The =
R‘eigg'(l)lauc
grammers

Using JRuby

Bringing Ruby to Java !_
_ Charles O Nutter,
Nick Sieger,
P Thomas Enebo,
'§~ Ola Bini, and

Ian Dees

Forewords by
Yukihiro Matsumoto
and Bruce Tate

Edited by Jacquelyn Carter

e
The Facets 1 £ of Ruby Series

What Readers Are Saying About Using JRuby

I was very happy to discover the JRuby project, my favorite program-
ming language running on what’s probably the best virtual machine
in the world. This book really covers every in and out of this fantastic
project.

» Peter Lind
Technical consultant, Valtech

I was floored by the amount of technical detail the authors managed
to cram in here! And they did it with such an approachable and read-
able tone that this book was both easy and fun to read. I can’t remem-
ber the last technical book that did that for me. The breadth of cover-
age is astounding, too.

» Kent R. Spillner

My JRuby apps will go live in two weeks. Without your book and the
Ruby community, I would never have gotten this far.

» Pinit Asavanuchit
Intersol Consulting Co., Ltd.

I really liked the clear structure of the book and all the covered
libraries/dependencies (like Rake, Ant, Maven, testing frameworks).
This clearly outlines the whole JRuby universe so that new users will
immediately see what's available and how to start using it.

» Vladimir Sizikov
Senior engineer, Oracle

This book will open the eyes of any Java programmer who wants to
take their art to the next level. Read it.

» Geoff Drake
Owner, Managed Design

This is one of those books that you don’t want to put down and you
can’t wait to get back to. For a technical publication, that is extremely
rare. Usually I find myself having a hard time trying to stay awake.
After reading this book, I can say I have a very good understanding of
what JRuby is, how it interacts with Java, and a working knowledge
of many of the supporting tools to accomplish a wide range of tasks.
The way this book is organized, it makes a great reference for future
development.

> Gale Straney
Senior software design engineer, Tektronix

This book makes a compelling case for JRuby. A must-have to bring
some Ruby goodness to your Java powerhouse.

» Fred Daoud
Author, Stripes...and Java Web Development Is Fun Again, and
Getting Started with Apache Click

This book is an excellent resource for JRuby and will without a doubt
facilitate JRuby adoption in Java-centric enterprises.

» Bharat Ruparel
Senior information architect, America’s Test Kitchen

Download from Wow! eBook <www.wowebook.com>

UsingJRuby

Bringing Ruby to Java

Charles O Nutter
Nick Sieger
Thomas Enebo
Ola Bini

[an Dees

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wimpsett
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2011 The Pragmatic Programmers LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-65-4
ISBN-13: 978-1-934356-65-4
Printed on acid-free paper.
P1.0 printing, January 2011
Version: 2011-1-26

http://www.pragprog.com

_ Confents

Foreword by Matz 11
Foreword by Bruce Tate 12
Preface 14
WhyJRuby? 14
What'sinThisBook 15
Who This BookIsFor. 16
Online Resources 16
Conventions, 17
Acknowledgments L oL 18
I JRuby Core 19
1 Getting to Know JRuby 20
1.1 InstallingJRuby 21
1.2 KickingtheTires 23
1.3 The Interactive Shell 24
1.4 TheCommandLine 24
1.5 IDEs. i 26
1.6 TheCompiler. 28
1.7 Javalntegration 29
1.8 WrappingUp 30
2 Driving Java from Ruby 31
2.1 Seeing Java Through Ruby Glasses. 31
2.2 Dealing with the Classpath 38
2.3 LoadingClasses 41
2.4 UsingObjects 43
2.5 Passing Parameters 45

2.6 Calling Overloaded Methods 50

CONTENTS <« 8

2.7 Implementing a Java Interface 54
2.8 Troubleshooting 55
29 WrappingUp 58
3 Ruby from Java: Embedding JRuby 60
3.1 A Real-Life Example: Source Control 61
3.2 TheNitty-Gritty v v vve oo ettt 70
3.3 Embedding Strategies. 74
34 WrappingUp o 77
4 The JRuby Compiler 78
4.1 Compiler 101o oL 78
4.2 A Simple Compiled Example 85
43 TheDetails 91
44 WrappingUp oo o i 96
II JRuby and the World 97
5 Introduction to Rails 98
5.1 WhatlIsRails? 98
52 GoingRouge 105
5.3 Building Our Models 111
5.4 Restaurant Administration 101 118
5.5 Open tothe Public 122
56 WrappingUp 132
6 JRuby and Relational Databases 133
6.1 Ruby Database Frameworks 133
6.2 Ribs o 154
6.3 JDBC e 161
6.4 WrappingUp 164
7 Building Software for Deployment 165
7.1 Rake. 165
7.2 Ant ... 173
7.3 Maven it 180
7.4 Packaging for Deployment 183
75 WrappingUp o 198

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=8

CONTENTS d 9

8 Testing Your Code with JRuby 199
8.1 Ruby Test Frameworks 200
8.2 Going to the Next Level with ZenTest 212
8.3 Mocking and Stubbing 212
84 WrappingUp 217
9 Beyond Unit Tests 218
9.1 Writing High-Level Tests with Cucumber 218
9.2 Acceptance Testing 221
9.3 PluggingIntodJava. 229
94 WrappingUp 239
10 Building GUIs with Swing 240
10.1 JRuby tothe Rescue! 240
10.2 SWIngo 241
10.3 Rubeus 246
10.4 Monkeybars00 250
10.5 Limelight 260
10,6 WrappingUp 268
III Reference 271
A Ruby 101 272
Al MeetRuby 272
A2 ACloserLook 275
A.3 GettingthedobDone 289
B Ruby/Java Interoperability 290
B.1 How Method Selection Works 290
B.2 Parameter Types. 291
B.3 ReturnValues 292
C Configuring JRuby 294
C.1 Command-Line Options 294
C.2 Properties. 306
D Calling External C Code 309
D.1 Foreign-Function Interface 309

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=9

CONTENTS <« 10

E JRuby for Sysadmins 315
E.1 AutomatingTasks 315
E.2 Monitoring Applications 316
E3 WrappingUp 321
F Limelight Example Source 322
G Bibliography 330
Index 332

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=10

I love the term diversity. Di-ver-si-ty. Doesn’t that sound great? JRuby
surely embodies the value of diversity.

Some might think we can utilize our resources more efficiently without
diversity. But in the open source world, the number of resources (that
is, contributors) is not really limited. If a project is really attractive, we
can get more people interested in it. If we had a less diverse ecosystem
without projects like JRuby, I don’t think we would get more resources.
Instead, a lot of existing contributors would have dismissed Ruby for
lack of diversity.

I created Ruby to make my programming happier. Since its creation, it
has helped other programmers as well. I am proud that my masterpiece
has made the world of programming a little bit better. JRuby made
the Ruby language reach the Java world. JRuby made it possible to
run Ruby on platforms like Google App Engine and Android. For this
one thing, I will appreciate JRuby forever. Long live JRuby. Long live
diversity in the Ruby world.

I hope you will enjoy Ruby on the JVM. Ruby will be with you. Enjoy
programming, on whatever platform you love.

Yukihiro “Matz” Matsumoto
August 2010

In late 2004, I was a Java author riding on an airport bus with Dave
Thomas. At the time, I was frustrated with the increasing complexity of
the Java language but thinking it was the only game in town. Dave con-
vinced me to give Ruby a try. When [finally did, I found a language that
was more expressive and productive than anything I'd ever used before.
In a short year, I completed my first and second commercial Ruby appli-
cations and knew, beyond a shadow of a doubt, that Ruby was a better
language for the types of applications I was writing. I wanted to share
that idea with managers like the ones I encountered in my consulting
practice, so I wrote From Java to Ruby |] to emphasize that Ruby
wasn't just a smart move for programmers. Ruby made business sense.

Thankfully, I didn’'t have to lean solely on my own thin experience. To
make the most critical points, I interviewed some important experts
in complex areas such as design, adoption, and deployment. Among
these people were Thomas Enebo and Charles Nutter, two of the earliest
committers of the JRuby project. In those interviews, they elegantly
made the case that a mature Ruby implementation on the JVM would
lead to a powerful set of advantages.

You see, Ruby, the beautiful language, is only part of the story. Even
this powerful, productive language needs a story that goes beyond the
ideas embedded in the syntax and semantics. Real applications will
have requirements encompassing performance, politics, and deploy-
ment. Truth be told, in 2006, Ruby was sometimes difficult to sell into
the back office for some of these reasons.

What a difference four years makes. Thomas, Charles, and I have
leaned hard on Ruby for these four years, supported by a growing com-
munity of many thousands of Ruby developers and customers. We've

FOREWORD BY BRUCE TATE <« 13

regularly run into each other in places like Austin, Texas, and Matsue,
Japan. Each time, I've delightfully followed the progress of JRuby. This
platform has delivered on every promise. Consider the following:

¢ JRuby is no longer a hobby. Though it holds fast to its open source
foundations, it now has aggressive corporate sponsorship. Engine
Yard has proven to be a wonderful steward, and several employees
are dedicated to its success.

* Big customers have deployed major applications on JRuby, open-
ing up the enterprise to Ruby. By allowing the back office to rely
on the robust, reliable JVM, deploying Ruby is no longer the risk it
once was. Each Ruby application becomes just bytecode, virtually
indistinguishable from other Java applications.

¢ JRuby supports the Java frameworks that you need to support.
Sure, the lower-level APIs are there, such as JDBC. But you can
also build your nimble Ruby user interface directly on your Hiber-
nate back end the way you want.

* ThoughtWorks, the dynamic consultancy that aggressively pushes
the boundaries of developer productivity in the context of difficult
problems, has used JRuby to deliver both products and customer
applications on far more aggressive schedules than they could
have with conventional languages.

So, JRuby is delivering on the promise of a marriage between the beau-
tiful language on the robust and reliable JVM, and we've come full cir-
cle. Now, I'm writing a foreword for Thomas and Charles, and I could not
be more thrilled. You see, the last missing piece of the JRuby puzzle is
effective documentation. That’s where Using JRuby steps in. This book
tells the perfect story at the right time. This team of authors is uniquely
positioned to give you the tips and tricks from the inside. They've nur-
tured this project from its infancy to where it is today. They've used
JRuby to deliver real value to paying customers. And they're gifted com-
municators who can effectively tell this story.

I've been waiting for this day for a long time, and I could not recom-
mend this book more highly. Congratulations, Charles, Thomas, Nick,
Ola, and Ian. You've created something amazing and described it in a
beautiful book.

Bruce Tate (Author, From Java to Ruby, 2006)
Austin, Texas, 2010

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=13

_ DPrefacc

You know all the stereotypes of the Java and Ruby programming lan-
guages. The enterprise vs. the upstart. The staid, corporate safe choice
against the free-wheeling new kid in town.

Look a little deeper, though, at what the languages have in common.
They're about the same age (both had their 1.0 releases in 1996). Both
their respective inventors were inspired by their favorite object-oriented
language features. And both Java and Ruby have touched off an ava-
lanche of Internet love-ins and flame-fests.

So, maybe it was inevitable that someone would try to combine the two.
JRuby is an implementation of the Ruby programming language written
in 100 percent Java.

Why JRuby?

JRuby is just another Ruby interpreter. It runs the same Ruby code
you've been writing all along. But it’s also a better Ruby interpreter. You
get true multithreading that can use all your computer’s cores from one
process, plus a virtual machine that’s been tuned for a decade and a
half. All of this book’s authors have seen our Ruby programs speed up
just by moving them to JRuby.

JRuby is also just another .jor file. You don’t need to install anything
on your Java workstation to try it. And you don’t need to do anything
special to deploy your Ruby code to your production server. Just hand
your sysadmin a .jar like you always do, and they might not even notice
you used Ruby—except that you delivered your app in half the time and
encountered fewer bugs down the road.

WHAT’S IN THIS Book <« 15

%ﬁ lan Says. ..

R in_Real Lif

At work, we needed to sift through a mound of engineering
data. Ruby was a natural fit for this task, and we had working
code in minutes. But sharing this program with colleagues was
a different story.

With regular Ruby, we ran info trouble getting the code from
one machine to another—even though they were both run-
ning Windows XP We had to direct people to install a particu-
lar outdated version of MySQL, manually copy DLLs into Ruby’s
installation path, and then install another Ruby library. Even if
they got all that right, they’d still encounter error messages like
“msvert-ruby18.dll was not found.”

Enter JRuby. Its database drivers don’t have to be compiled
for each specific operating system and build environment, so
things just worked out of the box. The installation procedure
shrank to “copy the file, and then type java -jar ourprogram.jar.”

What’s in This Book

The first half of this book is about JRuby. In Chapter 1, Getting to
Know JRuby, on page 20, we'll hit the ground running with a few quick
examples that showcase JRuby’s main features. In Chapter 2, Driv-
ing Java from Ruby, on page 31, we’ll show you how to call into Java
libraries from Ruby code. Then we’ll go the other direction in Chapter 3,
Ruby from Java: Embedding JRuby, on page 60 and extend a Java pro-
gram using Ruby. Finally, Chapter 4, The JRuby Compiler, on page 78
will answer the question, “Isn’t JRuby just a Ruby compiler for Java?”
(Short answer: no.)

In the second half, we’ll discuss how JRuby relates to the outside world
of libraries, tools, and legacy code. We'll start with Chapter 5, Intro-
duction to Rails, on page 98, in which you’ll build a database-backed
website in Ruby’s most famous framework. Web development leads nat-
urally to databases and deployment.Chapter 6, JRuby and Relational

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=15

WHO THIS Book Is ForR < 16

Databases, on page 133 and Chapter 7, Building Software for Deploy-
ment, on page 165 will cover several Java and Ruby libraries in these
areas.

In Chapter 8, Testing Your Code with JRuby, on page 199 and Chap-
ter 9, Beyond Unit Tests, on page 218, you'll find out how to use Java
tools to run Ruby tests and how to use Ruby frameworks to exercise
Java code. You'll finish off the main part of the book in Chapter 10,
Building GUIs with Swing, on page 240, where you’ll find what many
Rubyists have long sought: a cross-platform GUI toolkit.

Who This Book Is For

This book is for people looking to bring the Ruby and Java worlds
together. Some of you are seasoned Java developers who are interested
in seeing what the Ruby language can do for you. Others are familiar
with Ruby and wondering what they need to know about running their
code on the Java platform.

If your primary language has been Java up until now, you may want
to start with the quick crash course on Ruby syntax in Appendix A, on
page 272. If you're a Rubyist who’s new to Java, a book like Core Java
[] can help fill in the gaps, without bogging you down in “how to
program” lessons.

Online Resources

We encourage you to try the code samples you see in this book by typing
them in by hand. If you get stuck or need a little more context, the
source for the examples is available at http://pragprog.com/titles/jruby/
source_code.

We designed these programs to run on JRuby version 1.5.5, with spe-
cific versions of various libraries we mention in the text. If you want to
use a newer version of JRuby or one of the libraries, see http://github.
com/jruby/using_jruby to track our updates to the example code.

If something isn’t working or you have a question about JRuby that we
haven’t covered here, please let us know in the forums at http://forums.
pragprog.com/forums/125. We’d love to hear from you.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://pragprog.com/titles/jruby/source_code
http://pragprog.com/titles/jruby/source_code
http://github.com/jruby/using_jruby
http://github.com/jruby/using_jruby
http://forums.pragprog.com/forums/125
http://forums.pragprog.com/forums/125
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=16

CONVENTIONS <« 17

Conventions

Let’s skip the description of which fonts we're using for code and em-
phasis, shall we? You'll pick that up from context. But there are a cou-
ple of situations that your typical tech book doesn’t have to face. It's
probably worth adopting a few new conventions for those.

The first is function names. Books seem to have a tradition of spelling
functions and methods with trailing parentheses, as in a Java class’s
main() method. In Ruby, though, parentheses tend to be optional—and
there are some contexts where they’re almost never used. So, we’ll fol-
low that dual convention in the print and PDF versions of this book.
When we mention function names in the text, you'll see parentheses
after someJavaMethod() but not after some_ruby_method.

The next convention we've adopted is a single notation for the command
line, for the most part. Windows command prompts use something
like C:\> as your cue to begin typing, while Mac and Linux machines
typically use $ or %. Windows uses backslashes to separate directory
names, while other platforms uses forward slashes. Other than that,
there’s little difference between invoking JRuby on one operating sys-
tem or the other.

Accordingly, we're going to use the notation from bash, the default shell
on the Mac and on many Linux distributions. When you see this:

$ jruby some_directory/program.rb

...you'll know not to type the dollar sign and to use whatever kind of
slashes your system requires. (Actually, the latter is a bit of a moot
point, because JRuby does fine with forward slashes on Windows.) For
the few specific cases where the syntax is significantly different between
Windows’s cmd.exe and UNIX’s bash, we’ll spell out both cases.

Speaking of differences between systems, many UNIX-like systems re-
quire you to log in as the root user before installing software. Others
have you preface any administration-level commands with sudo. Most
of your authors run JRuby from regular (nonadministrator) directories
in our own home directories, making sudo unnecessary. Accordingly,
the commands to install software in this book will typically just say
gem install some_library, rather than sudo gem install some_library.

Finally, a word on program output. We use three variations of the tradi-
tional Ruby “hash rocket” sign (which looks like this: # =>) to show the

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=17

ACKNOWLEDGMENTS <« 18

result of running a particular piece of code. These marks are just Ruby
comments. JRuby ignores them, and you don’t need to type them. But
they come in handy for documenting how a function works.

This line doesn't print

anything, but the expression

has a return value
result = 2 + 2 # =>4

This Tine prints a message
when you run the program:
puts 'hello'.capitalize # >> Hello

This Tine causes an error
message to appear:
Foo # ~> Uninitialized constant Foo

This way, we can show you what the values of different variables are in
the middle of a code excerpt, without having to scatter a bunch of print
functions all over.

Acknowledgments

To our initial tech reviewers—Fred Daoud, Steven Deobald, Geoff
Drake, Yoko Harada, Peter Lind, David Rupp, Vladimir Sizikov, Kent
Spillner, and Gale Straney—thank you for helping us sand down the
rough edges. To folks who joined the beta release process and wrote
to us in the forums—Matt Smith, David Mitchell, Arkadiy Kraportov,
Sam Goebert, Robert Dober, Pinit Asavanuchit, Bharat Ruparel, Hans-
Georg, and Paul Sideleau—the book is better because of your com-
ments, and we thank you.

To our wonderful editor, Jackie Carter—thank you for being equal parts
project champion, product manager, writing coach, and cheerleader.
To Dave and Andy, the Pragmatic Programmers—thank you for giv-
ing this book a long runway and a chance to fly. To our ever-patient
families—thank you for enduring our absence, obsession, and distrac-
tion. To Matz—thank you for creating Ruby, our favorite programming
language. To Matz and Bruce—thank you for your support of this pro-
ject and for the lovely forewords. To the entire community of JRuby
fans, contributors, and users—thank you for your support of this, our
favorite implementation of Ruby.

Ready to jump into JRuby? Let’s go!

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=18

Part 1

JRuby Core

Chapter 1

You're now standing on the threshold of the JRuby universe, where
you’ll have your pick of the world’s best Ruby and Java libraries. With
the techniques in this book and the tools available to you, you’ll be able
to do amazing things with JRuby. Here are just a few possibilities:

* Deploy a Ruby on Rails web application to Google’s App Engine
service.!

 Target the latest Android smartphones with your Ruby code.?
* Create dazzling, cross-platform GUIs with clean, elegant code.?

* Build your project on solid libraries written in Java, Scala, Clojure,
or other JVM languages.

Do these sound like intriguing projects? They’ll all be within your grasp
by the time you reach the end of this book. You'll see how to code,
test, and package web applications for easy employment. You'll learn
the nuances of compiling code and how to adjust to the limitations
of mobile platforms. You'll design user interfaces using both graphical
layout tools and straightforward code.

Before we get into those specific uses, we’d like to take you on a tour of
the best of JRuby in this chapter. We'll start by showing you a couple
of easy ways to get JRuby onto your system (including a hassle-free,
no-installation option) and what to do with it once you have it.

1. http://rails-primer.appspot.com
2. http://ruboto.org
3. http://www.infog.com/presentations/martin-jruby-limelight

http://rails-primer.appspot.com
http://ruboto.org
http://www.infoq.com/presentations/martin-jruby-limelight

INSTALLING JRUBY < 21

When you have JRuby running, you'll see firsthand how JRuby is a
top-notch Ruby environment. You'll try out code interactively in a live
interpreter, which is a great way to learn the language and its libraries.
You'll write a stand-alone script just like the ones you use for everyday
system automation tasks.

We'll also show you how JRuby does a few things other Rubies can’t do.
You'll compile a Ruby program to a Java .class file. You'll call seamlessly
into Java libraries just as easily as calling Ruby code.

Ready to begin your journey?

1.1 Installing JRuby

JRuby is built for easy deployment. After all, it needs to fit in envi-
ronments ranging from your development laptop to a tightly controlled
production server. Accordingly, there are a lot of ways to get it onto
your system. We'll look at a couple of the more common ones here.

Using an Installer

The easiest way to install JRuby is to use one of the prebuilt installers
available from the official download site.* These will take care of the
“fit and finish” level of detail, such as setting up your PATH environment
variable to make finding JRuby easier.

The JRuby team currently maintains installers for Windows and Mac
machines. If youre on Linux, your distribution may package its own
JRuby build. For example, on Ubuntu you can type this:

$ sudo apt-get install jruby
Most Linux distributions don’t upgrade to the latest JRuby release the
instant it comes out. If you want to stay with the latest and greatest,

you might prefer installing from an archive instead; we’ll describe how
to do this later.

Using the Ruby Version Manager

The Ruby Version Manager (RVM) is a tool for Mac and Linux that can
automatically install and switch among several different versions of

4, http://jruby.org/download

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://jruby.org/download
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=21

INSTALLING JRUBY < 22

Ruby at once.® A large part of its audience consists of Ruby library
developers, who need to test their software in many different Ruby
environments.

Even if JRuby is the only Ruby you plan on using, you may want to
take a look at RVM. As of this writing, here are the JRuby versions
RVM knows about:

$ rvm Tist known | grep jruby

jruby-1.2.0

jruby-1.3.1

jruby-1.4.0

jruby(-1.5.5)
jruby-head

The last item, jruby-head, is a build from the latest bleeding-edge source
code. The one before it, jruby-1.5.5 (or just jruby), is the latest stable
release as of this writing. Here’s how you’d install and start using 1.5.5:

$ rvm dinstall jruby
$ rvm use jruby

If you're a long-time RVM user, you'll want to upgrade to the latest RVM
version before using it to install JRuby.

From an Archive

If you have a heavily customized setup or just like doing things your-
self, you can get a .zip or .tar.gz archive from the same download page.
Extract the archive somewhere convenient on your system, such as C:\
or /opt. You can run JRuby straight from its own bin subdirectory, but
you’ll probably find it more convenient to add it to your PATH.

On UNIX (including Mac OS X), you can do the following:
$ export PATH=$PATH:/opt/jruby/bin

On Windows, you’ll need to set both the PATH and JAVA_HOME variables:

C:\> SET PATH=%PATH%;C:\jruby\bin
C:\> SET JAVA_HOME="C:\Program Files\Java\jdkl.5.0_19"

You'll also need a recent version of the Java runtime, at least version
1.5.6

5. http://rvm.beginrescueend.com
6. http://java.com/en/download

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://rvm.beginrescueend.com
http://java.com/en/download
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=22

KICKING THE TIRES < 23

From Source Code

If you're never satisfied with anything less than the latest features and
bug fixes, you may want to try your hand at building JRuby from
source. You'll need the following in addition to the Java runtime men-
tioned earlier:

* The Ant build system, version 1.7 or newer’
* The Git source control system®

First, grab the latest code with Git:

$ git clone git://github.com/jruby/jruby.git

Next, jump into the jruby directory that just got created:

$ cd jruby

If you want to compile the source of a specific release, such as JRuby
1.5.5, run the git checkout command:®

$ git checkout 1.5.5

Finally, build the software:

$ ant clean
$ ant
$ ant test

Assuming the tests pass, you're ready to run JRuby. It’s perfectly valid
to specify a full path to jruby or jruby.exe every time you run it—JRuby
will automatically figure out where its support libraries are relative to
the executable. But from here on out, the examples in this book will
be written as if you've put the bin directory directly in your PATH, as
described earlier.

1.2 Kicking the Tires

Ready to try it? First, make sure you have a good executable:

$ jruby --version
jruby 1.5.5 (ruby 1.8.7 patchlevel 249) (2010-11-10 4bd4200) (Java HotSpot(TM) ...)

If you have any problems getting to this point, check your PATH, and
make sure you're running the latest release version of JRuby.

7. http://ant.apache.org
8. http://www.git-scm.com
9. To get out of building a specific release, type git checkout master.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://ant.apache.org
http://www.git-scm.com
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=23

THE INTERACTIVE SHELL < 24

It's time to run some code. The simplest way to try a simple Ruby
excerpt, whether you're using plain Ruby or JRuby, is to pass the -e
option to the interpreter:

$ jruby -e "puts 'This is a short program'"
This is a short program

Now that you're up and running, let’s look at some more useful ways to
execute JRuby.

1.3 The Interactive Shell

Just as Ruby ships with irb for trying code interactively, JRuby has jiro:

$ jirb

irb(main):001:0> ['Hello', 'world'].join " '
=> "Hello world"

irb(main):002:0> "ybuRJ morf".reverse

=> "from JRuby"

irb(main):003:0>

As with the REPL!? from any other dynamic language, jib gives you
instant feedback on the results of each command you type into it.
Although this technique is a great way to explore the language, we're
guessing that you're interested in running some actual programs, too.

1.4 The Command Line

To get a feel for running interpreted and compiled programs in JRuby,
we're going to write a really trivial program and run it in a couple of
different ways.

The Simple Case
Put the following code into a file called example.rb:
DownToad infroduction/example.rb
puts "So, how are you liking the pace so far?"
pace = loop do

puts "(1) Move it along"

puts "(2) Just right"”
puts "(3) Not so fast!"”

10. Read-eval-print loop, an interactive environment for programming

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction/example.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=24

THE COMMAND LINE <« 25

res = gets.to_i
break res if (1..3).include? res
end

puts (pace == 2) ?
"Great; see you in the next section" :
"Thanks; we'll see what we can do"

Now, run it from the command line like so:

$ jruby example.rb

Go ahead and give us an answer; we can take it.

= So, how are you Tiking the pace so far?
(1) Move it along
(2) Just right
(3) Not so fast!
<= 1
Thanks; we'll see what we can do
jruby takes a wide range of command-line parameters to customize the
way your programs run. A full discussion is outside the scope of this

chapter, but it’'s worth talking about one of the more important ones.

