m writing a foreword for Thomas and Charles, and I could not

be more thrilled. You see, the last missing piece of the JRuby puzzle is

effective documentation. That’s where Using JRuby steps in. This book

tells the perfect story at the right time. This team of authors is uniquely

positioned to give you the tips and tricks from the inside. They’ve nur-

tured this project from its infancy to where it is today. They’ve used

JRuby to deliver real value to paying customers. And they’re gifted com-

municators who can effectively tell this story.

I’ve been waiting for this day for a long time, and I could not recom-

mend this book more highly. Congratulations, Charles, Thomas, Nick,

Ola, and Ian. You’ve created something amazing and described it in a

beautiful book.

Bruce Tate (Author, From Java to Ruby, 2006)

Austin, Texas, 2010

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=13

Preface
You know all the stereotypes of the Java and Ruby programming lan-

guages. The enterprise vs. the upstart. The staid, corporate safe choice

against the free-wheeling new kid in town.

Look a little deeper, though, at what the languages have in common.

They’re about the same age (both had their 1.0 releases in 1996). Both

their respective inventors were inspired by their favorite object-oriented

language features. And both Java and Ruby have touched off an ava-

lanche of Internet love-ins and flame-fests.

So, maybe it was inevitable that someone would try to combine the two.

JRuby is an implementation of the Ruby programming language written

in 100 percent Java.

Why JRuby?

JRuby is just another Ruby interpreter. It runs the same Ruby code

you’ve been writing all along. But it’s also a better Ruby interpreter. You

get true multithreading that can use all your computer’s cores from one

process, plus a virtual machine that’s been tuned for a decade and a

half. All of this book’s authors have seen our Ruby programs speed up

just by moving them to JRuby.

JRuby is also just another .jar file. You don’t need to install anything

on your Java workstation to try it. And you don’t need to do anything

special to deploy your Ruby code to your production server. Just hand

your sysadmin a .jar like you always do, and they might not even notice

you used Ruby—except that you delivered your app in half the time and

encountered fewer bugs down the road.

Download from Wow! eBook <www.wowebook.com>

WHAT’S IN THIS BOOK 15

Ian Says. . .

JRuby in Real Life

At work, we needed to sift through a mound of engineering
data. Ruby was a natural fit for this task, and we had working
code in minutes. But sharing this program with colleagues was
a different story.

With regular Ruby, we ran into trouble getting the code from
one machine to another—even though they were both run-
ning Windows XP. We had to direct people to install a particu-
lar outdated version of MySQL, manually copy DLLs into Ruby’s
installation path, and then install another Ruby library. Even if
they got all that right, they’d still encounter error messages like
“msvcrt-ruby18.dll was not found.”

Enter JRuby. Its database drivers don’t have to be compiled
for each specific operating system and build environment, so
things just worked out of the box. The installation procedure
shrank to “copy the file, and then type java -jar ourprogram.jar.”

What’s in This Book

The first half of this book is about JRuby. In Chapter 1, Getting to

Know JRuby, on page 20, we’ll hit the ground running with a few quick

examples that showcase JRuby’s main features. In Chapter 2, Driv-

ing Java from Ruby, on page 31, we’ll show you how to call into Java

libraries from Ruby code. Then we’ll go the other direction in Chapter 3,

Ruby from Java: Embedding JRuby, on page 60 and extend a Java pro-

gram using Ruby. Finally, Chapter 4, The JRuby Compiler, on page 78

will answer the question, “Isn’t JRuby just a Ruby compiler for Java?”

(Short answer: no.)

In the second half, we’ll discuss how JRuby relates to the outside world

of libraries, tools, and legacy code. We’ll start with Chapter 5, Intro-

duction to Rails, on page 98, in which you’ll build a database-backed

website in Ruby’s most famous framework. Web development leads nat-

urally to databases and deployment.Chapter 6, JRuby and Relational

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=15

WHO THIS BOOK IS FOR 16

Databases, on page 133 and Chapter 7, Building Software for Deploy-

ment, on page 165 will cover several Java and Ruby libraries in these

areas.

In Chapter 8, Testing Your Code with JRuby, on page 199 and Chap-

ter 9, Beyond Unit Tests, on page 218, you’ll find out how to use Java

tools to run Ruby tests and how to use Ruby frameworks to exercise

Java code. You’ll finish off the main part of the book in Chapter 10,

Building GUIs with Swing, on page 240, where you’ll find what many

Rubyists have long sought: a cross-platform GUI toolkit.

Who This Book Is For

This book is for people looking to bring the Ruby and Java worlds

together. Some of you are seasoned Java developers who are interested

in seeing what the Ruby language can do for you. Others are familiar

with Ruby and wondering what they need to know about running their

code on the Java platform.

If your primary language has been Java up until now, you may want

to start with the quick crash course on Ruby syntax in Appendix A, on

page 272. If you’re a Rubyist who’s new to Java, a book like Core Java

[HC07] can help fill in the gaps, without bogging you down in “how to

program” lessons.

Online Resources

We encourage you to try the code samples you see in this book by typing

them in by hand. If you get stuck or need a little more context, the

source for the examples is available at http://pragprog.com/titles/jruby/

source_code.

We designed these programs to run on JRuby version 1.5.5, with spe-

cific versions of various libraries we mention in the text. If you want to

use a newer version of JRuby or one of the libraries, see http://github.

com/jruby/using_jruby to track our updates to the example code.

If something isn’t working or you have a question about JRuby that we

haven’t covered here, please let us know in the forums at http://forums.

pragprog.com/forums/125. We’d love to hear from you.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/jruby/source_code
http://pragprog.com/titles/jruby/source_code
http://github.com/jruby/using_jruby
http://github.com/jruby/using_jruby
http://forums.pragprog.com/forums/125
http://forums.pragprog.com/forums/125
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=16

CONVENTIONS 17

Conventions

Let’s skip the description of which fonts we’re using for code and em-

phasis, shall we? You’ll pick that up from context. But there are a cou-

ple of situations that your typical tech book doesn’t have to face. It’s

probably worth adopting a few new conventions for those.

The first is function names. Books seem to have a tradition of spelling

functions and methods with trailing parentheses, as in a Java class’s

main() method. In Ruby, though, parentheses tend to be optional—and

there are some contexts where they’re almost never used. So, we’ll fol-

low that dual convention in the print and PDF versions of this book.

When we mention function names in the text, you’ll see parentheses

after someJavaMethod() but not after some_ruby_method.

The next convention we’ve adopted is a single notation for the command

line, for the most part. Windows command prompts use something

like C:\> as your cue to begin typing, while Mac and Linux machines

typically use $ or %. Windows uses backslashes to separate directory

names, while other platforms uses forward slashes. Other than that,

there’s little difference between invoking JRuby on one operating sys-

tem or the other.

Accordingly, we’re going to use the notation from bash, the default shell

on the Mac and on many Linux distributions. When you see this:

$ jruby some_directory/program.rb

...you’ll know not to type the dollar sign and to use whatever kind of

slashes your system requires. (Actually, the latter is a bit of a moot

point, because JRuby does fine with forward slashes on Windows.) For

the few specific cases where the syntax is significantly different between

Windows’s cmd.exe and UNIX’s bash, we’ll spell out both cases.

Speaking of differences between systems, many UNIX-like systems re-

quire you to log in as the root user before installing software. Others

have you preface any administration-level commands with sudo. Most

of your authors run JRuby from regular (nonadministrator) directories

in our own home directories, making sudo unnecessary. Accordingly,

the commands to install software in this book will typically just say

gem install some_library, rather than sudo gem install some_library.

Finally, a word on program output. We use three variations of the tradi-

tional Ruby “hash rocket” sign (which looks like this: # =>) to show the

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=17

ACKNOWLEDGMENTS 18

result of running a particular piece of code. These marks are just Ruby

comments. JRuby ignores them, and you don’t need to type them. But

they come in handy for documenting how a function works.

This line doesn't print

anything, but the expression

has a return value

result = 2 + 2 # => 4

This line prints a message

when you run the program:

puts 'hello'.capitalize # >> Hello

This line causes an error

message to appear:

Foo # ~> Uninitialized constant Foo

This way, we can show you what the values of different variables are in

the middle of a code excerpt, without having to scatter a bunch of print

functions all over.

Acknowledgments

To our initial tech reviewers—Fred Daoud, Steven Deobald, Geoff

Drake, Yoko Harada, Peter Lind, David Rupp, Vladimir Sizikov, Kent

Spillner, and Gale Straney—thank you for helping us sand down the

rough edges. To folks who joined the beta release process and wrote

to us in the forums—Matt Smith, David Mitchell, Arkadiy Kraportov,

Sam Goebert, Robert Dober, Pinit Asavanuchit, Bharat Ruparel, Hans-

Georg, and Paul Sideleau—the book is better because of your com-

ments, and we thank you.

To our wonderful editor, Jackie Carter—thank you for being equal parts

project champion, product manager, writing coach, and cheerleader.

To Dave and Andy, the Pragmatic Programmers—thank you for giv-

ing this book a long runway and a chance to fly. To our ever-patient

families—thank you for enduring our absence, obsession, and distrac-

tion. To Matz—thank you for creating Ruby, our favorite programming

language. To Matz and Bruce—thank you for your support of this pro-

ject and for the lovely forewords. To the entire community of JRuby

fans, contributors, and users—thank you for your support of this, our

favorite implementation of Ruby.

Ready to jump into JRuby? Let’s go!

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=18

Part I

JRuby Core

Download from Wow! eBook <www.wowebook.com>

Chapter 1

Getting to Know JRuby
You’re now standing on the threshold of the JRuby universe, where

you’ll have your pick of the world’s best Ruby and Java libraries. With

the techniques in this book and the tools available to you, you’ll be able

to do amazing things with JRuby. Here are just a few possibilities:

• Deploy a Ruby on Rails web application to Google’s App Engine

service.1

• Target the latest Android smartphones with your Ruby code.2

• Create dazzling, cross-platform GUIs with clean, elegant code.3

• Build your project on solid libraries written in Java, Scala, Clojure,

or other JVM languages.

Do these sound like intriguing projects? They’ll all be within your grasp

by the time you reach the end of this book. You’ll see how to code,

test, and package web applications for easy employment. You’ll learn

the nuances of compiling code and how to adjust to the limitations

of mobile platforms. You’ll design user interfaces using both graphical

layout tools and straightforward code.

Before we get into those specific uses, we’d like to take you on a tour of

the best of JRuby in this chapter. We’ll start by showing you a couple

of easy ways to get JRuby onto your system (including a hassle-free,

no-installation option) and what to do with it once you have it.

1. http://rails-primer.appspot.com

2. http://ruboto.org

3. http://www.infoq.com/presentations/martin-jruby-limelight

Download from Wow! eBook <www.wowebook.com>

http://rails-primer.appspot.com
http://ruboto.org
http://www.infoq.com/presentations/martin-jruby-limelight

INSTALLING JRUBY 21

When you have JRuby running, you’ll see firsthand how JRuby is a

top-notch Ruby environment. You’ll try out code interactively in a live

interpreter, which is a great way to learn the language and its libraries.

You’ll write a stand-alone script just like the ones you use for everyday

system automation tasks.

We’ll also show you how JRuby does a few things other Rubies can’t do.

You’ll compile a Ruby program to a Java .class file. You’ll call seamlessly

into Java libraries just as easily as calling Ruby code.

Ready to begin your journey?

1.1 Installing JRuby

JRuby is built for easy deployment. After all, it needs to fit in envi-

ronments ranging from your development laptop to a tightly controlled

production server. Accordingly, there are a lot of ways to get it onto

your system. We’ll look at a couple of the more common ones here.

Using an Installer

The easiest way to install JRuby is to use one of the prebuilt installers

available from the official download site.4 These will take care of the

“fit and finish” level of detail, such as setting up your PATH environment

variable to make finding JRuby easier.

The JRuby team currently maintains installers for Windows and Mac

machines. If you’re on Linux, your distribution may package its own

JRuby build. For example, on Ubuntu you can type this:

$ sudo apt-get install jruby

Most Linux distributions don’t upgrade to the latest JRuby release the

instant it comes out. If you want to stay with the latest and greatest,

you might prefer installing from an archive instead; we’ll describe how

to do this later.

Using the Ruby Version Manager

The Ruby Version Manager (RVM) is a tool for Mac and Linux that can

automatically install and switch among several different versions of

4. http://jruby.org/download

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://jruby.org/download
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=21

INSTALLING JRUBY 22

Ruby at once.5 A large part of its audience consists of Ruby library

developers, who need to test their software in many different Ruby

environments.

Even if JRuby is the only Ruby you plan on using, you may want to

take a look at RVM. As of this writing, here are the JRuby versions

RVM knows about:

$ rvm list known | grep jruby

jruby-1.2.0

jruby-1.3.1

jruby-1.4.0

jruby(-1.5.5)

jruby-head

The last item, jruby-head, is a build from the latest bleeding-edge source

code. The one before it, jruby-1.5.5 (or just jruby), is the latest stable

release as of this writing. Here’s how you’d install and start using 1.5.5:

$ rvm install jruby

$ rvm use jruby

If you’re a long-time RVM user, you’ll want to upgrade to the latest RVM

version before using it to install JRuby.

From an Archive

If you have a heavily customized setup or just like doing things your-

self, you can get a .zip or .tar.gz archive from the same download page.

Extract the archive somewhere convenient on your system, such as C:\

or /opt. You can run JRuby straight from its own bin subdirectory, but

you’ll probably find it more convenient to add it to your PATH.

On UNIX (including Mac OS X), you can do the following:

$ export PATH=$PATH:/opt/jruby/bin

On Windows, you’ll need to set both the PATH and JAVA_HOME variables:

C:\> SET PATH=%PATH%;C:\jruby\bin

C:\> SET JAVA_HOME="C:\Program Files\Java\jdk1.5.0_19"

You’ll also need a recent version of the Java runtime, at least version

1.5.6

5. http://rvm.beginrescueend.com

6. http://java.com/en/download

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://rvm.beginrescueend.com
http://java.com/en/download
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=22

KICKING THE TIRES 23

From Source Code

If you’re never satisfied with anything less than the latest features and

bug fixes, you may want to try your hand at building JRuby from

source. You’ll need the following in addition to the Java runtime men-

tioned earlier:

• The Ant build system, version 1.7 or newer7

• The Git source control system8

First, grab the latest code with Git:

$ git clone git://github.com/jruby/jruby.git

Next, jump into the jruby directory that just got created:

$ cd jruby

If you want to compile the source of a specific release, such as JRuby

1.5.5, run the git checkout command:9

$ git checkout 1.5.5

Finally, build the software:

$ ant clean

$ ant

$ ant test

Assuming the tests pass, you’re ready to run JRuby. It’s perfectly valid

to specify a full path to jruby or jruby.exe every time you run it—JRuby

will automatically figure out where its support libraries are relative to

the executable. But from here on out, the examples in this book will

be written as if you’ve put the bin directory directly in your PATH, as

described earlier.

1.2 Kicking the Tires

Ready to try it? First, make sure you have a good executable:

$ jruby --version

jruby 1.5.5 (ruby 1.8.7 patchlevel 249) (2010-11-10 4bd4200) (Java HotSpot(TM) ...)

If you have any problems getting to this point, check your PATH, and

make sure you’re running the latest release version of JRuby.

7. http://ant.apache.org

8. http://www.git-scm.com

9. To get out of building a specific release, type git checkout master.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://ant.apache.org
http://www.git-scm.com
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=23

THE INTERACTIVE SHELL 24

It’s time to run some code. The simplest way to try a simple Ruby

excerpt, whether you’re using plain Ruby or JRuby, is to pass the -e

option to the interpreter:

$ jruby -e "puts 'This is a short program'"

This is a short program

Now that you’re up and running, let’s look at some more useful ways to

execute JRuby.

1.3 The Interactive Shell

Just as Ruby ships with irb for trying code interactively, JRuby has jirb:

$ jirb

irb(main):001:0> ['Hello', 'world'].join ' '

=> "Hello world"

irb(main):002:0> "ybuRJ morf".reverse

=> "from JRuby"

irb(main):003:0>

As with the REPL10 from any other dynamic language, jirb gives you

instant feedback on the results of each command you type into it.

Although this technique is a great way to explore the language, we’re

guessing that you’re interested in running some actual programs, too.

1.4 The Command Line

To get a feel for running interpreted and compiled programs in JRuby,

we’re going to write a really trivial program and run it in a couple of

different ways.

The Simple Case

Put the following code into a file called example.rb:

Download introduction/example.rb

puts "So, how are you liking the pace so far?"

pace = loop do

puts "(1) Move it along"

puts "(2) Just right"

puts "(3) Not so fast!"

10. Read-eval-print loop, an interactive environment for programming

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction/example.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=24

THE COMMAND LINE 25

res = gets.to_i

break res if (1..3).include? res

end

puts (pace == 2) ?

"Great; see you in the next section" :

"Thanks; we'll see what we can do"

Now, run it from the command line like so:

$ jruby example.rb

Go ahead and give us an answer; we can take it.

⇒ So, how are you liking the pace so far?

(1) Move it along

(2) Just right

(3) Not so fast!
⇐ 1
⇒ Thanks; we'll see what we can do

jruby takes a wide range of command-line parameters to customize the

way your programs run. A full discussion is outside the scope of this

chapter, but it’s worth talking about one of the more important ones.

Running Common Ruby Programs

If you’ve been coding Ruby for a while, you’re used to having certain

tools available as executables, such as gem and rake. A typical Ruby

program will install itself into your Ruby distribution’s bin directory.

You may be tempted just to make sure JRuby’s bin is at the front of

your PATH and then run these commands directly just by typing in their

names.

But it’s best to invoke command-line tools through JRuby, rather than

directly. In particular, Ruby’s package manager, RubyGems, may not

know whether to use plain Ruby or JRuby if you just type gem on the

command line.

A much more reliable approach is to use Ruby’s standard -S option for

launching stand-alone scripts.11 Instead of typing this:

$ gem install rspec

...you’d type the following:

$ jruby -S gem install rspec

11. For more information about this option, see Appendix C, on page 294.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=25

IDES 26

Ian Says. . .

What Do We Use?

With all this talk of development environments, what do we
the authors use to write code for our JRuby projects? By some
strange cosmic coincidence, four out of the five of us are heavy
users of the Emacs text editor.∗ The odd man out hops between
Vim and TextMate.†,‡ All three of these editors have great sup-
port for Ruby, and all three of them stay out of our way while
we’re coding.

∗. http://www.gnu.org/software/emacs/

†. http://vim.org

‡. http://macromates.com

This approach works for any Ruby command-line tool, including gem,

rake, spec, and others.

There are a ton of other useful JRuby options; for more information,

type jruby --help, or see Appendix C, on page 294.

1.5 IDEs

JRuby is easy to use from the command line—so much so that we’ll

be giving many examples of it in this book. But using an integrated

development environment has its merits. In addition to the code com-

pletion features most people think of, IDEs can manage your JRuby

installation and classpath for you.

Nearly every popular IDE has some support for Ruby, either directly or

through a plug-in. If you’re asking us for a recommendation, though,

we have two.

RubyMine

RubyMine is a Ruby-specific IDE created by the JetBrains company.12

It has the level of sophistication you’d expect from the folks who created

IntelliJ IDEA, the beloved Java development environment.

12. http://www.jetbrains.com/ruby/index.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://www.gnu.org/software/emacs/
http://vim.org
http://macromates.com
http://www.jetbrains.com/ruby/index.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=26

IDES 27

Figure 1.1: The RubyMine IDE

As you can see in Figure 1.1, there’s a lot to RubyMine. We’ll just men-

tion a couple of points that are hard to show in a screenshot. For one

thing, the tool is aware of popular test and directory naming conven-

tions for Ruby projects so you can jump automatically between a piece

of code and its tests. It also supports several refactoring techniques on

Ruby code.

NetBeans

NetBeans is an open source development environment with support for

several different programming languages.13 You can download a Ruby-

specific build of the IDE and have everything you need to start coding.

With NetBeans, you can do some of the many things in Ruby that

you’re used to doing in less dynamic languages: automatically com-

pleting code, stepping through a program in a debugger, designing a

GUI, and performing simple refactorings.

13. http://www.netbeans.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://www.netbeans.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=27

THE COMPILER 28

Because NetBeans is cross-language, its level of Ruby-specific integra-

tion is not quite as deep or polished as RubyMine’s. But it’s a close

second.

1.6 The Compiler

Throughout most of this book, we’re going to run JRuby programs the

same way people run programs in plain Ruby: hand the text of the pro-

gram over to an interpreter. The interpreter walks through the program

piece by piece, translating and running code as it encounters it.

If you spend time in the Java universe, you’re probably wondering

whether JRuby allows you to compile your Ruby code into .class files

up front and treat them like compiled Java code.

The answer is yes. Here’s how you’d compile the previous example:

$ jrubyc example.rb

Compiling example.rb to class example

The compiler supplies a main() method for you, so you can now run the

program straight from the java command (adjust the path here to point

to your JRuby installation):

$ java -cp .:/opt/jruby/lib/jruby.jar example

Note that your compiled program still depends on some JRuby-defined

support routines, so jruby.jar needs to be on your CLASSPATH.14 Also, the

compiler compiles only the files you specifically pass to it. If you refer-

ence some_ruby_library.rb, you’ll have to compile that extra .rb file yourself

or ship it in source form alongside your .class file.

When you look at compilation in detail, there are a lot more shades

of distinction between “no compilation at all” and “compile everything

up front.” JRuby may compile parts of your program to Java bytecode

at runtime to improve performance. You’ll find a detailed discussion of

this and other aspects of compilation in Chapter 4, The JRuby Compiler,

on page 78.

14. There’s more on how JRuby uses the Java classpath in Chapter 2, Driving Java from

Ruby, on page 31

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=28

JAVA INTEGRATION 29

1.7 Java Integration

JRuby can use Java objects much as if they were Ruby objects. Here’s

a simple example that exercises Java’s ArrayList class:

Download introduction/interop.rb

require 'java'

list = java.util.ArrayList.new

list << 'List of'

list << 3

list << :assorted_items

list.each do |item|

puts "#{item.class}: #{item}"

end

As you can see, we can add a variety of objects, including native Ruby

types like Symbols, to the list. JRuby even provides appropriate Ruby

iteration idioms for Java collections, which is why we can call each() on

the list in this example.

Of course, Ruby has its own perfectly respectable collection classes.

Unless you’re calling a Java library function expecting an ArrayList, it’s

usually better just to use a Ruby Array instead. But bear with us and try

our slightly stilted example in jirb; you should see something like this:

⇒ String: List of

Fixnum: 3

Symbol: assorted_items

Now, let’s try something we couldn’t have done in plain Ruby. Let’s hook

into some Java platform-specific functions and query a few properties

of the JVM:

Download introduction/jvm.rb

require 'java'

os = java.lang.System.get_property 'os.name'

home = java.lang.System.get_property 'java.home'

mem = java.lang.Runtime.get_runtime.free_memory

puts "Running on #{os}"

puts "Java home is #{home}"

puts "#{mem} bytes available in JVM"

⇒ Running on Mac OS X

Java home is /System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home

1592320 bytes available in JVM

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction/interop.rb
http://media.pragprog.com/titles/jruby/code/introduction/jvm.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=29

WRAPPING UP 30

As you can see, we can access native Java classes, such as java.lang.

Runtime and java.lang.System, using a dot notation similar to Java’s import

syntax. One thing to note is that JRuby gives you the option of call-

ing Java functions like getProperty() by more Ruby-fitting names like

get_property.

1.8 Wrapping Up

Now that you have JRuby installed and have taken it for a spin, it’s

time to get some real work done. In the upcoming chapters, we’ll tackle

some of the most common ways people bring the Java and Ruby worlds

together.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=30

Chapter 2

Driving Java from Ruby
It might be tempting to think of Java/Ruby integration as nothing more

than calling from one language to another. But that’s selling JRuby

short. In a typical project, you’re really interacting with both platforms.

You might construct a Ruby object, pass it to a Java function, and

watch the Java code call other Ruby methods you’ve defined.

In this chapter, we’ll look at cases where the interaction starts in Ruby:

calling Java methods from Ruby code, implementing Java interfaces in

Ruby, and so on. In the next chapter, we’ll start with a Java program

and work our way back to Ruby.

2.1 Seeing Java Through Ruby Glasses

The first use case for JRuby, and still the most common one today, is

calling a Java method from Ruby. Why would someone want to do this?

There are thousands of reasons. Here are just a few of the things you

can do with this interoperability:

• Visualize geographic data with NASA’s World Wind project.1 In Fig-

ure 2.1, on the following page, you can see a map of our home-

towns that we put together with just a few lines of Ruby.

• Render beautiful SVG graphics with the Apache Batik project, like

the folks at Atomic Object did for their cross-platform simulation

app.2 The elegant visuals they achieved are shown in Figure 2.2,

on page 33. (Image used with permission of the Avraham Y. Gol-

dratt Institute, LP.)

1. http://worldwind.arc.nasa.gov

2. http://spin.atomicobject.com/2009/01/30/ruby-for-desktop-applications-yes-we-can

Download from Wow! eBook <www.wowebook.com>

http://worldwind.arc.nasa.gov
http://spin.atomicobject.com/2009/01/30/ruby-for-desktop-applications-yes-we-can

SEEING JAVA THROUGH RUBY GLASSES 32

Figure 2.1: Locating JRuby authors with World Wind

• Handle a protocol or data format for which a Java library is the

best fit. For example, you might choose the Java-based iText li-

brary to add PDF support to your Ruby program—especially if you

need digital signatures or some other feature specific to iText.3

• Slay the “cross-platform Ruby GUI” dragon by writing a Swing or

SWT program in Ruby.

• Boost the performance of a Ruby program. For example, the team

behind the Redcar text editor knows they will always have the

option of dropping down into Java for any performance-critical

parts.4

3. http://www.itextpdf.com

4. http://redcareditor.com

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://www.itextpdf.com
http://redcareditor.com
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=32

SEEING JAVA THROUGH RUBY GLASSES 33

Figure 2.2: Simulating industrial processes with Batik

• Tame a legacy Java project by walling off the old spaghetti code

behind a clean Ruby interface.

• Sneak Ruby into a Java shop; after all, JRuby is “just another .jar

file.”

• Write great tests for your Java code, using one of Ruby’s outstand-

ing test frameworks.

• Index and search huge amounts of text with the Lucene search

engine.5

• Write a database-backed web application in the Rails framework.

Behind the scenes, Rails’s database adapters call into Java’s data-

base libraries to do the heavy SQL lifting.

5. http://lucene.apache.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://lucene.apache.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=33

SEEING JAVA THROUGH RUBY GLASSES 34

All of these scenarios are the bread and butter of JRuby and are well

supported. But as in any domain where two languages meet, there are

some subtleties, gotchas, and impedance mismatches.6 This chapter

will address many of these edge cases.

First things first, though. We’ll lead off with the basics of accessing

Java classes from JRuby, starting with how your Ruby code can load

and interact with Java libraries. Then we’ll explore the details of param-

eter passing and automatic type conversions. Finally, we’ll show a few

tips and tricks to make Java classes and objects a natural part of your

Ruby programs.

A Simple Example: Wrapping a Library

Let’s start with a working program to drive a Java library. We’ll expand

on one of the examples we described earlier: using the iText library

to generate a PDF file. This will be just enough to give a hint of the

flavor of driving Java, without having to bang our heads against the

more obscure edge cases (yet). Download the latest .jar (for example,

iText-5.0.1.jar) from the official site, and copy it into the directory where

you’re following along in code.7 Next, add this snippet to a file called

pdf_demo.rb:

Download java_from_ruby/pdf_demo.rb

require 'java'

pdf = com.itextpdf.text.Document.new

para = com.itextpdf.text.Paragraph.new 'Brought to you by JRuby'

file = java.io.FileOutputStream.new 'pdf_demo.pdf'

com.itextpdf.text.pdf.PdfWriter.get_instance pdf, file

pdf.open

pdf.add para

pdf.close

In the spirit of walking before we run, let’s walk through the source

before we run the program. In the opening lines, we create a few Java

6. The term impedance mismatch comes from electrical engineering. It refers to the

power lost to reflection when two circuits are connected. It’s also a poetic way to describe

the conceptual losses between two different software domains.
7. http://sf.net/projects/itext/files

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/pdf_demo.rb
http://sf.net/projects/itext/files
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=34

SEEING JAVA THROUGH RUBY GLASSES 35

Figure 2.3: The generated PDF in all its glory

objects the same way we’d create Ruby ones—by calling the class’s new

method. We use a typical full-package name for each class (for example,

com.itextpdf.text.Document).

In JRuby, Java methods look and act like Ruby ones. All the method

names you see in this snippet—open, add, and close—belong to Java

classes. That includes get_instance, an alias JRuby has created for

getInstance() to make it fit better in the Ruby universe.

Some Ruby types get converted into their Java counterparts automati-

cally for you, such as the “Brought to you...” string. Others need a little

hand holding; you’ll see a few of those cases later.

Now that you’ve had a chance to look through the code, let’s run it.

You’ll need to tell JRuby where the external iText library lives by setting

the classpath. Java provides the -cp option for this purpose. JRuby will

forward any option to the underlying Java runtime if you preface it

with -J. Go ahead and try the following command, adjusting the version

number of iText to match what you downloaded:

$ jruby -J-cp iText-5.0.1.jar pdf_demo.rb

That’ll create a PDF file called pdf_demo.pdf in the same directory. If

you open it, you should see something like Figure 2.3. It’s not the most

visually breathtaking use of the format, but you get the idea.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=35

SEEING JAVA THROUGH RUBY GLASSES 36

Another Simple Example: Extending a Ruby Program

Let’s consider another big use case: taking an existing Ruby program

and rewriting part of it in Java for speed. Just for fun, we’ll make this

one a GUI app, albeit a trivial one. We’re going to build a calculator for

the famous stack-busting Ackermann function.8 The Ruby code for this

reads like the official mathematical definition:

Download java_from_ruby/ackerizer.rb

class Ackermann

def self.ack(m, n)

return n + 1 if m == 0

return ack(m - 1, 1) if n == 0

return ack(m - 1, ack(m, n - 1))

end

end

This implementation is far too slow for a production app, as will become

painfully clear after we wrap a Swing user interface around it. To build

our GUI, we’re going to use a Ruby helper called Rubeus.9 Go ahead

and install that now:

$ jruby -S gem install rubeus

We’ll talk more about Rubeus in Chapter 10, Building GUIs with Swing,

on page 240. For this short example, the code is simple enough to show

without much explanation. It’s just a couple of text inputs and a button:

Download java_from_ruby/ackerizer.rb

require 'rubygems'

require 'java'

require 'rubeus'

include Rubeus::Swing

JFrame.new('Ackerizer') do |frame|

frame.layout = java.awt.FlowLayout.new

@m = JTextField.new '3'

@n = JTextField.new '9'

JButton.new('->') do

@result.text = Ackermann.ack(@m.text.to_i,

@n.text.to_i).to_s

end

8. http://en.wikipedia.org/wiki/Ackermann_function

9. http://code.google.com/p/rubeus/

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/ackerizer.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/ackerizer.rb
http://en.wikipedia.org/wiki/Ackermann_function
http://code.google.com/p/rubeus/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=36

SEEING JAVA THROUGH RUBY GLASSES 37

@result = JTextField.new 10

frame.pack

frame.show

end

Throw those two code snippets into a file called ackerizer.rb, and then

launch the app. You’ll most likely need to increase the JVM’s stack

size, using Java’s standard -Xss setting together with JRuby’s -J “pass-

through” option:

$ jruby -J-Xss64m ackerizer.rb

You should see something like Figure 2.4, on the following page. Try

clicking the button to calculate ack(3, 9). The results will probably take

several seconds to appear in the window. Because our app is a one-trick

pony, there’s only one suspect worth investigating: the ack method.10

There’s a lot we could try in Ruby before jumping into Java. At the very

least, we should be storing our intermediate values so that we don’t

have to calculate them over and over. But let’s say you’ve done all that,

and you still need faster results. Here’s how you’d move the calculation

into a Java class:

Download java_from_ruby/Ackermann.java

public class Ackermann {

public static int ack(int m, int n) {

if (m == 0)

return n + 1;

if (n == 0)

return ack(m - 1, 1);

return ack(m - 1, ack(m, n - 1));

}

}

...which you can then compile like so:

$ javac Ackermann.java

We need to make only one change to the Ruby code to use the new Java

class. In the middle of the button’s on_click handler, add the text Java::

to the beginning of the Ackermann.ack call.

10. On any nontrivial project, you’ll want to profile your code, rather than relying on

inspection and guesswork. See Appendix C, on page 294, for how to do that with JRuby.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/Ackermann.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=37

DEALING WITH THE CLASSPATH 38

Figure 2.4: The Ackermann calculator

@result.text = Java::Ackermann.ack(@m.text.to_i,

@n.text.to_i).to_s

When you rerun the program and click the button, the result should

appear immediately. Now that we’ve seen examples of the most common

ways people use JRuby, let’s look at each step of the process in more

detail.

2.2 Dealing with the Classpath

Before you can use that piece of external library wizardry, you have

to find it. When you bring Java code into your app, you’re playing by

Java’s rules. Rubyists are used to saying require ’some_file_name’ and

counting on the file to show up inside one of Ruby’s search paths. By

contrast, Java looks for each class by its fully specified package name;

the physical location of the file isn’t as important.

For readers coming from the Ruby world, the classpath is the list of

directories and .jar files where Java (and therefore JRuby) will look

for external libraries. If you’re doing a java_import (see Section 2.3, By

Importing, on page 42) and JRuby can’t find the class you’re asking for,

the classpath is usually the first place to make adjustments.

A lot of people code in an IDE that sets up their classpath for them

and deploy to a server that has its own notions of where things should

be; they’ll never touch the classpath themselves. But if you’re using

the command line a lot on your own, you’ll need to set the path up

yourself. JRuby supports several ways of doing this to ensure that both

Ruby developers and Java developers will find familiar ground.

From the Command Line

There’s a strong parallel between the Ruby and Java ways of passing

extra search paths on the command line. Ruby uses the -I switch:

$ ruby -I/path/to/library my_program.rb

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=38

DEALING WITH THE CLASSPATH 39

Charlie Says. . .

The Default Package

Notice here we’re using the Java:: prefix. In this case, it’s
because our Java-based Ackermann class is in the default

package. Such classes can be accessed immediately under
the Java namespace.

JRuby supports -I for Ruby code, naturally, but also understands Java’s

-cp/-classpath option for Java classes:

$ jruby -J-cp /path/to/library.jar

C:\> jruby -J-cp C:\path\to\library.jar

Remember that -J specifies that JRuby should pass the -cp option to

the underlying Java runtime.

With an Environment Variable

As we did with the command-line arguments, we’re going to draw a

parallel between the ways Ruby and Java use environment variables.

If you’re a lazy typist like we are, you’re probably used to storing your

most commonly used Ruby search paths in the RUBYOPT environment

variable:

$ export RUBYOPT=-I/path/to/common/libraries

C:\> set RUBYOPT=-IC:\path\to\common\libraries

JRuby supports RUBYOPT for finding Ruby code, and the Java equivalent

(CLASSPATH) for finding Java classes:

$ export CLASSPATH=$CLASSPATH:/path/to/library.jar

C:\> set CLASSPATH=%CLASSPATH%;C:\path\to\library.jar

If you have both a CLASSPATH and a -J-cp option, the latter will take

priority. Of course, you can always combine them by referencing the

environment variable from inside the search path:

$ jruby -J-cp $CLASSPATH:/path/to/library.jar

C:\> jruby -J-cp %CLASSPATH%;C:\path\to\library.jar

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=39

DEALING WITH THE CLASSPATH 40

Charlie Says. . .

A Gentle Reminder

Make sure you have called require ’java’ before using the
$CLASSPATH variable. JRuby doesn’t prepare that variable unless
it sees you’re planning to use Java libraries.

Once JRuby has loaded your program, you can further manipulate the

classpath from within Ruby.

In the Source Code

As an alternative or a supplement to the command-line classpath, you

can add a .jar or directory to the $CLASSPATH variable inside Ruby itself

(much as you’re used to doing with $LOAD_PATH or $: for Ruby libraries):

Download java_from_ruby/classpath.rb

$CLASSPATH << '/usr/local/lib/jemmy/jemmy.jar'

To sum up what we’ve seen so far: in JRuby, you use Java techniques

to find Java code, and you use Ruby techniques to find Ruby code.

Now, we’re going to do something a little different. We’re going to cross

the language barrier and use a Ruby technique to find Java code. The

simplest way to do this is to use Ruby’s require method to add a .jar to

the search path:

Download java_from_ruby/classpath.rb

require '/usr/local/lib/jemmy/jemmy.jar'

You may be wondering whether other Ruby mechanisms can load Java

code. Indeed, they can. Both the -I argument and the $LOAD_PATH vari-

able work on both Ruby and Java libraries in JRuby:

$ jruby -I/path/to -e "require 'library.jar' ..."

C:\> jruby -IC:\path\to -e "require 'library.jar' ..."

Download java_from_ruby/classpath.rb

$LOAD_PATH << '/usr/local/lib/jemmy'

require 'jemmy.jar'

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=40

LOADING CLASSES 41

Now that JRuby knows where on disk to look for external libraries, how

do we crack them open and get at the classes inside?

2.3 Loading Classes

Your Ruby code will see Java packages as Ruby modules. This is not

surprising, because these are the fundamental namespace mechanisms

of the two languages. Let’s take a closer look at how this works.

By Namespace

The most reliable way to refer to a Java class in JRuby is by tacking

Java:: onto the beginning of the full package name:

Download java_from_ruby/loading_classes.rb

Java::clojure.lang.Repl

=> Java::ClojureLang::Repl

Notice JRuby has translated the Java-like clojure.lang.Repl syntax into

an internal name, Java::ClojureLang::Repl. It may be tempting to “cut out

the middleman” and use the latter name directly in your code, but we

don’t recommend it. Internal formats are subject to change, but the

package-name syntax will always work.

For the most commonly used namespaces, JRuby provides top-level

functions like com, org, java, and javax. To use these, you have to require

’java’ first:

Download java_from_ruby/loading_classes.rb

require 'java'

java.lang.StringBuffer

=> Java::JavaLang::StringBuffer

If the class you want to access lives in the default package (that is, no

package specifier at all), just prepend Java:: directly to the class name:

Download java_from_ruby/loading_classes.rb

Java::MyTopLevelClass

=> Java::MyTopLevelClass

It’s worth noting that the module/namespace for a given package is just

another Ruby object.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=41

LOADING CLASSES 42

You can stash it in a variable or pass it around at will:

Download java_from_ruby/loading_classes.rb

swing = javax.swing

swing.JFrame

=> Java::JavaxSwing::JFrame

The techniques in the next section will build on this idea of treating

module and class names like regular data.

By Importing

For classes nested deeply inside namespaces, you may get tired of typ-

ing out the full module or package name every time. A common con-

vention is to define a new constant consisting of just the class name:

Download java_from_ruby/loading_classes.rb

StringBuffer = java.lang.StringBuffer

JRuby provides a handy java_import shortcut that does exactly this kind

of assignment. You can indicate the class you want using a Ruby con-

stant, a Java package name, or a string:

Download java_from_ruby/loading_classes.rb

java_import java.lang.StringBuffer

java_import 'java.lang.StringBuffer'

The latter is handy for importing a bunch of similarly named packages

together:

Download java_from_ruby/loading_classes.rb

['Frame', 'Dialog', 'Button'].each do |name|

java_import "org.netbeans.jemmy.operators.J#{name}Operator"

end

You can also pass a block to java_import in case you need to do some-

thing else to the package name, such as renaming it to avoid a conflict

with some existing Ruby class:

Download java_from_ruby/loading_classes.rb

java_import 'java.lang.String' do |pkg, cls|

puts "#{cls} lives in #{pkg}"

'JString' # don't clobber Ruby's String class

end

You may encounter code in the wild that uses the shorter import alias.

We recommend sticking with java_import to avoid conflicts with libraries

such as Rake that define their own import method.

Finally, we can move on to actually calling external code.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=42

USING OBJECTS 43

2.4 Using Objects

It’s taken a bit of housekeeping to get to this point. We’ve had to find

libraries, load classes, and resolve names. Now comes the payoff: driv-

ing a Java object from Ruby.

Static Methods

Let’s start with the easiest kind of Java method to invoke: static meth-

ods. Since these aren’t attached to any particular class instance, we

can punt on the whole issue of object creation for now. You can call a

static Java method directly from JRuby:

Download java_from_ruby/static.rb

java_import java.lang.System

System.currentTimeMillis # => 1251075795138

But the Java convention of using camelCase looks out of place among

Ruby’s snake_case names. Your code will look more Ruby-like if you

take advantage of JRuby’s automatic mapping between Ruby names

and Java names:

Download java_from_ruby/static.rb

java_import java.lang.System

System.current_time_millis # => 1251075795172

The mapping also knows how to deal with function names containing

capitalized abbreviations, like “URL.”

Download java_from_ruby/static.rb

java_import java.net.URL

assume you've initialized some object "factory" here

URL.setURLStreamHandlerFactory(factory)

URL.set_urlstream_handler_factory(factory)

Static Fields

Static fields of Java classes are typically used to implement either sin-

gleton objects, such as Logger.global, or constants, such as Level.SEVERE.

For the former case, you’ll just treat the field like a Ruby class-level

method, calling it with dot notation and a Ruby-style snake_case name.

For the latter case, you’ll treat the field like a Ruby constant, accessing

it with double-colon notation and matching the Java capitalization.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=43

USING OBJECTS 44

Here’s an example that shows both situations:

Download java_from_ruby/static.rb

java_import java.util.logging.Logger

java_import java.util.logging.Level

Logger.global.log Level::SEVERE, "It looks like you're writing a letter!"

Object Construction

JRuby adapts many Java idioms to “the Ruby way.” Constructing Java

objects falls right into this aesthetic; you just use the normal Ruby new

class method. You might wonder how this is possible, since Java sup-

ports overloaded methods (including constructors) and Ruby doesn’t.

But JRuby sweeps this difference under the rug for you, looking at the

parameters you pass to new and selecting the constructor that best

matches those arguments. We’ll see more detail on argument matching

in a minute.

First, let’s look at a concrete example. Java’s URL class has several

constructors, including these two:

new URL(String spec)

new URL(String protocol, String host, String file)

JRuby will choose the best match when you call new:

Download java_from_ruby/instances.rb

URL.new 'http://pragprog.com/titles'

URL.new 'http', 'pragprog.com', '/titles'

Instance Methods

Just as with static methods, JRuby maps instance methods to nice

snake_case ones for you:

Download java_from_ruby/instances.rb

url.get_protocol # => "http"

As an added bonus, Java-style getters and setters are callable as Ruby-

style attribute accessors. In other words, the following two lines are

equivalent:

Download java_from_ruby/attributes.rb

car.setPrice(20_000)

car.price = 20_000

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/instances.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/instances.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/attributes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=44

PASSING PARAMETERS 45

Instance Fields

On its own, JRuby doesn’t seek out a class’s fields and try to map them

to Ruby attributes. After all, most fields are private—there’s usually

no need to get at them from outside the class, let alone outside the

language. Still, there may be times when you really need this capability.

If you have the following Java class:

Download java_from_ruby/FieldDemo.java

public class FieldDemo

{

private int somePrivateField = 0;

public FieldDemo() {}

}

...you can reopen (that is, modify) the class in JRuby and specify a

Java-to-Ruby mapping for the field:

Download java_from_ruby/field_demo.rb

class FieldDemo

field_accessor :somePrivateField => :some_field

end

obj = FieldDemo.new

obj.some_field = 1

obj.some_field

=> 1

This will always work for public fields of a particular Java type, and if

your JVM’s security settings are lenient enough (most default configu-

rations are), it will work for protected, package-visible and private fields

as well.

2.5 Passing Parameters

Even the simple method calls in the past few sections are the result of

careful choreography on JRuby’s part. As we saw with the URL construc-

tors, JRuby seems to “know” which among several overloaded versions

of a Java method is the best fit for the way you’re calling it in Ruby.

What about method parameters? Unless it was written specifically for

JRuby, a Java method will not expect to be passed a bunch of Ruby

objects. So, JRuby will automatically convert certain parameters from

the original Ruby types to the Java types needed by the method.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/FieldDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/field_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=45

PASSING PARAMETERS 46

We’re as mistrustful of magical thinking in programming as you are.

Fortunately, there’s no magic here, just some straightforward mappings

between Java and Ruby types. Once you understand why and how

JRuby selects methods and converts parameters, you’ll always know

how your code will behave.

Simple Type Conversion

For meat-and-potatoes types like numbers and strings, JRuby will copy

each Ruby parameter into a reasonable Java equivalent. Consider this

Java class:

Download java_from_ruby/BigIntDemo.java

import java.math.BigInteger;

public class BigIntDemo {

public static final BigInteger GOOGOL =

new BigInteger("10").pow(100);

public static boolean biggerThanGoogol(BigInteger i) {

return (GOOGOL.compareTo(i) < 0);

}

}

...and the Ruby code that calls it:

Download java_from_ruby/big_int_demo.rb

a_big_number = 10 ** 100 + 1

BigIntDemo.bigger_than_googol(a_big_number)

=> true

Ruby’s Bignum class and Java’s java.math.BigInteger are distinct types,

but JRuby seamlessly converts the Ruby data into its Java counterpart.

Arrays

Although JRuby adds a few conveniences to Java arrays to make them

feel a little more at home in the Ruby world, Ruby arrays and Java

arrays are actually distinct types:

Download java_from_ruby/ArrayDemo.java

public class ArrayDemo {

public static String whatTypeIsIt(Object o) {

return o.getClass().getName();

}

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/BigIntDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/big_int_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/ArrayDemo.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=46

PASSING PARAMETERS 47

Charlie Says. . .

Ruby Arrays in Java

JRuby’s implementation of the Ruby Array class provides a
java.util.List interface for the Java world to use. So, there’s really
no expensive data conversion happening until some piece of
Java code starts extracting individual elements from the Ruby
array you passed in.

Download java_from_ruby/array_demo.rb

ArrayDemo.what_type_is_it(['a', 'b', 'c'])

=> "org.jruby.RubyArray"

ArrayDemo.what_type_is_it(['a', 'b', 'c'].to_java)

=> "[Ljava.lang.Object;"

JRuby can convert Ruby arrays to Java ones for you, so this difference

isn’t much of an inconvenience in practice.

Plain Ol’ Java Objects

When you’ve obtained a Java object from some API call, you can freely

pass that object around in the Ruby world and hand it back to Java

undisturbed. For example, let’s say you wanted to construct a Java URL

object, stash it in a Ruby variable, and then pass it into a Java method

later:

Download java_from_ruby/url_demo.rb

url = URL.new 'http://pragprog.com/titles'

add_url_to_some_ruby_list(url)

URLDemo.retrieve_url url

=> "big list of book titles"

There’s no conversion going on in this case; the Java URL object is simply

kept intact throughout its stay in Ruby-land.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/array_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/url_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=47

PASSING PARAMETERS 48

Variable Arguments

JRuby can call Java methods with variable argument lists:

Download java_from_ruby/variable_args_demo.rb

VariableArgsDemo.longest_string "foo", "bazzles", "schnozzberry"

=> "schnozzberry"

The syntax is exactly like what you’d use for any other function.

Explicit Coercion

Though JRuby’s mapping between Ruby and Java types will cover most

of the cases you’ll encounter, you may occasionally want to coerce Ruby

types explicitly to specific Java ones. For instance, if JRuby’s auto-

matic conversion is likely to be time-consuming, you might want to

pre-convert the object:

Download java_from_ruby/string_demo.rb

ruby_string = "This is a large string we don't want to convert frequently"

java_string = ruby_string.to_java

StringDemo.method_taking_a java_string

When you require ’java’, every Ruby object gains a to_java method. Either

you can call it with no parameters to get the nearest Java type or you

can specify a particular Java class you want to convert to.

The Extra Mile

The Ruby/Java conversions we’ve seen so far have been like the sim-

ple translations in a tourist’s phrasebook. They’re fine for rudimentary

communication. But as a seasoned traveler, you enjoy speaking in a

more fluent, idiomatic way.

JRuby includes tons of extra conveniences for using Ruby idioms with

Java classes, and vice versa. Here are a few of the most common ones.

Strings and Regular Expressions

Ruby’s to_s and Java’s toString() are a natural fit for each other. Define

to_s on your Ruby object, pass it into Java, and any Java code expecting

to find toString() in your class will be able to call it.

Java regular expressions can be used with Ruby’s =~ operator:

Download java_from_ruby/special_cases.rb

java_import java.util.regex.Pattern

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/variable_args_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/string_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=48

PASSING PARAMETERS 49

simple_us_phone = Pattern.compile "\\d{3}-\\d{3}-\\d{4}"

'Call 503-555-1212' =~ simple_us_phone # => 5

You can still match strings the Java way, through the various methods

of Pattern and Matcher. But the Ruby syntax is much more convenient.

Collections

If you’re accustomed to indexing Ruby Array and Hash objects with the

[] operator, you’ll find that the same technique works on Java Map and

List objects as well:

Download java_from_ruby/special_cases.rb

assume this came from some Java function

java_list.entries # => ["lock", "stock", "barrel"]

first_item = java_list[0] # => "lock"

Moreover, all Java Collection objects gain the traditional Ruby array

operators: +, -, <<, length, and join.

JRuby mixes the Ruby Enumerable interface into Java Collections and

Iterables. So, you can use Ruby’s functional programming idioms

directly on Java classes:

Download java_from_ruby/special_cases.rb

assume this came from some Java function

java_list_of_urls.entries

=> [#<Java::JavaNet::URL:0xacecf3>, #<Java::JavaNet::URL:0xf854bd>]

protocols = java_list_of_urls.map do |url|

url.protocol

end

=> ["http", "ftp"]

Java and Ruby each have a notion of Comparable objects:

Download java_from_ruby/special_cases.rb

uris = [URI.new('/uploads'),

URI.new('/images'),

URI.new('/stylesheets')]

uris.sort.map {|u| u.to_string}

=> ["/images", "/stylesheets", "/uploads"]

JRuby maps the two concepts together so that you can sort Java objects

inside Ruby collections.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=49

CALLING OVERLOADED METHODS 50

Edge Cases

Before we move on, let’s dip our toes into a few of the more obscure

conversions. JRuby adds the to_proc Ruby method to Java Runnables so

they can be passed around as blocks of code in Ruby. Here’s a rather

contrived example that hands off a Java thread to a Ruby one:11

Download java_from_ruby/special_cases.rb

runnable = java.lang.Thread.new

run_it = runnable.to_proc

Thread.new &run_it

Java InputStreams and OutputStreams can be converted to Ruby IO ob-

jects with the to_io method:

Download java_from_ruby/special_cases.rb

java_out = java.lang.System.out.to_io

java_out << 'Hello from JRuby!'

You can catch Java exceptions in a Ruby rescue clause:

Download java_from_ruby/special_cases.rb

begin

java.text.SimpleDateFormat.new(nil)

rescue java.lang.NullPointerException

puts 'Ouch!'

end

Believe it or not, there is an overall theme to this parade of examples:

simplicity. JRuby supports so many different ways of passing data into

Java, precisely so that your Ruby code can be as lucid as possible.

Rather than trying to memorize every edge case, we recommend you

take one more glance over the most common uses described earlier and

then just let JRuby delight you. For those rare times when you really

need to know exactly what’s happening inside the machinery, you can

turn to Appendix B, on page 290.

2.6 Calling Overloaded Methods

There are two reasons JRuby looks so closely at the parameters you

pass into Java methods. The first, as we’ve just seen, is to expose your

11. Speaking of threads, we should mention that JRuby is not subject to the “Global

Interpreter Lock” shared by some Ruby implementations. Your Ruby threads can run

simultaneously on multiple cores.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=50

CALLING OVERLOADED METHODS 51

Ruby data to Java in the most convenient way possible. The second is

to select the best match for an overloaded method.

Automatic Resolution

The simplest case to consider is a set of overloads based on a single

parameter, where the differences among types are obvious:

Download java_from_ruby/OverloadDemo.java

import java.util.List;

public class OverloadDemo {

public static String whatTypeIs(long value) {

return "long";

}

public static String whatTypeIs(String value) {

return "string";

}

public static String whatTypeIs(Object value) {

return "object";

}

}

Here, the Java types are radically different from one another, and

JRuby is able to choose appropriate overloads with no assistance:

Download java_from_ruby/overload_demo.rb

OverloadDemo.what_type_is 42 # => "long"

OverloadDemo.what_type_is "Fun!" # => "string"

OverloadDemo.what_type_is Hash.new # => "object"

Sometimes, though, things get a little hairier. In the following Java

class, the overloaded methods both take integer types:

Download java_from_ruby/HowManyBits.java

public class HowManyBits {

public int neededFor(int i) {

return 32;

}

public int neededFor(long l) {

return 64;

}

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/OverloadDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/overload_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/HowManyBits.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=51

CALLING OVERLOADED METHODS 52

When we try to call the version that takes a 32-bit integer, JRuby ends

up promoting our parameter to a long instead:

Download java_from_ruby/how_many_bits.rb

bits = HowManyBits.new

bits.needed_for 1_000_000

=> 64

How do we tell JRuby, “No, I really mean the int version?”

Forcing a Specific Overload

In Java, you can choose which overload you want by casting arguments

to specific types. For instance, you might use System.out.println((char)70)

to call the version of println that takes a character, rather than the one

that takes an int. But Ruby has no casting syntax...are we stuck? For-

tunately not. We can use JRuby’s java_send method to specify the int

version of the neededFor() method from earlier:

Download java_from_ruby/how_many_bits.rb

bits.java_send :neededFor, [Java::int], 1_000_000

=> 32

If you’ve used Ruby’s built-in send method, the notation should look

familiar. Notice that this is a bit more cumbersome than a plain method

call. For this reason, JRuby provides a couple of shortcuts. The sim-

plest is java_alias, which lets you choose a new name for the Java over-

load:

Download java_from_ruby/how_many_bits.rb

class HowManyBits

java_alias :needed_for_int, :neededFor, [Java::int]

end

puts bits.needed_for_int(1_000_000)

The other alternative is to use java_method to get a reference to an

overload. You can pass this reference around your program and call it

at any time:

Download java_from_ruby/how_many_bits.rb

bits_needed_for = bits.java_method :neededFor, [Java::int]

bits_needed_for.call 1_000_000

=> 32

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=52

CALLING OVERLOADED METHODS 53

Not only will java_alias and java_method clean up your code, they’ll also

make it a little faster, since JRuby won’t have to keep looking up the

same Java overload.

Annotated Classes

Some Java methods expect the objects handed to them to have specific

annotations. Assume we’ve defined a custom PerformedBy annotation

containing the name of someone who performs a feat of skill:

Download java_from_ruby/Sorcery.java

@PerformedBy(name="Charlie")

public class Sorcery {

// Nothing up my sleeve...

}

If we wanted to describe the feat of skill at runtime, we could do so by

reading the annotation:

Download java_from_ruby/Chronicler.java

import java.lang.annotation.Annotation;

public class Chronicler {

public static void describe(Class<?> c) {

PerformedBy p = (PerformedBy)c.getAnnotation(PerformedBy.class);

System.out.println(p.name() + " performs " + c.getName());

}

}

How do we call this method from JRuby? There’s no primitive Java

type we can convert the parameter to. It’s expecting a full-on Java class

name with a runtime annotation attached. Fortunately, JRuby can cre-

ate a Java class for us on the fly, based on our Ruby class:

Download java_from_ruby/mischief.rb

require 'java'

require 'jruby/core_ext'

java_import 'PerformedBy'

java_import 'Chronicler'

java_import 'Sorcery'

class Mischief

... more mischief here ...

end

Mischief.add_class_annotation PerformedBy => {'name' => 'Ian'}

Mischief.become_java!

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/Sorcery.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/Chronicler.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/mischief.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=53

IMPLEMENTING A JAVA INTERFACE 54

Chronicler.describe Sorcery

>>> Charlie performs Sorcery

Chronicler.describe Mischief

>>> Ian performs ruby.Mischief

The add_class_annotation method, imported from JRuby’s core_ext exten-

sions, decorates the Ruby class with the necessary annotation. By it-

self, this doesn’t mean much, since the Ruby universe won’t know to

look for this information. But when we use the become_java! method

to “promote” Mischief to a real Java class, the Chronicler is able to see the

PerformedBy annotation.

2.7 Implementing a Java Interface

What do you do when the function you’re calling expects you to pass

in a Java object implementing some specific interface? Consider Execu-

tors.callable, which wraps a Runnable up inside an object:

static Callable<Object> callable(Runnable task);

There are two main ways to pass an interface into a Java function.

Implementing the Methods

You can implement the Java interface completely in Ruby code. Just

include it in your class definition, and any calls to the interface’s meth-

ods become calls to your Ruby class. Runnable has just one required

method, run:

Download java_from_ruby/runnable_demo.rb

Line 1 require 'java'
- java_import java.lang.Runnable
-

- class Foo
5 include Runnable
-

- def run
- puts "foo"
- end

10 end
-

- callable = java.util.concurrent.Executors.callable(Foo.new)
- callable.call

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=54

TROUBLESHOOTING 55

Technically, you don’t have to include the interface name at line 5.

JRuby can detect that this instance of Foo implements Runnable’s meth-

ods. But we like being explicit here.

Passing a Block

For single-method interfaces, there’s an even more direct path from

Ruby to Java. Instead of going through the mental overhead of creating

and naming a Ruby class, you can just pass a block of Ruby code

straight to the Java method:

Download java_from_ruby/runnable_demo.rb

callable = java.util.concurrent.Executors.callable do

puts "foo"

end

callable.call

This also works with Proc objects, which are like blocks of code that can

be stored in variables:

Download java_from_ruby/runnable_demo.rb

myproc = Proc.new { puts "foo" }

callable = java.util.concurrent.Executors.callable(myproc)

callable.call

This approach is suitable only for simple interfaces. If an interface has

ten different methods in it, that poor little Ruby block is going to have

to understand ten different ways in which Java might call it. In those

cases, you’re best off using the class approach described earlier.

One other thing to note about the block approach is that the interface

passed into the Java world isn’t quite a first-class citizen. For instance,

the code on the other side of the wall won’t be able to use features like

introspection to interrogate your Ruby code.

2.8 Troubleshooting

It happens to the best of us. You’re ready to tie together your master-

piece, and instead of passing tests, you get a 20-line stack trace. Here

are some of the errors you might see on your path to JRuby bliss.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=55

TROUBLESHOOTING 56

NameError

If your import fails with a NameError, like this:

Download java_from_ruby/name_error.rb

require 'java'

java_import 'com.example.Foo'

~> (eval):1:in `include_class': cannot load Java class com.example.Foo (NameError)

...there are a couple of things you can check. First, try the obvious:

make sure your classpath contains the directories where your Java

classes live. Next, make sure the directory structure matches the Java

package structure. If your Java class is part of the com.example pack-

age, the .class file needs to be nested in a com/example subdirectory.

Wrong Version of a Class

Maybe it’s happened to you. You make a change to a Java class to fix a

bug, and it doesn’t work. You throw in some println() statements to find

out what’s going on, and nothing shows up on the console. Is JRuby

even calling your code? Perhaps not. If some other implementation of

that class, inside some other directory or .jar, is ahead in the classpath,

JRuby might be loading that and not even seeing your work.