Running Common Ruby Programs

If you've been coding Ruby for a while, youre used to having certain
tools available as executables, such as gem and rake. A typical Ruby
program will install itself into your Ruby distribution’s bin directory.
You may be tempted just to make sure JRuby’s bin is at the front of
your PATH and then run these commands directly just by typing in their
names.

But it’s best to invoke command-line tools through JRuby, rather than
directly. In particular, Ruby’s package manager, RubyGems, may not
know whether to use plain Ruby or JRuby if you just type gem on the
command line.

A much more reliable approach is to use Ruby’s standard -S option for
launching stand-alone scripts.!! Instead of typing this:

$ gem install rspec

...you’d type the following:

$ jruby -S gem install rspec

11. For more information about this option, see Appendix C, on page 294.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=25

IDEs «d 26

1.5

%ﬁ lan Says. ..

What Do We Use?

With all this talk of development environments, what do we
the authors use to write code for our JRuby projects? By some
strange cosmic coincidence, four out of the five of us are heavy
users of the Emacs text editor.* The odd man out hops between
Vim and TextMate. - All three of these editors have great sup-
port for Ruby, and all three of them stay out of our way while
we're coding.

*. http://www.gnu.org/software/emacs/
t. http://vim.org
t. http://macromates.com

This approach works for any Ruby command-line tool, including gem,
rake, spec, and others.

There are a ton of other useful JRuby options; for more information,
type jruby —-help, or see Appendix C, on page 294.

IDEs

JRuby is easy to use from the command line—so much so that we’ll
be giving many examples of it in this book. But using an integrated
development environment has its merits. In addition to the code com-
pletion features most people think of, IDEs can manage your JRuby
installation and classpath for you.

Nearly every popular IDE has some support for Ruby, either directly or
through a plug-in. If you're asking us for a recommendation, though,
we have two.

RubyMine

RubyMine is a Ruby-specific IDE created by the JetBrains company.'2
It has the level of sophistication you’d expect from the folks who created
IntelliJ IDEA, the beloved Java development environment.

12. http://www.jetbrains.com/ruby/index.html

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://www.gnu.org/software/emacs/
http://vim.org
http://macromates.com
http://www.jetbrains.com/ruby/index.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=26

0 O M [JUsers/undees/src/using-jruby/Book/code introduction_to_rails/rouge - .../test/unit/restaurant test.rb - JetBrains Ruby. .
EX 5G| LEDR |':‘, 2 ‘ & H__gDevelopmem:rouge A D ES ‘.é“wjl

T cE= —‘ # | [restaurant_test.rb » |
2
2| view as: | 511 .] = o def test_can_instantiate_and_save_a_restaurant =
- restaurant = Restaurant.new
iR = public restaurant.name = "Mediterraneo”
e : restaurant.description = <<DESC
":EE_“r ©0ne of the best Italian restaurants in the Kings Cross area,
PR ADties &Mediterraneo will never leave you disappointed
» [functional i
» [integration :—DESC
» B3 mocks restaurant.address = “1244 Kings Cross Road, London WC1X 8CC”
» B performance restaurant.phone = "+44 1432 3434" =
¥ = unit :
x E restaurant.save| i

» [helpers
%1 3 dministearor Lot = Save

ActiveRecord: :Base
ActiveRecord: :Base
ActiveRecord::Transactions

Tl ms save_with_transactions(perform_validatio..
¥ [Found 1 T0DO fte, % save_with_transactions! ActiveRecord::Transactions

+ =)
e = Y & controlss @ 5 save_with_validation(perform_validation=... ActiveRecord: :Validations
¢l ~ EI1782,38 5 o save with_validation! ActiveRecord::Validations
é @ La Choosing item with ~ will overwrite the rest of identifier after caret
2l @
& =]
~ [
@
5] "

| 8 9: Changes || = 0: Messages I[26 TODO]
26:20 Insert MacRoman 2 @5 BIMof 127

Figure 1.1: The RubyMine IDE
I

As you can see in Figure 1.1, there’s a lot to RubyMine. We'll just men-
tion a couple of points that are hard to show in a screenshot. For one
thing, the tool is aware of popular test and directory naming conven-
tions for Ruby projects so you can jump automatically between a piece
of code and its tests. It also supports several refactoring techniques on
Ruby code.

NetBeans

NetBeans is an open source development environment with support for
several different programming languages.!'® You can download a Ruby-
specific build of the IDE and have everything you need to start coding.

With NetBeans, you can do some of the many things in Ruby that
you're used to doing in less dynamic languages: automatically com-
pleting code, stepping through a program in a debugger, designing a
GUI, and performing simple refactorings.

13. http://www.netbeans.org

IDEs «d 27

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://www.netbeans.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=27

THE CoOMPILER <« 28

Because NetBeans is cross-language, its level of Ruby-specific integra-
tion is not quite as deep or polished as RubyMine’s. But it’s a close
second.

1.6 The Compiler

Throughout most of this book, we're going to run JRuby programs the
same way people run programs in plain Ruby: hand the text of the pro-
gram over to an interpreter. The interpreter walks through the program
piece by piece, translating and running code as it encounters it.

If you spend time in the Java universe, you're probably wondering
whether JRuby allows you to compile your Ruby code into .class files
up front and treat them like compiled Java code.

The answer is yes. Here’s how you'd compile the previous example:

$ jrubyc example.rb
Compiling example.rb to class example

The compiler supplies a main() method for you, so you can now run the
program straight from the jova command (adjust the path here to point
to your JRuby installation):

$ java -cp .:/opt/jruby/1ib/jruby.jar example

Note that your compiled program still depends on some JRuby-defined
support routines, so jrubyjor needs to be on your CLASSPATH.!* Also, the
compiler compiles only the files you specifically pass to it. If you refer-
ence some_ruby_library.rb, you’ll have to compile that extra .rb file yourself
or ship it in source form alongside your .closs file.

When you look at compilation in detail, there are a lot more shades
of distinction between “no compilation at all” and “compile everything
up front.” JRuby may compile parts of your program to Java bytecode
at runtime to improve performance. You’'ll find a detailed discussion of
this and other aspects of compilation in Chapter 4, The JRuby Compiler,
on page 78.

14. There’s more on how JRuby uses the Java classpath in Chapter 2, Driving Java from
Ruby, on page 31

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=28

JAVA INTEGRATION < 29

1.7 Java Integration

JRuby can use Java objects much as if they were Ruby objects. Here’s
a simple example that exercises Java’'s ArraylList class:

Download introduction/interop.rb

require 'java'
Tist = java.util.ArraylList.new

Tist << 'List of'
Tist << 3
Tist << :assorted_items

Tist.each do |item|

puts "#{item.class}: #{item}"
end
As you can see, we can add a variety of objects, including native Ruby
types like Symbols, to the list. JRuby even provides appropriate Ruby
iteration idioms for Java collections, which is why we can call each() on
the list in this example.

Of course, Ruby has its own perfectly respectable collection classes.

Unless you're calling a Java library function expecting an ArrayList, it’'s

usually better just to use a Ruby Array instead. But bear with us and try

our slightly stilted example in jirb; you should see something like this:
= String: List of

Fixnum: 3
Symbol: assorted_items

Now, let’s try something we couldn’t have done in plain Ruby. Let’s hook
into some Java platform-specific functions and query a few properties
of the JVM:

DownToad introduction/jvm.rb

require 'java'

os = java.lang.System.get_property 'os.name'
home = java.lang.System.get_property 'java.home'
mem = java.lang.Runtime.get_runtime.free_memory

puts "Running on #{os}"
puts "Java home is #{home}"
puts "#{mem} bytes available in JVM"

= Running on Mac 0S X
Java home is /System/Library/Frameworks/JavaVM. framework/Versions/1.5.0/Home
1592320 bytes available in JVM

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction/interop.rb
http://media.pragprog.com/titles/jruby/code/introduction/jvm.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=29

WRAPPING UP < 30

As you can see, we can access native Java classes, such as java.lang.
Runtime and java.lang.System, using a dot notation similar to Java’s import
syntax. One thing to note is that JRuby gives you the option of call-
ing Java functions like getProperty() by more Ruby-fitting names like
get_property.

1.8 Wrapping Up

Now that you have JRuby installed and have taken it for a spin, it’s
time to get some real work done. In the upcoming chapters, we’ll tackle
some of the most common ways people bring the Java and Ruby worlds
together.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=30

2.1

Chapter 2

It might be tempting to think of Java/Ruby integration as nothing more
than calling from one language to another. But that’s selling JRuby
short. In a typical project, you're really interacting with both platforms.
You might construct a Ruby object, pass it to a Java function, and
watch the Java code call other Ruby methods you've defined.

In this chapter, we’ll look at cases where the interaction starts in Ruby:
calling Java methods from Ruby code, implementing Java interfaces in
Ruby, and so on. In the next chapter, we’ll start with a Java program
and work our way back to Ruby.

Seeing Java Through Ruby Glasses

The first use case for JRuby, and still the most common one today, is
calling a Java method from Ruby. Why would someone want to do this?
There are thousands of reasons. Here are just a few of the things you
can do with this interoperability:

* Visualize geographic data with NASA’s World Wind project.! In Fig-
ure 2.1, on the following page, you can see a map of our home-
towns that we put together with just a few lines of Ruby.

¢ Render beautiful SVG graphics with the Apache Batik project, like
the folks at Atomic Object did for their cross-platform simulation
app.? The elegant visuals they achieved are shown in Figure 2.2,
on page 33. (Image used with permission of the Avraham Y. Gol-
dratt Institute, LP.)

1. http://worldwind.arc.nasa.gov
2. http://spin.atomicobject.com/2009/01/30/ruby-for-desktop-applications-yes-we-can

http://worldwind.arc.nasa.gov
http://spin.atomicobject.com/2009/01/30/ruby-for-desktop-applications-yes-we-can

SEEING JAVA THROUGH RUBY GLASSES <« 32

A0 JRuby Authors

T,
4 Arctic Ocean i

EUROPE

North Atiantic Ocean

South P3gific Ocean
South Atiantic Ocean

SOUTH AMERICA

~—

<8 2000 Km
I i o L |

=

Figure 2.1: Locating JRuby authors with World Wind
I

¢ Handle a protocol or data format for which a Java library is the
best fit. For example, you might choose the Java-based iText li-
brary to add PDF support to your Ruby program—especially if you
need digital signatures or some other feature specific to iText.>

¢ Slay the “cross-platform Ruby GUI” dragon by writing a Swing or
SWT program in Ruby.

* Boost the performance of a Ruby program. For example, the team
behind the Redcar text editor knows they will always have the
option of dropping down into Java for any performance-critical
parts.*

3. http://www.itextpdf.com
4. http://redcareditor.com

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://www.itextpdf.com
http://redcareditor.com
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=32

SEEING JAVA THROUGH RUBY GLASSES <« 33

© Production Simulator e

Simulation Schedule View Application Help

110 More Quality Problems (option 1) Launch View: [Finance | ‘

Weeks: 1 Weekly Expenses: $11,000

| Auto Resource Setup Product A Product € Product E
11 Blue 20 350, 10 200, 100

= o [50 | [550 | [520 |
‘| Hold == = =

A9 €9 E9
Yellow 0
MG
)

[] e [T s (R0l
& purple 10 .

n. N
dle Processing

L 19 .
[orange 0 = /
| | fed
Processing
ez [
[Blue 10
L_fes
Idie BE
=]
Green 30 iR
s9'| 200

H;. N
Idie Processing)

B —————]
Hour 7 of 40 Day 1 of 5

Figure 2.2: Simulating industrial processes with Batik

e Tame a legacy Java project by walling off the old spaghetti code
behind a clean Ruby interface.

* Sneak Ruby into a Java shop; after all, JRuby is “just another .jar
file.”

* Write great tests for your Java code, using one of Ruby’s outstand-
ing test frameworks.

¢ Index and search huge amounts of text with the Lucene search
engine.5

* Write a database-backed web application in the Rails framework.
Behind the scenes, Rails’s database adapters call into Java’s data-
base libraries to do the heavy SQL lifting.

5. http://lucene.apache.org

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://lucene.apache.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=33

SEEING JAVA THROUGH RUBY GLASSES <« 34

All of these scenarios are the bread and butter of JRuby and are well
supported. But as in any domain where two languages meet, there are
some subtleties, gotchas, and impedance mismatches.® This chapter
will address many of these edge cases.

First things first, though. We’ll lead off with the basics of accessing
Java classes from JRuby, starting with how your Ruby code can load
and interact with Java libraries. Then we’ll explore the details of param-
eter passing and automatic type conversions. Finally, we’ll show a few
tips and tricks to make Java classes and objects a natural part of your
Ruby programs.

A Simple Example: Wrapping a Library

Let’s start with a working program to drive a Java library. We’ll expand
on one of the examples we described earlier: using the iText library
to generate a PDF file. This will be just enough to give a hint of the
flavor of driving Java, without having to bang our heads against the
more obscure edge cases (yet). Download the latest .jar (for example,
iText-5.0.1.jar) from the official site, and copy it into the directory where
you're following along in code.” Next, add this snippet to a file called
pdf_demo.rb:

Download java_from_ruby/pdf_demo.rb

require 'java'

pdf = com.itextpdf.text.Document.new
para = com.itextpdf.text.Paragraph.new 'Brought to you by JRuby'
file = java.io.FileOutputStream.new 'pdf_demo.pdf’

com.itextpdf.text.pdf.PdfWriter.get_instance pdf, file

pdf.open
pdf.add para
pdf.close

In the spirit of walking before we run, let’'s walk through the source
before we run the program. In the opening lines, we create a few Java

6. The term impedance mismatch comes from electrical engineering. It refers to the
power lost to reflection when two circuits are connected. It’s also a poetic way to describe
the conceptual losses between two different software domains.

7. http://sf.net/projects/itext/files

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/pdf_demo.rb
http://sf.net/projects/itext/files
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=34

SEEING JAVA THROUGH RUBY GLASSES <« 35

0o [*| pdf demo.pdf (1 page)

Brought to you by JRuby

™

e
&
v

=

Figure 2.3: The generated PDF in all its glory
I

objects the same way we’d create Ruby ones—by calling the class’s new
method. We use a typical full-package name for each class (for example,
com.itextpdf.text.Document).

In JRuby, Java methods look and act like Ruby ones. All the method
names you see in this snippet—open, add, and close—belong to Java
classes. That includes get_instance, an alias JRuby has created for
getinstance() to make it fit better in the Ruby universe.

Some Ruby types get converted into their Java counterparts automati-
cally for you, such as the “Brought to you...” string. Others need a little
hand holding; you'll see a few of those cases later.

Now that you've had a chance to look through the code, let’s run it.
You'll need to tell JRuby where the external iText library lives by setting
the classpath. Java provides the -cp option for this purpose. JRuby will
forward any option to the underlying Java runtime if you preface it
with -J. Go ahead and try the following command, adjusting the version
number of iText to match what you downloaded:

$ jruby -J-cp iText-5.0.1.jar pdf_demo.rb

That'll create a PDF file called pdf_demo.pdf in the same directory. If
you open it, you should see something like Figure 2.3. It’s not the most
visually breathtaking use of the format, but you get the idea.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=35

SEEING JAVA THROUGH RUBY GLASSES <

Another Simple Example: Extending a Ruby Program

Let’s consider another big use case: taking an existing Ruby program
and rewriting part of it in Java for speed. Just for fun, we’ll make this
one a GUI app, albeit a trivial one. We're going to build a calculator for
the famous stack-busting Ackermann function.® The Ruby code for this
reads like the official mathematical definition:

Download java_from_ruby/ackerizer.rb

class Ackermann
def self.ack(m, n)

return n + 1 ifm==20
return ack(m - 1, 1) if n =20
return ack(m - 1, ack(m, n - 1))

end

end

This implementation is far too slow for a production app, as will become
painfully clear after we wrap a Swing user interface around it. To build
our GUI, we're going to use a Ruby helper called Rubeus.® Go ahead
and install that now:

$ jruby -S gem install rubeus

We’ll talk more about Rubeus in Chapter 10, Building GUIs with Swing,

on page 240. For this short example, the code is simple enough to show
without much explanation. It’s just a couple of text inputs and a button:

Download java_from_ruby/ackerizer.rb

require 'rubygems'
require 'java'
require 'rubeus’'

include Rubeus::Swing

JFrame.new('Ackerizer') do |frame|
frame.layout = java.awt.FlowLayout.new

@m
@n

JTextField.new '3’
JTextField.new '9’

JButton.new('->") do
@result.text = Ackermann.ack(@m.text.to_i,
@n.text.to_i).to_s
end

8. http://en.wikipedia.org/wiki/Ackermann_function
9. http://code.google.com/p/rubeus/

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/ackerizer.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/ackerizer.rb
http://en.wikipedia.org/wiki/Ackermann_function
http://code.google.com/p/rubeus/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=36

SEEING JAVA THROUGH RUBY GLASSES <« 37

@result = JTextField.new 10

frame.pack
frame.show
end

Throw those two code snippets into a file called ackerizerrb, and then
launch the app. Youll most likely need to increase the JVM’s stack
size, using Java’s standard -Xss setting together with JRuby’s -J “pass-
through” option:

$ jruby -J-Xss64m ackerizer.rb

You should see something like Figure 2.4, on the following page. Try
clicking the button to calculate ack(3, 9). The results will probably take
several seconds to appear in the window. Because our app is a one-trick
pony, there’s only one suspect worth investigating: the ack method.!?

There’s a lot we could try in Ruby before jumping into Java. At the very
least, we should be storing our intermediate values so that we don’t
have to calculate them over and over. But let’'s say you've done all that,
and you still need faster results. Here’s how you’d move the calculation
into a Java class:

Download java_from_ruby/Ackermann.java

public class Ackermann {
public static 1int ack(int m, int n) {
if (m == 0)
return n + 1;

if (n == 0)
return ack(m - 1, 1);

return ack(m - 1, ack(m, n - 1));

}
...which you can then compile like so:

$ javac Ackermann.java

We need to make only one change to the Ruby code to use the new Java
class. In the middle of the button’s on_click handler, add the text Java::
to the beginning of the Ackermann.ack call.

10. On any nontrivial project, you'll want to profile your code, rather than relying on
inspection and guesswork. See Appendix C, on page 294, for how to do that with JRuby.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/Ackermann.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=37

DEALING WITH THE CLASSPATH < 38

Figure 2.4: The Ackermann calculator

@result.text = Java::Ackermann.ack(@m.text.to_i,
@n.text.to_i).to_s

When you rerun the program and click the button, the result should
appear immediately. Now that we've seen examples of the most common
ways people use JRuby, let’s look at each step of the process in more
detail.

2.2 Deadling with the Classpath

Before you can use that piece of external library wizardry, you have
to find it. When you bring Java code into your app, you're playing by
Java’s rules. Rubyists are used to saying require ‘'some_file_name’ and
counting on the file to show up inside one of Ruby’s search paths. By
contrast, Java looks for each class by its fully specified package name;
the physical location of the file isn’t as important.

For readers coming from the Ruby world, the classpath is the list of
directories and .jor files where Java (and therefore JRuby) will look
for external libraries. If you're doing a java_import (see Section 2.3, By
Importing, on page 42) and JRuby can’t find the class you're asking for,
the classpath is usually the first place to make adjustments.

A lot of people code in an IDE that sets up their classpath for them
and deploy to a server that has its own notions of where things should
be; they’ll never touch the classpath themselves. But if you're using
the command line a lot on your own, you’ll need to set the path up
yourself. JRuby supports several ways of doing this to ensure that both
Ruby developers and Java developers will find familiar ground.

From the Command Line

There’s a strong parallel between the Ruby and Java ways of passing
extra search paths on the command line. Ruby uses the -I switch:

$ ruby -I/path/to/1ibrary my_program.rb

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=38

DEALING WITH THE CLASSPATH

)
(‘iﬁé’! Charlie Says. ..
The Default Package
Notice here we’re using the Java: prefix. In this case, it's
because our Java-based Ackermann class is in the default
package. Such classes can be accessed immediately under
the Java namespace.

JRuby supports -l for Ruby code, naturally, but also understands Java’s
-cp/-classpath option for Java classes:

$ jruby -J-cp /path/to/library.jar
C:\> jruby -J-cp C:\path\to\library.jar

Remember that -J specifies that JRuby should pass the -cp option to
the underlying Java runtime.

With an Environment Variable

As we did with the command-line arguments, we're going to draw a
parallel between the ways Ruby and Java use environment variables.
If you're a lazy typist like we are, you're probably used to storing your
most commonly used Ruby search paths in the RUBYOPT environment
variable:

$ export RUBYOPT=-I/path/to/common/1ibraries

C:\> set RUBYOPT=-IC:\path\to\common\libraries

JRuby supports RUBYOPT for finding Ruby code, and the Java equivalent
(CLASSPATH) for finding Java classes:

$ export CLASSPATH=$CLASSPATH:/path/to/1ibrary.jar

C:\> set CLASSPATH=%CLASSPATH%;C:\path\to\library.jar

If you have both a CLASSPATH and a -J-cp option, the latter will take

priority. Of course, you can always combine them by referencing the
environment variable from inside the search path:

$ jruby -J-cp $CLASSPATH:/path/to/l1ibrary.jar
C:\> jruby -J-cp %CLASSPATH%;C:\path\to\library.jar

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=39

DEALING WITH THE CLASSPATH <«

f=< Charlie Says. . .
& Y
A ntle Reminder

Make sure you have called require ‘java’ before using the
SCLASSPATH variable. JRuby doesn’t prepare that variable unless
it sees you're planning to use Java libraries.

Once JRuby has loaded your program, you can further manipulate the
classpath from within Ruby.

In the Source Code

As an alternative or a supplement to the command-line classpath, you
can add a .jor or directory to the SCLASSPATH variable inside Ruby itself
(much as you're used to doing with SLOAD_PATH or $: for Ruby libraries):

Download java_from_ruby/classpath.rb

$CLASSPATH << '/usr/local/1ib/jemmy/jemmy.jar"

To sum up what we've seen so far: in JRuby, you use Java techniques
to find Java code, and you use Ruby techniques to find Ruby code.
Now, we're going to do something a little different. We're going to cross
the language barrier and use a Ruby technique to find Java code. The
simplest way to do this is to use Ruby’s require method to add a .jar to
the search path:

Download java_from_ruby/classpath.rb

require 'Jusr/local/lib/jemmy/jemmy.jar'
You may be wondering whether other Ruby mechanisms can load Java
code. Indeed, they can. Both the -| argument and the SLOAD_PATH vari-
able work on both Ruby and Java libraries in JRuby:

$ jruby -I/path/to -e "require 'library.jar' ...
C:\> jruby -IC:\path\to -e "require 'library.jar' ..."

Download java_from_ruby/classpath.rb

$LOAD_PATH << '/usr/local/1ib/jemmy’
require 'jemmy.jar'

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=40

LOADING CLASSES < 41

Now that JRuby knows where on disk to look for external libraries, how
do we crack them open and get at the classes inside?

2.3 Loading Classes

Your Ruby code will see Java packages as Ruby modules. This is not
surprising, because these are the fundamental namespace mechanisms
of the two languages. Let’s take a closer look at how this works.

By Namespace

The most reliable way to refer to a Java class in JRuby is by tacking
Java:: onto the beginning of the full package name:

Download java_from_ruby/loading_classes.rb

Java::clojure.lang.Rep]l

=> Java::ClojurelLang: :Repl

Notice JRuby has translated the Java-like clojure.lang.Repl syntax into
an internal name, Java::ClojureLang::Repl. It may be tempting to “cut out
the middleman” and use the latter name directly in your code, but we
don’t recommend it. Internal formats are subject to change, but the
package-name syntax will always work.

For the most commonly used namespaces, JRuby provides top-level
functions like com, org, java, and javax. To use these, you have to require
‘java’ first:

Download java_from_ruby/loading_classes.rb

require 'java'

java.lang.StringBuffer
=> Java::Javalang::StringBuffer

If the class you want to access lives in the default package (that is, no
package specifier at all), just prepend Java:: directly to the class name:

Download java_from_ruby/loading_classes.rb

Java: :MyTopLevelClass
=> Java::MyTopLevelClass

It's worth noting that the module/namespace for a given package is just
another Ruby object.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=41

LOADING CLASSES <« 42

You can stash it in a variable or pass it around at will:

Download java_from_ruby/loading_classes.rb

swing = javax.swing
swing.JFrame
=> Java::JavaxSwing: :JFrame

The techniques in the next section will build on this idea of treating
module and class names like regular data.

By Importing

For classes nested deeply inside namespaces, you may get tired of typ-
ing out the full module or package name every time. A common con-
vention is to define a new constant consisting of just the class name:

Download java_from_ruby/loading_classes.rb
StringBuffer = java.lang.StringBuffer
JRuby provides a handy java_import shortcut that does exactly this kind

of assignment. You can indicate the class you want using a Ruby con-
stant, a Java package name, or a string:

Download java_from_ruby/loading_classes.rb

java_import java.lang.StringBuffer
java_import 'java.lang.StringBuffer'

The latter is handy for importing a bunch of similarly named packages

together:
Download java_from_ruby/loading_classes.rb
['Frame', 'Dialog', 'Button'].each do |name|
java_import "org.netbeans.jemmy.operators.J#{name}Operator"
end

You can also pass a block to java_import in case you need to do some-
thing else to the package name, such as renaming it to avoid a conflict
with some existing Ruby class:

Download java_from_ruby/loading_classes.rb

java_import 'java.lang.String' do |pkg, cls|

puts "#{cls} Tlives in #{pkg}"

"JString' # don't clobber Ruby's String class
end
You may encounter code in the wild that uses the shorter import alias.
We recommend sticking with java_import to avoid conflicts with libraries
such as Rake that define their own import method.

Finally, we can move on to actually calling external code.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=42

USING OBJECTS <« 43

2.4 Using Objects

It’'s taken a bit of housekeeping to get to this point. We've had to find
libraries, load classes, and resolve names. Now comes the payoff: driv-
ing a Java object from Ruby.

Static Methods

Let’s start with the easiest kind of Java method to invoke: static meth-
ods. Since these aren’t attached to any particular class instance, we
can punt on the whole issue of object creation for now. You can call a
static Java method directly from JRuby:

Download java_from_ruby/static.rb

java_import java.lang.System
System.currentTimeMillis # => 1251075795138

But the Java convention of using camelCase looks out of place among
Ruby’s snake_case names. Your code will look more Ruby-like if you
take advantage of JRuby’s automatic mapping between Ruby names
and Java names:

Download java_from_ruby/static.rb

java_import java.lang.System
System.current_time_millis # => 1251075795172

The mapping also knows how to deal with function names containing
capitalized abbreviations, like “URL.”