Errors at Construction Time

Sometimes JRuby will import a class just fine but will raise a NoClassD-

efFoundError or LinkageError when you try to instantiate it. This can hap-

pen when the class you need is in your classpath but one of its depen-

dencies isn’t. For example, imagine you have a file named consumer.jar

containing a Consumer class. Even after JRuby finds the .jar, things can

still go wrong:

Download java_from_ruby/producer_consumer.rb

consumer = Consumer.new

~> Consumer.java:2:in `<init>': java.lang.NoClassDefFoundError:

~> Producer (NativeException)

~> ...

~> from -:7

Here, the backtrace provides a clue: Java couldn’t find a Producer class,

which Consumer apparently requires. Adding producer.jar (or wherever

the class lives) to your classpath should fix the problem. If the back-

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/name_error.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/producer_consumer.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=56

TROUBLESHOOTING 57

trace doesn’t give enough clues to figure out which .jar is missing, it’s

time to hit the documentation for the Java libraries you’re using.

This kind of problem can also happen if a class you’re directly or indi-

rectly depending on was compiled for an incompatible JVM version.

Can’t Find the Method

A lot of things can go wrong at method invocation time. The most obvi-

ous thing to check is the method name; if you can call a method by

its original Java camelCase() name but not by its Ruby-style snake_case

name, you may be looking at an edge case in the mapping between the

two (like setURLForPage() → set_urlfor_page).

After spelling quirks, the most common cause of “vanishing methods” is

type coercion. If JRuby can’t automatically map your Ruby parameters

to Java ones, it won’t call the method. You’ll need to convert some of

the parameters yourself.

Wrong Method

A less frequent case, but no less baffling when it happens, is when

JRuby invokes a different method than the one you want. As we saw

earlier, JRuby tries to pick the closest match among overloaded func-

tions. But some distinctions simply do not exist on the Ruby side.

Similar situations can come up when multiple overloads are all equally

valid—such as when a Ruby object implements two interfaces and there

are overloads for each. In cases like these, you’ll need to use java_send

or one of its cousins from Section 2.6, Forcing a Specific Overload, on

page 52.

JRuby can also end up making the wrong call if your Java method

names clash with common Ruby ones. Say you have the following class

that just happens to have a method called initialize(), which is the name

Ruby uses for constructors:

Download java_from_ruby/MethodClash.java

public class MethodClash {

public void initialize(String data) {

System.out.println("Now we're set up with " + data);

}

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/MethodClash.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=57

WRAPPING UP 58

If you try to call this method the usual way, JRuby will think you want

the no-argument Ruby initialize constructor:

Download java_from_ruby/method_clash.rb

the_clash = MethodClash.new

the_clash.initialize 'everything'

~> -:8: wrong # of arguments(1 for 0) (ArgumentError)

Actually, we got lucky this time. If the Java method had taken zero

arguments instead of one, Ruby would have silently called the wrong

method instead of reporting an error. Again, java_send comes to the

rescue:

Download java_from_ruby/method_clash.rb

the_clash = MethodClash.new

the_clash.java_send :initialize, [java.lang.String], 'everything'

>> Now we're set up with everything

Fortunately, there are very few cases like this one. object_id, __id__, and

__send__ come to mind, but they are not likely to appear in a typical

Java class.

Lost Monkeypatches

JRuby lets you monkeypatch Java classes, with a catch.12 The Java

side will be unaware of any new attributes or methods you define in

Ruby. In fact, your additions will evaporate completely if Ruby lets go

of all its references to the object. (The original Java part of the object

will of course live on as long as the Java side holds a reference.)

If you’ve tried the techniques we’ve described here and are still stuck,

you may want to peek at the relevant section of the JRuby wiki.13

2.9 Wrapping Up

We’ve been all over the map this chapter, from the basics of loading

libraries to the minutiae of parameter passing. We’ve seen how JRuby

12. Monkeypatching (from a malapropism of “guerrilla patching”) means modifying a class

at runtime.
13. http://wiki.jruby.org/CallingJavaFromJRuby

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/java_from_ruby/method_clash.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/method_clash.rb
http://wiki.jruby.org/CallingJavaFromJRuby
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=58

WRAPPING UP 59

sands off some of the rough spots where the two languages meet and

how to steer around the remaining ones. And we’ve discussed what to

do when things go wrong.

This broad set of topics might seem scattershot at first glance. But

we’ve striven to show a common theme among them. The examples

we’ve presented have all focused on the case where you’re starting with

a Ruby script that’s calling into a Java library. Of course, there’s been

some back-and-forth, with Java occasionally calling back into a Ruby

object we gave it.

We’re about to shift the emphasis in the Java direction. In the next

chapter, we’ll start with a Java project and add Ruby to it. As with this

chapter, there will still be plenty of places where the two worlds are

calling back and forth to each other.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=59

Chapter 3

Ruby from Java:
Embedding JRuby

We’ve just seen several ways for Ruby to call into Java libraries. Now

let’s consider the other side of the coin: embedding Ruby code in a Java

project.

There are several situations where this capability comes in handy. Here

are a few examples:

• A Java program might need to perform some task for which there

is no Java library (or for which the Ruby libraries are easier to use

than their Java counterparts). For example, Ruby’s image_voodoo

library exposes a simpler API than the native Java2D framework.1

• Users might want to extend your Java game or animation program

with their own scripts. With JRuby, you can use Ruby as your

project’s extension language.

• You might be deploying a Ruby program into an otherwise Java-

heavy environment, where your team wants to test your Ruby code

using their JUnit or TestNG harness.

• If you’re wrestling with an existing Java code base, you might want

to get the benefits of Ruby’s flexibility by rewriting parts of your

program in Ruby.

All these uses look the same from the Java side, so we’re going to con-

centrate on the first case: using a Ruby library from a Java program.

1. http://rubyforge.org/projects/jruby-extras

Download from Wow! eBook <www.wowebook.com>

http://rubyforge.org/projects/jruby-extras

A REAL-LIFE EXAMPLE: SOURCE CONTROL 61

3.1 A Real-Life Example: Source Control

Over the next several pages, we’re going to build a Java app that calls

into Ruby with increasing sophistication. We’ll start with a simple “Hello

world”–like program and end up performing a useful task.

What useful task? Glad you asked. We’re going to build a source code

history viewer in Java. The program—let’s call it Historian—will use a

Ruby library to peer into a Git repository and print patches.2 In a deli-

cious bit of recursion, we’ll view the history of Historian’s own source

code.

Setting Up Your Workspace

Before we get started, let’s quickly examine the layout of the Historian

project. You can create this structure from scratch, but we strongly

recommend following along with the book’s source code.

• src/book/embed contains the Java source to our program, which is

what we’ll be spending most of our time looking at.

• lib contains the Ruby glue code we’ll write to connect the Java

world to the Ruby library we’re wrapping.

• lib/git.rb and lib/git comprise a local copy of a popular Ruby Git

library.3 This library requires you to have Git installed on your

system, so grab that if you don’t already have it.4

• bin/get-jruby-libs downloads jruby-complete.jar, a bundle containing

the parts of JRuby needed by our Java program, into the lib direc-

tory.5 You’ll need to run this script once at the beginning of the

project or build your own .jar from source.6

• bin/make-history sets up a new Git repository in the current direc-

tory and adds a couple of revisions for Historian to play with. As

with the previous script, you should run this once before you dive

into the code.

• .git contains the history of the project’s own source code. If you’re

creating this project from scratch, you’ll need to create this history

yourself by doing a git init, plus a few commits.

2. Java already has a library for accessing Git repositories, JGit. But let’s say you were

itching to use one of the many Ruby bindings to Git instead.
3. http://repo.or.cz/w/rubygit.git

4. http://git-scm.com

5. http://jruby.org.s3.amazonaws.com/downloads/1.5.5/jruby-complete-1.5.5.jar

6. http://wiki.jruby.org/DownloadAndBuildJRuby

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://repo.or.cz/w/rubygit.git
http://git-scm.com
http://jruby.org.s3.amazonaws.com/downloads/1.5.5/jruby-complete-1.5.5.jar
http://wiki.jruby.org/DownloadAndBuildJRuby
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=61

A REAL-LIFE EXAMPLE: SOURCE CONTROL 62

As we proceed, you’ll notice that we’re building up this project in stages,

from Historian1.java up to Historian8.java. You might find it slightly ironic

that we’re using such an old-school naming convention with such an

advanced revision control system. We want the filenames on the printed

pages of this book to be explicit about what stage of the process we’re in.

We’ll give instructions for building the project on the command line with

Ant (see Chapter 7, Building Software for Deployment, on page 165).

If you prefer the IDE experience, we’ve also included project files for

NetBeans.

Getting the Two Worlds Talking

Let’s start with the basics. Within the project structure we’ve described,

create a file called Historian1.java in the src/book/embed folder. Put the

following imports at the top (we won’t need some of these classes until

later, but let’s go ahead and import them now):

Download ruby_from_java/historian/src/book/embed/Historian1.java

package book.embed;

import java.util.Arrays;

import java.util.List;

import org.jruby.embed.InvokeFailedException;

import org.jruby.embed.ScriptingContainer;

Now, add the bare minimum connection to Ruby:

Download ruby_from_java/historian/src/book/embed/Historian1.java

public class Historian1 {

public static void main(String[] args) {

ScriptingContainer container = new ScriptingContainer();

container.runScriptlet("puts 'TODO: Make history here.'");

}

}

This is the simplest way to drive Ruby from Java: pass in a chunk of

Ruby code as a String, and let JRuby handle the rest (including output).

The ScriptingContainer class is part of JRuby’s core embedding API.7

You can compile the script using Ant:

$ ant

7. Embed Core is part of a collection of JRuby embedding APIs, known together as

JRuby Embed or Red Bridge.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian1.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian1.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=62

A REAL-LIFE EXAMPLE: SOURCE CONTROL 63

...and run it using the launcher we’ve provided:

$./bin/historian1

TODO: Make history here.

There’s nothing mysterious going on inside this launcher. We’re just

setting up the classpath to contain both Historian and jruby-complete.jar.

If you prefer, you can do this manually:

$ java -cp lib/jruby-complete.jar:build/classes book.embed.Historian1

Now that Java is at least able to run a trivial JRuby program, let’s

put some actual behavior in there. Here’s the new body of the main()

function. If you’re using the same filenames as we are, make sure you

name your new class Historian2 to match the file.

Download ruby_from_java/historian/src/book/embed/Historian2.java

ScriptingContainer container = new ScriptingContainer();

container.setLoadPaths(Arrays.asList("lib"));

String expr = "require 'git'\n" +

"puts Git.open('.').diff('HEAD^', 'HEAD')";

container.runScriptlet(expr);

The call to setLoadPaths() adds the project’s lib directory to the scripting

container’s Ruby search path so that the require line in Ruby can find

the git.rb library. Next, we do a Git diff on our project home (which

happens to be a Git repository) to see what has changed since the last

commit.

Go ahead and run the new version of the app. The results should look

something like this:

$./bin/historian2

diff --git a/lib/archive8.rb b/lib/archive8.rb

new file mode 100644

index 0000000..1d5967f

--- /dev/null

+++ b/lib/archive8.rb

@@ -0,0 +1,12 @@

+require 'git'

+

...

Our first real result! Let’s ride this momentum as we charge into some

of the details of the embedding API.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian2.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=63

A REAL-LIFE EXAMPLE: SOURCE CONTROL 64

Passing Strings In and Out

Ruby is still in charge of the output, via its puts function. Let’s get rid of

that call and just have our script return the result to Java as a string:

Download ruby_from_java/historian/src/book/embed/Historian3.java

ScriptingContainer container = new ScriptingContainer();

container.setLoadPaths(Arrays.asList("lib"));

String expr = "require 'git'\n" +

"Git.open('.').diff('HEAD^', 'HEAD')";

System.out.println(container.runScriptlet(expr));

You may be wondering how this works. Let’s examine the signature of

JRuby’s runScriptlet() first:

java.lang.Object runScriptlet(String expression);

The return value is the result of the last expression in the Ruby code

we passed in, converted to a Java Object. But what is the value of the

following line?

Git.open('.').diff('HEAD', 'HEAD^')

It’s a Ruby Array with one Git::Diff::DiffFile element per file in the Git

changeset. How is Java supposed to work with this Ruby object?

Luckily, all we’re doing is passing the result to println(), which doesn’t

care about the underlying type—as long as it implements toString(). As

we discussed in Chapter 2, Driving Java from Ruby, on page 31, JRuby

defines this method for us as a wrapper around the Ruby equivalent,

to_s.

This example should produce the same output as the previous one; all

we’re doing is shifting the printing burden from Ruby to Java. Even-

tually, we’ll be handing that data back in a format that Java can pick

apart. But first, let’s add a little flexibility.

It would be nice to be able to see the difference between any two revi-

sions, not just the two most recent ones. So, we’ll have the user supply

two Git revision identifiers on the command line, and we’ll pass them

into Ruby together as a single Java object. As we’ve seen in the previous

chapter, Ruby will have no problem calling methods on this Java object

to extract the arguments.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian3.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=64

A REAL-LIFE EXAMPLE: SOURCE CONTROL 65

First, create a very simple Revisions Java class, representing a pair of

version identifiers:

Download ruby_from_java/historian/src/book/embed/Revisions.java

package book.embed;

public class Revisions {

private String start, finish;

public Revisions(String start, String finish) {

this.start = start;

this.finish = finish;

}

public String getStart() {

return start;

}

public String getFinish() {

return finish;

}

}

Now, add Ruby code to extract these fields and perform the diff. We

could build this code up in Java as one big string like we’ve been doing.

In the name of brevity, though, let’s put this glue code in a separate

file, lib/archive4.rb, which we’ll later require:

Download ruby_from_java/historian/lib/archive4.rb

require 'git'

def history

git = Git.open('.')

git.diff($revisions.start, $revisions.finish)

end

The history function refers to a global variable, $revisions, which holds a

Revisions object from the Java side. We’ll soon see how that value gets

passed in.

First, though, note that we’re calling the Revisions object’s getStart() and

getFinish() methods using the shorter start and finish names. We encoun-

tered this shortcut in Section 2.4, Instance Methods, on page 44; it’s

nice to be able to use it to keep our code clean here.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Revisions.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive4.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=65

A REAL-LIFE EXAMPLE: SOURCE CONTROL 66

How does the assignment to the $revisions variable happen? Via the

scripting container’s put() method:

Download ruby_from_java/historian/src/book/embed/Historian4.java

ScriptingContainer container = new ScriptingContainer();

container.setLoadPaths(Arrays.asList("lib"));

container.runScriptlet("require 'archive4'");

container.put("$revisions", new Revisions(args[0], args[1]));

System.out.println(container.runScriptlet("history"));

Notice that the ScriptingContainer object remembers what’s happened to

it from one invocation of runScriplet() to another. The call to history works

because it remembered the previous require of archive.

This continuity is incredibly useful. You can do expensive setup opera-

tions once at the beginning of a program and then later just consume

those loaded Ruby features without having to reload them for every call

to runScriptlet().

Go ahead and try the new Historian by passing in a couple of revision

identifiers on the command line:

$./bin/historian4 HEAD~2 HEAD

diff --git a/lib/archive7.rb b/lib/archive7.rb

new file mode 100644

index 0000000..1d5967f

--- /dev/null

+++ b/lib/archive7.rb

@@ -0,0 +1,12 @@

+require 'git'

+

...

Our use of the embedding API is starting to look less like a “throw it

over the wall and cross your fingers” approach and more like a real

interaction between Java and Ruby. We’re still using the blunt instru-

ment of raw strings to pass data back and forth, though. Let’s change

that.

Real Java Data

Odds are that in any nontrivial application, you’ll want something more

substantial to chew on than just an Object you call toString() on. Let’s

change our example to return something useful to Java.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian4.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=66

A REAL-LIFE EXAMPLE: SOURCE CONTROL 67

First, we’ll make a Java interface to represent a diff for each file in a Git

changeset:

Download ruby_from_java/historian/src/book/embed/GitDiff.java

package book.embed;

public interface GitDiff {

public String getPath();

public String getPatch();

}

Of course, the Ruby Git library’s DiffFile class was written long before

the GitDiff Java interface. But we can reopen the Ruby class and make

it implement the interface, using the techniques in Section 2.7, Imple-

menting the Methods, on page 54:

Download ruby_from_java/historian/lib/archive5.rb

require 'git'

class Git::Diff::DiffFile

include Java::book.embed.GitDiff

end

def history

git = Git.open('.')

git.diff($revisions.start, $revisions.finish).to_a

end

The DiffFile class in Ruby already has path and patch methods defined.

When we implement GitDiff by include-ing it in DiffFile, Java will automat-

ically have access to the existing path and patch methods via getPath()

and getPatch(). No need to write any wrappers or define any mappings!

As we saw earlier, the diff method will return a Ruby Array of DiffFiles—

which are now also Java GitDiffs. Recall from Section 2.5, Arrays, on

page 46 that Ruby Arrays are also java.util.List instances. Together, these

two facts mean that our return value is now castable to List<GitDiff>.

Here’s how the Java code will process the results now:

Download ruby_from_java/historian/src/book/embed/Historian5.java

ScriptingContainer container = new ScriptingContainer();

container.setLoadPaths(Arrays.asList("lib"));

container.runScriptlet("require 'archive5'");

container.put("$revisions", new Revisions(args[0], args[1]));

List<GitDiff> files = (List<GitDiff>) container.runScriptlet("history");

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/GitDiff.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive5.rb
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian5.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=67

A REAL-LIFE EXAMPLE: SOURCE CONTROL 68

for (GitDiff file: files) {

System.out.println("FILE: " + file.getPath());

System.out.println(file.getPatch());

}

Cool. One cast, and we are using the result like any other POJO.

Notice the sequence we’re using now: stash the input arguments in a

global and then call a top-level function that takes no parameters. That

may do for BASIC programs written in the 1980s, but Ruby provides

better abstractions. Let’s pass the revision information into history as a

parameter, instead of using a global. While we’re at it, we’ll move the

function into a class:

Download ruby_from_java/historian/lib/archive6.rb

require 'git'

class Git::Diff::DiffFile

include Java::book.embed.GitDiff

end

class Archive

def history(revisions)

git = Git.open '.'

git.diff(revisions.start, revisions.finish).to_a

end

end

So far, we’ve been calling the history method by building up a string in

Java with the word history in it. But JRuby can actually call the method

directly, using the callMethod() operation.

callMethod() takes the Ruby object whose method we’re calling (the

receiver), the method name, and whatever parameters you’re passing

in.

Download ruby_from_java/historian/src/book/embed/Historian6.java

ScriptingContainer container = new ScriptingContainer();

container.setLoadPaths(Arrays.asList("lib"));

container.runScriptlet("require 'archive6'");

Object archive = container.runScriptlet("Archive.new");

List<GitDiff> files = (List<GitDiff>)

container.callMethod(archive,

"history",

new Revisions(args[0], args[1]));

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive6.rb
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian6.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=68

A REAL-LIFE EXAMPLE: SOURCE CONTROL 69

for (GitDiff file: files) {

System.out.println("FILE: " + file.getPath());

System.out.println(file.getPatch());

}

This is more like it! We’re passing a parameterized list straight into a

Ruby method. There’s just one more thing we need to do before we call

it a day.

So far, we have been running our program with valid Git revision iden-

tifiers like HEAD~2. What happens when we give it an invalid revision?

$./bin/historian6 PASTA NOODLES

ruby_from_java/historian/lib/git/lib.rb:700:in `command':

git diff "-p" "PASTA" "NOODLES" 2>&1:fatal: ambiguous argument 'PASTA':

... 28 lines of errors, including things like:

at org.jruby.embed.internal.EmbedRubyObjectAdapterImpl.call(...)

at org.jruby.embed.internal.EmbedRubyObjectAdapterImpl.callMethod(...)

at org.jruby.embed.ScriptingContainer.callMethod(...)

at book.embed.Historian6.main(Historian6.java:16)

OK, it got the job done, but...yuck! Fortunately, we can catch Ruby

exceptions in Java, using JRuby’s InvokeFailedException:

Download ruby_from_java/historian/src/book/embed/Historian7.java

ScriptingContainer container = new ScriptingContainer();

container.setLoadPaths(Arrays.asList("lib"));

container.runScriptlet("require 'archive7'");

Object archive = container.runScriptlet("Archive.new");

try {

List<GitDiff> files = (List<GitDiff>)

container.callMethod(archive,

"history",

new Revisions(args[0], args[1]));

for (GitDiff file : files) {

System.out.println("FILE: " + file.getPath());

System.out.println(file.getPatch());

}

} catch (InvokeFailedException e) {

// doSomethingSensibleWith(e);

System.out.println("Couldn't generate diff; please see the log file.");

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian7.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=69

THE NITTY-GRITTY 70

Here are the results:

$./bin/historian7 PASTA NOODLES

ruby_from_java/historian/lib/git/lib.rb:700:in `command':

git diff "-p" "PASTA" "NOODLES" 2>&1:fatal: ambiguous argument 'PASTA':

unknown revision or path not in the working tree. (Git::GitExecuteError)

Use '--' to separate paths from revisions

from ruby_from_java/historian/lib/git/lib.rb:249:in `diff_full'

from ruby_from_java/historian/lib/git/diff.rb:100:in `cache_full'

from ruby_from_java/historian/lib/git/diff.rb:106:in `process_full'

from ruby_from_java/historian/lib/git/diff.rb:64:in `each'

from ruby_from_java/historian/lib/archive7.rb:10:in `history'

from <script>:1

Couldn't generate diff; please see the log file.

So, there you have it: a program written in Java that calls a Ruby

method to inspect the source code of...the program itself. We will be cov-

ering some more details for the rest of this chapter, but you largely have

all the skills you need now. Go forth and make some simple embedded

Ruby applications, or read on for the nitty-gritty details.

3.2 The Nitty-Gritty

There are always special circumstances and strange little details that

a project runs into. If you find yourself wanting more control knobs for

the embedding API than we’ve shown you so far, then read on.

Other Embedding Frameworks

All the examples we’ve seen so far have used Embed Core, the main

embedding API that ships with JRuby. This API offers a great deal of

interoperability. You can call a Ruby method, crunch the results in

Java, and hand data back into Ruby. What makes this deep integration

possible is that Embed Core was created just for JRuby.

There are times, however, when a general scripting API is a better fit

than a Ruby-specific one. For instance, if your Java project already

includes other scripting languages, you probably don’t want to use a

separate API for each language.

JRuby supports the two most popular Java embedding APIs. Bean

Scripting Framework, the older of the two, began at IBM and is now

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=70

THE NITTY-GRITTY 71

hosted by the Apache Jakarta project. javax.scripting, also known as JSR

223, is part of the official JDK. Both have a similar flavor: you connect a

general-purpose script manager to a language-specific scripting engine.

In case you’re curious, here’s how the final Historian example from

earlier would look in JSR 223, minus the exception code. First, the

imports at the top need to change a little:

Download ruby_from_java/historian/src/book/embed/Historian8.java

package book.embed;

import java.lang.NoSuchMethodException;

import java.util.List;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

Now for the Ruby embedding code:

Download ruby_from_java/historian/src/book/embed/Historian8.java

public static void main(String[] args)

throws ScriptException, NoSuchMethodException {

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("jruby");

Invocable invocable = (Invocable)engine;

engine.eval("$LOAD_PATH << 'lib'");

engine.eval("require 'archive8'");

Object archive = engine.eval("Archive.new");

List<GitDiff> diffs = (List<GitDiff>)

invocable.invokeMethod(archive,

"history",

new Revisions(args[0], args[1]));

for (GitDiff diff : diffs) {

System.out.println("FILE: " + diff.getPath());

System.out.println(diff.getPatch());

}

}

JSR 223 is able to perform the same tasks for Historian that Embed

Core does, in a slightly less expressive notation. BSF has a similar feel

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian8.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian8.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=71

THE NITTY-GRITTY 72

to what you saw previously, so we won’t show a detailed example for it.

Instead, we recommend you use JSR 223 for non-Ruby-specific embed-

ding projects, because of its official position as part of the JDK.

Containers and Contexts

Each ScriptingContainer object that you create for embedding Ruby code

has an associated context object, which JRuby uses for internal book-

keeping. By “bookkeeping,” we mean things like the Ruby interpreter

instance, I/O streams, a special variable store, and configuration

options.

The simplest ScriptingContainer constructor creates a context implicitly

for you. In case you want a little more control, you can specify the kind

of context you want:

new ScriptingContainer(); // defaults to SINGLETON

new ScriptingContainer(LocalContextScope.SINGLETON);

new ScriptingContainer(LocalContextScope.THREADSAFE);

new ScriptingContainer(LocalContextScope.SINGLETHREAD);

Singleton

SINGLETON, the default choice, creates one Ruby runtime shared by the

entire JVM. No matter how many ScriptingContainers you create, they’ll

all share the same context if you use this option. You can either specify

this type explicitly or use the no-argument form of the constructor.

Singleton contexts are simple to use, because you don’t have to pass

ScriptingContainer references all around your program. But they also

have a big drawback: they’re not thread-safe. Try to run two chunks

of Ruby code in different Java threads, and...kaboom!

Thread-Safe

If you know multiple threads will be accessing the same ScriptingCon-

tainer (or if you’re just feeling paranoid), then you should use a THREAD-

SAFE context. This type synchronizes all access to the Ruby runtime so

that multiple threads can safely call into it without crashing.

This mode is certainly safer than SINGLETON, but it doesn’t automati-

cally make your concurrency problems go away. Under a heavy load,

you may end up with a lot of waiting threads. It’s even possible to run

into a deadlock situation. For instance, if an embedded script returns

a Ruby object that, in turn, calls back into the embedding API, you

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=72

THE NITTY-GRITTY 73

Tom Says. . .

What Type of Context Should You Use?

Even though it’s a bit of extra work up front, I recommend start-
ing your project off with THREADSAFE containers. This keeps you
in the habit of passing around the ScriptingContainer reference,
in case you later decide to switch to using to one of the other
two modes. It also makes it harder to accidentally kill your Ruby
runtime.

can end up with a call that never returns. Fortunately, this is a bit

of an extreme case. Just keep in mind the hazards of multithreaded

programs as you’re writing your code.8

Single-Threaded

So, the first mode guaranteed a single Ruby runtime, and the sec-

ond introduced some thread safety. The third mode does...none of the

above. Each time you create a ScriptingContainer with the SINGLETHREAD

option, you actually create a new context. This new context is com-

pletely unconcerned with concurrent access. Everything rides on you,

the programmer, to access the container from one thread at a time.

In truth, this kind of context is not such a dangerous beast if used in a

controlled environment. For example, if you are running a servlet that

spins up multiple threads, you can safely spawn one SINGLETHREAD-ed

ScriptingContainer per servlet thread in Servlet.init(). Some configurations

of the jruby-rack project use this strategy.

Ruby Version

JRuby supports both Ruby 1.8 and Ruby 1.9 syntax and semantics. By

default, a new ScriptingContainer uses Ruby 1.8 mode, but it’s quite easy

to use 1.9 instead:

container.setCompatVersion(org.jruby.CompatVersion.RUBY1_9);

8. For more information on what some of these hazards are, see Ousterhout’s “Why

Threads Are a Bad Idea (for most purposes)” at http://home.pacbell.net/ouster/threads.pdf.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://home.pacbell.net/ouster/threads.pdf
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=73

EMBEDDING STRATEGIES 74

Compile Mode

We hesitate even to bring up this option but have decided to give it

a passing mention in case you encounter it in the wild or in docu-

mentation. In practice, we strongly recommend leaving it at the default

setting.

The compile mode determines when, if ever, your ScriptingContainer ob-

ject compiles individual Ruby methods down to JVM bytecode. It is

tempting to set this option to force, meaning “always compile.” After all,

compiling just sounds faster, doesn’t it?

Of course, real life is never so simple. The act of compilation takes time,

so it only makes sense to compile a Ruby method if it’s going to be

called often enough for the time savings (if any!) to outweigh the initial

delay. That’s exactly what the default option, jit, tries to do.9 There are

times when compiling Ruby code makes sense but not when you’re

embedding a JRuby runtime in a Java project.

There are a few more options beyond these basic ones. You can control

how an embedded JRuby runtime finds Ruby code, how it finds Java

classes, how local variables are remembered from one invocation to the

next, and more. Our goal, however, isn’t to present a laundry list of

every possible setting but to show you the ones you’re most likely to

encounter in the real world. For the rest, you may want to peek at the

reference documentation.10

3.3 Embedding Strategies

In our Historian example, we saw several different ways to stitch the

Java and Ruby sides together. You can pass a Java class into your

Ruby script, make a Ruby class that implements/extends a Java type,

or just use simple, coercible types such as strings.

There is no single best approach that applies in all situations. This

section will break down some of the reasons why you may consider

picking one strategy over another.

9. http://www.realjenius.com/2009/10/06/distilling-jruby-the-jit-compiler/

10. http://wiki.jruby.org/RedBridge#Configurations

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://www.realjenius.com/2009/10/06/distilling-jruby-the-jit-compiler/
http://wiki.jruby.org/RedBridge#Configurations
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=74

EMBEDDING STRATEGIES 75

Passing Java Data Into Ruby

How do you get data into your embedded Ruby script? Passing in a Java

object is the easiest approach. The embedded script can call the object’s

methods just as if they were written in Ruby. You can even decorate the

object with additional, easier-to-use methods that actually are written

in Ruby.

When is passing data into Ruby as plain Java objects not a good fit? It

depends on how often the Ruby script ends up calling back into Java.

Calling from Ruby to Java is a little slower than staying inside the Ruby

universe. In many cases the difference is unnoticeable, but in others,

the type coercion cost (for example, copying a java.lang.String to a Ruby

String) makes this approach too slow.

So if your Ruby code needs to call a string-returning Java method in

a tight loop, consider reshaping your solution a bit. Perhaps the Java

side could assemble a Ruby object with the data preconverted and pass

that in instead. Or you could move that time-sensitive loop into your

Java code.

We don’t mean to scare you away from the direct approach. Start out by

passing a Java object into Ruby. If this doesn’t meet your performance

goals, then measure and rework.

Returning Data to Java

Getting data back into Java-land is a little more involved; Java knows

less about JRuby than JRuby knows about Java. In general, there are

three options:11

• Return a Ruby object that implements a Java interface

• Return a Ruby object that extends a Java class (concrete or

abstract)

• Construct a Java object in Ruby and return it

11. Technically, there’s a fourth option: calling become_java! on a Ruby class. But we

don’t recommend it.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=75

EMBEDDING STRATEGIES 76

The first two options are similar, in that you are returning a Ruby object

that is tied to the JRuby runtime it came from. If your Java code calls

methods on the object, these invocations will land back in the same

JRuby runtime.

As we saw in Section 3.2, Containers and Contexts, on page 72, this

reuse of runtimes can have interesting consequences for multithreaded

Java programs. If you are passing objects between threads without

using THREADSAFE mode, you can crash the Ruby runtime.

The third option is much less prone to threading issues than the other

two choices. It can also be slightly faster, since you’re not dispatching

function calls from one language to another.

The obvious downside is inelegance. If you have a small, clean Ruby

script, then the extra step of constructing a Java class for the sole

purpose of returning results will feel like makework.12 If, on the other

hand, you can build a simple Java class that doesn’t look too out of

place alongside your Ruby code, then go for it.

Type Coercion Pitfalls

JRuby strives to do the right thing with type coercions. As you call

into Ruby code and as that Ruby code returns data back to Java, many

types will get implicitly converted to similar types in the other language.

This approach is not, however, immune to mishaps. Once an object is

coerced to another type, no matter how similar, it really is a different

object. Code that relies on object identity will not work right. For exam-

ple, Maps may not work as you expect.

We’ve discussed a lot of “doom and gloom” scenarios in this section.

While these are important to keep in mind, remember that, for the most

part, things will just work. If you go about your project armed with the

knowledge of which subtleties can bite you and what to do about them,

you’ll be fine.

12. Anyone remember the original EJB specification?

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=76

WRAPPING UP 77

3.4 Wrapping Up

In this chapter, we looked at the various ways to call from Java into

Ruby, all in the context of a real-life example. We then highlighted a

couple of specific features of JRuby embedding that may help you in

your own projects. Finally, we zoomed out to discuss the general trade-

offs among embedding approaches.

We hope this discussion has whet your appetite to introduce Ruby into

your Java project. In the next chapter, we’re going to take the next

logical step and compile Ruby programs down to JVM bytecode.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=77

Chapter 4

The JRuby Compiler
By now, you’ve had the chance to run a few Ruby applications on the

JVM. You’ve tried a few of the many Ruby libraries available in the wild.

You’re probably becoming a whiz at calling from Ruby into Java, and

vice versa.

We hope you’re getting the feel for how a JRuby application fits into the

Java ecosystem and how you can start using it for your applications

today.

Ready to take the next step toward JRuby mastery?

4.1 Compiler 101

A common theme in this book is that JRuby offers both sensible de-

faults and advanced control. For quick scripts where you don’t care

what’s going on under the hood, you can just jump in and treat JRuby

like a faster Ruby. But when you have to plug into a legacy system

or squeeze a little more performance into a complex system, JRuby

rewards further exploration.

The compiler is no exception. JRuby ships with a compiler that’s always

looking for chances to optimize your code, without any explicit instruc-

tions from you. When the need arises, you can override the defaults

and tap into this power directly.

We’ll talk about how this happens in a moment. But first, we need to

get into a bit of compiler-nerd theory.

Download from Wow! eBook <www.wowebook.com>

COMPILER 101 79

Running Without a Compiler

Most implementations of the Ruby programming language run pro-

grams directly from the source code, by following a series of steps:

1. Read the text of the program from an .rb file on disk.

2. Parse the source code into an in-memory form called an abstract

syntax tree (AST).1

3. Execute (interpret) the AST directly by walking through its struc-

ture and performing the instructions at each node.

The first two steps happen when the application first starts. The third

happens continually while the program is running.

This is how nearly all Ruby development happens. Most Ruby gems

ship as a collection of .rb files, which remain in their unaltered source

form straight through deployment. Most Ruby developers never need to

write or run anything but .rb files.

JRuby supports this method of running programs, of course. Interpret-

ing code works just fine for most applications, and it’s the most direct

route from source code sitting on disk to a running program.

However, interpreters are generally not the fastest way to execute code.

At each node of the AST, JRuby’s runtime must make a decision about

how to react, make several calls to the Java runtime, and eventually

perform the requested action. Is there a better way?

Introducing the Compiler

Most interpreted languages that need to perform well eventually incor-

porate a compiler. A compiler generally takes some intermediate inter-

preted form (like JRuby’s AST) and converts it to a faster, more direct

representation.

The textbook definition of a compiler is somewhat more specific than

we have time or space for here. For now, it’s fine to think of a compiler

as a tool for converting code from one form into another form.

Compiling a Ruby program is conceptually similar to compiling a Java

program.

1. http://en.wikipedia.org/wiki/Abstract_syntax_tree

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=79

COMPILER 101 80

The process involves several stages of compilation:

1. From .rb source to JVM bytecode—the resulting bytecode may live

in memory or in a .class file

2. From JVM bytecode to a VM-specific internal representation

3. From the internal representation to native machine code

4. ...and conceptually several smaller phases at each level

The compilers used at each stage can be roughly classified into two

kinds: just-in-time (JIT) and ahead-of-time (AOT).

Just-in-Time Compilation

You’ve probably had more exposure to JIT-compiled languages than

you realize. Just-in-time compilation is the act of taking executable

code (often code that’s already running in an interpreter) and compiling

it quietly behind the scenes, without any user intervention.

Some platforms, such as Microsoft’s .NET runtime, have no interpreter.

Their JIT compilers run immediately before the program is executed.

Other platforms, including many JVM implementations, perform JIT

compilation only as code becomes “hot,” in other words, gets called

frequently. This approach can speed up application startup. It can also

boost performance down the road, because the compiler can use live

runtime information to make optimization decisions.

JRuby includes a JIT compiler that optimizes your application as it

executes. Later, we’ll see how to make the most of its power.

Ahead-of-Time Compilation

If you’ve ever manually run a compiler against a piece of source code

to create an executable file, you’ve performed ahead-of-time (AOT) com-

pilation. AOT compilers often represent the first phases of a program’s

life cycle—especially if the program’s source code form is not generally

executable on its own (as is the case for languages like C or Java).

Most Ruby implementations (including the standard implementation)

do not incorporate AOT compilers into their life cycle. Instead, they

either walk through an AST at runtime (as Ruby 1.8 does) or run a

lower-level intermediate form of the code (as Ruby 1.9 does).

AOT compilers often do less to optimize code than their JIT cousins,

since they can only use information available at compile time. They are

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=80

COMPILER 101 81

useful for languages that don’t have interpreters or that need to expose

a standard compiled form to other libraries and languages. They are

also sometimes used for code obfuscation, since the compiled form is

usually not human-readable.

JRuby also includes an AOT compiler usable for obfuscation, for gener-

ating “real” Java classes from Ruby code, or for deployment to environ-

ments that don’t support the JIT compiler. (The Android mobile plat-

form is an example of such an environment.) We’ll explore JRuby’s AOT

compiler later in the chapter.

JRuby’s Compiler

In JRuby, almost all code starts out interpreted. But as the program

runs, JRuby looks for functions that would benefit from being compiled

—and compiles them. (Readers used to the HotSpot JVM will find this

approach familiar.)

Let’s look at an example. Here’s a simple benchmark that iterates

through all the permutations of a string:

Download compiler/jit/permute.rb

require 'benchmark'

def do_something_with(data)

Your favorite operation here

end

5.times do

timing = Benchmark.measure do

letters = ['f', 'a', 'c', 'e', 't', 's']

letters.each_permutation do |p|

do_something_with(p)

end

end

puts timing

end

The implementation uses Ruby’s blocks to perform the iteration.2

2. For more on how blocks work, see Appendix A, on page 272.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=81

COMPILER 101 82

Download compiler/jit/permute.rb

class Array

Calls the attached block of code once for each permutation.

def each_permutation(&block)

We'll need to permute the array L! times.

factorial = (1..length).inject(1) { |p, n| p * n }

Make a copy, so we don't modify the original array.

copy = clone

block.call copy

(factorial - 1).times do

copy.permute!

block.call copy

end

end

end

For each iteration, we permute the array once using an algorithm from

Dijkstra’s The Problem of the Next Permutation [Dij76]:

Download compiler/jit/permute.rb

class Array

Generate one permutation by Dijkstra's algorithm.

def permute!

i = length - 1

i -= 1 while at(i - 1) >= at(i)

j = length

j -= 1 while at(j - 1) <= at(i - 1)

swap(i - 1, j - 1)

i += 1

j = length

while i < j

swap(i - 1, j - 1)

i += 1

j -= 1

end

end

def swap(a, b)

self[a], self[b] = [self[b], self[a]]

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=82

COMPILER 101 83

Here are the results of running the benchmark:

Download compiler/sessions/jit.txt

$ jruby permute.rb

0.381000 0.000000 0.381000 (0.255000)

0.117000 0.000000 0.117000 (0.117000)

0.017000 0.000000 0.017000 (0.017000)

0.017000 0.000000 0.017000 (0.017000)

0.010000 0.000000 0.010000 (0.011000)

You can immediately see one very noticeable result: the numbers get

faster over time. Where the initial run takes around 0.255s of real time,

the subsequent runs take anywhere from 0.011s to 0.117s. What you

are seeing is the effect of JRuby’s JIT (and the JVM’s JIT, too) compiling

code as it runs to improve performance.

Getting the Best Out of JIT

Most JRuby users will never need to think about the JIT. It will run qui-

etly behind the scenes, optimizing hot code and leaving cold code alone.

Over time, JRuby will incorporate more runtime information into those

optimizations, and long-running programs well seem to “magically” get

faster.

With a little insider information on JRuby, though, you can write code

that will get the best performance out of the JIT.

Avoid Generating Code at Runtime

For JRuby’s JIT to run, code needs to get “hot.” If you’re repeatedly call-

ing the same method, for example, JRuby will notice that and switch

from interpreting the AST to running real JVM bytecode. This will gen-

erally improve the performance of that piece of code, many times over.

On the other hand, if you are constantly generating new Ruby code (for

example, by passing a string to eval or one of its cousins), there will be

no hot spots for JRuby to optimize.

If you need the flexibility of runtime Ruby code generation, try to limit it

to the early phases of your application’s life cycle. Keep evaluated code

out of the critical path.

Prefer Smaller Methods

JRuby’s JIT operates on method boundaries. It makes decisions about

whether to JIT-compile a piece of code only when it is about to be called.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/sessions/jit.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=83

COMPILER 101 84

This works well for code with many moderately sized methods. How-

ever when you have a few very large methods instead, optimization gets

trickier. A large method might get called infrequently but do perform-

ance-critical work in a loop. A complicated method might get called

frequently but have many cold paths through the code. An extremely

long method can exceed limits set by JRuby or the JVM itself.

In all these situations, a method will remain interpreted forever. Both

JRuby’s JIT compiler and the principles of good software design favor

breaking large algorithms into smaller methods.

Moving On to AOT

As we’ve seen, JRuby usually runs in “full auto” mode. You don’t have

to decide when to interpret or compile a particular section of your code.

There are, however, times when you want to invoke JRuby’s ahead-of-

time compiler yourself and generate bytecode. Just as Java program-

mers are used to typing javac SomeJavaProgram.java to generate Some-

JavaProgram.class, you can type jrubyc some_ruby_program.rb to generate

some_ruby_program.class.

Why would you want to do this? There are a few different situations

where this technique comes in handy:

• You’re deploying to a system that requires your code to be in .class

files.

• You don’t want your original Ruby source code to appear in your

finished program.

• You’re writing a plug-in for a tool that isn’t sophisticated enough

to call the Ruby Embed API.

• You’re looking at one of those rare cases when AOT compilation

really is faster, such as the Android platform.

It’s not difficult to take an existing Ruby library, compile it, and call

it from Java. In fact, it’s only a short step beyond the techniques you

used in Chapter 3, Ruby from Java: Embedding JRuby, on page 60. In

the next section, we’ll get to know the AOT compiler by trying it on a

simple project.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=84

A SIMPLE COMPILED EXAMPLE 85

4.2 A Simple Compiled Example

Over the course of this section, we’ll start with a simple Ruby example

and explore different ways to compile it for the JVM.

Compiling a Single JRuby Class

Let’s say you’re a home audio enthusiast and want to make some basic

measurements of your setup. In particular, you may be interested in

the root-mean-square (RMS) voltage of a signal you’ve captured:

Download compiler/waveform/waveform.rb

class Waveform

def initialize(points)

@points = points

end

def rms

raise 'No points' unless @points.length > 0

squares = @points.map {|p| p * p}

sum = squares.inject {|s, p| s + p}

mean = sum / squares.length

Math.sqrt(mean)

end

end

What does it mean, exactly, to ask JRuby to compile this code?

$ jrubyc waveform.rb

Compiling waveform.rb to class waveform

This will place a waveform.class file in your project directory. This file

can be used in place of the original .rb file. Go ahead and try it. Rename

your Ruby file to backup.rb or something, and then run the following:

Download compiler/waveform/waveform_test.rb

require 'waveform'

sine_wave = (0..360).map do |degrees|

radians = degrees * Math::PI / 180.0

Math.sin radians

end

waveform = Waveform.new sine_wave

puts waveform.rms

>> 0.706126729736776

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform.rb
http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_test.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=85

A SIMPLE COMPILED EXAMPLE 86

What else can we do with the compiled .class file? Not much. It might

be tempting to try to drive this code from Java, like this:

public class WaveformNaiveTest {

public static void main(String[] args) {

double[] triangleWave = {0.0, 1.0, 0.0, -1.0, 0.0};

waveform w = new waveform(triangleWave);

System.out.println(w.rms());

}

}

Unfortunately, that doesn’t work:

$ javac -cp jruby.jar:. WaveformNaiveTest.java

WaveformNaiveTest.java:4: cannot find symbol

symbol : constructor waveform(double[])

location: class waveform

waveform w = new waveform(triangleWave);

^

WaveformNaiveTest.java:5: cannot find symbol

symbol : method rms()

location: class waveform

System.out.println(w.rms());

^

2 errors

Java was able to find the waveform class (note that the capitalization

follows the Ruby filename), but none of its methods. Consider the con-

structor. Java will be looking for a constructor taking an array of dou-

bles. Ruby parameters can be anything, and we haven’t yet discussed

how to tell JRuby what parameter types to write into the .class file.

The mismatch doesn’t stop at the constructor. This Java code is expect-

ing the waveform class to have an rms() method taking no parameters

and returning a double. But the .class file has no such method. If you

use javap to look at the waveform class, you get a long list of methods—

including this one:

$ javap waveform

...

public static org.jruby.runtime.builtin.IRubyObject

method__2$RUBY$rms(waveform, org.jruby.runtime.ThreadContext,

org.jruby.runtime.builtin.IRubyObject, org.jruby.runtime.Block);

As you can see, these methods are meant for JRuby’s consumption

only. It would be possible to whip up all those private data structures

and pass them in. But as we’ll soon see, there are much more pleasant

ways to accomplish this task.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=86

A SIMPLE COMPILED EXAMPLE 87

Charlie Says. . .

Word to the Wise

When you compile several Ruby classes with the --java option,
the generated Java classes all share one instance of the Ruby
runtime. This is similar to the SINGLETON context we discussed in
Chapter 3, Ruby from Java: Embedding JRuby , on page 60, so
the same warnings about thread safety apply.

Calling Compiled Ruby from Java

Let’s back up for a second. The purpose of the regular jrubyc command

is to compile Ruby code so that Ruby can use it. Trying to call that

Ruby-specific compiled class from Java is cutting against the grain.

In Chapter 3, Ruby from Java: Embedding JRuby, on page 60, we saw

a much more straightforward way of calling Ruby from Java: JRuby

Embed. If we insisted on doing everything by hand (there’s no need, as

we’ll soon see), here’s how we might use the embedding API to drive our

Ruby class:

Download compiler/waveform/WaveformWrapper.java

import org.jruby.embed.ScriptingContainer;

public class WaveformWrapper {

static ScriptingContainer rubyContainer;

Object waveform;

static {

rubyContainer = new ScriptingContainer();

rubyContainer.runScriptlet("require 'waveform'");

}

public WaveformWrapper(double[] points) {

Object waveformClass = rubyContainer.runScriptlet("Waveform");

waveform = rubyContainer.callMethod(waveformClass, "new", points);

}

public double rms() {

return (Double)rubyContainer.callMethod(waveform, "rms");

}

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/waveform/WaveformWrapper.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=87

A SIMPLE COMPILED EXAMPLE 88

This code requires you to have a definition of the Waveform Ruby class

sitting around, either in waveform.rb or in waveform.class. What if you

want all the waveform-related code in a single .class file? The simplest

way to do that is just embed the Ruby code straight in the .java file, by

replacing the static section with something like this:

Download compiler/waveform/WaveformComplete.java

static {

String source = new StringBuilder(

"class Waveform\n" +

" def initialize(points)\n" +

" @points = points\n" +

" end\n" +

"\n" +

" def rms\n" +

" raise 'No points' unless @points.length > 0\n" +

" squares = @points.map {|p| p * p}\n" +

" sum = squares.inject {|s, p| s + p}\n" +

" mean = sum / squares.length\n" +

" Math.sqrt(mean)\n" +

" end\n" +

"end\n").toString();

rubyContainer = new ScriptingContainer();

rubyContainer.runScriptlet(source);

}

The advantage of this approach is that it’s simple and reliable. The

disadvantage is that it takes a lot of manual work. You have to paste

your tested Ruby code into the .java file, write a bunch of methods with

names matching the Ruby ones, and possibly add a bunch of conver-

sion code to get your Java data into Ruby-compatible structures.

Fortunately, JRuby’s compiler makes all those manual steps unneces-

sary. If you pass the --java option to jrubyc, it will generate a .java file

instead of a .class file. You can then fall back on familiar Java tools to

finish the job.

$ jrubyc --java waveform.rb

Generating Java class Waveform to Waveform.java

$ javac -cp jruby.jar:. Waveform.java

As you can see, we generated a file called Waveform.java and then com-

piled this file like any normal Java source code. But it’s not obvious

how to call it.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/waveform/WaveformComplete.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=88

A SIMPLE COMPILED EXAMPLE 89

Look at the signatures of the generated methods:

public Waveform(Object points) {

// ...

}

public Object rms() {

// ...

}

Recall that Ruby function definitions don’t specify argument types.

Without this information, jrubyc has to fall back on Object for the

parameters and return values. The Ruby code to initialize a Waveform

instance is expecting an array of numbers. How do we inform the com-

piler of that expectation?

All we have to do is tag the Ruby functions with java_signature, followed

by a string containing a Java function declaration. Here’s how that

would look for the Waveform class:

Download compiler/waveform/waveform_with_sigs.rb

require 'java'

class Waveform

java_signature 'Waveform(double[] points)'

def initialize(points)

@points = points

end

java_signature 'double rms()'

def rms

raise 'No points' unless @points.length > 0

squares = @points.map {|p| p * p}

sum = squares.inject {|s, p| s + p}

mean = sum / squares.length

Math.sqrt(mean)

end

end

At this point, you could retry the compilation step from earlier, by run-

ning jrubyc --java to generate a .java file and then running javac to com-

pile that to a .class. Or you could combine the two steps into one. The

--javac option will compile the generated Java code for you.

$ jrubyc --javac waveform.rb

Generating Java class Waveform to Waveform.java

javac -d . -cp jruby.jar:. Waveform.java

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_sigs.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=89

A SIMPLE COMPILED EXAMPLE 90

Charlie Says. . .

Filenames and Case Sensitivity

The java_require directive has an interesting quirk on non-case-
sensitive file systems (the default on Mac and Windows). These
systems can’t tell the difference between Waveform.class (which
is a generated Java wrapper around Ruby code) and wave-

form.class (which is just compiled Ruby code). When some piece
of Ruby code tries to require ’waveform’, JRuby will try to load
Waveform.class instead—which will throw an error.

The solution to this is easy: make sure your generated Java class
has a different name than your Ruby source file. For example,
we placed the Ruby source for the Waveform class into a file
called waveform_with_sigs.rb (instead of just waveform.rb).

If you look inside Waveform.java, you’ll see something similar to the

JRuby Embed example we cooked up earlier. A simple Java wrapper

class contains the full Ruby source embedded as a string, plus a few

methods that hand off their implementation to the Ruby class.

This approach has the advantage of being self-contained: a single .java

file is all you need to throw at your build system. But there may be

times when you don’t want your Ruby source pasted into your Java

class. For these situations, add the text java_require plus the Ruby file-

name (minus extension) anywhere in your .rb file. For this example,

you might put something like this right before the start of the Waveform

class definition:

Download compiler/waveform/waveform_with_sigs.rb

require 'java'

java_require 'waveform_with_sigs'

Now, when you recompile, the generated Java code will have method

signatures easier to call from Java:

public Waveform(double[] points) {

// ...

}

public double rms() {

// ...

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_sigs.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=90

THE DETAILS 91

Charlie Says. . .

Why Does the Class Name Need to Be a String?

Remember that the jrubyc --java command first generates a
Java source file and then compiles that to bytecode. JRuby
just copies the class name as a string from your Ruby file into
the generated text. In other words, this requirement is just a side
effect of the way JRuby generates source code.

And there you have it: one Ruby class compiled to JVM bytecode, in a

form that’s easy to use from Java. We’re sure you have lots of questions

about where to go from here: how to use other Java classes, implement

interfaces, and so on. In the next section, we’ll get into several of these

details.

4.3 The Details

Now that you have some simple Ruby code compiled into a Java project,

let’s explore a few things you might do to help this code fit into the

broader Java universe.

Importing Classes

If your compiled Ruby code is going to be part of a larger system, you’ll

probably want to import other Java classes into your Ruby code. To

do this, you’ll use the same java_import syntax from Chapter 2, Driving

Java from Ruby, on page 31, with a twist. You’ll need to use a string,

rather than a Java-style package name, to refer to the class:

Original style:

java_import com.example.MyClass

Compiler style:

java_import 'com.example.MyClass'

Here’s an example of how to apply this technique to the Waveform class:

Download compiler/waveform/waveform_with_import.rb

require 'java'

java_import 'java.io.PrintStream'

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_import.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=91

THE DETAILS 92

class Waveform

... other methods here ...

java_signature 'void print(PrintStream)'

def print(stream)

stream.write("The RMS is #{rms}")

end

end

This new print method can write out the RMS voltage to a standard Java

PrintStream.

Specifying a Package

It’s standard Java practice to avoid name clashes by putting compiled

code into packages. JRuby has you covered here. Since most of the

other compiler hints have names that start with java_..., perhaps you’ve

guessed that the way to specify a Java package name is to use the

java_package directive:

Download compiler/waveform/waveform_with_package.rb

java_package 'com.example'

If you add the previous line to your Ruby file, the resulting Java class

will be generated into the com.example package.

Implementing an Interface

Most Java-based systems will eventually need to implement an inter-

face. For jrubyc, you can do this by specifying java_implements inside the

body of the class.

Download compiler/waveform/waveform_with_interface.rb

require 'java'

java_package 'com.example'

class Waveform

java_implements 'Runnable'

... other methods here ...

java_signature 'void run()'

def run

puts 'inside runnable implementation'

puts rms

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_package.rb
http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_interface.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=92

THE DETAILS 93

Remember, since jrubyc generates Java source, you must implement

all of the interface’s required methods. Otherwise, you’ll get a compiler

error from javac.

Adding Annotations to a Class or Method

Many Java frameworks require you to add annotations to your classes

or methods. These annotations may be used to tag tests, indicate de-

pendency injection points, or configure a database mapping.

In jrubyc, you can specify annotations using the java_annotation line.

Here’s a simple example of a JUnit 4 test, which uses annotations to

indicate which methods are tests:

Download compiler/waveform/test_waveform.rb

require 'java'

require 'waveform_with_sigs'

java_import 'org.junit.Test'

class TestWaveform

java_annotation 'Test'

java_signature 'void testRms()'

def test_rms

dc = [1.0]

rms = Waveform.new(dc).rms

org.junit.Assert.assert_equals rms, 1.0, 0.001

end

end

Like most of the other java_... directives, the annotation line must be

specified as a string so it can be inserted into the generated Java out-

put.

This technique isn’t just for spelling out test cases. It’s fully compatible

with more complex uses, like the Jersey framework.3 With Jersey, you

can serve requests with a simple Java object, thanks to a few annota-

tions that tell the server the URL that goes with each method.

Deploying Compiled Code

We’ve talked about compiling Ruby code to make it more pleasant to

run—faster execution, integration with frameworks, and so on. Now,

let’s talk about compiling Ruby to make it easier to deploy.

3. http://blog.headius.com/2010/06/restful-services-in-ruby-using-jruby.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/compiler/waveform/test_waveform.rb
http://blog.headius.com/2010/06/restful-services-in-ruby-using-jruby.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=93

THE DETAILS 94

Compiling Several Files at Once

For larger projects, you will likely have a carefully arranged directory of

Ruby source code, with each component in its own folder. What’s the

easiest way to compile an application with this kind of setup? It would

certainly be possible to write a build script (see Chapter 7, Building

Software for Deployment, on page 165) to search recursively through

your project directory for source files and compile each one individually.

But there’s an easier way.

As an alternative to passing a single .rb filename to jrubyc, you can pass

a directory name. If you couple this technique with the -t option and

a target directory, JRuby will make the compiled Java package names

mirror the directory structure of the Ruby source.

In other words, if you have com/example/gui.rb and com/example/data-

base.rb and you type the following:

$ jrubyc . -t build

...then the resulting gui and database classes will be part of the com.ex-

ample package.

Hiding the Source

Many JRuby users simply want to compile their .rb files to hide the

source code. In simple cases, the simple jrubyc command works fine for

this purpose. It takes .rb source files and outputs .class files (either in

their own dedicated location or alongside the .rb files).

In JRuby, the require ’foo’ method will load either foo.rb or foo.class. So,

you can usually just leave the .rb files out of your deployment and run

entirely from .classes.

Avoiding Name Clashes

On a bigger project, you may run into a few issues with running from

.class files. The hairiest of these is the difference between the way Ruby

loads code (by looking for .rb files) and the way Java loads code (by look-

ing for classes—which may have nothing to do with their filenames).

For example, the following two lines of Ruby code refer to the same file:

require 'some_library'

require 'sub/directory/../../some_library'

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=94

THE DETAILS 95

Ian Says. . .

Does the SHA-1 Really Hide the Source?

The SHA-1 hash is generated from the Ruby source. Does this
mean you’re once again stuck with shipping a bunch of .rb files
alongside your compiled code?

Well, for now, yes. But the compiler will soon support stripped-
down .rb files that contain the SHA-1 value and nothing else.
So, you’ll be protected from name collisions without having to
ship your source code.

...but the Java universe doesn’t know that. The next two lines of Ruby

code refer to different files:

require 'math/sin'

require 'mortal/sin'

...but to Java, these would both be in classes called sin. Clearly, we

need some way other than just the filename to distinguish between two

different compiled Ruby files. We need to know something about the file

contents, not just the name.

JRuby offers a way to name compiled files based on their source con-

tents. The --sha1 flag calculates a SHA-1 hash—a 40-digit hex number

that is overwhelmingly likely to be unique for each Ruby file in your

program—and uses that for the filename instead. So, JRuby could tell

that two uses of some_ruby_class are referring to the same code, because

the contents would be the same. The resulting .class file would be named

something like 804618fe4c994ba2b7a39b949cae81c9301327.class.

Deploying to Mobile Platforms

When you compile a Ruby class to bytecode, JRuby normally saves one

last stage of code generation for runtime. This stage builds “method

handles”—one tiny Java class per Ruby method, basically. Some plat-

forms place restrictions on this kind of last-minute generation. For

example, the Android mobile operating system forbids any runtime code

generation.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=95

WRAPPING UP 96

For these cases, you can pass the --handles option to jrubyc. You’ll typi-

cally use this alongside the previously discussed --sha1 flag:

$ jrubyc --sha1 --handles

When you use this option, you’ll see lots of extra little .class files. There’s

nothing to be alarmed about; these are just the method handles that

JRuby would normally have generated at runtime.

4.4 Wrapping Up

We started this chapter with a heady discussion of compiler-nerd the-

ory. But it was for a good cause. That background information was

useful to keep in mind as we considered all the different ways that

JRuby can compile your Ruby code. Most of the time, your Ruby code

can coast through JRuby’s just-in-time compiler. If you need more con-

trol for a particular project, jrubyc and its many options are there for

you.

By this point, you’ve been through all the core pieces of JRuby: call-

ing Java from Ruby, embedding Ruby into Java, and now using the

compiler. Where do we go from here?

Out into the world! There’s a rich set of Java and Ruby libraries out

there, ready for you to tame and bring into your own applications. In

the second part of the book, we’ll visit some of the more interesting

libraries in both languages.

Our goal isn’t to cover all the popular libraries but to highlight the ones

that people new to JRuby usually ask about first. We’ll start off by get-

ting Rails, the blockbuster web development framework, up and run-

ning on JRuby. We’ll then look at popular libraries in both languages for

building and testing software. Finally, we’ll top things off with various

approaches to designing Ruby GUIs on top of the Swing toolkit.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=96

Part II

JRuby and the World

Download from Wow! eBook <www.wowebook.com>

Chapter 5

Introduction to Rails
Rails is the most-cited reason that people are turning to Ruby from

other languages. It has—with good reason—been called Ruby’s killer

application. From the initial release in July 2004 up to now, the in-

crease of Rails adoptions, products, books, blogs, and articles has been

staggering.