Download java_from_ruby/static.rb

java_import java.net.URL

assume you've initialized some object "factory" here
URL.setURLStreamHandlerFactory(factory)
URL.set_urlstream_handler_factory(factory)

Static Fields

Static fields of Java classes are typically used to implement either sin-
gleton objects, such as Logger.global, or constants, such as Level SEVERE.
For the former case, you'll just treat the field like a Ruby class-level
method, calling it with dot notation and a Ruby-style snake_case name.
For the latter case, you'll treat the field like a Ruby constant, accessing
it with double-colon notation and matching the Java capitalization.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=43

USING OBJECTS «d 44

Here’s an example that shows both situations:
Download java_from_ruby/static.rb
java_import java.util.Tlogging.Logger

java_import java.util.logging.Level

Logger.global.log Level::SEVERE, "It Tooks 1ike you're writing a letter!"

Object Construction

JRuby adapts many Java idioms to “the Ruby way.” Constructing Java
objects falls right into this aesthetic; you just use the normal Ruby new
class method. You might wonder how this is possible, since Java sup-
ports overloaded methods (including constructors) and Ruby doesn't.
But JRuby sweeps this difference under the rug for you, looking at the
parameters you pass to new and selecting the constructor that best
matches those arguments. We’ll see more detail on argument matching
in a minute.

First, let’s look at a concrete example. Java’s URL class has several
constructors, including these two:

new URL(String spec)
new URL(String protocol, String host, String file)

JRuby will choose the best match when you call new:
Download java_from_ruby/instances.rb

URL.new 'http://pragprog.com/titles’
URL.new 'http', 'pragprog.com', '/titles'

Instance Methods

Just as with static methods, JRuby maps instance methods to nice
snake_case ones for you:

Download java_from_ruby/instances.rb
url.get_protocol # => "http"
As an added bonus, Java-style getters and setters are callable as Ruby-

style attribute accessors. In other words, the following two lines are
equivalent:

Download java_from_ruby/attributes.rb

car.setPrice(20_000)
car.price = 20_000

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/instances.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/instances.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/attributes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=44

PASSING PARAMETERS <« 45

Instance Fields

On its own, JRuby doesn’t seek out a class’s fields and try to map them
to Ruby attributes. After all, most fields are private—there’s usually
no need to get at them from outside the class, let alone outside the
language. Still, there may be times when you really need this capability.
If you have the following Java class:

Download java_from_ruby/FieldDemo.java

public class FieldDemo

{

private int somePrivateField = 0;

public FieldDemo() {}
b

...you can reopen (that is, modify) the class in JRuby and specify a
Java-to-Ruby mapping for the field:

Download java_from_ruby/field_demo.rb

class FieldDemo
field_accessor :somePrivateField => :some_field
end

obj = FieldDemo.new

obj.some_field = 1
obj.some_field
=1

This will always work for public fields of a particular Java type, and if
your JVM’s security settings are lenient enough (most default configu-
rations are), it will work for protected, package-visible and private fields
as well.

2.5 Passing Parameters

Even the simple method calls in the past few sections are the result of
careful choreography on JRuby’s part. As we saw with the URL construc-
tors, JRuby seems to “know” which among several overloaded versions
of a Java method is the best fit for the way you're calling it in Ruby.

What about method parameters? Unless it was written specifically for
JRuby, a Java method will not expect to be passed a bunch of Ruby
objects. So, JRuby will automatically convert certain parameters from
the original Ruby types to the Java types needed by the method.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/FieldDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/field_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=45

PASSING PARAMETERS <« 46

We're as mistrustful of magical thinking in programming as you are.
Fortunately, there’s no magic here, just some straightforward mappings
between Java and Ruby types. Once you understand why and how
JRuby selects methods and converts parameters, you'll always know
how your code will behave.

Simple Type Conversion

For meat-and-potatoes types like numbers and strings, JRuby will copy
each Ruby parameter into a reasonable Java equivalent. Consider this
Java class:

Download java_from_ruby/BigintDemo.java

import java.math.BigInteger;

public class BigIntDemo {
public static final BigInteger GOOGOL =
new BigInteger("10").pow(100);

public static boolean biggerThanGoogol(BigInteger i) {
return (GOOGOL.compareTo(i) < 0);
}
}

...and the Ruby code that calls it:
Download java_from_ruby/big_int_demo.rb

a_big_number = 10 =+ 100 + 1
BigIntDemo.bigger_than_googol(a_big_number)
=> true

Ruby’s Bignum class and Java’s java.math.Biginfeger are distinct types,
but JRuby seamlessly converts the Ruby data into its Java counterpart.

Arrays
Although JRuby adds a few conveniences to Java arrays to make them

feel a little more at home in the Ruby world, Ruby arrays and Java
arrays are actually distinct types:

Download java_from_ruby/ArrayDemo.java

public class ArrayDemo {
public static String whatTypeIsIt(Object o) {
return o.getClass().getName();
}

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/BigIntDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/big_int_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/ArrayDemo.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=46

PASSING PARAMETERS <« 47

({ '! Charlie Says...

Ruby Arrays in Java

JRuby’s implementation of the Ruby Aray class provides a
java.util.List interface for the Java world to use. So, there’s really
no expensive data conversion happening until some piece of
Java code starts extracting individual elements from the Ruby
array you passed in.

Download java_from_ruby/array_demo.rb
ArrayDemo.what_type_is_it(['a’', 'b', 'c']1)
=> "org.jruby.RubyArray"

ArrayDemo.what_type_is_it(['a', 'b', 'c'].to_java)
=> "[Ljava.lang.Object;"

JRuby can convert Ruby arrays to Java ones for you, so this difference
isn’t much of an inconvenience in practice.

Plain OI' Java Objects

When you've obtained a Java object from some API call, you can freely
pass that object around in the Ruby world and hand it back to Java
undisturbed. For example, let’s say you wanted to construct a Java URL
object, stash it in a Ruby variable, and then pass it into a Java method
later:

Download java_from_ruby/url_demo.rb

url = URL.new 'http://pragprog.com/titles'
add_url_to_some_ruby_Tlist(url)

URLDemo.retrieve_url url
=> "big 1ist of book titles"

There’s no conversion going on in this case; the Java URL object is simply
kept intact throughout its stay in Ruby-land.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/array_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/url_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=47

PASSING PARAMETERS <« 48

Variable Arguments
JRuby can call Java methods with variable argument lists:
Download java_from_ruby/variable_args_demo.rb

VariabTleArgsDemo.longest_string "foo", "bazzles", "schnozzberry"
=> "schnozzberry"

The syntax is exactly like what you’d use for any other function.

Explicit Coercion

Though JRuby’s mapping between Ruby and Java types will cover most
of the cases you’ll encounter, you may occasionally want to coerce Ruby
types explicitly to specific Java ones. For instance, if JRuby’s auto-
matic conversion is likely to be time-consuming, you might want to
pre-convert the object:

Download java_from_ruby/string_demo.rb

ruby_string = "This is a large string we don't want to convert frequently"

java_string = ruby_string.to_java

StringDemo.method_taking_a java_string

When you require ‘java’, every Ruby object gains a to_jova method. Either
you can call it with no parameters to get the nearest Java type or you
can specify a particular Java class you want to convert to.

The Extra Mile

The Ruby/Java conversions we've seen so far have been like the sim-
ple translations in a tourist’s phrasebook. They're fine for rudimentary
communication. But as a seasoned traveler, you enjoy speaking in a
more fluent, idiomatic way.

JRuby includes tons of extra conveniences for using Ruby idioms with

Java classes, and vice versa. Here are a few of the most common ones.

Strings and Regular Expressions

Ruby’s to_s and Java’s toString() are a natural fit for each other. Define
to_s on your Ruby object, pass it into Java, and any Java code expecting
to find toString() in your class will be able to call it.

Java regular expressions can be used with Ruby’s =~ operator:
Download java_from_ruby/special_cases.rb

java_import java.util.regex.Pattern

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/variable_args_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/string_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=48

PASSING PARAMETERS <« 49

simple_us_phone = Pattern.compile "\\d{3}-\\d{3}-\\d{4}"

"Call 503-555-1212" =~ simple_us_phone # => 5

You can still match strings the Java way, through the various methods
of Pattern and Matcher. But the Ruby syntax is much more convenient.

Collections

If you're accustomed to indexing Ruby Array and Hash objects with the
[] operator, you'll find that the same technique works on Java Map and
List objects as well:

Download java_from_ruby/special_cases.rb

assume this came from some Java function
java_list.entries # => ["Tock"™, "stock", "barrel"]
first_item = java_list[0] # => "lock"

Moreover, all Java Collection objects gain the traditional Ruby array
operators: +, -, <<, length, and join.

JRuby mixes the Ruby Enumerable interface into Java Collections and
lterables. So, you can use Ruby’s functional programming idioms
directly on Java classes:

Download java_from_ruby/special_cases.rb

assume this came from some Java function
java_list_of_urls.entries
=> [#<Java::JavaNet::URL:0xacecf3>, #<Java::JavaNet::URL:0xf854bd>]

protocols = java_list_of _urls.map do |url|
url.protocol

end

=> ["http", "ftp"]

Java and Ruby each have a notion of Comparable objects:

Download java_from_ruby/special_cases.rb

uris = [URI.new('/uploads'),
URI.new('/images'),
URI.new('/stylesheets')]

uris.sort.map {|u| u.to_string}

=> ["/images", "/stylesheets", "/uploads"]

JRuby maps the two concepts together so that you can sort Java objects
inside Ruby collections.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=49

CALLING OVERLOADED METHODS <« 50

Edge Cases

Before we move on, let’'s dip our toes into a few of the more obscure
conversions. JRuby adds the fo_proc Ruby method to Java Runnables so
they can be passed around as blocks of code in Ruby. Here’s a rather
contrived example that hands off a Java thread to a Ruby one:!!

Download java_from_ruby/special_cases.rb

runnable = java.lang.Thread.new
run_it = runnable.to_proc
Thread.new &run_it

Java InputStreams and OutputStreams can be converted to Ruby IO ob-
jects with the to_io method:

Download java_from_ruby/special_cases.rb

java_out = java.lang.System.out.to_io
java_out << 'Hello from JRuby!'

You can catch Java exceptions in a Ruby rescue clause:
Download java_from_ruby/special_cases.rb

begin
java.text.SimpleDateFormat.new(nil)

rescue java.lang.NullPointerException
puts 'Ouch!'

end

Believe it or not, there is an overall theme to this parade of examples:
simplicity. JRuby supports so many different ways of passing data into
Java, precisely so that your Ruby code can be as lucid as possible.
Rather than trying to memorize every edge case, we recommend you
take one more glance over the most common uses described earlier and
then just let JRuby delight you. For those rare times when you really
need to know exactly what's happening inside the machinery, you can
turn to Appendix B, on page 290.

2.6 Calling Overloaded Methods

There are two reasons JRuby looks so closely at the parameters you
pass into Java methods. The first, as we've just seen, is to expose your

11. Speaking of threads, we should mention that JRuby is not subject to the “Global
Interpreter Lock” shared by some Ruby implementations. Your Ruby threads can run
simultaneously on multiple cores.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=50

CALLING OVERLOADED METHODS <« 51

Ruby data to Java in the most convenient way possible. The second is
to select the best match for an overloaded method.

Automatic Resolution

The simplest case to consider is a set of overloads based on a single
parameter, where the differences among types are obvious:

Download java_from_ruby/OverloadDemo.java

import java.util.List;

public class OverloadDemo {
public static String whatTypeIs(long value) {
return "Jong";

}

public static String whatTypeIs(String value) {
return "string";

}

public static String whatTypeIs(Object value) {
return "object";
}
b

Here, the Java types are radically different from one another, and
JRuby is able to choose appropriate overloads with no assistance:

Download java_from_ruby/overload_demo.rb

OverloadDemo.what_type_is 42 # => "long"
OverloadDemo.what_type_is "Fun!" # => "string"
OverloadDemo.what_type_is Hash.new # => "object"

Sometimes, though, things get a little hairier. In the following Java
class, the overloaded methods both take integer types:

Download java_from_ruby/HowManyBits.java

public class HowManyBits {
public 1int neededFor(int i) {
return 32;

}

public int neededFor(long 1) {
return 64;

}

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/OverloadDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/overload_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/HowManyBits.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=51

CALLING OVERLOADED METHODS <« 52

When we try to call the version that takes a 32-bit integer, JRuby ends
up promoting our parameter to a long instead:

Download java_from_ruby/how_many_bits.rb

bits = HowManyBits.new

bits.needed_for 1_000_000
=> 64

How do we tell JRuby, “No, I really mean the int version?”

Forcing a Specific Overload

In Java, you can choose which overload you want by casting arguments
to specific types. For instance, you might use System.out.printin((char)70)
to call the version of printin that takes a character, rather than the one
that takes an int. But Ruby has no casting syntax...are we stuck? For-
tunately not. We can use JRuby’s java_send method to specify the int
version of the neededFor() method from earlier:

Download java_from_ruby/how_many_bits.rb

bits.java_send :neededFor, [Java::int], 1_000_000
=> 32

If you've used Ruby’s built-in send method, the notation should look
familiar. Notice that this is a bit more cumbersome than a plain method
call. For this reason, JRuby provides a couple of shortcuts. The sim-
plest is java_alias, which lets you choose a new name for the Java over-
load:

Download java_from_ruby/how_many_bits.rb

class HowManyBits
java_alias :needed_for_int, :neededFor, [Java::int]
end

puts bits.needed_for_int(1_000_000)

The other alternative is to use java_method to get a reference to an
overload. You can pass this reference around your program and call it
at any time:

Download java_from_ruby/how_many_bits.rb

bits_needed_for = bits.java_method :neededFor, [Java::int]
bits_needed_for.call 1_000_000
=> 32

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=52

CALLING OVERLOADED METHODS <« 53

Not only will java_alias and java_method clean up your code, they’ll also
make it a little faster, since JRuby won’t have to keep looking up the
same Java overload.

Annotated Classes

Some Java methods expect the objects handed to them to have specific
annotations. Assume we've defined a custom PerformedBy annotation
containing the name of someone who performs a feat of skill:

Download java_from_ruby/Sorcery.java

@PerformedBy(name="Charlie")
public class Sorcery {

// Nothing up my sleeve...
}

If we wanted to describe the feat of skill at runtime, we could do so by
reading the annotation:

Download java_from_ruby/Chronicler.java

import java.lang.annotation.Annotation;

public class Chronicler {
public static void describe(Class<?> c) {
PerformedBy p = (PerformedBy)c.getAnnotation(PerformedBy.class);
System.out.printin(p.name() + " performs + c.getName());

}

How do we call this method from JRuby? There’s no primitive Java
type we can convert the parameter to. It's expecting a full-on Java class
name with a runtime annotation attached. Fortunately, JRuby can cre-
ate a Java class for us on the fly, based on our Ruby class:

Download java_from_ruby/mischief.rb

require 'java'

require 'jruby/core_ext'

java_import 'PerformedBy'
java_import 'Chronicler'
java_import 'Sorcery’

class Mischief
... more mischief here ...

end

Mischief.add_class_annotation PerformedBy => {'name' => 'Ian'}
Mischief.become_java!

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/Sorcery.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/Chronicler.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/mischief.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=53

IMPLEMENTING A JAVA INTERFACE < 54

Chronicler.describe Sorcery
>>> Charlie performs Sorcery

Chronicler.describe Mischief
>>> Ian performs ruby.Mischief

The add_class_annotation method, imported from JRuby’s core_ext exten-
sions, decorates the Ruby class with the necessary annotation. By it-
self, this doesn’t mean much, since the Ruby universe won't know to
look for this information. But when we use the become_java! method
to “promote” Mischief to a real Java class, the Chronicler is able to see the
PerformedBy annotation.

2.7 Implementing a Java Interface

What do you do when the function you're calling expects you to pass
in a Java object implementing some specific interface? Consider Execu-
tors.callable, which wraps a Runnable up inside an object:

static Callable<Object> callable(Runnable task);

There are two main ways to pass an interface into a Java function.

Implementing the Methods

You can implement the Java interface completely in Ruby code. Just
include it in your class definition, and any calls to the interface’s meth-
ods become calls to your Ruby class. Runnable has just one required
method, run:

Download java_from_ruby/runnable_demo.rb

lnel require 'java'
java_import java.lang.RunnabTle

class Foo
5 include Runnable
def run
puts "foo"
end
10 end

callable = java.util.concurrent.Executors.callable(Foo.new)
callable.call

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=54

TROUBLESHOOTING < 55

Technically, you don’'t have to include the interface name at line 5.
JRuby can detect that this instance of Foo implements Runnable’s meth-
ods. But we like being explicit here.

Passing a Block

For single-method interfaces, there’s an even more direct path from
Ruby to Java. Instead of going through the mental overhead of creating
and naming a Ruby class, you can just pass a block of Ruby code
straight to the Java method:

Download java_from_ruby/runnable_demo.rb

callable = java.util.concurrent.Executors.callable do
puts "foo"
end

callable.call

This also works with Proc objects, which are like blocks of code that can
be stored in variables:

Download java_from_ruby/runnable_demo.rb

myproc = Proc.new { puts "foo" }
callable = java.util.concurrent.Executors.callable(myproc)

callable.call

This approach is suitable only for simple interfaces. If an interface has
ten different methods in it, that poor little Ruby block is going to have
to understand ten different ways in which Java might call it. In those
cases, you're best off using the class approach described earlier.

One other thing to note about the block approach is that the interface
passed into the Java world isn’t quite a first-class citizen. For instance,
the code on the other side of the wall won’t be able to use features like
introspection to interrogate your Ruby code.

2.8 Troubleshooting

It happens to the best of us. You're ready to tie together your master-
piece, and instead of passing tests, you get a 20-line stack trace. Here
are some of the errors you might see on your path to JRuby bliss.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=55

TROUBLESHOOTING < 56

NameéError
If your import fails with a Namekrror, like this:
Download java_from_ruby/name_error.rb

require 'java'

java_import 'com.example.Foo'
~> (eval):1l:in “include_class': cannot load Java class com.example.Foo (NameError)

...there are a couple of things you can check. First, try the obvious:
make sure your classpath contains the directories where your Java
classes live. Next, make sure the directory structure matches the Java
package structure. If your Java class is part of the com.example pack-
age, the .closs file needs to be nested in a com/example subdirectory.

Wrong Version of a Class

Maybe it’s happened to you. You make a change to a Java class to fix a
bug, and it doesn’t work. You throw in some printin() statements to find
out what’s going on, and nothing shows up on the console. Is JRuby
even calling your code? Perhaps not. If some other implementation of
that class, inside some other directory or .jar, is ahead in the classpath,
JRuby might be loading that and not even seeing your work.

Errors at Construction Time

Sometimes JRuby will import a class just fine but will raise a NoClassD-
efFoundError or LinkageError when you try to instantiate it. This can hap-
pen when the class you need is in your classpath but one of its depen-
dencies isn’'t. For example, imagine you have a file named consumer.jar
containing a Consumer class. Even after JRuby finds the .jor, things can
still go wrong:

Download java_from_ruby/producer_consumer.rb

consumer = Consumer.new

~> Consumer.java:2:in “<init>': java.lang.NoClassDefFoundError:

~> Producer (NativeException)

~> -

~> from -:7

Here, the backtrace provides a clue: Java couldn’t find a Producer class,
which Consumer apparently requires. Adding producerjar (or wherever
the class lives) to your classpath should fix the problem. If the back-

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/name_error.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/producer_consumer.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=56

TROUBLESHOOTING < 57

trace doesn’t give enough clues to figure out which .jor is missing, it’'s
time to hit the documentation for the Java libraries you're using.

This kind of problem can also happen if a class you're directly or indi-
rectly depending on was compiled for an incompatible JVM version.

Can’t Find the Method

A lot of things can go wrong at method invocation time. The most obvi-
ous thing to check is the method name; if you can call a method by
its original Java camelCase() name but not by its Ruby-style snake_case
name, you may be looking at an edge case in the mapping between the
two (like setURLForPage() — set_urlfor_page).

After spelling quirks, the most common cause of “vanishing methods” is
type coercion. If JRuby can’t automatically map your Ruby parameters
to Java ones, it won’t call the method. You'll need to convert some of
the parameters yourself.

Wrong Method

A less frequent case, but no less baffling when it happens, is when
JRuby invokes a different method than the one you want. As we saw
earlier, JRuby tries to pick the closest match among overloaded func-
tions. But some distinctions simply do not exist on the Ruby side.

Similar situations can come up when multiple overloads are all equally
valid—such as when a Ruby object implements two interfaces and there
are overloads for each. In cases like these, you'll need to use java_send
or one of its cousins from Section 2.6, Forcing a Specific Overload, on
page 52.

JRuby can also end up making the wrong call if your Java method
names clash with common Ruby ones. Say you have the following class
that just happens to have a method called initialize(), which is the name
Ruby uses for constructors:

Download java_from_ruby/MethodClash.java

public class MethodClash {
public void initialize(String data) {
System.out.printin("Now we're set up with " + data);

}

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/MethodClash.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=57

WRAPPING Up < 58

If you try to call this method the usual way, JRuby will think you want
the no-argument Ruby initialize constructor:

Download java_from_ruby/method_clash.rb

the_clash = MethodClash.new

the_clash.initialize 'everything'
~> -:8: wrong # of arguments(l for 0) (ArgumentError)

Actually, we got lucky this time. If the Java method had taken zero
arguments instead of one, Ruby would have silently called the wrong
method instead of reporting an error. Again, java_send comes to the
rescue:

Download java_from_ruby/method_clash.rb
the_clash = MethodClash.new

the_clash.java_send :initialize, [java.lang.String], 'everything'
>> Now we're set up with everything

Fortunately, there are very few cases like this one. object id, _id_, and
_send__ come to mind, but they are not likely to appear in a typical
Java class.

Lost Monkeypatches

JRuby lets you monkeypatch Java classes, with a catch.!? The Java
side will be unaware of any new attributes or methods you define in
Ruby. In fact, your additions will evaporate completely if Ruby lets go
of all its references to the object. (The original Java part of the object
will of course live on as long as the Java side holds a reference.)

If you've tried the techniques we've described here and are still stuck,
you may want to peek at the relevant section of the JRuby wiki.!3

2.9 Wrapping Up

We've been all over the map this chapter, from the basics of loading
libraries to the minutiae of parameter passing. We've seen how JRuby

12. Monkeypatching (from a malapropism of “guerrilla patching”) means modifying a class
at runtime.
13. http://wiki.jruby.org/CallingJavaFromJRuby

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/method_clash.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/method_clash.rb
http://wiki.jruby.org/CallingJavaFromJRuby
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=58

WRAPPING UP < 59

sands off some of the rough spots where the two languages meet and
how to steer around the remaining ones. And we've discussed what to
do when things go wrong.

This broad set of topics might seem scattershot at first glance. But
we've striven to show a common theme among them. The examples
we've presented have all focused on the case where you're starting with
a Ruby script that’s calling into a Java library. Of course, there’s been
some back-and-forth, with Java occasionally calling back into a Ruby
object we gave it.

We're about to shift the emphasis in the Java direction. In the next
chapter, we'll start with a Java project and add Ruby to it. As with this
chapter, there will still be plenty of places where the two worlds are
calling back and forth to each other.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=59

Chapter 3

Ruby from Java

We've just seen several ways for Ruby to call into Java libraries. Now
let’s consider the other side of the coin: embedding Ruby code in a Java
project.

There are several situations where this capability comes in handy. Here
are a few examples:

* A Java program might need to perform some task for which there
is no Java library (or for which the Ruby libraries are easier to use
than their Java counterparts). For example, Ruby’s image_voodoo
library exposes a simpler API than the native Java2D framework.!

* Users might want to extend your Java game or animation program
with their own scripts. With JRuby, you can use Ruby as your
project’s extension language.

* You might be deploying a Ruby program into an otherwise Java-
heavy environment, where your team wants to test your Ruby code
using their JUnit or TestNG harness.

¢ If you're wrestling with an existing Java code base, you might want
to get the benefits of Ruby’s flexibility by rewriting parts of your
program in Ruby.

All these uses look the same from the Java side, so we're going to con-
centrate on the first case: using a Ruby library from a Java program.

1. http://rubyforge.org/projects/jruby-exiras

http://rubyforge.org/projects/jruby-extras

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 61

3.1 A Readl-Life Example: Source Control

Over the next several pages, we're going to build a Java app that calls
into Ruby with increasing sophistication. We’'ll start with a simple “Hello
world”’-like program and end up performing a useful task.

What useful task? Glad you asked. We're going to build a source code
history viewer in Java. The program—Ilet’s call it Historian—will use a
Ruby library to peer into a Git repository and print patches.? In a deli-
cious bit of recursion, we’ll view the history of Historian’s own source
code.

Setting Up Your Workspace

Before we get started, let’'s quickly examine the layout of the Historian
project. You can create this structure from scratch, but we strongly
recommend following along with the book’s source code.

* src/book/embed contains the Java source to our program, which is
what we’ll be spending most of our time looking at.

¢ lib contains the Ruby glue code we’ll write to connect the Java
world to the Ruby library we’'re wrapping.

¢ lib/git.rb and lib/git comprise a local copy of a popular Ruby Git
library.® This library requires you to have Git installed on your
system, so grab that if you don’t already have it.*

* bin/get-jruby-libs downloads jruby-complete jar, a bundle containing
the parts of JRuby needed by our Java program, into the lib direc-
tory.? You’ll need to run this script once at the beginning of the
project or build your own .jar from source.®

* bin/make-history sets up a new Git repository in the current direc-
tory and adds a couple of revisions for Historian to play with. As
with the previous script, you should run this once before you dive
into the code.

¢ git contains the history of the project’s own source code. If you're
creating this project from scratch, you’ll need to create this history
yourself by doing a git init, plus a few commits.

2. Java already has a library for accessing Git repositories, JGit. But let’s say you were
itching to use one of the many Ruby bindings to Git instead.

3. http://repo.or.cz/w/rubygit.git

http://git-scrn.com

http://jruby.org.s3.amazonaws.com/downloads/1.5.5/jruby-complete-1.5.5.jar
http://wiki.jruby.org/Download AndBuildJRuby

RIS

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://repo.or.cz/w/rubygit.git
http://git-scm.com
http://jruby.org.s3.amazonaws.com/downloads/1.5.5/jruby-complete-1.5.5.jar
http://wiki.jruby.org/DownloadAndBuildJRuby
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=61

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 62

As we proceed, you'll notice that we're building up this project in stages,
from Historian1.java up to Historian8.java. You might find it slightly ironic
that we’re using such an old-school naming convention with such an
advanced revision control system. We want the filenames on the printed
pages of this book to be explicit about what stage of the process we’re in.