In this chapter, we will first take a quick look at the different parts

of Rails and where all the buzzwords and slogans fit into the picture.

Next, we’ll create a simple JRuby on Rails application from scratch—the

focus will be on getting up and running quickly, rather than providing

encyclopedic coverage of the API.

5.1 What Is Rails?

Rails is a web application framework. It has seen great success in the

past few years, because of several revolutionary differences from earlier

web frameworks. It has given countless developers the tools to create

web applications in an easy and intuitive way. Rails removes the need

for giant configuration files, gives you a set of reasonable defaults, uses

Ruby’s expressiveness to keep your code readable, and focuses on mak-

ing the most common use cases dead simple.

When you combine the rapid development of Rails and the power of the

JVM, you can do the following:

• Handle an entire site’s worth of traffic in a single Rails instance,

thanks to Java’s multithreading

Download from Wow! eBook <www.wowebook.com>

WHAT IS RAILS? 99

• Connect to a huge range of legacy databases without struggling

with native database drivers

• Use one of Java’s many libraries for persistence, messaging, or

image processing from your Rails app

• Deploy clean, compact Ruby code to a Java-only server

environment

• Wrap a web interface around a legacy application, such as the

Tracker 7 software that’s keeping the world safe from nuclear

proliferation1

Principles

Although the success of Rails can be credited to the way it changed

how we build web applications, Rails is also distinguished by brilliant

marketing, including the propagation of several slogans and buzzwords.

Here are a few of the more common slogans, together with their mean-

ings in the context of Rails:

Don’t Repeat Yourself (DRY)

According to the DRY principle, each piece of information should

live in exactly one place.2 If you’re writing a payroll app where

each Employee needs a name and a salary, you shouldn’t have

to define those fields in the database and your Ruby class. And

indeed, in Rails, you don’t—property information resides only in

the database.

Convention over Configuration

Also known as “sensible defaults”—when you do things the way

Rails expects you to, you won’t need to configure much. For exam-

ple, Rails will automatically find the table for your Recipe class,

provided the table is named recipes in the database. It will also

implicitly assign URLs like http://example.com/recipes to Ruby

methods like RecipesController#index.

This idea is closely related to the DRY principle. After all, the best

way of not repeating yourself is to not say anything at all.

1. http://exportcontrol.org/library/conferences/2657/9.__Tracker_7_System_Overview.pdf

2. See The Pragmatic Programmer [HT00].

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://example.com/recipes
http://exportcontrol.org/library/conferences/2657/9.__Tracker_7_System_Overview.pdf
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=99

WHAT IS RAILS? 100

Ola Says. . .

The ABCs of MVC

Rails embodies the Model-View-Controller (MVC) software
pattern—understanding this pattern will help you learn Rails.

A frequent trap for application developers is letting business
logic creep into user-interface code. MVC tries to avoid this
problem by providing three different buckets for your code: the
model, the view, and the controller.

The model contains the business logic and data—this may
include connecting to a database.

The controller is responsible for providing the view with all the
data needed for the current interaction with the user. It also
responds to user actions by evaluating them and dispatching to
a model. A controller should be small—think of it as the switch-
board between the models and the views.

The view displays data in different formats. Rails apps often
implement this layer using eRuby, a mix of Ruby and HTML.

These are the central parts of Rails—everything else is just the
plumbing necessary to make everything work.

In Rails, your models are usually ActiveRecord classes (see Sec-
tion 6.1, ActiveRecord, on page 134) kept in app/models. The
views are usually .html.erb, .xml.erb, or .js.rjs files, and they live in
app/views. Finally, the controllers are regular Ruby classes that
are placed in app/controllers. This division makes it very easy to
know where code should be placed and what the responsibil-
ity of each piece is.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=100

WHAT IS RAILS? 101

Agile

Though Agile is of course a general computer-industry buzzword,

it has specific connotations in Rails. With the Ruby language, you

can get off the ground quickly with clear, understated code. With

built-in test harnesses, you can safely change directions in the

middle of a project. It’s all about bringing more value to your appli-

cation in less time.

Opinionated Software

All of these slogans and buzzwords tie into each other. They all

have the common goal of establishing the easiest and best way

to develop web applications, according to one opinionated person:

David Heinemeier-Hanson. He started the Rails project with very

specific ideas about what’s good and what’s bad in a web frame-

work. Of course, thousands of volunteers have improved Rails over

the years, but its overall shape is still guided by these opinions.

One example of opinions in Rails is the lack of support for compos-

ite primary keys in the database.3 If you really need them, they’re

available as a plug-in, but the Rails team has resisted bloating the

core libraries with them.

Most things are possible in Rails, but dubious practices result in

uglier code than sound practices do. Suspect code will therefore

really stand out when you’re writing it.

Components

Under the hood, Rails is not really one framework. Rather, it’s a compo-

sition of several loosely tied libraries that happen to work well together.

Here are the major Rails libraries:

ActiveRecord

The ActiveRecord library covers the model part of the MVC pat-

tern, by pairing database tables with simple wrapper classes that

embody your program’s logic. The implementation makes partic-

ularly good use of Ruby language features and takes most of the

pain out of defining model classes.

ActiveRecord supports most standard database features but

notably omits foreign-key relationships and composite primary

3. For a discussion, see http://lists.rubyonrails.org/pipermail/rails-core/2006-February/thread.html#794.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://lists.rubyonrails.org/pipermail/rails-core/2006-February/thread.html#794
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=101

WHAT IS RAILS? 102

keys. (Most of these can be added with the use of plug-ins.) For

more details on this component of Rails, see Chapter 6, JRuby

and Relational Databases, on page 133.

ActionPack

ActionPack takes care of presenting your models to users and

responding to the actions they perform. It consists of three parts:

ActionView and ActionController correspond to the view and con-

troller parts of MVC, while ActionDispatch is responsible for con-

necting a request to a controller.

A controller in Rails is just a regular class that inherits from

ActionController; each public method is an action triggered by some-

thing the user does. ActionView is there in the background, but

your Ruby classes don’t interact directly with it. Views in Rails

are templates with names ending in .html.erb by default (the exact

suffix varies with the templating system).

ActionPack and ActiveRecord do most of the work in Rails.

ActiveSupport

Rails includes a large number of extensions to the Ruby core

classes. It also includes libraries to handle internationalized text,

helpers for working with times and dates, and lots of other things.

A lot of these smaller features aren’t necessarily tied to web devel-

opment. Date/time math crops up in a lot of applications, on the

Web or elsewhere. With ActiveSupport, you can express a time

difference as easily as (2.months + 1.day + 3.hours + 15.minutes).ago.

Compare that to old-school time arithmetic: Time.now - (2*30*24*3600

+ 24*3600 + 3*3600 + 15*60)—and that doesn’t even take into account

that different months have different lengths.

ActiveSupport is chock full of nice things like this. As you become

familiar with it, you’ll often find that some utility function you’ve

been wishing for is already included.

ActiveResource

In the bad old days, we tended to think of web apps as little com-

puter programs churning out HTML tag soup. You can write a

program like this with Rails, of course. But you will find it far eas-

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=102

WHAT IS RAILS? 103

ier to “cut with the grain” and think in terms of resources instead

of pages or scripts. This style is known as Representational State

Transfer (REST).

Rails makes it easy for you fit your app into this structure. Action-

Pack helps you create REST services, and ActiveResource helps

you consume them—both under similar APIs.

ActionMailer

ActionMailer is a small package that helps you create uniform mail

templates. You can send mail from your controllers and use .erb

files as templates for your messages.

ActiveModel

ActiveModel is a new component created in Rails 3 that is basi-

cally an extraction of the best bits of ActiveRecord, such as data

validations and callbacks. With ActiveModel, you can easily make

any Ruby object (not just database classes) at home in Rails.

Bundler

Although not part of Rails, Bundler is a utility developed in parallel

with the Rails 3 release to aid in gem dependency management in

any Ruby project (even a non-Rails one). Bundler locks down your

dependencies to make sure you can repeatably deploy the same

configuration across different environments and machines. You’ll

get comfortable with Bundler in the tutorial shortly.

Most parts of Rails work fine on their own, even in non-Rails applica-

tions. For instance, ActiveRecord is widely used in other frameworks

and applications. That said, some components are more reusable than

others.

There’s a lot functionality just in the Rails core. Thanks to the plug-

in architecture, there’s also a universe of extensions available to take

Rails in more directions (or sometimes fewer directions—the Rails team

will often spin off a seldom-used feature into a plug-in).

What About JRuby on Rails?

The previous sections described how Rails is put together, and we will

soon take a look at how to actually create an application using JRuby

on Rails. But first, why would you want to use JRuby together with

Rails? The short answer: for exactly the same reasons you would want

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=103

WHAT IS RAILS? 104

Ian Says. . .

A First Look at REST

A RESTful web service provides a set of discoverable, uniquely
named documents (resources). Client code—which may or
may not be a browser—can read and modify resources by
using the HTTP protocol’s four simple verbs: POST, GET, PUT, and
DELETE.∗

For example, suppose you’re creating a photo-editing site.
With a traditional approach, you might send a GET request to
http://example.com/show.php to display an image or send POST
requests to new.php, edit.php, or delete.php to upload, modify, or
remove an image.

With REST, you’d present each photo as a resource with
a unique ID, such as http://example.com/photos/12345. All
operations—viewing, modifying, and so on—would take place
through GET, POST, PUT, and DELETE requests to that same
address.

Think of it as “convention over configuration” applied to your
API design.

∗. This is not the same thing as the four CRUD (create, read,
update, destroy) operations performed by many web apps; see
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story.

to use JRuby on any project—speed, stability, infrastructure, and so

on.

The slightly longer answer is that Rails in its current incarnation is

very good at many things but not absolutely everything. JRuby can

smooth over some of the remaining rough spots. Deployment is proba-

bly the most interesting of these. Deploying a Rails application is fairly

well documented, but getting everything right can still be difficult. With

JRuby, you can package your Rails application as a standard .war file

and deploy it to any compliant Java web container.4

4. Web application archives, or .war files, are a standard way of deploying web applica-

tions on Java servers.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://example.com/show.php
http://example.com/photos/12345
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=104

GOING ROUGE 105

Rails supports several different databases, but in practice, most shops

use either MySQL or PostgreSQL. Since JRuby on Rails allows you to

use any database that has a JDBC driver, you have access to a wider

range of databases, plus features such as data sources and connec-

tion pooling. JRuby on Rails also works very well with JavaDB, the

in-memory database that is distributed with Java.

The best way to think of JRuby on Rails is like regular Rails with a few

intriguing new possibilities.

5.2 Going Rouge

It’s time to get started with some code. Through the rest of this chapter,

we’ll build Rouge, a simple web-based restaurant guide. By the time

we’ve finished, you should be able to build your own JRuby on Rails

application. We can’t cover all or even most of the functionality that

Rails provides—there are other books that can teach you this.5

Getting Started

Before starting the tutorial, we need to install Bundler and Rails. The

example code in this chapter was written using Rails 3.0.1, Bundler

1.0.2, and activerecord-jdbc-adapter 1.0.1.

To install Bundler and Rails, just type this command:

Download introduction_to_rails/output/gem-install.txt

$ jruby -S gem install bundler rails

Successfully installed bundler-1.0.2

Successfully installed activesupport-3.0.1

Successfully installed builder-2.1.2

Successfully installed i18n-0.4.1

Successfully installed activemodel-3.0.1

Successfully installed rack-1.2.1

Successfully installed rack-test-0.5.6

Successfully installed rack-mount-0.6.13

Successfully installed tzinfo-0.3.23

Successfully installed abstract-1.0.0

Successfully installed erubis-2.6.6

Successfully installed actionpack-3.0.1

Successfully installed arel-1.0.1

Successfully installed activerecord-3.0.1

Successfully installed activeresource-3.0.1

5. See Agile Web Development with Rails [RTH08].

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/gem-install.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=105

GOING ROUGE 106

Successfully installed mime-types-1.16

Successfully installed polyglot-0.3.1

Successfully installed treetop-1.4.8

Successfully installed mail-2.2.7

Successfully installed actionmailer-3.0.1

Successfully installed rake-0.8.7

Successfully installed thor-0.14.3

Successfully installed railties-3.0.1

Successfully installed rails-3.0.1

24 gems installed

Our restaurant guide will make it easy for someone who’s considering a

restaurant to find reviews for it. They’ll want to search restaurants, read

reviews, and comment on either a review or a restaurant. Visitors will

be generating most of this content, but we’ll also need an administrator

account for creating restaurants. You’ll see later how to offer these two

different views of the same data.

Deciding on Our Models

From the previous short description, we can deduce some potential

models:

• Restaurant

• Administrator

• Reviewer

• Review

• Comment (attached to a Restaurant)

• Comment (attached to a Review)

We will use a common Comment model for both restaurant comments

and review comments—it seems unnecessary to have two different

models for essentially the same idea.

Establishing Structure

Rails emphasizes a particular structure for your code. The first step in

creating a new application is to generate this structure. The rails new

command will build a minimal (but well-organized!) app from scratch,

using the directory name you provide on the command line. We’ll choose

the name rouge for our project directory.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=106

GOING ROUGE 107

Download introduction_to_rails/output/rails-rouge.txt

$ jruby -S rails new rouge --template http://jruby.org

create

create README

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/controllers/application_controller.rb

create app/helpers/application_helper.rb

create app/views/layouts/application.html.erb

create app/mailers

create app/models

create config

create config/routes.rb

Rails tells you exactly which directories and files get created. Repro-

ducing the entire list here would take more than two pages; for the

trees’ sake, we’ve truncated the output. As you can see by the directory

names, there is one specific place for each piece of functionality you

would want to add to your application.

The directories you will spend most of your time in from now on are the

following:

• app: Contains most of the application’s functionality—models,

controllers, and views.

• config: Holds configuration settings, such as the database server

location.

• test: Go on, guess!

You’ll notice we passed an extra --template http://jruby.org option when

we generated the application. This flag tells Rails to apply some extra

JRuby-specific configuration to the new application.

If you are following along and ran the command yourself, you might

have noticed a couple of extra lines at the bottom of the rails new com-

mand output:

Download introduction_to_rails/output/rails-rouge.txt

apply http://jruby.org

apply http://jruby.org/templates/default.rb

gsub Gemfile

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rails-rouge.txt
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rails-rouge.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=107

GOING ROUGE 108

Nick Says. . .

You Have Options

The rails new command supports a number of options. A cou-
ple of the more interesting ones are --database mysql for setting
up an application for use with MySQL and --skip-active-record for
avoiding using ActiveRecord or databases at all. See jruby -S rails

help new for more information.

JRuby needs to use the activerecord-jdbc-adapter gem to connect to

databases via Java’s JDBC API, so JRuby has made some small mod-

ifications to the default Rails application’s Gemfile. What goes in the

Gemfile, you say? We’re glad you asked!

Installing Dependencies with Bundler

Bundler’s stated goal is to “manage an application’s dependencies

through its entire life across many machines systematically and repeat-

ably.”6 In more pragmatic terms, it helps prevent conflicting or missing

gems. Although you can use Bundler with any Ruby application, the

integration story is particularly good with Rails 3.

As we hinted in the previous section, one of the files the rails new com-

mand creates is called Gemfile. Let’s take a look inside:

Download introduction_to_rails/output/Gemfile

source 'http://rubygems.org'

gem 'rails', '3.0.1'

Bundle edge Rails instead:

gem 'rails', :git => 'git://github.com/rails/rails.git'

if defined?(JRUBY_VERSION)

gem 'activerecord-jdbc-adapter'

gem 'jdbc-sqlite3', :require => false

else

gem 'sqlite3-ruby', :require => 'sqlite3'

end

6. http://gembundler.com/

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/Gemfile
http://gembundler.com/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=108

GOING ROUGE 109

The Gemfile is just a place to declare the gems and libraries your appli-

cation needs. Bundler shines when it’s time to configure those depen-

dencies at install time and runtime. To make Bundler install the depen-

dencies, run the bundle install command:

Download introduction_to_rails/output/bundle-install.txt

$ jruby -S bundle install

Fetching source index for http://rubygems.org/

Using rake (0.8.7)

Using abstract (1.0.0)

Using activesupport (3.0.1)

Using builder (2.1.2)

Using i18n (0.4.1)

Using activemodel (3.0.1)

Using erubis (2.6.6)

Using rack (1.2.1)

Using rack-mount (0.6.13)

Using rack-test (0.5.6)

Using tzinfo (0.3.23)

Using actionpack (3.0.1)

Using mime-types (1.16)

Using polyglot (0.3.1)

Using treetop (1.4.8)

Using mail (2.2.7)

Using actionmailer (3.0.1)

Using arel (1.0.1)

Using activerecord (3.0.1)

Installing activerecord-jdbc-adapter (1.0.1)

Using activeresource (3.0.1)

Using bundler (1.0.2)

Installing jdbc-sqlite3 (3.6.14.2.056)

Using thor (0.14.3)

Using railties (3.0.1)

Using rails (3.0.1)

Your bundle is complete! Use `bundle show [gemname]`

to see where a bundled gem is installed.

The beauty of having the dependencies stored in Gemfile is that you can

ensure that anyone else working on your application has the same set

of libraries. Everyone simply needs to remember to run bundle install (the

first time) or bundle update (when someone changes the Gemfile).

Configuring the Database

The next step after creating a new Rails application is to configure your

database. Open config/database.yml. It will consist of three sections

named after the three standard environments Rails creates for you:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/bundle-install.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=109

GOING ROUGE 110

Ola Says. . .

Whitespace in Config Files

Be very careful when editing YAML files (files that end in .yml

or .yaml)—one single tab character in these files will render
them unreadable to Ruby. If you see strange errors after edit-
ing database.yml, check your whitespace for tabs.

test, development, and production. Here’s the setup for the develop-

ment database, which is the one you’ll use during most of this chapter:7

Download introduction_to_rails/rouge/config/database.yml

development:

adapter: sqlite3

database: db/development.sqlite3

pool: 5

timeout: 5000

If you were developing the application with a database server such

as MySQL or PostgreSQL, you’d edit this file to change the connec-

tion information. Since we’ll be using the embedded SQLite database,

there’s no need to change anything here for now.

Before you start the application, we should point out there is another

step you’d need to perform had we started with MySQL: creating the

databases. Rails provides a handy command that will create a separate

database for each environment. As with many maintenance tasks, you

run it using Rake, the Ruby build and maintenance tool.8 This step is

unnecessary with SQLite, which will create the files for us the first time

our Rails app hits the database. If you’re really curious, you can safely

run the command anyway:

Download introduction_to_rails/output/rake-db-create.txt

$ jruby -S rake db:create:all

(in code/introduction_to_rails/rouge)

7. Your automated tests will use the test database instead. It’s important to keep this

one separate, since Rails destroys and re-creates it every time you run the tests.
8. We’ll cover Rake in more detail in Chapter 7, Building Software for Deployment, on

page 165.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/config/database.yml
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-db-create.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=110

BUILDING OUR MODELS 111

The Rails application is now ready to start:

Download introduction_to_rails/output/script-server.txt

$ jruby script/rails server

=> Booting WEBrick

=> Rails 3.0.1 application starting in development on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

[2010-10-15 11:08:40] INFO WEBrick 1.3.1

[2010-10-15 11:08:40] INFO ruby 1.8.7 (2010-10-13) [java]

[2010-10-15 11:08:40] INFO WEBrick::HTTPServer#start: pid=6137 port=3000

You should be able to visit http://localhost:3000 and see the standard

Rails welcome page.

5.3 Building Our Models

Now that we know Rails works correctly and your application is config-

ured as it should be, it’s time to sketch out our models. You’re probably

not surprised to hear we’ll be using Rails code generation again.

That First Step Is a Doozy

You will see several things get generated in the following interaction.

These include a nearly empty Ruby file containing your model and

another Ruby file called a migration. Rails won’t actually put anything

in the database for you, until you specifically ask it to do so. The migra-

tion defines exactly what gets added.

Download introduction_to_rails/output/script-generate-model.txt

$ jruby script/rails generate model Restaurant

invoke active_record

create db/migrate/20101014180911_create_restaurants.rb

create app/models/restaurant.rb

invoke test_unit

create test/unit/restaurant_test.rb

create test/fixtures/restaurants.yml

As usual with Rails, you get several things for free, including a basic

test file and a skeleton in which to put the database definitions for

the model. Since Rails defines models by their database structure, we

need to create a table before using the model. This is done in the file

db/migrate/..._create_restaurants.rb. For now, you should edit it to look

like this code example:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-server.txt
http://localhost:3000
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-generate-model.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=111

BUILDING OUR MODELS 112

Download introduction_to_rails/edits/001_create_restaurants.rb

class CreateRestaurants < ActiveRecord::Migration

def self.up

create_table :restaurants do |t|

t.string :name

t.text :description

t.string :address

t.string :phone

t.timestamps

end

end

def self.down

drop_table :restaurants

end

end

Notice that the migration describes the data’s structure in Ruby, with-

out referring to any particular database product. Each migration

should perform a single unit of database work and should include a

way to undo that work (so that the migration can be rolled back). In the

previous example, we create or remove a table called restaurants.

The next step is to run this migration and thus create the database

table. We do so using rake with the db:migrate target:

Download introduction_to_rails/output/rake-db-migrate-1.txt

$ jruby -S rake db:migrate

(in code/introduction_to_rails/rouge)

== CreateRestaurants: migrating ==

-- create_table(:restaurants)

-> 0.0290s

-> 0 rows

== CreateRestaurants: migrated (0.0290s) =====================================

As you can see, rake reports that it successfully created the restaurants

table in the database. If you don’t specify an environment, the migra-

tion will run in development mode. You should see the results in the

rouge_development database, complete with columns for the ID, name,

description, address, phone number, and time stamp fields.

Before we proceed, let’s take a look at the other files Rails created for

us. First, there’s the actual model file, app/models/restaurant.rb. At this

stage, it doesn’t really look like much, since it gets all the information

it needs from the database.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/edits/001_create_restaurants.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-db-migrate-1.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=112

BUILDING OUR MODELS 113

Download introduction_to_rails/output/restaurant.rb

class Restaurant < ActiveRecord::Base

end

This seemingly empty class already has some functionality. When the

app starts up, Rails will reach out to the database, find out the col-

umn names (name, description, address, and phone), and add methods to

the class with the same names—all at runtime. We will add even more

functionality in a minute. First, a brief word on testing.

Testing the Model

Take a peek inside the test directory. By default, Rails generates a test

file for every model and controller. Let’s add a few tests to demonstrate

some common ActiveRecord operations. Open test/unit/restaurant_test.rb.

Right now, it just contains a single no-op test case:

Download introduction_to_rails/output/restaurant_test.rb

require 'test_helper'

class RestaurantTest < ActiveSupport::TestCase

Replace this with your real tests.

test "the truth" do

assert true

end

end

There are two ways to run this test: directly or through Rake. The Rake

approach is the simplest:

Download introduction_to_rails/output/rake-test.txt

$ jruby -S rake

(in code/introduction_to_rails/rouge)

Loaded suite .../gems/rake-0.8.7/lib/rake/rake_test_loader

Started

.

Finished in 0.044 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Without any parameters, this command will run all the tests. You can

run just unit tests or functional tests by using the target test:units or

test:functionals. On UNIX, you can narrow things down to one file or even

one test case, by adding something like TEST=test/unit/restaurant_test.rb or

TESTOPTS=--name=test_can_create_restaurant to the command line.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/restaurant.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/restaurant_test.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-test.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=113

BUILDING OUR MODELS 114

The second way to test the components of your Rails app is just to run

a test file directly from the jruby command. This avoids the overhead of

rake and is usually a bit quicker:

Download introduction_to_rails/output/jruby-single-test.txt

$ jruby -Itest test/unit/restaurant_test.rb

Loaded suite test/unit/restaurant_test

Started

.

Finished in 0.292 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Now that we have successfully run an empty test, let’s actually exercise

the Restaurant model. First, we’ll check that we can create a restau-

rant (all of these tests should be added inside the RestaurantTest class in

test/unit/restaurant_test.rb):

Download introduction_to_rails/rouge/test/unit/restaurant_test.rb

def test_can_create_restaurant_with_only_name

Restaurant.create! :name => "Mediterraneo"

end

There are several ways to create new instances with ActiveRecord. In

this case, we’ll use the create! method, which will save a new object

to the database immediately. The exclamation mark signifies that the

method will raise an exception if something goes wrong. By contrast,

the nonpunctuated create method will ignore errors. In test cases, it’s

usually easier to let ActiveRecord raise an exception so that the test

harness can record it as a failure.

In the next test, we’ll make some changes to a restaurant and save! it

to the database:

Download introduction_to_rails/rouge/test/unit/restaurant_test.rb

def test_can_instantiate_and_save_a_restaurant

restaurant = Restaurant.new

restaurant.name = "Mediterraneo"

restaurant.description = <<DESC

One of the best Italian restaurants in the Kings Cross area,

Mediterraneo will never leave you disappointed

DESC

restaurant.address = "1244 Kings Cross Road, London WC1X 8CC"

restaurant.phone = "+44 1432 3434"

restaurant.save!

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/jruby-single-test.txt
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/test/unit/restaurant_test.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/test/unit/restaurant_test.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=114

BUILDING OUR MODELS 115

Now, let’s make sure our app can recognize incomplete data. We’ll use

the valid? method to see what happens when we create a restaurant

without a name:

Download introduction_to_rails/rouge/test/unit/restaurant_test.rb

def test_that_name_is_required

restaurant = Restaurant.new

assert !restaurant.valid?

end

If you run this test, it will fail. We haven’t yet told Rails that every

restaurant is required to have a name. To get the behavior we want

and make sure that no one enters a blank name, we’ll need to add

a validation to the model. A validation is a condition that ActiveRe-

cord will check before saving an object to the database. Objects that

fail their validations don’t get saved. Make the following change to

app/models/restaurant.rb:

Download introduction_to_rails/edits/restaurant1.rb

class Restaurant < ActiveRecord::Base

validates_presence_of :name

end

After you’ve added this validation, rerun the test and make sure it

passes.

Filling Out the Roster

Now that we have the Restaurant model in place, it’s time to add the

remaining ones. We can get the job done quickly by way of a shortcut

in the model generator, which lets us specify the columns and their

types on the command line. This saves us from having to edit all those

migration files directly. Here’s what that looks like:

Download introduction_to_rails/output/script-generate-more-models.txt

$ jruby script/rails g model Administrator \

username:string password:string

$ jruby script/rails g model Reviewer \

name:string description:string \

username:string password:string

$ jruby script/rails g model Review \

restaurant_id:integer reviewer_id:integer \

title:string content:text

$ jruby script/rails g model Comment \

said_by:string content:text \

commentable_id:integer commentable_type:string

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/test/unit/restaurant_test.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/edits/restaurant1.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-generate-more-models.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=115

BUILDING OUR MODELS 116

Note that the Comment model doesn’t have a restaurant_id or a review_id

column. Instead, it has a commentable_id and a commentable_type.

Rails will use these fields to track whether a particular comment was

made about a restaurant or about a review. We’ll see how in a moment—

first, though, we need to migrate the database:

Download introduction_to_rails/output/rake-db-migrate-2.txt

$ jruby -S rake db:migrate

(in code/introduction_to_rails/rouge)

== CreateAdministrators: migrating ===

-- create_table(:administrators)

-> 0.0060s

-> 0 rows

== CreateAdministrators: migrated (0.0080s) ==================================

== CreateReviewers: migrating ==

-- create_table(:reviewers)

-> 0.0050s

-> 1 rows

== CreateReviewers: migrated (0.0060s) =======================================

== CreateReviews: migrating ==

-- create_table(:reviews)

-> 0.0060s

-> 1 rows

== CreateReviews: migrated (0.0060s) ===

== CreateComments: migrating ===

-- create_table(:comments)

-> 0.0060s

-> 1 rows

== CreateComments: migrated (0.0070s) ==

The models are looking pretty good on their own. So, let’s make some

associations between them. We do this by modifying the various files in

app/models.

Adding Associations

Let’s begin with the Restaurant model. Each restaurant will need both

reviews and comments. Here’s how to express that relationship:

Download introduction_to_rails/edits/restaurant2.rb

class Restaurant < ActiveRecord::Base

validates_presence_of :name

has_many :reviews

has_many :comments, :as => :commentable

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-db-migrate-2.txt
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/edits/restaurant2.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=116

BUILDING OUR MODELS 117

The first line we added reads almost like English: “A restaurant has

many reviews.” The next line needs a little extra wording, since a com-

ment can be associated with either a review or a restaurant.

The Administrator model is so easy that we don’t need to make any

changes at all to what Rails generated for us. So, let’s move on to the

Reviewer model:

Download introduction_to_rails/rouge/app/models/reviewer.rb

class Reviewer < ActiveRecord::Base

has_many :reviews

end

Now, on to the Review model. You’ve probably guessed that, since both

restaurants and reviews can take comments, this class will need the

same :as => :commentable declaration that we gave the Restaurant

model:

Download introduction_to_rails/rouge/app/models/review.rb

class Review < ActiveRecord::Base

belongs_to :restaurant

belongs_to :reviewer

has_many :comments, :as => :commentable

end

That just leaves the Comment model:

Download introduction_to_rails/rouge/app/models/comment.rb

class Comment < ActiveRecord::Base

belongs_to :commentable, :polymorphic => true

end

As you can see, most of the code used to specify models in Rails is

self-explanatory. The only complication is the Comment model’s poly-

morphic association (in other words, its ability to belong to more than

one kind of owner). Following Rails conventions, we’ve named the com-

mentable relationship after the adjective form of the Comment model’s

name.

Interacting with the Console

Ideally, this example has given you an idea of how to put together a few

simple models in Rails. Now, to get a taste of how easy it is to work with

these models, let’s fire up the Rails console and add some data to our

database:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/models/reviewer.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/models/review.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/models/comment.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=117

RESTAURANT ADMINISTRATION 101 118

$ jruby script/rails console

Loading development environment (Rails 3.0.0.rc)

>> mac = Restaurant.create :name => "Chez MacDo"

>> mac.comments.create :said_by => "Ola",

:content => "I think this place is great!"

>> chef = Reviewer.create :name => "Swedish Chef",

:description => "The Swedish Chef has dazzled audiences for years."

>> chef.reviews.create :restaurant => mac, :title => "A fine blend",

:content => "Sometimes you find one of these exquisite experiences ..."

As you can see, a few lines of ActiveRecord declarations have given us

a nice internal API for our app. Let’s put that API to work now.

5.4 Restaurant Administration 101

We’re going to add the web front end now, starting with the adminis-

trative interface. Once we have that in place, we can use it to add data

(restaurants and reviewers) for regular visitors to see.

Scaffolding

Much as construction workers will set up scaffolds to support their

work in progress, Rails developers can take advantage of scaffolding

code to support their newly created applications. A Rails scaffold con-

sists of views and a controller for the standard CRUD operations (Cre-

ate, Read, Update, and Delete). It gives you a basic web interface for

your data, which you can lean on as you gradually add your real busi-

ness code. By the end of the project, the scaffolding will have served its

purpose and will be completely replaced.

We’ll build scaffolds for three of our models: Administrator, Restaurant,

and Reviewer. These are easy to create, and they’ll give us the chance

to show off all four CRUD operations. Let’s start with the scaffold for

the Administrator model:

Download introduction_to_rails/output/script-generate-scaffold.txt

$ jruby script/rails g scaffold Administrator \

username:string password:string \

--migration false --skip

invoke active_record

identical app/models/administrator.rb

invoke test_unit

identical test/unit/administrator_test.rb

identical test/fixtures/administrators.yml

route resources :administrators

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-generate-scaffold.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=118

RESTAURANT ADMINISTRATION 101 119

invoke scaffold_controller

create app/controllers/administrators_controller.rb

invoke erb

create app/views/administrators

create app/views/administrators/index.html.erb

create app/views/administrators/edit.html.erb

create app/views/administrators/show.html.erb

create app/views/administrators/new.html.erb

create app/views/administrators/_form.html.erb

invoke test_unit

create test/functional/administrators_controller_test.rb

invoke helper

create app/helpers/administrators_helper.rb

invoke test_unit

create test/unit/helpers/administrators_helper_test.rb

invoke stylesheets

create public/stylesheets/scaffold.css

The --migration false and --skip options tell Rails that we’ve already written

the migrations for this model. The username and password fields deter-

mine what goes into the generated HTML form.

Go ahead and start the web server using the script/server command we

saw earlier, and visit http://localhost:3000/administrators in your browser.

Poke around the scaffolding interface, and create at least one new

administrator for later.

As you might notice, there are a few problems with this simple scaffold.

The biggest one is that we’re displaying the password in plain sight.

Let’s fix that. Open the view file at app/views/administrators/_form.html.erb,

and change text_field to password_field in the following place:

Download introduction_to_rails/rouge/app/views/administrators/_form.html.erb

<div class="field">

<%= f.label :password %>

<%= f.password_field :password %>

</div>

Now, modify app/views/administrators/index.html.erb and app/views/admini-

strators/show.html.erb to show asterisks instead of passwords. To do so,

replace occurrences of this:

administrator.password

...with this:

administrator.password.gsub(/./, '*')

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://localhost:3000/administrators
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/administrators/_form.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=119

RESTAURANT ADMINISTRATION 101 120

Note that these changes affect only the display of the password, not the

storage. We’re still keeping the password in the database in clear text,

which is a good way to get our site compromised. Password hashing

is a fascinating topic, but definitely one for another day. We encourage

you to check out a Rails security package such as Devise for your own

apps.9

With a simple but functional account creation page in place, we can

move on to the rest of the administrative section. The Restaurant ad-

ministrative user interface is much simpler:

$ jruby script/rails g scaffold Restaurant

name:string address:string \

phone:string description:text \

--migration false --skip

You don’t really need to do anything to this scaffold, although in order

to save screen space, you may want to remove the description column

from app/views/restaurants/index.html.erb.

Since you’re running in development mode, there’s no need to restart

the web server. Just visit http://localhost:3000/restaurants.

Finally, here is the scaffolding for reviewers:

$ jruby script/rails g scaffold Reviewer \

name:string description:text \

username:string password:string \

--migration false --skip

Since this scaffold has a password field, you’ll need to change the gen-

erated views in app/views/reviewers to hide the password, just like you

did for the Administrator views.

May We See Your ID, Please?

Right now, any visitor to the site can edit the page for any administrator,

restaurant, or reviewer. Let’s add HTTP Basic Authentication to control

access.

9. http://github.com/plataformatec/devise

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://localhost:3000/restaurants
http://github.com/plataformatec/devise
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=120

RESTAURANT ADMINISTRATION 101 121

First, we’ll create a new base class for admin-only controllers; let’s call

it AuthenticatedController:

Download introduction_to_rails/rouge/app/controllers/authenticated_controller.rb

class AuthenticatedController < ApplicationController

before_filter :authenticate

private

def authenticate

authenticate_or_request_with_http_basic do |user_name, password|

Administrator.find_by_username_and_password(user_name, password)

end

end

end

Notice the before_filter declaration. With this in place, Rails will call our

authenticate method before any action on an AuthenticatedController or

on one of its subclasses. Inside authenticate, we check for any HTTP

Basic Authentication credentials and look for a matching administrator

account. The final step is to make all three controllers inherit from

AuthenticatedController instead of ActionController. For example, the first

line of app/controllers/administrators_controller.rb should look like this:

class AdministratorsController < AuthenticatedController

At this point, we have a utilitarian but working administrative user

interface in place. One thing we can do to spruce things up a little bit is

add a common link bar for the administration options. Open the three

controller files back up, and on the second line of each, add this line of

code:

layout 'authenticated'

Then add a new file called app/views/layouts/authenticated.html.erb with

the following:

Download introduction_to_rails/rouge/app/views/layouts/authenticated.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Administration</title>

<%= stylesheet_link_tag :all %>

<%= javascript_include_tag :defaults %>

<%= csrf_meta_tag %>

</head>

<body>

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/authenticated_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/layouts/authenticated.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=121

OPEN TO THE PUBLIC 122

<table width="50%">

<tr>

<td><%= link_to "Administrators", administrators_path %></td>

<td><%= link_to "Restaurants", restaurants_path %></td>

<td><%= link_to "Reviewers", reviewers_path %></td>

</tr>

</table>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>

</html>

All three of the ’authenticated’ controllers will share this common HTML

structure. If you reload any of the administration pages in your browser,

you should now be able to switch among them with the link bar.

5.5 Open to the Public

Now that we have an interface for the administrator, it’s time to turn

our attention to the general visitor. As a first step, we need to remove

public/index.html so we can have dynamic content on the front page.

Once that’s done, we need to change the routing.

Routes to Success

The routing system is what Rails uses to decide which controller to

call when a request arrives. It maps URLs, such as http://localhost/show/

index, to controller actions, such as ShowController’s index method. It’s

quite a flexible system, but for now, we only need a tiny piece of its

power. Open config/routes.rb, and add these two lines anywhere inside

the main block:

Download introduction_to_rails/rouge/config/routes.rb

root :to => "guide#index"

match 'guide/:action/:id' => 'guide'

This new code tells Rails to route requests for http://localhost:3000/ and

http://localhost:3000/guide/... to the GuideController class. This controller

doesn’t exist yet, so let’s generate it now:

$ jruby script/rails generate controller guide

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://localhost/show/index
http://localhost/show/index
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/config/routes.rb
http://localhost:3000/
http://localhost:3000/guide/...
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=122

OPEN TO THE PUBLIC 123

If you start up the server again and visit http://localhost:3000, you will

notice that the regular Rails welcome page is no longer there. Instead,

you’ll get an error page, because we haven’t defined any GuideController

actions yet. We want the main page to display a list of restaurants that

the user can choose from. Edit app/controllers/guide_controller.rb to look

like this:

Download introduction_to_rails/edits/guide_controller1.rb

class GuideController < ApplicationController

def index

@restaurants = Restaurant.all

end

end

We also need to create the view for this action, by editing app/views/

guide/index.html.erb:

Download introduction_to_rails/rouge/app/views/guide/index.html.erb

<h1>Welcome to Rouge</h1>

<table>

<tr>

<th align="left">Name</th>

</tr>

<% @restaurants.each do |restaurant| %>

<tr>

<td><%=link_to restaurant.name, :action => :show, :id => restaurant %></td>

</tr>

<% end %>

</table>

If you reload the page, you should see a simple list of all the restaurants

you’ve added so far. Clicking a link won’t take you to a restaurant’s

page, though. For that, we’ll need a new view and controller action.

A Restaurant with a View

Add the following method to GuideController:

Download introduction_to_rails/rouge/app/controllers/guide_controller.rb

def show

@restaurant = Restaurant.find(params[:id])

@comment = Comment.new

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://localhost:3000
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/edits/guide_controller1.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/guide/index.html.erb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/guide_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=123

OPEN TO THE PUBLIC 124

Why are we creating a new comment here? It will help us fill in some

default form values in a moment. Before we get to that, though, add

a new view by creating app/views/guide/show.html.erb and putting the

following code in it:

Download introduction_to_rails/rouge/app/views/guide/show.html.erb

<h1><%= @restaurant.name %></h1>

<p>Address: <%= @restaurant.address %></p>

<p>Phone: <%= @restaurant.phone %></p>

<p><%= @restaurant.description %></p>

<h2>Reviews</h2>

<table>

<tr>

<th>Title</th>

<th>Author</th>

</tr>

<% @restaurant.reviews.each do |review| %>

<tr>

<td><%= link_to review.title, :action => 'review', :id => review %></td>

<td><%= review.reviewer.name %></td>

</tr>

<% end %>

</table>

<h2>Comments</h2>

<% @restaurant.comments.each do |comment| %>

<p>By: <%= comment.said_by %>

<%= comment.content %></p>

<% end %>

<h2>Add comment</h2>

<%= render :partial => 'shared/comment', :locals => {:target => 'restaurant'} %>

There are several things going on in this view. First, we display infor-

mation about the restaurant itself. Below that, we link to reviews and

comments people have posted. At the bottom of the page is a form for

adding new comments. That form will be shared between restaurants

and reviews, so we’re keeping it in a separate file and using Rails’s ren-

der method to reference it. We’ve followed Rails conventions and named

the file shared/_comment.html.erb.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/guide/show.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=124

OPEN TO THE PUBLIC 125

Download introduction_to_rails/rouge/app/views/shared/_comment.html.erb

<%= form_for(@comment, :url => { :action => "comment_on_#{target}",

:id => params[:id] }) do |f| %>

<% if @comment.errors.any? %>

<div id="error_explanation">

<h2><%= pluralize(@comment.errors.count, "error") %>

prohibited this comment from being saved:</h2>

<% @comment.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

<p>

By

<%= f.text_field :said_by %>

</p>

<p>

Content

<%= f.text_area :content %>

</p>

<p>

<%= f.submit "Comment" %>

</p>

<% end %>

See the @comment instance variable at the top? That’s the value we

created with the Comment.new line in the controller so that we could fill

in the fields with their correct defaults.

This user interface is not particularly fancy. But with some small

touches of CSS, it could be perfectly servicable. Of course, not every-

thing is hooked up yet. If we want to be able to save a new comment,

we’ll need to add an action to the GuideController:

Download introduction_to_rails/rouge/app/controllers/guide_controller.rb

def comment_on_restaurant

@restaurant = Restaurant.find(params[:id])

@restaurant.comments.create params[:comment]

@comment = Comment.new

flash[:notice] = 'Comment created'

render :action => 'show'

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/shared/_comment.html.erb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/guide_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=125

OPEN TO THE PUBLIC 126

We’re almost finished with the app now. The only major feature missing

is reviews.

Reviewers and Reviews

We’ll start with a scaffold, as before:

$ jruby script/rails g scaffold Review \

title:string content:text \

--migrate false --skip

The first change we need to make is to confine each reviewer to editing

only their own reviews. We’ll use HTTP Basic Authentication as we did

for the admin interface but with a twist: we need to remember which

reviewer is logged in. Open app/controllers/reviews_controller.rb, and add

this at the top (after the class declaration):

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

before_filter :authenticate

Now, add this near the bottom, just before the end of the class declara-

tion:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

private

def authenticate

authenticate_or_request_with_http_basic("Reviews") do |user_name, password|

@reviewer = Reviewer.find_by_username_and_password(user_name, password)

end

end

This code will make sure that reviewers are authenticated separately

from administrators and will also store the logged-in reviewer in the

@reviewer instance variable. Our other controller actions can use that

instance variable to decide whether to allow access. For instance, here’s

the new index method in ReviewsController:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

def index

@reviews = Review.find(:all, :conditions => ['reviewer_id = ?', @reviewer.id])

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @reviews }

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=126

OPEN TO THE PUBLIC 127

As you can see, we’re limiting our listing to show only the reviews asso-

ciated with the current reviewer. We’ll also want to restrict the show

action, which displays a single review’s details:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

def show

@review = Review.find_by_id_and_reviewer_id(params[:id], @reviewer)

raise "Couldn't find Review with ID=#{params[:id]} \

and reviewer=#{@reviewer.name}" unless @review

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @review }

end

end

Now, consider the three other controller actions: edit, update, and

destroy. All three of these act on an existing review, and all three need

modifications identical to the previous one.

The create action requires a slightly different change, because it builds

a new review instead of searching for and updating an existing one:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

def create

@review = @reviewer.reviews.build(params[:review])

respond_to do |format|

if @review.save

format.html { redirect_to(@review,

:notice => 'Review was successfully created.') }

format.xml { render :xml => @review,

:status => :created,

:location => @review }

else

format.html { render :action => "new" }

format.xml { render :xml => @review.errors,

:status => :unprocessable_entity }

end

end

end

In the previous excerpt, it wouldn’t have been enough just to call

Review.new to create a new review. We have to reach into the reviewer’s

reviews collection to make sure the new review gets associated with the

right reviewer.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=127

OPEN TO THE PUBLIC 128

Matching Reviews to Restaurants

As it stands, there’s no way for the user to specify which restaurant his

review goes with. Let’s fix that. First, we need to tell our controller to

grab a list of all the restaurants, so the view can show them in a selec-

tion box. Open reviews_controller.rb, and add a single line to the beginning

of both the new and edit actions. We’ll just show the new action here:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

def new

@restaurants = Restaurant.alphabetized

@review = Review.new

respond_to do |format|

format.html # new.html.erb

format.xml { render :xml => @review }

end

end

Restaurant.alphabetized will be a sorted list of restaurants. We say “will

be,” because this is new functionality we need to add to the Restaurant

model. What should this method look like? Well, we could use bread-

and-butter techniques like Ruby’s sort method:

def Restaurant.alphabetized

Restaurant.all.sort {|r| r.name}

end

This code would return the correct results, but it ignores the fact that

we already have a screamingly fast data sorter sitting underneath our

app: the database. So, should we construct an entire SQL query our-

selves and send it to the database? ActiveRecord offers us something

much better: relations. To add an alphabetized relation to the Restau-

rant model, modify restaurant.rb to look like this (the new code is in the

second-to-last line):

Download introduction_to_rails/rouge/app/models/restaurant.rb

class Restaurant < ActiveRecord::Base

validates_presence_of :name

has_many :reviews

has_many :comments, :as => :commentable

scope :alphabetized, order("restaurants.name ASC")

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/models/restaurant.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=128

OPEN TO THE PUBLIC 129

Ian Says. . .

Relations in Rails

Relations are Rails 3’s way of expressing database operations
like sorting or filtering. They let the database do what it’s good
at (slicing and dicing data), and they let Ruby do what it’s
good at (readable notation).

One nice feature of relations is that they’re composable. If you
defined two relations called in_zip_code and alphabetized, you
could write Restaurant.in_zip_code(’97201’).alphabetized.

For more on what relations can do, take a look at AREL (“A
Relational Algebra”), the muscle behind ActiveRecord.∗

∗. http://github.com/rails/arel

Now we need to put this list of restaurants in the view so that the

reviewer can choose among them. Rails’s collection_select method will

construct the right HTML <select> tag for us. Add the following lines

just above the restaurant title in app/views/reviews/_form.html.erb:

Download introduction_to_rails/rouge/app/views/reviews/_form.html.erb

<div class="field">

<%= f.label :restaurant %>

<%= collection_select :review, :restaurant_id, @restaurants, :id, :name %>

</div>

As you can see, we’ve had to pass in five somewhat opaque parame-

ters. These become less mysterious once you have the decoder ring.10

Together, they specify what gets saved (the :review object’s :restaurant_id

field) and where the list contents come from (the @restaurants collection’s

:id and :name fields).

That takes care of the details of the form. Let’s zoom out to the over-

all structure for a moment. Each review should feature the restaurant

name prominently. We can accomplish this by snazzing up the header

at the top of the page.

10. http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://github.com/rails/arel
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/reviews/_form.html.erb
http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=129

OPEN TO THE PUBLIC 130

Here’s what the resulting show.html.erb looks like:

Download introduction_to_rails/rouge/app/views/reviews/show.html.erb

<h1>Review for <%= @review.restaurant.name %></h1>

<p>

Title:

<%= @review.title %>

</p>

<p>

Content:

<%= @review.content %>

</p>

<%= link_to 'Edit', edit_review_path(@review) %> |

<%= link_to 'Back', reviews_path %>

While we’re at it, the overall list of reviews should also include restau-

rant names:

Download introduction_to_rails/rouge/app/views/reviews/index.html.erb

<h1>Listing reviews</h1>

<table>

<tr>

<th>Restaurant</th>

<th>Title</th>

</tr>

<% @reviews.each do |review| %>

<tr>

<td><%= review.restaurant.name %></td>

<td><%= review.title %></td>

<td><%= link_to 'Show', review %></td>

<td><%= link_to 'Edit', edit_review_path(review) %></td>

<td><%= link_to 'Destroy', review, :confirm => 'Are you sure?',

:method => :delete %></td>

</tr>

<% end %>

</table>

<%= link_to 'New Review', new_review_path %>

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/reviews/show.html.erb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/reviews/index.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=130

OPEN TO THE PUBLIC 131

After reviewers have gone to all the trouble of writing their reviews, it

would be nice for the general public to be able to read and comment on

them. Add the following two actions to the GuideController:

Download introduction_to_rails/rouge/app/controllers/guide_controller.rb

def review

@review = Review.find(params[:id])

@comment = Comment.new

end

def comment_on_review

@review = Review.find(params[:id])

@review.comments.create params[:comment]

@comment = Comment.new

flash[:notice] = 'Comment created'

render :action => 'review'

end

The code should look pretty unsurprising, since it’s similar to what we

did for viewing restaurants. The final view (which is in app/views/guide/

review.html.erb) is similarly straightforward:

Download introduction_to_rails/rouge/app/views/guide/review.html.erb

<h1><%= @review.title %></h1>

<p>About: <%= @review.restaurant.name %></p>

<p>By: <%= @review.reviewer.name %></p>

<p><%= @review.content %></p>

<h2>Comments</h2>

<% @review.comments.each do |comment| %>

<p>By: <%= comment.said_by %>

<%= comment.content %></p>

<% end %>

<h2>Add comment</h2>

<%= render :partial => 'shared/comment', :locals => {:target => 'review'} %>

And there you have it—a working application! Of course, you’re proba-

bly tempted to add some visual styling, nice navigational features, and

so on. We highly encourage you to do so. Have fun, and drop us a line

in the forums to show us what you’ve come up with.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/guide_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/guide/review.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=131

WRAPPING UP 132

5.6 Wrapping Up

In this chapter, we introduced the Rails framework and built a simple

Rails application on JRuby. We also discussed a few differences from

regular Ruby on Rails. For the most part, there hasn’t been much of

a distinction, other than a couple of configuration settings. Over the

next couple of chapters, we’ll see where JRuby on Rails really shines:

database access and deployment options.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=132

Chapter 6

JRuby and Relational Databases
These days, any upstart programming language has to have some kind

of persistent storage support to be taken seriously. Ruby is no excep-

tion; in fact, developers tout its fluid database connectivity.

Many of the techniques for connecting Ruby to databases work basi-

cally the same in JRuby. Over the coming pages, we’ll turn our attention

to relational databases (as opposed to key-value or other data stores).

You’ll see how to use Ruby’s more popular data frameworks and what

kinds of adjustments to make when you’re running them in JRuby.

In regular Ruby, SQL libraries typically depend on a database-specific C

module. The APIs differ widely depending on the database, and frame-

work authors are left with the task of papering over these differences.

With JRuby, you’ll still install a binary driver for your choice of data-

base, but at least all these drivers are written to one common API:

Java’s JDBC standard.

You can call JDBC routines directly from Ruby, and later, we’ll see a

situation where you might want to do just that. But it’s usually more

convenient to work with a higher-level library. It’s worth keeping in

mind, though, that all these library calls percolate down to JDBC under

the hood.

6.1 Ruby Database Frameworks

Let’s take a look at the most commonly used Ruby frameworks for

database connectivity. From a bird’s-eye view, there’s little difference

between using these in plain Ruby or JRuby.

Download from Wow! eBook <www.wowebook.com>

RUBY DATABASE FRAMEWORKS 134

Ola Says. . .

Throwback to JDBC

In many ways, both DBI and Sequel remind me of JDBC, in that
they try to abstract away some of the differences between dif-
ferent databases engines, while still acknowledging that you’re
working with a database.

The main database libraries for Ruby are quite different from one other.

ActiveRecord is a high-level framework that allows you to work with the

database abstracted away (at least to a degree). Its name comes from

a pattern in Martin Fowler’s Patterns of Enterprise Application Architec-

ture [Fow03].1

DBI and Sequel both allow you to work much closer to the database.

Although you won’t have to deal with a specific database product’s wire

protocol or file format, you’ll have much more control over the exact

SQL queries your Ruby program will be running.

The differences listed earlier should make it clear that these libraries

are suited for very different circumstances, and it’s good to keep a cou-

ple of them in your toolbox. But wait with that decision until you have

seen the tools available only on JRuby!

ActiveRecord

In Chapter 5, Introduction to Rails, on page 98, we saw just enough

ActiveRecord to get a Rails app running. Let’s dive in a little deeper

now. We’ve said that this library is an implementation of the Active

Record software pattern; what does that mean?

For the purposes of this chapter, we’re going think of object-oriented

programs in terms of model classes and utility classes. Model classes

represent the ideas behind your program, in language similar to what

you’d use with an end user: blog posts, employees, appointments, and

1. Another great Ruby data library, DataMapper, also gets its name from Fowler’s

book. Its JRuby support is a work in progress; still, you might want to take a peek at

http://datamapper.org if you like living on the bleeding edge.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://datamapper.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=134

RUBY DATABASE FRAMEWORKS 135

so on. Utility classes perform auxiliary tasks, such as drawing graphics

or parsing wire protocols. Clearly, model classes are what you’d typi-

cally want to keep around in a database.

In the simplest incarnation of the Active Record pattern, each model

class is represented by one database table. Each instance of that class

corresponds to one row in the table and typically has one property for

each column.

For instance, a program for cataloging different species of trees might

have a Tree class with name, max_height, and maybe a few other fields. If

the program follows the Active Record pattern, it will keep all its trees in

a trees table—which might look something like this after a user enters

the first couple of species:

+----+-----------------+------------+--------------+

| id | name | max_height | is_evergreen |

+----+-----------------+------------+--------------+

| 1 | Canyon Live Oak | 30 | 1 |

| 2 | Post Oak | 15 | 0 |

+----+-----------------+------------+--------------+

In a less flexible programming language, you might end up writing a

lot of repetitive code to support this pattern. For instance, you’d need a

getMaxHeight() method to fetch the value of the max_height column for a

particular database record and convert it to an integer. Fortunately, the

ActiveRecord library automates much of this mapping for you. In the

simplest cases, if you follow the naming conventions, you won’t have to

write anything except the class name.

There’s a lot more to ActiveRecord than what’s in Fowler’s original

design pattern. These extra features allow ActiveRecord to handle the

most common database-related tasks you’re likely to encounter.

Broadly speaking, the library can be divided into four parts:

• Migrations

• Model descriptions

• Validations

• Model usage

We’ll describe and give examples each of these parts soon, but first we

need to talk about how JRuby and ActiveRecord work together.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=135

RUBY DATABASE FRAMEWORKS 136

JRuby has supported ActiveRecord for quite a long time. A collection

of gems gives you a choice among various JDBC drivers to use with

ActiveRecord. You can choose to use either a driver specific to your

database or a general driver; it doesn’t make much difference either

way. To install the general gem, run this command (the exact version

number may vary):

$ jruby -S gem install activerecord-jdbc-adapter

Successfully installed activerecord-jdbc-adapter-1.0.2-java

1 gem installed

To use a database-specific gem instead, first do a search for available

gems:

$ jruby -S gem search -r activerecord-jdbc

*** REMOTE GEMS ***

ActiveRecord-JDBC (0.5)

activerecord-jdbc-adapter (1.0.2 java, 0.9.2)

activerecord-jdbcdbf-adapter (0.9.7.2 java)

activerecord-jdbcderby-adapter (1.0.2 java, 0.9.2)

activerecord-jdbch2-adapter (1.0.2 java, 0.9.2)

activerecord-jdbchsqldb-adapter (1.0.2 java, 0.9.2)

activerecord-jdbcmssql-adapter (1.0.2 java)

activerecord-jdbcmysql-adapter (1.0.2 java, 0.9.2)

activerecord-jdbcpostgresql-adapter (1.0.2 java, 0.9.2)

activerecord-jdbcsqlite3-adapter (1.0.2 java, 0.9.2)

...

...and then install the driver for your database. For example, if you were

using MySQL, you’d type this:

$ jruby -S gem install activerecord-jdbcmysql-adapter

If you’re using a commercial database like Oracle or Microsoft SQL

Server, you’ll also need to download your vendor’s JDBC driver and

copy it into JRuby’s lib directory. For example, with Oracle 10g, you’d

look for ojdbc14.jar on the official download site.2

For the most part, your Ruby code will look the same whether you use

the generic driver or a specific one. We’ll note the few places where you

need to do something different between the two.

2. http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-10201-088211.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-10201-088211.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=136

RUBY DATABASE FRAMEWORKS 137

Once you have chosen and installed your database adapter, you can

finally install ActiveRecord itself:

$ jruby -S gem install activerecord

At this point, it’s a good idea to check that everything is working by

connecting to a database and executing some raw SQL. Here’s how

you’d do that using the general adapter:

Download databases/simple_connect.rb

require 'rubygems'

require 'active_record'

ActiveRecord::Base.establish_connection(

:adapter => 'jdbc',

:driver => 'com.mysql.jdbc.Driver',

:url => 'jdbc:mysql://localhost/using_jruby',

:username => 'root',

:password => ''

)

ActiveRecord::Base.connection.execute("CREATE TABLE FOO1(id INTEGER)")

p ActiveRecord::Base.connection.execute("SHOW TABLES")

You may need to change some of the parameters to suit your circum-

stances. The code assumes that you’ve done the following:

1. Install and start the MySQL server.3

2. Download and extract the MySQL JDBC drivers, and copy the .jar

to JRuby’s lib directory.4

3. Use the MySQL server’s admin tools to create a database called

using_jruby:

$ mysql --user=root

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 4

Server version: 5.1.44 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE using_jruby;

Query OK, 1 row affected (0.00 sec)

mysql> \q

Bye

3. http://dev.mysql.com/downloads/mysql

4. http://dev.mysql.com/downloads/connector/j

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/simple_connect.rb
http://dev.mysql.com/downloads/mysql
http://dev.mysql.com/downloads/connector/j
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=137

RUBY DATABASE FRAMEWORKS 138

Once those steps are complete, you’re ready to run the code:

$ jruby simple_connect.rb

[{"Tables_in_using_jruby"=>"FOO1"}]

If you choose to use the specific MySQL adapter, the establish_connection

part should look like this instead:

Download databases/specific_connect.rb

ActiveRecord::Base.establish_connection(

:adapter => 'jdbcmysql',

:database => 'using_jruby',

:host => 'localhost',

:username => 'root',

:password => ''

)

This configuration looks more like the regular Ruby version of the same

code, because it omits the ugly JDBC URL and driver specification.

It’s also possible to fetch your database connection from JNDI.5 You do

this by providing a parameter named jndi, which has the name of the

JNDI object to get the database connection from.6 If you do that, you

can leave out most of the other parameters:

Download databases/jndi_connect.rb

ActiveRecord::Base.establish_connection(

:adapter => 'jdbc',

:jndi => 'jdbc/using_jruby',

:driver => 'com.mysql.jdbc.Driver'

)

We won’t describe in detail all the features of ActiveRecord here—there

are better places to find that documentation.7 It’s worth highlighting

some of the main features, though, so you know what’s possible.

Migrations

The original Active Record pattern suggests a structure for your data-

base. How do you create that structure in the first place, and how do

you modify it as your data model changes? This is where the ActiveRe-

cord library’s notion of migrations comes in. A migration is a piece of

5. Java Naming and Directory Interface, a way for Java services to discover one another.

See http://java.sun.com/products/jndi.
6. See your JNDI implementation’s instructions for how to create and name this object.
7. http://api.rubyonrails.org/classes/ActiveRecord/Base.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/specific_connect.rb
http://media.pragprog.com/titles/jruby/code/databases/jndi_connect.rb
http://java.sun.com/products/jndi
http://api.rubyonrails.org/classes/ActiveRecord/Base.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=138

RUBY DATABASE FRAMEWORKS 139

Ola Says. . .