We'll give instructions for building the project on the command line with
Ant (see Chapter 7, Building Software for Deployment, on page 165).
If you prefer the IDE experience, we've also included project files for
NetBeans.

Getting the Two Worlds Talking

Let’s start with the basics. Within the project structure we’ve described,
create a file called Historian1.java in the src/book/embed folder. Put the
following imports at the top (we won’t need some of these classes until
later, but let’s go ahead and import them now):

Download ruby_from_java/historian/src/book/embed/Historian1.java

package book.embed;

import java.util.Arrays;

import java.util.List;

import org.jruby.embed.InvokeFailedException;
import org.jruby.embed.ScriptingContainer;

Now, add the bare minimum connection to Ruby:

Download ruby_from_java/historian/src/book/embed/Historian1.java

public class Historianl {
public static void main(String[] args) {
ScriptingContainer container = new ScriptingContainer();

container.runScriptlet("puts 'TODO: Make history here.'");

}

This is the simplest way to drive Ruby from Java: pass in a chunk of
Ruby code as a String, and let JRuby handle the rest (including output).
The ScriptingContainer class is part of JRuby’s core embedding API.”
You can compile the script using Ant:

$ ant

7. Embed Core is part of a collection of JRuby embedding APIs, known together as
JRuby Embed or Red Bridge.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian1.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian1.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=62

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 63

...and run it using the launcher we've provided:

$./bin/historianl
TODO: Make history here.

There’s nothing mysterious going on inside this launcher. We're just
setting up the classpath to contain both Historian and jruby-complete.jar.
If you prefer, you can do this manually:

$ java -cp Tib/jruby-complete.jar:build/classes book.embed.Historianl

Now that Java is at least able to run a trivial JRuby program, let’s
put some actual behavior in there. Here’s the new body of the main()
function. If you're using the same filenames as we are, make sure you
name your new class Historian2 to match the file.

Download ruby_from_java/historian/src/book/embed/Historian2.java

ScriptingContainer container = new ScriptingContainer();
container.setlLoadPaths(Arrays.asList("1ib"));

String expr = "require 'git'\n" +
"puts Git.open('.').diff('HEADA', 'HEAD')";

container.runScriptlet(expr);

The call to setLoadPaths() adds the project’s lio directory to the scripting
container’s Ruby search path so that the require line in Ruby can find
the git.ro library. Next, we do a Git diff on our project home (which
happens to be a Git repository) to see what has changed since the last
commit.

Go ahead and run the new version of the app. The results should look
something like this:

$./bin/historian2

diff --git a/lib/archive8.rb b/1ib/archive8.rb
new file mode 100644

index 0000000..1d5967f

--- /dev/null

+++ b/1ib/archive8.rb

@@ -0,0 +1,12 @@

+require 'git'

+

Our first real result! Let’s ride this momentum as we charge into some
of the details of the embedding API.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian2.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=63

A REAL-LIFE EXAMPLE: SOURCE CONTROL < 64

Passing Strings In and Out

Ruby is still in charge of the output, via its puts function. Let’s get rid of
that call and just have our script return the result to Java as a string:

Download ruby_from_java/historian/src/book/embed/Historian3.java

ScriptingContainer container = new ScriptingContainer();
container.setlLoadPaths(Arrays.asList("1ib"));

String expr = "require 'git'\n" +
"Git.open('.').diff('"HEADA', 'HEAD')";

System.out.printin(container.runScriptlet(expr));

You may be wondering how this works. Let’s examine the signature of
JRuby’s runScriptlet() first:

java.lang.0Object runScriptlet(String expression);

The return value is the result of the last expression in the Ruby code
we passed in, converted to a Java Object. But what is the value of the
following line?

Git.open('.").diff('HEAD', 'HEADA')

It's a Ruby Array with one Git::Diff::Difffile element per file in the Git
changeset. How is Java supposed to work with this Ruby object?

Luckily, all we're doing is passing the result to printin(), which doesn’t
care about the underlying type—as long as it implements toString(). As
we discussed in Chapter 2, Driving Java from Ruby, on page 31, JRuby
defines this method for us as a wrapper around the Ruby equivalent,
to_s.

This example should produce the same output as the previous one; all
we're doing is shifting the printing burden from Ruby to Java. Even-
tually, we’ll be handing that data back in a format that Java can pick
apart. But first, let’s add a little flexibility.

It would be nice to be able to see the difference between any two revi-
sions, not just the two most recent ones. So, we’ll have the user supply
two Git revision identifiers on the command line, and we’ll pass them
into Ruby together as a single Java object. As we’'ve seen in the previous
chapter, Ruby will have no problem calling methods on this Java object
to extract the arguments.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian3.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=64

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 65

First, create a very simple Revisions Java class, representing a pair of
version identifiers:

Download ruby_from_java/historian/src/book/embed/Revisions.java

package book.embed;

public class Revisions {
private String start, finish;

public Revisions(String start, String finish) {
this.start = start;
this.finish = finish;

}

public String getStart() {
return start;

}

public String getFinish() {
return finish;

}
}
Now, add Ruby code to extract these fields and perform the diff. We
could build this code up in Java as one big string like we've been doing.
In the name of brevity, though, let’s put this glue code in a separate
file, lib/archived.rb, which we’ll later require:

Download ruby_from_java/historian/lib/archive4.rb

require 'git'

def history
git = Git.open('.")
git.diff($revisions.start, $revisions.finish)
end

The history function refers to a global variable, Srevisions, which holds a

Revisions object from the Java side. We'll soon see how that value gets
passed in.

First, though, note that we're calling the Revisions object’s getStart() and
getFinish() methods using the shorter start and finish names. We encoun-
tered this shortcut in Section 2.4, Instance Methods, on page 44; it's
nice to be able to use it to keep our code clean here.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Revisions.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive4.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=65

A REAL-LIFE EXAMPLE: SOURCE CONTROL < 66

How does the assignment to the Srevisions variable happen? Via the
scripting container’s put() method:

Download ruby_from_java/historian/src/book/embed/Historian4.java

ScriptingContainer container = new ScriptingContainer();
container.setLoadPaths(Arrays.asList("1ib"));
container.runScriptlet("require 'archive4'");

container.put("$revisions", new Revisions(args[0], args[1]));
System.out.printin(container.runScriptlet("history"));

Notice that the ScriptingContainer object remembers what’s happened to
it from one invocation of runScriplet() to another. The call to history works
because it remembered the previous require of archive.

This continuity is incredibly useful. You can do expensive setup opera-
tions once at the beginning of a program and then later just consume
those loaded Ruby features without having to reload them for every call
to runScriptlet().

Go ahead and try the new Historian by passing in a couple of revision
identifiers on the command line:

$./bin/historian4 HEAD~2 HEAD

diff --git a/lib/archive7.rb b/1ib/archive7.rb
new file mode 100644

index 0000000..1d5967f

--- /dev/null

+++ b/1ib/archive7.rb

@@ -0,0 +1,12 @@

+require 'git'

+

Our use of the embedding API is starting to look less like a “throw it
over the wall and cross your fingers” approach and more like a real
interaction between Java and Ruby. We're still using the blunt instru-
ment of raw strings to pass data back and forth, though. Let’s change
that.

Real Java Data

Odds are that in any nontrivial application, you’ll want something more
substantial to chew on than just an Object you call toString() on. Let’s
change our example to return something useful to Java.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian4.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=66

A REAL-LIFE EXAMPLE: SOURCE CONTROL < 67

First, we’ll make a Java interface to represent a diff for each file in a Git
changeset:

Download ruby_from_java/historian/src/book/embed/GitDiff.java

package book.embed;

public interface GitDiff {
public String getPath(Q);
public String getPatch(Q);
}

Of course, the Ruby Git library’s DiffFile class was written long before
the GitDiff Java interface. But we can reopen the Ruby class and male
it implement the interface, using the techniques in Section 2.7, Imple-
menting the Methods, on page 54:

DownTload ruby_from_java/historian/lib/archive5.rtb

require 'git'

class Git::Diff::DiffFile
include Java::book.embed.GitDiff
end

def history

git = Git.open('.")

git.diff($revisions.start, $revisions.finish).to_a
end

The DiffFile class in Ruby already has path and patch methods defined.
When we implement GitDiff by include-ing it in DiffFile, Java will automat-
ically have access to the existing path and pafch methods via getPath()
and getPatch(). No need to write any wrappers or define any mappings!

As we saw earlier, the diff method will return a Ruby Array of DiffFiles—
which are now also Java GitDiffs. Recall from Section 2.5, Arrays, on
page 46 that Ruby Arrays are also java.util.List instances. Together, these
two facts mean that our return value is now castable to List<GitDiff>.
Here’s how the Java code will process the results now:

Download ruby_from_java/historian/src/book/embed/Historian5.java

ScriptingContainer container = new ScriptingContainer();
container.setLoadPaths(Arrays.asList("1ib"));
container.runScriptlet("require 'archive5'");

container.put("$revisions"”, new Revisions(args[0], args[1]));

List<GitDiff> files = (List<GitDiff>) container.runScriptlet("history");

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/GitDiff.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive5.rb
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian5.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=67

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 68

for (GitDiff file: files) {
System.out.printin("FILE: " + file.getPath());
System.out.printin(file.getPatch());

B

Cool. One cast, and we are using the result like any other POJO.

Notice the sequence we're using now: stash the input arguments in a
global and then call a top-level function that takes no parameters. That
may do for BASIC programs written in the 1980s, but Ruby provides
better abstractions. Let’s pass the revision information into history as a
parameter, instead of using a global. While we're at it, we’ll move the
function into a class:

Download ruby_from_java/historian/lib/archiveé.rb
require 'git'

class Git::Diff::DiffFile
include Java::book.embed.GitDiff
end

class Archive
def history(revisions)
git = Git.open '.'
git.diff(revisions.start, revisions.finish).to_a
end
end

So far, we've been calling the history method by building up a string in
Java with the word history in it. But JRuby can actually call the method
directly, using the calMethod() operation.

callMethod() takes the Ruby object whose method we're calling (the
receiver), the method name, and whatever parameters you're passing
in.

Download ruby_from_java/historian/src/book/embed/Historiané.java

ScriptingContainer container = new ScriptingContainer();
container.setlLoadPaths(Arrays.asList("1ib"));
container.runScriptlet("require 'archive6'");

Object archive = container.runScriptlet("Archive.new");
List<GitDiff> files = (List<GitDiff>)
container.callMethod(archive,

"history",
new Revisions(args[0], args[1]));

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive6.rb
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian6.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=68

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 69

for (GitDiff file: files) {
System.out.printin("FILE: " + file.getPath());
System.out.printin(file.getPatch());

B

This is more like it! We're passing a parameterized list straight into a
Ruby method. There’s just one more thing we need to do before we call
it a day.

So far, we have been running our program with valid Git revision iden-
tifiers like HEAD~2. What happens when we give it an invalid revision?

$./bin/historian6 PASTA NOODLES
ruby_from_java/historian/Tib/git/1ib.rb:700:in “command':
git diff "-p" "PASTA" "NOODLES" 2>&1:fatal: ambiguous argument 'PASTA':
. 28 Tlines of errors, including things Tike:
at org.jruby.embed.internal.EmbedRubyObjectAdapterImpl.call(...)
at org.jruby.embed.internal.EmbedRubyObjectAdapterImpl.callMethod(...)
at org.jruby.embed.ScriptingContainer.callMethod(...)
at book.embed.Historian6.main(Historian6.java:16)

OK, it got the job done, but...yuck! Fortunately, we can catch Ruby
exceptions in Java, using JRuby’s InvokeFailedException:

Download ruby_from_java/historian/src/book/embed/Historian7.java

ScriptingContainer container = new ScriptingContainer();
container.setLoadPaths(Arrays.asList("1ib"));
container.runScriptlet("require 'archive7'");

Object archive = container.runScriptlet("Archive.new");

try {
List<GitDiff> files = (List<GitDiff>)
container.callMethod(archive,
"history",
new Revisions(args[0], args[1]));

for (GitDiff file : files) {
System.out.printin("FILE: " + file.getPath());
System.out.printin(file.getPatch());
}
} catch (InvokeFailedException e) {
// doSomethingSensibleWith(e);
System.out.printin("Couldn't generate diff; please see the log file.");

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian7.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=69

THE NITTY-GRITTY <d 70

Here are the results:

$./bin/historian7 PASTA NOODLES
ruby_from_java/historian/1ib/git/1ib.rb:700:in “command':

git diff "-p" "PASTA" "NOODLES" 2>&1:fatal: ambiguous argument 'PASTA':
unknown revision or path not in the working tree. (Git::GitExecuteError)

Use '--' to separate paths from revisions
from ruby_from_java/historian/1ib/git/1ib.rb:249:in “diff_full"'
from ruby_from_java/historian/lib/git/diff.rb:100:in “cache_full'
from ruby_from_java/historian/1ib/git/diff.rb:106:in “process_full'
from ruby_from_java/historian/1ib/git/diff.rb:64:in “each'
from ruby_from_java/historian/lib/archive7.rb:10:in “history'
from <script>:1

Couldn't generate diff; please see the log file.

So, there you have it: a program written in Java that calls a Ruby
method to inspect the source code of...the program itself. We will be cov-
ering some more details for the rest of this chapter, but you largely have
all the skills you need now. Go forth and make some simple embedded
Ruby applications, or read on for the nitty-gritty details.

3.2 The Nitty-Gritty

There are always special circumstances and strange little details that
a project runs into. If you find yourself wanting more control knobs for
the embedding API than we've shown you so far, then read on.

Other Embedding Frameworks

All the examples we've seen so far have used Embed Core, the main
embedding API that ships with JRuby. This API offers a great deal of
interoperability. You can call a Ruby method, crunch the results in
Java, and hand data back into Ruby. What makes this deep integration
possible is that Embed Core was created just for JRuby.

There are times, however, when a general scripting API is a better fit
than a Ruby-specific one. For instance, if your Java project already
includes other scripting languages, you probably don’t want to use a
separate API for each language.

JRuby supports the two most popular Java embedding APIs. Bean
Scripting Framework, the older of the two, began at IBM and is now

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=70

THE NITTY-GRITTY «d 71

hosted by the Apache Jakarta project. javax.scripting, also known as JSR
223, is part of the official JDK. Both have a similar flavor: you connect a
general-purpose script manager to a language-specific scripting engine.

In case youre curious, here’s how the final Historian example from
earlier would look in JSR 223, minus the exception code. First, the
imports at the top need to change a little:
Download ruby_from_java/historian/src/book/embed/Historian8.java

package book.embed;
import java.lang.NoSuchMethodException;
import java.util.List;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

Now for the Ruby embedding code:
Download ruby_from_java/historian/src/book/embed/Historian8.java
public static void main(String[] args)

throws ScriptException, NoSuchMethodException {

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("jruby");
Invocable invocable = (Invocable)engine;

engine.eval ("$LOAD_PATH << 'Tib'");
engine.eval("require 'archive8'");

Object archive = engine.eval("Archive.new");

List<GitDiff> diffs = (List<GitDiff>)
invocable.invokeMethod(archive,
"history",
new Revisions(args[0], args[1]));

for (GitDiff diff : diffs) {
System.out.printin("FILE: " + diff.getPath());
System.out.printin(diff.getPatch());

}

JSR 223 is able to perform the same tasks for Historian that Embed
Core does, in a slightly less expressive notation. BSF has a similar feel

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian8.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian8.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=71

THE NITTY-GRITTY <d 72

to what you saw previously, so we won’t show a detailed example for it.
Instead, we recommend you use JSR 223 for non-Ruby-specific embed-
ding projects, because of its official position as part of the JDK.

Containers and Contexts

Each ScriptingContainer object that you create for embedding Ruby code
has an associated context object, which JRuby uses for internal book-
keeping. By “bookkeeping,” we mean things like the Ruby interpreter
instance, I/O streams, a special variable store, and configuration
options.

The simplest ScriptingContainer constructor creates a context implicitly
for you. In case you want a little more control, you can specify the kind
of context you want:

new ScriptingContainer(); // defaults to SINGLETON

new ScriptingContainer(LocalContextScope.SINGLETON) ;
new ScriptingContainer(LocalContextScope.THREADSAFE) ;
new ScriptingContainer(LocalContextScope.SINGLETHREAD) ;

Singleton

SINGLETON, the default choice, creates one Ruby runtime shared by the
entire JVM. No matter how many ScriptingContainers you create, they’ll
all share the same context if you use this option. You can either specify
this type explicitly or use the no-argument form of the constructor.

Singleton contexts are simple to use, because you don’t have to pass
ScriptingContainer references all around your program. But they also
have a big drawback: they're not thread-safe. Try to run two chunks
of Ruby code in different Java threads, and...kaboom!

Thread-Safe

If you know multiple threads will be accessing the same ScriptingCon-
tainer (or if you're just feeling paranoid), then you should use a THREAD-
SAFE context. This type synchronizes all access to the Ruby runtime so
that multiple threads can safely call into it without crashing.

This mode is certainly safer than SINGLETON, but it doesn’t automati-
cally make your concurrency problems go away. Under a heavy load,
you may end up with a lot of waiting threads. It’s even possible to run
into a deadlock situation. For instance, if an embedded script returns
a Ruby object that, in turn, calls back into the embedding API, you

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=72

THE NITTY-GRITTY <d 73

Tom Says. ..

What T f Context Should Y ?

Even though it’s a bit of extra work up front, | recommend start-
ing your project off with THREADSAFE containers. This keeps you
in the habit of passing around the ScriptingContainer reference,
in case you later decide to switch to using fo one of the other
two modes. It also makes it harder to accidentally kill your Ruby
runtime.

can end up with a call that never returns. Fortunately, this is a bit
of an extreme case. Just keep in mind the hazards of multithreaded
programs as you're writing your code.®

Single-Threaded

So, the first mode guaranteed a single Ruby runtime, and the sec-
ond introduced some thread safety. The third mode does...none of the
above. Each time you create a ScriptingContainer with the SINGLETHREAD
option, you actually create a new context. This new context is com-
pletely unconcerned with concurrent access. Everything rides on you,
the programmer, to access the container from one thread at a time.

In truth, this kind of context is not such a dangerous beast if used in a
controlled environment. For example, if you are running a servlet that
spins up multiple threads, you can safely spawn one SINGLETHREAD-ed
ScriptingContainer per servlet thread in Servlet.init(). Some configurations
of the jruby-rack project use this strategy.

Ruby Version

JRuby supports both Ruby 1.8 and Ruby 1.9 syntax and semantics. By
default, a new ScriptingContainer uses Ruby 1.8 mode, but it’s quite easy
to use 1.9 instead:

container.setCompatVersion(org.jruby.CompatVersion.RUBY1_9);

8. For more information on what some of these hazards are, see Ousterhout’s “Why
Threads Are a Bad Idea (for most purposes)” at http://home.pacbell.net/ouster/threads.pdf.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://home.pacbell.net/ouster/threads.pdf
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=73

EMBEDDING STRATEGIES < 74

Compile Mode

We hesitate even to bring up this option but have decided to give it
a passing mention in case you encounter it in the wild or in docu-
mentation. In practice, we strongly recommend leaving it at the default
setting.

The compile mode determines when, if ever, your ScriptingContainer ob-
ject compiles individual Ruby methods down to JVM bytecode. It is
tempting to set this option to force, meaning “always compile.” After all,
compiling just sounds faster, doesn’t it?

Of course, real life is never so simple. The act of compilation takes time,
so it only makes sense to compile a Ruby method if it's going to be
called often enough for the time savings (if any!) to outweigh the initial
delay. That's exactly what the default option, jit, tries to do.® There are
times when compiling Ruby code makes sense but not when you're
embedding a JRuby runtime in a Java project.

There are a few more options beyond these basic ones. You can control
how an embedded JRuby runtime finds Ruby code, how it finds Java
classes, how local variables are remembered from one invocation to the
next, and more. Our goal, however, isn’'t to present a laundry list of
every possible setting but to show you the ones you're most likely to
encounter in the real world. For the rest, you may want to peek at the
reference documentation.!©

3.3 Embedding Strategies

In our Historian example, we saw several different ways to stitch the
Java and Ruby sides together. You can pass a Java class into your
Ruby script, make a Ruby class that implements/extends a Java type,
or just use simple, coercible types such as strings.

There is no single best approach that applies in all situations. This
section will break down some of the reasons why you may consider
picking one strategy over another.

9. http://www.realjenius.com/2009/10/06/distilling-jruby-the-jit-compiler/
10. http://wiki.jruby.org/RedBridge#Configurations

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://www.realjenius.com/2009/10/06/distilling-jruby-the-jit-compiler/
http://wiki.jruby.org/RedBridge#Configurations
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=74

EMBEDDING STRATEGIES < 75

Passing Java Data Into Ruby

How do you get data into your embedded Ruby script? Passing in a Java
object is the easiest approach. The embedded script can call the object’s
methods just as if they were written in Ruby. You can even decorate the
object with additional, easier-to-use methods that actually are written
in Ruby.

When is passing data into Ruby as plain Java objects not a good fit? It
depends on how often the Ruby script ends up calling back into Java.
Calling from Ruby to Java is a little slower than staying inside the Ruby
universe. In many cases the difference is unnoticeable, but in others,
the type coercion cost (for example, copying a java.lang.String to a Ruby
String) makes this approach too slow.

So if your Ruby code needs to call a string-returning Java method in
a tight loop, consider reshaping your solution a bit. Perhaps the Java
side could assemble a Ruby object with the data preconverted and pass
that in instead. Or you could move that time-sensitive loop into your
Java code.

We don’t mean to scare you away from the direct approach. Start out by
passing a Java object into Ruby. If this doesn’t meet your performance
goals, then measure and rework.

Returning Data to Java

Getting data back into Java-land is a little more involved; Java knows
less about JRuby than JRuby knows about Java. In general, there are
three options:!!

* Return a Ruby object that implements a Java interface

* Return a Ruby object that extends a Java class (concrete or
abstract)

¢ Construct a Java object in Ruby and return it

11. Technically, there’s a fourth option: calling become_javal on a Ruby class. But we
don’t recommend it.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=75

EMBEDDING STRATEGIES < 76

The first two options are similar, in that you are returning a Ruby object
that is tied to the JRuby runtime it came from. If your Java code calls
methods on the object, these invocations will land back in the same
JRuby runtime.

As we saw in Section 3.2, Containers and Contexts, on page 72, this
reuse of runtimes can have interesting consequences for multithreaded
Java programs. If you are passing objects between threads without
using THREADSAFE mode, you can crash the Ruby runtime.

The third option is much less prone to threading issues than the other
two choices. It can also be slightly faster, since you're not dispatching
function calls from one language to another.

The obvious downside is inelegance. If you have a small, clean Ruby
script, then the extra step of constructing a Java class for the sole
purpose of returning results will feel like makework.!? If, on the other
hand, you can build a simple Java class that doesn’t look too out of
place alongside your Ruby code, then go for it.

Type Coercion Pitfalls

JRuby strives to do the right thing with type coercions. As you call
into Ruby code and as that Ruby code returns data back to Java, many
types will get implicitly converted to similar types in the other language.

This approach is not, however, immune to mishaps. Once an object is
coerced to another type, no matter how similar, it really is a different
object. Code that relies on object identity will not work right. For exam-
ple, Maps may not work as you expect.

We've discussed a lot of “doom and gloom” scenarios in this section.
While these are important to keep in mind, remember that, for the most
part, things will just work. If you go about your project armed with the
knowledge of which subtleties can bite you and what to do about them,
you’ll be fine.

12. Anyone remember the original EJB specification?

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=76

WRAPPING Up < 77

3.4 Wrapping Up

In this chapter, we looked at the various ways to call from Java into
Ruby, all in the context of a real-life example. We then highlighted a
couple of specific features of JRuby embedding that may help you in
your own projects. Finally, we zoomed out to discuss the general trade-
offs among embedding approaches.

We hope this discussion has whet your appetite to introduce Ruby into
your Java project. In the next chapter, were going to take the next
logical step and compile Ruby programs down to JVM bytecode.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=77

4.1

Chapter 4

By now, you've had the chance to run a few Ruby applications on the
JVM. You've tried a few of the many Ruby libraries available in the wild.
You're probably becoming a whiz at calling from Ruby into Java, and
vice versa.

We hope you're getting the feel for how a JRuby application fits into the
Java ecosystem and how you can start using it for your applications
today.

Ready to take the next step toward JRuby mastery?

Compiler 101

A common theme in this book is that JRuby offers both sensible de-
faults and advanced control. For quick scripts where you don’t care
what’s going on under the hood, you can just jump in and treat JRuby
like a faster Ruby. But when you have to plug into a legacy system
or squeeze a little more performance into a complex system, JRuby
rewards further exploration.

The compiler is no exception. JRuby ships with a compiler that’s always
looking for chances to optimize your code, without any explicit instruc-
tions from you. When the need arises, you can override the defaults
and tap into this power directly.

We'll talk about how this happens in a moment. But first, we need to
get into a bit of compiler-nerd theory.

COMPILER 101 <« 79

Running Without a Compiler

Most implementations of the Ruby programming language run pro-
grams directly from the source code, by following a series of steps:

1. Read the text of the program from an .rb file on disk.

2. Parse the source code into an in-memory form called an abstract
syntax tree (AST).!

3. Execute (interpret) the AST directly by walking through its struc-
ture and performing the instructions at each node.

The first two steps happen when the application first starts. The third
happens continually while the program is running.

This is how nearly all Ruby development happens. Most Ruby gems
ship as a collection of .rb files, which remain in their unaltered source
form straight through deployment. Most Ruby developers never need to
write or run anything but .rb files.

JRuby supports this method of running programs, of course. Interpret-
ing code works just fine for most applications, and it’s the most direct
route from source code sitting on disk to a running program.

However, interpreters are generally not the fastest way to execute code.
At each node of the AST, JRuby’s runtime must make a decision about
how to react, make several calls to the Java runtime, and eventually
perform the requested action. Is there a better way?

Introducing the Compiler

Most interpreted languages that need to perform well eventually incor-
porate a compiler. A compiler generally takes some intermediate inter-
preted form (like JRuby’s AST) and converts it to a faster, more direct
representation.

The textbook definition of a compiler is somewhat more specific than
we have time or space for here. For now, it’s fine to think of a compiler
as a tool for converting code from one form into another form.

Compiling a Ruby program is conceptually similar to compiling a Java
program.

1. http://en.wikipedia.org/wiki/Abstract_syntax_free

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=79

COMPILER 101 < 80

The process involves several stages of compilation:

1. From .rb source to JVM bytecode—the resulting bytecode may live
in memory or in a .class file

2. From JVM bytecode to a VM-specific internal representation
3. From the internal representation to native machine code
4. ...and conceptually several smaller phases at each level

The compilers used at each stage can be roughly classified into two
kinds: just-in-time (JIT) and ahead-of-time (AOT).

Just-in-Time Compilation

You've probably had more exposure to JIT-compiled languages than
you realize. Just-in-time compilation is the act of taking executable
code (often code that’s already running in an interpreter) and compiling
it quietly behind the scenes, without any user intervention.

Some platforms, such as Microsoft’s .NET runtime, have no interpreter.
Their JIT compilers run immediately before the program is executed.
Other platforms, including many JVM implementations, perform JIT
compilation only as code becomes “hot,” in other words, gets called
frequently. This approach can speed up application startup. It can also
boost performance down the road, because the compiler can use live
runtime information to make optimization decisions.

JRuby includes a JIT compiler that optimizes your application as it
executes. Later, we’ll see how to make the most of its power.

Ahead-of-Time Compilation

If you've ever manually run a compiler against a piece of source code
to create an executable file, you've performed ahead-of-time (AOT) com-
pilation. AOT compilers often represent the first phases of a program’s
life cycle—especially if the program’s source code form is not generally
executable on its own (as is the case for languages like C or Java).

Most Ruby implementations (including the standard implementation)
do not incorporate AOT compilers into their life cycle. Instead, they
either walk through an AST at runtime (as Ruby 1.8 does) or run a
lower-level intermediate form of the code (as Ruby 1.9 does).

AOT compilers often do less to optimize code than their JIT cousins,
since they can only use information available at compile time. They are

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=80

COMPILER 101 <« 81

useful for languages that don’t have interpreters or that need to expose
a standard compiled form to other libraries and languages. They are
also sometimes used for code obfuscation, since the compiled form is
usually not human-readable.

JRuby also includes an AOT compiler usable for obfuscation, for gener-
ating “real” Java classes from Ruby code, or for deployment to environ-
ments that don’t support the JIT compiler. (The Android mobile plat-
form is an example of such an environment.) We'll explore JRuby’s AOT
compiler later in the chapter.

JRuby’s Compiler

In JRuby, almost all code starts out interpreted. But as the program
runs, JRuby looks for functions that would benefit from being compiled
—and compiles them. (Readers used to the HotSpot JVM will find this
approach familiar.)

Let's look at an example. Here’s a simple benchmark that iterates
through all the permutations of a string:

Download compiler/jit/permute.rb

require 'benchmark'

def do_something_with(data)
Your favorite operation here
end

5.times do
timing = Benchmark.measure do
letters = ['f', 'a', 'c', 'e', 't', 's']
Tetters.each_permutation do |p]|
do_something_with(p)
end
end

puts timing
end

The implementation uses Ruby’s blocks to perform the iteration.?

2. For more on how blocks work, see Appendix A, on page 272.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=81

COMPILER 101 < 82

Download compiler/jit/permute.rb

class Array
Calls the attached block of code once for each permutation.
def each_permutation(&block)
We'll need to permute the array L! times.
factorial = (1..length).inject(1) { |p, n| p = n }

Make a copy, so we don't modify the original array.
copy = clone
block.call copy

(factorial - 1).times do
copy.permute!
block.call copy

end

end
end

For each iteration, we permute the array once using an algorithm from
Dijkstra’s The Problem of the Next Permutation [1:

Download compiler/jit/permute.rb

class Array
Generate one permutation by Dijkstra's algorithm.
def permute!
i = length - 1

i -= 1 while at(i - 1) >= at(i)

j = length

j -= 1 while at(j - 1) <= at(i - 1)
swap(i - 1, j - 1)

i+=1
j = length

while i < j
swap(i - 1, j - 1

i+=1
j-=1
end
end

def swap(a, b)
self[a], self[b] = [self[b], self[a]]
end
end

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=82

COMPILER 101 < 83

Here are the results of running the benchmark:
Download compiler/sessions/jit.txt

$ jruby permute.rb

0.381000 0.000000 0.381000 (0.255000)
0.117000 0.000000 0.117000 (0.117000)
0.017000 0.000000 0.017000 (0.017000)
0.017000 0.000000 0.017000 (0.017000)
0.010000 0.000000 0.010000 (0.011000)

You can immediately see one very noticeable result: the numbers get
faster over time. Where the initial run takes around 0.255s of real time,
the subsequent runs take anywhere from 0.011s to 0.117s. What you
are seeing is the effect of JRuby’s JIT (and the JVM’s JIT, too) compiling
code as it runs to improve performance.

Getting the Best Out of JIT

Most JRuby users will never need to think about the JIT. It will run qui-
etly behind the scenes, optimizing hot code and leaving cold code alone.
Over time, JRuby will incorporate more runtime information into those
optimizations, and long-running programs well seem to “magically” get
faster.

With a little insider information on JRuby, though, you can write code
that will get the best performance out of the JIT.

Avoid Generating Code at Runtime

For JRuby’s JIT to run, code needs to get “hot.” If you're repeatedly call-
ing the same method, for example, JRuby will notice that and switch
from interpreting the AST to running real JVM bytecode. This will gen-
erally improve the performance of that piece of code, many times over.

On the other hand, if you are constantly generating new Ruby code (for
example, by passing a string to eval or one of its cousins), there will be
no hot spots for JRuby to optimize.

If you need the flexibility of runtime Ruby code generation, try to limit it
to the early phases of your application’s life cycle. Keep evaluated code
out of the critical path.

Prefer Smaller Methods
JRuby’s JIT operates on method boundaries. It makes decisions about
whether to JIT-compile a piece of code only when it is about to be called.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/sessions/jit.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=83

COMPILER 101 < 84

This works well for code with many moderately sized methods. How-
ever when you have a few very large methods instead, optimization gets
trickier. A large method might get called infrequently but do perform-
ance-critical work in a loop. A complicated method might get called
frequently but have many cold paths through the code. An extremely
long method can exceed limits set by JRuby or the JVM itself.

In all these situations, a method will remain interpreted forever. Both
JRuby’s JIT compiler and the principles of good software design favor
breaking large algorithms into smaller methods.

Moving On to AOT

As we've seen, JRuby usually runs in “full auto” mode. You don’t have
to decide when to interpret or compile a particular section of your code.

There are, however, times when you want to invoke JRuby’s ahead-of-
time compiler yourself and generate bytecode. Just as Java program-
mers are used to typing jovac SomeJavaProgram.java to generate Some-
JavaProgram.class, you can type jrubyc some_ruby_program.rb to generate
some_ruby_program.class.

Why would you want to do this? There are a few different situations
where this technique comes in handy:

* You're deploying to a system that requires your code to be in .class
files.

* You don’t want your original Ruby source code to appear in your
finished program.

* You're writing a plug-in for a tool that isn’t sophisticated enough
to call the Ruby Embed API.

* You're looking at one of those rare cases when AOT compilation
really is faster, such as the Android platform.

It’s not difficult to take an existing Ruby library, compile it, and call
it from Java. In fact, it’s only a short step beyond the techniques you
used in Chapter 3, Ruby from Java: Embedding JRuby, on page 60. In
the next section, we’ll get to know the AOT compiler by trying it on a
simple project.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=84

A SIMPLE COMPILED EXAMPLE < 85

4.2 A Simple Compiled Example

Over the course of this section, we’ll start with a simple Ruby example
and explore different ways to compile it for the JVM.

Compiling a Single JRuby Class

Let’s say you're a home audio enthusiast and want to make some basic
measurements of your setup. In particular, you may be interested in
the root-mean-square (RMS) voltage of a signal you've captured:

Download compiler/waveform/waveform.rb

class Waveform
def initialize(points)
@points = points
end

def rms
raise 'No points' unless @points.length > 0
squares = @points.map {|p| p * p}

sum = squares.inject {|s, p| s + p}
mean = sum / squares.length
Math.sqrt(mean)

end

end

What does it mean, exactly, to ask JRuby to compile this code?

$ jrubyc waveform.rb
Compiling waveform.rb to class waveform

This will place a waveform.class file in your project directory. This file

can be used in place of the original .rb file. Go ahead and try it. Rename
your Ruby file to backup.rb or something, and then run the following:

Download compiler/waveform/waveform_test.rb

require 'waveform'

sine_wave = (0..360).map do |degrees|
radians = degrees * Math::PI / 180.0

Math.sin radians
end

waveform = Waveform.new sine_wave

puts waveform.rms
>> 0.706126729736776

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform.rb
http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_test.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=85

A SIMPLE COMPILED EXAMPLE < 86

What else can we do with the compiled .class file? Not much. It might
be tempting to try to drive this code from Java, like this:
public class WaveformNaiveTest {
public static void main(String[] args) {
double[] triangleWave = {0.0, 1.0, 0.0, -1.0, 0.0};

waveform w = new waveform(triangleWave);
System.out.printin(w.rms());

}

Unfortunately, that doesn’t work:

$ javac -cp jruby.jar:. WaveformNaiveTest.java
WaveformNaiveTest.java:4: cannot find symbol
symbol : constructor waveform(double[])
Tocation: class waveform

waveform w = new waveform(triangleWave);
A

WaveformNaiveTest.java:5: cannot find symbol
symbol : method rms()
location: class waveform

System.out.printin(w.rms());
A

2 errors

Java was able to find the waveform class (note that the capitalization
follows the Ruby filename), but none of its methods. Consider the con-
structor. Java will be looking for a constructor taking an array of dou-
bles. Ruby parameters can be anything, and we haven't yet discussed
how to tell JRuby what parameter types to write into the .claoss file.

The mismatch doesn’t stop at the constructor. This Java code is expect-
ing the waveform class to have an rms() method taking no parameters
and returning a double. But the .class file has no such method. If you
use javap to look at the waveform class, you get a long list of methods—
including this one:

$ javap waveform

public static org.jruby.runtime.builtin.IRubyObject
method__2$RUBY$rms (waveform, org.jruby.runtime.ThreadContext,
org.jruby.runtime.builtin.IRubyObject, org.jruby.runtime.Block);

As you can see, these methods are meant for JRuby’s consumption
only. It would be possible to whip up all those private data structures
and pass them in. But as we’ll soon see, there are much more pleasant
ways to accomplish this task.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=86

A SIMPLE COMPILED EXAMPLE < 87

feo Charlie Says. ..

Y Word to the Wise
When you compile several Ruby classes with the -java option,
the generated Java classes all share one instance of the Ruby
runtime. This is similar o the SINGLETON context we discussed in
Chapter 3, Ruby from Java: Embedding JRuby, on page 60, so
the same warnings about thread safety apply.

Calling Compiled Ruby from Java

Let’s back up for a second. The purpose of the regular jrubyc command
is to compile Ruby code so that Ruby can use it. Trying to call that
Ruby-specific compiled class from Java is cutting against the grain.

In Chapter 3, Ruby from Java: Embedding JRuby, on page 60, we saw
a much more straightforward way of calling Ruby from Java: JRuby
Embed. If we insisted on doing everything by hand (there’s no need, as
we’ll soon see), here’s how we might use the embedding API to drive our
Ruby class:

Download compiler/waveform/WaveformWrapper.java

import org.jruby.embed.ScriptingContainer;

public class WaveformWrapper {
static ScriptingContainer rubyContainer;
Object waveform;

static {
rubyContainer = new ScriptingContainer();
rubyContainer.runScriptlet("require 'waveform'");

}

public WaveformwWrapper(double[] points) {
Object waveformClass = rubyContainer.runScriptlet("Waveform");
waveform = rubyContainer.callMethod(waveformClass, "new", points);

}
public double rms() {

return (Double)rubyContainer.callMethod(waveform, "rms");

}

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/WaveformWrapper.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=87

A SIMPLE COMPILED EXAMPLE < 88

This code requires you to have a definition of the Waveform Ruby class
sitting around, either in waveform.rbo or in waveform.class. What if you
want all the waveform-related code in a single .class file? The simplest
way to do that is just embed the Ruby code straight in the .java file, by
replacing the static section with something like this:

Download compiler/waveform/WaveformComplete.java

static {
String source = new StringBuilder(
"class Waveform\n" +
" def initialize(points)\n" +
@points = points\n" +
end\n" +
\n" +
def rms\n" +
raise 'No points' unless @points.length > 0\n" +
squares = @points.map {[p| p * p}\n" +

" sum = squares.inject {[s, p| s + p}\n" +
" mean = sum / squares.length\n" +

" Math.sqrt(mean)\n" +

" end\n" +

"end\n") .toString(Q;

rubyContainer = new ScriptingContainer();
rubyContainer.runScriptlet(source);

}

The advantage of this approach is that it’s simple and reliable. The
disadvantage is that it takes a lot of manual work. You have to paste
your tested Ruby code into the .jova file, write a bunch of methods with
names matching the Ruby ones, and possibly add a bunch of conver-
sion code to get your Java data into Ruby-compatible structures.

Fortunately, JRuby’s compiler makes all those manual steps unneces-
sary. If you pass the --java option to jrubyc, it will generate a .java file
instead of a .class file. You can then fall back on familiar Java tools to
finish the job.

$ jrubyc --java waveform.rb

Generating Java class Waveform to Waveform.java
$ javac -cp jruby.jar:. Waveform.java

As you can see, we generated a file called Waveform.jova and then com-
piled this file like any normal Java source code. But it's not obvious
how to call it.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/WaveformComplete.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=88

A SIMPLE COMPILED EXAMPLE

Look at the signatures of the generated methods:

public Waveform(Object points) {
// ..
}

public Object rms() {
// ...
}

Recall that Ruby function definitions don’t specify argument types.
Without this information, jrubyc has to fall back on Object for the
parameters and return values. The Ruby code to initialize a Waveform
instance is expecting an array of numbers. How do we inform the com-
piler of that expectation?

All we have to do is tag the Ruby functions with java_signature, followed
by a string containing a Java function declaration. Here’s how that
would look for the Waveform class:

Download compiler/waveform/waveform_with_sigs.rb

require 'java'

class Waveform
java_signature 'Waveform(double[] points)'
def initialize(points)
@points = points
end

java_signature 'double rms()'

def rms
raise 'No points' unless @points.length > 0
squares = @points.map {|p| p * p}

sum = squares.inject {|s, p| s + p}
mean = sum / squares.length
Math.sqgrt(mean)

end

end

At this point, you could retry the compilation step from earlier, by run-
ning jrubyc -java to generate a .java file and then running jovac to com-
pile that to a .class. Or you could combine the two steps into one. The
-javac option will compile the generated Java code for you.

$ jrubyc --javac waveform.rb

Generating Java class Waveform to Waveform.java
javac -d . -cp jruby.jar:. Waveform.java

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

D

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_sigs.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=89

A SIMPLE COMPILED EXAMPLE < 90

(N
ﬁ‘*"\
({‘1 Charlie Says. ..
“ _Filenames and Case Sensitivity

The java_require directive has an interesting quirk on non-case-
sensitive file systems (the default on Mac and Windows). These
systems can’t tell the difference between Waveform.class (which
is a generated Java wrapper around Ruby code) and wave-
form.class (which is just compiled Ruby code). When some piece
of Ruby code tries to require ‘waveform’, JRuby will try to load
Waveform.class instfead—which will throw an error.

The solution to this is easy: make sure your generated Java class
has a different name than your Ruby source file. For example,
we placed the Ruby source for the Waveform class into a file
called waveform_with_sigs.rb (instead of just waveform.ro).

\ J
If you look inside Waveform java, you’ll see something similar to the
JRuby Embed example we cooked up earlier. A simple Java wrapper
class contains the full Ruby source embedded as a string, plus a few
methods that hand off their implementation to the Ruby class.

This approach has the advantage of being self-contained: a single .java
file is all you need to throw at your build system. But there may be
times when you don’t want your Ruby source pasted into your Java
class. For these situations, add the text java_require plus the Ruby file-
name (minus extension) anywhere in your .rb file. For this example,
you might put something like this right before the start of the Waveform
class definition:

Download compiler/waveform/waveform_with_sigs.rb

require 'java'

java_require 'waveform_with_sigs'

Now, when you recompile, the generated Java code will have method
signatures easier to call from Java:

public Waveform(double[] points) {
// ...
}

public double rms() {

// ..
3

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_sigs.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=90

THE DETAILS <« 91

o Charlie Says. ..
"_Why Does the Class Name Need to B tring?

Remember that the jrubyc -java command first generates a
Java source file and then compiles that to bytecode. JRuby
just copies the class name as a string from your Ruby file into
the generated text. In other words, this requirement is just a side
effect of the way JRuby generates source code.

. J

And there you have it: one Ruby class compiled to JVM bytecode, in a
form that’s easy to use from Java. We're sure you have lots of questions
about where to go from here: how to use other Java classes, implement
interfaces, and so on. In the next section, we’ll get into several of these
details.

4.3 The Details

Now that you have some simple Ruby code compiled into a Java project,
let’'s explore a few things you might do to help this code fit into the
broader Java universe.

Importing Classes

If your compiled Ruby code is going to be part of a larger system, you’ll
probably want to import other Java classes into your Ruby code. To
do this, you’ll use the same java_import syntax from Chapter 2, Driving
Java from Ruby, on page 31, with a twist. You'll need to use a string,
rather than a Java-style package name, to refer to the class:

Original style:
java_import com.example.MyClass

Compiler style:
java_import 'com.example.MyClass'

Here’s an example of how to apply this technique to the Waveform class:
Download compiler/waveform/waveform_with_import.rb

require 'java'

java_import 'java.io.PrintStream'

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_import.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=91

THE DETAILS < 92

class Waveform
... other methods here ...

java_signature 'void print(PrintStream)'
def print(stream)
stream.write("The RMS is #{rms}")
end
end

This new print method can write out the RMS voltage to a standard Java
PrintStream.

Specifying a Package

It's standard Java practice to avoid name clashes by putting compiled
code into packages. JRuby has you covered here. Since most of the
other compiler hints have names that start with java_..., perhaps you've
guessed that the way to specify a Java package name is to use the
java_package directive:

Download compiler/waveform/waveform_with_package.rb

java_package 'com.example'

If you add the previous line to your Ruby file, the resulting Java class
will be generated into the com.example package.

Implementing an Interface

Most Java-based systems will eventually need to implement an inter-
face. For jrubyc, you can do this by specifying jova_implements inside the
body of the class.

Download compiler/waveform/waveform_with_interface.rb

require 'java'
java_package 'com.example'

class Waveform
java_implements 'Runnable’

... other methods here ...

java_signature 'void run()'

def run
puts 'inside runnable implementation'
puts rms
end
end

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_package.rb
http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_interface.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=92

THE DETAILS <«

Remember, since jrubyc generates Java source, you must implement
all of the interface’s required methods. Otherwise, you’'ll get a compiler
error from javac.

Adding Annotations to a Class or Method

Many Java frameworks require you to add annotations to your classes
or methods. These annotations may be used to tag tests, indicate de-
pendency injection points, or configure a database mapping.

In jrubyc, you can specify annotations using the java_annotation line.
Here’s a simple example of a JUnit 4 test, which uses annotations to
indicate which methods are tests:

Download compiler/waveform/test_waveform.rb

require 'java'
require 'waveform_with_sigs'

java_import 'org.junit.Test'

class TestWaveform
java_annotation 'Test'
java_signature 'void testRms()'
def test_rms
dc = [1.0]
rms = Waveform.new(dc).rms
org.junit.Assert.assert_equals rms, 1.0, 0.001
end
end

Like most of the other java_... directives, the annotation line must be
specified as a string so it can be inserted into the generated Java out-
put.

This technique isn’t just for spelling out test cases. It’s fully compatible
with more complex uses, like the Jersey framework.® With Jersey, you
can serve requests with a simple Java object, thanks to a few annota-
tions that tell the server the URL that goes with each method.

Deploying Compiled Code

We've talked about compiling Ruby code to make it more pleasant to
run—faster execution, integration with frameworks, and so on. Now,
let’s talk about compiling Ruby to make it easier to deploy.

3. http://blog.headius.com/2010/06/restful-services-in-ruby-using-jruby.html

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/test_waveform.rb
http://blog.headius.com/2010/06/restful-services-in-ruby-using-jruby.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=93

THE DETAILS <« 94

Compiling Several Files at Once

For larger projects, you will likely have a carefully arranged directory of
Ruby source code, with each component in its own folder. What’s the
easiest way to compile an application with this kind of setup? It would
certainly be possible to write a build script (see Chapter 7, Building
Software for Deployment, on page 165) to search recursively through
your project directory for source files and compile each one individually.
But there’s an easier way.

As an alternative to passing a single .rb filename to jrubyc, you can pass
a directory name. If you couple this technique with the -t option and
a target directory, JRuby will make the compiled Java package names
mirror the directory structure of the Ruby source.

In other words, if you have com/example/gui.ro and com/example/data-
base.rb and you type the following:
$ jrubyc . -t build

...then the resulting gui and database classes will be part of the com.ex-
ample package.

Hiding the Source

Many JRuby users simply want to compile their .rb files to hide the
source code. In simple cases, the simple jrubyc command works fine for
this purpose. It takes .rb source files and outputs .class files (either in
their own dedicated location or alongside the .rb files).

In JRuby, the require ‘foo’ method will load either foo.rb or foo.class. So,
you can usually just leave the .rb files out of your deployment and run
entirely from .classes.

Avoiding Name Clashes

On a bigger project, you may run into a few issues with running from
.class files. The hairiest of these is the difference between the way Ruby
loads code (by looking for .rb files) and the way Java loads code (by look-
ing for classes—which may have nothing to do with their filenames).

For example, the following two lines of Ruby code refer to the same file:

require 'some_library'
require 'sub/directory/../../some_library'

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=94

THE DETAILS < 95

%ﬁ lan Says. ..

D the SHA-1 Redlly Hide th rce?
The SHA-1 hash is generated from the Ruby source. Does this

mMean you're once again stuck with shipping a bunch of .ro files
alongside your compiled code?

Well, for now, yes. But the compiler will soon support stripped-
down .rb files that contain the SHA-1 value and nothing else.
So, you'll be protected from name collisions without having to
ship your source code.

...but the Java universe doesn’t know that. The next two lines of Ruby
code refer to different files:

require 'math/sin’'
require 'mortal/sin’'

...but to Java, these would both be in classes called sin. Clearly, we
need some way other than just the filename to distinguish between two
different compiled Ruby files. We need to know something about the file
contents, not just the name.

JRuby offers a way to name compiled files based on their source con-
tents. The --shal flag calculates a SHA-1 hash—a 40-digit hex number
that is overwhelmingly likely to be unique for each Ruby file in your
program—and uses that for the filename instead. So, JRuby could tell
that two uses of some_ruby_class are referring to the same code, because
the contents would be the same. The resulting .class file would be named
something like 804618fe4c994ba2b7a39b949cae81c9301327.class.

Deploying to Mobile Plaiforms

When you compile a Ruby class to bytecode, JRuby normally saves one
last stage of code generation for runtime. This stage builds “method
handles”—one tiny Java class per Ruby method, basically. Some plat-
forms place restrictions on this kind of last-minute generation. For
example, the Android mobile operating system forbids any runtime code
generation.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=95

WRAPPING UP < 96

For these cases, you can pass the --handles option to jrubyc. You'll typi-
cally use this alongside the previously discussed --shal flag:

$ jrubyc --shal --handles

When you use this option, you’'ll see lots of extra little .class files. There’s
nothing to be alarmed about; these are just the method handles that
JRuby would normally have generated at runtime.

4.4 Wrapping Up

We started this chapter with a heady discussion of compiler-nerd the-
ory. But it was for a good cause. That background information was
useful to keep in mind as we considered all the different ways that
JRuby can compile your Ruby code. Most of the time, your Ruby code
can coast through JRuby’s just-in-time compiler. If you need more con-
trol for a particular project, jrubyc and its many options are there for
you.

By this point, you've been through all the core pieces of JRuby: call-
ing Java from Ruby, embedding Ruby into Java, and now using the
compiler. Where do we go from here?

Out into the world! There’s a rich set of Java and Ruby libraries out
there, ready for you to tame and bring into your own applications. In
the second part of the book, we’ll visit some of the more interesting
libraries in both languages.

Our goal isn’t to cover all the popular libraries but to highlight the ones
that people new to JRuby usually ask about first. We'll start off by get-
ting Rails, the blockbuster web development framework, up and run-
ning on JRuby. We’'ll then look at popular libraries in both languages for
building and testing software. Finally, we’ll top things off with various
approaches to designing Ruby GUIs on top of the Swing toolkit.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=96

Part II

JRuby and the World

5.1

Chapter 5

iroduction fo Rl

Rails is the most-cited reason that people are turning to Ruby from
other languages. It has—with good reason—been called Ruby’s killer
application. From the initial release in July 2004 up to now, the in-
crease of Rails adoptions, products, books, blogs, and articles has been
staggering.

In this chapter, we will first take a quick look at the different parts
of Rails and where all the buzzwords and slogans fit into the picture.
Next, we’ll create a simple JRuby on Rails application from scratch—the
focus will be on getting up and running quickly, rather than providing
encyclopedic coverage of the API.

What Is Rails?

Rails is a web application framework. It has seen great success in the
past few years, because of several revolutionary differences from earlier
web frameworks. It has given countless developers the tools to create
web applications in an easy and intuitive way. Rails removes the need
for giant configuration files, gives you a set of reasonable defaults, uses
Ruby’s expressiveness to keep your code readable, and focuses on mak-
ing the most common use cases dead simple.

When you combine the rapid development of Rails and the power of the
JVM, you can do the following:

* Handle an entire site’s worth of traffic in a single Rails instance,
thanks to Java’s multithreading

WHAT Is RaiLs? < 99

* Connect to a huge range of legacy databases without struggling
with native database drivers

¢ Use one of Java’s many libraries for persistence, messaging, or
image processing from your Rails app

* Deploy clean, compact Ruby code to a Java-only server
environment

* Wrap a web interface around a legacy application, such as the
Tracker 7 software that’s keeping the world safe from nuclear
proliferation!

Principles

Although the success of Rails can be credited to the way it changed
how we build web applications, Rails is also distinguished by brilliant
marketing, including the propagation of several slogans and buzzwords.
Here are a few of the more common slogans, together with their mean-
ings in the context of Rails:

Don’t Repeat Yourself (DRY)
According to the DRY principle, each piece of information should
live in exactly one place.? If you're writing a payroll app where
each Employee needs a name and a salary, you shouldn’t have
to define those fields in the database and your Ruby class. And
indeed, in Rails, you don’t—property information resides only in
the database.