Migrations

Migrations are so useful that I often use them outside the con-
text of Rails applications, whenever I want to be able to make
controlled changes to my database structure.

code that runs when you’re creating your database for the first time or

when you’re rearranging it later as your app evolves.

A typical migration will create a new table (to represent a new class

you’re adding to your program) or add a column to an existing table.

Migrations can also run in reverse, dropping tables when you need to

roll back to a previous version of your code.

Migrations are named with a timestamp so that they run in the order

in which you created them. This sequencing allows you to grow your

database organically. If you need a table, you add a new migration for

it. If you need a new column, add a new migration to add that column.

It just so happens that most of the complexity in activerecord-jdbc-

adapter lies in the code related to migrations. The reason is that Data

Definition Language (DDL) is the least-specified part of SQL, and all

vendors have different ways of manipulating the database structure.

That said, most standard databases work fine when combining migra-

tions and JDBC.

Let’s take a look at an example migration. Rails uses a structure of

one file per migration, and that works really well. But if you want to

do something ad hoc or maybe just see how migrations work in a code

example, it’s fine to put several migrations in one file, as in the upcom-

ing example.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=139

RUBY DATABASE FRAMEWORKS 140

Assuming you have an establish_connection call at the beginning of your

file, as we’ve discussed on the previous pages, you can define a series

of migrations like this:

Download databases/ar_migrations.rb

class AddFooTable < ActiveRecord::Migration

def self.up

create_table :foo do |t|

t.string :foo

t.text :bar

t.integer :qux

end

end

def self.down

drop_table :foo

end

end

class AddBlechColumnTable < ActiveRecord::Migration

def self.up

add_column :foo, :flax, :string

end

def self.down

remove_column :foo, :flax

end

end

Once you’ve defined your migrations, you can run them normally (:up)

or in reverse (:down):

Download databases/ar_migrations.rb

AddFooTable.migrate(:up)

AddBlechColumnTable.migrate(:up)

AddBlechColumnTable.migrate(:down)

AddFooTable.migrate(:down)

The code will generate simple output like this, provided everything was

configured correctly. Behind the scenes, your SQL database will contain

the new tables and columns:

$ jruby ar_migrations.rb

== AddFooTable: migrating ==

-- create_table(:foo)

-> 2.1932s

-> 0 rows

== AddFooTable: migrated (2.1963s) ===

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ar_migrations.rb
http://media.pragprog.com/titles/jruby/code/databases/ar_migrations.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=140

RUBY DATABASE FRAMEWORKS 141

== AddBlechColumnTable: migrating ==

-- add_column(:foo, :flax, :string)

-> 0.1170s

-> 0 rows

== AddBlechColumnTable: migrated (0.1190s) ===================================

== AddBlechColumnTable: reverting ==

-- remove_column(:foo, :flax)

-> 0.0081s

== AddBlechColumnTable: reverted (0.0092s) ===================================

== AddFooTable: reverting ==

-- drop_table(:foo)

-> 0.0026s

-> 0 rows

== AddFooTable: reverted (0.0048s) ===

Migrations are definitely handy to have in your tool chest, and making

use of JDBC and JNDI to attach to different databases makes it much

easier to do any of the DDL tasks you might want to do repeatedly.

Model Descriptions

ActiveRecord includes a very rich DSL-like syntax for describing your

model classes and their associations with one other. Creating a new

model class is as simple as inheriting from ActiveRecord::Base and then

using certain class methods to tell ActiveRecord some facts about your

model.

Instead of taking each piece in isolation, we will show you a model

class that uses most of the common definitions and then describe them

afterward.

Download databases/ar_description.rb

require 'rubygems'

require 'active_record'

class Blog < ActiveRecord::Base

set_table_name 'WP_BLOG'

set_primary_key 'blog_id'

belongs_to :owner, :class_name => 'Person'

has_one :audit_log, :foreign_key => 'watched_id'

has_many :posts

has_many :authors, :through => :posts

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ar_description.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=141

RUBY DATABASE FRAMEWORKS 142

This code defines a Ruby model class named Blog, sets the table name

to WP_BLOG (the default would have been blogs), and sets the primary

key to be blog_id (instead of the default primary key of id). We don’t have

to say anything at all about the blog’s basic properties. If, for example,

the WP_BLOG table has a name, a creator, and a visit_count column, each

of these will automatically be accessible in Ruby with the same name it

has in the database.

We see four different examples of associations in this code. First, let’s

look at belongs_to and has_one. Each of these indicates a foreign-key

relationship. In the case of belongs_to, the foreign key will be a column

called owner_id in this model’s own WP_BLOG table.

The has_one declaration, on the other hand, shows that the watched_id

foreign key lives in a separate audit_logs table and points back at this

model. As you can see, ActiveRecord uses sensible naming conventions

for column, table, and class names but allows you to override them.

The final two definitions—the ones beginning with has_many—describe

collections. The first one is simple and says that every blog has zero or

more posts. The assumption here is that there also exists a Post model

class and that the blog posts will be a collection of these.

The second has_many declaration creates a many-to-many association.

It doesn’t use a typical join table (you can do that too, using has_and_

belongs_to_many). Instead, it uses another Ruby class, the Post model,

as the intermediate object. Here, a blog’s authors are the set of people

who have ever written a post on that blog.

There are definitely more nuances and fine-tunings of data models, but

these pieces represent the most common uses of ActiveRecord.

Validations

Nearly all database-driven programs require data validation at some

point. Sometimes, you want to apply constraints that are more strin-

gent than a typical RDBMS’s primitive type checking. Or you might

want to catch errors before the database ever sees them. ActiveRecord

provides a declarative way to get this behavior, by describing validations

on your model class.

Although you can put almost anything in a validation, there are several

common checks you end up doing quite often. This code gives a few

examples of what you can specify in your model:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=142

RUBY DATABASE FRAMEWORKS 143

Ola Says. . .

Validate Anything

ActiveRecord allows you to validate just about any property
you can think of. I made an example in Rails once that was a
database of Ruby scripts. As one of the validations, I added
a check to make sure that the Ruby script saved was actually
valid Ruby code.

Download databases/ar_validations.rb

require 'rubygems'

require 'active_record'

class Blog < ActiveRecord::Base

validates_presence_of :title, :message => "should be provided"

validates_numericality_of :age, :only_integer => true

validates_length_of :title, :in => 5..35

validates_length_of :posts, :maximum => 30

validates_uniqueness_of :title

validates_inclusion_of :blog_type, :in => %w(work personal)

validates_format_of :contact, :with => /^.+?@.+?$/

validates_each :title, :text do |record, attr, value|

unless value.buddha_nature?

record.errors.add attr, "doesn't have the Buddha nature"

end

end

end

This example checks quite a lot of things on the Blog model. Let’s take

them in order:

• validates_presence_of: This method will make sure that the named

attributes are not nil or blank. All validations allow you to provide

a custom message if you don’t like the one provided, and in this

case an error message would say "title should be provided".

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ar_validations.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=143

RUBY DATABASE FRAMEWORKS 144

• validates_numericality_of: As the name says, it checks that an attri-

bute is a number. You can decide if any kind of number is fine or

if you only want to allow integers. The default is to allow any kind

of number.

• validates_length_of: Checking the length of something can be done

either by comparing to a maximum or by comparing to a range.

Anything that responds to the message length can be used, so a

String value works fine, and so does an association.

• validates_uniqueness_of: This validation is a bit different in that it

doesn’t check any property of the value itself but instead makes

sure that there is nothing else with the same value for that prop-

erty.

• validates_inclusion_of: If you want to make sure that a value is in a

range of values, you can use this validation. You can give it any

kind of object that has the include? method, so arrays and ranges

both work fine.

• validates_format_of: You may sometimes find it necessary to check

that a string field matches a specific format. In this example, we’ve

used an extremely simple regular expression to make sure that a

string looks a little bit like an email address.

• validates_each: There are several ways to do custom validation.

The low-level way is to override validate, validate_on_create, or val-

idate_on_update. The better way is to just define a custom valida-

tion with validates_each.

With this approach, you simply provide the names of the proper-

ties to be checked, plus a block that actually does the testing. The

block gets three arguments: the model instance under validation,

the name of the property that is being checked, and the new value

that is about to be inserted into the database.

You signal a failed validation by adding one or more errors to

the errors attribute of the model instance. If you add no errors,

ActiveRecord will consider the validation a success. We strongly

recommend validates_each over the low-level mechanisms. If you

make a mistake with the latter, your other validations might not

run.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=144

RUBY DATABASE FRAMEWORKS 145

As you can see, the possibilities for validation are considerable. You can

go totally crazy and validate each and every aspect of the data before it

ever gets into the database. But one detail is missing. When should the

validations actually run? There are some alternatives here. The basic

rule is that during regular model usage (you will see more about this

in the next section), ActiveRecord will run your validations just before

an object gets saved to the database. If you need more control, you can

call the valid? on a model instance at any time.

Model Usage

You have now seen most of the important parts of the ActiveRecord

puzzle—except for how to actually use it, that is.

In keeping with the blogging theme we’ve started, let’s take a look at

some examples of how to create blogs and add posts:

Download databases/ar_usage.rb

require 'rubygems'

require 'active_record'

b1 = Blog.new :author => 'Ola Bini'

b1.title = 'My first blog'

b1.save

Blog.create :title => 'My second blog'

b2 = Blog.find(2)

b2.title = 'My second blog, revisited'

b2.posts.create(:title => 'First post',

:body => 'This is a post about something')

b2.save

my_blogs = Blog.where(:author => 'Ola Bini')

my_blogs.first.destroy

This example shows only a small extent of what’s possible to do with an

ActiveRecord model, but it shows enough to get you started. Let’s run

through the interesting parts of this code snippet.

First, a model object can be created using new, exactly as any other

Ruby object. You can also give this call a hash of initial values for

attributes. Any attribute can be set by just using a setter. ActiveRecord

provides these for columns in the table (such as title), and for associated

objects (like posts).

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ar_usage.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=145

RUBY DATABASE FRAMEWORKS 146

To push a newly created object to the database, just call save or save!.

The difference between them is that the first one returns false if it

couldn’t validate the object or save it to the database for some reason.

The “bang” version will throw an exception instead.

If you want to initialize an object and save it to the database in one

step, you can use create or create!.

To retrieve an object from the database, you use the find method with

the blog’s unique ID. You’ll notice we didn’t supply any IDs when we

created the blogs; this is a detail that ActiveRecord prefers to take care

of.

The next lines update some attributes and also put a new Post into the

blog’s collection of posts. There are lots of ways of sticking together

two associated objects. For this case, it makes sense just to call create

on the associated posts collection and let ActiveRecord take care of the

potentially tricky process of wiring them together.

A database mapping wouldn’t be very useful if the only way to look up

objects were through their IDs. ActiveRecord models support a mind-

boggling number of ways to slice and dice data. Here, we’re filtering

blogs by author and then taking the first one that matches. The docu-

mentation for ActiveRecord is full of examples of other techniques for

searching through databases.

In the final line, we delete the first Blog in the filtered list by calling

destroy. This will also make the instance immutable, so if you try to

modify any of the attributes of the instance after destroying it, it will

raise an exception.

This is really the minimum you need to know to be able to use ActiveRe-

cord models. Armed with this information, you should be able to add,

search for, update, or remove objects from your own databases. In the

next few sections, we’ll take a quick look at the other database libraries

for Ruby and see how they compare. While ActiveRecord is the premier

Ruby database library, there are times when one of the alternatives is

a better fit.

DBI

DBI is a very lightweight framework, in that it tries to get really close to

the database. It is not a mapping framework like ActiveRecord; instead,

it allows you to work with a thin wrapper over the direct database driver.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=146

RUBY DATABASE FRAMEWORKS 147

It was originally heavily inspired by the Perl DBI library but has now

diverged a bit, with the addition of more idiomatic Ruby features. DBI

works well with JDBC, and once you are connected to the database

using JDBC, you can use the standard DBI interface to work with your

data.

The JDBC interface for working with DBI is still quite young, so make

sure to play around with it before committing to it.

To use DBI, you first need to install the dbi and dbd-jdbc gems:

$ jruby -S gem install dbi dbd-jdbc

Once you have these in place, you can connect to a database and grab

some data. The multirow select_all method is the workhorse of DBI:

Download databases/dbi_test.rb

require 'rubygems'

require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',

'root',

'',

'driver'=>'com.mysql.jdbc.Driver') do |dbh|

p dbh.select_all('SELECT * FROM foo')

end

For single-row queries, you use the select_one method instead. Here’s

how to get the current version of a MySQL server:

Download databases/dbi_version.rb

require 'rubygems'

require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',

'root',

'',

'driver'=>'com.mysql.jdbc.Driver') do |dbh|

row = dbh.select_one('SELECT VERSION()')

puts "Server version: #{row[0]}"

end

If you want to run a script that updates the database, say, to drop or

create a table, you can call the do method on the database handle.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/dbi_test.rb
http://media.pragprog.com/titles/jruby/code/databases/dbi_version.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=147

RUBY DATABASE FRAMEWORKS 148

Download databases/dbi_table.rb

require 'rubygems'

require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',

'root',

'',

'driver'=>'com.mysql.jdbc.Driver') do |dbh|

dbh.do("DROP TABLE IF EXISTS blogs")

dbh.do(<<SQL)

CREATE TABLE blogs(

id INT UNSIGNED NOT NULL AUTO_INCREMENT,

name VARCHAR(255),

author VARCHAR(255),

PRIMARY KEY (id))

SQL

dbh.do(<<SQL)

INSERT INTO blogs (name, author)

VALUES

('Languages', 'Ola Bini'),

('Politics', 'Roy Singham'),

('Environment', 'Al Gore')

SQL

end

This code will drop the table if it exists and then create the table from

scratch and add some data to it. The do method will return the number

of updated rows after the command has finished. This can be useful

when checking whether an UPDATE statement actually did something,

for example. Note that we’re using the Ruby “heredoc” syntax to make

the SQL statements more readable.8

We’re going to show a few more examples on how to use DBI. As you

will see, DBI is actually much closer to JDBC than any of the other

database tools described in this chapter. When you extract values from

the database, DBI doesn’t automatically give you back everything in one

collection—instead, you get a handle to a result set, so you can traverse

the results in any way you want. There are performance advantages

to this approach, but it does tend to make for more low-level code to

handle everything.

8. http://en.wikipedia.org/wiki/Here_document

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/dbi_table.rb
http://en.wikipedia.org/wiki/Here_document
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=148

RUBY DATABASE FRAMEWORKS 149

When performance and memory usage are not an issue, you can gloss

over results sets and just use the select_all and select_one methods

shown earlier.

So, let’s see how this works:

Download databases/dbi_result.rb

require 'rubygems'

require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',

'root',

'',

'driver'=>'com.mysql.jdbc.Driver') do |dbh|

sth = dbh.prepare("SELECT * FROM blogs")

sth.execute

while row = sth.fetch

puts "Values from DB: #{row.inspect}"

end

sth.finish

end

Not much difference, really. You call fetch on the statement object, and

it will return a new row every time, until there are no more rows to

return. It’s important to call finish after you’re finished with the state-

ments—otherwise, the database will stop responding at some point. Not

fun.

The statement object actually has a Ruby-style each method, so you

can iterate over it like a traditional Ruby collection instead, if that

strikes your fancy.

DBI also supports preparing statements with placeholders for data.

This works like in JDBC: the data will be quoted correctly, based on

what kind of column it’s going into. This is very convenient and also

makes it much easier to avoid security holes. ActiveRecord has taken

a lot of flak because it used to encourage quoting in Ruby, instead of

letting the database take care of it.

To prepare and use such a statement, we use the prepare method, like

we did earlier.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/dbi_result.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=149

RUBY DATABASE FRAMEWORKS 150

Download databases/dbi_prepare.rb

require 'rubygems'

require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',

'root',

'',

'driver'=>'com.mysql.jdbc.Driver') do |dbh|

sth = dbh.prepare("INSERT INTO blogs (name, author) VALUES(?, ?)")

sth.execute("Architecture", "Richard Gabriel")

sth.execute("Physics", "Lee Smolin")

sth.execute("Memes", "Richard Dawkins")

sth.finish

end

Here, we prepare an INSERT statement and then run it with three differ-

ent pieces of data. This technique is not limited to INSERTs, of course.

You can use it with any kind of SQL statement.

DBI also allows you to get lots of metadata associated with a current

connection, result set, or table. This information is readily available

from DBI’s online documentation.9

With these pieces in place, you have everything you need to get started

with DBI for low-level database tasks.

Sequel

Sequel is a relatively new database framework for Ruby. It’s quite dif-

ferent from both ActiveRecord and DBI, sitting somewhere in between

them on the ladder of abstraction. It’s closer to the database than

ActiveRecord but more abstract than DBI. You generally don’t work

with raw SQL commands as much in Sequel as you do in DBI.

The goal for Sequel was to layer a Ruby-like interface over some of the

cases that ActiveRecord didn’t handle so well in the past (such as large

data sets). Sequel also includes model and migration features similar to

those of ActiveRecord, albeit more integrated with the rest of the library

than their ActiveRecord counterparts.

Before we start looking at some examples of Sequel, it’s important to

know that not everything that looks like familiar Ruby will actually be

9. http://ruby-dbi.rubyforge.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/dbi_prepare.rb
http://ruby-dbi.rubyforge.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=150

RUBY DATABASE FRAMEWORKS 151

executed as it reads. There are some circumstances where Sequel does

exceedingly clever things with Ruby code—such as transforming it into

SQL for later execution in the database. This can cause some of the

examples to look a bit unusual.

To be able to use Sequel, you just need to install the sequel gem:

$ jruby -S gem install sequel

Now, you can use something like this to take a look at the database:

Download databases/sequel_simple.rb

require 'rubygems'

require 'sequel'

url = 'jdbc:mysql://localhost:3306/using_jruby?user=root&password='

DB = Sequel.connect(url)

DB[:blogs].each do |row|

p row

end

Each row comes back as a Ruby Hash:

$ jruby sequel_simple.rb

{:id=>1, :name=>"Languages", :author=>"Ola Bini"}

{:id=>2, :name=>"Politics", :author=>"Roy Singham"}

{:id=>3, :name=>"Environment", :author=>"Al Gore"}

{:id=>4, :name=>"Architecture", :author=>"Richard Gabriel"}

{:id=>5, :name=>"Physics", :author=>"Lee Smolin"}

{:id=>6, :name=>"Memes", :author=>"Richard Dawkins"}

Note that we specify the connection information just like we would

when connecting to JDBC. That’s because JDBC is actually used under

the covers—so this is really a JDBC URL.

Once we have a connection, there are lots of ways of getting data out of

it. The shortcut used in this code allows us to get a dataset that points

to a specific table. DB[:blogs] is more or less a shorter way of saying

DB[’select * from blogs’]. Sequel includes quite a lot of clever shortcuts

like this. The goal is to allow you to write Ruby code for most things

where you would have needed SQL in other frameworks.

Once you have a dataset, you can do some clever things with it. Say you

want to get aggregate information, such as a count, or maybe you’re

just interested in a specific entry.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/sequel_simple.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=151

RUBY DATABASE FRAMEWORKS 152

Download databases/sequel_functions.rb

require 'rubygems'

require 'sequel'

url = 'jdbc:mysql://localhost:3306/using_jruby?user=root&password='

DB = Sequel.connect(url)

p DB[:blogs].count

p DB[:blogs].map(:name)

$ jruby sequel_functions.rb>

6

["Languages", "Politics", "Environment", "Architecture", "Physics", "Memes"]

There are a huge amount of these simplifying methods all over Sequel.

Once you master them, Sequel ends up being a really powerful tool for

working with databases.

What about executing arbitrary SQL? Well, it depends on whether you

want a dataset back. As we saw earlier, you can use the square brackets

format to do SELECTs. If you want to do a raw INSERT, you can do it like

this:

Download databases/sequel_insert.rb

require 'rubygems'

require 'sequel'

url = 'jdbc:mysql://localhost:3306/using_jruby?user=root&password='

DB = Sequel.connect(url)

DB << "INSERT INTO blogs (name, author) VALUES('Music', '_why')"

The left-shift operator is overloaded to execute any SQL statement sent

to it. You can also use the execute method if that feels more natural.

You might be worried about the lively use of datasets in these examples.

As it turns out, the datasets in Sequel are extremely lazy, meaning that

they don’t do anything at all until you want to get some real data out

of them—at which point Sequel tries really hard to do things in the

database if possible. So, count and map will actually send out two very

different SQL statements to do these operations, rather than fetching

an entire table into Ruby and doing the operations in memory.

If you want to get all the records as an array of hashes, you call all

on the dataset. Searching in a table for a specific data item can be as

simple as DB[:blogs][:id => 1].

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/sequel_functions.rb
http://media.pragprog.com/titles/jruby/code/databases/sequel_insert.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=152

RUBY DATABASE FRAMEWORKS 153

Sequel has very powerful filtering capabilities. You won’t even have to

resort to SQL to do subselects. This capability can be very powerful,

but it also makes the library really easy to use.

You can run DELETE and INSERT statements in pure Ruby as well:

Download databases/sequel_delinsert.rb

require 'rubygems'

require 'sequel'

url = 'jdbc:mysql://localhost:3306/using_jruby?user=root&password='

DB = Sequel.connect(url)

blogs = DB[:blogs]

blogs.insert(:name => 'Databases',

:author => 'Pramod Sadalage')

blogs.filter(:name => 'Databases').delete

This code does an INSERT using the parameters specified, filters the

table, and then deletes the blogs selected by the filter. This just

scratches the surface on what is possible with filters in Sequel.

Sequel also offers models, like ActiveRecord does:

Download databases/sequel_simple_model.rb

require 'rubygems'

require 'sequel'

url = 'jdbc:mysql://localhost:3306/using_jruby?user=root&password='

DB = Sequel.connect(url)

class Blog < Sequel::Model

end

blog = Blog[1]

p blog

Here, we first define a class that will become a Sequel model. By default,

it will use the same naming conventions as ActiveRecord, so this code

will connect to the table called blogs, using the existing database con-

nection. The square brackets allow us to get a specific blog instance

based on the primary key. Sequel is fine with composite primary keys

but also “scales down” in simplicity: it will default to an id column as

the primary key.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/sequel_delinsert.rb
http://media.pragprog.com/titles/jruby/code/databases/sequel_simple_model.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=153

RIBS 154

Ian Says. . .

The Lazy Arms Race

Since Sequel came out, ActiveRecord has gained similar “lazy
loading” features. Starting with version 3, ActiveRecord will put
off as much work as it possibly can, until you absolutely need to
hit the database.∗ This allows both Sequel and ActiveRecord to
optimize their queries and avoid creating an excessive number
of Ruby objects.

∗. http://m.onkey.org/2010/1/22/active-record-query-interface

You can use square brackets to find a model based on conditions. For

example, you could call Blog[:name => ’Music’] to find any blog with the

name Music. Most of the familiar Sequel filtering operations work fine

inside square brackets. Sequel Model is quite a thin wrapper over reg-

ular Sequel, so most of the concepts should be recognizable.

Sequel models allow you to specify associations between them, much

in the same way as ActiveRecord does. This is very well documented on

the Sequel website, and it works exactly the same in JRuby as it does

in regular Ruby.10

All in all, Sequel is a really nice database library. It takes a very different

approach than both DBI and ActiveRecord, but this approach makes it

a really advanced tool.

6.2 Ribs

Database libraries for Ruby generally share the same goal of making the

most common cases achievable with very little code, which is why we

have the table naming conventions, automatic primary keys, and so on.

Sometimes, however, you have legacy databases, unconventional col-

umn names, inconvenient mappings, or high-performance caching

needs. In these situations, wedging exotic behavior into ActiveRecord

10. http://sequel.rubyforge.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://m.onkey.org/2010/1/22/active-record-query-interface
http://sequel.rubyforge.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=154

RIBS 155

would be more difficult than using a database framework that was

designed for this kind of use—like the Java Hibernate library.11

The overhead of using Hibernate can be inconvenient, especially for

small projects. That’s what the Ribs project aims to change.12 Simply

put, Ribs allow you to persist your Ruby objects using Hibernate. It’s

a wrapper around the real Hibernate database framework, not a port.

This means that Ribs is for JRuby only.

Using Hibernate means that you get a large amount of power out of the

box. But Ribs tries really hard to make its interface more Ruby-like,

intuitive, and easy to use. The goal is to be able to scale Ribs from the

absolutely simplest applications, all the way up to extremely complex

systems interacting with legacy databases.

Ready to get started? You can install a prebuilt Ribs gem, but we rec-

ommend building with the latest source instead. Either way, the instal-

lation will bring in Hibernate and its dependencies for you (the version

number in the last line may vary):

$ git clone git://github.com/olabini/ribs.git

$ cd ribs

$ ant jar

$ jruby -S gem install rake rspec

$ jruby -S rake gem

$ jurby -S gem install pkg/ribs-0.0.2.gem

The first thing you need to do when connecting to Ribs is to define

one or more databases. One of these must be named the default. For

example:

Download databases/ribs_connect.rb

require 'rubygems'

require 'ribs'

Ribs::DB.define(:db1) do |db|

Basic connectivity:

db.dialect = 'MySQL'

db.uri = 'jdbc:mysql://localhost:3306/using_jruby?user=root&password='

db.driver = 'com.mysql.jdbc.Driver'

Extra options:

db.default = true

db.properties['hibernate.show_sql'] = 'true'

end

11. http://www.hibernate.org

12. http://github.com/olabini/ribs

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ribs_connect.rb
http://www.hibernate.org
http://github.com/olabini/ribs
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=155

RIBS 156

Ola Says. . .

Ribs vs. Ruby

Since Ribs builds on the strong base of Hibernate, I decided
early on to make a few things different from the way Ruby data-
base frameworks generally work with models. Some of these
decisions make the usage of Ribs look quite...different.

Making Ruby objects persistent with Hibernate is one side of the
coin. One day, I’d like to add the flip side: driving an existing
Hibernate domain model (written in Java) with Ribs. This would
allow you to very easily use an existing Java model in your Rails
application, for example. Other future possibilities include both
a migrations framework and some way of handling validations.

There are a few things to notice here. First, in the manner of Hiber-

nate, you specify a dialect, a URI, and a driver class. You can add any

kind of extra properties for Hibernate here too. Here, we’re using Hiber-

nate’s show_sql property to display all the generated SQL code. We’re

also marking the database explicitly as the default.

The default database is the one Ribs will use for data operations that

don’t name a specific database. There’s an easier way to set the default,

which we’ll see in a moment.

The next few examples are all designed to build on one another. You’ll

create a Ruby file with just the connection information and gradually

add code to it.

The program should work with little modification on just about any

database system. Setting up most commercial servers with Hibernate is

not for the faint of heart; it involves finding, installing, and configuring

both JDBC drivers and Hibernate dialect classes. Instead, we’re going

to base our example on the lightweight Apache Derby database, which

is much easier to install.13 Just download a recent build, and copy

derby.jar into your project directory.

13. http://db.apache.org/derby

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://db.apache.org/derby
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=156

RIBS 157

As we did with the MySQL example a moment ago, we need to start by

connecting to the Derby database:

Download databases/ribs_use.rb

require 'rubygems'

require 'ribs'

Ribs::DB.define do |db|

db.dialect = 'Derby'

db.uri = 'jdbc:derby:using_jruby;create=true'

db.driver = 'org.apache.derby.jdbc.EmbeddedDriver'

end

Let’s do a quick check to make sure Hibernate and Derby can find each

other. The following code should produce empty output, with no error

messages:

$ jruby -J-cp derby.jar ribs_use.rb

Now, we’ll execute some raw SQL. This practice is not recommended for

day-to-day operation but can be useful for creating tables, adding data

in batch form, and so on. The following code will create a new table,

add some rows, and then print the result of a SELECT:

Download databases/ribs_use.rb

Ribs::with_handle do |h|

h.ddl "DROP TABLE book" rescue nil

h.ddl <<SQL

CREATE TABLE book (

id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY (START WITH 1, INCREMENT BY 1),

title VARCHAR(255) NOT NULL,

author VARCHAR(255) NOT NULL,

PRIMARY KEY (id)

)

SQL

stmt = "INSERT INTO book(title, author) VALUES(?, ?)"

h.insert(stmt,

["To Say Nothing Of The Dog", "Connie Willis"],

["A Confederacy Of Dunces", "John Kennedy Toole"],

["Ender's Game", "Orson Scott Card"])

p h.select("SELECT * FROM book")

end

This code uses a database handle to manipulate the table structure.

(Only low-level Ribs calls require a handle.) We use the handle’s ddl

method to execute SQL queries. We remove and then create a table of

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=157

RIBS 158

books, and then we use a prepared statement to insert three rows of

data. Finally, we extract the data with a simple SELECT statement. So far,

this looks more or less the same as the DBI database code. The main

difference is that it’s Hibernate doing all the work.

Ribs is easiest to use when you follow its conventions. In the simplest

case, you don’t need to define any mappings at all between SQL and

Ruby. With the table of books have sitting in the database, we can

define a Ruby class and start using it directly with Ribs:

Download databases/ribs_use.rb

class Book

attr_accessor :id, :title, :author

end

p R(Book).all

This code will create a class called Book and add three accessors for

the book’s properties. Manually adding these isn’t strictly necessary—

if Ribs doesn’t find any accessors, it just uses the values of instance

variables directly instead. There is no need to define a mapping from

class fields to table columns here, because we’re using the same names

for both.

Case doesn’t matter at all in this example, but in contrast to Sequel

and ActiveRecord, table names need to be singular for models to find

them. If you need to define custom behavior for a model, you can do so

completely outside the model class if you like—there is no tight coupling

between the database and the model.

The actual database call happens when we invoke the R method. This

gives us back a repository, an object that can be used to find out differ-

ent information based on the model we passed in. And that’s how you

work with Ribs: you wrap a plain Ruby object in a call to R and then

call methods on whatever you get back. In this case, the all method just

returns everything from the database. You can also filter out things by

passing arguments to all.

To access and manipulate data, you can do something like this:

Download databases/ribs_use.rb

dog = R(Book).get(1)

dog.title += ": How We Found the Bishop's Bird Stump at Last"

R(dog).save

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=158

RIBS 159

Note that you can get an instance with a specific ID by calling get on

the class repository. You use regular Ruby accessors to change data

and wrap the instance in a repository to save to the database.

The easiest way to create new instances is through the class reposi-

tory’s create method:

Download databases/ribs_use.rb

R(Book).create :id => 4,

:title => "Goedel, Escher, Bach",

:author => "Douglas Hofstadter"

This method will first create a new instance of the class, then set all the

values you’ve specified, and finally save it to the database. You don’t

have to use a repository to create instances, though. You can call new,

set up instance methods just like you’d do for any other Ruby object,

and involve repositories only when you’re ready to touch the database:

Download databases/ribs_use.rb

snow = Book.new

snow.id = 5

snow.title = "Snow Crash"

snow.author = "Neal Stephenson"

R(snow).save

To remove a row from the database, you use the destroy! method. This

will delete the row and remove any mention of the object in the Hiber-

nate caches.

Download databases/ribs_use.rb

R(snow).destroy!

These examples have all shown how you can work with Ribs in a sim-

ple case where everything just happens to be named according to the

convention. What if that isn’t the case, or what if you want to have

associations to other model classes?

Ribs allow you to handle these sorts of customizations too, of course—

but you need to provide some mappings for the process to work. Over

the next few pages, we’ll look at a few of the more common relationships

you can express.

The definitions for a model class go inside a block attached to the Ribs!

method. Before we get to the contents of the block, let’s look at the

method’s options.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=159

RIBS 160

Download databases/ribs_mappings.rb

class Blog

Ribs! :table => 'wp_blog',

:identity_map => true do |blog|

... mappings go here ...

end

end

The most commonly used option is :table, which specifies the name of

the database table for this model. The other setting shown here, :iden-

tity_map, makes sure that any given row in a database will always be

represented by the same Ruby instance. This makes object compari-

son easy but can cause surprises in code that expects more traditional

Ruby behavior.

The mappings themselves go inside the block. We describe the database

structure by calling methods on the Rib object that Ribs passes to us.

The first settings we’ll change have to do with column names:

Download databases/ribs_mappings.rb

blog.blog_id.primary_key!

blog.title :column => :blog_title

Here, we set the blog_id column as the primary key. We also map the

title Ruby attribute to the blog_title SQL column. You can use the same

mapping mechanism to define associations among tables:

Download databases/ribs_mappings.rb

blog.belongs_to Owner

blog.has_one Layout, :name => :look

blog.has_n :posts

For this model, we’ve specified that every blog belongs to an owner. This

code will create an association named owner and will expect the wp_blog

table to have a foreign key called owner_id. You can change the name of

this foreign key by providing a :column parameter.

Next, we’ve declared that every blog has one layout, accessible through

the look property. Ribs will expect there to be a column named blog_id

on the layout table.

The has_n notation defines one-to-many relationships, such as “A blog

has zero or more posts.” You can pass in a Ruby class name or (as

we’ve done here for readability) a plural noun. These definitions will

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ribs_mappings.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_mappings.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_mappings.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=160

JDBC 161

give you Hibernate associations between models and will create proxies

to simplify working with these objects.

By default, Ribs will just slurp in all your columns. This might not

be what you want, especially if you have columns that are large or

security-sensitive. The final two declarations in our class show how to

deal with these situations:

Download databases/ribs_mappings.rb

blog.stats.avoid!

blog.auth :avoid, :default => 'abc'

Note that the :default parameter allows you specify a default value for

any skipped column.

This model has just one mapping. You can define multiple mappings

if you want to—for instance, you could have one for each database or

let models inherit definitions and mappings from one other. These are

quite advanced features, though, and beyond the scope of this chapter.

There are many more things you can do with Ribs, and there are also

a couple of interesting alternatives on the horizon if you need behavior

that Ribs doesn’t provide.14 But this introduction should at least make

it possible for you to start using Ribs to persist your Ruby objects.

6.3 JDBC

We’ve covered a lot of Ruby database libraries, plus one Java persis-

tence framework, that play well with JRuby. How about other Java

libraries? In many cases, you can just fall back on familiar Ruby-to-

Java method calls. Say you wanted to work with something like iBatis,

for instance. It would be simple to use the techniques from Chapter 2,

Driving Java from Ruby, on page 31 to call your generated iBatis objects

just like any other Java object.

Sometimes, though, you just want to go straight to the database and do

one or two queries, without the overhead of a big framework. Thanks

to JRuby’s outstanding Java integration support, you can work directly

with JDBC from your Ruby code. Even without the benefit of abstrac-

tion, the code ends up being a bit more tasteful than its Java equivalent

would be.

14. http://github.com/headius/jibernate

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/ribs_mappings.rb
http://github.com/headius/jibernate
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=161

JDBC 162

To get a simple connection running with JDBC, you can use something

like the following:

Download databases/jdbc_connect.rb

require 'java'

java_import java.sql.DriverManager

DriverManager.register_driver(com.mysql.jdbc.Driver.new)

begin

url = "jdbc:mysql://localhost/using_jruby"

conn = DriverManager.get_connection(url, "root", "")

ensure

conn.close rescue nil

end

Even this low-level code looks a bit simpler than the equivalent Java

code. The lack of types make it quite readable. The next step would be

to get some data out of the database:

Download databases/jdbc_select.rb

require 'java'

java_import java.sql.DriverManager

DriverManager.register_driver(com.mysql.jdbc.Driver.new)

begin

url = "jdbc:mysql://localhost/using_jruby"

conn = DriverManager.get_connection(url, "root", "")

stmt = conn.create_statement

rs = stmt.execute_query("SELECT * FROM book")

while rs.next

p [rs.get_int(1), rs.get_string(2), rs.get_string(3)]

end

ensure

rs.close rescue nil

stmt.close rescue nil

conn.close rescue nil

end

Of course, this little piece of code makes it obvious that it would be nice

to have some Ruby sugar on top of the Java ResultSet.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/jdbc_connect.rb
http://media.pragprog.com/titles/jruby/code/databases/jdbc_select.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=162

JDBC 163

So, let’s make a new version:

Download databases/jdbc_select2.rb

require 'java'

java_import java.sql.DriverManager

java_import java.sql.ResultSet

DriverManager.register_driver(com.mysql.jdbc.Driver.new)

module ResultSet

include Enumerable

def each

count = self.meta_data.column_count

while self.next

yield((1..count).map { |n| self.get_object(n) })

end

end

end

begin

url = "jdbc:mysql://localhost/using_jruby"

conn = DriverManager.get_connection(url, "root", "")

stmt = conn.create_statement

p stmt.execute_query("SELECT * FROM book").to_a

ensure

stmt.close rescue nil

conn.close rescue nil

end

This code modifies ResultSet to support Ruby’s Enumerable behavior sim-

ply by adding an each method. This method is actually quite cute. It

fetches the column count from the result set metadata and then uses

this information to fetch all the column data on every iteration.

Once we have this method on ResultSet, we can use familiar Ruby idioms

like to_a on the result of our SELECT. The full range of Ruby collection

operations are available, including map, inject, and sort. In effect, we’re

building our own framework on top of JDBC, in just a few lines of code.

In many cases, you don’t need anything more than a little Ruby magic

sprinkled on top of a Java library like this.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/databases/jdbc_select2.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=163

WRAPPING UP 164

6.4 Wrapping Up

Databases are in many ways a strange aspect of programming. Some

developers treat them as a low-level implementation detail. After all, our

customers don’t care that we’re using SQL under the hood—they care

that our programs don’t forget their data. And yet, a typical RDBMS

is like a high-level programming system in its own right, with its own

environments, tools, and languages.

This chapter has provided a whirlwind tour of some of the better choices

for working with databases from JRuby. We first spent some time look-

ing at the different parts of ActiveRecord, the most mature Ruby data-

base library, and a good choice for many applications. We also looked

at DBI and Sequel to see how some of the existing Ruby libraries solve

the task of database connectivity quite differently.

After looking at the pure-Ruby libraries, we moved on to Ribs and

JDBC, two options that are available only in JRuby. It can sometimes

be hard to pick one framework among all the different choices avail-

able, but we hope that this chapter has shown you enough to make

an informed decision for your project. Of course, you don’t have to just

choose one of these and stick with it. Try them to see what fits best. Be

sure to reevaluate your choice as your application evolves.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=164

Chapter 7

Building Software for Deployment
Over the previous few chapters, we’ve journeyed together through the

process of writing software in JRuby. We hope you’ve had the chance

to try some of the techniques on programs of your own.

Once you’ve done the hard part of getting your code working, packag-

ing it up and getting it onto the target computer should be a breeze,

right? Well...yes, actually. Both Ruby and Java have established build

systems, which developers have been relying on for years. Over the next

several pages, we’re going to see how these tools—Rake for Ruby, and

Ant and Maven for Java—relate to JRuby projects.

7.1 Rake

Rake is Ruby’s answer to the venerable UNIX make utility. Jim Weirich

began the project in 2003 as a special-purpose language for describing

software tasks and their dependencies. Why a new build tool? Consider

a simple C-style Makefile for sandwich making:

Download rake/sandwich/Makefile

Make a tasty lunch

sandwich: bread cheese

echo "Grilling the sandwich"

I guess sliced bread really is the greatest thing

bread:

echo "Slicing the bread"

Only the finest Emmentaler for our sandwich!

cheese:

echo "Grating the cheese"

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sandwich/Makefile

RAKE 166

The sandwich task depends on the bread and cheese tasks, and so Make

will ensure that they run first. This method of building software has

stood solidly at the base of software development for decades. But it’s

not without its drawbacks. Make is fussy about exact indentation, tabs,

and spaces. It suffers from subtle variations from vendor to vendor. And

for any advanced features—such as making build decisions based on

what platform you’re using—you’re stuck. The result has been a series

of horrendous Makefile-makers, each with its own arcane syntax.

Now, let’s look at the same set of tasks expressed as a Rakefile:

Download rake/sandwich/Rakefile

desc 'Make a tasty lunch'

task :sandwich => [:bread, :cheese] do

puts 'Grilling the sandwich'

end

desc 'I guess sliced bread really is the greatest thing'

task :bread do

puts 'Slicing the bread'

end

desc 'Only the finest Emmentaler for our sandwich!'

task :cheese do

puts 'Grating the cheese'

end

Sure, the notation is clearer. But there’s much more going on here than

just syntax. You have the entire power of the Ruby environment at your

disposal, should you need it. Conditional expressions, loops, functions,

classes, libraries, you name it. And of course, with JRuby, you have the

reach of the Java platform as well.

Getting Started with Rake

If you’re coming to JRuby from Java, you’ll find that the procedure

for kicking off a build with Rake is similar to what you’ve used with

Ant. The rake command looks in the current directory for a Rakefile—a

description of the tasks that can be performed here. If you name your

file Rakefile, Rakefile.rb, or a lowercase version of either of those, Rake

will find it automatically.

When you encounter a new Rakefile, it’s a good idea to get the lay of

the land by running rake first with the -T option. This prints out a list of

top-level tasks:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sandwich/Rakefile
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=166

RAKE 167

Download rake/sessions/rake_tasks.txt

$ jruby -S rake -T

(in code/rake/sandwich)

rake bread # I guess sliced bread really is the greatest thing

rake cheese # Only the finest Emmentaler for our sandwich!

rake sandwich # Make a tasty lunch

Notice how Rake helpfully prints each task’s description alongside it.

These came from the Rakefile, in the lines beginning with desc.

Rake tasks can perform any actions that you find useful, even things

unrelated to building software. Rails uses Rake for all kinds of house-

keeping: populating databases, running tests, launching web servers,

and so on. To run a task, pass its name to rake on the command line:

Download rake/sessions/rake_sandwich.txt

$ jruby -S rake sandwich

(in code/rake/sandwich)

Slicing the bread

Grating the cheese

Grilling the sandwich

If the Rakefile has a task called :default:

Download rake/sandwich/Rakefile

task :default => :sandwich

...then you can invoke it by running rake with no arguments.

Like Ant and Make, Rake will run all of a task’s dependencies first. You

can see this for yourself by invoking Rake with the --trace option:

Download rake/sessions/rake_trace.txt

$ jruby -S rake --trace

(in code/rake/sandwich)

** Invoke default (first_time)

** Invoke sandwich (first_time)

** Invoke bread (first_time)

** Execute bread

Slicing the bread

** Invoke cheese (first_time)

** Execute cheese

Grating the cheese

** Execute sandwich

Grilling the sandwich

** Execute default

Here you can see how Rake looks for the :default task, finds and runs

its prerequesities, and then ends up back in :default.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sessions/rake_tasks.txt
http://media.pragprog.com/titles/jruby/code/rake/sessions/rake_sandwich.txt
http://media.pragprog.com/titles/jruby/code/rake/sandwich/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/sessions/rake_trace.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=167

RAKE 168

Making sandwiches is all well and good, but what does that have to do

with Java? Let’s look at something more pertinent: using Rake to build

a Java program.

Files and Processes

Consider the following Java class:

Download rake/baseball/Pitcher.java

public class Pitcher {

/**

* Tosses a pitch across the plate.

*

* @return a description of the pitch

* @see Catcher

*/

public String pitch() {

return "curveball";

}

}

To teach Rake how to compile this code into Pitcher.class, you create a

file task:

file 'Pitcher.class' => 'Pitcher.java' do

sh 'javac Pitcher.java'

end

Since we’ve marked the .class file as depending on the .java file, Rake

will use the two files’ modification times to decide whether the code

needs to be recompiled.

If you’re used to using Ruby’s backtick operator for launching external

programs (for example, ‘rake javac Pitcher.java‘), you might wonder why

Rake defines its own alternative, sh. The answer is that sh does more

than just running programs. It checks exit codes so that the entire

build will halt if javac detects a syntax error in the .java file. It also

understands Rake’s --dry-run option, which prints out what each task

would do if invoked for real.

Directories

When you’re using Rake with external tools such as compilers and doc-

umentation generators, you naturally end up juggling files and direc-

tories a lot. Rake can help you out here by automatically creating any

directory structure you need. For example, consider the following Ruby

code that generates Java documentation:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/baseball/Pitcher.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=168

RAKE 169

Download rake/baseball/rakelib/doc.rake

sh 'javadoc -d doc *.java'

Imagine that this step required the doc directory to be in place before

javadoc would run. (It doesn’t, but bear with us here.) By wrapping this

code up in a Rake task and making it dependent on a directory task,

you can ensure that the directory structure will be in place when you

need it:

Download rake/baseball/rakelib/doc.rake

directory 'doc'

desc 'Build the documentation'

task :javadoc => 'doc' do

sh 'javadoc -d doc *.java'

end

Rake is smart enough to create just the directories you need. If you

have a directory task with foo/bar/baz and some other task requires only

foo/bar, then Rake will skip creating baz.

Rules

Now, let’s add a second Java class to the mix. Here’s the Java code:

Download rake/baseball/Catcher.java

public class Catcher {

/**

* Describes what kind of pitch the {@link Pitcher} tossed.

*/

public static void main(String args[]) {

Pitcher pitcher = new Pitcher();

System.out.println("The pitcher threw a " + pitcher.pitch());

}

}

...and here’s the Rake task:

file 'Catcher.class' => 'Catcher.java' do

sh 'javac Catcher.java'

end

Notice how similar this is to the task for Pitcher. How can we trim out

some of this repetition? By using another Rake feature, the rule task.

Think of it as a template for file tasks.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/doc.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/doc.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/Catcher.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=169

RAKE 170

Download rake/baseball/rakelib/compile.rake

rule '.class' => '.java' do |t|

sh "javac #{t.source}"

end

Descriptions and Access

As we’ve seen, you can use the desc function just before defining a Rake

task to give a description of that task:

Download rake/baseball/rakelib/jar.rake

desc 'Build the application into a .jar file'

task :jar => ['Pitcher.class', 'Catcher.class', 'Manifest'] do

sh 'jar -cfm baseball.jar Manifest Pitcher.class Catcher.class'

end

This serves a couple of different purposes. It documents the Ruby code

as a comment would, but it also gives Rake something to report when

you use the -T option to ask for a list of available tasks.

If you skip the desc tag and define a task with no description, Rake

leaves it out of the -T listing altogether. This comes in handy for dis-

tinguishing public tasks, which you invoke directly from the command

line, from private tasks, which are used only by other tasks. For exam-

ple, the Manifest file is needed only by the :jar task shown previously—it

makes sense to leave the Manifest task private:

Download rake/baseball/rakelib/manifest.rake

file 'Manifest' do

File.open 'Manifest', 'w' do |f|

f.puts 'Main-Class: Catcher'

end

end

Just because your private tasks are left out of the -T report doesn’t

mean you can’t run them. Rake gives you the tools to stay organized

but doesn’t force organization on you.

Multitasking

Right now, our Java project has two main build targets: :jar for the

program and :javadoc for the documentation. Let’s put in a top-level

:default task to tie these together:

Download rake/baseball/Rakefile

task :default => [:jar, :javadoc]

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/compile.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/jar.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/manifest.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/Rakefile
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=170

RAKE 171

Rake will run the two subtasks, one right after the other. If each one

takes six seconds, you can’t do any better than twelve seconds total.

But these two actions are independent; there’s no real reason to make

Rake wait for one to finish before starting the next.

So let’s create a new task, called :parallel, that runs these two subtasks

in separate threads. (In plain Ruby, this wouldn’t buy us much, but

JRuby uses Java’s threads—which are significantly more powerful.) All

you have to do to mark a group of tasks as independent of one another

is to define it with multitask in place of task:

Download rake/baseball/Rakefile

multitask :parallel => [:jar, :javadoc]

If you run this example with rake parallel on a multicore machine, you

should see two of your cores doing work here.

Multiple Files

As a passionate developer, you no doubt care about modularity in your

software and want to apply the same principle to your build scripts as

well. Breaking a complicated Rakefile into a group of related files makes

a lot of sense. But how do you tie them all together?

Since Rake is just Ruby, you could use Ruby’s built-in require mecha-

nism to load a file full of subtasks into your main Rakefile. You could

also use Rake’s alternative, which is called import and has slightly dif-

ferent semantics.

But the simplest thing to do is just dump all the files containing your

various Rake tasks into a directory called rakelib, just below the direc-

tory where your Rakefile sits. Rake will automatically look for and load

all the tasks from there. This is the technique we used for defining the

tasks in this example.

Namespaces

As your Rakefile grows, you may start running out of good names for

tasks. You end up with either synonym syndrome (tasks named :build,

:generate, :create, and so on) or unpalatably long names (generate_class_

files, generate_jar_file, generate_docs, and so on).

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/baseball/Rakefile
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=171

RAKE 172

Fortunately, Rake offers a better way to avoid collisions: namespaces.

The idea is to partition your tasks into logical groups—:jar for compila-

tion tasks, :doc for documentation. Then you can have both a jar:create

and a doc:create, with no ambiguity.

It’s a little bit of overkill to use namespaces for a project as small as

this one, but just for fun, let’s see what it would look like:

jar = namespace :jar do

tasks for .class and Manifest go here

desc 'Compile the Java code'

task :compile => ['Pitcher.class', 'Catcher.class']

desc 'Create a .jar file from the compiled code'

task :create => [:compile, 'Manifest'] do

sh 'jar -cfm baseball.jar Manifest Pitcher.class Catcher.class'

end

end

javadoc = namespace :doc do

directory 'doc'

desc 'Build the documentation'

task :create => 'doc' do

sh 'javadoc -d doc *.java'

end

end

task :default => [jar[:create], javadoc[:create]]

As is the case with any Ruby function, namespace has a return value: a

Rake::NameSpace object. We store our namespaces in the jar and javadoc

variables so that we can refer to them later when we define our :default

task.

Cleanup and File Lists

After our .jar file finishes building, we have no need for the intermedi-

ate .class or Manifest files. We could define our own :cleanup task that

deletes a bunch of hard-coded filenames. But once again, Rake gives

us a handy shortcut for cleanup: the rake/clean add-on.

Download rake/baseball/rakelib/clean.rake

require 'rake/clean'

CLEAN.include '*.class', 'Manifest'

CLOBBER.include '*.jar', 'doc'

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/clean.rake
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=172

ANT 173

When you load this file, Rake defines two new tasks, clean and clobber—

plus two new lists for you to add filenames to. When you run rake clean,

Rake will delete anything you’ve add to the CLEAN list. The even more

destructive rake clobber deletes everything on both lists.

What’s the difference between clean and clobber? The first one is meant

for deleting just the intermediate .class and Manifest files and leaving

your final .jar intact. clobber, on the other hand, deletes all generated

files, leaving you with only the source code in your project directory.

Behind the scenes, CLEAN and CLOBBER are Rake::FileList objects. They act

like arrays, but they understand wildcards (such as asterisks) and can

be expressed with the intuitive include and exclude notation.

So, there you have it: a minimal Java project that has managed to touch

on all the important features of Rake. Now, let’s see how to integrate

Rake more deeply with Java’s build systems.

7.2 Ant

No matter what specialized task you need to perform to build your Java

project, chances are that it’s been done before with Ant. Ant is the

oldest, most established Java build tool. It was originally created during

the open sourcing of the Tomcat Java web server and was later released

as a stand-alone project. Ant solved a lot of make’s portability problems

by implementing commonly used build tasks in Java.

As Ant continued to mature, it amassed a wide library of portable,

reusable functions (“tasks”) for every conceivable software development

function. These include checking out, compiling, testing, and packag-

ing code; downloading, uploading, and deploying build artifacts; and

more.

Of course, Ant is also notorious for the fact that its build scripts are

written using verbose XML. With small to medium-sized projects, Ant

XML seems fairly innocuous. Let’s consider the simplest possible Ant

build file:

Download rake/ant/hello/build.xml

<?xml version="1.0"?>

<project name="hello" default="hello">

<target name="hello_from_ant">

<echo message="Hello from Ant!"/>

</target>

</project>

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/ant/hello/build.xml
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=173

ANT 174

That’s a fair number of pointy angle brackets just to print out some text.

At least the intent is fairly clear. When you run ant inside the directory

containing build.xml, you get the following:

Download rake/sessions/ant_hello.txt

$ ant

Buildfile: build.xml

hello:

[echo] Hello Ant!

BUILD SUCCESSFUL

Total time: 0 seconds

Great! Now you have quick, repeatable cross-platform builds. Ant adop-

tion benefits greatly from a shallow learning curve and spreads and

multiplies from readily available copy-and-paste examples. However,

veterans of Ant build scripts know from experience that they can

quickly grow to become unwieldy beyond a few hundred lines of script.

Today, JRuby’s own build.xml clocks in at almost 1,500 lines!

Of course, code readability suffers in any code project once your files

grow too large. With Ant, the problem is compounded because it’s not a

true programming language. It lacks flow control and abstraction mech-

anisms, so scripts get verbose and full of duplication more easily.

Just because doing our builds in XML suddenly doesn’t feel so com-

fortable, should we abandon Ant outright? Certainly not! The best part

of Ant is its huge library of reusable tasks. Why not put those to use

in Ruby code as well? With JRuby’s Ant integration, you can run Ant

tasks from inside your Rakefile or indeed any Ruby file.

Ruby-Colored Ants

To begin using the Ant integration library, just require it:

require 'ant'

The main entry point that library provides is a single ant method. This

returns a shared instance of an Ant object through which we can invoke

Ant tasks. Here’s how you’d invoke Ant’s built-in echo task. Note the

use of a Hash to pass parameters into the task.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sessions/ant_hello.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=174

ANT 175

Nick Says. . .

Some Assembly Required

JRuby does not ship with Ant; you still need to have it installed
separately. JRuby will detect where Ant is installed by attempt-
ing to invoke the ant program, so make sure it’s installed and
available on your PATH. Modern versions of Mac OS X come
with Ant preinstalled, and Ant is available on many flavors of
Linux through your distribution’s package manager. On Win-
dows, you’ll probably have to still download and install Ant and
make sure the ant executable is on the PATH.

Download rake/ant/examples/echo.rb

require 'ant'

ant.echo :message => "Hello from Ruby!"

The ant method also accepts a block, so you can run multiple tasks

conveniently:

Download rake/ant/examples/setup.rb

require 'ant'

ant do

echo :message => "Setting up new project"

echo :message => "Project description goes here.", :file => "README.txt"

mkdir :dir => "lib"

mkdir :dir => "test"

end

If the Ant task uses nested elements, simply use nested blocks.

Download rake/ant/examples/javac.rb

require 'ant'

ant.javac :srcdir => "src", :destdir => "build" do

classpath do

fileset :dir => "lib" do

include :name => "*.jar"

end

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/ant/examples/echo.rb
http://media.pragprog.com/titles/jruby/code/rake/ant/examples/setup.rb
http://media.pragprog.com/titles/jruby/code/rake/ant/examples/javac.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=175

ANT 176

Nick Says. . .

Free Your Mind

A fun way to compare the XML and Ruby versions of the build
file is to open both in your text editor of choice and quickly
cycle back and forth between the two files in a single window,
effectively animating the minor differences between the two.
If you’re like me, watching the angle brackets disappear rein-
forces the subtle power of omitting extra line noise. That stream-
lining frees up your mind to be able to see the true intent of the
program.

See how the nested pattern of the blocks matches the nested structure

of XML elements but without all the angle brackets? This technique is

used in several Ruby libraries that manipulate XML, such as Builder

and Markaby. Ruby blocks are a natural way to indicate grouping.

So, we have a way to execute chains of Ant tasks, but what about defin-

ing build targets? We can do that, too. Here’s the equivalent to the

build.xml example earlier:

Download rake/ant/hello/build.rb

require 'ant'

ant :name => "hello", :default => "hello" do

target :name => "hello" do

echo :message => "Hello Ant!"

end

end

A nice feature of the Ant library is that if you run the file containing

your Ant code as a script, it becomes a full-fledged Ant build. Let’s run

our aptly named build.rb.

Download rake/sessions/jruby_hello.txt

$ jruby build.rb

hello:

Hello Ant!

To run a specific target, add it to the end of the command as an argu-

ment to the script. If you don’t provide an argument, the default target

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/ant/hello/build.rb
http://media.pragprog.com/titles/jruby/code/rake/sessions/jruby_hello.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=176

ANT 177

is executed. Of course, if there’s no default target and you don’t specify

one, then nothing gets run.

Rake with Ant

So far, we’ve had a taste of how easy Rake makes scripting builds,

and we’ve seen the power of calling portable Ant tasks from a Ruby

environment. Now, let’s bring Rake and Ant together by revisiting our

Baseball example. We’ll see how mixing in a little Ant can improve the

project. If you’re unfamiliar with Ant, you might want to have the Ant

user manual handy as you put it to use and discover the myriad tasks

that are available.1

One of the problems with using Make-like rules to compile .java files

is that there are many more Java source files in a typical project.

Spawning the Java compiler individually on every file is inefficient. So,

although our Rake rule for compiling the Pitcher and Catcher classes is

clever, it won’t scale up well. The Ant javac task is ideally suited for

compiling Java sources. Let’s put it to use in our Rakefile, in a task

called ant:compile.

Download rake/baseball/rakelib/ant_compile.rake

require 'ant'

namespace :ant do

task :compile do

ant.javac :srcdir => "."

end

end

As we can see, the javac task has some smart defaults built in to look

for .java files. We can compile more files with less code than we did

before.

Download rake/sessions/ant_compile.txt

$ jruby -S rake ant:compile

(in code/rake/baseball)

Compiling 2 source files

The javac task also knows not to recompile files whose source hasn’t

changed; if we run the task again, no work is done.

1. http://ant.apache.org/manual/

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/ant_compile.rake
http://media.pragprog.com/titles/jruby/code/rake/sessions/ant_compile.txt
http://ant.apache.org/manual/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=177

ANT 178

Download rake/sessions/ant_compile2.txt

$ jruby -S rake ant:compile

(in code/rake/baseball)

Next, let’s take a look at how to generate documentation. Ant also comes

with a built-in javadoc task:

Download rake/baseball/rakelib/ant_doc.rake

namespace :ant do

task :javadoc do

ant.javadoc :sourcefiles => FileList["*.java"], :destdir => "doc"

end

end

There are a couple points to be made about this example. One thing

you’ll notice is that we’re starting to use a little bit of Rake where it feels

right. In this case, Ant’s javadoc task takes a comma-separated list of

files in its sourcefiles attribute. JRuby’s Ant library treats FileLists spe-

cially, by passing them to the underlying Ant task as comma-separated

values.

Finally, to complete the Baseball build, we need to create a .jar file. Here

we can make use of Ant’s jar task, which allows you to specify manifest

attributes inline—so we don’t need an extra task to create the manifest

file, like we did with plain Rake.

Download rake/baseball/rakelib/ant_jar.rake

namespace :ant do

task :jar => :compile do

ant.jar :basedir => ".", :destfile => "baseball.jar", :includes => "*.class" do

manifest do

attribute :name => "Main-Class", :value => "Catcher"

end

end

end

end

Working with Legacy Ant Builds

Another situation where combined Rake/Ant integration can help is

by streamlining existing Ant-based builds. Suppose your Ant build has

become too heavyweight and full of duplication. Or perhaps you need to

do some custom logic that is not manageable with Ant tasks. In many

cases, throwing away your build.xml is not feasible. At times like these,

making a bridge between Rake and Ant can let each tool do what it’s

best at.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sessions/ant_compile2.txt
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/ant_doc.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/ant_jar.rake
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=178

ANT 179

Importing Ant Tasks into Rake

Ant from Rake—didn’t we just cover that? Yes, the ant method can

blindly hand a task name off to Ant and say, “Run the task that has

this name.” But the Ruby side isn’t aware of the Ant tasks at all; it’s

just throwing requests over the wall and waiting for answers. So, you

couldn’t make a Rake task depend on an Ant task using this technique.