Convention over Configuration
Also known as “sensible defaults”—when you do things the way
Rails expects you to, you won't need to configure much. For exam-
ple, Rails will automatically find the table for your Recipe class,
provided the table is named recipes in the database. It will also
implicitly assign URLs like http://example.com/recipes to Ruby
methods like RecipesController#findex.

This idea is closely related to the DRY principle. After all, the best
way of not repeating yourself is to not say anything at all.

1. http://exportcontrol.org/library/conferences/2657/9.__Tracker_7_System_Overview.pdf
2. See The Pragmatic Programmer [1.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://example.com/recipes
http://exportcontrol.org/library/conferences/2657/9.__Tracker_7_System_Overview.pdf
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=99

WHAT Is RaiLs? <€ 100

Y Ola Says...
The ABCs of MVC

Rails embodies the Model-View-Controller (MVC) software
pattern—understanding this pattern will help you learn Rails.

A frequent trap for application developers is letting business
logic creep into user-interface code. MVC tries to avoid this
problem by providing three different buckets for your code: the
model, the view, and the controller.

The model contains the business logic and data—this may
include connecting to a database.

The controller is responsible for providing the view with all the
data needed for the current interaction with the user. It also
responds to user actions by evaluating them and dispatching to
a model. A controller should be small—think of it as the switch-
board between the models and the views.

The view displays data in different formats. Rails apps often
implement this layer using eRuby, a mix of Ruby and HTML.

These are the central parts of Rails—everything else is just the
plumbing necessary to make everything work.

In Rails, your models are usually ActiveRecord classes (see Sec-
tion 6.1, ActiveRecord, on page 134) kept in app/models. The
views are usually .html.erb, .xml.erb, or js.ijs files, and they live in
app/views. Finally, the controllers are regular Ruby classes that
are placed in app/controllers. This division makes it very easy to
know where code should be placed and what the responsibil-
ity of each piece is.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=100

WHAT Is RaiLs? <€ 101

Agile
Though Agile is of course a general computer-industry buzzword,
it has specific connotations in Rails. With the Ruby language, you
can get off the ground quickly with clear, understated code. With
built-in test harnesses, you can safely change directions in the
middle of a project. It’s all about bringing more value to your appli-
cation in less time.

Opinionated Software

All of these slogans and buzzwords tie into each other. They all
have the common goal of establishing the easiest and best way
to develop web applications, according to one opinionated person:
David Heinemeier-Hanson. He started the Rails project with very
specific ideas about what’s good and what’s bad in a web frame-
work. Of course, thousands of volunteers have improved Rails over
the years, but its overall shape is still guided by these opinions.

One example of opinions in Rails is the lack of support for compos-
ite primary keys in the database.? If you really need them, they're
available as a plug-in, but the Rails team has resisted bloating the
core libraries with them.

Most things are possible in Rails, but dubious practices result in
uglier code than sound practices do. Suspect code will therefore
really stand out when you're writing it.

Components

Under the hood, Rails is not really one framework. Rather, it’s a compo-
sition of several loosely tied libraries that happen to work well together.

Here are the major Rails libraries:

ActiveRecord
The ActiveRecord library covers the model part of the MVC pat-
tern, by pairing database tables with simple wrapper classes that
embody your program’s logic. The implementation makes partic-
ularly good use of Ruby language features and takes most of the
pain out of defining model classes.

ActiveRecord supports most standard database features but
notably omits foreign-key relationships and composite primary

3. For a discussion, see http://lists.rubyonrails.org/pipermail/rails-core/2006-February/thread.html#794.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://lists.rubyonrails.org/pipermail/rails-core/2006-February/thread.html#794
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=101

WHAT Is RaiLs? <€ 102

keys. (Most of these can be added with the use of plug-ins.) For
more details on this component of Rails, see Chapter 6, JRuby
and Relational Databases, on page 133.

ActionPack
ActionPack takes care of presenting your models to users and
responding to the actions they perform. It consists of three parts:
ActionView and ActionController correspond to the view and con-
troller parts of MVC, while ActionDispatch is responsible for con-
necting a request to a controller.

A controller in Rails is just a regular class that inherits from
ActionConftroller; each public method is an action triggered by some-
thing the user does. ActionView is there in the background, but
your Ruby classes don’t interact directly with it. Views in Rails
are templates with names ending in .html.erb by default (the exact
suffix varies with the templating system).

ActionPack and ActiveRecord do most of the work in Rails.

ActiveSupport
Rails includes a large number of extensions to the Ruby core
classes. It also includes libraries to handle internationalized text,
helpers for working with times and dates, and lots of other things.

A lot of these smaller features aren’t necessarily tied to web devel-
opment. Date/time math crops up in a lot of applications, on the
Web or elsewhere. With ActiveSupport, you can express a time
difference as easily as (2.months + 1.day + 3.hours + 15.minutes).ago.
Compare that to old-school time arithmetic: Time.now - (2*30*24*3600
+ 2473600 + 3*3600 + 15*60)—and that doesn’t even take into account
that different months have different lengths.

ActiveSupport is chock full of nice things like this. As you become
familiar with it, you’ll often find that some utility function you've
been wishing for is already included.

ActiveResource
In the bad old days, we tended to think of web apps as little com-
puter programs churning out HTML tag soup. You can write a
program like this with Rails, of course. But you will find it far eas-

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=102

WHAT Is RaiLs? <€ 103

ier to “cut with the grain” and think in terms of resources instead
of pages or scripts. This style is known as Representational State
Transfer (REST).

Rails makes it easy for you fit your app into this structure. Action-
Pack helps you create REST services, and ActiveResource helps
you consume them—both under similar APIs.

ActionMailer
ActionMailer is a small package that helps you create uniform mail
templates. You can send mail from your controllers and use .erb
files as templates for your messages.

ActiveModel
ActiveModel is a new component created in Rails 3 that is basi-
cally an extraction of the best bits of ActiveRecord, such as data
validations and callbacks. With ActiveModel, you can easily make
any Ruby object (not just database classes) at home in Rails.

Bundler
Although not part of Rails, Bundler is a utility developed in parallel
with the Rails 3 release to aid in gem dependency management in
any Ruby project (even a non-Rails one). Bundler locks down your
dependencies to make sure you can repeatably deploy the same
configuration across different environments and machines. You’ll
get comfortable with Bundler in the tutorial shortly.

Most parts of Rails work fine on their own, even in non-Rails applica-
tions. For instance, ActiveRecord is widely used in other frameworks
and applications. That said, some components are more reusable than
others.

There’s a lot functionality just in the Rails core. Thanks to the plug-
in architecture, there’s also a universe of extensions available to take
Rails in more directions (or sometimes fewer directions—the Rails team
will often spin off a seldom-used feature into a plug-in).

What About JRuby on Rails?

The previous sections described how Rails is put together, and we will
soon take a look at how to actually create an application using JRuby
on Rails. But first, why would you want to use JRuby together with
Rails? The short answer: for exactly the same reasons you would want

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=103

WHAT Is RaiLs? <104

%ﬁ lan Says. ..

A First Look at REST

A RESTful web service provides a set of discoverable, uniquely
named documents (resources). Client code—which may or
may not be a browser—can read and modify resources by
using the HTTP protocol’s four simple verbs: POST, GET, PUT, and
DELETE.*

For example, suppose you're creating a photo-edifing site.
With a traditional approach, you might send a GET request to
http://example.com/show.php to display an image or send POST
requests to new.php, edit.php, or delete.php to upload, modify, or
remove an image.

With REST, you'd present each photo as a resource with
a unique ID, such as http://example.com/photos/12345. All
operations—viewing, modifying, and so on—would take place
through GET, POST, PUT, and DELETE requests to that same
address.

Think of it as “convention over configuration” applied to your
API design.

x This is not the same thing aos the four CRUD (create, read,
update, destroy) operations performed by many web apps; see
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story.

to use JRuby on any project—speed, stability, infrastructure, and so
on.

The slightly longer answer is that Rails in its current incarnation is
very good at many things but not absolutely everything. JRuby can
smooth over some of the remaining rough spots. Deployment is proba-
bly the most interesting of these. Deploying a Rails application is fairly
well documented, but getting everything right can still be difficult. With
JRuby, you can package your Rails application as a standard .war file
and deploy it to any compliant Java web container.*

4. Web application archives, or .war files, are a standard way of deploying web applica-
tions on Java servers.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://example.com/show.php
http://example.com/photos/12345
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=104

GOING ROUGE < 105

Rails supports several different databases, but in practice, most shops
use either MySQL or PostgreSQL. Since JRuby on Rails allows you to
use any database that has a JDBC driver, you have access to a wider
range of databases, plus features such as data sources and connec-
tion pooling. JRuby on Rails also works very well with JavaDB, the
in-memory database that is distributed with Java.

The best way to think of JRuby on Rails is like regular Rails with a few
intriguing new possibilities.

5.2 Going Rouge

It's time to get started with some code. Through the rest of this chapter,
we’ll build Rouge, a simple web-based restaurant guide. By the time
we've finished, you should be able to build your own JRuby on Rails
application. We can’t cover all or even most of the functionality that
Rails provides—there are other books that can teach you this.?

Getting Started

Before starting the tutorial, we need to install Bundler and Rails. The
example code in this chapter was written using Rails 3.0.1, Bundler
1.0.2, and activerecord-jdbc-adapter 1.0.1.

To install Bundler and Rails, just type this command:
Download introduction_to_rails/output/gem-install.txt

$ jruby -S gem install bundler rails
Successfully installed bundler-1.0.2
Successfully installed activesupport-3.0.1
Successfully installed builder-2.1.2
Successfully installed i18n-0.4.1
Successfully installed activemodel-3.0.1
Successfully installed rack-1.2.1
Successfully installed rack-test-0.5.6
Successfully installed rack-mount-0.6.13
Successfully installed tzinfo-0.3.23
Successfully installed abstract-1.0.0
Successfully installed erubis-2.6.6
Successfully installed actionpack-3.0.1
Successfully installed arel-1.0.1
Successfully installed activerecord-3.0.1
Successfully installed activeresource-3.0.1

5. See Agile Web Development with Rails [].

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/gem-install.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=105

GOING ROUGE <« 106

Successfully installed mime-types-1.16
Successfully installed polyglot-0.3.1
Successfully installed treetop-1.4.8
Successfully installed mail-2.2.7
Successfully installed actionmailer-3.0.1
Successfully installed rake-0.8.7
Successfully installed thor-0.14.3
Successfully installed railties-3.0.1
Successfully installed rails-3.0.1

24 gems installed

Our restaurant guide will make it easy for someone who'’s considering a
restaurant to find reviews for it. They’ll want to search restaurants, read
reviews, and comment on either a review or a restaurant. Visitors will
be generating most of this content, but we’ll also need an administrator
account for creating restaurants. You'll see later how to offer these two
different views of the same data.

Deciding on Our Models

From the previous short description, we can deduce some potential
models:

¢ Restaurant

¢ Administrator

¢ Reviewer

* Review

e Comment (attached to a Restaurant)
¢ Comment (attached to a Review)

We will use a common Comment model for both restaurant comments
and review comments—it seems unnecessary to have two different
models for essentially the same idea.

Establishing Structure

Rails emphasizes a particular structure for your code. The first step in
creating a new application is to generate this structure. The rails new
command will build a minimal (but well-organized!) app from scratch,
using the directory name you provide on the command line. We’ll choose
the name rouge for our project directory.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=106

GOING ROUGE <« 107

Download introduction_to_rails/output/rails-rouge.txt

$ jruby -S rails new rouge --template http://jruby.org
create
create README
create Rakefile
create config.ru
create .gitignore
create Gemfile
create app
create app/controllers/application_controller.rb
create app/helpers/application_helper.rb
create app/views/layouts/application.html.erb
create app/mailers
create app/models
create config
create config/routes.rb

Rails tells you exactly which directories and files get created. Repro-
ducing the entire list here would take more than two pages; for the
trees’ sake, we've truncated the output. As you can see by the directory
names, there is one specific place for each piece of functionality you
would want to add to your application.

The directories you will spend most of your time in from now on are the
following:

* app: Contains most of the application’s functionality—models,
controllers, and views.

¢ config: Holds configuration settings, such as the database server
location.

¢ test: Go on, guess!

You'll notice we passed an extra --template http://jruby.org option when
we generated the application. This flag tells Rails to apply some extra
JRuby-specific configuration to the new application.

If you are following along and ran the command yourself, you might
have noticed a couple of extra lines at the bottom of the rails new com-
mand output:

Download introduction_to_rails/output/rails-rouge.txt

apply http://jruby.org
apply http://jruby.org/templates/default.rb
gsub Gemfile

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rails-rouge.txt
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rails-rouge.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=107

GOING ROUGE <« 108

- Nick Says. ..
You Have Options

The rails new command supports a number of options. A cou-
ple of the more interesting ones are --database mysql for setting
up an application for use with MySQL and --skip-active-record for
avoiding using ActiveRecord or databases at all. See jruby -S rails
help new for more information.

JRuby needs to use the activerecord-jdbc-adapter gem to connect to
databases via Java’s JDBC API, so JRuby has made some small mod-
ifications to the default Rails application’s Gemfile. What goes in the
Gemfile, you say? We're glad you asked!

Installing Dependencies with Bundler

Bundler’s stated goal is to “manage an application’s dependencies
through its entire life across many machines systematically and repeat-
ably.”® In more pragmatic terms, it helps prevent conflicting or missing
gems. Although you can use Bundler with any Ruby application, the
integration story is particularly good with Rails 3.

As we hinted in the previous section, one of the files the rails new com-
mand creates is called Gemfile. Let’s take a look inside:
Download introduction_to_rails/output/Gemfile

source 'http://rubygems.org’
gem 'rails', '3.0.1'

Bundle edge Rails instead:
gem 'rails', :git => 'git://github.com/rails/rails.git’'
if defined? (JRUBY_VERSION)

gem 'activerecord-jdbc-adapter'

gem 'jdbc-sqlite3', :require => false
else

gem 'sqglite3-ruby', :require => 'sqglite3'
end

6. http://gembundler.com/

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/Gemfile
http://gembundler.com/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=108

GOING ROUGE

The Gemfile is just a place to declare the gems and libraries your appli-
cation needs. Bundler shines when it’s time to configure those depen-
dencies at install time and runtime. To make Bundler install the depen-
dencies, run the bundle install command:

Download introduction_to_rails/output/bundle-install.txt

$ jruby -S bundle install

Fetching source index for http://rubygems.org/
Using rake (0.8.7)

Using abstract (1.0.0)

Using activesupport (3.0.1)

Using builder (2.1.2)

Using i18n (0.4.1)

Using activemodel (3.0.1)

Using erubis (2.6.6)

Using rack (1.2.1)

Using rack-mount (0.6.13)

Using rack-test (0.5.6)

Using tzinfo (0.3.23)

Using actionpack (3.0.1)

Using mime-types (1.16)

Using polyglot (0.3.1)

Using treetop (1.4.8)

Using mail (2.2.7)

Using actionmailer (3.0.1)

Using arel (1.0.1)

Using activerecord (3.0.1)

Installing activerecord-jdbc-adapter (1.0.1)
Using activeresource (3.0.1)

Using bundler (1.0.2)

Installing jdbc-sqlite3 (3.6.14.2.056)

Using thor (0.14.3)

Using railties (3.0.1)

Using rails (3.0.1)

Your bundle is complete! Use “bundle show [gemname]"
to see where a bundled gem is installed.

The beauty of having the dependencies stored in Gemfile is that you can
ensure that anyone else working on your application has the same set
of libraries. Everyone simply needs to remember to run bundle install (the
first time) or bundle update (when someone changes the Gemfile).

Configuring the Database

The next step after creating a new Rails application is to configure your
database. Open config/database.yml. It will consist of three sections
named after the three standard environments Rails creates for you:

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

<4109

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/bundle-install.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=109

GOING ROUGE <110

(-<Y Ola Says. ..
Whitespace in Config Files

Be very careful when editing YAML files (files that end in .yml
or .yamD—one single tab character in these files will render
them unreadable to Ruby. If you see strange errors after edit-
ing database.yml, check your whitespace for tabs.

test, development, and production. Here’s the setup for the develop-
ment database, which is the one you'll use during most of this chapter:”

Download introduction_to_rails/rouge/config/database.ymi

development:
adapter: sqlite3
database: db/development.sqlite3
pool: 5
timeout: 5000

If you were developing the application with a database server such
as MySQL or PostgreSQL, you'd edit this file to change the connec-
tion information. Since we’ll be using the embedded SQLite database,
there’s no need to change anything here for now.

Before you start the application, we should point out there is another
step you’d need to perform had we started with MySQL: creating the
databases. Rails provides a handy command that will create a separate
database for each environment. As with many maintenance tasks, you
run it using Rake, the Ruby build and maintenance tool.® This step is
unnecessary with SQLite, which will create the files for us the first time
our Rails app hits the database. If you're really curious, you can safely
run the command anyway:

Download introduction_to_rails/output/rake-db-create.txt

$ jruby -S rake db:create:all
(in code/introduction_to_rails/rouge)

7. Your automated tests will use the test database instead. It's important to keep this
one separate, since Rails destroys and re-creates it every time you run the tests.

8. We'll cover Rake in more detail in Chapter 7, Building Software for Deployment, on
page 165.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/config/database.yml
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-db-create.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=110

5.3

BUILDING OUR MODELS

The Rails application is now ready to start:
Download introduction_to_rails/output/script-server.ixt

$ jruby script/rails server

=> Booting WEBrick

=> Rails 3.0.1 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach

=> Ctr1-C to shutdown server

[2010-10-15 11:08:40] INFO WEBrick 1.3.1

[2010-10-15 11:08:40] INFO ruby 1.8.7 (2010-10-13) [java]

[2010-10-15 11:08:40] INFO WEBrick::HTTPServer#start: pid=6137 port=3000

You should be able to visit http://localhost:3000 and see the standard
Rails welcome page.

Building Our Models

Now that we know Rails works correctly and your application is config-
ured as it should be, it’s time to sketch out our models. You're probably
not surprised to hear we’ll be using Rails code generation again.

That First Step Is a Doozy

You will see several things get generated in the following interaction.
These include a nearly empty Ruby file containing your model and
another Ruby file called a migration. Rails won't actually put anything
in the database for you, until you specifically ask it to do so. The migra-
tion defines exactly what gets added.

Download introduction_to_rails/output/script-generate-model.ixt

$ jruby script/rails generate model Restaurant
invoke active_record
create db/migrate/20101014180911_create_restaurants.rb

create app/models/restaurant.rb
invoke test_unit

create test/unit/restaurant_test.rb
create test/fixtures/restaurants.yml

As usual with Rails, you get several things for free, including a basic
test file and a skeleton in which to put the database definitions for
the model. Since Rails defines models by their database structure, we
need to create a table before using the model. This is done in the file
db/migrate/..._create_restaurants.rb. For now, you should edit it to look
like this code example:

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-server.txt
http://localhost:3000
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-generate-model.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=111

BUILDING OUR MODELS <« 112

Download introduction_to_rails/edits/001_create_restaurants.rb

class CreateRestaurants < ActiveRecord::Migration
def self.up
create_table :restaurants do |t|

t.string :name

t.text :description

t.string :address

t.string :phone
t.timestamps
end

end

def self.down
drop_table :restaurants
end
end

Notice that the migration describes the data’s structure in Ruby, with-
out referring to any particular database product. Each migration
should perform a single unit of database work and should include a
way to undo that work (so that the migration can be rolled back). In the
previous example, we create or remove a table called restaurants.

The next step is to run this migration and thus create the database
table. We do so using rake with the db:migrate target:

Download introduction_to_rails/output/rake-db-migrate-1.txt

$ jruby -S rake db:migrate
(in code/introduction_to_rails/rouge)
== C(CreateRestaurants: migrating
-- create_table(:restaurants)

-> 0.0290s

-> 0 rows
== C(reateRestaurants: migrated (0.0290s)

As you can see, rake reports that it successfully created the restaurants
table in the database. If you don’t specify an environment, the migra-
tion will run in development mode. You should see the results in the
rouge_development database, complete with columns for the ID, name,
description, address, phone number, and time stamp fields.

Before we proceed, let’s take a look at the other files Rails created for
us. First, there’s the actual model file, app/models/restaurant.ro. At this
stage, it doesn’t really look like much, since it gets all the information
it needs from the database.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/edits/001_create_restaurants.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-db-migrate-1.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=112

BUILDING OUR MODELS

Download introduction_to_rails/output/restaurant.rb

class Restaurant < ActiveRecord::Base
end

This seemingly empty class already has some functionality. When the
app starts up, Rails will reach out to the database, find out the col-
umn names (name, description, address, and phone), and add methods to
the class with the same names—all at runtime. We will add even more
functionality in a minute. First, a brief word on testing.

Testing the Model

Take a peek inside the test directory. By default, Rails generates a test
file for every model and controller. Let’'s add a few tests to demonstrate
some common ActiveRecord operations. Open test/unit/restaurant_test.rb.
Right now, it just contains a single no-op test case:

Download introduction_to_rails/output/restaurant_test.rb

require 'test_helper'

class RestaurantTest < ActiveSupport::TestCase
Replace this with your real tests.
test "the truth" do
assert true
end
end

There are two ways to run this test: directly or through Rake. The Rake
approach is the simplest:

DownToad introduction_to_rails/output/rake-test.ixt

$ jruby -S rake

(in code/introduction_to_rails/rouge)

Loaded suite .../gems/rake-0.8.7/Tib/rake/rake_test_Tloader
Started

Finished in 0.044 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Without any parameters, this command will run all the tests. You can
run just unit tests or functional tests by using the target test:units or
test:functionals. On UNIX, you can narrow things down to one file or even
one test case, by adding something like TEST=test/unit/restaurant_fest.ro or
TESTOPTS=--name=test_can_create_restaurant to the command line.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

<4113

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/restaurant.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/restaurant_test.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-test.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=113

BUILDING OUR MODELS

The second way to test the components of your Rails app is just to run
a test file directly from the jruby command. This avoids the overhead of
rake and is usually a bit quicker:

Download introduction_to_rails/output/jruby-single-test.txt

$ jruby -Itest test/unit/restaurant_test.rb
Loaded suite test/unit/restaurant_test
Started

Finished in 0.292 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Now that we have successfully run an empty test, let’s actually exercise
the Restaurant model. First, we’ll check that we can create a restau-
rant (all of these tests should be added inside the RestaurantTest class in
fest/unit/restaurant_test.ro):

Download introduction_to_rails/rouge/test/unit/restaurant_test.rb

def test_can_create_restaurant_with_only_name
Restaurant.create! :name => "Mediterraneo"”
end

There are several ways to create new instances with ActiveRecord. In
this case, we’ll use the createl method, which will save a new object
to the database immediately. The exclamation mark signifies that the
method will raise an exception if something goes wrong. By contrast,
the nonpunctuated create method will ignore errors. In test cases, it's
usually easier to let ActiveRecord raise an exception so that the test
harness can record it as a failure.

In the next test, we’ll make some changes to a restaurant and save! it
to the database:

Download introduction_to_rails/rouge/test/unit/restaurant_test.rb

def test_can_instantiate_and_save_a_restaurant
restaurant = Restaurant.new
restaurant.name = "Mediterraneo"
restaurant.description = <<DESC
One of the best Italian restaurants in the Kings Cross area,
Mediterraneo will never leave you disappointed
DESC
restaurant.address = "1244 Kings Cross Road, London WC1X 8CC"
restaurant.phone = "+44 1432 3434"

restaurant.save!
end

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

<4114

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/jruby-single-test.txt
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/test/unit/restaurant_test.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/test/unit/restaurant_test.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=114

BUILDING OUR MODELS

Now, let’s make sure our app can recognize incomplete data. We’ll use
the valid? method to see what happens when we create a restaurant
without a name:

Download introduction_to_rails/rouge/test/unit/restaurant_test.rb

def test_that_name_is_required
restaurant = Restaurant.new
assert !restaurant.valid?
end

If you run this test, it will fail. We haven't yet told Rails that every
restaurant is required to have a name. To get the behavior we want
and make sure that no one enters a blank name, we’ll need to add
a validation to the model. A validation is a condition that ActiveRe-
cord will check before saving an object to the database. Objects that
fail their validations don’t get saved. Make the following change to
app/models/restaurant.rb:

Download introduction_to_rails/edits/restaurant1.rb

class Restaurant < ActiveRecord::Base
validates_presence_of :name
end

After you've added this validation, rerun the test and make sure it
passes.

Filling Out the Roster

Now that we have the Restaurant model in place, it’s time to add the
remaining ones. We can get the job done quickly by way of a shortcut
in the model generator, which lets us specify the columns and their
types on the command line. This saves us from having to edit all those
migration files directly. Here’s what that looks like:

Download introduction_to_rails/output/script-generate-more-models.txt

$ jruby script/rails g model Administrator \
username:string password:string

$ jruby script/rails g model Reviewer \
name:string description:string \
username:string password:string

$ jruby script/rails g model Review \
restaurant_id:integer reviewer_id:integer \
title:string content:text

$ jruby script/rails g model Comment \
said_by:string content:text \
commentable_id:integer commentable_type:string

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/test/unit/restaurant_test.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/edits/restaurant1.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-generate-more-models.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=115

BUILDING OUR MODELS

Note that the Comment model doesn’t have a restaurant_id or a review_id
column. Instead, it has a commentable_id and a commentable_type.
Rails will use these fields to track whether a particular comment was
made about a restaurant or about a review. We’ll see how in a moment—
first, though, we need to migrate the database:

Download introduction_to_rails/output/rake-db-migrate-2.txt

$ jruby -S rake db:migrate
(in code/introduction_to_rails/rouge)
== CreateAdministrators: migrating
-- create_table(:administrators)

-> 0.0060s

-> 0 rows
== CreateAdministrators: migrated (0.0080s)

== CreateReviewers: migrating
- create_table(:reviewers)
-> 0.0050s
-> 1 rows
== C(CreateReviewers: migrated (0.0060s)

== C(CreateReviews: migrating
-- create_table(:reviews)

-> 0.0060s

-> 1 rows
== C(reateReviews: migrated (0.0060s)

== CreateComments: migrating
- create_table(:comments)
-> 0.0060s
-> 1 rows
== CreateComments: migrated (0.0070s)

The models are looking pretty good on their own. So, let’'s make some
associations between them. We do this by modifying the various files in
app/models.