If you’re using Rake to package a gem that has a .jar dependency, for

instance, you wouldn’t be able to have a :gem Rake task that depends

on a ’compile’ Ant task.

Fortunately, there is a way to make Rake more Ant-aware: ant_import.

This method parses your build.xml (or any other filename you hand to it)

for top-level Ant tasks and gives them names in the Ruby namespace

that you can refer to for dependencies. For instance, if you have an Ant

task called hello_from_ant, you can use it in Rake like so:

require 'ant'

ant_import

task :goodbye_from_rake => :hello_from_ant do

puts 'Goodbye from Rake!'

end

Importing Rake Tasks into Ant

How about going the other direction—making Ant aware of the names

and dependencies of your Rake tasks? Piece of cake! Just as Rake has

ant_import, JRuby makes a rakeimport task available to Ant. Assuming

your Rakefile contains a task called hello_from_rake, here’s how you’d

call it from Ant:

<?xml version="1.0"?>

<project name="hello" default="hello">

<taskdef name="rakeimport" classname="org.jruby.ant.RakeImport"/>

<rakeimport/>

<target name="goodbye_from_ant" depends="hello_from_rake">

<echo message="Goodbye from Ant!"/>

</target>

</project>

Now that we’ve discussed the most popular Ruby build system, the

most popular Java build system, and how they can work together, it’s

time to move to other tools.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=179

MAVEN 180

7.3 Maven

Maven—the popular build, dependency, and release management tool

for Java projects—has become a staple in the Java development land-

scape. Maven is used to build many open source Java projects, and

Maven repositories are often the de facto place to download and man-

age library dependencies. Let’s look at a few ways that we can interact

with Maven with JRuby.

Extending Maven with Rake

Maven is well known to be opinionated and unwieldy if you need your

build process to do anything out of the ordinary. Since we’ve shown how

easy it is to manipulate files, execute commands, and invoke arbitrary

chains of tasks with Rake, why not extend your Maven project with it?

The jruby-rake-plugin for Maven allows you to do just that.

Add the Plug-in to Your POM

Here we need to assume you know a bit about how Maven pom.xml files

are structured and are sufficiently vaccinated for angle-bracket syn-

drome. We’ll be adding some plug-in configuration and wiring up Rake

tasks to specific phases of the Maven build. If you need some back-

ground, you can visit the main Maven website (http://maven.apache.org/

pom.html) for details.

To start, ensure your pom.xml has a /project/build/plugins section, and

add the jruby-rake-plugin as shown. You can freeze to a specific JRuby

release by specifying a value in the <version> tag (as we’ve done here) or

just omit it to pick up the latest release.

Download rake/maven/pom-outline.xml

<project>

...

<build>

...

<plugins>

...

<plugin>

<groupId>org.jruby.plugins</groupId>

<artifactId>jruby-rake-plugin</artifactId>

<version>1.5.5</version>

</plugin>

</plugins>

</build>

...

</project>

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://maven.apache.org/pom.html
http://maven.apache.org/pom.html
http://media.pragprog.com/titles/jruby/code/rake/maven/pom-outline.xml
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=180

MAVEN 181

Add an Execution

Each Maven plug-in declaration allows for one or more executions. Each

execution is bound to a build phase. This means we can bind and trig-

ger the rake plug-in to more than one phase of our build. For example,

we might want to do some copying or processing of resources to be

included in a .jar file during the generate-resources phase, but we might

also want to use Rake to launch a custom testing framework during the

test phase. We’ll write one execution for each phase of the build where

we’d like to use Rake.

Each execution declaration should have at least three parts: an ID,

a phase, and a goal. Give your execution a unique ID to keep Maven

happy, and name the phase of the build where you want to attach the

plug-in. A full list of phases appears in the Maven life-cycle reference.2

Specify rake in the goals/goal section.

Download rake/maven/pom-simple.xml

<plugin>

<executions>

<execution>

<id>my-custom-resource-step</id>

<phase>generate-resources</phase>

<goals><goal>rake</goal></goals>

</execution>

</executions>

</plugin>

This setup assumes you have a companion Rakefile in the same direc-

tory as your pom.xml, and it contains a default Rake task. Maven will

invoke this task during the generate-resources phase.

OK, that’s a pretty good start, but let’s say you want to do a little more

than rely on defaults. You can add a configuration section, with one or

more of these tags inside:

• script: Rather than using an external Rakefile, just embed your Rake

tasks right inside pom.xml.

• rakefile: Specify a Rakefile rather than falling back on Rake’s stan-

dard search mechanism.

• args: Pass arguments to Rake, either task names to execute or

NAME=VALUE environment variables.

2. http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/maven/pom-simple.xml
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=181

MAVEN 182

As a more extended example, here’s some plug-in configuration to test

your Java code using the expressive RSpec testing library. (We’ll discuss

RSpec in Section 8.1, RSpec, on page 202.)

Download rake/maven/pom-rspec.xml

<plugin>

<executions>

<execution>

<id>rspec</id>

<phase>test</phase>

<goals><goal>rake</goal></goals>

<configuration>

<script>

require 'rspec/core/raketask'

RSpec::Core::RakeTask.new do |t|

t.pattern = 'src/spec/ruby/**/*_spec.rb'

end

task :default => :spec

</script>

</configuration>

</execution>

</executions>

</plugin>

Maven launches the JRuby process with the appropriate classpath so

that any dependencies and Java classes compiled by Maven will be

visible to JRuby and RSpec automatically.

Ensure Gems Are Installed

Sometimes your Rake or Ruby code will need to rely on additional Ruby

gems in order to function. The install-gems goal can be used to make

sure these gems are present. The jruby-rake-plugin will install these gems

into $HOME/.gem/jruby/1.8.

Download rake/maven/pom-gem.xml

<plugin>

<executions>

<execution>

<id>install-gems</id>

<phase>generate-resources</phase>

<goals><goal>install-gems</goal></goals>

<configuration>

<gems>activerecord activerecord-jdbc-adapter</gems>

</configuration>

</execution>

</executions>

</plugin>

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/maven/pom-rspec.xml
http://media.pragprog.com/titles/jruby/code/rake/maven/pom-gem.xml
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=182

PACKAGING FOR DEPLOYMENT 183

That’s enough on building software for the moment. Let’s now move on

to deployment.

7.4 Packaging for Deployment

Conceptually, software deployment in regular Ruby isn’t complicated.

The general steps go something like this:

1. Install Ruby.

2. Install the required libraries.

3. Copy your .rb files onto the target machine.

Depending on the kind of app, though, things can really break down

during steps 1 and 2. The Mac you designed your GUI on may have

shipped from the factory with Ruby on it, but your customer’s Windows

box probably didn’t. Your web app might lean on a C-based XML library

that your ISP doesn’t allow you to compile on their machine.

With JRuby, a lot of these problems go away. Most desktop machines

already have a Java runtime on them, so you might get away with-

out asking your users to install any extras. If you’re using a Ruby

library that contains compiled code, at least it’s compiled Java code—

you won’t have to ship multiple DLLs for different platforms. Now, the

procedure looks something more like this:

1. Copy jruby-complete.jar and a bunch of .rb files onto the target

machine.

So, you can reduce a bunch of hemming and hawing over version num-

bers and DLLs into a few simple file copies. For desktop programs, this

means handing users a .zip file, which they can extract and run with a

single command:

$ java -jar jruby-complete.jar my_program.rb

For web apps, you just scp a directory of source files up to the server or

use a tool like Capistrano to do the copying for you.3

Java Archives

Although these approaches remove the risk and heartache of Ruby

deployment, they still expose Ruby filenames and directory structures

3. http://www.capify.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://www.capify.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=183

PACKAGING FOR DEPLOYMENT 184

to the owner of the target machine. Wouldn’t it be nice to use a mech-

anism Java developers are already familiar with, like .jar files? Fortu-

nately, you can.

The App

We’re going to build a tiny program that nonetheless has a couple of

the same kinds of dependencies—external Ruby libraries and compiled

code—that real-world projects do. Specifically, we’re going to do a bit of

web scraping with the Hpricot library, which uses a mix of Ruby and

Java code.4 Go ahead and install Hpricot first:

$ jruby -S gem install hpricot

Now, let’s write a small program that uses the library to get a list of

recent books published by the Pragmatic Programmers. Create a new

project directory, and copy a freshly downloaded or built version of jruby-

complete.jar into it (remove any version numbers from the filename).

Now, put the following code in scrape.rb:

Download rake/scrape/scrape.rb

require 'rubygems'

require 'open-uri'

require 'hpricot'

doc = open('http://pragprog.com/categories/upcoming') do |page|

Hpricot page

end

(doc/'div.book').each do |book|

title = book.at('div.details/h4').inner_html

href = book.at('div.thumbnail/a')['href']

puts "#{title} is at #{href}"

end

We’re not going to spend a lot of time dissecting the code here. A quick

glance should give you the basic idea: we fetch a specific URL and then

search through it for the HTML tags we’re interested in.

Before we move on to packaging, make sure the program works:

$ jruby scrape.rb

Cocoa Programming is at http://pragprog.com/titles/dscpq/cocoa-programming

ExpressionEngine 2 is at http://pragprog.com/titles/riexen/expressionengine-2

4. http://github.com/whymirror/hpricot

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/scrape/scrape.rb
http://github.com/whymirror/hpricot
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=184

PACKAGING FOR DEPLOYMENT 185

Hello, Android is at http://pragprog.com/titles/eband3/hello-android

iPad Programming is at http://pragprog.com/titles/sfipad/ipad-programming

SQL Antipatterns is at http://pragprog.com/titles/bksqla/sql-antipatterns

The RSpec Book is at http://pragprog.com/titles/achbd/the-rspec-book

During development, the line require ’hpricot’ loads a library from your

system’s RubyGems path. Your end user’s system is not likely to have

Ruby or any gems on it. You’ll need to put Hpricot somewhere in the

final product where scrape.rb can find it. Following common Ruby prac-

tice, we’ll install a private copy of Hpricot to a vendor subdirectory of

our project for later inclusion in the build.

Download rake/scrape/Rakefile

directory 'vendor'

desc 'Install Ruby gems into vendor/'

task :install_gems => 'vendor' do

sh 'jruby -S gem install -i vendor hpricot'

end

With that in place, we’re ready to build the .jar.

A Minimal .jar

Recall that a .jar file is basically a renamed .zip file that follows a few con-

ventions. The convention that interests us here is the Manifest, which

contains (among other things) the name of the Java class to run when

the user launches the .jar. Notice that we said “Java class.” Alas, there’s

no direct way to give the name of a Ruby class instead.

If you’ve been following along with the embedding chapter, you’re prob-

ably thinking, “Why not just write a tiny Java program that uses the

JRuby embedding API to launch the main Ruby class from inside the

.jar?” You’re right; that’s exactly what we’re going to do.

Download rake/scrape/Launcher.java

import org.jruby.embed.ScriptingContainer;

public class Launcher {

public static void main(String[] args) {

ScriptingContainer container = new ScriptingContainer();

container.runScriptlet("require 'scrape'");

}

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/Launcher.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=185

PACKAGING FOR DEPLOYMENT 186

We’ve already seen how to create a Rake task to compile this Java code:

Download rake/scrape/Rakefile

desc 'Build Java launcher that will start the Ruby program'

task :build_launcher do

sh 'javac -cp jruby-complete.jar Launcher.java'

end

Now, we just combine the newly built .class file, our Ruby program, and

the Hpricot library into a .jar:

Download rake/scrape/Rakefile

desc 'Combine app and launcher into one jar'

task :small_jar => [:install_gems, :build_launcher] do

sh 'jar -cfm scrape.jar small.manifest Launcher.class scrape.rb -C vendor .'

end

The task requires a new file, small.manifest. This is where we provide

startup information, which Java uses to find the Launcher class and the

supporting JRuby libraries:

Download rake/scrape/small.manifest

Manifest-Version: 1.0

Class-Path: jruby-complete.jar

.

Main-Class: Launcher

With that addition, we can build the .jar file:

$ jruby -S rake small_jar

Once that’s done, you can run the program. You’ll need a copy of jruby-

complete.jar in the same directory.

$ java -jar scrape.jar

Cocoa Programming is at http://pragprog.com/titles/dscpq/cocoa-programming

ExpressionEngine 2 is at http://pragprog.com/titles/riexen/expressionengine-2

Hello, Android is at http://pragprog.com/titles/eband3/hello-android

iPad Programming is at http://pragprog.com/titles/sfipad/ipad-programming

SQL Antipatterns is at http://pragprog.com/titles/bksqla/sql-antipatterns

The RSpec Book is at http://pragprog.com/titles/achbd/the-rspec-book

Now, all you have to do to share your program with someone is hand

them these two .jar files and tell them what command to run. But why

deliver two files when we can deliver one?

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/small.manifest
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=186

PACKAGING FOR DEPLOYMENT 187

One Big Jar

All we have to do to combine the two .jars into one is extract JRuby into

a temporary directory:

Download rake/scrape/Rakefile

directory 'tmp'

desc 'Extract jruby-complete so we can combine it with the app'

task :extract_jruby => 'tmp' do

Dir.chdir('tmp') do

sh 'jar -xf ../jruby-complete.jar'

end

end

...and rerun the jar command, telling it to include the new path as well:

Download rake/scrape/Rakefile

desc 'Combine app, launcher, and JRuby into one jar'

task :big_jar => [:install_gems, :build_launcher, :extract_jruby] do

sh 'jar -cfm scrape.jar big.manifest Launcher.class scrape.rb \

-C vendor . -C tmp .'

end

Since we’re just using one .jar now, the manifest is even simpler than

the previous one:

Download rake/scrape/big.manifest

Manifest-Version: 1.0

Class-Path: .

Main-Class: Launcher

And that’s it! One deliverable .jar file, containing your app and every-

thing it needs. If you need to repeat this procedure from project to

project, you may be interested in the Rawr library, which automates

some of these tasks.5

Creating Web Archives with Warbler

Now that you have an inkling of how a Ruby application can be easily

packaged into a single archive, why not extend that portable goodness

to web applications? Warbler is a packaging tool that does just that.

If you’re a Java web developer, you’re familiar with web archives. Web

archives, usually called .war files, are the web application equivalent

5. http://rawr.rubyforge.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/big.manifest
http://rawr.rubyforge.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=187

PACKAGING FOR DEPLOYMENT 188

of .jar files. .war files are simply .zip-format files with web content (for

example, images and style sheets) in addition to application code. De-

ployment of a .war file usually means simply presenting the file to your

Java application server, either by copying it into a “blessed” autodeploy

directory or by using a deployment tool specific to the server you’re

using.

Every .war file has a common structure. The root directory of the archive

is the “document root” where you place .html, .css, JavaScript, images,

and any other static content that your application requires. The archive

has a specially named WEB-INF directory that contains application code,

including Java classes, Java .jar libraries, configuration files, and any

other content that you don’t want to be directly visible to your end

users.

Contrast this structure with the one we’ve already presented for Rails

applications. The root of a Rails application contains directories like

app and config full of code and configuration, along with a single public

directory that represents the document root of the application. It’s as if

a web archive is the Rails application structure turned inside out.

And so this is the primary function of Warbler—to take a directory con-

taining all the loose files and directories of a Rails application and turn

it into a .war file that will run in any Java application server.

Getting Started

The whole point of Warbler is to make it easy to get started—from Rails

application to .war file in one command! First, you need to install the

warbler gem:

Download rake/sessions/gem_install_warbler.txt

$ jruby -S gem install warbler

Successfully installed jruby-jars-1.5.0

Successfully installed jruby-rack-1.0.1

Successfully installed rubyzip-0.9.4

Successfully installed warbler-1.1.0

4 gems installed

(You probably noticed the jruby-jars and jruby-rack gems in the list of

things that got installed—more on that in a bit.) The warbler gem gives

you a warble command. So, now we can go ahead and run it on our

rouge application from Section 5.2, Going Rouge, on page 105.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sessions/gem_install_warbler.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=188

PACKAGING FOR DEPLOYMENT 189

Download rake/sessions/warble_rouge.txt

$ jruby -S warble

rm -f rouge.war

Creating rouge.war

And within seconds, we’ve got a stand-alone, dependency-free rouge.war

file ready to deploy to a Java application server! Let’s peek at some of

what’s inside:

Download rake/sessions/rouge_contents.txt

$ jar tf introduction_to_rails/rouge/rouge.war

...truncated listing...

WEB-INF/

WEB-INF/app/

WEB-INF/config/

WEB-INF/gems/

WEB-INF/lib/

WEB-INF/lib/jruby-core-1.5.0.jar

WEB-INF/lib/jruby-rack-1.0.1.jar

WEB-INF/lib/jruby-stdlib-1.5.0.jar

WEB-INF/log/

WEB-INF/tmp/

WEB-INF/vendor/

images/

javascripts/

stylesheets/

As you can see, the Rails application code and directory structure gets

stashed below the WEB-INF directory in the archive, and the images,

stylesheets, and javascripts directories get promoted to the document root.

Warbler also tries to figure out what Ruby gems your application uses

and then creates an embedded gem repository for you in WEB-INF/gems.

Most importantly, Warbler bundles a copy of JRuby as .jar libraries, as

well as JRuby-Rack, a small bridge from the Java Servlet API to Ruby’s

Rack API.6 To the Java server, our Rails application looks just like any

other Java Servlet!

Let’s go ahead and deploy this file to a Java application server. Two pop-

ular open-source servers are Apache Tomcat and GlassFish.7,8

6. http://github.com/nicksieger/jruby-rack. See also http://java.sun.com/products/servlet and

http://rack.rubyforge.org.
7. http://tomcat.apache.org

8. http://glassfish.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sessions/warble_rouge.txt
http://media.pragprog.com/titles/jruby/code/rake/sessions/rouge_contents.txt
http://github.com/nicksieger/jruby-rack
http://java.sun.com/products/servlet
http://rack.rubyforge.org
http://tomcat.apache.org
http://glassfish.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=189

PACKAGING FOR DEPLOYMENT 190

Although we’ll leave it as an exercise for you to install and boot one

of these servers, we can give you an idea of how to deploy to them.

For Tomcat, you’ll simply copy a properly configured rouge.war to the

Tomcat webapps directory.9 Usually, webapps will be found in the Tom-

cat base directory. If you chose to install Tomcat using your operating

system’s package manager, it may be elsewhere; for example, Gentoo

Linux places it at /var/lib/tomcat-6/webapps.

For Glassfish, use the asadmin command.

$ asadmin deploy rouge.war

Application deployed successfully with name rouge.

Command deploy executed successfully.

In both cases, once you’ve deployed rouge.war, you’ll be able to access

it in a browser at http://localhost:8080/rouge.

How Warbler Packages

We’ve just seen a simple example of how Warbler looks for application

code, static assets, and gem dependencies, and packages them up along

with JRuby and JRuby-Rack into a .war file, rearranging the layout of

the files to match the standard Java web application structure. This

directory shuffling is illustrated in Figure 7.1, on the next page—static

content gets moved to the root, while application code is shuffled under

the special WEB-INF directory.

So, how did Warbler figure out what to put in the .war file? How can you

be sure that it didn’t miss something? Much like Rails itself, Warbler

is built with some assumptions about typical Ruby web applications

that you’d like to package, and it uses that knowledge to discover what

needs to be packaged.

If your application doesn’t fit those assumptions, that’s fine too; War-

bler is fully configurable. We’ll cover the basics of custom configuration

in a moment. But first, let’s examine the basic assumptions, so you

know where you might need to drop into that configurability to ensure

everything your application needs gets packaged.

9. Web apps based on recent frameworks like Rails 3 are “properly configured” out of the

box. For older systems, you may need to add some extra dependencies; see Section 7.4,

Warbler Configuration, on page 193.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://localhost:8080/rouge
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=190

PACKAGING FOR DEPLOYMENT 191

images

javascripts

stylesheets

WEB-INF

controllers

config

app

helpers

models

views

lib

vendor

rails_app rails_app.war

controllers

config

db

lib

images

test

vendor

app

helpers

models

views

public

javascripts

stylesheets

Figure 7.1: Rails vs. WAR directory layouts

Application Code

Warbler assumes that your application code is found in any of the app,

config, lib, and vendor directories. Those directories, if they exist, are

copied wholesale into WEB-INF in the .war file.

Warbler also tries to infer what kind of application you’re using so that

it can set up the application boot process accordingly. JRuby-Rack can

boot apps written to almost any Ruby web framework: Rails, Merb, or

anything else that uses the Rack API. Warbler autodetects applications

by inspecting the local Rake environment and looking on the filesystem:

1. First, Warbler looks for a Rails app by checking for a Rails-specific

Rake task named environment.

2. Next, it looks for a Merb app by checking for a Merb-specific task

named merb_env.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=191

PACKAGING FOR DEPLOYMENT 192

3. Finally, it looks for a generic Rack-based application by checking

for a Rack-specific configuration file named config.ru.

Note that this process sometimes loads the full application environ-

ment, which may perform heavyweight actions such as connecting to

the database. If you don’t want that to happen, you can turn off autode-

tection; see Section 7.4, Warbler Configuration, on the following page.

Static Assets

Warbler uses Rails’ convention of expecting static assets to be in the

public directory. It copies these assets to the root of the .war file and

strips the public/ prefix from all the filenames.

Ruby Gems

Packaging gems is where it gets a little trickier, since Ruby allows you

to require a library without explicitly declaring it as a gem. Warbler only

knows of three explicit ways of declaring what gems your application

uses:

• Rails 2 applications: Warbler loads the Rails environment and

looks at config.gems as specified in the config/environment.rb file.

As long as you declare your gem dependencies here, Warbler will

be able to find them.

• Rails 3 applications and other projects that use the Bundler gem

packaging system: Warbler uses the list of gems from your Gemfile

(Bundler configuration file).10

• Merb 1.0 applications: Warbler loads the Merb environment and

inspects Merb::BootLoader::Dependencies.

For all other applications, you’ll need to tell Warbler which gems to

package. See the configuration section further on for details.

Miscellany

If you’re a Java web developer, you may have encountered web.xml, the

configuration file for web applications. Warbler will generate this file for

you. We’ll get to a few of its gory details in a minute. For now, we’ll

10. http://gembundler.com/

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://gembundler.com/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=192

PACKAGING FOR DEPLOYMENT 193

just mention that Warbler uses this file to feed configuration settings to

your app (via JRuby-Rack) at boot time.

The most important of these settings is whether you’re using the produc-

tion, development, or test environment. Warbler provides a configuration

setting in case you need something other than the default of production.

You might have noticed that Warbler doesn’t include tests or Rakefiles by

default, since they are not typically needed in production. This behav-

ior, too, can be overridden in Warbler’s config file.

Previously, we pointed out that Warbler packages copies of JRuby and

JRuby-Rack for you. These .jar files are sourced from the jruby-jars and

jruby-rack gems that get installed alongside Warbler. If you want to up-

grade these libraries, you can do so by installing new versions of those

gems; Warbler will happily use the latest installed version.

Warbler Configuration

So, you’ve come across part of your application that Warbler either

omitted or didn’t package properly; now what? Fortunately, configuring

Warbler is almost as easy as building the .war in the first place.

The first thing you’ll need to do is generate a configuration file. The

warble config command does this:

$ jruby -S warble config

cp JRUBY_HOME/lib/ruby/gems/1.8/gems/warbler-1.1.0/warble.rb config/warble.rb

As you can see, Warbler copied an example config/warble.rb file for you

to modify. The basic contents of the file look like this:

Warbler::Config.new do |config|

You modify the configuration in here

... lots of settings ...

end

We encourage you to have a look at the full config/warble.rb file. It’s heav-

ily documented, demonstrates all the available configuration options,

and provides reminders about Warbler’s default behavior.

Let’s consider a few of the more common settings. Say you have some

additional files and directories that need to go in your .war file. The

config.dirs setting near the top of config/warble.rb contains an array of

directories, to which you can easily add your own:

config.dirs = %w(app config lib log resources vendor tmp)

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=193

PACKAGING FOR DEPLOYMENT 194

If you want to include or exclude additional files, you can do that with

config.includes and config.excludes. Both take either arrays of filenames

or Rake-style FileLists.

config.includes << "some/extra/file/you/need"

config.excludes = FileList["lib/super_private/*"]

The next area you might want to customize is the set of extra gems

that Warbler should include, in case Warbler’s discovery process missed

one. config.gems provides several different ways to specify gems to

include:

config.gems += ["activerecord-jdbcmysql-adapter", "jruby-openssl"]

config.gems["rails"] = "2.3.5"

config.gems << Gem::Dependency.new("json_pure", "~> 1.4.0")

Warbler usually packages all gems into an embedded gem repository

located at WEB-INF/gems inside the .war file. If instead you’ve “vendored”

(copied) your app’s required gems into your application’s directory tree,

you can just tell Warbler to use the appropriate path.

config.gem_path = "WEB-INF/vendor/gems"

As we saw in the previous section, Warbler tries to autodetect what kind

of application you are packaging so that it can set up some reasonable

defaults. If you don’t want Warbler to do that, there’s a line at the top

of config/warble.rb that you can uncomment to turn the detection off.

Disable automatic framework detection by uncommenting/setting to false

Warbler.framework_detection = false

Just be warned that if you’ve turned framework detection off, you’re

probably going to have to specify more details manually in Warbler’s

configuration. One of those details is the name of the launcher Warbler

should use to start your application. You can specify this by setting

config.webxml.booter to :rails, :rack, or :merb.

config.webxml.booter = :rack

Remember that we glossed over the details of web.xml, except to say that

it’s generated for you? Let’s take a slightly closer look now.

web.xml is where Warbler places several key/value pairs to tell JRuby-

Rack how to boot the application. The config.webxml object gives you

a place to add any other parameters that need to go into this file. For

example, setting config.webxml.rails.env = "staging" has the effect of ren-

dering the following fragment inside the .war file’s web.xml file:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=194

PACKAGING FOR DEPLOYMENT 195

<context-param>

<param-name>rails.env</param-name>

<param-value>staging</param-value>

</context-param>

One other pair of config.webxml settings you may want to take a look

at is jruby.min.runtimes and jruby.max.runtimes. JRuby-Rack uses these to

decide how to service requests in a Rails application.

Prior to Rails 2.2, the internals of Rails were not safe for concurrent

execution by multiple threads. Rubyists traditionally dealt with this

limitation by running several single-threaded Ruby processes at once—

the so-called “pack of Mongrels” approach. With JRuby, the Ruby inter-

preter is just a regular Java object; we can easily create several inside a

single JVM. JRuby-Rack can then pool multiple JRuby runtimes, each

with its own copy of the application code. When a request comes in,

JRuby-Rack selects a free runtime from the pool and hands off the

request to it.

The net of all this is that if you need to service concurrent requests

in a JRuby-based Rails application, you’ll want to measure how much

throughput you need and make a trade-off between throughput and

available memory. Each runtime takes approximately 20MB of memory

after loading the Rails framework code into it, so choose your minimum

and maximum number of runtimes carefully!

config.webxml.jruby.min.runtimes = 1

config.webxml.jruby.max.runtimes = 1

Another approach to concurrency is to write a thread-safe application

(one that will run with Rails.configuration.threadsafe! turned on), and set

JRuby-Rack’s minimum and maximum runtime values to 1.

What if you want even more control over what gets put in web.xml? If

you’re comfortable with ERB, Ruby’s built-in templating language, you

can modify the template that Warbler uses to generate this file. Just

copy WARBLER_HOME/web.xml.erb to config/web.xml.erb, and make your

edits in the copy you just created.

Finally, what if you’re using Warbler to package a hybrid Java and Ruby

application? If you have additional Java classes or libraries, you can

make sure they get packaged by setting the config.java_libs and con-

fig.java_classes options. Note that config.java_libs initially contains the

JRuby and JRuby-Rack .jar files, so be careful not to remove them

unless you know what you’re doing.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=195

PACKAGING FOR DEPLOYMENT 196

Warbler Extras

Warbler is built upon Rake internally and draws heavily on lots of Rake

features. Even the command line is structured the same as Rake. So in

order to receive a list of available “tasks” that Warbler can do for you,

you use the -T or --tasks option:

Download rake/sessions/warble_t.txt

$ jruby -S warble -T

warble config # Generate a configuration file to customize your war

warble executable # Feature: make an executable archive

warble gemjar # Feature: package gem repository inside a jar

warble pluginize # Install Warbler tasks in your Rails application

warble version # Display version of Warbler

warble war # Create the project .war file

warble war:clean # Remove the .war file

warble war:debug # Dump diagnostic information

As you can see from the previous list, there are several additional tasks

that you can use to extend your .war or integrate Warbler better with

your application’s build process.

Running warbler pluginize installs a small warbler.rake designed to be used

in a Rails project directory:

Download rake/sessions/warble_pluginize.txt

$ jruby -S warble pluginize

mkdir -p vendor/plugins/warbler/tasks

Looking at warbler.rake, we see the following:

Download rake/sessions/warbler.rake

require 'warbler'

Warbler::Task.new

You could, of course, just copy those same two lines to any project’s

Rakefile yourself, but it’s nice that Warbler offers this convenient short-

cut.

The function of Warbler::Task.new is to define several Rake tasks to per-

form the packaging work. Of these, Warbler’s main task is the war task.

If you have other work to do before packaging up your .war file, you can

make the war task depend on your other tasks.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sessions/warble_t.txt
http://media.pragprog.com/titles/jruby/code/rake/sessions/warble_pluginize.txt
http://media.pragprog.com/titles/jruby/code/rake/sessions/warbler.rake
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=196

PACKAGING FOR DEPLOYMENT 197

As an example, the popular asset_packager plug-in creates single-file,

compressed versions of your JavaScript and CSS for production use.11

To make sure the compressed files are up-to-date before packaging,

you might consider putting this in your application’s Rakefile:

Warbler::Task.new

task :war => "asset:packager:build_all"

You can also create multiple Warbler::Task configurations in your Rake-

file. You might do this if you wanted to build two different .war files from

the same code base. Just pass a different name for the main task in an

argument to Warbler::Task.new.

For instance, let’s say we wanted to create an extra .war file that had

its Rails environment set to staging for use on a staging server. Here’s

what we’d add to our Rakefile:

production_task = Warbler::Task.new

staging_task = Warbler::Task.new("war_staging")

staging_task.config.webxml.rails.env = "staging"

staging_task.config.war_name += "-staging"

To build these two .war files, you’d type rake war war_staging, which

would create both rouge.war as well as rouge-staging.war.

Another useful feature of Warbler is the executable war command. This

adds Winstone, a small (166KB) Java web server, to the resulting .war

file.12 To use it, you run the executable task first and then the war task:

Download rake/sessions/warble_executable.txt

$ jruby -S warble executable war

rm -f rouge.war

Creating rouge.war

Now, you can run your web app on its own, without needing a separate

Java server:

Download rake/sessions/war_execute.txt

$ java -jar rouge.war

[Winstone 2010/05/19 00:00:07] - Beginning extraction from war file

[Winstone 2010/05/19 00:00:07] - WARNING: The Servlet 2.4/2.5 spec XSD wa...

[Winstone 2010/05/19 00:00:07] - No webapp classes folder found - /privat...

[webapp 2010/05/19 00:00:10] - Info: using runtime pool timeout of 30 seconds

[webapp 2010/05/19 00:00:10] - Warning: no min runtimes specified.

[webapp 2010/05/19 00:00:10] - Warning: no max runtimes specified.

11. http://github.com/sbecker/asset_packager

12. http://winstone.sourceforge.net/

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/rake/sessions/warble_executable.txt
http://media.pragprog.com/titles/jruby/code/rake/sessions/war_execute.txt
http://github.com/sbecker/asset_packager
http://winstone.sourceforge.net/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=197

WRAPPING UP 198

[Winstone 2010/05/19 00:00:10] - HTTP Listener started: port=8080

[Winstone 2010/05/19 00:00:10] - Listener winstone.ajp13.Ajp13Listener no...

[Winstone 2010/05/19 00:00:10] - Listener winstone.ssl.HttpsListener not ...

[Winstone 2010/05/19 00:00:10] - Winstone Servlet Engine v0.9.10 running:...

Once that’s running, you can visit http://localhost:8080/ to try the appli-

cation before deploying it. This is a nice all-in-one way to distribute and

deploy or run your web application in a single file!

7.5 Wrapping Up

We covered a lot of ground in this chapter. We brought together the

strengths of Rake and Ant, the dominant build systems in the Ruby

and Java universes. We took a peek at how to deploy JRuby software

using Maven, for Java projects that depend on it. Finally, we saw how

to deploy Ruby-based web applications (like the Rails app we built in

an earlier chapter) onto Java servers.

Earlier in the chapter, we hinted at testing JRuby applications. Let’s

come back to that now. JRuby provides several great ways to test not

only your Ruby code but also your legacy Java code. Join us in the next

chapter to find out how.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://localhost:8080/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=198

Chapter 8

Testing Your Code with JRuby
It turns out that Ruby is a great language for testing both Ruby and

Java code. And that’s where we’re going to start our exploration of soft-

ware testing: at the code level. In this chapter, we’ll look at the Ruby

tools—test harnesses and mocking libraries—that you’re most likely to

encounter as you consider how to test individual Java or Ruby classes.

For the next chapter, we’ll branch out into integration testing, connect-

ing Ruby to Java test frameworks, and other related topics.

Ola Says. . .

Testing Religion

The Ruby community has had a reputation for being religious
about testing for a long time, and there are several extremely
good testing frameworks in Ruby. I have personally tried unit
testing in most of the popular programming languages and
can testify that Ruby frameworks are without doubt the best.

In Ruby, big-picture innovations like Behavior-Driven Develop-
ment rapidly become frameworks that are practical for every-
day development. I don’t know why Ruby is the language
where many of these things happen, but it might have some-
thing to do with the way Ruby programmers naturally seem to
embrace metaprogramming and other techniques that take
testing to the next level.

Download from Wow! eBook <www.wowebook.com>

RUBY TEST FRAMEWORKS 200

If you’re specifically interested in testing Java code with Ruby, you

might find the JtestR framework helpful. JtestR collects several Ruby

frameworks together for use with JRuby and makes the integration

with Ant or Maven totally painless. JtestR is described in detail in Sec-

tion 9.3, JtestR, on page 229. Until then, we’ll consider each test frame-

work separately. Let’s begin with a couple of the more popular tools for

organizing and running tests.

8.1 Ruby Test Frameworks

Using JRuby to test Java code is one of the easier ways to get started

with JRuby. If you start small and focus on testing, you can overcome

the “institutional resistance” to Ruby present in some shops. After all,

it’s hard for colleagues to object to a quick experiment that’s going to

be limited to the test suite—especially if the potential payoff is better

quality in the shipping product.

Because of Ruby developers’ notorious passion for testing and because

of programmers’ constant temptation to “scratch one’s own itch,” Ruby

boasts an abundance of testing frameworks. Which ones should you

investigate? We’re going to walk the middle ground between showing

you just our favorites and boring you with a laundry list of twenty dif-

ferent choices.

Test::Unit

The first framework most Ruby programmers encounter, Test::Unit, is

part of the Ruby standard library. It is quite closely modeled on the

original xUnit family of software (including the JUnit framework for

Java) and as such doesn’t use as many interesting Ruby features as

some of the others do.

The main advantage of Test::Unit is that it’s available on all Ruby instal-

lations. Because it doesn’t use as many of Ruby’s advanced features,

it’s also quite straightforward to understand.

JRuby includes Test::Unit, and you can test Java code with it as easily

as you can test Ruby.

The following example shows a simple test case that checks some prop-

erties of the java.util.HashMap class in the Java core library. We’ve tried

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=200

RUBY TEST FRAMEWORKS 201

to use several different parts of Test::Unit to give you a fair idea of the

components in it.

Download testing_with_jruby/test_unit/hashmap.rb

require 'test/unit'

require 'java'

java_import java.util.HashMap

class HashMapTestCase < Test::Unit::TestCase

def setup

@map = HashMap.new

end

def test_new_hashmap_is_empty

assert @map.isEmpty

end

def test_hashmap_with_entry_is_not_empty

@map.put("hello", "world")assert !

@map.isEmpty

end

def test_value_is_associated_with_added_key

@map.put("hello", "world")assert_equal

"world", @map.get("hello")

end

def test_entry_set_iterator_next_raises_error_for_empty_hashmap

assert_raises(NativeException) do

@map.entrySet.iterator.next

end

end

end

You can run the code with this command:

$ jruby hashmap.rb

Loaded suite hashmap

Started

...

Finished in 0.029 seconds.

4 tests, 4 assertions, 0 failures, 0 errors

There are several things going on here; let’s look at them one by one.

First, we create a new test case by defining a class that inherits from

Test:Unit::TestCase. Then we define the setup method, which runs before

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/testing_with_jruby/test_unit/hashmap.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=201

RUBY TEST FRAMEWORKS 202

each test method, much as its counterpart does in JUnit and other

frameworks.1 Finally, we define the tests themselves. Every method

whose name begins with test_ will be run as a test by Test::Unit. Each

test method is stand-alone and depends only on the setup method for

its preconditions and invariants.

Like most frameworks in the xUnit lineage, Test::Unit allows you to test

your code using several different assertions. The most common ones

are assert, assert_equal, and assert_raises. The general assert method will

mark a test as failed if the value passed in is nontrue (in other words,

is false or nil). The assert_equal method will compare its arguments using

the Ruby == operator. Lastly, assert_raises will make sure that a block of

code raises a specific error.2

RSpec

RSpec is the tool that managed to bring Behavior-Driven Development

to the masses. It continues to challenge us to change the way we think

about writing software—to get to the heart of what Test-Driven Devel-

opment was originally about.

Every test framework has at its core methods to check the truth or

falsehood of statements about the code. Test::Unit has the assert_ family

of methods. By contrast, RSpec has expectations, which are methods

added to every Ruby object at test time. These methods are should and

should_not.

Expectations take one argument: an expression describing the behavior

of some piece of the program. Here are a few examples:

(!false).should be_true

'redivider'.reverse.should == 'redivider'

[1,2,3].should include(1)

[].should be_empty

[1].should_not be_empty

'hello'.should match(/ell/)

proc{ Math.sqrt 'a string' }.should raise_error(ArgumentError)

1. If we had cleanup tasks to run after each test, we could put them in a similar teardown

method.
2. Test::Unit also provides an assert_nothing_raised check, but it’s usually not necessary—

Test::Unit already interprets exceptions thrown by your code as failures.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=202

RUBY TEST FRAMEWORKS 203

Ola Says. . .

A Behavior-Driven Development Primer

Behavior-Driven Development (BDD) is one of the newer buz-
zwords. It’s a technique that extends and builds on Test-
Driven Development (TDD). Rather than focusing on a series of
pass/fail checks of individual classes, BDD describes the behav-
ior of a system as a whole in terms of specifications or examples.
Tests become information that the entire team, even nonpro-
grammers, can understand and use to make decisions about
the project.

The first BDD framework was actually written in Java and
was called JBehave. Since then, many BDD frameworks have
sprung up, several of them using the language features of Ruby
to emphasize clarity in specifications. test/spec and RSpec are
the two major frameworks for Ruby, but you can practice BDD
even in a standard unit testing framework. It’s just a question of
style.

RSpec encourages you to think of each expectation as an example doc-

umenting the behavior of a specific piece of code. An example can be

as simple as one low-level method invocation or as far-ranging as a

mouse click affecting several classes. You organize groups of related

examples into contexts. The describe method introduces a context, and

the it method wraps each individual example.

Ready to get started with RSpec? First, grab the gem, and then we’ll

talk code.

$ jruby -S gem install rspec

...

Successfully installed rspec-core-2.0.1

Successfully installed diff-lcs-1.1.2

Successfully installed rspec-expectations-2.0.1

Successfully installed rspec-mocks-2.0.1

Successfully installed rspec-2.0.1

5 gems installed

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=203

RUBY TEST FRAMEWORKS 204

In the following snippet, we describe "an empty", HashMap given to us by

the setup code, using specific statements about its behavior: it "should

have size zero", and so on:

Download testing_with_jruby/rspec/hashmap_spec.rb

require 'java'

java_import java.util.HashMap

describe "An empty", HashMap do

before :each do

@map = HashMap.new

end

it "should be empty" do

@map.should be_empty

end

it "should have size zero" do

@map.size.should == 0

end

it "should allow elements to be added"

end

You can run the code like this:

$ jruby -S rspec hashmap_spec.rb

..*

Pending:

An empty Java::JavaUtil::HashMap should allow elements to be added

Not Yet Implemented

./hashmap_spec.rb:18

Finished in 0.046 seconds

3 examples, 0 failures, 1 pending

As you can see, the text passed to the describe method explains what

goes on in the before :each block. In other words, it gives the context of

the examples.

One thing you’ve no doubt noticed is that the third example has no

implementation. Presumably, the next thing we’re going to do is write

that test. In the meantime, RSpec will report it as pending and will print

its description to jog our memory with what we need to add. You can

take this “code as documentation” mind-set one step further and use

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/testing_with_jruby/rspec/hashmap_spec.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=204

RUBY TEST FRAMEWORKS 205

the -fs flag to document the entire specification, rather than just the

failed or pending steps:

$ jruby -S rspec -fs hashmap_spec.rb

An empty Java::JavaUtil::HashMap

should be empty

should have size zero

should allow elements to be added (PENDING: Not Yet Implemented)

Pending:

An empty Java::JavaUtil::HashMap should allow elements to be added

Not Yet Implemented

./hashmap_spec.rb:18

Finished in 0.13 seconds

3 examples, 0 failures, 1 pending

Examples and expectations are the core of RSpec. Even using just these

two features will bring a lot of clarity to your tests. Once you’re com-

fortable, you’ll likely want to explore its more advanced features. Later

in the chapter, we’ll look at one such feature: support for mock objects.

But first, there are a couple more unit test framework we’d like you to

see.

test/spec

The test/spec framework combines the simplicity of Test::Unit with the

clear syntax of RSpec.3 So, you can use your existing knowledge of

Test::Unit, while adopting the advantages of BDD at a pace you choose.

To try these examples, install the test-spec gem (note the hyphen):

$ jruby -S gem install test-spec

Using test/spec, our HashMap example would look like this:

Download testing_with_jruby/test_unit/hashmap_test_spec.rb

require 'rubygems'

require 'test/spec'

require 'java'

java_import java.util.HashMap

describe "an empty HashMap" do

3. There’s actually a slight difference of syntax. RSpec expectations favor spaces and

underscores, while test/unit uses dots everywhere.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/testing_with_jruby/test_unit/hashmap_test_spec.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=205

RUBY TEST FRAMEWORKS 206

before :each do

@map = HashMap.new

end

it "should be empty" do

@map.isEmpty.should.be true

end

it "with an added entry should not be empty" do

@map.put("hello", "world")

@map.isEmpty.should.not.be true

end

it "should associate a value with a key" do

@map.put("hello", "world")

@map.get("hello").should.equal "world"

end

it "should raise error on entryset iterator next" do

proc do

@map.entrySet.iterator.next

end.should.raise NativeException

end

end

...and running would look the same as in Test::Unit:

$ jruby hashmap_test_spec.rb

Loaded suite hashmap_test_spec

Started

...

Finished in 0.02 seconds.

4 tests, 4 assertions, 0 failures, 0 errors

There is nothing really revolutionary here, but that’s kind of the point.

Readability is noticeably better than in Test::Unit, particularly when we

have a failure. Let’s see what happens if we force one of the tests in

hashmap_test_spec.rb to fail:

$ jruby hashmap_test_spec.rb

Loaded suite hashmap_test_spec

Started

..F.

Finished in 0.117 seconds.

1) Failure:

test_spec {an empty HashMap} 003 [should associate a value with a key](an empty...)

[hashmap_test_spec.rb:28:in `test_spec {an empty HashMap} 003 [should associate...]'

hashmap_test_spec.rb:26:in `run']:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=206

RUBY TEST FRAMEWORKS 207

<"world"> expected to be != to

<"world">.

4 tests, 4 assertions, 1 failures, 0 errors

We now get an explanation based on the context and description of the

test case, rather than just a method name. With test/spec, you can

sneak these nice RSpec-like features into established projects that are

already using the Test::Unit infrastructure.

shoulda

Both RSpec and test/spec are significant departures from the style of

Test::Unit. What if you’d rather stay on familiar ground and use the Test-

Case class to group your tests but still gain some flexibility? Like nest-

ing groups of tests or writing test methods with nicer-looking names?

Shoulda is a small framework that gives you exactly these benefits,

plus the ability to add test macros.4 This last feature has made it one

of the main testing frameworks for Rails applications. When the most

common kinds of tests are already written for you, your own tests end

up communicating your intent quite concisely.

The main difference between Test::Unit and Shoulda is in the way

you write tests. Instead of defining new methods for tests, you pro-

vide blocks that include the test code. You still use the assertions that

Test::Unit provides and whichever mocking framework you like.

Now that we know what Shoulda is, let’s look at another version of our

HashMap test:

Download testing_with_jruby/shoulda/hashmap_shoulda.rb

require 'rubygems'

require 'shoulda'

require 'java'

java_import java.util.HashMap

class HashMapTestCase < Test::Unit::TestCase

context "New hashmap" do

setup do

@map = HashMap.new

end

4. In Shoulda, macros are reusable, customizable tests. The name evokes the more pow-

erful Lisp macros that inspired them.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/testing_with_jruby/shoulda/hashmap_shoulda.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=207

RUBY TEST FRAMEWORKS 208

Ola Says. . .

Shoulda at ThoughtWorks

ThoughtWorks has written several of the largest Rails applica-
tions in the world, and for a number of these, the developers
chose Shoulda over RSpec. Why? They felt that extending the
framework with custom tests and assertions was much more
complicated in RSpec. Since that time, RSpec has improved
its support for writing matchers—but Shoulda is still held in high
regard.

should "be empty" do

assert @map.isEmpty

end

should "raise error on entryset iterator next" do

assert_raises(NativeException) do

@map.entrySet.iterator.next

end

end

context "with one entry" do

setup do

@map.put("hello", "world")

end

should "not be empty" do

assert !@map.isEmpty

end

should "have size one" do

assert_equal 1, @map.size

end

should "associate a value with a key" do

assert_equal "world", @map.get("hello")

end

end

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=208

RUBY TEST FRAMEWORKS 209

To run the example, install the gem:

$ jruby -S gem install shoulda

...and then run the Ruby file directly:

$ jruby hashmap_shoulda.rb

Loaded suite hashmap_shoulda

Started

....

Finished in 0.267 seconds.

5 tests, 5 assertions, 5 failures, 0 errors

The output of running this code looks exactly the same as with Test::

Unit; only the style of writing tests has changed. Each individual test is

a block passed to should, rather than a method beginning with test_. And

we’ve used the context method to gather our tests into logical groups,

which can be nested. The contexts lend their names to the generated test

methods, as you can see when you run the test suite with the -v option:

$ jruby hashmap_shoulda.rb -v

Loaded suite hashmap_shoulda

Started

test: New hashmap should be empty. (HashMapTestCase): .

test: New hashmap should raise error on entryset iterator next. (...): .

test: New hashmap with one entry should associate a value with a key. (...): .

test: New hashmap with one entry should have size one. (HashMapTestCase): .

test: New hashmap with one entry should not be empty. (HashMapTestCase): .

Finished in 0.264 seconds.

5 tests, 5 assertions, 0 failures, 0 errors

One feature of Shoulda we’re really fond of is the ease with which you

can create custom macros—reusable chunks of test code. Imagine we

wanted to test some of the other Map implementations in java.util. Since

all of these classes share a common interface and even some common

behavior with HashMap, it would be nice to exercise them all with the

test code we’ve already written.

Extracting our code into a macro is easy. First, we define a new Ruby

module and drop all our test code into a single method inside that mod-

ule.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=209

RUBY TEST FRAMEWORKS 210

Download testing_with_jruby/shoulda/map_shoulda.rb

require 'rubygems'

require 'shoulda'

require 'java'

java_import java.util.HashMap

java_import java.util.TreeMap

java_import java.util.concurrent.ConcurrentHashMap

module MapMacros

def should_behave_as_a_map

Everything inside the "New hashmap" context from before,

except the first "setup" block and the outermost pair of

"context ... end" lines

end

def self.included(type)

type.extend self

end

end

What’s the self.included method there for? This is a bit of Ruby book-

keeping to ensure that any Ruby class using this module has access

to the should_behave_as_a_map method. In particular, we want to drop

this module into our TestCase-derived class, so we can use our macro

in several different contexts:

Download testing_with_jruby/shoulda/map_shoulda.rb

class MapTestCase < Test::Unit::TestCase

include MapMacros

context "new HashMap" do

setup { @map = HashMap.new }

should_behave_as_a_map

end

context "new TreeMap" do

setup { @map = TreeMap.new }

should_behave_as_a_map

end

context "new ConcurrentHashMap" do

setup { @map = ConcurrentHashMap.new }

should_behave_as_a_map

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/testing_with_jruby/shoulda/map_shoulda.rb
http://media.pragprog.com/titles/jruby/code/testing_with_jruby/shoulda/map_shoulda.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=210

RUBY TEST FRAMEWORKS 211

This will allow us to test the common behavior of all three Map imple-

mentations, without repeating ourselves.

$ jruby map_shoulda.rb -v

Loaded suite map_shoulda

Started

test: new ConcurrentHashMap should be empty. (MapTestCase): .

test: new ConcurrentHashMap should raise error on entryset iterator next...

test: new ConcurrentHashMap with one entry should associate a value with a key...

test: new ConcurrentHashMap with one entry should have size one. (MapTestCase): .

test: new ConcurrentHashMap with one entry should not be empty. (MapTestCase): .

test: new HashMap should be empty. (MapTestCase): .

test: new HashMap should raise error on entryset iterator next. (MapTestCase): .

test: new HashMap with one entry should associate a value with a key. (...): .

test: new HashMap with one entry should have size one. (MapTestCase): .

test: new HashMap with one entry should not be empty. (MapTestCase): .

test: new TreeMap should be empty. (MapTestCase): .

test: new TreeMap should raise error on entryset iterator next. (MapTestCase): .

test: new TreeMap with one entry should associate a value with a key. (...): .

test: new TreeMap with one entry should have size one. (MapTestCase): .

test: new TreeMap with one entry should not be empty. (MapTestCase): .

Finished in 1.021 seconds.

15 tests, 15 assertions, 0 failures, 0 errors

Large Ruby applications use metaprogramming—code that writes code

—to tame complexity. Shoulda is a great fit for testing all kinds of pro-

grams, because macros give your tests the same level of expressive

power. For example, if somewhere in your Rails code you have an asso-

ciation like this:

has_many :fubars

...you can test it like this, using the Rails helpers that come with

Shoulda:

should_have_many :fubars

Many of these features are present to some degree in other frameworks.

But where Shoulda really shines is in its simplicity. We’ve covered most

of its core usage here. All that’s left are a few specific conveniences for

Rails developers. There’s no “hazing period” on the learning curve, and

even the source code makes for good reading.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=211

GOING TO THE NEXT LEVEL WITH ZENTEST 212

8.2 Going to the Next Level with ZenTest

ZenTest is a collection of useful tools written by Ryan Davis and others

for simplifying Ruby testing. The ones most applicable to JRuby are

unit_diff, autotest, and multiruby. You can get them all in one fell swoop by

installing the ZenTest gem (note the capitalization):

$ jruby -S gem install ZenTest

unit_diff reformats test logs, so you can eyeball a printout and see exactly

what went wrong—Java developers will recognize this feature from

JUnit. All you have to do is pipe your test output to the unit_diff com-

mand, like this:

$ jruby test/your_test_case.rb | jruby -S unit_diff

This will give you output similar to what you’d normally see, but with

the error messages conveniently compressed. You’re left with just the

parts you need to read in order to understand what failed.

autotest makes continuous testing easy. If you follow a few simple nam-

ing conventions, it will figure out which tests it needs to run for each

file. Every time you save a modification to your class, autotest will run

the corresponding tests. This smoothes your workflow dramatically;

you can continue coding functionality, with the assurance that you will

be notified as soon as something fails.

multiruby allows you to run code against multiple Ruby implementa-

tions, including JRuby. This capability is a life-saver for library writers,

who must wrestle with compatibility across some ten different Ruby

implementations.

All of these tools are documented on Ryan Davis’s blog.5 We encourage

you to give them a try once you have a growing body of test code to

maintain.

Now we’re going to move on to one more crucial facet of unit testing:

test doubles.

8.3 Mocking and Stubbing

In most projects, you’ll eventually end up needing to test code that

relies on external libraries or services. Your unit tests should minimize

5. http://blog.zenspider.com

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://blog.zenspider.com
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=212

MOCKING AND STUBBING 213

Ian Says. . .

Mocks vs. Stubs

What’s the difference between mocks and stubs? They can
both be used in place of a real object, but mocks are pick-
ier: they care how they’re called. Therefore, only mocks are
allowed to cause a test failure. For more complete explanation,
see Martin Fowler’s article “Mocks Aren’t Stubs.”∗

∗. http://martinfowler.com/articles/mocksArentStubs.html

their dependencies on outside software. The conventional way of solv-

ing this problem is to use test doubles, which are stand-ins for exter-

nal code.6 In Java, this process usually requires designing your appli-

cation around interfaces and then providing fake implementations—

mocks and stubs—that return canned values.

Ruby’s “open classes” make it easy to replace an object’s methods at

runtime. This capability is useful for creating mocking frameworks,

since we don’t have to rely on Java interfaces. We can just replace

individual methods that would normally talk to an external service.

Since Java doesn’t support Ruby’s level of metaprogramming, some

of our favorite mocking and stubbing techniques aren’t available in

JRuby. For instance, you can modify a Java class in Ruby, but those

modifications will be visible only on the Ruby side—Java won’t be able

to see them.

Fortunately, there are still plenty of things that do work fine with Java.

Let’s take a look at a couple.

RSpec Mocks

RSpec comes with its own mocking and stubbing framework, which

works well in JRuby. You’ll run into some limits when you’re testing

Java code, though—we’ll see what those limits are in a minute.

6. http://xunitpatterns.com/Test%20Double.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://martinfowler.com/articles/mocksArentStubs.html
http://xunitpatterns.com/Test%20Double.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=213

MOCKING AND STUBBING 214

The basic idea is that you start with a mock object, add some canned

behavior to it, and finally pass it into the code you’re testing. RSpec

can create an empty object for you via the mock method, but you can

actually mock or stub methods on any Ruby object (including classes!).

For Java to be able to call your canned methods, the mock object will

need to implement a Java interface.

Since java.util.HashMap has been our guinea pig in this chapter, let’s see

how we’d use RSpec’s mock objects to check one of its constructors: the

one that takes an existing Map. What we expect is that the Java code

will do the following:

1. Call size() on the Map.

2. Ask for its entries.

3. Get an Iterator from that entry set.

4. Call hasNext() on the Iterator until we get a false result.

Documenting these expectations is easy. First, we bring in the Java

classes we need:

Download testing_with_jruby/rspec_mock/hashmap_spec.rb

require 'java'

java_import java.util.Map

java_import java.util.HashMap

java_import java.util.Iterator

java_import java.util.Set

Now, we create a Ruby object implementing the java.util.Map interface

and use the should_receive method to document our expectations:

Download testing_with_jruby/rspec_mock/hashmap_spec.rb

describe HashMap do

it 'can be created from an empty Map' do

map = Map.new

map.should_receive(:size).and_return(0)

iter = Iterator.new

iter.should_receive(:hasNext).and_return(false)

set = Set.new

set.should_receive(:iterator).and_return(iter)

map.should_receive(:entrySet).and_return(set)

HashMap.new(map).size.should == 0

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/testing_with_jruby/rspec_mock/hashmap_spec.rb
http://media.pragprog.com/titles/jruby/code/testing_with_jruby/rspec_mock/hashmap_spec.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=214

MOCKING AND STUBBING 215

What’s going on with those lines that say Map.new, Iterator.new, and

Set.new? Shouldn’t it be illegal to create instances of those, since they’re

just interfaces?

Behind the scenes, JRuby is creating anonymous Java classes that

implement the interfaces. That connection is actually the key to how

Java mocking works in JRuby.

Go ahead and run the test with RSpec:

$ jruby -S rspec hashmap_spec.rb

.

Finished in 0.574 seconds

1 example, 0 failures

If the Java code fails to make the sequence of calls we’ve specified,

RSpec will print a failure message. Add the following incorrect expecta-

tion just after the line containing :hasNext:

iter.should_receive(:next)

Now, try to run the test again:

$ jruby -S rspec hashmap_spec.rb

F

Failures:

1) Java::JavaUtil::HashMap can be created from an empty Map

Failure/Error: iter.should_receive(:next)

(org.jruby.gen.InterfaceImpl639549753@a00a64).next(any args)

expected: 1 time

received: 0 times

./bad_hashmap_spec.rb:17

:1

Finished in 0.377 seconds

1 example, 1 failure

See the bit in the error message about expecting :next with “any args”?

For this example, we didn’t care about what arguments Java passed

into our mock Map. Some situations may call for more exactness. Both

RSpec and its competitors have various constraints you can apply to

passed-in arguments.7

7. http://rspec.info/documentation/mocks/message_expectations.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://rspec.info/documentation/mocks/message_expectations.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=215

MOCKING AND STUBBING 216

RSpec mocks are available everywhere you can write examples. They’re

also available in Cucumber step definitions, which are described in Sec-

tion 9.1, Writing High-Level Tests with Cucumber, on page 218—but this

use is less common.

The mocking techniques we have seen so far rely on Java interfaces.

RSpec isn’t able to add mock implementations to a concrete Java class.

For that, we’ll need to turn to another mocking tool.

Mocha

Mocha is one of the top Ruby mocking/stubbing frameworks, designed

to work in several different testing frameworks, including most of the

ones we’ve seen so far. Its API is less chatty than RSpec’s (for example,

expects instead of should_receive) but still reads somewhat like English.

Let’s see how the previous example would look with Mocha. First, we

need to install the framework:

$ jruby -S gem install mocha

Second, we need to configure RSpec to use Mocha. The following code

can go before or after the java_import directives from last time:

Download testing_with_jruby/mocha/hashmap_spec.rb

require 'mocha'

RSpec.configure do |config|

config.mock_with :mocha

end

Finally, we can use Mocha-style mocks inside the test:

Download testing_with_jruby/mocha/hashmap_spec.rb

describe HashMap do

it 'can be created from an empty Map' do

map = Map.new

map.expects(:size).returns(0)

iter = Iterator.new

iter.expects(:hasNext).returns(false)

set = Set.new

set.expects(:iterator).returns(iter)

map.expects(:entrySet).returns(set)

HashMap.new(map).size.should == 0

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/testing_with_jruby/mocha/hashmap_spec.rb
http://media.pragprog.com/titles/jruby/code/testing_with_jruby/mocha/hashmap_spec.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=216

WRAPPING UP 217

What have we gained, apart from a syntax that’s less likely to overflow

our right margin? For one thing, Mocha isn’t tied to one test frame-

work, so you can reuse your knowledge in other frameworks. Though

it’s beyond the scope of this example, Mocha also has really sophisti-

cated argument-checking tests. Finally, if you use JtestR (discussed in

Section 9.3, JtestR, on page 229), Mocha allows you to mock concrete

classes, instead of just interfaces.

It’s tempting to discuss how some of our other favorites, like Schmock

and FlexMock, play in JRuby.8,9 But doing so wouldn’t get us any fur-

ther along in this book’s mission, which is to shed light on how Java

and Ruby interact. So, let’s break camp here and move on to wider

testing topics.

8.4 Wrapping Up

In this chapter, we’ve seen how Ruby’s top-notch unit test frameworks

can seamlessly test Java code. Since isolating the code under test is a

key part of this process, we’ve also looked at a couple of mocking and

stubbing libraries. Amazingly, we’ve been able to redirect Java calls into

our waiting Ruby surrogates—even though the Java code in question

had no knowledge of Ruby!

Our charge to you is to start testing with JRuby today. Scour your

Java projects for some class whose test coverage is less than you’d like,

install RSpec or one of its cousins, and add one or two simple tests.

Odds are, you’ll see enough of a benefit at the code level to wonder

what JRuby can do for your project-wide test efforts.

In the next chapter, we’re going to zoom out from individual unit tests

and consider ways to drive an application as a whole from JRuby. We’ll

also see how to fit your JRuby tests into the universe of Java tools and

libraries.

8. http://rubyforge.org/projects/schmock

9. http://flexmock.rubyforge.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://rubyforge.org/projects/schmock
http://flexmock.rubyforge.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=217

Chapter 9

Beyond Unit Tests
Over the past several pages, we’ve tested individual chunks of Ruby

and Java code using Ruby’s delightful test frameworks. But what about

applications as a whole? Can JRuby be pressed into service for func-

tional testing? That’s the question we’re going to lead off with. First,

we’ll see how JRuby can turn your user stories into live tests. Next,

we’ll take on the most popular class of acceptance testing in Ruby: web

automation.

Once we’ve completed our tour of Automation-ville, we’ll turn back to

the Java universe. There are a few aspects of integrating Ruby testing

tools into Java projects that we should discuss before leaving the topic

of testing.

9.1 Writing High-Level Tests with Cucumber

The first logical step upward from checking individual classes is wiring

up several classes together and testing them as a group. This is the

focus of integration testing.

We’ve seen how the RSpec framework and its cousins make it easy to

write tests for Ruby and Java classes in a clear Ruby notation. But even

the most lucid programming language is still a programming language.

When you’re writing about broader parts of the program, your audience

may include people outside your close-knit circle of developers. With

that in mind, the RSpec team created the Story Runner, which allows

you to write your tests in plain English. This component has since spun

off into a stand-alone project, Cucumber.

Download from Wow! eBook <www.wowebook.com>

WRITING HIGH-LEVEL TESTS WITH CUCUMBER 219

You might say that stories are the purest embodiment of BDD; they

help you focus on the app’s behavior as a whole. Cucumber separates

the writing of a story from the implementations of the individual steps.

Programmers implement the steps in Ruby or Java, and the whole

team—including nontechnical people—can participate in writing and

critiquing the overall stories.

To show you the flavor of Cucumber, we’ll write a small story about

searching the Web. In subsequent sections, we’ll hook this code up to

a real browser and breathe life into this test.

Download beyond_unit_tests/selenium/search.feature

Feature: Web search

In order to tell my searches apart

As a person who browses in multiple tabs

I want to see the term I searched for

Scenario: Page title

Given I am on the search home page

When I search for "hello world"

Then the page title should begin with "hello world"

Cucumber stories tend to follow a certain rhythm. They begin with some

optional documentation about the feature you’re testing. The important

parts are the clauses that begin with Given, When, and Then, which

define the different parts of the story. The actual implementations are

in a Ruby “step definition” file. We’ll get to that in a second, but first

let’s run the story as is. Save the story as search.feature, and run the

following commands:

$ jruby -S gem install cucumber rspec

$ jruby -S cucumber search.feature

You’ll get a report that contains a copy of the original test script, fol-

lowed by the pass/fail results:

Feature: Web search

In order to tell my searches apart

As a person who browses in multiple tabs

I want to see the term I searched for

Scenario: Page title # search.feature:7

Given I am on the search home page # search.feature:8

When I search for "hello world" # search.feature:9

Then the page title should begin with "hello world" # search.feature:10

1 scenario (1 undefined)

3 steps (3 undefined)

0m0.238s

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/selenium/search.feature
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=219

WRITING HIGH-LEVEL TESTS WITH CUCUMBER 220

Ola Says. . .

The History of Cucumber

Cucumber, and the RSpec Story Runner before it, started out
as the project RBehave, which in turn owes its heritage to JBe-
have. Both of these were created by Dan North, a coder at
ThoughtWorks and one of the fathers of BDD. JBehave and the
projects it inspired did much to define and spread the BDD way
of developing software to the world.

All three steps are listed as “undefined,” because we haven’t yet told

Cucumber how to visit the home page, search for a term, or look at

the page title. We’ll eventually fill in that behavior. The end of the test

report gives us a starting point—three Ruby snippets we can paste into

a text editor:

Given /^I am on the search home page$/ do

pending # express the regexp above with the code you wish you had

end

When /^I search for "([^"]*)"$/ do |arg1|

pending # express the regexp above with the code you wish you had

end

Then /^the page title should begin with "([^"]*)"$/ do |arg1|

pending # express the regexp above with the code you wish you had

end

What goes inside those three blocks? If you’re using Cucumber for inte-

gration testing, the job might be as simple as creating a couple of Ruby

objects, gluing them together, and seeing how they interact. You had

probably lean fairly heavily on mocks to stand in for other parts of the

system.

On the other hand, functional and acceptance tests typically drive the

full app instead of just a few pieces. The method by which you do that

is highly context-dependent. Some applications have their own cus-

tom scripting interfaces. Others run on web servers and can be driven

through HTTP. And if all else fails, you can grit your teeth and code to

a full-on GUI automation framework.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=220

ACCEPTANCE TESTING 221

9.2 Acceptance Testing

If you’re testing a program through its user interface, you’ll need some

kind of automation library tailored to the GUI technology you’re using.

There are libraries out there for Swing, SWT, Flash, HTML, and more.

Once you’ve seen how to hook one or two of these up to Cucumber,

you should be able to do so for any of them. So, we’re going to go

for “bang for the buck” here and just look at web testing frameworks.

After all, there’s a fair chance you’re coming to this book from the web

development world.

Your approach to writing your scripts should suit the type of web appli-

cation you’re testing. Some apps are really simple: they wait for a net-

work request and then reply to it with HTML. You don’t need a real web

browser to drive these, just a Ruby script that knows how to send a

request and what kind of reply to expect. Other web applications may

involve multiple requests, authentication, cookies, JavaScript, and so

on. Rather than teaching Ruby to understand all of these concepts,

you may find it simpler to launch a regular web browser and use its

scripting interface to visit the site.

In this section, we’re going to write a few different styles of test. We’ll

begin with the browser-based approach, because despite its complexity,

it’s actually easier to get started with.

Selenium and Watir are two different tools that share the same pur-

pose: taking control of a real web browser in order to help you test

your application. Selenium is language- and browser-independent. By

contrast, Watir is Ruby-only (it’s right there in the name: Web Applica-

tion Testing in Ruby) and was originally specific to Internet Explorer.

To target a different browser, you install a flavor of Watir made for that

browser: FireWatir, SafariWatir, ChromeWatir, and so on.

Both libraries have their uses, and in fact either one would do fine for

implementing the steps of the Cucumber test we saw earlier. So, we’re

going to look at both.

Selenium

Selenium is available in a Ruby-friendly format consisting of two gems:

the remote control server (which does the dirty work of driving the

browser) and the Ruby client interface. Here’s how to install the gems

and start the server:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=221

ACCEPTANCE TESTING 222

$ jruby -S gem install selenium-rc selenium-client

$ jruby -S selenium-rc

Keep that server running in the background as you turn your attention

to the more interesting part: the step definitions. These should go into

step_definitions/search_steps.rb:

Download beyond_unit_tests/selenium/step_definitions/search_steps.rb

Given /^I am on the search home page$/ do

$browser.open 'http://www.yahoo.com'

end

When /^I search for "([^\"]*)"$/ do |term|

$browser.type 'p', term

$browser.click 'search-submit'

$browser.wait_for_page_to_load 10

end

Then /^the page title should begin with "([^\"]*)"$/ do |title|

$browser.get_title[0...title.length].should == title

end

Behind the scenes, calls like click or wait_for_browser_to_load are sending

instructions to the selenium server, which is in turn controlling Firefox.

The $browser global is an instance of Selenium::SeleniumDriver. It repre-

sents a connection we need to set up before the first test step runs and

tear down after the last one completes. In Cucumber, this kind of setup

code goes in a file called support/env.rb.

Download beyond_unit_tests/selenium/support/env.rb

require 'selenium'

$browser = Selenium::SeleniumDriver.new("localhost",

4444,

"*firefox",

"http://www.yahoo.com",

15000)

$browser.start

at_exit {$browser.stop}

To run a stand-alone Cucumber test, just pass the feature name to the

cucumber command:

$ jruby -S cucumber search.feature

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/selenium/step_definitions/search_steps.rb
http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/selenium/support/env.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=222

ACCEPTANCE TESTING 223

Selenium’s API calls are easy to write, if not quite idiomatic Ruby.

They’re also fairly easy to run, though they do require the extra step

of starting a separate server.

Watir

Since it was created just for Ruby, writing Watir code feels more natural

in a Ruby project. Watir also uses a more direct technique for control-

ling the browser. Not only is there no background server, but there are

also fewer security restrictions on the kind of scripts you can run.

The user story for the web search looks exactly the same for Watir as

it did for Selenium; the only things that need to change are the step

definitions and the setup/teardown code. Here are the new step defini-

tions:

Download beyond_unit_tests/watir/step_definitions/search_steps.rb

Given /^I am on the search home page$/ do

$browser.goto 'http://www.yahoo.com'

end

When /^I search for "([^\"]*)"$/ do |term|

$browser.text_field(:name, 'p').set term

$browser.button(:id, 'search-submit').click

$browser.wait

end

Then /^the page title should begin with "([^\"]*)"$/ do |title|

$browser.title[0...title.length].should == title

end

...and here’s the new setup/teardown code:

Download beyond_unit_tests/watir/support/env.rb

require 'firewatir'

$browser = Watir::Browser.new

at_exit {$browser.close}

As you can see, the API is similar to Selenium’s but has a certain Ruby

je ne sais quoi. The trade-off for this elegance is compatibility. As we

mentioned, Watir comes in several browser-specific flavors. As of this

writing, only FireWatir, the Firefox version, is known to work well with

JRuby. To install it, run the following:

$ jruby -S gem install firewatir

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/watir/step_definitions/search_steps.rb
http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/watir/support/env.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=223

ACCEPTANCE TESTING 224

Ian Says. . .

Webrat Family Reunion

Webrat is part of a family of related web testing libraries that
have similar APIs but different trade-offs. For instance, Celerity is
geared toward JavaScript-heavy pages.∗ Capybara supports
several browser back ends but leaves out some features in the
name of portability.† If you like this style of API but need some-
thing specific that Webrat doesn’t offer, you may want to take
a look at one of these other toolkits.

∗. http://celerity.rubyforge.org

†. http://github.com/jnicklas/capybara

Then, install the JSSh plug-in for Firefox, which adds the testability

hooks that Watir uses.1 Once that’s done, you can run the Cucumber

story the same as before.

Now that we’ve seen two different libraries that drive a live browser, let’s

look at a different approach: talking directly to a web application from

Ruby.

Webrat

Webrat is a Ruby library that provides a simple API for web testing.2

With it, you write calls like visit_link ’/blog/new’ or click_button ’Create’ to

drive your site.

In addition to making tests easy to write, Webrat aims to make them

easy to run. Your test code will call straight into your application code,

as long as it’s written in one of the Ruby frameworks Webrat knows

about. Not only do you not need a web browser, but you don’t even

need to launch your application in a web server.3

Let’s see what one test case might look like in Webrat. Since we need a

Ruby app to test, let’s use the Rouge restaurant guide from Chapter 5,

1. http://wiki.openqa.org/display/WTR/FireWatir+Installation

2. http://github.com/brynary/webrat

3. If Webrat isn’t aware of your particular web framework, you can go back to running

your own server and use the simple Webrat API on top of Selenium or other back ends.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://celerity.rubyforge.org
http://github.com/jnicklas/capybara
http://wiki.openqa.org/display/WTR/FireWatir+Installation
http://github.com/brynary/webrat
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=224

ACCEPTANCE TESTING 225

Introduction to Rails, on page 98. From the rouge directory you created

in that chapter, make a subdirectory called features and a file called

features/manage_restaurants.feature with the following text:

Download introduction_to_rails/rouge/features/manage_restaurants.feature

Feature: Manage restaurants

In order to provide up-to-the-minute listings

As a guidebook author

I want to add, remove, and modify restaurants

Background:

Given I am logged in as an admin

Scenario: Add a restaurant

Given the following restaurants:

| name |

| Kenny and Zuke's |

| Horse Brass Pub |

When I add the following restaurant:

| name |

| New Old Lompoc |

Then I should see the following restaurants:

| name |

| Kenny and Zuke's |

| Horse Brass Pub |

| New Old Lompoc |

This format should feel familiar from the previous Cucumber examples.

We’ve added a couple of new twists, though. The Background section

adds a step that will run at the beginning of each Scenario. It doesn’t

really save you any typing if you have only one test case. But it spares

the linguistic awkwardness of Given I am logged in... / And the following

restaurants.

Also, note that you can define tables of test code as ASCII art. Table-

driven testing is a tremendously expressive way to show several exam-

ples in a compact space.

How does Cucumber pass that chunk of tabular data into your test

code? It constructs an instance of a class called Cucumber::Ast::Table,

which provides several convenient methods for getting at the informa-

tion inside. Let’s see how to use one of these methods. Put the following

code into a file called features/step_definitions/restaurant_steps.rb:

Download introduction_to_rails/rouge/features/step_definitions/restaurant_steps.rb

Given /^the following restaurants:$/ do |restaurants|

Restaurant.create!(restaurants.hashes)

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/features/manage_restaurants.feature
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/features/step_definitions/restaurant_steps.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=225

ACCEPTANCE TESTING 226

The table’s hashes method returns the cells of the table converted to an

array of Hash objects:

[{"name" => "Kenny and Zuke's"},

{"name" => "Horse Brass Pub"}]

By a lovely coincidence, this happens to be the same format that Active-

Record’s create! method takes. Yes, we’re creating the database record

directly behind the scenes, rather than going through the GUI.4 You

wouldn’t want to do this in the heart of the test (the When and Then

steps), where we’re actually checking the GUI. But it’s sometimes OK

during the Given step, which is really just the setup.

Now we can move on to the When step:

Download introduction_to_rails/rouge/features/step_definitions/restaurant_steps.rb

When /^I add the following restaurants?:$/ do |restaurants|

restaurants.hashes.each do |r|

visit new_restaurant_path

fill_in 'restaurant[name]', :with => r[:name]

click_button 'Create'

end

end

Those three lines in the middle are Webrat calls. See how fluidly it

reads? “Visit this URL. Fill in this field. Click this button.” Let’s go

through those line by line.

We could have written the URL directly as visit ’/restaurants/new’. But our

code will be a little more future-proof if we use new_restaurant_path, a

name that Rails defined for us while we were building Rouge.

Webrat identifies the text field to fill in by its name property. In other

words, this code is expecting to see a chunk of HTML that looks some-

thing like <text name="restaurant[name]">. Similarly, the call to click_button

looks for a submit button whose value is Create.

To check the results, we go back to the list of restaurants and make

sure the newly added one shows up.

4. In The RSpec Book [CAD+09], David Chelimsky refers to this technique as “Direct

Model Access.”

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/features/step_definitions/restaurant_steps.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=226

ACCEPTANCE TESTING 227

Download introduction_to_rails/rouge/features/step_definitions/restaurant_steps.rb

Then /^I should see the following restaurants:$/ do |expected|

visit restaurants_path

actual = table(tableish('table:nth-of-type(2) tr', 'td,th'))

actual.map_headers! { |h| h.downcase }

expected.diff! actual

end

Just like the other two steps, this one takes a table as input—in this

case, a table listing the restaurants we expect to see. We need to make

a similar table of the actual restaurants on the page. Cucumber’s Rails

integration provides the tableish method for this purpose.

tableish takes as parameters the kinds of HTML tags we’re looking for

(the hairy details of CSS3 selectors are a topic for another day) and uses

them to slice the document up into an array of Hash objects:

[{"Name" => "Kenny and Zuke's", "Phone" => "", "Address" => ""},

{"Name" => "Horse Brass Pub", "Phone" => "", "Address" => ""},

{"Name" => "New Old Lompoc", "Phone" => "", "Address" => ""}]

Did you notice the hash keys are all capitalized? The ASCII-art table

in our scenario spelled the columns in all lowercase letters. Do we

rewrite the test or do some kind of translation? We recommend the lat-

ter, because it’s easier to keep things up-to-date when the web designer

changes the page.

The translation code is simple. First, we get the array of hashes into one

of those powerful Cucumber table objects; that’s what the table method

does. Next, we call map_headers! to do the translation.

Finally, we can compare the two tables via their diff! method. By default,

this comparison is forgiving of the extra Phone and Address columns that

appear on the page but not in our test. (We don’t care about them for

this particular scenario.)

One last thing: we need to take care of the login step from the scenario

background.

Download introduction_to_rails/rouge/features/step_definitions/restaurant_steps.rb

Given /^I am logged in as an admin$/ do

Administrator.create! :username => 'admin', :password => 'admin'

basic_auth 'admin', 'admin'

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/features/step_definitions/restaurant_steps.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/features/step_definitions/restaurant_steps.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=227

ACCEPTANCE TESTING 228

Because Rouge users (including administrators) are stored in the data-

base, we have to create a new account before we can log in. Then, we

can use Webrat’s basic_auth method to specify the login credentials.

We’re almost ready to run the tests. We just have a bit of housekeeping

to do first. Add the following to the end of your Gemfile:

Download introduction_to_rails/rouge/Gemfile

group :development, :test do

gem 'webrat'

gem 'cucumber-rails'

gem 'cucumber'

gem 'rspec-rails', '~> 2.0'

end

Now, run the following commands in the project directory:

$ jruby -S bundle install

$ jruby script/rails generate cucumber:install --rspec --webrat

$ jruby -S rake db:migrate

This will install the pieces Webrat needs to talk to your Rails app

and generate a few Cucumber-specific configuration files in the project

directory. We’ll need to make a couple of customizations on top of this

configuration. Create a file in features/support called webrat_config.rb,

and put the following code in it:

Download introduction_to_rails/rouge/features/support/webrat_config.rb

Webrat.configure do |config|

config.mode = :rack

end

require 'webrat/core/methods'

World Webrat::Methods

World Rack::Test::Methods

Once that’s done, you can run an all-in-one Rake task that takes care

of setting up the database and running the test:

$ jruby -S rake cucumber

Because this test doesn’t require a browser or server, it’s easy to run on

a variety of machines, from your development team’s PCs to the contin-

uous integration server. But Webrat doesn’t try to be a full browser, and

you may have some tests that require one. Many projects successfully

use a mix of both styles.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/Gemfile
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/features/support/webrat_config.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=228

PLUGGING INTO JAVA 229

9.3 Plugging Into Java

By this point, we’ve seen several compelling Ruby test frameworks.

Some of them are only of tangential interest to Java users, but oth-

ers can provide inspiration for real Java projects. In this section, we’ll

talk about which ones are good candidates for your Java project. We’ll

finish up with a discussion of how JRuby and the existing Java test

frameworks play together.

JtestR

JtestR is a new framework that simplifies using Ruby for testing Java

projects. It doesn’t include much original code; instead, it collects sev-

eral state-of-the-art Ruby libraries together with some glue code geared

toward Java testing. Why use Ruby to test Java? Because the ease of

writing tests in Ruby will encourage you to write more and better tests.

With JtestR, you don’t have to hook up any of the plumbing that would

normally be necessary to integrate JRuby with your Java infrastruc-

ture. You just download a .jar file, add a few lines to your Ant build file,

and then start writing tests. Here’s what you get when you install the

latest version of JtestR (0.6 as of this writing):

• JRuby 1.5+

• Test::Unit

• RSpec

• Expectations (another test framework)

• dust (yet another test framework)

• Mocha

• ActiveSupport

We’ve already been through most of these libraries. So, we’ll just take

you on a tour through JtestR’s capabilities and show you how to get

started with it.

Fast Startup

One of the problems with using JRuby for testing is the long startup

time. You want your tests to run instantaneously so that nothing gets

in the way of constant testing. JtestR speeds up testing by providing

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=229

PLUGGING INTO JAVA 230

a background server with a pool of ready-to-use runtimes. When a

client wants to run a test, the server assigns it a runtime and prepares

another one.

Build Tools

Anything intended to be part of the Java ecosystem needs to have

extremely good integration with the currently available tools. JtestR

ties in with the two most popular Java build tools, Ant and Maven. This

integration requires only a simple one-time setup. Here’s what an Ant

build file would look like, assuming you’ve saved JtestR to lib/jtestr.jar:

Download beyond_unit_tests/jtestr/build.xml

<?xml version="1.0" encoding="utf-8"?>

<project basedir="." default="test" name="simple_ant_test">

<description>

Simple example Ant project for jtestr

</description>

<taskdef

name="jtestr"

classname="org.jtestr.ant.JtestRAntRunner"

classpath="lib/jtestr.jar"/>

<taskdef

name="jtestr-server"

classname="org.jtestr.ant.JtestRAntServer"

classpath="lib/jtestr.jar"/>

<target name="test" description="Runs all tests">

<jtestr/>

</target>

<target name="test-server" description="Starts test server">

<jtestr-server runtimes="3"/>

</target>

</project>

This file gives you two new build targets, test and test-server. To use

them, first open a new console window, and run ant test-server there.

Leave that running, and then use the test target as usual. By default,

JtestR assumes your tests are in the test directory, but you can adapt

this setting to your project.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/jtestr/build.xml
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=230

PLUGGING INTO JAVA 231

A minimal Maven 2 POM for JtestR would look like this:

Download beyond_unit_tests/jtestr/pom.xml

<?xml version="1.0" encoding="utf-8"?>

<project>

<modelVersion>4.0.0</modelVersion>

<groupId>org.jtestr</groupId>

<artifactId>jtestr-maven-example</artifactId>

<packaging>jar</packaging>

<version>0.1</version>

<name>JtestR Maven Example</name>

<build>

<directory>target</directory>

<outputDirectory>target/classes</outputDirectory>

<sourceDirectory>src</sourceDirectory>

<plugins>

<plugin>

<groupId>org.jtestr</groupId>

<artifactId>jtestr</artifactId>

<version>0.6</version>

<configuration>

<port>20333</port>

</configuration>

<executions>

<execution>

<goals>

<goal>test</goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

To use the background server with this configuration file, execute the

jtestr:server goal.

JtestR can be made to work with IDEs as well. For an example of Eclipse

integration, see http://www.evalcode.com/2008/08/jruby-jtestr-in-eclipse.

Reusing Java Tests

With JtestR, you can take your existing Java tests written for the JUnit

or TestNG framework and run them right alongside your new Ruby

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/jtestr/pom.xml
http://www.evalcode.com/2008/08/jruby-jtestr-in-eclipse
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=231

PLUGGING INTO JAVA 232

tests. All you have to do is add the names of your Java test classes to

JtestR’s config file, which is called jtestr_config.rb by default:

Download beyond_unit_tests/jtestr/jtestr_config.rb

junit ['com.example.SomeTest',

'com.example.SomeOtherTest']

(You can also go the other direction and let JUnit drive your Ruby tests,

as we’ll see in a moment.)

JtestR includes many smaller, but still useful, features. For instance, as

we discussed in Section 8.3, Mocha, on page 216, the version of Mocha

that ships with JtestR contains a few tweaks to enable mocking both

Java interfaces and Java classes. A full catalog of these little niceties is

beyond the scope of this chapter. For more information, see the JtestR

documentation.5 This is the short, short version: if you’re just getting

started adding Ruby tests to a Java project, we strongly recommend

using JtestR.

JUnit, TestNG, and Other Java Frameworks

Of course, there are lots of great Java testing frameworks around, and

in some cases you might want to supplement your chosen Ruby frame-

work with a few Java tests. You’ll usually find that you need to do a

few extra steps in these situations. For instance, once you’ve written

the actual test code in Ruby, you’ll need to manually register your test

classes with Java.

Most of the current Java test frameworks rely on static type annotations

to find test suites and test cases. This system doesn’t mesh well with

Ruby’s dynamic classes. The easiest way to reconcile the two is to write

a thin Ruby wrapper around your tests. The wrapper will implement

a Java testing interface, call the real Ruby test code, and report the

results back to JUnit or TestNG.

The JRuby project has used this technique with some success—see the

test directory of the JRuby source. The tests are a mixture of Java and

Ruby code, and they use several different frameworks. One overarching

JUnit test suite churns through this motley collection of test steps and

then assembles the results for JUnit.

5. http://jtestr.codehaus.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/jtestr/jtestr_config.rb
http://jtestr.codehaus.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=232

PLUGGING INTO JAVA 233

Driving any of these frameworks from Ruby is as easy as any other Java

integration. You just call into the Java classes and methods using the

same techniques we’ve been discussing throughout this book. That’s

all JtestR does when it runs JUnit and TestNG tests.

A JUnit Example

To make this section a bit more concrete, we’ll take a quick look at how

you can run Test::Unit tests from JUnit. Most of the code will be in

Ruby; the Java side will consist of a small JUnit adapter. This general

pattern—a Ruby project with a thin Java wrapper—pops up frequently

in JRuby projects.

The first thing we need is a class that will present itself to JUnit as a

test case. We’ll be using the older, nonannotation JUnit API here; this

will work fine with either JUnit 3 or 4. The code looks like this:

Download beyond_unit_tests/junit_integration/TestUnitSuite.java

import org.jruby.embed.ScriptingContainer;

import junit.framework.Test;

import junit.framework.TestCase;

import junit.framework.TestResult;

public class TestUnitSuite implements Test {

private void runTestCasesIn(ScriptingContainer runtime, TestResult result) {

Object junit_adapter = runtime.runScriptlet("JUnitAdapter");

Object instance = runtime.callMethod(junit_adapter, "new", result);

runtime.callMethod(instance, "run_tests");

}

public int countTestCases() {

return -1;

}

public void run(TestResult result) {

ScriptingContainer runtime = new ScriptingContainer();

runtime.runScriptlet("require 'test_unit_junit'");

Object junit_class = runtime.runScriptlet("JUnitAdapter");

Object junit_instance = runtime.callMethod(junit_class, "new", result);

runtime.callMethod(junit_instance, "run_tests");

}

public static Test suite() {

return new TestUnitSuite();

}

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/TestUnitSuite.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=233

PLUGGING INTO JAVA 234

This class’s three methods provide the interface that JUnit expects to

see. The interesting bits are all in the run() method. Using the tech-

niques from Chapter 3, Ruby from Java: Embedding JRuby, on page 60,

we load our Ruby code into a new ScriptingContainer object, create an

instance of a Ruby class, and call its run_tests method.

To build this Java code, you can add something like the following frag-

ment to your Ant build file:

Download beyond_unit_tests/junit_integration/build.xml

<target name="compile"

description="Compile the source files for the project.">

<javac destdir="." debug="true" source="1.5" target="1.5">

<classpath refid="build.classpath"/>

<src path="."/>

</javac>

</target>

Provided that you have both jruby-complete.jar and junit-4.8.1 in your build.

classpath, you should get a clean build with ant compile at this point.

The Ruby Adapter

The Ruby code is a lot more involved, so let’s take it in segments. First,

we need to bring in both the Ruby Test::Unit libraries and the Java

JUnit ones:

Download beyond_unit_tests/junit_integration/test_unit_junit.rb

require 'test/unit'

require 'test/unit/collector'

require 'test/unit/ui/testrunnermediator'

require 'java'

java_import 'junit.framework.TestCase'

java_import 'junit.framework.AssertionFailedError'

Now, we can define the JUnitAdapter class, whose run_tests method we

just called from Java:

Download beyond_unit_tests/junit_integration/test_unit_junit.rb

class JUnitAdapter

def initialize(test_result)

@test_result = test_result

end

def run_tests

Dir["test/**/*_test.rb"].each do |f|

load f

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/build.xml
http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/test_unit_junit.rb
http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/test_unit_junit.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=234

PLUGGING INTO JAVA 235

Test::Unit::AutoRunner.new(false) do |runner|

runner.collector = collect_all_test_unit_classes

runner.runner = report_results_to_junit

end.run

end

end

The main method, run_tests(), will first load all relevant files from the test

directory, and then we hand them off to Test::Unit’s AutoRunner class to

run. This class uses a common Ruby idiom for customization: its new

method can take a block containing additional options. In this case,

we’re specifying how Test::Unit should search Ruby’s memory for tests

and how it should report results while the tests are running.

You’ll notice we’re leaning on a couple of helper methods, collect_all_test_

unit_classes and report_results_to_junit. Their details belong firmly in the

“things needed only by the maintainers of Test::Unit” category, so just

gloss over the gnarly bits and focus on the class names:

Download beyond_unit_tests/junit_integration/test_unit_junit.rb

class JUnitAdapter

private

def collect_all_test_unit_classes

proc do |runner|

c = TestUnitClassCollector.new

c.filter = runner.filters

c.collect("Tests", test_unit_classes)

end

end

def report_results_to_junit

proc do |runner|

TestUnitResultHandler.instance_variable_set :@result_handler, @test_result

TestUnitResultHandler

end

end

def test_unit_classes

all = []

ObjectSpace.each_object(Class) do |klass|

if Test::Unit::TestCase > klass

all << klass

end

end

all

end

end

This code references two new classes we’ll need to define, TestUnitClass-

Collector and TestUnitResultHandler. First, let’s look at the collector. Its job

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/test_unit_junit.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=235

PLUGGING INTO JAVA 236

is to collect a bunch of separate Ruby classes into a single test suite.

Test::Unit calls into it before running the tests. Alas, the details are a

piece of necessary, but uninteresting, boilerplate:

Download beyond_unit_tests/junit_integration/test_unit_junit.rb

class TestUnitClassCollector

include Test::Unit::Collector

def collect(name, klasses)

suite = Test::Unit::TestSuite.new(name)

sub_suites = []

klasses.each do |klass|

add_suite(sub_suites, klass.suite)

end

sort(sub_suites).each{|s| suite << s}

suite

end

end

And now, we’ll see the TestUnitResultHandler class that’s tasked with hand-

ing Test::Unit results back to JUnit:

Download beyond_unit_tests/junit_integration/test_unit_junit.rb

class TestUnitResultHandler

def self.run(suite, ignored=nil)

runner = new suite

runner.instance_variable_set :@result_handler, @result_handler

runner.start

end

def initialize(suite, io=STDOUT)

if suite.respond_to? :suite

@suite = suite.suite

else

@suite = suite

end

end

def start

@mediator = Test::Unit::UI::TestRunnerMediator.new @suite

@mediator.add_listener Test::Unit::TestResult::FAULT,

&method(:add_fault)

@mediator.add_listener Test::Unit::TestCase::STARTED,

&method(:test_started)

@mediator.add_listener Test::Unit::TestCase::FINISHED,

&method(:test_finished)

@mediator.run_suite

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/test_unit_junit.rb
http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/test_unit_junit.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=236

PLUGGING INTO JAVA 237

This code is the public interface to the class. Test::Unit will call the

static run method and expect us to create and launch an instance of

the class. You’ll see that we’re adding callbacks to something called a

mediator, which you can think of as a test step watcher. Each time

something interesting happens, like a step failing or a test suite com-

pleting, Test::Unit will notify the mediator—which will in turn notify us.

Inside the three callbacks, we just need to hand the results off to JUnit:

Download beyond_unit_tests/junit_integration/test_unit_junit.rb

class TestUnitResultHandler

private

def add_fault(fault)

case fault.single_character_display

when 'F': @result_handler.add_failure(@current_test,

AssertionFailedError.new(fault.to_s))

when 'E': @result_handler.add_error(@current_test,

java.lang.Throwable.new(fault.to_s))

end

end

def test_started(name)

@current_test = RubyTest.new(name)

@result_handler.start_test(@current_test)

end

def test_finished(name)

@result_handler.end_test(@current_test)

end

end

What’s that RubyTest object we’re creating inside test_started? It’s just

a tiny Ruby class that implements the required methods from JUnit’s

org.junit.TestCase interface:

Download beyond_unit_tests/junit_integration/test_unit_junit.rb

class RubyTest < TestCase

def countTestCases; 1; end

def run(result); end

def toString; name; end

end

Whew! That’s a lot of detailed API work to tie these two test frameworks

together. The good news is that it needs to be written only once. You

should be able to drop these two files into any JRuby project, add some

tests, and run them with Ant. Let’s do that now.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/test_unit_junit.rb
http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/test_unit_junit.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=237

PLUGGING INTO JAVA 238

The Actual Tests

Go ahead and drop a couple of ..._test.rb files into the test directory. For

this example, we’ve copied the HashMap tests from the previous chapter

into a file called test/hashmap_test.rb:

Download beyond_unit_tests/junit_integration/test/hashmap_test.rb

require 'test/unit'

require 'java'

java_import java.util.HashMap

class HashMapTestCase < Test::Unit::TestCase

def setup

@map = HashMap.new

end

def test_new_hashmap_is_empty

assert @map.isEmpty

end

def test_hashmap_with_entry_is_not_empty

@map.put("hello", "world")

assert !@map.isEmpty

end

def test_value_is_associated_with_added_key

@map.put("hello", "world")

assert_equal "world", @map.get("hello")

end

def test_entry_set_iterator_next_raises_error_for_empty_hashmap

assert_raises(NativeException) do

@map.entrySet.iterator.next

end

end

end

Here’s a fragment you can add to your Ant build file to run these tests:

Download beyond_unit_tests/junit_integration/build.xml

<target name="test" depends="compile"

description="Compile the source files for the project.">

<junit haltonfailure="false" fork="yes">

<classpath refid="run.classpath"/>

<formatter type="plain" usefile="false"/>

<test name="TestUnitSuite"/>

</junit>

</target>

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/test/hashmap_test.rb
http://media.pragprog.com/titles/jruby/code/beyond_unit_tests/junit_integration/build.xml
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=238

WRAPPING UP 239

Ready to run some tests?

$ ant test

Buildfile: build.xml

compile:

test:

[junit] Testsuite: TestUnitSuite

[junit] Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 8.615 sec

[junit]

[junit] Testcase: test_entry_set_iterator_next_raises_error_for_empty_hashmap...

[junit] Testcase: test_hashmap_with_entry_is_not_empty(HashMapTestCase) took...

[junit] Testcase: test_new_hashmap_is_empty(HashMapTestCase) took 0.005 sec

[junit] Testcase: test_value_is_associated_with_added_key(HashMapTestCase)...

BUILD SUCCESSFUL

Total time: 10 seconds

From here, we leave the tests in your capable hands.

9.4 Wrapping Up

This chapter began by showing how to use Ruby frameworks for higher-

level testing of Java programs. We saw a tiny sampling of the web UI

automation libraries available for acceptance testing. Finally, we talked

about how to bring your elegant Ruby-based tests into the world of

sophisticated Java tools.

Don’t wait to introduce great testing to your Java project. Download

JtestR today, and tie it into your existing Java tests. As you add new

tests, add them in Ruby using one of the expressive frameworks we’ve

seen. If you’re feeling really ambitious, you might finish off by plug-

ging everything into a continuous integration server.6 We think you’ll

find that Ruby is the best language for testing Java code—no matter

whether you prefer JtestR, an ad hoc collection of libraries, or some

new and awesome tool that you’re about to write and unleash on the

world. Now get testing!

6. http://wiki.jruby.org/JRubyAndContinuousIntegration

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://wiki.jruby.org/JRubyAndContinuousIntegration
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=239

Chapter 10

Building GUIs with Swing
You’ve heard it before: “write once, run anywhere,” or WORA for short.

The term has been used (and overused) by Java developers over the

past decade and a half to refer to the Holy Grail of portability. Reality

never quite lives up to the hype, and indeed WORA’s early waves of

promise crashed against the familiar rocks of platform-specific quirks.

The story is more hopeful today, especially in the area of GUI devel-

opment. If you write a Java GUI application on Windows, it can also

run on Mac OS, Linux, or any other platform where Java runs—while

taking on a native look and feel.

However, for Java language developers, this comeback has been hard-

earned. Swing, the primary GUI API for Java, is a byzantine framework.

It works great once you’ve invested your blood and sweat into mak-

ing a robust application. But the amount of effort needed to learn the

ins and outs of Swing often frustrates developers into abandoning the

framework altogether.

10.1 JRuby to the Rescue!

There has been an explosion of GUI frameworks for JRuby. Most of

these work by papering over some of Swing’s more puzzling complexi-

ties. They also reduce the amount of boilerplate code you have to write,

by leaning on powerful Ruby features like blocks.

Download from Wow! eBook <www.wowebook.com>

SWING 241

Why is there so much interest in JRuby GUI development? As you might

have guessed, Java is part of the answer. In Java shops, enterprising

coders1 have used Ruby frameworks to ease the pain of supporting their

company’s chosen platform.

There’s another factor, too: mainstream Ruby. The C version of Ruby

has no widely used cross-platform GUI toolkit. Yes, some builds of Ruby

ship with support for the Tk graphical widget set. But it’s no exagger-

ation on our part to say that Tk is not universally beloved by Ruby

developers. JRuby and Swing can provide just the sort of happy ending

to the Ruby GUI development story we’ve all been waiting for.

To give you an idea of the feel of GUI development on JRuby, we’re going

to write one application using four different frameworks. What sort of

application, you ask? It needs to be something short enough to fit in

a chapter but complicated enough to show you some of the trade-offs

you’ll need to make in your own projects.

As we were putting this book together, the answer came to us: how

about an application to write and organize the chapters for a book?

We’re going to build a glorified text editor that lets you write a series

of chapters in a simplified markup language and then preview the final

pages. Ready? Let’s get started!

10.2 Swing

The first Ruby framework is...no framework at all. We’re going to just

use the Java integration features we talked about in Chapter 2, Driving

Java from Ruby, on page 31 and script a solution using the Swing APIs

directly. Seeing the Swing solution first will be a great base to build on

for understanding the benefits and trade-offs of the other frameworks.

Before we get into the code, let’s take a look at where we’re headed. We

want to end up with something like Figure 10.1, on the following page.

On the left side is a list of chapters. We have two so far and can add

a third one at the end by clicking Add Chapter. The right side of the

window is for content. In the Edit pane, we can write plain text with a

little basic markup (for example, asterisks for *bold* text). The Preview

pane shows what the end result will look like after we apply all the

formatting.

1. No pun intended

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=241

SWING 242

Figure 10.1: Swing Interface

Ready to see the code? Let’s start by bringing in a few libraries and

classes we’ll need:

Download guis/swing/bookie.rb

require 'java'

require 'rubygems'

require 'redcloth'

classes = %w(JFrame JButton JList

JEditorPane JSplitPane JTabbedPane JTextPane

DefaultListModel ListSelectionModel BoxLayout

text.html.HTMLEditorKit)

classes.each do |c|

java_import "javax.swing.#{c}"

end

java_import java.awt.Dimension

First, we load the java library. This lets us java_import a few Swing

classes for convenience. Notice that we’re also loading a gem called

redcloth. RedCloth is an implementation of Textile, a wiki-like markup

language.2

Go ahead and install that now, while we’re on the subject:

$ jruby -S gem install RedCloth

From this point on, the majority of the code is just laying out the GUI

and spelling out behavior. We’ll be using stock Swing techniques here.

2. http://redcloth.org

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://redcloth.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=242

SWING 243

You’ll see plenty of places where a Ruby framework could have saved

us some effort.

We’ll start by creating the Edit and Preview windows as a JTextPane and

JEditorPane, respectively:

Download guis/swing/bookie.rb

edit = JTextPane.new

preview = JEditorPane.new

preview.editable = false

preview.editor_kit = HTMLEditorKit.new

preview.document = preview.editor_kit.create_default_document

This should be fairly self-explanatory. We’ve marked the Preview pane

as noneditable, because it’s, well, a preview.3 We also need to designate

it as an HTML-capable window, since RedCloth renders Textile down to

HTML.

Next, we’ll create a list box to contain the names of the chapters:

Download guis/swing/bookie.rb

chapters = JList.new(DefaultListModel.new)

chapters.selection_mode = ListSelectionModel::SINGLE_SELECTION

class << chapters

def add_chapter

count = model.size

model.add_element count + 1

selection_model.set_selection_interval count, count

end

end

chapters.add_chapter

The first line creates a new JList and specifies two models—one for the

contents of the list and one for the selection. Swing applies Model-

View-Controller (MVC) concepts everywhere, sometimes to an annoying

degree. Moreover, it seldom offers sensible defaults. Mastering Swing

requires both writing new models and crawling through the API docs to

find existing models.

The Add Chapter button (which we haven’t defined yet) will need a way

to append chapters to our list. We could add an add_chapter method

3. Recall that the syntax editable = false is shorthand for setting a Java property, as in

setEditable(false).

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=243

SWING 244

to the JList class. But it’s safer to confine our changes to just this one

instance. That’s what the class << chapters line does.4

Inside add_chapter, we find out how many chapters are currently on

the list and then add a new item at the end. We then make the new

chapter the selected item. Now, let’s move on to GUI events.

Download guis/swing/bookie.rb

contents = Hash.new('')

chapters.add_list_selection_listener do |e|

unless e.value_is_adjusting

new_index = e.source.get_selected_index

old_index = [e.first_index, e.last_index].find { |i| i != new_index }

contents[old_index], edit.text = edit.text, contents[new_index]

preview.text = RedCloth.new(edit.text).to_html

end

end

This code creates a table to hold our chapters (indexed by number) and

then gives the JList an event listener to update the text in the window

when the user selects a new chapter. The event listener is a bit of a

mouthful, but it’s easy to understand if we break it down a piece at a

time.

chapters.add_list_selection_listener do |e|

...

end

Each time the end user selects a chapter, Swing will call all the listen-

ers registered to that control. In Java, you’d put your event code in a

ListSelectionListener. But since this interface has only one method, you

can just pass a Ruby block to add_list_selection_listener instead. JRuby

will take care of creating a listener class for you.

unless e.value_is_adjusting

...

end

When the user changes the selection, Swing may actually fire a stream

of several events. We have to test the event to make sure it’s not in the

middle of one of these streams. If you feel surprised that Swing requires

this kind of arcane knowledge just for a simple app, you’re not alone.

4. For an explanation of adding methods to Ruby objects and classes at runtime, see

http://ola-bini.blogspot.com/2006/09/ruby-singleton-class.html.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://ola-bini.blogspot.com/2006/09/ruby-singleton-class.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=244

SWING 245

Download guis/swing/bookie.rb

new_index = e.source.get_selected_index

old_index = [e.first_index, e.last_index].find { |i| i != new_index }

The event object, e, has a first_index and a last_index field. One of them

represents the previous selection and one the new selection—but we

can’t know in advance which one is which. We actually have to test

them both against the result of get_selected_index.

Download guis/swing/bookie.rb

contents[old_index], edit.text = edit.text, contents[new_index]

preview.text = RedCloth.new(edit.text).to_html

This last bit saves away the old text and replaces the Edit pane with

the new text. It also updates the Preview pane with the HTML generated

from RedCloth.

Now, let’s make a tab control for the Edit and Preview windows so that

the user can toggle between them. We do this by creating a JTabbedPane

and adding the two windows to it:

Download guis/swing/bookie.rb

tabbed_pane = JTabbedPane.new JTabbedPane::TOP, JTabbedPane::SCROLL_TAB_LAYOUT

tabbed_pane.add_tab 'Edit', edit

tabbed_pane.add_tab 'Preview', preview

tabbed_pane.add_change_listener do |event|

if tabbed_pane.selected_component == preview

preview.text = RedCloth.new(edit.text).to_html

end

end

Notice that this control also gets an event listener. When the user

switches to the Preview window, we want to regenerate the HTML in

case they’ve modified the chapter.

Download guis/swing/bookie.rb

split_pane = JSplitPane.new JSplitPane::HORIZONTAL_SPLIT

split_pane.add chapters

split_pane.add tabbed_pane

The previous code creates a split pane, with the chapter list on one side

and the Edit/Preview windows on the other.

Download guis/swing/bookie.rb

button = javax.swing.JButton.new 'Add Chapter'

button.size = Dimension.new 40, 40

button.add_action_listener { chapters.add_chapter }

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=245

RUBEUS 246

When the user clicks the Add Chapter button, the block we supply here

gets called. Like the other listeners, this block has access to the chapters

list control, which is a local variable that we defined outside the block.

The final step is to create a top-level window, or JFrame, to hold every-

thing else.

Download guis/swing/bookie.rb

frame = JFrame.new 'Bookie'

frame.size = Dimension.new 500, 300

frame.layout = BoxLayout.new frame.content_pane, BoxLayout::Y_AXIS

frame.add split_pane

frame.add button

frame.visible = true

The frame uses a layout manager, Swing’s way of specifying where con-

trols will appear relative to one another (both initially and when the

window is resized). Layout managers are a rich topic in their own right

and worth reading up on if you plan on doing a lot of Swing work.

There we have it. In the worst-case scenario of using raw Swing without

the help of any Ruby frameworks, we spent about 60 lines of code. Not

too bad, actually. You could add another 60 lines to deal with loading,

saving, and printing documents. But before you go write the next great

text editor, let’s look at some JRuby-based GUI frameworks built on top

of Swing. Maybe we’ll find ways to remove some of the Swing esoterica

from our top-level GUI code.

10.3 Rubeus

Rubeus is a GUI framework whose developers think that completely

eliminating the details of Swing may not be possible.5 No matter how

good an abstract framework is, some of Swing’s details will leak into

your code. With that in mind, they decided to concentrate on removing

the worst of Swing’s pain points, without ever hiding the fact that you’re

still coding to the Swing API. You can think of Rubeus as Swing with a

Ruby friendly-syntax.

This pragmatic approach has a few advantages:

• You can still read Swing documentation and training materials

and apply what you’ve learned to your Rubeus project.

5. http://code.google.com/p/rubeus

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/swing/bookie.rb
http://code.google.com/p/rubeus
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=246

RUBEUS 247

• People who already know Swing will experience a quick learning

curve and improved productivity.

• Rubeus’s underlying code base is smaller than other frameworks.

This simplicity leads to easier maintenance.

Are you convinced this idea could work or at least willing to indulge us

for a few pages? Let’s look at some code:

Download guis/rubeus/bookie.rb

require 'java'

require 'rubygems'

require 'rubeus'

require 'redcloth'

java_import javax.swing.DefaultListModel

java_import javax.swing.text.html.HTMLEditorKit

Rubeus::Swing.irb

The top of the file looks similar to the straight Swing example, with the

addition of the rubeus gem to the mix. But where did all our java_imports

go? They’ve been almost completely replaced with one line: the call to

Rubeus::Swing.irb. This method makes the most commonly used Swing

classes available to us.

You’ll find much that’s familiar in the rest of the application, too. As we

said, Rubeus is a short step away from raw Swing. One difference that

should pop out, though, is that all the constructors take a block. This

means you can lay your Ruby code out according to the structure of

your GUI. Here’s the skeleton of the code you’ll be writing:

JFrame.new('Bookie') do |frame|

frame.layout = BoxLayout.new(:Y_AXIS)

JSplitPane.new(JSplitPane::HORIZONTAL_SPLIT) do

JList.new

JScrollPane.new(:preferred_size => [400, 250]) do

JTabbedPane.new(:TOP, :SCROLL_TAB_LAYOUT) do

JTextPane.new

JEditorPane.new

end

end

end

JButton.new('Add Chapter')

frame.visible = true

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/rubeus/bookie.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=247

RUBEUS 248

Note that the JSplitFrame gets added to the JFrame, without our having

to call the add method ourselves. Also, take a second look at this line:

frame.layout = BoxLayout.new(:Y_AXIS)

In pure Swing code, we would have had to say something like this

instead:

frame.layout = BoxLayout.new(frame.content_pane, BoxLayout::Y_AXIS)

Rubeus knows that a layout manager always needs its frame’s con-

tent_pane to be passed in, so it takes care of that detail for us. It also

provides :Y_AXIS as a shortcut to BoxLayout::Y_AXIS. Less ceremony, more

readability. The next piece of code goes just inside the JSplitPane block:

Download guis/rubeus/bookie.rb

@chapters = JList.new(DefaultListModel.new)

@chapters.selection_mode = ListSelectionModel::SINGLE_SELECTION

class << @chapters

def add_chapter

count = model.size

model.add_element count + 1

selection_model.set_selection_interval count, count

end

end

@chapters.add_chapter

This looks just like the chapters section from before, with one difference.

We’re defining @chapters as an instance variable now, rather than as a

local variable. This is because the chapter list belongs to a very deeply

nested block but needs to be visible from a higher-level block later.

The internal table of chapters, along with the event listener that manip-

ulates it, is nearly the same as in pure Swing. Again, we are using in-

stance variables instead of local variables. The following code goes right

after the previous excerpt (still inside the split pane):

Download guis/rubeus/bookie.rb

@contents = Hash.new('')

@chapters.add_list_selection_listener do |e|

unless e.value_is_adjusting

new_index = e.source.get_selected_index

old_index = [e.first_index, e.last_index].find { |i| i != new_index }

@contents[old_index], @edit.text = @edit.text, @contents[new_index]

@preview.text = RedCloth.new(@edit.text).to_html

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/rubeus/bookie.rb
http://media.pragprog.com/titles/jruby/code/guis/rubeus/bookie.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=248

RUBEUS 249

Now for a few containers to carry all this stuff. Because the JTabbedPane

lives inside a JScrollPane, their constructors follow the same nesting.

This is the last piece of code inside the split pane:

Download guis/rubeus/bookie.rb

JScrollPane.new(:preferred_size => [400, 250]) do |scroll|

JTabbedPane.new(:TOP, :SCROLL_TAB_LAYOUT) do |tab|

tab.add_change_listener do |event|

if tab.selected_component == @preview

@preview.text = RedCloth.new(@edit.text).to_html

end

end

@edit = JTextPane.new

@preview = JEditorPane.new

@preview.editable = false

@preview.editor_kit = HTMLEditorKit.new

@preview.document = @preview.editor_kit.create_default_document

tab.set_titles ['Edit', 'Preview']

end

end

Another shorthand that Rubeus allows is passing in common options

to a component’s constructor. In the previous excerpt, notice how we

set the scroll pane’s preferred size:

JScrollPane.new(:preferred_size => [400, 250]) do |scroll|

This code replaces a wordier line from the previous example:

scroll_pane.setPreferredSize(java.awt.Dimension.new(400, 250))

The final cool shortcut is the ability to pass your event-handling code

as a block to the constructor for the component. This code goes inside

the overall JFrame block, just above the final end:

Download guis/rubeus/bookie.rb

JButton.new('Add Chapter', :size => [40, 40]) { @chapters.add_chapter }

frame.visible = true

In Rubeus, a block passed into a constructor can mean one of two

things. For a container, a block is for setting up properties and lay-

ing out child components. For an actual GUI control, a block is for

event handling. What about containers that happen to be controls as

well? For those, you’d use a block for layout and good ol’-fashioned

add_event_listener for events.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/rubeus/bookie.rb
http://media.pragprog.com/titles/jruby/code/guis/rubeus/bookie.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=249

MONKEYBARS 250

Using Rubeus is definitely a big improvement over writing your Swing

application with just JRuby’s basic Java scripting. If you’re comfortable

with Swing, you’ll probably find Rubeus easy to use. If not, you might

prefer a framework that’s a bit further removed from the Swing API.

Let’s take a look now at two such frameworks.

10.4 Monkeybars

Monkeybars is an opinionated Model-View-Controller (MVC) framework

that sits on top of Swing. Although it knows about Swing, it tries to

shield you from it as much as possible. In this sense, Monkeybars feels

more like a framework in its own right than just a Swing add-on. This

abstraction has its pluses and minuses, as we’ll see.

Part of Monkeybars’ appeal is that it plays nicely with Matisse, the GUI

editor built into the NetBeans IDE. While you can certainly write a Mon-

keybars program without Matisse, we’d like to show you how much rote

layout code you can skip by using a graphical editor.

One thing we’d like you to keep in mind while you’re writing code in this

section is the emphasis on separating concerns. The data at the heart

of the application, the user interface, and the logic connecting them are

three separate entities. This kind of design lends itself well to scalable,

testable GUIs.

Project Structure

To get started, make sure you have a version of NetBeans installed

that has both Ruby and Java support. The easiest way to do this is

to download the Full edition, but you can also add either language to

your existing installation through the Tools→ Plugins menu item. Next,

install the Monkeybars gem, plus a packaging helper called Rawr:

$ jruby -S gem install monkeybars rawr

Now, create the overall structure for your project. Run the following

commands in order (some may take a few minutes to finish):

$ jruby -S monkeybars bookie

$ cd bookie

$ jruby -S rawr install

$ jruby -S rake generate ALL=src/bookie

The word ALL in the final command indicates that Monkeybars should

generate a model, view, and controller.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=250

MONKEYBARS 251

If you look at the new top-level bookie directory, you’ll find a structure

that may remind you of a Ruby on Rails application. Since all Mon-

keybars applications share this layout, learning the conventions once

means you’ll know your way around any new project. Here are the more

important files and directories:

• lib/java: Location of .jar files for JRuby and Monkeybars

• lib/ruby: External Ruby libraries such as RedCloth

• src/application_controller.rb and src/application_view.rb: Code shared

across all user-defined controllers and views

• src/manifest.rb: Where you’ll specify external dependencies

• src/bookie: Your custom model, view, and controller

Once you have the project structure in place, it’s time to hook it up

to NetBeans. Launch the IDE, and then select New Project from the

File menu. In the dialog box that appears, choose Java in the left pane

and Java Project with Existing Sources in the right pane. Hit Next,

and browse to the bookie directory. Type Bookie for the project name.

Hit Next again. Add the src subdirectory to the list of project source

directories.

When you click Finish, you should see the Bookie project in the list on

the left side of the screen. Right-click the project icon, and choose Prop-

erties.... Click the Libraries category, and then select Add Library....

Choose Swing Layout Extensions (the GUI editor needs these exten-

sions). Now click Add JAR/Folder, and select both jruby-complete.jar and

monkeybars.jar from within your lib/java directory. Whew! Quite a bit of

setup, but it will pay off when we sketch out our GUI in Matisse. Let’s

do that now.

User Interface

Expand the Source Packages list under the project name. Right-click

the bookie package and choose New → JFrame Form.... Type Bookie

for the form name, and then click Finish. NetBeans will open a layout

screen that should look something like Figure 10.2, on the next page.

The gray rectangle in the middle of main screen is the new GUI layout.

This is where you’ll drag controls from the palette. Let’s start with the

Split Pane, since it will contain most of the other components. Drag a

Split Pane from the palette into the layout area. Resize it until it fills up

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=251

MONKEYBARS 252

Figure 10.2: The Matisse GUI editor

almost the entire rectangle, leaving only a thin strip along the bottom

big enough for a button. As you do this, notice that Matisse helps you

snap the component to the nearest edge of the window.

At this point, you have two huge buttons with a splitter between them.

Don’t panic—the buttons are just placeholders, which we’ll soon fill in

with real controls. The first of these will be the chapter list. Drag a List

from the palette onto the left button. Matisse will replace the button

with the new control.

Filling in the other half of the layout follows a similar process. Drag a

Tabbed Pane onto the right button. It won’t have any tabs at first; these

will get created automatically as you drag controls into the middle of it.

Go ahead and do that now. You’ll need a Text Pane for the first tab

and an Editor Pane for the second. (You may need to scroll down in the

palette to find these controls.)

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=252

MONKEYBARS 253

Figure 10.3: The GUI layout

You’re almost done with the GUI. Drag a Button into the lower-left cor-

ner of the layout. You should now have something that looks like Fig-

ure 10.3.

At this point, we have nearly the same layout as our previous incarna-

tions of Bookie. The controls don’t have the right labels, though, and

we need a little plumbing to connect to Ruby. Before we get to that, let’s

take a peek behind the veil and see what Matisse has done for us.

Click the Source button above the layout, and you’ll see a file of Java

code. Inside the listing, click the + just to the left of the words Generated

Code. The text will expand to show you the generated Swing layout

code. This is what Matisse has saved you the drudgery of writing.

One thing you may notice in the generated code is that the variable

names are pretty generic: jSplitPane1, jScrollPane1, and so on. Let’s change

those to something a little more developer-friendly.

Click the Design button to get back to the layout view. Select the list

control you created a minute ago. In the bottom-right area of the Net-

Beans window, you should see a Properties pane for the list. Inside this

pane, click the Code button. You should see a property called Variable

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=253

MONKEYBARS 254

Name. Double-click its value (jList1), and change it to chapters. If you

then go back and view the generated source, you’ll see that the variable

name has now changed.

Using the same method, change the variable names for the following

GUI components:

• jTabbedPane1 (click the gray area just above the tabs): Change to

tabs.

• jTextArea1 (click the first tab and then the white area underneath):

Change to edit.

• jEditPane1 (click the second tab and then the white area under-

neath): Change to preview.

• jButton1: Change to add_chapter.

While we’re at it, let’s change the tab names. Click the first tab, wait

for a second, and click it again. Change the name to Edit. Do the same

for the second tab, which you’ll call Preview, and for the button, which

you’ll call Add Chapter. You’re in the home stretch now—just a few

more properties to set.

In the previous sections, we had to pass certain parameters into our

controls when we created them. For example, we had to pass a Default-

ListController into the JList constructor. We’ll need to wire up the same

kinds of code-related properties in Matisse.

Select the chapter list inside the layout, and then in the Properties win-

dow click the Properties button. In the row containing the model prop-

erty, click the ... button to the right of the value. A dialog will appear;

choose Custom code, and enter the following:

new javax.swing.DefaultListModel()

Once you’ve closed the dialog box, look right below the model property

to find selectionMode. Change it to SINGLE. Now, you’ll need to make a

similar round of changes to the Preview window (the white area in the

second tab):

• document: Custom code, preview.getEditorKit().createDefault-

Document().

• editable: Uncheck this option.

• editorKit: Custom code, new javax.swing.text.html.HTMLEditorKit().

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=254

MONKEYBARS 255

With those changes, we’re done with the layout and can finally add

some Ruby code. Before we do, though, let’s go back over a couple of

key observations about this process. First, using the graphical editor

has made it easy to get our layout drawn clearly. But once the initial

sketch was done, the baroque details of Swing API started to rear their

heads again.

For this project, the speed of creating a nice interface was worth the few

extra seconds ferreting around in the property dialogs. This may not be

the case for all projects, though. Fortunately, the method for hooking

Monkeybars up to a GUI is the same, no matter whether that GUI was

generated from Matisse or written by hand.

Kicking the Tires

Before we give life to all these controls, let’s add just enough Ruby code

to get the app running. The first thing Monkeybars needs is the name

of the GUI class you drew in NetBeans. Open src/bookie/bookie_view.rb,

and change the set_java_class line so that the contents of the file look

like this:

class BookieView < ApplicationView

set_java_class 'bookie.Bookie'

The rest of your view code will go here.

end

Now, in src/main.rb, search for the line that says Your application code

goes here. Replace that line with the following:

Download guis/monkeybars/src/main.rb

BookieController.instance.open

The program needs to know where to find the definition of BookieCon-

troller. By convention, Monkeybars apps keep this information in src/

manifest.rb. Open this file, and add the following lines to the end:

Download guis/monkeybars/src/manifest.rb

add_to_load_path '../src/bookie'

require 'bookie_controller'

That’s all you need to run the app. Click the Run button in the toolbar. If

NetBeans asks you to select a main class, choose org.rubyforge.rawr.Main.