Adding Associations
Let’s begin with the Restaurant model. Each restaurant will need both
reviews and comments. Here’s how to express that relationship:
Download introduction_to_rails/edits/restaurant2.rb
class Restaurant < ActiveRecord::Base
validates_presence_of :name

has_many :reviews
has_many :comments, :as => :commentable
end

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-db-migrate-2.txt
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/edits/restaurant2.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=116

BUILDING OUR MODELS <« 117

The first line we added reads almost like English: “A restaurant has
many reviews.” The next line needs a little extra wording, since a com-
ment can be associated with either a review or a restaurant.

The Administrator model is so easy that we don’t need to make any
changes at all to what Rails generated for us. So, let’s move on to the
Reviewer model:

Download introduction_to_rails/rouge/app/models/reviewer.rb

class Reviewer < ActiveRecord::Base
has_many :reviews
end

Now, on to the Review model. You've probably guessed that, since both
restaurants and reviews can take comments, this class will need the
same :as => :commentable declaration that we gave the Restaurant
model:

Download introduction_to_rails/rouge/app/models/review.rb

class Review < ActiveRecord::Base
belongs_to :restaurant
belongs_to :reviewer

has_many :comments, :as => :commentable
end

That just leaves the Comment model:

Download introduction_to_rails/rouge/app/models/comment.rb

class Comment < ActiveRecord::Base
belongs_to :commentable, :polymorphic => true
end

As you can see, most of the code used to specify models in Rails is
self-explanatory. The only complication is the Comment model’s poly-
morphic association (in other words, its ability to belong to more than
one kind of owner). Following Rails conventions, we've named the com-
mentable relationship after the adjective form of the Comment model’s
name.

Interacting with the Console

Ideally, this example has given you an idea of how to put together a few
simple models in Rails. Now, to get a taste of how easy it is to work with
these models, let’s fire up the Rails console and add some data to our
database:

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/models/reviewer.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/models/review.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/models/comment.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=117

RESTAURANT ADMINISTRATION 101

<4118

5.4

$ jruby script/rails console
Loading development environment (Rails 3.0.0.rc)
>> mac = Restaurant.create :name => "Chez MacDo"
>> mac.comments.create :said by => "Ola",
:content => "I think this place is great!"
>> chef = Reviewer.create :name => "Swedish Chef",
:description => "The Swedish Chef has dazzled audiences for years."
>> chef.reviews.create :restaurant => mac, :title => "A fine blend",
:content => "Sometimes you find one of these exquisite experiences ...

As you can see, a few lines of ActiveRecord declarations have given us
a nice internal API for our app. Let’s put that API to work now.

Restaurant Administration 101

We're going to add the web front end now, starting with the adminis-
trative interface. Once we have that in place, we can use it to add data
(restaurants and reviewers) for regular visitors to see.

Scaffolding

Much as construction workers will set up scaffolds to support their
work in progress, Rails developers can take advantage of scaffolding
code to support their newly created applications. A Rails scaffold con-
sists of views and a controller for the standard CRUD operations (Cre-
ate, Read, Update, and Delete). It gives you a basic web interface for
your data, which you can lean on as you gradually add your real busi-
ness code. By the end of the project, the scaffolding will have served its
purpose and will be completely replaced.

We’'ll build scaffolds for three of our models: Administrator, Restaurant,
and Reviewer. These are easy to create, and they’ll give us the chance
to show off all four CRUD operations. Let’s start with the scaffold for
the Administrator model:

Download introduction_to_rails/output/script-generate-scaffold.txt

$ jruby script/rails g scaffold Administrator \
username:string password:string \
--migration false --skip

invoke active_record

identical app/models/administrator.rb
invoke test_unit

identical test/unit/administrator_test.rb

identical test/fixtures/administrators.yml

route resources :administrators

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-generate-scaffold.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=118

RESTAURANT ADMINISTRATION 101

invoke scaffold_controller

create app/controllers/administrators_controller.rb

invoke erb

create app/views/administrators

create app/views/administrators/index.html.erb

create app/views/administrators/edit.html.erb

create app/views/administrators/show.html.erb

create app/views/administrators/new.html.erb

create app/views/administrators/_form.html.erb

invoke test_unit

create test/functional/administrators_controller_test.rb
invoke helper

create app/helpers/administrators_helper.rb

invoke test_unit

create test/unit/helpers/administrators_helper_test.rb
invoke stylesheets

create public/stylesheets/scaffold.css

The --migration false and --skip options tell Rails that we've already written
the migrations for this model. The username and password fields deter-
mine what goes into the generated HTML form.

Go ahead and start the web server using the script/server command we
saw earlier, and visit hftp://localhost:3000/administrators in your browser.
Poke around the scaffolding interface, and create at least one new
administrator for later.

As you might notice, there are a few problems with this simple scaffold.
The biggest one is that we're displaying the password in plain sight.
Let’s fix that. Open the view file at app/views/administrators/_form.html.erb,
and change text_field to password_field in the following place:

Download introduction_to_rails/rouge/app/views/administrators/_form.html.erb

<div class="field">
<%= f.label :password %>

<%= f.password_field :password %>
</div>

Now, modify app/views/administrators/index.html.erb and app/views/admini-
strators/show.html.erb to show asterisks instead of passwords. To do so,
replace occurrences of this:

administrator.password

...with this:

administrator.password.gsub(/./, '#=')

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://localhost:3000/administrators
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/administrators/_form.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=119

RESTAURANT ADMINISTRATION 101 < 120

Note that these changes affect only the display of the password, not the
storage. We're still keeping the password in the database in clear text,
which is a good way to get our site compromised. Password hashing
is a fascinating topic, but definitely one for another day. We encourage
you to check out a Rails security package such as Devise for your own

apps.®

With a simple but functional account creation page in place, we can
move on to the rest of the administrative section. The Restaurant ad-
ministrative user interface is much simpler:
$ jruby script/rails g scaffold Restaurant

name:string address:string \

phone:string description:text \
--migration false --skip

You don’t really need to do anything to this scaffold, although in order
to save screen space, you may want to remove the description column
from app/views/restaurants/index.html.erb.

Since you're running in development mode, there’s no need to restart
the web server. Just visit http://localhost:3000/restaurants.

Finally, here is the scaffolding for reviewers:

$ jruby script/rails g scaffold Reviewer \
name:string description:text \
username:string password:string \
--migration false --skip

Since this scaffold has a password field, you'll need to change the gen-
erated views in app/views/reviewers to hide the password, just like you
did for the Administrator views.

May We See Your ID, Please?

Right now, any visitor to the site can edit the page for any administrator,
restaurant, or reviewer. Let’s add HTTP Basic Authentication to control
access.

9. http://github.com/plataformatec/devise

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://localhost:3000/restaurants
http://github.com/plataformatec/devise
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=120

RESTAURANT ADMINISTRATION 101 <121

First, we’ll create a new base class for admin-only controllers; let’s call
it AuthenticatedController:

Download introduction_to_rails/rouge/app/controllers/authenticated_controller.rb

class AuthenticatedController < ApplicationController
before_filter :authenticate

private

def authenticate
authenticate_or_request_with_http_basic do |user_name, password]|
Administrator.find_by_username_and_password(user_name, password)
end
end
end

Notice the before_filter declaration. With this in place, Rails will call our
authenticate method before any action on an AuthenticatedController or
on one of its subclasses. Inside authenticate, we check for any HTTP
Basic Authentication credentials and look for a matching administrator
account. The final step is to make all three controllers inherit from
AuthenticatedController instead of ActionController. For example, the first
line of app/controllers/administrators_controller.rb should look like this:

class AdministratorsController < AuthenticatedController

At this point, we have a utilitarian but working administrative user
interface in place. One thing we can do to spruce things up a little bit is
add a common link bar for the administration options. Open the three
controller files back up, and on the second line of each, add this line of
code:

Tayout 'authenticated'

Then add a new file called app/views/layouts/authenticated.html.erb with
the following:

Download introduction_to_rails/rouge/app/views/layouts/authenticated.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Administration</title>
<%= stylesheet_1link_tag :all %>
<%= javascript_include_tag :defaults %>
<%= csrf_meta_tag %>
</head>
<body>

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/authenticated_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/layouts/authenticated.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=121

OPEN TO THE PuBLIC <« 122

<table width="50%">
<tr>
<td><%= 1link_to "Administrators", administrators_path %></td>
<td><%= 1link_to "Restaurants", restaurants_path %></td>
<td><%= 1ink_to "Reviewers", reviewers_path %></td>
</tr>
</table>

<p style="color: green"><%= flash[:notice] %></p>
<%= yield %>

</body>

</html>

All three of the ‘authenticated’ controllers will share this common HTML
structure. If you reload any of the administration pages in your browser,
you should now be able to switch among them with the link bar.

5.5 Open to the Public

Now that we have an interface for the administrator, it's time to turn
our attention to the general visitor. As a first step, we need to remove
public/index.html so we can have dynamic content on the front page.
Once that’s done, we need to change the routing.

Routes to Success

The routing system is what Rails uses to decide which controller to
call when a request arrives. It maps URLs, such as http://localhost/show/
index, to controller actions, such as ShowConfroller's index method. It’s
quite a flexible system, but for now, we only need a tiny piece of its
power. Open config/routes.rb, and add these two lines anywhere inside
the main block:

Download introduction_to_rails/rouge/config/routes.rb

root :to => "guide#index"
match 'guide/:action/:id' => 'guide'

This new code tells Rails to route requests for http://localhost:3000/ and
http://localhost:3000/guide/... to the GuideController class. This controller
doesn’t exist yet, so let’s generate it now:

$ jruby script/rails generate controller guide

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://localhost/show/index
http://localhost/show/index
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/config/routes.rb
http://localhost:3000/
http://localhost:3000/guide/...
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=122

OPEN TO THE PUBLIC

If you start up the server again and visit http://localhost:3000, you will
notice that the regular Rails welcome page is no longer there. Instead,
you’ll get an error page, because we haven’t defined any GuideConftroller
actions yet. We want the main page to display a list of restaurants that
the user can choose from. Edit app/controllers/guide_controller.ro to look
like this:

Download introduction_to_rails/edits/guide_controller1.ro

class GuideController < ApplicationController
def index
@restaurants = Restaurant.all
end
end

We also need to create the view for this action, by editing app/views/
guide/index.html.erb:

Download introduction_to_rails/rouge/app/views/guide/index.html.erb

<h1l>Welcome to Rouge</hl>
<table>
<tr>
<th align="Teft">Name</th>
</tr>

<% @restaurants.each do |restaurant| %>
<tr>
<td><%=1ink_to restaurant.name, :action => :show, :id => restaurant %></td>
</tr>
<% end %>
</table>

If you reload the page, you should see a simple list of all the restaurants
you've added so far. Clicking a link won’t take you to a restaurant’s
page, though. For that, we’ll need a new view and controller action.

A Restaurant with a View
Add the following method to GuideController:

Download introduction_to_rails/rouge/app/controllers/guide_controller.ro

def show
@restaurant = Restaurant.find(params[:id])
@comment = Comment.new

end

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

<123

http://localhost:3000
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/edits/guide_controller1.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/guide/index.html.erb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/guide_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=123

OPEN TO THE PUBLIC

Why are we creating a new comment here? It will help us fill in some

default form values in a moment. Before we get to that, though, add
a new view by creating app/views/guide/show.hfml.erb and putting the

following code in it:

Download introduction_to_rails/rouge/app/views/guide/show.html.erb

<h1l><%= @restaurant.name %></hl>

<p>Address: <%= @restaurant.address %></p>
<p>Phone: <%= @restaurant.phone %></p>

<p><%= @restaurant.description %></p>

<h2>Reviews</h2>

<table>

<tr>
<th>Title</th>
<th>Author</th>

</tr>

<% @restaurant.reviews.each do |review| %>
<tr>

<td><%= 1link_to review.title, :action => 'review',

<td><%= review.reviewer.name %></td>
</tr>
<% end %>
</table>

<h2>Comments</h2>

<% @restaurant.comments.each do |comment| %>
<p>By: <%= comment.said_by %>

<%= comment.content %></p>

<% end %>

<h2>Add comment</h2>

id => review %></td>

<%= render :partial => 'shared/comment', :locals => {:target => 'restaurant'} %>

There are several things going on in this view. First, we display infor-
mation about the restaurant itself. Below that, we link to reviews and

comments people have posted. At the bottom of the page is a form for
adding new comments. That form will be shared between restaurants
and reviews, so we're keeping it in a separate file and using Rails’s ren-
der method to reference it. We've followed Rails conventions and named

the file shared/_comment.html.erb.

Download from Wow! eBook <www.wowebook.com>

Report erratum

this copy is (P1.0 printing, January 2011)

< 124

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/guide/show.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=124

OPEN TO THE PUBLIC

Download introduction_to_rails/rouge/app/views/shared/_comment.html.erb

<%= form_for(@comment, :url => { :action => "comment_on_#{target}",
:id => params[:id] }) do |f| %>
<% if @comment.errors.any? %>
<div id="error_explanation'>
<h2><%= pluralize(@comment.errors.count, "error") %>
prohibited this comment from being saved:</h2>

<% @comment.errors.full_messages.each do |msg| %>
<1i><%= msg %></1i>
<% end %>

</div>
<% end %>
<p>
By

<%= f.text_field :said_by %>
</p>

<p>
Content

<%= f.text_area :content %>
</p>
<p>
<%= f.submit "Comment" %>
</p>
<% end %>

See the @comment instance variable at the top? That's the value we

created with the Comment.new line in the controller so that we could fill
in the fields with their correct defaults.

This user interface is not particularly fancy. But with some small
touches of CSS, it could be perfectly servicable. Of course, not every-
thing is hooked up yet. If we want to be able to save a new comment,
we’ll need to add an action to the GuideController:

Download introduction_to_rails/rouge/app/controllers/guide_controller.ro

def comment_on_restaurant
@restaurant = Restaurant.find(params[:id])
@restaurant.comments.create params[:comment]
@comment = Comment.new

flash[:notice] = 'Comment created'
render :action => 'show'
end

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/shared/_comment.html.erb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/guide_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=125

OPEN TO THE PUBLIC

We're almost finished with the app now. The only major feature missing
is reviews.

Reviewers and Reviews
We'll start with a scaffold, as before:

$ jruby script/rails g scaffold Review \
title:string content:text \
--migrate false --skip

The first change we need to make is to confine each reviewer to editing
only their own reviews. We'll use HTTP Basic Authentication as we did
for the admin interface but with a twist: we need to remember which
reviewer is logged in. Open app/controllers/reviews_controllerrb, and add
this at the top (after the class declaration):

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

before_filter :authenticate

Now, add this near the bottom, just before the end of the class declara-
tion:
Download introduction_to_rails/rouge/app/controllers/reviews_controller.ro

private

def authenticate
authenticate_or_request_with_http_basic("Reviews") do |user_name, password]|
@reviewer = Reviewer.find_by_username_and_password(user_name, password)
end
end

This code will make sure that reviewers are authenticated separately
from administrators and will also store the logged-in reviewer in the
@reviewer instance variable. Our other controller actions can use that
instance variable to decide whether to allow access. For instance, here’s
the new index method in ReviewsConftroller:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

def index
@reviews = Review.find(:all, :conditions => ['reviewer_id = ?

, @reviewer.id])

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @reviews }
end
end

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=126

OPEN TO THE PUBLIC

As you can see, we're limiting our listing to show only the reviews asso-
ciated with the current reviewer. We'll also want to restrict the show
action, which displays a single review’s details:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

def show
@review = Review.find_by_id_and_reviewer_id(params[:id], @reviewer)

raise "Couldn't find Review with ID=#{params[:id]} \
and reviewer=#{@reviewer.name}" unless @review

respond_to do |format]|
format.html # show.html.erb
format.xml { render :xml => @review }
end
end

Now, consider the three other controller actions: edit, update, and
destroy. All three of these act on an existing review, and all three need
modifications identical to the previous one.

The create action requires a slightly different change, because it builds
a new review instead of searching for and updating an existing one:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.rb

def create
@review = @reviewer.reviews.build(params[:review])

respond_to do |format|
if @review.save
format.html { redirect_to(@review,
:notice => 'Review was successfully created.') }
format.xm1l { render :xml => @review,
:status => :created,
:Tocation => @review }
else

format.html { render :action => "new" }
format.xm1 { render :xml => @review.errors,

:status => :unprocessable_entity }
end

end
end

In the previous excerpt, it wouldn’'t have been enough just to call
Review.new to create a new review. We have to reach into the reviewer’'s
reviews collection to make sure the new review gets associated with the
right reviewer.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=127

OPEN TO THE PuBLIC <« 128

Matching Reviews to Restaurants

As it stands, there’s no way for the user to specify which restaurant his
review goes with. Let’s fix that. First, we need to tell our controller to
grab a list of all the restaurants, so the view can show them in a selec-
tion box. Open reviews_controllerrb, and add a single line to the beginning
of both the new and edit actions. We'll just show the new action here:

Download introduction_to_rails/rouge/app/controllers/reviews_controller.ro

def new
@restaurants = Restaurant.alphabetized
@review = Review.new

respond_to do |format|
format.html # new.html.erb
format.xml { render :xml => @review }
end
end

Restaurant.alphabetized will be a sorted list of restaurants. We say “will
be,” because this is new functionality we need to add to the Restaurant
model. What should this method look like? Well, we could use bread-
and-butter techniques like Ruby’s sort method:

def Restaurant.alphabetized

Restaurant.all.sort {|r| r.name}
end

This code would return the correct results, but it ignores the fact that
we already have a screamingly fast data sorter sitting underneath our
app: the database. So, should we construct an entire SQL query our-
selves and send it to the database? ActiveRecord offers us something
much better: relations. To add an alphabetized relation to the Restau-
rant model, modify restaurant.ro to look like this (the new code is in the
second-to-last line):

Download introduction_to_rails/rouge/app/models/restaurant.rb

class Restaurant < ActiveRecord::Base
validates_presence_of :name

has_many :reviews
has_many :comments, :as => :commentable

scope :alphabetized, order("restaurants.name ASC")
end

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/reviews_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/models/restaurant.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=128

OPEN TO THE PuBLIC <« 129

TS
Sedtny

%ﬁ lan Says...
Relations in Rails

Relations are Rails 3's way of expressing database operations
like sorting or filtering. They let the database do what it’s good
at (slicing and dicing data), and they let Ruby do what it’s
good at (readable notation).

One nice feature of relations is that they're composable. If you
defined two relations called in_zip_code and alphabetized, you
could write Restaurant.in_zip_code('97201").alphabetized.

For more on what relations can do, take a look at AREL ("A
Relational Algebra”), the muscle behind ActiveRecord.*

x. http://github.com/rails/arel

Now we need to put this list of restaurants in the view so that the
reviewer can choose among them. Rails’s collection_select method will
construct the right HTML <select> tag for us. Add the following lines
just above the restaurant title in app/views/reviews/_form.html.erb:

Download introduction_to_rails/rouge/app/views/reviews/_form.html.erb

<div class="field">

<%= f.label :restaurant %>

<%= collection_select :review, :restaurant_id, @restaurants, :id, :name %>
</div>

As you can see, we've had to pass in five somewhat opaque parame-
ters. These become less mysterious once you have the decoder ring.!©
Together, they specify what gets saved (the :review object’s :restaurant_id
field) and where the list contents come from (the @restaurants collection’s
iid and :name fields).

That takes care of the details of the form. Let’s zoom out to the over-
all structure for a moment. Each review should feature the restaurant
name prominently. We can accomplish this by snazzing up the header
at the top of the page.

10. http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://github.com/rails/arel
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/reviews/_form.html.erb
http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=129

OPEN TO THE PUBLIC

Here’s what the resulting show.html.erb looks like:
Download introduction_to_rails/rouge/app/views/reviews/show.html.erb

<h1l>Review for <%= @review.restaurant.name %></hl>

<p>

Title:

<%= @review.title %>
</p>

<p>
Content:
<%= @review.content %>
</p>

<%= link_to 'Edit', edit_review_path(@review) %> |
<%= link_to 'Back', reviews_path %>

While we're at it, the overall list of reviews should also include restau-
rant names:

Download introduction_to_rails/rouge/app/views/reviews/index.html.erb

<hl>Listing reviews</hl>

<table>
<tr>
<th>Restaurant</th>
<th>Title</th>
</tr>

<% @reviews.each do |review| %>
<tr>
<td><%= review.restaurant.name %></td>
<td><%= review.title %></td>
<td><%= 1link_to 'Show', review %></td>
<td><%= 1ink_to 'Edit', edit_review_path(review) %></td>
<td><%= Tink_to 'Destroy', review, :confirm => 'Are you sure?',
:method => :delete %></td>
</tr>
<% end %>
</table>

<%= Tink_to 'New Review', new_review_path %>

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/reviews/show.html.erb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/reviews/index.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=130

OPEN TO THE PUBLIC

After reviewers have gone to all the trouble of writing their reviews, it
would be nice for the general public to be able to read and comment on
them. Add the following two actions to the GuideController:

Download introduction_to_rails/rouge/app/controllers/guide_controller.rb

def review
@review = Review.find(params[:id])
@comment = Comment.new

end

def comment_on_review
@review = Review.find(params[:id])
@review.comments.create params[:comment]
@comment = Comment.new

flash[:notice] = 'Comment created'
render :action => 'review'
end

The code should look pretty unsurprising, since it’s similar to what we
did for viewing restaurants. The final view (which is in app/views/guide/
review.html.erb) is similarly straightforward:

Download introduction_to_rails/rouge/app/views/guide/review.html.erb
<hl><%= @review.title %></hl>

<p>About: <%= @review.restaurant.name %></p>
<p>By: <%= @review.reviewer.name %></p>

<p><¥%= @review.content %></p>

<h2>Comments</h2>

<% @review.comments.each do |comment| %>
<p>By: <%= comment.said_by %>

<%= comment.content %></p>

<% end %>

<h2>Add comment</h2>

<%= render :partial => 'shared/comment', :locals => {:target => 'review'} %>

And there you have it—a working application! Of course, you're proba-
bly tempted to add some visual styling, nice navigational features, and
so on. We highly encourage you to do so. Have fun, and drop us a line
in the forums to show us what you’'ve come up with.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/controllers/guide_controller.rb
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/app/views/guide/review.html.erb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=131

WRAPPING Up <« 132

5.6 Wrapping Up

In this chapter, we introduced the Rails framework and built a simple
Rails application on JRuby. We also discussed a few differences from
regular Ruby on Rails. For the most part, there hasn’t been much of
a distinction, other than a couple of configuration settings. Over the
next couple of chapters, we’ll see where JRuby on Rails really shines:
database access and deployment options.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=132

6.1

Chapter 6

These days, any upstart programming language has to have some kind
of persistent storage support to be taken seriously. Ruby is no excep-
tion; in fact, developers tout its fluid database connectivity.

Many of the techniques for connecting Ruby to databases work basi-
cally the same in JRuby. Over the coming pages, we’ll turn our attention
to relational databases (as opposed to key-value or other data stores).
You'll see how to use Ruby’s more popular data frameworks and what
kinds of adjustments to make when you're running them in JRuby.

In regular Ruby, SQL libraries typically depend on a database-specific C
module. The APIs differ widely depending on the database, and frame-
work authors are left with the task of papering over these differences.
With JRuby, you'll still install a binary driver for your choice of data-
base, but at least all these drivers are written to one common API:
Java’s JDBC standard.

You can call JDBC routines directly from Ruby, and later, we’ll see a
situation where you might want to do just that. But it’s usually more
convenient to work with a higher-level library. It's worth keeping in
mind, though, that all these library calls percolate down to JDBC under
the hood.

Ruby Database Frameworks

Let’s take a look at the most commonly used Ruby frameworks for
database connectivity. From a bird’s-eye view, there’s little difference
between using these in plain Ruby or JRuby.

RUBY DATABASE FRAMEWORKS <« 134

Y Ola Says. ..
Throwback to JDBC

In many ways, both DBI and Sequel remind me of JDBC, in that
they try to abstract away some of the differences between dif-
ferent databases engines, while sfill acknowledging that you're
working with a database.

The main database libraries for Ruby are quite different from one other.
ActiveRecord is a high-level framework that allows you to work with the
database abstracted away (at least to a degree). Its name comes from
a pattern in Martin Fowler’s Patterns of Enterprise Application Architec-
ture |].1t

DBI and Sequel both allow you to work much closer to the database.
Although you won’t have to deal with a specific database product’s wire
protocol or file format, you’ll have much more control over the exact
SQL queries your Ruby program will be running.

The differences listed earlier should make it clear that these libraries
are suited for very different circumstances, and it’s good to keep a cou-
ple of them in your toolbox. But wait with that decision until you have
seen the tools available only on JRuby!

ActiveRecord

In Chapter 5, Introduction to Rails, on page 98, we saw just enough
ActiveRecord to get a Rails app running. Let’s dive in a little deeper
now. We've said that this library is an implementation of the Active
Record software pattern; what does that mean?

For the purposes of this chapter, we're going think of object-oriented
programs in terms of model classes and utility classes. Model classes
represent the ideas behind your program, in language similar to what
you'd use with an end user: blog posts, employees, appointments, and

1. Another great Ruby data library, DataMapper, also gets its name from Fowler's
book. Its JRuby support is a work in progress; still, you might want to take a peek at
http://datamapper.org if you like living on the bleeding edge.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://datamapper.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=134

RUBY DATABASE FRAMEWORKS <« 135

so on. Utility classes perform auxiliary tasks, such as drawing graphics
or parsing wire protocols. Clearly, model classes are what you'd typi-
cally want to keep around in a database.

In the simplest incarnation of the Active Record pattern, each model
class is represented by one database table. Each instance of that class
corresponds to one row in the table and typically has one property for
each column.

For instance, a program for cataloging different species of trees might
have a Tree class with name, max_height, and maybe a few other fields. If
the program follows the Active Record pattern, it will keep all its trees in
a trees table—which might look something like this after a user enters
the first couple of species:

e oo Fommmmm oo +
| id | name | max_height | is_evergreen |
e Bttt Fommmm oo +
| 1 | Canyon Live Oak | 30 | 1

| 2 | Post Oak | 15 | 0 |
e - Fommm oo +

In a less flexible programming language, you might end up writing a
lot of repetitive code to support this pattern. For instance, you'd need a
getMaxHeight() method to fetch the value of the max_height column for a
particular database record and convert it to an integer. Fortunately, the
ActiveRecord library automates much of this mapping for you. In the
simplest cases, if you follow the naming conventions, you won’t have to
write anything except the class name.