You should see something resembling the other two versions of this app

you’ve written. If you get an error message, retrace your earlier steps to

make sure all the variables and properties are set correctly.

Everything up and running? Great! Let’s get to the code.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/main.rb
http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/manifest.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=255

MONKEYBARS 256

Model, View, and Controller

As we mentioned, Monkeybars is an MVC framework. Over the next few

pages, we’ll look at each of these components in turn.

Model

Let’s look at the model first, since it contains no dependencies on Mon-

keybars. It’s just a Plain Ol’ Ruby Object (PORO). Replace the contents

of src/bookie/bookie_model.rb with the following:

Download guis/monkeybars/src/bookie/bookie_model.rb

class BookieModel

attr_reader :chapters

attr_accessor :text, :index

def initialize

@chapters = ['']

@text = ''

@index = 0

end

def add_chapter

@chapters << ''

switch_to_chapter @chapters.size - 1

end

def switch_to_chapter(new_index)

@chapters[@index], @text = @text, @chapters[new_index]

@index = new_index

end

end

This code is similar to what you’ve written in the previous exercises. But

notice one key difference: there is no reference of any kind to the GUI or

to Monkeybars. This is just a simple class that holds a list of chapters,

plus an index and text denoting the currently selected chapter. All the

knowledge of the GUI is in the view and the controller.

View

Let’s turn to the view. All the modifications you’ll make to src/bookie/

bookie_view.rb will go inside the BookieView class you edited a moment

ago. Go ahead and add the first connection to the GUI:

Download guis/monkeybars/src/bookie/bookie_view.rb

map :view => 'edit.text',

:model => 'text'

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/bookie/bookie_model.rb
http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/bookie/bookie_view.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=256

MONKEYBARS 257

This code tells Monkeybars how to set the contents of the Edit window

from the model. Whenever it’s time to update the view in response to

some action from the user, Monkeybars will run the equivalent of this:

edit.text = model.text

The Preview window takes its content from the model’s text property

as well. But we need to process it to HTML before sending it to the

control. The :using option in Monkeybars is meant for exactly this kind

of filtering:

Download guis/monkeybars/src/bookie/bookie_view.rb

map :view => 'preview.text',

:model => 'text',

:using => ['redcloth', nil]

def redcloth(text)

RedCloth.new(text).to_html

end

The nil parameter, by the way, refers to data going the other direction:

from the GUI back into the model. Since this is not an editable window,

we don’t care about fetching data from the GUI.

For the view to find the RedCloth library, we’re going to have to copy

some code into the project directory. The easiest way to do this is with

the gem unpack command, followed by a rename. We’ll just show the

UNIX version of this, because the Windows version is similar (move

instead of mv):

$ jruby -S gem unpack RedCloth --target=lib/ruby

$ mv lib/ruby/RedCloth-4.2.3-universal-java lib/ruby/redcloth

Then you’ll need to add these lines at the end of src/manifest.rb to tell it

to load the library:

Download guis/monkeybars/src/manifest.rb

add_to_load_path '../lib/ruby/redcloth/lib'

require 'redcloth'

Now, here’s the code to connect the currently selected chapter in the

GUI (chapters.selection_model.single_index) to the currently selected chap-

ter in the model (index):

Download guis/monkeybars/src/bookie/bookie_view.rb

map :view => 'chapters.selection_model.single_index',

:model => 'index'

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/bookie/bookie_view.rb
http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/manifest.rb
http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/bookie/bookie_view.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=257

MONKEYBARS 258

Swing list selections don’t really have a single_index property. But thanks

to Ruby’s on-the-fly programmability, we can add one. Put the following

code in src/swing_ext.rb:

Download guis/monkeybars/src/swing_ext.rb

java_import javax.swing.DefaultListModel

java_import javax.swing.DefaultListSelectionModel

class DefaultListSelectionModel

def single_index

get_min_selection_index

end

def single_index=(i)

set_selection_interval i, i

end

end

...and add this line to the end of manifest.rb:

Download guis/monkeybars/src/manifest.rb

require 'swing_ext'

We’ve just connected the model’s and the view’s notions of the currently

selected chapter. But what about the array of chapter names that pop-

ulate the list? That’s a separate connection. Like the HTML preview,

this new connection needs an intermediary layer to translate between

Ruby arrays and Swing DefaultListModels:

Download guis/monkeybars/src/bookie/bookie_view.rb

map :view => 'chapters.model',

:model => 'chapters',

:using => ['list_items', nil]

def list_items(chapters)

items = DefaultListModel.new

1.upto(chapters.size).each { |n| items.add_element n }

items

end

The trinity is nearly complete. We just need to teach Bookie how to react

to mouse clicks from the user. This behavior will go into the controller.

Controller

The BookieController class inside src/bookie/bookie_controller.rb defines the

controller. The code generator placed a nearly empty class in that file

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/swing_ext.rb
http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/manifest.rb
http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/bookie/bookie_view.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=258

MONKEYBARS 259

Tom Says. . .

Why Do We Have to Update the View Explicitly?

Relying on update_view is an intentional design decision of the
Monkeybars team. In traditional MVC applications, views would
automatically get updated whenever a model would change.
Once an application gets really large, these updates can be
frequent and unpredictable—especially if one model has com-
plex relationships with another model. Giving the developer
control makes updates easier to manage. There is, however,
a shortcut for the cases when you know it’s OK for Monkeybars
to call update_view automatically: just append ! to the method
name.

for you. All the mods you’ll make will go inside that existing class defi-

nition. Let’s start with the handler for the Add Chapter button:

Download guis/monkeybars/src/bookie/bookie_controller.rb

def add_chapter_action_performed

model.text = view_model.text

model.add_chapter

update_view

end

This snippet highlights one of the most convenient aspects of Monkey-

bars programming. The act of defining a function with this exact name

means that Monkeybars will automatically call add_event_listener on the

add_chapter button for us. This shortcut follows a “convention over con-

figuration” philosophy similar to the Ruby on Rails framework.

In the body of the event handler, we save the contents of the Edit win-

dow into the current chapter and then tell the model to add a new one.

All of our event handlers will call update_view when they’re done with

their work.

The next event handler is for when the user selects a different chapter:

Download guis/monkeybars/src/bookie/bookie_controller.rb

def chapters_value_changed(e)

unless e.value_is_adjusting

new_index = e.source.get_selected_index

old_index = [e.first_index, e.last_index].find { |i| i != new_index }

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/bookie/bookie_controller.rb
http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/bookie/bookie_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=259

LIMELIGHT 260

if new_index >= 0 && old_index

model.text = view_model.text

model.switch_to_chapter new_index

update_view

end

end

end

After making sure we’re actually switching chapters and not just receiv-

ing one of those extra Swing notifications, we follow a similar flow to

what we did before. We grab the text of the Edit window, update the

model, and tell the view to update the controls.

We need just one more event handler. When the user switches from one

tab to another, we need to update the Preview window.

Download guis/monkeybars/src/bookie/bookie_controller.rb

def tabs_state_changed(e)

model.text = view_model.text

update_view

end

Technically, we need to update only if we’re switching to the Preview

window. Feel free to add that optimization, if you want.

There’s a lot more to Monkeybars than we have time for here. But you’ve

at least had a chance to see how it helps you split up the responsibilities

of your code in an MVC-like fashion. In particular, the business logic in

your Ruby domain models can be kept separate from the GUI.

10.5 Limelight

And now for something completely different. Up to this point, we’ve

considered frameworks of varying levels of abstraction. But even the

most helpful frameworks still expose us to some of Swing’s gory details.

Limelight is a radical departure from the other frameworks. Although it

uses a few Swing classes for things like menus, most of the drawing is

done directly onto a canvas object. The result is that Limelight has only

a minimal connection to Swing.

Limelight uses a theater metaphor for the various parts of your pro-

gram. Here are its main concepts:

Production: Your application

Stage: A top-level window (what Swing would call a frame)

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/monkeybars/src/bookie/bookie_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=260

LIMELIGHT 261

Theater: A collection of stages

Prop: Any visible component of the UI

Player: A prop that also has behavior6

Scene: A collection of props that can be loaded into a stage

Cute, huh? Even if you’re not normally a fan of these kinds of extended

metaphors, we’d like you to suspend your disbelief (hey, another theater

expression!) for a few pages. Consider how these concepts might apply

to a program. Imagine you’re writing a hardware configuration wizard.

You’d use one theater with a single stage, because wizards are typically

single-window programs. Each time the user advances through a step,

you’d cycle to the next scene, which would have its own props and

players. During development, you’ll spend most of your time in scenes,

laying out props and players.

Limelight’s other big feature is its style system, which is influenced by

the Cascading Style Sheets (CSS) used on web pages. When you con-

struct a prop, you change colors, borders, gradients, and other visual

properties by editing a style file. Warning: this can lead to addictive

hacking sessions where you spend hours tinkering with your app’s

appearance. But it also gives you a huge level of customization. We’ll

be counting on that as we try to make the Limelight version of Bookie

look like the other versions.

Like Monkeybars, Limelight is an opinionated software framework with

a “convention over configuration” aspect inspired by Rails. When you

create a new production (or join someone else’s), the code will have a

familiar directory layout and naming convention.

Before we get to writing apps, we’d like to show you how to launch

Playbills, the gallery of demo productions that ships with Limelight:

$ jruby -S gem install limelight

$ jruby -S limelight open

One of the more compelling demos in the gallery is Limelight Docs, the

API browser/interactive tutorial. This is more than just a collection of

passive code snippets; you can edit and rerun the examples right there

in the app. Of course, both Playbills and Limelight Docs were written

using Limelight.

6. Is that what directors think of their actors?

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=261

LIMELIGHT 262

Production

Normally, you’d create a new Limelight app by creating a production

and populating it with a scene:

$ jruby -S limelight create production bookie

$ cd bookie

$ jruby -S limelight create scene bookie

But like the cooking-show parody in the abridged version of Titus An-

dronicus, we’re going to haul a fully baked pie out from under the

counter instead.7 Why are we taking a shortcut? Because Limelight

programs tend to be quite a bit longer than their counterparts in other

frameworks. That’s the downside of all that customizability. You can

still see the full source code by thumbing ahead to Appendix F, on

page 322 or by downloading it from the book’s web page.8

Once you have a bookie directory containing the entire project, you can

launch the app from inside that directory by using the open command:

$ jruby -S limelight open .

A screenshot of the finished app appears in Figure 10.4, on the follow-

ing page. The colors and styles are reminiscent of a more conventional

Swing app, but this version definitely has its own distinctive look.

To see how we arrived at that look, let’s go through some of the more

prominent files in the project structure. First, peek inside production.rb.

In a new Limelight project, this would contain lots of commented-out

examples of how to attach Ruby code to various phases of the applica-

tion’s life cycle.

We’ve edited it down to the one hook Bookie needs:

Download guis/limelight/bookie/production.rb

module Production

attr_reader :chapter_contents

def production_opening

require 'redcloth'

@chapter_contents = [{:title => '1', :text => ''}]

end

end

7. See The Compleat Works Of Wllm Shkspr (Abridged) [BLS94].
8. http://pragprog.com/titles/jruby/source_code

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/production.rb
http://pragprog.com/titles/jruby/source_code
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=262

LIMELIGHT 263

Figure 10.4: Bookie in Limelight

The production_opening hook runs at startup, which gives us the chance

to bring in the libraries we need and do some initialization. Notice that

we’ve also added an attr_accessor to make the list of chapters visible

from our players and props.

The second file to look at is stages.rb. Limelight has defined a default

scene for us. We need to make our bookie scene the default instead:

Download guis/limelight/bookie/stages.rb

stage 'default' do

default_scene 'bookie'

title 'Bookie'

location [200, 25]

size [400, 400]

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/stages.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=263

LIMELIGHT 264

Notice that this file uses a concise, readable syntax to describe the

stage. You’ll find nice touches like this throughout Limelight.

Scene and Props

Now let’s go through the various props and players in the bookie scene.

First, there is the props.rb file:

Download guis/limelight/bookie/bookie/props.rb

root do

center do

chapter_list :id => 'chapter_list'

dual_pane :id => 'dual_pane' do

tabs do

tabs_shadow

tabs_holder do

tab_button :text => 'Edit',

:id => 'edit_tab',

:on_mouse_clicked => 'scene.dual_pane.edit!',

:styles => 'left_tab'

tab_button :text => 'Preview',

:id => 'preview_tab',

:on_mouse_clicked => 'scene.dual_pane.preview!',

:styles => 'right_tab'

end

end

preview_pane :id => 'preview_pane'

edit_pane :players => 'text_area',

:id => 'edit_pane'

end

end

add_chapter :text => 'Add Chapter'

end

This file spells out the GUI controls in the app. The structure of the

code mirrors the nested relationships among all the props in the scene.

Props can have attributes, either stock ones that come with Limelight

(such as :on_mouse_clicked) or custom ones we define (such as :id). You’ll

notice there’s no information on size, location, or color. How does Lime-

light know where and how to draw these? It uses information from

styles.rb.

The style file is typically a scene’s largest file. It’s also the one you’ll

spend most of your time in. We’re not going to do a line-by-line explica-

tion here. Instead, we’ll just take a close look at the tab control.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/props.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=264

LIMELIGHT 265

tabs_holder

tabs_shadow

tab_button

Figure 10.5: Bookie in Limelight

The following code is an excerpt from the props.rb file we saw a moment

ago, stripped down to just the structure of the tabs:

tabs do

tabs_shadow

tabs_holder do

tab_button # Edit button

tab_button # Preview button

end

edit_pane

preview_pane

end

Compare this code with Figure 10.5. Each object corresponds to a

graphical element in the screenshot. Most of these connections are

obvious, but what about tabs and tabs_holder? Well, tabs is just the

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=265

LIMELIGHT 266

whole screenshot. tabs_holder is a container that wraps the two tab but-

tons. We’ve added this prop to make layout easier.

Let’s look at its style code:

Download guis/limelight/bookie/bookie/styles.rb

tabs_holder {

extends :fill_parent

float :on

y '15%'

x '37%'

}

This is one of the more intricate styles in the project, so we’ll go over it

line by line. Starting at the bottom and working our way up, we see a

relative x and y position that will keep the buttons nicely centered no

matter the window size.

The next line up, float :on, resembles the CSS property of the same

name. It allows the tab holder to overlap other controls. Here, we want

to overlap the tab shadow to make the entire section look like a cohesive

unit.

Finally, we come to extends :fill_parent. This notation is Limelight’s way

of sharing common styles. Several of Bookie’s props need to expand to

fill their containers. So, we’ve defined a common fill_parent style at the

top of the file:

Download guis/limelight/bookie/bookie/styles.rb

fill_parent {

width '100%'

height '100%'

}

We’ll show just one more style example before moving on: the rounded

corners of the right tab button.

Download guis/limelight/bookie/bookie/styles.rb

right_tab {

top_right_rounded_corner_radius 4

top_right_border_width 1

bottom_right_rounded_corner_radius 4

bottom_right_border_width 1

left_border_width 0

right_border_width 1

top_border_width 1

bottom_border_width 1

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/styles.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/styles.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/styles.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=266

LIMELIGHT 267

You can see how the right side of the button has a rounded border on

both corners, while the left side has no border at all (because that’s

where the left tab button is). The code is straightforward but verbose.

Unlike the CSS syntax that inspired it, Limelight requires you to put

each style on its own line.

We encourage you to look through the rest of the styles file to see how

the scene is laid out. When you’re ready to move on, catch the debut of

our scene’s players in the next section.

Players

Players are just props that happen to contain behavior. There are in

fact two different types of players: built-in and user-defined. The built-

in types are the usual suspects: buttons, text areas, and so on. The

user-defined ones are for things like tab controls, where we’ve had to

write custom code to show and hide each tab. Let’s just look at a simple

control for now: the Add Chapter button.

The button’s definition in props.rb is spartan, and its code in styles.rb

only defines its look. Where is its behavior? Limelight organizes player

behavior in a scene’s players directory. The convention is one file per

player, with one Ruby module inside it—both of them named after the

player. For instance, the behavior for the Add Chapter player goes into

the AddChapter module defined in players/add_chapter.rb.

Download guis/limelight/bookie/bookie/players/add_chapter.rb

module AddChapter

def mouse_clicked(e)

contents = production.chapter_contents

title = (contents.length + 1).to_s

new_content = {:title => title, :text => ''}

contents << new_content

scene.chapter_list.repopulate

end

end

There is only one method in here, mouse_clicked. You don’t have to do

anything special to hook this code up to the mouse; Limelight knows to

look for it by name. These kinds of implicit callbacks make reacting to

user input a snap, even for custom components.9

9. Limelight supports this style for several other events, including mouse_clicked,

mouse_entered, mouse_exited, mouse_pressed, mouse_released, mouse_dragged, mouse_moved,

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/players/add_chapter.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=267

WRAPPING UP 268

At the end of the callback, we find the bookie scene and tell its chap-

ter_list prop to repopulate itself with the updated chapter contents.

Sometimes you have behavior that is common to more than one prop.

For example, both the Edit and Preview buttons need to tell the tab

control to switch tabs. For this case, we’ve put the common code into

a prop type called DualPane and specified a couple of its method names

directly in props.rb:

Download guis/limelight/bookie/bookie/props.rb

tab_button :text => 'Edit',

:id => 'edit_tab',

:on_mouse_clicked => 'scene.dual_pane.edit!',

:styles => 'left_tab'

tab_button :text => 'Preview',

:id => 'preview_tab',

:on_mouse_clicked => 'scene.dual_pane.preview!',

:styles => 'right_tab'

Each of these two buttons asks the dual_pane prop to execute a differ-

ent method. Note that props can find one another through the scene

attribute. You may be wondering whether you can put any arbitrary

code into props.rb. Indeed, you can. You could put all your styles and

behavior into this file, but we don’t recommend it. We suggest using

this kind of inlining for the simplest cases only.

In truth, we have only scratched the surface of Limelight, but we hope

you have a foothold in understanding how its parts fit together.

10.6 Wrapping Up

GUI development is an area of JRuby programming that grows more

exciting daily as new toolkits pop up. Mainstream Ruby’s lack of a

strong cross-platform GUI is one reason people are migrating to JRuby.

Once you’ve decided to use Swing, you still have find the right Ruby

framework to use with it. Let’s consider the frameworks we’ve looked at

and try to identify why you might find each one appealing.

Raw Swing is for the programmers from Java-land who prefer not to use

any fancy Rubyisms beyond the ones they supply. They are perfectly

key_typed, key_pressed, key_released, focus_gained, focus_lost, button_pressed, and

value_changed.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/props.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=268

WRAPPING UP 269

Tom Says. . .

A Time-Saving Scene

In our complete Bookie example, we have an additional scene
called devtool, with a single button labeled Refresh. We used
this scene as we wrote the example code. Every time we
tweaked our layout or styling, we’d click the button to update
the bookie scene with the latest changes. This was much faster
than exiting and restarting the app.

To run Bookie with this debug helper enabled, set the
BOOKIE_DEV environment variable before launching:

$ BOOKIE_DEV=1 jruby -S limelight open .

Adapting this tool to your own Limelight productions is easy; just
copy the code and point it at the scene you’re developing. It’s
a huge time-saver.

happy developing their own ad hoc frameworks to suit their needs. After

all, “not invented here” is a valid critique if the alternative is staring at

an error log, wondering which incantation will pacify a framework.

Rubeus is for those who want a little of Ruby’s brevity to help cut out

Swing boilerplate but who still feel comfortable with the Swing APIs.

They’re fine with organizing the components and code for large projects

on their own—just as they did in Java.

Monkeybars provides answers for a lot of code structure questions

but still requires a healthy amount of Swing knowledge. Like Rails, it

emphasizes strict boundaries between the model, view, and controller—

which makes it especially appealing for large UI applications. Its easy

integration with RAD tools like NetBeans Matisse is another compelling

point.

Limelight is the least Swing-like of the frameworks. The easy organiza-

tion and offbeat metaphors are reminiscent of Shoes, the beloved GUI

toolkit from the C Ruby world.10 This independence is a double-edged

10. http://github.com/shoes/shoes

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://github.com/shoes/shoes
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=269

WRAPPING UP 270

sword. On the plus side, you might not need to crack open a single

Swing reference manual while you’re writing your app. On the minus

side, you’re going to have a hard time integrating existing Swing com-

ponents like the Flying Saucer HTML renderer or the WorldWind map

viewer.

We hope you’ve enjoyed touring the JRuby universe with us. We’ve

been through a lot together, from tentative first steps with the language

through the best of Ruby and Java. Please visit the forums to let us

know how your journey went and what you’re building with JRuby.11

Happy coding!

11. http://forums.pragprog.com/forums/125

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://forums.pragprog.com/forums/125
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=270

Part III

Reference

Download from Wow! eBook <www.wowebook.com>

Appendix A

Ruby 101
Remember that JRuby at its heart is just Ruby, so you’ll get the most

out of JRuby by having a little knowledge of the language. That’s our

aim for this chapter: to give a quick overview of Ruby from a Java pro-

grammer’s perspective. For a much more detailed look, see a dedicated

book on Ruby such as the “Pickaxe” (Programming Ruby: The Pragmatic

Programmers’ Guide [TFH08]).

A.1 Meet Ruby

We’re going to start with the high-level view as we answer the question

“What is Ruby like?”

Ruby Is Dynamic and Strong

Ruby is often described as being a member of the family of dynamic

languages. What do we mean by dynamic? Computer-language enthu-

siasts use the term to explain type systems. A statically typed language

like Java knows the types of a program’s variables at compile time, long

before the program runs. With a dynamic language, a variable’s type

can’t usually be known until runtime. Consider the following similar-

looking snippets:

// Java:

int price;

price = 10; // OK

price = "a chicken"; // compile-time error

Ruby:

price = 10 # OK

price = "a chicken" # OK

Download from Wow! eBook <www.wowebook.com>

MEET RUBY 273

The main difference that immediately sticks out is that the Java vari-

able has a declared type, and the compiler forces assignments to con-

form to that type. By contrast, you don’t declare variables in Ruby; you

just start using them.

It may be tempting to think that Ruby has no types at all, but nothing

could be further from the truth. Even though variables don’t have types

in Ruby, values most certainly do! In both Ruby and Java, you can find

out a value’s type easily:

// Java:

"Fred".getClass().getName(); // => java.lang.String

Ruby:

"Fred".class.name # => String

As you can see, the "Fred" object has a type called String in both Java

and Ruby. Each type supports a specific list of operations; for strings,

that’d include combining, searching, capitalizing, and so on. In both

languages, trying to take the square root of a string would cause an

error; you’d have to convert it to a different type first. For this reason,

both Java and Ruby are known as strongly typed languages.

We should mention one other thing about variable declarations. In

Ruby, there’s no need to ever declare a variable without giving it a

value, as is sometimes done in Java. Instead, a variable is implicitly

declared the first time it is given a value. What happens if you refer to

a variable before it has been assigned a value?

a = 1

puts a

>> 1

puts b

>> undefined local variable or method `b' for main:Object (NameError)

While we’re on the subject of variable visibility, Ruby’s if statement has

the curious property that variables inside it are visible from outside. In

programming-language parlance, it doesn’t introduce a new scope.

cat = 'The cat lives outdoors'

if 2 + 2 == 4

cat += ' but can be seen indoors'

dog = 'The dog lives indoors'

end

dog += ' but can be seen outdoors'

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=273

MEET RUBY 274

puts cat

>> The cat lives outdoors but can be seen indoors

puts dog

>> The dog lives indoors but can be seen outdoors

One consequence of Ruby’s dynamic nature is that many errors that

would be considered compile errors in Java code are not revealed until

you run your program.

Everything Is an Object

You’ll recognize many of Ruby’s object-oriented features from your ex-

perience with Java. Objects are instances of classes, which can be built-

in or user-defined. Objects embody both state (instance variables) and

behavior (methods). A program manipulates objects by calling methods

—which Ruby also refers to as sending messages.

However, Ruby takes this notion further than other object-oriented lan-

guages, including Java. How? Well, it’s common to hear that in Ruby

“Everything is an object.” That includes the primitive, built-in types

that come with the language:

"123".to_i # => 123

123.to_s # => "123"

true.to_s # => "true"

nil.to_s # => ""

"123".nil? # => false

nil.nil? # => true

Have you ever tried calling a method on null in Java?

Everything Has a Value

As we saw in the previous section, everything in Ruby is an object. You

can call methods on anything—even things such as numbers, booleans,

and class definitions. Another “universal Ruby law” is that everything

you do in Ruby returns a value.

Java makes the distinction between expressions (which return values)

and statements (which don’t). In Ruby, there is no such distinction.

Everything returns a value—not always a terribly useful one but defi-

nitely something. Even a class definition has a return value!

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=274

A CLOSER LOOK 275

This feature of Ruby comes in handy with conditional expressions. Con-

sider the following Java fragment:

// Java:

String result = "";

switch (getNumberFromSomewhere()) {

case 2: result = "twins"; break;

case 3: result = "triplets"; break;

case 4: result = "quadruplets"; break;

default: result = "unknown"; break;

}

System.out.println(result);

...and its Ruby equivalent:

Ruby:

puts case get_number_from_somewhere

when 2 then 'twins'

when 3 then 'triplets'

when 4 then 'quadruplets'

else 'unknown'

end

Since a switch statement in Java can’t return a value, the Java example

has to set aside a variable to store the result so we can print it. In

Ruby, cases are expressions and will return the last value mentioned

in whichever branch got taken. Since we don’t need to save away a

value in a variable, it’s actually possible to just pass the entire case

expression as an argument to puts. This looks really weird if you haven’t

seen it before but will soon become second nature.

A.2 A Closer Look

Now, let’s take a closer look at the Ruby language. We’ll cover how to

accomplish the most common programming tasks. Along the way, we’ll

look for both similarities and differences from Java.

Defining Classes

Ruby is a class-based object-oriented language. This means that all

objects must be of exactly one class. Unlike Java, you can create classes

and add or remove methods at any time—even while your program is

running.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=275

A CLOSER LOOK 276

Ruby is also a single-inheritance language (although that is not the full

story). In Ruby, just like in Java, every class has exactly one parent

class, or superclass. If you don’t specify one, it will be Object.

So, everything is an object, and all objects must have a class. Does that

mean classes have a class too? Yes, and (as you might have guessed)

it’s called Class. And like all classes, Class has a superclass—it’s called

Module, and we’ll encounter it in a little while.

Have we tied you in a knot with all this abstract talk? Let’s breathe

some life into these lofty concepts with some real code. Imagine you

want to keep track of all the various ways to reach your authors: by

phone, mail, and so on. In this admittedly contrived example, you might

define a class called Locator that could represent a phone number or

street address:

class Locator

def initialize(location)

@location = location

end

end

Any Ruby method named initialize acts like a Java constructor: Ruby

calls this method automatically for each new object. Unlike Java con-

structors, Ruby initializers are inherited. When we get around to defin-

ing PhoneNumber and Address classes, we won’t need to write initializ-

ers for them—they’ll use Locator’s version automatically, unless we tell

them otherwise.

There is only one line of code in this method, but it’s an important

one. It creates a new instance variable called @location and assigns

the value of the incoming location argument to it. As with the other

variables we’ve seen so far in this appendix, you don’t need to declare

Ruby instance variables. They just spring into being the first time you

assign something to them, as we’re doing here. We are making sure

that every Locator that gets created will have an instance variable called

@location.

By itself, Locator isn’t terribly useful. Let’s define a couple of kinds of

locators:

class PhoneNumber < Locator

def valid?

@location =~ /^\d{3}-\d{3}-\d{4}$/

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=276

A CLOSER LOOK 277

class Address < Locator

def valid?

@location =~ /^\d+ .+$/

end

end

Both PhoneNumber and Address are defined to be subclasses of Locator,

which we indicate with the left angle bracket after the class name. The

next line of each class defines a method called valid?. The trailing ques-

tion mark is a Ruby convention that says this method is intended to be

used as a boolean.

The body of each valid? method checks whether the contents of the

@location variable match a particular pattern. The pattern, given in

a regular-expression syntax similar to java.util.regex.Pattern, does some

extremely basic verification. Phone numbers will match if they conform

to the typical U.S. format (DDD-DDD-DDDD). Addresses are expected

to contain one or more digits, a space, and then one or more characters.

The =~ operator (also called the match operator) returns a number if

it finds a match and returns nil if it doesn’t. Because Ruby treats all

numbers (even zero!) as true and nil as false, we just return the match

result from the function.

Finally, we can get to the definition of a Person:

class Person

def initialize

@locators = []

end

def add_phone_number string

number = PhoneNumber.new(string)

@locators << number if number.valid?

end

def add_address string

address = Address.new(string)

@locators << address if address.valid?

end

end

To be sure that we have somewhere to store all the locators for a person,

we use an initialize method to create an @locators instance variable and

set it to an empty array.

This class also has a couple of methods to add phone numbers and

addresses. Let’s look at the first of those, add_phone_number. Inside it,

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=277

A CLOSER LOOK 278

we create a new PhoneNumber object by calling new. Recall that this will

cause Ruby to call the new object’s inherited initialize method for us,

with the same parameters we pass to new.

We store the freshly created object in a new local variable called number,

which, like an instance variable, springs into being the first time we set

it to something. We use the << operator to append the new object to our

list—but only if it’s valid (note the trailing if expression).

Here’s how you might use the code from this project:

ola = Person.new

The following locators get added,

because they're in the right format:

ola.add_phone_number '555-231-4555'

ola.add_address("1 Did It My Way")

The following locator gets ignored,

because it's not a valid US phone number:

ola.add_phone_number '42'

We have deliberately written this code with a variety of punctuation

choices. Some method definitions or calls have parentheses, and some

don’t. Some strings use single quotes, and others use double quotes.

Ruby’s flexible syntax allows you to use whichever style suits your pro-

gram best.

Defining and Calling Methods

We’ve seen a couple of method definitions already. Let’s dive a little

deeper into the subject.

Class Methods

So far, we’ve only seen instance methods: methods that act on a single

instance of an object. What about static methods, which belong to the

entire class instead of one object? Doesn’t Ruby have those?

Yes and no. Ruby has something that looks and acts similar to Java’s

static methods. It’s called a class method. There are multiple ways to

define one, but the most popular ways are to name it self.method_name

or ClassName.method_name.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=278

A CLOSER LOOK 279

Here’s how those two styles would look for defining something like a

factory method for our Person class:

Download ruby_101/class_method.rb

class Person

def self.with_address_and_phone_number(addr, ph)

p = Person.new

p.add_address(addr)

p.add_phone_number(ph)

p

end

end

The following can appear between "class Person ..." and "end",

or it can stand alone, outside the class definition.

#

def Person.with_address_and_phone_number(addr, ph)

...

end

As you can see, this looks just like a static method. But really, it’s

just a regular method. Instead of belonging to an individual Person, it

belongs to the Person class. Remember, classes are objects, too—that

means they can have methods attached to them.

While we’re on the subject of method definition, note that you can rede-

fine methods in Ruby if you want. Both of the previous definitions could

be placed in the same program, and Ruby wouldn’t complain. You can

also modify class definitions. For instance, you could have multiple class

Person ... end sections in your program, even some that might or might

not execute based on a runtime condition. That isn’t something you’d

do in a typical program, but it can be a big help if you’re trying to extend

Ruby itself.

Method Arguments

Ruby methods can take zero or more arguments. Instead of overload-

ing methods, Ruby allows methods to take optional arguments (with

a default value). You can also create methods that take an arbitrary

number of arguments. An argument like that is usually called a rest

argument.

Regular arguments are separated by commas, as you’ve already seen.

To create a method that takes optional arguments, you use the equal

sign:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ruby_101/class_method.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=279

A CLOSER LOOK 280

def you_gave_me(present = nil)

present

end

you_gave_me # => nil

you_gave_me "a pony" # => "a pony"

This method takes one optional argument. If the argument is not sup-

plied, present will contain nil. You can have several optional arguments

and even default values that are calculated. In the following example,

we use the first argument to calculate the default value for the second

one.

def area(width = 10, height = 2 * width)

width * height

end

area # => 200

area 5 # => 50

area 5, 20 # => 100

Ruby also has a way of taking an arbitrary amount of arguments, like

Java’s varargs. You define a rest argument using the asterisk:

def quote(person, *words)

person + ' says: "' + words.join(' ') + '"'

end

quote 'Ola' # => "Ola says: \"\""

quote 'Ola', 'keep', 'coding!' # => "Ola says: \"keep coding!\""

As you can see, the asterisk takes all the remaining arguments and

squishes them into an array called words. The asterisk can also perform

the opposite action: expanding an array into individual arguments for a

method. Consider the following function that requires three arguments:

def something(needs, three, arguments)

'Yay!'

end

my_array = ['one', 'two', 'three']

something(my_array) # ~> ArgumentError

something(*my_array) # => 'Yay'

This feature is called splatting, after the asterisk’s nickname. It’s very

handy, so you’ll see it used all over the place.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=280

A CLOSER LOOK 281

Common Ruby Types

Just as you would expect, the Ruby language and core library include

a large number of built-in types. We’re just going to take a look at the

core data types that you’ll need to understand to get going with Ruby.

Numbers

Ruby uses three main classes to represent numbers: Float, Fixnum, and

Bignum. As you’ve no doubt guessed from its name, Float is for standard

IEEE floating-point numbers. The other two are for integer types: fixed-

size (for example, 32-bit) and arbitrarily large, respectively. Ruby will

automatically use the “right size” type for each integer value.

Strings

Matz took a great deal of inspiration from Perl when he created Ruby.

In particular, Ruby shares Perl’s excellent text-manipulation abilities.

Many of these powers are vested in the String class. Have a peek at the

official documentation for this class, and you’ll see a lot of operations

with useful, self-explanatory names: reverse, capitalize, and so on.1

You can create a Ruby string using several different literal syntaxes:

one = "hello world"

two = 'is this right?'

three = %["This is a Ruby string, isn't it?" he asked.]

four = <<ARBITRARY_END_MARKER

Here, you can use layout,

white space, "quotes," etc.

ARBITRARY_END_MARKER

Notice that you can enclose Ruby strings in either single quotes or dou-

ble quotes. Double quotes have a few more bells and whistles, such as

the simple backslash escape sequences common to many languages (\r,

\n, ...).

Ruby supports two more kinds of string literals that can save you a lot

of extra backslashes and quote marks. The first is the %-style quote,

which lets you in effect choose your own quote marks. The second is

a multiline string called a heredoc. It includes everything between the

two occurrences of your ARBITRARY_END_MARKER.

1. http://ruby-doc.org/core/classes/String.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://ruby-doc.org/core/classes/String.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=281

A CLOSER LOOK 282

Symbols

Ruby’s Symbols are a heritage from Lisp. They’re a bit like read-only

Strings. The difference goes deeper than that, though. When you create

a Symbol (by typing a name that begins with a colon), there will exist

only one instance of that symbol—no matter how many times you use

that name in your program.

def exact_same_object?(a, b)

a.id == b.id

end

All occurrences of the same Symbol

share the same instance:

a_class = :String

another_class = :String

exact_same_object?(a_class, another_class) # => true

Each string literal creates its own

separate instance of String:

fake_cheese = "String"

cat_toy = "String"

exact_same_object?(fake_cheese, cat_toy) # => false

You’ll typically use Strings for things that your user will see and Symbols

for things that the rest of your Ruby program will see: class names,

method names, database columns, and so on.

Regular Expressions

Another part of Ruby’s Perl heritage is its extremely good support for

regular expressions. These allow you to succinctly describe the struc-

ture of a piece of text and then see whether some string has that struc-

ture. You create a Regexp by enclosing your pattern in slashes:

pattern = /([^,]+), ([A-Z]{2}) (\d{5})/

if "Portland, OR 97201" =~ pattern

puts 'Yay, it matches!'

puts 'City ' + $1

puts 'State ' + $2

puts 'ZIP ' + $3

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=282

A CLOSER LOOK 283

Regular expression syntax is a language all its own. The previous exam-

ple shows a few common operations. You use square braces to match a

single character of a certain kind, plus signs or braces to denote repeti-

tion and parentheses to say, “Store this partial match in a variable for

later.”

Booleans

In Ruby, booleans are just like any other values. They have a class, you

can call methods on them, and you can even add your own methods to

them.

In Ruby, true is the sole instance of a class called TrueClass, and false is

the only instance of FalseClass. The equivalent of Java’s null is called nil,

and it is the only instance of NilClass.

One important thing to note is that Ruby considers nearly any value

“true enough” to satisfy conditional expressions like if. Only false and nil

count as false-like values. Rubyists sometimes colloquially refer to this

loose definition of truth as “truthiness,” in a nod to comedian Steven

Colbert.2

Just to hammer the point home, consider the following exploration of

truthiness in Ruby:

def truthy?(value)

if value then true else false end

end

truthy? true # => true

truthy? false # => false

truthy? nil # => false

So far, so good. Let’s look at a few more surprising cases:

truthy? "" # => true

truthy? [] # => true

truthy? 0 # => true

As you can see, even empty strings, empty arrays, and the number zero

are truthy in Ruby.

2. http://en.wikipedia.org/wiki/Truthiness

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Truthiness
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=283

A CLOSER LOOK 284

Operators and Assignment

Most Ruby operators are just methods with weird names. For example,

if an object has a method named +, then that object can participate in

expressions like a + b. The only operators that aren’t methods are those

that are deeply woven into the syntax of Ruby, such as the assignment

operator (a single equal sign).

You will recognize many of Java’s operators in Ruby, but there are a

fair number that may be unfamiliar or at least slightly different from

their Java equivalents. They are as follows:

Operator Description

[], []= These methods read and write values in collections.

<=> This method, affectionately called the spaceship operator,

compares values during searching and sorting—much like

the compareTo() method of Java’s Comparable class does.

=== Ruby’s case statement calls this operator to see which

branch matches the argument. It’s sometimes called the

relationship operator, because it’s more general than equal-

ity.

=~, !~ You have already seen the first of these operators. It’s used

to match a regular expression against a string. The second

version is just its inversion; it will return false if it the regu-

lar expression matches.

.., ... These two operators create ranges (usually ranges of num-

bers). With two dots, the range includes the final element,

and with three dots it doesn’t.

While we’re at it, it’s worth mentioning that Ruby does not have the ++

or -- operators that some languages do. Why not? It doesn’t fit into the

“everything is an object” model. If Ruby allowed these operators, then

nonsensical expressions like 4++ would be possible.

Fortunately, that doesn’t mean you’re stuck typing x = x + 1 all the time.

Most binary Ruby operators can be combined with an equal sign and

thus become an assignment operator. So, something like x = x * 5 can be

more succinctly written as x *= 5.

This ability to combine with = isn’t just limited to arithmetic. A very

common idiom in Ruby is to use the ||= operator to say, “Assign a value

to this variable, but only if it doesn’t already have a value.”

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=284

A CLOSER LOOK 285

Assume @foo doesn't exist yet.

@foo ||= 42

puts @foo # >> 42

The next line will not do anything,

since @foo already has a true value.

@foo ||= 25

puts @foo # >> 42

The &&= operator works much the same, except that it sets the value

only if the variable already exists.

Ruby has left-shift and right-shift operators (that’s << and >>), just like

Java. However, these operators are quite commonly overloaded for other

types to mean “append.” Both String and Array have versions of << for

appending a new value.

Collections

Ruby sports a number of useful collection classes: arrays, hash tables,

and so on. Arrays are more or less like java.util.ArrayLists. They support

the same kinds of operations: indexing, inserting/removing elements,

and so on. Hashes are the equivalent of Java’s java.util.HashMap. They

represent mappings from keys (of any type) to values.

Arrays are created with square brackets, and hashes are created with

curly braces. Both are indexed using square brackets:

primes = [1, 3, 5, 'seven']

composites = [2, 4, 6, 9, 10]

misc = [0]

Oops. We should store 7 as a prime. Let's fix that:

primes[3] = 7

numbers = {:primes => primes, :composites => misc}

Oops. We gave the wrong list for composites. Let's fix that:

numbers[:composites] = composites

You can leave off the curly braces when you’re passing a hash in a

method call. This lets you get some of the benefits of Python-style key-

word arguments:

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=285

A CLOSER LOOK 286

def bio(details)

for key, value in details

puts "My #{key} is #{value}."

end

end

bio :name => "Nick",

:location => "Minneapolis",

:drink => "tea",

:quest => "JRuby"

Prints:

My name is Nick.

My location is Minneapolis.

My drink is tea.

My quest is JRuby.

The loop in this example leads us naturally to our next topic: program

flow.

Control Structures

You’ve already seen a few simple examples of Ruby’s if expression. In its

more complicated incarnation, an if can be followed by any number of

elsif clauses and, optionally, one final else. Ruby also has unless, which

is the opposite of if. (For clarity’s sake, please don’t use elsif or else with

unless.)

Most Ruby programs don’t use lots of elsif conditions. Once you are

beyond a couple of conditions, you’ll usually want to get the extra flex-

ibility of Ruby’s case:

def tell_me_about(value)

case value

when 0..9

puts "It's a one-digit number"

when Fixnum

puts "It's an integer"

when /[A-Z]{2}/

puts "It's two capital letters"

when String

puts "It's a string"

else

puts "Don't know what it is"

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=286

A CLOSER LOOK 287

A case expression checks its argument against each of the when

clauses, in the order they’re listed. As you can see, you can compare

Ruby objects by numeric range, regular-expression match, class name,

and more.

Ruby has while loops like Java does. It also has a for loop, but you’ll

almost never see it in real programs. Instead, Ruby offers something

much more powerful: blocks.

Blocks

Blocks are a huge part of Ruby. Basically, they’re little chunks of code

that you can pass around your program as arguments. You define

them by wrapping some code in curly braces or the words do and end.

Most people prefer braces for single-line blocks and do/end for multiline

blocks (but use your own judgment!):

list = [1, 2, 3, 4]

list.each { |n| puts n }

list.each do |n|

puts n

end

This code calls an Array method called each; this method takes a block.

each calls the block (also known as yielding to it) once for each item in

the array.

Like functions, blocks can take arguments. That’s the |n| you see in

between pipe characters.

It’s easy to write your own method that takes a block. You can either

explicitly name the final argument as a block by spelling it with a lead-

ing ampersand or just call yield from within your method:

def yield_thrice(value)

yield value + 10

yield value + 20

yield value + 30

end

def call_thrice(value, &block)

block.call value + 10

block.call value + 20

block.call value + 30

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=287

A CLOSER LOOK 288

Both of these will print the numbers 110, 120, and 130:

yield_thrice(100) { |n| puts n }

call_thrice(100) { |n| puts n }

Every time the method yields to the block (via yield or call), the block

runs with whichever parameters were passed to it.

Blocks are used all over the place in Ruby, and you will see many of

them in this book. If this syntax is new to you, it’s worth taking a

minute to type in the previous examples and make a few experimental

changes to the code to see how blocks work.

Exceptions

Like Java, Ruby has exceptions. Unlike Java, Ruby’s exceptions are all

unchecked.

The Ruby equivalent of Java’s try/catch/finally is begin/rescue/ensure.

(Curiously, Ruby also has keywords named try and catch, but they are

not related to exceptions at all.)

The following code raises an exception and then rescues it:

begin

puts "Everything's fine so far"

raise "I'm raising an exception right now"

puts "Ruby will never run this line"

rescue => e

puts "My exception says: #{e}"

end

This example raises a string, which Ruby is kind enough to wrap up in

a RuntimeError object for us. You can define your own exception types if

you like. Here’s a more advanced example with our own exception class

and multiple rescue clauses (Ruby examines these from top to bottom,

so make sure you order them from specific to general):

class ImCold < RuntimeError

end

begin

raise ImCold, "Brrr, it's chilly in here!"

rescue ImCold => e

puts "I'm cold. #{e}"

rescue Exception => e

puts "Some exception other than ImCold was thrown."

ensure

puts "This will _always_ print, kinda like Java's finally"

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=288

GETTING THE JOB DONE 289

As you can see, we also used an ensure clause, which Ruby will run no

matter what exceptions are raised or rescued.

A.3 Getting the Job Done

You’ll eventually come into contact with most of the previous concepts

as a natural part of working with Ruby. But you may be wondering

about specific getting-started tasks—such as writing text to the screen

or loading code from another library. So, let’s end this chapter on a

light note and talk about these uses.

There are two methods that are most often used to display informa-

tion in Ruby. The first one is called puts. It calls to_s on its arguments

(effectively telling them, “Convert yourself to a string”) and then prints

the resulting strings to standard output—with each one followed by a

newline. puts’ slightly more verbose cousin, p, calls inspect on each argu-

ment (“Give me some details about yourself”) and prints the results to

standard error.

Based on these definitions, you’ve probably deduced that puts is more

useful for regular program output and p is more useful for debugging.

That covers a bare minimum of output; how about input? Ruby pro-

vides a method called gets, which is the inverse of puts. It waits until

the user types in something ending in a newline and then returns the

result.

Here’s a small example of Ruby I/O:

puts "Welcome to my program. What's your name?"

name = gets

p name

puts "Hello #{name}"

At some point, that brilliant input/output program you’re writing is

going to outgrow a single file. Say you’ve decided to put the main pro-

gram in main.rb and some helper functions in helper.rb. In main.rb, you

can just say require ’helper’ (no trailing .rb extension) or load ’helper.rb’

(with extension). The difference between these two is that require will

only load a file once; load will reload a file as many times as you call it.

And there you have it—a whirlwind tour of Ruby in less than twenty

pages.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=289

Appendix B

Ruby/Java Interoperability
JRuby takes great pains to “do what you mean” when you’re passing

data between Ruby and Java. The situations we saw in Chapter 2, Driv-

ing Java from Ruby, on page 31 should get you through most of your

everyday use of JRuby. For those times when you need fine-grained

control over how JRuby is copying your data or which overload you’re

calling, you can refer to the details in this appendix.

B.1 How Method Selection Works

JRuby tries to choose the Java methods and parameters that best fit

what you’re passing in from Ruby. The upside is that things “just work”

when you’re calling Java from Ruby. The downside is that describing

how this process works requires a bit of detail. Most of the time, you

won’t need to worry about what JRuby is doing under the covers. But

in case you’re curious...

There are two forces at play for method selection:

• Selecting the right Java method, aka “target method”

• Coercing, casting, or otherwise converting arguments to appropri-

ate types

Let’s say you’re attempting to call the foo() method on class X. First,

JRuby will use Java reflection to search for all public and protected

methods named foo() for X and its superclasses. Child classes’ methods

override their parents’, just as in pure Java. Next, JRuby narrows down

the list to just the methods that match the number of arguments you’re

passing in, including methods with variable argument lists.

Download from Wow! eBook <www.wowebook.com>

PARAMETER TYPES 291

Ruby Type Java Type Notes

NilClass

(nil)
A null reference

Use SomeJavaClass.null to call a
specific overload with a null reference.

TrueClass

(true),
FalseClass

(false)

A primitive or boxed boolean
value

Fixnum

Any primitive or boxed
numeric: int,
java.lang.Float, etc.

Matches the widest type available; force to a
specific type if you need a different overload.

Float

Any primitive or boxed
floating-point value: float,
java.lang.Double, etc.

Matches the widest type available; force to a
specific type if you need a different overload.

Bignum java.math.BigInteger

String java.lang.String

Requires converting character-by-character,
which is slow. Consider pre-converting, or
just using Java Strings.

Figure B.1: Basic types

When there’s more than one matching overload, JRuby looks for the

best fit based on the passed-in parameters. Types that map directly

between Ruby and Java get preferential treatment. For instance, Ruby

Fixnums match Java integer types (both primitive and boxed), Ruby

strings match Java strings, and so on.

If no direct mappings exist, JRuby tries a looser fit by converting be-

tween different numeric types. For a Ruby Integer with no corresponding

Java int or Integer argument, JRuby will look for a Java Numeric. As a

last resort, JRuby looks for parameters that are Java interfaces and

attempts to implement those interfaces on the fly.

B.2 Parameter Types

For a number of basic types, JRuby performs automatic conversions

in both directions across the Java/Ruby boundary. JRuby uses the

mapping in Figure B.1 for selecting among overloaded methods and for

converting parameters.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=291

RETURN VALUES 292

Ruby Type Java Type Notes

Array

java.util.List,
java.util.Collection,
or a primitive array.

Similar precision guarantees to Float and
Fixnum conversion.

Any type Any interface type

Applies only to the last parameter. If a target
method takes an interface type, JRuby will
attempt to implement the interface around the
passed-in Ruby object.

Java Class
objects
imported
into Ruby

java.lang.Class

Everything
else

Actual type or
java.lang.Object (i.e.,
no conversion).

Figure B.2: Other Types

Java Type Differences from Parameter Passing

java.lang.String
Kept as a Java object (not converted to Ruby), but gains some
Ruby methods. If you need a true Ruby String, call to_s.

java.util.List or
java.util.Collection

Kept as a Java collection (not converted to Ruby), but gains some
Ruby methods. If you need a true Ruby Array, call to_a.

Primitive array
Kept as a Java array (not converted to Ruby), but supports basic
indexing. If you need a true Ruby Array, call to_a.

Figure B.3: Return type edge cases

When no simple mapping between Ruby and Java types exists, JRuby

uses the conversions in Figure B.2.

B.3 Return Values

What about returning values back to the Ruby world? Most of the

conversions we’ve discussed in this appendix work the same in the

other direction, from Java to Ruby. The exceptions are discussed in

Figure B.3.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=292

RETURN VALUES 293

There’s no need to carry these tables around on little laminated cards

or anything. The conversions we’ve seen are designed to stay out of your

way and call the right overload with a minimum of typing on your part.

For that 1 percent of the time when you need to specify an overload,

you can use java_send, java_alias, and java_method.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=293

Appendix C

Configuring JRuby
This chapter is a reference to the most common command-line argu-

ments and runtime properties for JRuby. We’ve chosen not to inundate

you with an uncurated alphabetical listing. Too many options depend

on one another for such an order to make any sense. Instead, we’ve

broken down the settings by category.

C.1 Command-Line Options

First, let’s look at arguments you pass to the jruby executable on the

command line.

Getting Information About JRuby

The first few options are the ones you’d likely reach for first when learn-

ing your way around a new environment.

--copyright and --version

These do what you’d expect: they display the copyright and version

information for JRuby. The version information also includes the exact

Ruby language version on which your JRuby installation is based. This

can come in handy for reporting bugs in libraries.

--properties

This option prints out a huge list of settings that affect how JRuby

finds, loads, interprets, compiles, and runs code. A short description

and default value accompany each property.

Download from Wow! eBook <www.wowebook.com>

COMMAND-LINE OPTIONS 295

If you’re interested in tuning JRuby’s performance under the hood,

keep reading this chapter for information on how to change these prop-

erties. Make sure you pay attention to the ones marked as experimental

or dangerous!

-h or --help

We were wondering whether to even mention the --help option. Doesn’t

every program support this? Still, we’re bringing it up because it really

is a good idea for you to take a minute and explore some of the various

options JRuby offers you.

Running Ruby Code

The options in this section control how JRuby executes Ruby code.

Most of these are also present in the C implementations of Ruby.

-v, --verbose, and -w

The -v and --verbose flags set the global variable $VERBOSE to true, print

JRuby’s version information, and then proceed to execute the provided

script. (If no script is provided, JRuby will only print its version.) This

variable directs Ruby programs, and the JRuby environment itself, to

enable extra logging. Specifically, the Kernel object’s warn method pro-

duces output only if $VERBOSE is true.

The -w is the same as -v, except the former does not print any version

information when JRuby launches.

-K code

Ruby 1.8 and JRuby in 1.8 mode normally default to ASCII as the

expected character encoding. With -K, you can specify a different encod-

ing, such as UTF-8. Acceptable encodings are UTF8, SJIS, EUC, or ASCII

(aka NORMAL).1 The values are case-insensitive, and only the first char-

acter matters.

--1.8 and --1.9

JRuby currently starts up in Ruby 1.8 compatibility mode by default,

but you can force it to run in 1.9 mode by specifying the --1.9 flag. In

the future, 1.9 mode may become the default; at that point, you’ll use

--1.8 to specify compatibility with Ruby 1.8 instead.

1. As of this writing, JRuby’s support for UTF-8 and ASCII is more complete than for the

other encodings.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=295

COMMAND-LINE OPTIONS 296

-S script

The -S flag is for running shell scripts using JRuby. It comes in handy

if you need to run a script that’s in your PATH but isn’t marked as exe-

cutable. It’s also useful if you have multiple scripts with the same name.

When you use this flag, JRuby searches for your program in the follow-

ing places:

• The current directory

• The JRuby bin directory ($JRUBY_HOME/bin)

• The directories in the PATH environment variable, in order

The -S flag is especially helpful if you have multiple Ruby or JRuby

instances on the system. With it, you can specify that you want to run

JRuby’s version of, say, the gem command, rather than your system

Ruby’s version.

-e command

As an alternative to specifying a script file, you can use the -e flag to

pass a snippet of actual Ruby code on the command line. You’ve prob-

ably seen this flag in action already (and we use it liberally throughout

this chapter). Once you’ve gotten used to having -e around, you’ll won-

der how you ever got along without it!

-I directory

Ruby searches for files to require or load on the load path, provided

in the $: (or $LOAD_PATH) global variable. The -I flag adds the specified

directory—or directories, separated by your platform’s path separator

character—to the load path, so they will be searched as well.2

-r script

The -r option directs JRuby to load the specified file at launch time, just

as though your Ruby program loaded it with the require method on the

first line. You’ll often use this flag for loading Ruby standard libraries,

especially in one-liner scripts passed to -e.

-C directory

With this flag, JRuby will switch to the specified directory before begin-

ning execution.

2. The path separator is a semicolon on Windows and a colon basically everywhere else.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=296

COMMAND-LINE OPTIONS 297

Charlie Says. . .

Enabling Shebang

UNIX-style shebang lines work with JRuby only if you’ve installed
the native launcher. You can do this by using one of the official
JRuby installer packages or by running jruby -S gem install jruby-

launcher.

-c

During development, you may want to check that a script is syntacti-

cally correct without actually running it. The -c flag does exactly that,

checking the syntax of the provided script and either reporting errors

or printing the text “Syntax ok” and exiting.

-y or --yydebug

These flags turn on verbose parser debugging in JRuby’s parser. It

might be helpful if you have a really peculiar syntax error and can’t

figure out why, but otherwise you’ll probably never need them.

-s

The simplest way to process command-line parameters may be to use

the -s flag. The -s flag turns on basic argument processing, doing the

following for you:

• Simple flags (like -foo) set the same-named global variable to true

(the equivalent of $foo = true, in this case).

• Name/value flags (like -foo=bar) set the same-named global to the

string value specified (the equivalent of $foo = ’bar’, in this case).

The -s flag is normally used in a script’s “shebang” line, as in the fol-

lowing example:

#! /usr/local/bin/jruby -s

Greets the person named by the -name=... option

print "Hello, " + $name

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=297

COMMAND-LINE OPTIONS 298

Charlie Says. . .

On Defaults

Why isn’t set_trace_func enabled by default? Because it requires
that JRuby check for an installed function before and after
every call, on every exception raised, at every line, and on
entry into every class body. The majority of scripts never use this
functionality, so we avoid this performance hit by default.

If you use -s on the command line (instead of a shell script), you need

to use two dashes to separate the arguments meant for JRuby from the

ones meant for your Ruby code:

$ jruby -s -e 'puts $foo, $bar' -- -foo -bar=baz

true

baz

In the previous example, -s and -e are options for JRuby, and -foo and

-bar are specific options for this program.

-d or --debug

This option turns on debug mode, both by enabling additional internal

logging for JRuby and by setting the $DEBUG global variable for use by

your program. Optional logging like this is useful at development time

to get a bit more information out of JRuby or third-party libraries. It’s

also a great way to add debug logging to your own programs (you never

know when it might save you).

The same flag also sets up JRuby for debugging or profiling scripts

that use Kernel#set_trace_func to track execution events like calls and

exceptions. If you want to use set_trace_func at all, you should pass

--debug.

--ng and --ng-server

Running any JRuby program means waiting for the JVM to start. For

long-running processes like web servers, this brief delay doesn’t matter.

But for quick shell scripts that you run over and over again, even the

shortest pause becomes annoying.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=298

COMMAND-LINE OPTIONS 299

The Nailgun project is designed to let any Java-based project take an

end run around the JVM startup time.3 It works by starting one in-

stance of the JVM in the background and then using a fast C client to

connect to it.

JRuby comes with Nailgun. To use it, just start a server and leave it

running:

$ jruby --ng-server

Then pass the --ng flag to JRuby:

$ jruby --ng -e "puts 'Hello from Nailgun!'"

Before using Nailgun for the first time, you’ll have to compile the C

client (except on Windows, where JRuby comes with a precompiled

client). Fortunately, this step takes only a few seconds. From JRuby’s

tool/nailgun subdirectory, type the following:

$./configure && make

There are a few interesting interactions between Nailgun and long-

running JRuby programs. So, we recommend you stick with the tra-

ditional launcher for servers, daemons, and GUI programs and use

Nailgun just for quick shell scripts.

-x (optional directory)

Like the same Perl parameter that inspired it, -x tells JRuby to ignore

the beginning of the file containing your program until it hits a ruby

shebang line. You can use it to run a Ruby program that’s embedded

inside a larger, non-Ruby file (such as an email message).

Interacting With the JVM

Now we’ll move from the Ruby language to the Java platform, as we

consider options that affect how the JVM runs.

--jdb

If you’re coming to JRuby from a Java background, you may have used

the command-line jdb debugger to investigate problems with your pro-

grams or third-party code. When you supply the --jdb argument, JRuby

runs with jdb instead of just java. This allows you to set breakpoints

and step through code. We recommend you pair this option with the

3. http://martiansoftware.com/nailgun/index.html

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://martiansoftware.com/nailgun/index.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=299

COMMAND-LINE OPTIONS 300

-X+C flag (which we’ll get to in a moment) so that you can step through

compiled Ruby code instead of being stuck in JRuby’s interpreter.

--sample

JRuby ships with its own profiler, which you can enable by passing the -

-sample option. As an example of how it can come in handy, consider the

Ackerizer example from Chapter 2, Driving Java from Ruby, on page 31.

You’ll recall that we replaced a Ruby method with a Java one and saw

a big speed increase.

This program was simple enough to be able to see by inspection where

the slow code was. In real-world projects, the answers are never so

obvious. Slowdowns are revealed only by careful profiling. Here’s how

we might have profiled the Ackerizer program:

$ jruby --sample -J-Xss128m ackerizer.rb

Here are the relevant lines of the output, trimmed a bit to fit on the

page:

29.6% org.jruby.RubyFixnum$i_method_1_0$RUBYINVOKER$op_equal.call

24.5% org.jruby.internal.runtime.methods.CallConfiguration$3.pre

14.0% org.jruby.internal.runtime.methods.JittedMethod.call

11.1% org.jruby.RubyFixnum$i_method_1_0$RUBYINVOKER$op_minus.call

5.8% org.jruby.RubyFixnum$i_method_1_0$RUBYINVOKER$op_plus.call

5.0% ruby.jit.ruby.Users.username.ackermann.ack3178554_3306611.__file__

4.2% org.jruby.runtime.callsite.CachingCallSite.call

4.1% ruby.jit.ruby.Users.username.ackermann.ack3178554_3306611.__file__

The program spends 98.3 percent of its calculation time either in ack

itself or in the basic math operations that underlie it. It’s a small wonder

that fixing this one function made the program so much more respon-

sive!

-J

Sometimes, you need fine-grained control over the performance of the

Java runtime. The java command has its own set of parameters for this

purpose, and you can use any of them from JRuby. Just prepend -J to

the Java option you want (with no spaces).

For example, you may want to specify how much memory to allocate to

the JVM. In Java, you’d pass the -Xmx option to the runtime, like this:

$ java -Xmx512m com.example.someJavaProgram

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=300

COMMAND-LINE OPTIONS 301

Charlie Says. . .

More on Profiling

When we say we ship our own profiler, we’re actually saying
“Since all JVMs ship with their own basic profilers, we get one
for free!” Here, --sample is actually the same as passing the -

Xprof flag to the underlying JVM (for example, by using the -J

flag described in this chapter).

The stock JVM sampling profiler is a good tool of first resort for
investigating bottlenecks. But for large-scale profiling, we rec-
ommend either using one of the larger Java tools (such as
NetBeans, VisualVM, or YourKit) or using Ruby-specific profiling
libraries (such as jruby-prof).

Since JRuby is just another Java library, you could pass this param-

eter the same way by using just the plain java binary and referencing

jruby.jar, like this:

$ java -Xmx512m -jar /path/to/jruby.jar some_jruby_program.rb

But as soon as you try to do anything nontrivial like using the Ruby

libraries that come with JRuby, you’ll run into path issues and have

to type in even more command-line options. JRuby’s -J option offers a

much better way:

$ jruby -J-Xmx512m some_jruby_program.rb

When you combine -J with Java’s -Dname=value flag, you can tweak

Java’s many runtime parameters—including the ones you read from

JRuby’s --properties argument.

For example, you might pass the -Xdock:name option to make a Swing

app look a little more at home on a Mac:

$ jruby -J-Xdock:name="My Program" some_jruby_program.rb

If you launch your program with this extra flag, the Dock icon will carry

the name you specify instead of just “org.jruby.Main.”

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=301

COMMAND-LINE OPTIONS 302

--server and --client

Even though the -J gives you access to the full range of command-line

parameters for the JVM, a few settings are common enough to warrant

their own dedicated JRuby arguments. Such is the case with --server and

--client, which launch the Java runtime in “server” or “client” mode—for

JVMs that support this choice.

Server mode optimizes for long-running processes, at the cost of longer

startup times. So, don’t go crazy and use it on every single JRuby pro-

gram you write. But keep it in mind for things such as websites and

message queues.

Client mode optimizes less but does so sooner and with less impact

to startup time and “cold” performance. JRuby usually will default to

client mode, except of course on JVMs that don’t have a client mode

(like 64-bit Hotspot-based JVMs).

--manage

All standard Java SE runtimes ship with support for the Java Man-

agement Extensions (JMX), which allow you to manage a running JVM

remotely. Many distributions of Java do not have remote JMX enabled

by default, so JRuby provides the --manage flag to turn it on. On Hot-

spot (Sun’s VM or OpenJDK), this simply sets the Java property

com.sun.management.jmxremote.

--headless

Many of Java’s standard libraries have dependencies on the GUI/

graphics subsystem, and the JVM “helpfully” starts up a GUI win-

dow for you when these libraries are loaded. The --headless flag (and

the java.awt.headless it sets to true behind the scenes) suppresses this

behavior, so you can use those libraries without a GUI launching. This

flag is sometimes necessary on remote systems that do not have a win-

dowing system installed, since they’ll exit with errors if a GUI tries to

start up.

-Xoptions

JRuby provides a few extended options for advanced users, accessible

by the -X flag. Passing the -X flag alone shows the available options.

Specifying -X-C turns off JRuby’s compiler so that all code is inter-

preted. The opposite case is -X+C, which attempts to compile every piece

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=302

COMMAND-LINE OPTIONS 303

of code as it loads and avoid the interpreter altogether. The default com-

pile mode is just-in-time, which only compiles frequently called code.

The -X+O flag enables per-object tracking, which is used by Ruby’s

ObjectSpace#each_object method. The default, which you can explic-

itly specify with -X-O, is to disable object tracking in order to save the

associated memory and CPU cost.

Data Processing

Now we’re getting into some of the comparatively rare options. Don’t

spend too much time learning these by heart; just know you can flip to

this section of the book if you encounter them in the wild.

-0octal

By now, you’ve seen several cases where you can throw together a Ruby

script to parse a file given to you in some ad hoc text format. Up until

now, we’ve been assuming that newline characters are what separates

one record from the next. But there’s no reason it can’t be a different

character.

You can specify the record separator by passing -0 with an optional

octal byte value. For example, if you want to split a file on the letter q,

you’d specify -0161, the octal value character code for q. Let’s see what

that looks like in action:

$ echo "fooqbarqbaz" | jruby -0161 -e '3.times { p gets }'

"fooq"

"barq"

"baz\n"

Notice that the final string still gets the standard \n line terminator,

since there’s no final q character to close out the string.

If you leave out the octal value, JRuby will use a record separator of \0,

the null byte. If you specify -00 or provide a character code outside the

8-bit ASCII range, JRuby switches to “paragraph mode,” with a record

delimiter of two newline characters (\n\n).

-a, -n, and -p

These flags enable various line-processing options for processing data

files or console input. The -n flag runs your specified script in a loop.

At the top of the loop, JRuby implicitly calls gets (to wait for the user to

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=303

COMMAND-LINE OPTIONS 304

Charlie Says. . .

The Power of Line Processing

These flags can be especially useful for processing a data file
quickly. They reduce the amount of boilerplate you need, like
looping and splitting. Combined with flags like -0 and -F, you
can create some pretty powerful one-liners.

enter something at the console) and assigns the resulting input to the

$_ global variable.

The -a flag adds “autosplitting” to this loop: it calls Ruby’s String#split on

the input and stores the resulting array in the global variable $F. The

-p option prints out the value of $_ at the end of each pass through the

loop.

Here’s what these flags look like in action:

⇒ $ jruby -n -e 'if $_ =~ /quit/; exit; else; puts "you said: #{$_}"; end'
⇐ hello
⇒ you said: hello
⇐ goodbye
⇒ you said: goodbye
⇐ quit
⇒

$ jruby -a -n -e 'if $_ =~ /quit/; exit; else; puts $F; end'
⇐ hello goodbye
⇒ hello

goodbye
⇐ quit
⇒

$ jruby -p -n -e 'if $_ =~ /quit/; exit; else; $_ = "last line: #{$_}"; end'
⇐ hello
⇒ last line: hello
⇐ goodbye
⇒ last line: goodbye
⇐ quit

An experiment paints a thousand words. We highly encourage you to

try these flags together or separately on a short test program.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=304

COMMAND-LINE OPTIONS 305

-F pattern

The -F flag and the $; global are a matched set. They specify what char-

acter to use by default for splitting strings into arrays:

$ jruby -F bar -e 'p "foobarbaz".split'

["foo", "baz"]

Normally, JRuby will split strings on spaces if you call split without any

parameters, but we’ve overridden the default here.

-i extension

Using the -i flag, you can process a large number of files at once “in

place.” Like the -n flag, it wraps a loop around your program. But

instead of passing in input from the user, it passes in the contents

of external files. The filenames are passed on the command line after

the flag.

After each pass through the loop, JRuby overwrites the contents of the

external file with your program’s output. That’s why this flag takes an

extra parameter; it’s a file extension so that JRuby can back up the

input files. Here’s what in-place processing looks like in action:

$ echo matz > /tmp/test

$ cat /tmp/test

matz

$ jruby -p -i.bak -e '$_.upcase!' /tmp/test

$ cat /tmp/test

MATZ

$ cat /tmp/test.bak

matz

Here, we’ve combined the -i flag with -p, so that for each file, the con-

tents of the $_ variable will get written back out to the original file.

-l

You’ll notice in the -0 example we saw earlier, the strings we processed

still had their record terminators attached (the q and \n characters). If

you want to clean that up without explicitly calling String#chop on each

line, pass -l to JRuby. This flag calls chop on each line for you, which

removes record separators (in the sense of the -0 flag) from the end of a

string. Here’s an earlier example, modified to use -l:

$ echo "fooqbarqbaz" | jruby -l -0161 -e '3.times { p gets }'

"foo"

"bar"

"baz"

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=305

PROPERTIES 306

It’s yet another powerful tool for command-line data processing. Use it

wisely!4

C.2 Properties

JRuby, like many other JVM-based languages and libraries, also in-

cludes some properties that let you access internal or experimental

settings. Although we don’t have room to discuss every possible prop-

erty, there are a few particular ones you may find useful. You can get

the full list using jruby --properties.

Tweaking the Compiler

The first set of controls is for fine-tuning JRuby’s just-in-time compiler.

jruby.compile.mode=JIT|FORCE|OFF

Normally, JRuby runs in JIT mode, meaning that it compiles frequently

executed functions to JVM bytecode. You can force JRuby to compile

all Ruby files at load time using FORCE, which is the same as running

with -X+C. If you want to run everything interpreted and generate no

bytecode (which you might want to do for restricted environments like

applets or mobile devices), you can specify OFF (which is the same as

-X-C).

jruby.jit.threshold=invocation count

As of JRuby 1.5, the default number of calls before a method will JIT is

50. If you want to make it happen sooner or delay compiling methods

for more invocations, adjust this property appropriately.

jruby.jit.max=method count

This sets the maximum number of Ruby methods to JIT compile, which

by default is 4096 per JRuby instance. Specifying 0 disables all JITing,

and specifying -1 means no maximum count.

jruby.jit.logging=true|false

If you’d like to see a log of methods as they JIT, you can enable this

property.

4. We should note that this feature is still a work in progress as of this writing.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=306

PROPERTIES 307

jruby.jit.codeCache=directory

If you specify a codeCache directory, JRuby will also save JITed meth-

ods to disk. You can use this code cache in later runs to reduce the JIT-

ing cost or to ship “pre-JITed” methods to one of those pesky restricted

environments.

Configuring JRuby Features

The next few settings deal with code execution.

jruby.native.enabled=true|false

Normally, JRuby uses several native libraries to provide specific bits

of functionality. For example, lower-level POSIX functions or C-based

extensions require us to be able to load native code. On restricted envi-

ronments or in more secure server settings, native libraries are often

disallowed. Specifying true for this property will turn off those native

libraries and try to use “pure Java” equivalents as much as possible.

jruby.compat.version=RUBY1_8|RUBY1_9

Like the --1.9 flag, this property can be used to explicitly specify the

compatibility mode. The default is RUBY1_8.

jruby.objectspace.enabled=true|false

In C Ruby, the ObjectSpace module provides access to various aspects

of memory management. For example, ObjectSpace.each_object makes

it possible to walk through all objects in memory. Because of the way

the JVM works, implementing this feature in JRuby is very expensive—

especially for a rarely used debugging feature. If you’re using a third-

party library that depends on this feature for advanced Ruby tech-

niques, you’ll need to set this property to true.

jruby.launch.inproc=true|false

Ruby’s system method is meant to launch an external process. But if

that external process would be a call to ruby or jruby, JRuby will save

you some time by reusing the same JVM (albeit with a different JRuby

instance). If you really need to spin up a separate ruby process, set this

property to true.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=307

PROPERTIES 308

jruby.debug.fullTrace=true|false

This property is the equivalent of the --debug flag we discussed earlier.

It enables execution tracing for set_trace_func, which many debugging

libraries depend on.

Loading Files

A related issue to code execution is code loading; the final two options

give you a window into that process.

jruby.debug.loadService.timing=true|false

Your app’s startup performance takes a noticeable hit if you’re loading

complex files or doing a lot of up-front code generation. JRuby can

help you identify the more obvious startup problems by logging how

long each file takes to load (together with its dependencies). Set this

property to true to enable load-time logging.

jruby.debug.loadService=true|false

If you have a pesky file being loaded from the wrong filesystem location

and you can’t figure out how JRuby is finding that file, you can turn on

logging to show all locations searched along with failed and successful

loads. You may be surprised what you see for large applications.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=308

Appendix D

Calling External C Code
We’ve spent a lot of time in this book talking about calling Java from

Ruby, and vice versa. And with good reason: it’s one of the main reasons

people come to JRuby. You may be wondering, though: are you stuck

in the Java universe if you go with JRuby?

Not at all! JRuby is one of the many Ruby implementations that can

call straight into C code—in fact, it’s one of the best.

D.1 Foreign-Function Interface

There are several reasons you might want to call into native code from

JRuby. For example:

• You may need to take advantage of some specific feature of your

operating system.

• A piece of hardware you’re using may come with no manual and

no source code—just a DLL.

• Your Ruby code might be part of a larger program with parts writ-

ten in different languages.

• You may be using a Ruby gem for image processing, XML parsing,

or data access that leans on C code internally.

How do you connect to external code in these situations?

Extension API

In the old days, you’d write a small piece of glue code in C that would

wrap the external code with a Ruby-like interface. This approach—

using Ruby’s extension API—is still supported in regular Ruby and is

gradually making its way into JRuby as we write this book.

Download from Wow! eBook <www.wowebook.com>

FOREIGN-FUNCTION INTERFACE 310

The advantages of the extension API are its speed and its status as

the official way to plug C into Ruby. The disadvantage is that there’s

an extra layer of glue code. This layer takes time and effort to write.

Moreover, it has to be compiled specifically for the end user’s platform—

often by the end user at installation time.

Ruby Standard Library

Ruby has evolved a couple of libraries that let you skip the middleman

and talk straight to the external code you want. Two of these (Ruby/DL

and Win32API) have become part of the Ruby standard library.

Because C functions must declare their argument and return types,

Ruby code using one of these techniques has to be “decorated” with

a little extra information about data types. The Ruby syntax for these

decorations varies, but it’s never felt flexible enough for C or comfort-

able enough for Ruby. Worse, there are subtle differences across Ruby

versions.

Ruby/DL and Win32API are only partially supported in JRuby. We

mention them mainly to set the stage for the preferred way of calling

out to C: the FFI library.

FFI

FFI, short for Foreign-Function Interface, began as part of the Rubinius

project (an advanced implementation of the Ruby language).1,2

We’ll look at a couple of longer examples in a moment. But just to get

a feel for FFI, here’s how you’d call the pow() function in the C runtime

library:

Download ffi/pow.rb

require 'ffi'

module CMath

extend FFI::Library

ffi_lib 'libm'

attach_function :pow, [:double, :double], :double

end

puts CMath.pow(2.0, 8.0) # >> 256.0

1. http://wiki.github.com/ffi/ffi

2. http://rubini.us

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ffi/pow.rb
http://wiki.github.com/ffi/ffi
http://rubini.us
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=310

FOREIGN-FUNCTION INTERFACE 311

The syntax is such a natural fit for Ruby that the JRuby team decided

to put FFI in the official JRuby build. That means if you code to this API,

you can call into C from at least four different Ruby implementations.

A Windows Example

We’re not going to cover all the ins and outs of FFI. But if we show off a

couple of common scenarios, we can hit most of the high points.

Let’s start with a really simple Windows example that just shows a

couple of the basics of FFI: calling conventions and string parameters.

The following code will print the title of the topmost window:

Download ffi/windows.rb

require 'ffi'

module User32

extend FFI::Library

ffi_lib 'user32'

ffi_convention :stdcall

typedef :pointer, :hwnd

attach_function :GetForegroundWindow, [], :hwnd

attach_function :GetWindowTextA, [:hwnd, :pointer, :int], :int

end

FFI::MemoryPointer.new(:char, 1000) do |buffer|

hwnd = User32.GetForegroundWindow

User32.GetWindowTextA hwnd, buffer, buffer.size

p buffer.get_string(0)

>> "jruby - Cmd"

end

As with the previous example, we gather related functions from one

external library into a single module. Since this is a Windows library,

we need to use the Windows stdcall calling convention.

Next, we specify the two functions we need based on their signatures.

Notice that we can do simple type definitions so that the function decla-

ration will use the “window handle” type familiar to Windows

developers.

We’ve deliberately chosen an API call that takes a buffer so that we can

talk about how to share strings with the C world. The call to Memory-

Pointer#new allocates a buffer that stays in memory just for the lifetime

of the attached block. Since this is just a generic pointer to raw storage,

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ffi/windows.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=311

FOREIGN-FUNCTION INTERFACE 312

we have to tell FFI to interpret the result as a string, using the get_string

call. If you save the program as windows.rb and run it, you should see

something like this:

C:\> jruby windows.rb

"jruby - Cmd"

Ready for something a little more intricate? Let’s move on to our second

example.

A Mac Example (and More)

This program will get into a couple of FFI’s more advanced features:

callbacks and data structures. We’re going to use the UNIX signal-

handling system to set a timer and then wait for it to fire.

As before, we are going to call two C functions. Here are their C

declarations:

Download ffi/defs.c

unsigned int alarm(unsigned int);

int sigaction(int, struct siginfo*, struct siginfo*);

FFI takes great pains to represent these functions legibly in Ruby:

Download ffi/posix.rb

module POSIX

extend FFI::Library

ffi_lib 'c'

attach_function :alarm, [:uint], :uint

attach_function :sigaction, [:int, :pointer, :pointer], :int

remaining definitions will go here...

end

Those two :pointer parameters point to siginfo structures. This structure

varies from platform to platform. We’ll get to the Mac version of it in a

minute. But first we need to talk about callbacks. UNIX signal callbacks

can take one of two forms:

Download ffi/defs.c

typedef void (*handler_func)(int);

typedef void (*action_func)(int, struct siginfo*, void*);

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ffi/defs.c
http://media.pragprog.com/titles/jruby/code/ffi/posix.rb
http://media.pragprog.com/titles/jruby/code/ffi/defs.c
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=312

FOREIGN-FUNCTION INTERFACE 313

Here’s how to translate these two typedefs to Ruby. Note that this code

needs to go inside the module declaration.

Download ffi/posix.rb

callback :handler_func, [:int], :void

callback :action_func, [:int, :pointer, :pointer], :void

Now for the data structures that house those callbacks. The defini-

tion will look different if you’re on Linux or another UNIX-like system.

Caveat coder.

Download ffi/defs.c

union sigaction_u {

handler_func sa_handler;

action_func sa_action;

};

struct sigaction {

union sigaction_u sa_action_u;

sigset_t sa_mask;

int sa_flags;

};

FFI provides its own Struct and Union types to represent those C entities.

Again, these definitions live in the POSIX module:

Download ffi/posix.rb

class SigActionU < FFI::Union

layout :sa_handler, :handler_func,

:sa_action, :action_func

end

typedef :int, :sigset_t

class SigAction < FFI::Struct

layout :sa_action_u, SigActionU,

:sa_flags, :int,

:sa_mask, :int

end

We’re almost ready to call all these elaborately built-up functions. FFI

provides a Function class that we can pass into the C functions to serve

as a callback. Here’s how we set up the two structs we need: action for

the input and out for the output.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ffi/posix.rb
http://media.pragprog.com/titles/jruby/code/ffi/defs.c
http://media.pragprog.com/titles/jruby/code/ffi/posix.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=313

FOREIGN-FUNCTION INTERFACE 314

Download ffi/posix.rb

handler = FFI::Function.new(:void, [:int]) { |i| puts 'RING!' }

action = POSIX::SigAction.new

action[:sa_action_u][:sa_handler] = handler

action[:sa_flags] = 0

action[:sa_mask] = 0

out = POSIX::SigAction.new

Finally, we can make our calls. sigaction() tells the OS which function

to call when we receive a wakeup signal, and alarm() will fire that signal

one second into the future:

Download ffi/posix.rb

SIGALRM = 14

POSIX.sigaction SIGALRM, action, out

POSIX.alarm 1

puts 'Going to bed'

sleep 2

puts 'Breakfast time'

When you run the program, you should see the messages one at time,

with a brief delay in between.

$ jruby posix.rb

Going to bed

RING!

Breakfast time

If you’re porting this code to another operating system, some of these

data type definitions will need to change. The linux.rb file that comes with

this book’s source code shows one example of the kinds of modifications

you might make.

Calling into an unsafe language from a safe one is, well, unsafe. But

don’t let that frighten you too much. Sometimes C gives you exactly the

direct hardware access, high performance, or software interoperability

you need.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/ffi/posix.rb
http://media.pragprog.com/titles/jruby/code/ffi/posix.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=314

Appendix E

JRuby for Sysadmins
We have talked a lot about developing applications and libraries with

JRuby. What about other tasks, such as administering a system?

It turns out that JRuby is a great fit for running a single computer or an

entire network. You get the benefits of Ruby’s quick-scripting abilities

and Java’s monitoring libraries.

There’s enough material on scripting your system with Ruby to fill an

entire book. In fact, such a book already exists.1 But we couldn’t resist

bringing up the subject here, too.

E.1 Automating Tasks

Ruby has a long history of helping sysadmins get their jobs done.

It’s no secret that Perl, the duct tape that holds networks together

all over the world, was a big inspiration for Ruby. Several of Ruby’s

idioms came straight from Perl—the most famous of these is regular-

expression matching.

You can use JRuby in the same kinds of situations where you’d use

shell scripts, batch files, or Perl programs. For instance, let’s say you’re

running a UNIX system where the corporate policy is that the company

name has to be in everyone’s email .signature file.2

1. Everyday Scripting with Ruby [Mar06], by Brian Marick
2. That doesn’t sound like a place we’d like to work. But for this example, we’ll assume

the dental plan is outstanding.

Download from Wow! eBook <www.wowebook.com>

MONITORING APPLICATIONS 316

Here’s how you might generate a monthly report on signatures:

Download jmx/check_sigs

#!/usr/bin/env jruby

Dir['home/*'].each do |d|

if `grep Initrode #{d}/.signature`.empty?

puts "The .signature in #{d} isn't good for the company!"

end

end

Just like any other UNIX shell script, you can use the first line of code—

the shebang line—to associate this program with JRuby. You can then

give yourself execute permission for this file and run it directly.

$ chmod u+x check_sigs

$./check_sigs

The .signature in home/ian isn't good for the company!

On Windows, there are a couple of extra setup steps, but nothing too

tricky. Using Explorer, rename the file to check_sigs.rb and then asso-

ciate .rb files with the jruby.exe program. Finally, add .rb to the end of

your PATHEXT environment variable. Now you can run check_sigs directly

from the command line:

C:\> set PATHEXT=%PATHEXT%;.rb

C:\> check_sigs

The .signature in home/ian isn't good for the company!

As you can see, Ruby can loop through directories and call out to other

programs easily. These tasks are the bread and butter of day-to-day

automation.

E.2 Monitoring Applications

Java has evolved a number of APIs that are useful to admins who have

to keep application servers running and healthy. The best known of

these is JMX, the Java Management Extensions library.3 With JMX,

you can gather statistics about a running program, either by compiling

your monitoring code into it or by connecting to it remotely.

Because JRuby programs are running on the JVM, you can find out

all sorts of performance information the same way you would with a

regular Java program. Instead, let’s measure something application-

specific: hits to the home page of a web server.

3. http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/jmx/check_sigs
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=316

MONITORING APPLICATIONS 317

The JMX Interface

To provide our own custom statistics to a JMX client, we’ll write our

own managed bean, JMX’s term for a data provider. We could call

directly into the JMX APIs using the same Ruby/Java integration tech-

niques we’ve been discussing throughout the book. But we’ll save some

time and use the jmx gem, which provides a few handy shortcuts:

$ jruby -S gem install jmx

Now, we just create a regular Ruby class that inherits from RubyDynam-

icMBean:

Download jmx/web_app.rb

require 'rubygems'

require 'jmx'

require 'rmi'

class HitBean < RubyDynamicMBean

def initialize(name, desc)

super name, desc

@hits = 0

end

def hit!

@hits += 1

end

rest of implementation goes here...

end

So far, this is just regular Ruby code. We’re setting up our own API that

the web server will use to increment the hit count. The next task is to

add JMX hooks to retrieve the data. The following code goes inside the

HitBean class definition, right after the hit! method:

Download jmx/web_app.rb

r_attribute :hits, :int, 'Current hit count'

operation 'Clear the hit count'

returns :void

def clear

@hits = 0

end

Much like Ruby’s attr_reader directive makes an instance variable read-

able by other Ruby code, r_attribute makes values readable by JMX

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/jmx/web_app.rb
http://media.pragprog.com/titles/jruby/code/jmx/web_app.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=317

MONITORING APPLICATIONS 318

clients. In this case, we want JMX to be able to see the value of the

@hits instance variable.

We’re not limited to reading and writing variables. The operation direc-

tive makes a Ruby method callable from JMX. Here, we’ve provided a

way to reset the counter to zero.

Once our bean has the JMX attributes and operations we want, it’s time

to connect it to a server:

Download jmx/web_app.rb

port = 9999

url = "service:jmx:rmi:///jndi/rmi://localhost:#{port}/jmxrmi"

registry = RMIRegistry.new port

server = JMX::MBeanServer.new

connector = JMX::MBeanServerConnector.new url, server

connector.start

bean = HitBean.new 'jruby.HitBean', 'Web app hits'

domain = server.default_domain

server.register_mbean bean, "#{domain}:type=HitBean"

at_exit do

connector.stop

registry.stop

end

Now we can move on to the application we’ll be monitoring.

The Web App

After all that setup, the web server itself is pretty trivial. We’ll use the

Sinatra web framework, which is great at getting projects off the ground

quickly.4 First, install Sinatra:

$ jruby -S gem install sinatra

Add the following code to the end of the file you’ve been working in:

Download jmx/web_app.rb

require 'sinatra'

get '/' do

bean.hit!

"We're watching you"

end

4. http://www.sinatrarb.com/

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/jmx/web_app.rb
http://media.pragprog.com/titles/jruby/code/jmx/web_app.rb
http://www.sinatrarb.com/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=318

MONITORING APPLICATIONS 319

Figure E.1: Logging into JConsole

This will increment the hit counter every time someone visits the page.

The information will not be visible to users but will be available to

administrators through JMX. Go ahead and run the app. Assuming

you’ve saved the code in web_app.rb, you just run it like any other

JRuby program:

$ jruby web_app.rb

Go to http://localhost:4567 in your web browser; you should see the text

“We’re watching you!” Hit Refresh a few times to bump up the internal

hit count.

Remote Administration

Now that our web app is serving up statistics via JMX, we need a remote

client to report the data. It would be easy enough to write one in JRuby,

using the same jmx gem we’ve been discussing. But there’s an even eas-

ier way: the jconsole command that comes with Java. When you launch

it like this:

$ jconsole

...you should see a window like Figure E.1. On the Remote tab, fill in

localhost and 9999 for the host and port, and then click Connect. The

main window should fill in with details about the web app.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://localhost:4567
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=319

MONITORING APPLICATIONS 320

Figure E.2: Monitoring the app

Go to the MBeans tab. Underneath the DefaultDomain item, find the

HitBean class you created for your app. You should see the hits attribute

filled in with the number of times you viewed the web page, as in Fig-

ure E.2.

Take a few minutes to play around with the interface. Reload the web

page a few times, and then click Refresh in JConsole to update the

attribute. Switch over to the Operations tab and clear the hit count.

Of course, JConsole is far from the only JMX client that would work

with this web app. In fact, the same jmx gem supports writing your own

client in Ruby. Let’s take a look at this technique.

Custom Clients

We could monitor our web app from a separate Ruby program:

Download jmx/web_watcher.rb

require 'rubygems'

require 'jmx'

client = JMX.connect :port => 9999

counter = client['DefaultDomain:type=HitBean']

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/jmx/web_watcher.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=320

WRAPPING UP 321

loop do

puts "The hit counter is at #{counter.hits.value}"

puts "Type R to reset, or press Enter to continue"

counter.clear if gets.strip.upcase == 'R'

end

As you can see, we’re reading the hits attribute and calling the clear

method just as if they belong to a regular Ruby object. Behind the

scenes, the jmx gem is ferrying these calls to the remote process and

delivering the answers to us.

This monitoring process does not know or care what language the main

program is written in. You could easily command a stable of Java appli-

cation servers full of Ruby and non-Ruby applications—all from the

same remote client.

E.3 Wrapping Up

Over the last few pages, we’ve looked at a couple of different ways you

can use JRuby to keep your system running smoothly. We wrote a Ruby

script that runs like a batch file, only with the full power of a program-

ming language behind it. And we grabbed some runtime statistics from

a web application, without having to implement a separate administra-

tive user interface.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=321

Appendix F

Limelight Example Source
Download guis/limelight/bookie/stages.rb

stage 'default' do

default_scene 'bookie'

title 'Bookie'

location [200, 25]

size [400, 400]

end

if ENV['BOOKIE_DEV']

stage 'devtool' do

default_scene 'devtool'

title 'Dev Tool'

location [50, 25]

size [100, 100]

background_color 'transparent'

framed false

end

end

Download guis/limelight/bookie/production.rb

module Production

attr_reader :chapter_contents

def production_opening

require 'redcloth'

@chapter_contents = [{:title => '1', :text => ''}]

end

end

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/stages.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/production.rb

APPENDIX F. LIMELIGHT EXAMPLE SOURCE 323

Download guis/limelight/bookie/bookie/props.rb

root do

center do

chapter_list :id => 'chapter_list'

dual_pane :id => 'dual_pane' do

tabs do

tabs_shadow

tabs_holder do

tab_button :text => 'Edit',

:id => 'edit_tab',

:on_mouse_clicked => 'scene.dual_pane.edit!',

:styles => 'left_tab'

tab_button :text => 'Preview',

:id => 'preview_tab',

:on_mouse_clicked => 'scene.dual_pane.preview!',

:styles => 'right_tab'

end

end

preview_pane :id => 'preview_pane'

edit_pane :players => 'text_area',

:id => 'edit_pane'

end

end

add_chapter :text => 'Add Chapter'

end

Download guis/limelight/bookie/bookie/styles.rb

default_border_color { border_color 'b9b9b9' }

default_background_color { background_color :white }

fill_parent {

width '100%'

height '100%'

}

bookie {

extends :fill_parent

}

center {

horizontal_alignment :center

vertical_alignment :center

}

root {

extends :default_background_color, :fill_parent

text_color :white

font_size 18

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/props.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/styles.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=323

APPENDIX F. LIMELIGHT EXAMPLE SOURCE 324

center {

width '100%'

height '90%'

}

chapter_list {

width '10%'

height '100%'

bottom_margin 8

}

chapter {

extends :default_border_color, :default_background_color, :center

height 30

width "100%"

secondary_background_color 'f0f0f0'

gradient :on

bottom_border_width 1

right_border_width 1

}

dual_pane {

width '90%'

height '100%'

}

edit_button {

width '50%'

height '10%'

}

preview_button {

width '50%'

height '10%'

}

add_chapter {

extends :default_border_color, :default_background_color, :center

width '22%'

height '8%'

rounded_corner_radius 4

secondary_background_color 'f0f0f0'

gradient :on

gradient_angle 270

border_width 1

left_margin 4

padding 4

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=324

APPENDIX F. LIMELIGHT EXAMPLE SOURCE 325

tabs {

width "100%"

height '10%'

horizontal_alignment :center

}

tab_button {

extends :default_border_color, :default_background_color

horizontal_alignment :center

vertical_alignment :center

secondary_background_color 'f0f0f0'

gradient :on

gradient_angle 270

padding 5

hover {

secondary_background_color :sky_blue

}

}

tabs_holder {

extends :fill_parent

float :on

y '15%'

x '37%'

}

tabs_shadow {

extends :default_border_color

extends :fill_parent

top_margin '50%'

left_margin 8

right_margin 8

top_border_width 1

left_border_width 1

right_border_width 1

background_color 'f0f0f0'

}

left_tab {

top_left_rounded_corner_radius 4

bottom_left_rounded_corner_radius 4

border_width 1

}

right_tab {

top_right_rounded_corner_radius 4

top_right_border_width 1

bottom_right_rounded_corner_radius 4

bottom_right_border_width 1

left_border_width 0

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=325

APPENDIX F. LIMELIGHT EXAMPLE SOURCE 326

right_border_width 1

top_border_width 1

bottom_border_width 1

}

preview_pane {

extends :default_border_color, :default_background_color

width "100%"

height "90%"

left_border_width 1

right_border_width 1

bottom_border_width 1

left_margin 8

right_margin 8

bottom_margin 8

font_size 16

font_face "times"

}

edit_pane {

width "100%"

height "90%"

left_margin 8

right_margin 8

bottom_margin 8

}

Styles of styling text

p {

top_margin 3

bottom_margin 3

border_width 1

border_color :blue

}

br {

}

strong {

font_style "bold"

}

em {

font_style "italic"

}

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=326

APPENDIX F. LIMELIGHT EXAMPLE SOURCE 327

Download guis/limelight/bookie/bookie/players/add_chapter.rb

module AddChapter

def mouse_clicked(e)

contents = production.chapter_contents

title = (contents.length + 1).to_s

new_content = {:title => title, :text => ''}

contents << new_content

scene.chapter_list.repopulate

end

end

Download guis/limelight/bookie/bookie/players/bookie.rb

module Bookie

prop_reader :chapter_list, :dual_pane

prop_reader :preview_pane, :edit_pane

prop_reader :preview_tab, :edit_tab

def scene_opened(e)

chapter_list.repopulate

chapter_list.select(1, true)

dual_pane.edit!

end

end

Download guis/limelight/bookie/bookie/players/chapter.rb

module Chapter

attr_accessor :model

def mouse_clicked(e)

scene.dual_pane.current_chapter = @model

end

def select!

style.background_color = :sky_blue

end

def deselect!

style.background_color = :white

end

end

Download guis/limelight/bookie/bookie/players/chapter_list.rb

module ChapterList

def repopulate

remove_all

production = scene.production

build do

production.chapter_contents.each do |chapter_model|

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/players/add_chapter.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/players/bookie.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/players/chapter.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/players/chapter_list.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=327

APPENDIX F. LIMELIGHT EXAMPLE SOURCE 328

chapter :text => chapter_model[:title],

:model => chapter_model,

:id => "chapter_#{chapter_model[:title]}"

end

end

update_selection

end

def update_selection

selected = scene.dual_pane.current_chapter

select(selected[:title]) if selected

end

def select(chapter, click_mouse=false)

children.each { |prop| prop.deselect! }

chapter = scene.find "chapter_#{chapter}"

if chapter

chapter.select!

chapter.mouse_clicked(nil) if click_mouse

end

end

end

Download guis/limelight/bookie/bookie/players/dual_pane.rb

module DualPane

attr_reader :current_chapter

def update_preview_pane

preview_content = RedCloth.new(@current_chapter[:text]).to_html

preview_content.gsub! /\<br\s+\/>/, "\n"

scene.preview_pane.text = preview_content

end

def current_chapter=(chapter)

save!

@current_chapter = chapter

scene.find("chapter_#{@current_chapter[:title]}").select!

scene.edit_pane.text = @current_chapter[:text]

update_preview_pane

scene.chapter_list.update_selection

end

def edit!

scene.preview_pane.style.height = "0"

scene.edit_pane.style.height = "90%"

scene.edit_pane.style.background_color = :sky_blue

scene.preview_tab.style.background_color = :white

scene.edit_tab.style.background_color = :sky_blue

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/bookie/players/dual_pane.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=328

APPENDIX F. LIMELIGHT EXAMPLE SOURCE 329

def preview!

save!

update_preview_pane

scene.edit_pane.style.height = "0"

scene.preview_pane.style.height = "90%"

scene.preview_tab.style.background_color = :sky_blue

scene.edit_tab.style.background_color = :white

end

def save!

if @current_chapter

@current_chapter[:text] = scene.edit_pane.text

scene.preview_pane.text = @current_chapter[:text]

end

end

end

Download guis/limelight/bookie/devtool/props.rb

refresh :players => "button", :text => "Refresh"

Download guis/limelight/bookie/devtool/styles.rb

devtool {

width "100%"

height "100%"

background_color :light_gray

horizontal_alignment :center

vertical_alignment :center

}

Download guis/limelight/bookie/devtool/players/refresh.rb

module Refresh

def mouse_clicked(e)

production.theater.stages.map do |stage|

scene = stage.current_scene

production.producer.open_scene(scene.name, stage) if scene

end

end

end

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/devtool/props.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/devtool/styles.rb
http://media.pragprog.com/titles/jruby/code/guis/limelight/bookie/devtool/players/refresh.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=329

Appendix G

Bibliography

[BLS94] Jess Borgeson, Adam Long, and Daniel Singer. The Com-

pleat Works of Wllm Shkspr (Abridged). Applause Theatre &

Cinema Books, New York, NY, 1994.

[CAD+09] David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesøy,

Bryan Helmkamp, and Dan North. The RSpec Book. The

Pragmatic Programmers, LLC, Raleigh, NC, and Dallas, TX,

2009.

[Dij76] Edsger W. Dijkstra. The problem of The Next Permutation,

chapter 13. Prentice-Hall, 1976.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architec-

ture. Addison Wesley Longman, Reading, MA, 2003.

[HC07] Cay S. Horstmann and Gary Cornell. Core Java. Prentice

Hall, Englewood Cliffs, NJ, eighth edition, 2007.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Mar06] Brian Marick. Everyday Scripting with Ruby: For Teams,

Testers, and You. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2006.

[RTH08] Sam Ruby, David Thomas, and David Heinemeier Hansson.

Agile Web Development with Rails. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, third edition, 2008.

Download from Wow! eBook <www.wowebook.com>

APPENDIX G. BIBLIOGRAPHY 331

[Tat06] Bruce Tate. From Java to Ruby: Things Every Manager

Should Know. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2006.

[TFH08] David Thomas, Chad Fowler, and Andrew Hunt. Program-

ming Ruby: The Pragmatic Programmers’ Guide. The Prag-

matic Programmers, LLC, Raleigh, NC, and Dallas, TX, third

edition, 2008.

Report erratum

this copy is (P1.0 printing, January 2011)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=331

Index
Symbols
#! (shebang), 297, 316

A
acceptance testing

GUI automation libraries, 221

web testing frameworks, 221–228

Ackermann function, 36–38

ActionMailer, 103

ActionPack, 102

ActiveModel, 103

ActiveRecord, 101, 134–146

ActiveResource, 102

ActiveSupport, 102

Ant

compile Java source files, 177

create .jar files, 178

generate Java documentation, 178

importing Rake tasks, 179

integration with JRuby, 174–177

integration with JtestR, 229

integration with JUnit, 234, 238

integration with Rake, 177–179

Apache Derby, 156

Apache Tomcat, 189

application deployment, 93–96,

183–190

application monitoring, 316–321

assertions

in Shoulda, 207

in Test::Unit, 202

associations, 116–117, 142, 154, 160

autotest, 212

B
Bean Scripting Framework, 70

become_java!, 54

Behavior-Driven Development (BDD),

202, 203, 219

blocks, 287–288

booleans, 283

build tools, 165–183

Bundler, 103, 105, 108–109

C
C functions, 309–314

callMethod(), 68

character encoding, 295

classes

annotated, 53–54, 93

create Java class, 53

defining, 275–278

from Java libraries, 34–35, 41–42

importing Java classes, 91

model classes, 134–135, 141–142,

153

modifying dynamically, 279

native Java classes, 30

subclasses in Ruby, 277

utility classes, 135

$CLASSPATH, 40

classpath, 38–40

collections, 285

compilation

ahead-of-time (AOT), 80, 84–91

just-in-time (JIT), 80, 83, 302, 306

stages, 80

see also JRuby compiler

contexts

in RSpec, 203

in Shoulda, 209

in test/spec, 207

controllers, 102, 250, 258–260

CRUD (Create, Read, Update, Delete),

118

Download from Wow! eBook <www.wowebook.com>

CUCUMBER JDB DEBUGGER

Cucumber

step definitions, 222, 223, 225–228

stories, 219–220

table-driven testing, 225–226

D
data file processing

looping on user input, 303

processing multiple files, 305

record separator, 303

string splitting character, 305

data types

dynamic vs. static, 272–273

passing to Java, 291f, 291–292

return values from Java, 292f, 292

in Ruby, 272–273, 281–283

see also type conversions

data validation, 115, 142–145

database adapters, 136

database frameworks, 133–164

DBI, 146–150

debugging

jdb debugger, 299

JRuby options, 298, 299, 308

dynamic types, 272–273

E
editors, 26

Emacs, 26

Embed Core framework, 70

embedding strategies, 74–76

environment variables

CLASSPATH, 39

RUBYOPT, 39

event listeners

in Rubeus, 248–249

in Swing, 244–246

executions (Maven), 181

expectations

in Mocha, 216

in RSpec, 202

in RSpec Mocks, 214

extension API, 309

F
FFI (Foreign-Function Interface),

309–314

filename case sensitivity, 90

G
gems

managing with Bundler, 108–109

managing with Maven, 182

packaging with Warbler, 192

Git, 61

GlassFish, 189

GUIs (Graphical User Interfaces)

Limelight framework, 260–268

Matisse GUI Editor, 251–255

Monkeybars framework, 250–260

Rubeus framework, 246–250

Swing API, 241–246

H
Hibernate, 155–156

HTTP Basic Authentication, 120–122

I
IDEs (integrated development

environments), 26–28

inheritance, 276

installing JRuby, 21–23

instance field mapping, 45

instance method mapping, 44

instance variables, 276

integration testing, 218–220

interactive shell, 24

interpreter functions, 79

J
.jar files

building with Ant, 178

building with JRuby, 185–187

Java integration, see Ruby driving

Java; Ruby from Java

Java runtime

JRuby options, 299–302

Java testing, see Ruby driving Java

java.lang.Runtime, 30

java.lang.System, 30

java_alias, 52

java_import, 42, 43, 91

java_method, 52

java_package, 92

java_send, 52

javax.scripting, 71

JConsole, 319–320

jdb debugger, 299

333
Download from Wow! eBook <www.wowebook.com>

JDBC METHODS

JDBC

drivers for ActiveRecord, 136

integration with JRuby, 161–163

jirb shell, 24

JIT compilation, see JRuby compiler

JMX (Java Management Extensions)

library, 302, 316–321

JNDI (Java Naming and Directory

Interface), 138

JRuby

application deployment, 183–190

building from source, 23

calling C functions, 309–314

client vs. server mode, 302

command-line options, 24–26,

294–306

debugging options, 298, 299, 308

embedding in Java projects, 60–76

filename case sensitivity, 90

IDE recommendations, 26–28

installing, 21–23

integration with Ant, 174–177

integration with Maven, 180–183

interactive shell, 24

interpreter functions, 79

invoking command-line tools, 25

JVM-related options, 299–302

latest build, 22

number of runtimes, 195

profiling, 300, 301

properties, 306–308

on Rails, 103–131

Ruby version compatibility modes,

73, 295, 307

testing Java code, 200–202, 229–239

thread support, 171

using Nailgun server, 298–299

see also JRuby compiler; Ruby

driving Java; Ruby from Java

JRuby compiler

adding annotations, 93

ahead-of-time (AOT) compilation, 81,

84–91

compiling directories of files, 94

compiling to .class file, 28, 85

compiling to Java bytecode, 88–91

embedded Ruby compile modes, 74

hashing Ruby filenames, 95

implementing Java interfaces, 92

importing Java classes, 91

Java package names, 92, 94

just-in-time (JIT) compilation, 80,

81, 83, 302, 306

properties, 306

jruby_head, 22

JSR 223 framework, 71–72

JtestR

background server, 229

integration with Ant, 229

integration with Maven, 231

reusing Java tests, 231

JUnit, 233–239

JVM (Java Virtual Machine)

JRuby options, 299–302

L
layout managers, 246, 248

libraries

external C, 309–314

setting classpath, 38–40

wrapping Java libraries, 34–35

wrapping Ruby libraries, 62–63

Limelight, 260–268

$LOAD_PATH, 40

M
macros, 209–211

Make, 165–166

managed beans, 317–318

Matisse GUI Editor, 251–255

Maven

executions, 181

integration with JtestR, 231

integration with Rake, 181

integration with RSpec, 182

JRuby-Rake plug-in, 180–183

methods

adding annotations, 93

calling Java methods, 34–35

class, 278–279

implementing Java interfaces, 54–55

instance, 44

Java target method selection,

290–291

mocking and stubbing, 212–217

optional arguments, 279–280

overloaded Java methods, 50–53

parameter passing, 45–50, 64–68

redefining, 279

rest arguments, 279

334
Download from Wow! eBook <www.wowebook.com>

MICROSOFT SQL SERVER RSPEC

static, 43

Microsoft SQL Server, 136

migrations, 111–113, 138–141

Mocha, 216–217

mocking and stubbing

Mocha, 216–217

RSpec Mocks, 213–216

Model-View-Controller (MVC) design

pattern, 100, 243

models

in Monkeybars, 250, 256

in Rails, 106, 111–116, 141–142,

145–146

in Swing, 243

Monkeybars, 250–260

monkeypatches, 58

multiruby, 212

MySQL, 137–138

N
Nailgun, 298–299

name mapping, 41–44

NetBeans IDE, 27, 250, 251

number types, 281

O
object orientation, 274

objects

constructing Java objects, 44

passing Java objects as parameters,

47

persistent, using Ribs, 154–161

to_java methods, 48

using Java objects, 29, 44–45

Oracle, 136

overloaded methods, 50–53

P
packaging tools, 183–198

parameter passing, 45–50, 64–68,

291–292

PDF support library, 34

Playbills, 261

players (Limelight), 260, 267–268

productions (Limelight), 260, 262–263

profiling, 298, 300, 301

props (Limelight), 260, 264

R
Rails

application structure, 106–108

associations, 116–117, 142

components, 101–103

console, 117

data validation, 115, 142–145

database adapters, 136

database configuration, 109

HTTP Basic Authentication, 126

installing, 105

migrations, 111–113

model building, 111–113, 115

model objects, 145–146

model testing, 113–115

principles, 99

relations, 128, 129

routes, 122–123

scaffolds, 118–120

thread support, 195

validations, 142–145

views, 123–126

web testing frameworks, 221–228

Rake

building Java programs, 168

cleanup lists, 172

descriptions, 170

directories, 168

external program calls, 168

importing Ant tasks, 179

integration with Ant, 177–179

multitasking, 171

namespaces, 171–172

plug-in for Maven, 180–183

rules, 169

tasks, 166

trace option, 166

using with Warbler, 196–198

Rakefile.rb, 166

Rawr, 250

RedCloth, 242

regular expressions, 282

relational databases, 133–164

remote administration, 319–321

REPL (read-eval-print loop), 24

REST (Representational State Transfer,

103, 104

Ribs, 154–161

RSpec

integration with Maven, 182

335
Download from Wow! eBook <www.wowebook.com>

RUBEUS TEST DOUBLES

RSpec Mocks, 213–216

unit testing framework, 202–205

Rubeus, 36, 246–250

Ruby driving Java

annotated classes, 53–54, 93

calling Java functions, 30

catching Java exceptions, 50

extending Ruby programs, 36–38

implementing Java interfaces,

54–55, 67, 92

loading Java classes, 41–42

method selection, 290–291

monkeypatches, 58

name mapping, 41–44

overloaded Java methods, 50–53

return values, 292f, 292

setting classpath, 38–40

testing Java code, 200–202, 229–239

troubleshooting, 55–58

type conversions, 46–50, 291, 292f

using Java objects, 29, 44–45

wrapping Java libraries, 34–35

Ruby from Java

calling compiled Ruby, 87–91

catching Ruby exceptions, 69

compile mode options, 74

embedding strategies, 74–76

passing strings, 64

ScriptingContainer objects, 62, 66,

72–74

supported embedding frameworks,

70

thread support, 72–73

wrapping Ruby libraries, 62–63

Ruby language

assignment operator, 284

blocks, 287–288

booleans, 283

class definitions, 275–278

class methods, 278–279

class modifications, 279

collections, 285

control structures, 286

data types, 281–283

displaying information, 289

dynamic typing, 272–273

exceptions, 288–289

expressions vs. statements, 274

inheritance, 276

initializers, 276

loading files, 289

object orientation, 274

operators, 284–285

optional method arguments,

279–280

redefining methods, 279

regular expressions, 282

rest arguments, 279

scope of variables, 273

splatting, 280

strings, 281

strong typing, 273

subclasses, 277

symbols, 282

user input, 289

variable declarations, 273

Ruby/DL, 310

RubyGems, 25

RubyMine IDE, 27

RUBYOPT environment variable, 39

RVM (Ruby Version Manager), 21

S
scenes (Limelight), 260, 264

Selenium, 221–223

Sequel, 150–154

shebang line (#!), 297, 316

Shoulda, 207–211

signal callbacks, 312–314

Sinatra, 318

single-threaded context, 73

source obfuscation, 81, 94

splatting, 280

stages (Limelight), 260, 263

static fields, 43

static method mapping, 43

stories, 219–220

Story Runner, 218

strings, 281

specify autosplit character, 305

strong typing, 273

stubbing, see mocking and stubbing

styles (Limelight), 261, 264–267

Swing API

via JRuby, 241–246

via Rubeus framework, 246–250

sysadmin task automation, 315–316

T
test doubles, 212

336
Download from Wow! eBook <www.wowebook.com>

TEST MACROS ZENTEST

test macros, 209–211

test/spec, 205–207

Test::Unit, 200–202

running tests from JUnit, 233–239

testing, see acceptance testing;

integration testing; unit testing;

web testing frameworks

TextMate, 26

theaters (Limelight), 260

thread support, 72–73

Tk widget set, 241

to_java, 48

Tomcat, 189

toString(), 64

troubleshooting

jdb debugger, 299

JRuby debugging options, 298, 299,

308

profiling, 300, 301

truthiness, 283

type conversions, 46–50, 76, 291, 292f

U
unit testing

Mocha, 216–217

mocking and stubbing, 212–217

RSpec, 202–205

RSpec Mocks, 213–216

Shoulda, 207–211

test/spec, 205–207

Test::Unit framework, 200–202

ZenTest tools, 212

unit_diff, 212

UNIX signal callbacks, 312–314

V
views, 123–126, 250, 256–259

Vim, 26

W
.war files, 188–192

Warbler

application autodetection, 191–192

application deployment, 189

configuration, 193–195

gem packaging, 192, 194

installing, 188

task listing, 196

.war file structure, 188, 191f

web.xml creation, 192–195

Winstone web server, 197

Watir, 221, 223–224

web testing frameworks

Selenium, 221–223

Watir, 223–224

Webrat, 224–228

Webrat, 224–228

Win32API, 310

Windows library calls, 311–312

Winstone, 197

Z
ZenTest, 212

337
Download from Wow! eBook <www.wowebook.com>

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of January 2011; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails 2009 9781934356166 792

Arduino: A Quick-Start Guide 2011 9781934356661 275

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Driving Technical Change: Why People on Your

Team Don’t Act on Good Ideas, and How to

Convince Them They Should

2010 9781934356609 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

Continued on next page

Download from Wow! eBook <www.wowebook.com>

pragprog.com

Title Year ISBN Pages

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2010 9781934356562 320

HTML5 and CSS3: Develop with Tomorrow’s

Standards Today

2010 9781934356685 280

Interface Oriented Design 2006 9780976694052 240

iPad Programming: A Quick-Start Guide for

iPhone Developers

2010 9781934356579 248

iPhone SDK Development 2009 9781934356258 576

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Guide to Git 2010 9781934356722 168

Pragmatic Guide to JavaScript 2010 9781934356678 150

Pragmatic Guide to Subversion 2010 9781934356616 150

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Continued on next page

Download from Wow! eBook <www.wowebook.com>

Title Year ISBN Pages

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 944

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails for .NET Developers 2008 9781934356203 300

Rails for PHP Developers 2008 9781934356043 432

Rails Recipes 2006 9780977616602 350

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

2010 9781934356593 300

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

2010 9781934356555 352

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

Test-Drive ASP.NET MVC 2010 9781934356531 296

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Agile Samurai: How Agile Masters Deliver

Great Software

2010 9781934356586 280

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

Continued on next page

Download from Wow! eBook <www.wowebook.com>

Title Year ISBN Pages

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 232

The RSpec Book: Behaviour-Driven Development

with RSpec, Cucumber, and Friends

2010 9781934356371 448

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

Download from Wow! eBook <www.wowebook.com>

The Pragmatic Guide Series

Pragmatic Guide to JavaScript
JavaScript is now a powerful, dynamic language

with a rich ecosystem of professional-grade

development tools, infrastructures, frameworks,

and toolkits. You can’t afford to ignore it–this book

will get you up to speed quickly and painlessly.

Presented as two-page tasks, these JavaScript tips

will get you started quickly and save you time.

Pragmatic Guide to JavaScript

Christophe Porteneuve

(150 pages) ISBN: 978-1934356-67-8. $25.00

http://pragprog.com/titles/pg_js

Pragmatic Guide to Git
New Git users will learn the basic tasks needed to

work with Git every day, including working with

remote repositories, dealing with branches and

tags, exploring the history, and fixing problems

when things go wrong. If youâĂŹre already familiar

with Git, this book will be your go-to reference for

Git commands and best practices.

Pragmatic Guide to Git

Travis Swicegood

(168 pages) ISBN: 978-1-93435-672-2. $25.00

http://pragprog.com/titles/pg_git

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/pg_js
http://pragprog.com/titles/pg_git

Agile Methods

Agile in a Flash
The best agile book isn’t a book: Agile in a Flash is

a unique deck of index cards that fit neatly in your

pocket. You can tape them to the wall. Spread them

out on your project table. Get stains on them over

lunch. These cards are meant to be used, not just

read.

Agile in a Flash: Speed-Learning Agile Software

Development

Jeff Langr and Tim Ottinger

(110 pages) ISBN: 978-1-93435-671-5. $15.00

http://pragprog.com/titles/olag

The Agile Samurai
Faced with a software project of epic proportions?

Tired of over-committing and under-delivering?

Enter the dojo of the agile samurai, where agile

expert Jonathan Rasmusson shows you how to

kick-start, execute, and deliver your agile projects.

You’ll see how agile software delivery really works

and how to help your team get agile fast, while

having fun along the way.

The Agile Samurai: How Agile Masters Deliver

Great Software

Jonathan Rasmusson

(275 pages) ISBN: 9781934356586. $34.95

http://pragprog.com/titles/jtrap

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/olag
http://pragprog.com/titles/jtrap

Ruby and Rails

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

Agile Web Development with Rails
Rails just keeps on changing. Rails 3 and Ruby 1.9

bring hundreds of improvements, including new

APIs and substantial performance enhancements.

The fourth edition of this award-winning classic

has been reorganized and refocused so it’s more

useful than ever before for developers new to Ruby

and Rails. This book isn’t just a rework, it’s a

complete refactoring.

Agile Web Development with Rails: Fourth

Edition

Sam Ruby, Dave Thomas, and David Heinemeier

Hansson, et al.

(500 pages) ISBN: 978-1-93435-654-8. $43.95

http://pragprog.com/titles/rails4

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/rails4

More Languages

Seven Languages in Seven Weeks
In this book you’ll get a hands-on tour of Clojure,

Haskell, Io, Prolog, Scala, Erlang, and Ruby.

Whether or not your favorite language is on that

list, you’ll broaden your perspective of

programming by examining these languages

side-by-side. You’ll learn something new from each,

and best of all, you’ll learn how to learn a language

quickly.

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

Bruce A. Tate

(300 pages) ISBN: 978-1934356-59-3. $34.95

http://pragprog.com/titles/btlang

SQL Antipatterns
If you’re programming applications that store data,

then chances are you’re using SQL, either directly

or through a mapping layer. But most of the SQL

that gets used is inefficient, hard to maintain, and

sometimes just plain wrong. This book shows you

all the common mistakes, and then leads you

through the best fixes. What’s more, it shows you

what’s behind these fixes, so you’ll learn a lot about

relational databases along the way.

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

Bill Karwin

(300 pages) ISBN: 978-19343565-5-5. $34.95

http://pragprog.com/titles/bksqla

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/btlang
http://pragprog.com/titles/bksqla

Fixing the Real World

Driving Technical Change
Your co-workers’ resistance to new technologies

can be baffling. Learn to read users’ "patterns of

resistance"—and then dismantle their objections.

Every developer must master the art of

evangelizing. With these techniques and strategies,

you’ll help your organization adopt your

solutions—without selling your soul to

organizational politics.

Driving Technical Change: Why People On Your

Team Don’t Act On Good Ideas, and How to

Convince Them They Should

Terrence Ryan

(200 pages) ISBN: 978-1934356-60-9. $32.95

http://pragprog.com/titles/trevan

Debug It!
Debug It! will equip you with the tools, techniques,

and approaches to help you tackle any bug with

confidence. These secrets of professional debugging

illuminate every stage of the bug life cycle, from

constructing software that makes debugging easy;

through bug detection, reproduction, and

diagnosis; to rolling out your eventual fix. Learn

better debugging whether you’re writing Java or

assembly language, targeting servers or embedded

micro-controllers, or using agile or traditional

approaches.

Debug It! Find, Repair, and Prevent Bugs in Your

Code

Paul Butcher

(232 pages) ISBN: 978-1-9343562-8-9. $34.95

http://pragprog.com/titles/pbdp

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/trevan
http://pragprog.com/titles/pbdp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Using JRuby

http://pragprog.com/titles/jruby

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jruby.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/jruby
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jruby
www.pragprog.com/catalog

	Contents
	Foreword by Matz
	Foreword by Bruce Tate
	Preface
	Why JRuby?
	What's in This Book
	Who This Book Is For
	Online Resources
	Conventions
	Acknowledgments

	JRuby Core
	Getting to Know JRuby
	Installing JRuby
	Kicking the Tires
	The Interactive Shell
	The Command Line
	IDEs
	The Compiler
	Java Integration
	Wrapping Up

	Driving Java from Ruby
	Seeing Java Through Ruby Glasses
	Dealing with the Classpath
	Loading Classes
	Using Objects
	Passing Parameters
	Calling Overloaded Methods
	Implementing a Java Interface
	Troubleshooting
	Wrapping Up

	Ruby from Java: Embedding JRuby
	A Real-Life Example: Source Control
	The Nitty-Gritty
	Embedding Strategies
	Wrapping Up

	The JRuby Compiler
	Compiler 101
	A Simple Compiled Example
	The Details
	Wrapping Up

	JRuby and the World
	Introduction to Rails
	What Is Rails?
	Going Rouge
	Building Our Models
	Restaurant Administration 101
	Open to the Public
	Wrapping Up

	JRuby and Relational Databases
	Ruby Database Frameworks
	Ribs
	JDBC
	Wrapping Up

	Building Software for Deployment
	Rake
	Ant
	Maven
	Packaging for Deployment
	Wrapping Up

	Testing Your Code with JRuby
	Ruby Test Frameworks
	Going to the Next Level with ZenTest
	Mocking and Stubbing
	Wrapping Up

	Beyond Unit Tests
	Writing High-Level Tests with Cucumber
	Acceptance Testing
	Plugging Into Java
	Wrapping Up

	Building GUIs with Swing
	JRuby to the Rescue!
	Swing
	Rubeus
	Monkeybars
	Limelight
	Wrapping Up

	Reference
	Ruby 101
	Meet Ruby
	A Closer Look
	Getting the Job Done

	Ruby/Java Interoperability
	How Method Selection Works
	Parameter Types
	Return Values

	Configuring JRuby
	Command-Line Options
	Properties

	Calling External C Code
	Foreign-Function Interface

	JRuby for Sysadmins
	Automating Tasks
	Monitoring Applications
	Wrapping Up

	Limelight Example Source
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