There’s a lot more to ActiveRecord than what's in Fowler’s original
design pattern. These extra features allow ActiveRecord to handle the
most common database-related tasks youre likely to encounter.
Broadly speaking, the library can be divided into four parts:

* Migrations

* Model descriptions
® Validations

* Model usage

We'll describe and give examples each of these parts soon, but first we
need to talk about how JRuby and ActiveRecord work together.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=135

RUBY DATABASE FRAMEWORKS

JRuby has supported ActiveRecord for quite a long time. A collection
of gems gives you a choice among various JDBC drivers to use with
ActiveRecord. You can choose to use either a driver specific to your
database or a general driver; it doesn’t make much difference either
way. To install the general gem, run this command (the exact version
number may vary):

$ jruby -S gem 1install activerecord-jdbc-adapter

Successfully installed activerecord-jdbc-adapter-1.0.2-java
1 gem installed

To use a database-specific gem instead, first do a search for available
gems:

$ jruby -S gem search -r activerecord-jdbc
x%% REMOTE GEMS =

ActiveRecord-JDBC (0.5)

activerecord-jdbc-adapter (1.0.2 java, 0.9.2)
activerecord-jdbcdbf-adapter (0.9.7.2 java)
activerecord-jdbcderby-adapter (1.0.2 java, 0.9.2)
activerecord-jdbch2-adapter (1.0.2 java, 0.9.2)
activerecord-jdbchsgldb-adapter (1.0.2 java, 0.9.2)
activerecord-jdbcmssqgl-adapter (1.0.2 java)
activerecord-jdbcmysql-adapter (1.0.2 java, 0.9.2)
activerecord-jdbcpostgresql-adapter (1.0.2 java, 0.9.2)
activerecord-jdbcsqlite3-adapter (1.0.2 java, 0.9.2)

...and then install the driver for your database. For example, if you were
using MySQL, you’'d type this:
$ jruby -S gem install activerecord-jdbcmysql-adapter

If you're using a commercial database like Oracle or Microsoft SQL
Server, you'll also need to download your vendor’'s JDBC driver and
copy it into JRuby’s lib directory. For example, with Oracle 10g, you'd
look for ojdbc14.jar on the official download site.?

For the most part, your Ruby code will look the same whether you use
the generic driver or a specific one. We'll note the few places where you
need to do something different between the two.

2. http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-10201-088211.html

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

< 136

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-10201-088211.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=136

RUBY DATABASE FRAMEWORKS

Once you have chosen and installed your database adapter, you can
finally install ActiveRecord itself:

$ jruby -S gem install activerecord

At this point, it's a good idea to check that everything is working by
connecting to a database and executing some raw SQL. Here’s how
you’d do that using the general adapter:

Download databases/simple_connect.rb

require 'rubygems’
require 'active_record’

ActiveRecord: :Base.establish_connection(
radapter => 'jdbc',
:driver => 'com.mysql.jdbc.Driver',
:url => '"jdbc:mysql://localhost/using_jruby',
:username => 'root',
:password => "'

)

ActiveRecord: :Base.connection.execute(""CREATE TABLE FOO1(id INTEGER)'")
p ActiveRecord::Base.connection.execute("SHOW TABLES")

You may need to change some of the parameters to suit your circum-
stances. The code assumes that you've done the following:

1. Install and start the MySQL server.>

2. Download and extract the MySQL JDBC drivers, and copy the .jar
to JRuby’s lib directory.*

3. Use the MySQL server’s admin tools to create a database called
using_jruby:

$ mysql --user=root

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4

Server version: 5.1.44 Source distribution

Type 'help;' or '"\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE using_jruby;
Query OK, 1 row affected (0.00 sec)

mysql> \q
Bye

3. http://dev.mysgl.com/downloads/mysqgl
4. http://dev.mysqgl.com/downloads/connector/j

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/simple_connect.rb
http://dev.mysql.com/downloads/mysql
http://dev.mysql.com/downloads/connector/j
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=137

RUBY DATABASE FRAMEWORKS < 138

Once those steps are complete, you're ready to run the code:

$ jruby simple_connect.rb
[{"Tables_in_using_jruby"=>"F001"}]

If you choose to use the specific MySQL adapter, the establish_connection
part should look like this instead:

Download databases/specific_connect.rb

ActiveRecord: :Base.establish_connection(
:adapter => 'jdbcmysql',
:database => 'using_jruby',
thost => 'localhost',
:username => 'root',
:password => "'

)

This configuration looks more like the regular Ruby version of the same
code, because it omits the ugly JDBC URL and driver specification.

It’s also possible to fetch your database connection from JNDI.® You do
this by providing a parameter named jndi, which has the name of the
JNDI object to get the database connection from.® If you do that, you
can leave out most of the other parameters:

Download databases/jndi_connect.rtb

ActiveRecord: :Base.estabTlish_connection(
radapter => 'jdbc',
:jndi => 'jdbc/using_jruby',
:driver => 'com.mysql.jdbc.Driver'

)
We won'’t describe in detail all the features of ActiveRecord here—there

are better places to find that documentation.” It's worth highlighting
some of the main features, though, so you know what’s possible.

Migrations

The original Active Record pattern suggests a structure for your data-
base. How do you create that structure in the first place, and how do
you modify it as your data model changes? This is where the ActiveRe-
cord library’s notion of migrations comes in. A migration is a piece of

5. Java Naming and Directory Interface, a way for Java services to discover one another.
See http://java.sun.com/products/jndi.

6. See your JNDI implementation’s instructions for how to create and name this object.
7. http://api.rubyonrails.org/classes/ActiveRecord/Base.html

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/specific_connect.rb
http://media.pragprog.com/titles/jruby/code/databases/jndi_connect.rb
http://java.sun.com/products/jndi
http://api.rubyonrails.org/classes/ActiveRecord/Base.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=138

RUBY DATABASE FRAMEWORKS <« 139

Y Ola Says. ..
Migrations

Migrations are so useful that | often use them outside the con-
text of Rails applications, whenever | want to be able to make
controlled changes to my database structure.

code that runs when you're creating your database for the first time or
when you're rearranging it later as your app evolves.

A typical migration will create a new table (to represent a new class
you're adding to your program) or add a column to an existing table.
Migrations can also run in reverse, dropping tables when you need to
roll back to a previous version of your code.

Migrations are named with a timestamp so that they run in the order
in which you created them. This sequencing allows you to grow your
database organically. If you need a table, you add a new migration for
it. If you need a new column, add a new migration to add that column.

It just so happens that most of the complexity in activerecord-jdbc-
adapter lies in the code related to migrations. The reason is that Data
Definition Language (DDL) is the least-specified part of SQL, and all
vendors have different ways of manipulating the database structure.
That said, most standard databases work fine when combining migra-
tions and JDBC.

Let’'s take a look at an example migration. Rails uses a structure of
one file per migration, and that works really well. But if you want to
do something ad hoc or maybe just see how migrations work in a code
example, it’s fine to put several migrations in one file, as in the upcom-
ing example.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=139

RUBY DATABASE FRAMEWORKS <« 140

Assuming you have an establish_connection call at the beginning of your
file, as we've discussed on the previous pages, you can define a series
of migrations like this:

Download databases/ar_migrations.rb

class AddFooTable < ActiveRecord: :Migration
def self.up
create_table :foo do |t}
t.string :foo
t.text :bar
t.integer :qux
end
end

def self.down
drop_table :foo
end
end

class AddBlechColumnTable < ActiveRecord::Migration
def self.up
add_column :foo, :flax, :string
end

def self.down
remove_column :foo, :flax
end
end

Once you've defined your migrations, you can run them normally (:up)
or in reverse (:down):

Download databases/ar_migrations.rb

AddFooTable.migrate(:up)
AddBTechCoTumnTabTle.migrate(:up)
AddBlechColumnTable.migrate(:down)
AddFooTabTle.migrate(:down)

The code will generate simple output like this, provided everything was
configured correctly. Behind the scenes, your SQL database will contain
the new tables and columns:

$ jruby ar_migrations.rb
== AddFooTable: migrating
-- create_table(:foo)

-> 2.1932s

-> 0 rows
== AddFooTable: migrated (2.1963s)

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ar_migrations.rb
http://media.pragprog.com/titles/jruby/code/databases/ar_migrations.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=140

RUBY DATABASE FRAMEWORKS <« 141

== AddBlechColumnTable: migrating
-- add_column(:foo, :flax, :string)
-> 0.1170s
-> 0 rows
== AddBlechColumnTable: migrated (0.1190s)

== AddBlechColumnTable: reverting
-- remove_column(:foo, :flax)

-> 0.0081s
== AddBlechColumnTable: reverted (0.0092s)

== AddFooTable: reverting
-- drop_table(:foo)

-> 0.0026s

-> 0 rows
== AddFooTable: reverted (0.0048s)

Migrations are definitely handy to have in your tool chest, and making
use of JDBC and JNDI to attach to different databases makes it much
easier to do any of the DDL tasks you might want to do repeatedly.

Model Descriptions

ActiveRecord includes a very rich DSL-like syntax for describing your
model classes and their associations with one other. Creating a new
model class is as simple as inheriting from ActiveRecord::Base and then
using certain class methods to tell ActiveRecord some facts about your
model.

Instead of taking each piece in isolation, we will show you a model
class that uses most of the common definitions and then describe them
afterward.

Download databases/ar_description.rb

require 'rubygems'

require 'active_record’

class Blog < ActiveRecord: :Base
set_table_name 'WP_BLOG'
set_primary_key 'blog_id'

belongs_to :owner, :class_name => 'Person'
has_one raudit_log, :foreign_key => 'watched_id'

has_many :posts

has_many :authors, :through => :posts
end

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ar_description.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=141

RUBY DATABASE FRAMEWORKS <« 142

This code defines a Ruby model class named Blog, sets the table name
to WP_BLOG (the default would have been blogs), and sets the primary
key to be blog_id (instead of the default primary key of id). We don’t have
to say anything at all about the blog’s basic properties. If, for example,
the WP_BLOG table has a name, a creator, and a visit_count column, each
of these will automatically be accessible in Ruby with the same name it
has in the database.

We see four different examples of associations in this code. First, let’s
look at belongs_to and has_one. Each of these indicates a foreign-key
relationship. In the case of belongs_to, the foreign key will be a column
called owner_id in this model's own WP_BLOG table.

The has_one declaration, on the other hand, shows that the watched_id
foreign key lives in a separate audit_logs table and points back at this
model. As you can see, ActiveRecord uses sensible naming conventions
for column, table, and class names but allows you to override them.

The final two definitions—the ones beginning with has_many—describe
collections. The first one is simple and says that every blog has zero or
more posts. The assumption here is that there also exists a Post model
class and that the blog posts will be a collection of these.

The second has_many declaration creates a many-to-many association.
It doesn’t use a typical join table (you can do that too, using has_and_
belongs_tfo_many). Instead, it uses another Ruby class, the Post model,
as the intermediate object. Here, a blog’s authors are the set of people
who have ever written a post on that blog.

There are definitely more nuances and fine-tunings of data models, but
these pieces represent the most common uses of ActiveRecord.

Validations

Nearly all database-driven programs require data validation at some
point. Sometimes, you want to apply constraints that are more strin-
gent than a typical RDBMS’s primitive type checking. Or you might
want to catch errors before the database ever sees them. ActiveRecord
provides a declarative way to get this behavior, by describing validations
on your model class.

Although you can put almost anything in a validation, there are several
common checks you end up doing quite often. This code gives a few
examples of what you can specify in your model:

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=142

RUBY DATABASE FRAMEWORKS <« 143

(-<Y Ola Says. ..
Validate Anything

ActiveRecord allows you to validate just about any property
you can think of. | made an example in Rails once that was a
database of Ruby scripts. As one of the validations, | added
a check to make sure that the Ruby script saved was actually
valid Ruby code.

Download databases/ar_validations.rb

require 'rubygems'
require 'active_record'

class Blog < ActiveRecord: :Base
validates_presence_of :title, :message => "should be provided"

validates_numericality_of :age, :only_integer => true

validates_length_of :title, :in => 5..35
validates_length_of :posts, :maximum => 30

validates_uniqueness_of :title
validates_inclusion_of :blog_type, :in => %w(work personal)
validates_format_of :contact, :with => /A.+?7@.+7$/

validates_each :title, :text do |record, attr, value]|
unless value.buddha_nature?
record.errors.add attr, "doesn't have the Buddha nature"
end
end
end

This example checks quite a lot of things on the Blog model. Let’s take
them in order:

¢ validates_presence_of: This method will make sure that the named
attributes are not nil or blank. All validations allow you to provide
a custom message if you don't like the one provided, and in this
case an error message would say 'fitle should be provided'".

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ar_validations.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=143

RUBY DATABASE FRAMEWORKS <« 144

¢ validates_numericality_of: As the name says, it checks that an attri-
bute is a number. You can decide if any kind of number is fine or
if you only want to allow integers. The default is to allow any kind
of number.

¢ validates_length_of: Checking the length of something can be done
either by comparing to a maximum or by comparing to a range.
Anything that responds to the message length can be used, so a
String value works fine, and so does an association.

¢ validates_uniqueness_of: This validation is a bit different in that it
doesn’t check any property of the value itself but instead makes
sure that there is nothing else with the same value for that prop-
erty.

¢ validates_inclusion_of: If you want to make sure that a value is in a
range of values, you can use this validation. You can give it any
kind of object that has the include? method, so arrays and ranges
both work fine.

¢ validates_format_of: You may sometimes find it necessary to check
that a string field matches a specific format. In this example, we've
used an extremely simple regular expression to make sure that a
string looks a little bit like an email address.

¢ validates_each: There are several ways to do custom validation.
The low-level way is to override validate, validate_on_create, or val-
idate_on_update. The better way is to just define a custom valida-
tion with validates_each.

With this approach, you simply provide the names of the proper-
ties to be checked, plus a block that actually does the testing. The
block gets three arguments: the model instance under validation,
the name of the property that is being checked, and the new value
that is about to be inserted into the database.

You signal a failed validation by adding one or more errors to
the errors attribute of the model instance. If you add no errors,
ActiveRecord will consider the validation a success. We strongly
recommend validates_each over the low-level mechanisms. If you
make a mistake with the latter, your other validations might not
run.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=144

RUBY DATABASE FRAMEWORKS <« 145

As you can see, the possibilities for validation are considerable. You can
go totally crazy and validate each and every aspect of the data before it
ever gets into the database. But one detail is missing. When should the
validations actually run? There are some alternatives here. The basic
rule is that during regular model usage (you will see more about this
in the next section), ActiveRecord will run your validations just before
an object gets saved to the database. If you need more control, you can
call the valid? on a model instance at any time.

Model Usage

You have now seen most of the important parts of the ActiveRecord
puzzle—except for how to actually use it, that is.

In keeping with the blogging theme we've started, let's take a look at
some examples of how to create blogs and add posts:

Download databases/ar_usage.rb

require 'rubygems'
require 'active_record'

bl = Blog.new :author => 'Ola Bini'
bl.title = 'My first blog'
bl.save

Blog.create :title => 'My second blog'

b2 = Blog.find(2)
b2.title = 'My second blog, revisited'
b2.posts.create(:title => 'First post',

:body => 'This is a post about something')
b2.save

my_blogs = Blog.where(:author => 'Ola Bini')
my_blogs.first.destroy

This example shows only a small extent of what’s possible to do with an
ActiveRecord model, but it shows enough to get you started. Let’s run
through the interesting parts of this code snippet.

First, a model object can be created using new, exactly as any other
Ruby object. You can also give this call a hash of initial values for
attributes. Any attribute can be set by just using a setter. ActiveRecord
provides these for columns in the table (such as title), and for associated
objects (like posts).

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ar_usage.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=145

RUBY DATABASE FRAMEWORKS <« 146

To push a newly created object to the database, just call save or savel.
The difference between them is that the first one returns false if it
couldn’t validate the object or save it to the database for some reason.
The “bang” version will throw an exception instead.

If you want to initialize an object and save it to the database in one
step, you can use create or create!.

To retrieve an object from the database, you use the find method with
the blog’s unique ID. You'll notice we didn’t supply any IDs when we
created the blogs; this is a detail that ActiveRecord prefers to take care
of.

The next lines update some attributes and also put a new Post into the
blog’s collection of posts. There are lots of ways of sticking together
two associated objects. For this case, it makes sense just to call create
on the associated posts collection and let ActiveRecord take care of the
potentially tricky process of wiring them together.

A database mapping wouldn’t be very useful if the only way to look up
objects were through their IDs. ActiveRecord models support a mind-
boggling number of ways to slice and dice data. Here, we're filtering
blogs by author and then taking the first one that matches. The docu-
mentation for ActiveRecord is full of examples of other techniques for
searching through databases.

In the final line, we delete the first Blog in the filtered list by calling
destroy. This will also make the instance immutable, so if you try to
modify any of the attributes of the instance after destroying it, it will
raise an exception.

This is really the minimum you need to know to be able to use ActiveRe-
cord models. Armed with this information, you should be able to add,
search for, update, or remove objects from your own databases. In the
next few sections, we’ll take a quick look at the other database libraries
for Ruby and see how they compare. While ActiveRecord is the premier
Ruby database library, there are times when one of the alternatives is
a better fit.

DBI

DBI is a very lightweight framework, in that it tries to get really close to
the database. It is not a mapping framework like ActiveRecord; instead,
it allows you to work with a thin wrapper over the direct database driver.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=146

RUBY DATABASE FRAMEWORKS

It was originally heavily inspired by the Perl DBI library but has now
diverged a bit, with the addition of more idiomatic Ruby features. DBI
works well with JDBC, and once you are connected to the database
using JDBC, you can use the standard DBI interface to work with your
data.

The JDBC interface for working with DBI is still quite young, so make
sure to play around with it before committing to it.

To use DBI, you first need to install the dbi and dbd-jdbc gems:
$ jruby -S gem install dbi dbd-jdbc

Once you have these in place, you can connect to a database and grab
some data. The multirow select_all method is the workhorse of DBI:

Download databases/dbi_test.ro

require 'rubygems'
require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',
"root',

"driver'=>"com.mysql.jdbc.Driver') do |dbh]|
p dbh.select_all('SELECT »= FROM foo')
end

For single-row queries, you use the select_one method instead. Here’s
how to get the current version of a MySQL server:

Download databases/dbi_version.rb

require 'rubygems'
require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',
"root',

rr

"driver'=>"com.mysql.jdbc.Driver') do |dbh]|
row = dbh.select_one('SELECT VERSION() ')
puts "Server version: #{row[0]}"
end

If you want to run a script that updates the database, say, to drop or
create a table, you can call the do method on the database handle.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

<« 147

http://media.pragprog.com/titles/jruby/code/databases/dbi_test.rb
http://media.pragprog.com/titles/jruby/code/databases/dbi_version.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=147

RUBY DATABASE FRAMEWORKS <« 148

Download databases/dbi_table.rb

require 'rubygems'
require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',
"root ',

rr

"driver'=>"com.mysql.jdbc.Driver') do |dbh]|
dbh.do("DROP TABLE IF EXISTS blogs")

dbh.do(<<SQL)
CREATE TABLE blogs(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(255),
author VARCHAR(255),
PRIMARY KEY (id))
SQL

dbh.do(<<SQL)
INSERT INTO blogs (name, author)
VALUES

('Languages', 'Ola Bini'),

('Politics', 'Roy Singham'),

('"Environment', 'Al Gore')
SQL
end
This code will drop the table if it exists and then create the table from
scratch and add some data to it. The do method will return the number
of updated rows after the command has finished. This can be useful
when checking whether an UPDATE statement actually did something,
for example. Note that we're using the Ruby “heredoc” syntax to make

the SQL statements more readable.?

We're going to show a few more examples on how to use DBI. As you
will see, DBI is actually much closer to JDBC than any of the other
database tools described in this chapter. When you extract values from
the database, DBI doesn’t automatically give you back everything in one
collection—instead, you get a handle to a result set, so you can traverse
the results in any way you want. There are performance advantages
to this approach, but it does tend to make for more low-level code to
handle everything.

8. http://en.wikipedia.org/wiki/Here_document

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/dbi_table.rb
http://en.wikipedia.org/wiki/Here_document
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=148

RUBY DATABASE FRAMEWORKS <« 149

When performance and memory usage are not an issue, you can gloss
over results sets and just use the select_all and select_one methods
shown earlier.

So, let’s see how this works:
Download databases/dbi_result.rb

require 'rubygems'
require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',
"root',

rr

"driver'=>"com.mysql.jdbc.Driver') do |dbh]|
sth = dbh.prepare("SELECT » FROM blogs")
sth.execute

while row = sth.fetch
puts "Values from DB: #{row.inspect}"
end

sth.finish
end

Not much difference, really. You call fetch on the statement object, and
it will return a new row every time, until there are no more rows to
return. It’s important to call finish after you're finished with the state-
ments—otherwise, the database will stop responding at some point. Not
fun.

The statement object actually has a Ruby-style each method, so you
can iterate over it like a traditional Ruby collection instead, if that
strikes your fancy.

DBI also supports preparing statements with placeholders for data.
This works like in JDBC: the data will be quoted correctly, based on
what kind of column it's going into. This is very convenient and also
makes it much easier to avoid security holes. ActiveRecord has taken
a lot of flak because it used to encourage quoting in Ruby, instead of
letting the database take care of it.

To prepare and use such a statement, we use the prepare method, like
we did earlier.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/dbi_result.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=149

RUBY DATABASE FRAMEWORKS <« 150

Download databases/dbi_prepare.rb

require 'rubygems'
require 'dbi'

DBI.connect('DBI:Jdbc:mysql://localhost/using_jruby',
"root ',
"driver'=>"com.mysql.jdbc.Driver') do |dbh]|
sth = dbh.prepare("INSERT INTO blogs (name, author) VALUES(?, ?)")

sth.execute("Architecture", "Richard Gabriel™)
sth.execute("Physics", "Lee Smolin")
sth.execute("Memes", "Richard Dawkins')
sth.finish

end

Here, we prepare an INSERT statement and then run it with three differ-
ent pieces of data. This technique is not limited to INSERTs, of course.
You can use it with any kind of SQL statement.

DBI also allows you to get lots of metadata associated with a current
connection, result set, or table. This information is readily available
from DBI's online documentation.®

With these pieces in place, you have everything you need to get started
with DBI for low-level database tasks.

Sequel

Sequel is a relatively new database framework for Ruby. It's quite dif-
ferent from both ActiveRecord and DBI, sitting somewhere in between
them on the ladder of abstraction. It’s closer to the database than
ActiveRecord but more abstract than DBI. You generally don’'t work
with raw SQL commands as much in Sequel as you do in DBI.

The goal for Sequel was to layer a Ruby-like interface over some of the
cases that ActiveRecord didn’t handle so well in the past (such as large
data sets). Sequel also includes model and migration features similar to
those of ActiveRecord, albeit more integrated with the rest of the library
than their ActiveRecord counterparts.

Before we start looking at some examples of Sequel, it’s important to
know that not everything that looks like familiar Ruby will actually be

9. http://ruby-dbi.rubyforge.org

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/dbi_prepare.rb
http://ruby-dbi.rubyforge.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=150

RUBY DATABASE FRAMEWORKS

executed as it reads. There are some circumstances where Sequel does
exceedingly clever things with Ruby code—such as transforming it into
SQL for later execution in the database. This can cause some of the
examples to look a bit unusual.

To be able to use Sequel, you just need to install the sequel gem:

$ jruby -S gem install sequel
Now, you can use something like this to take a look at the database:

Download databases/sequel_simple.rb

require 'rubygems'
require 'sequel'

url = 'jdbc:mysql://Tocalhost:3306/using_jruby?user=root&password="
DB = Sequel.connect(url)

DB[:blogs].each do |row|
p row
end

Each row comes back as a Ruby Hash:

$ jruby sequel_simple.rb

{:id=>1, :name=>"lLanguages", :author=>"0la Bini"}

{:id=>2, :name=>"Politics", :author=>"Roy Singham"}
{:id=>3, :name=>"Environment", :author=>"Al Gore"}

{:id=>4, :name=>"Architecture"”, :author=>"Richard Gabriel"}
{:id=>5, :name=>"Physics", :author=>"Lee Smolin"}

{:id=>6, :name=>"Memes", :author=>"Richard Dawkins"}

Note that we specify the connection information just like we would
when connecting to JDBC. That’s because JDBC is actually used under
the covers—so this is really a JDBC URL.

Once we have a connection, there are lots of ways of getting data out of
it. The shortcut used in this code allows us to get a dataset that points
to a specific table. DB[:blogs] is more or less a shorter way of saying
DB|['select * from blogs’]. Sequel includes quite a lot of clever shortcuts
like this. The goal is to allow you to write Ruby code for most things
where you would have needed SQL in other frameworks.

Once you have a dataset, you can do some clever things with it. Say you
want to get aggregate information, such as a count, or maybe you're
just interested in a specific entry.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

< 151

http://media.pragprog.com/titles/jruby/code/databases/sequel_simple.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=151

RUBY DATABASE FRAMEWORKS <« 152

Download databases/sequel_functions.rb

require 'rubygems'
require 'sequel'

url = '"jdbc:mysql://Tocalhost:3306/using_jruby?user=root&password="
DB = Sequel.connect(url)

p DB[:blogs].count
p DB[:blogs].map(:name)

$ jruby sequel_functions.rb>
6
["Languages", "Politics", "Environment", "Architecture", "Physics", "Memes"]

There are a huge amount of these simplifying methods all over Sequel.
Once you master them, Sequel ends up being a really powerful tool for
working with databases.

What about executing arbitrary SQL? Well, it depends on whether you
want a dataset back. As we saw earlier, you can use the square brackets
format to do SELECTs. If you want to do a raw INSERT, you can do it like
this:

Download databases/sequel_insert.rb

require 'rubygems'
require 'sequel'

url = "jdbc:mysql://Tocalhost:3306/using_jruby?user=root&password="
DB = Sequel.connect(url)

DB << "INSERT INTO blogs (name, author) VALUES('Music', '_why')"

The left-shift operator is overloaded to execute any SQL statement sent
to it. You can also use the execute method if that feels more natural.

You might be worried about the lively use of datasets in these examples.
As it turns out, the datasets in Sequel are extremely lazy, meaning that
they don’t do anything at all until you want to get some real data out
of them—at which point Sequel tries really hard to do things in the
database if possible. So, count and map will actually send out two very
different SQL statements to do these operations, rather than fetching
an entire table into Ruby and doing the operations in memory.

If you want to get all the records as an array of hashes, you call all
on the dataset. Searching in a table for a specific data item can be as
simple as DB[:blogs][:id => 1].

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/sequel_functions.rb
http://media.pragprog.com/titles/jruby/code/databases/sequel_insert.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=152

RUBY DATABASE FRAMEWORKS

Sequel has very powerful filtering capabilities. You won’t even have to
resort to SQL to do subselects. This capability can be very powerful,
but it also makes the library really easy to use.

You can run DELETE and INSERT statements in pure Ruby as well:
Download databases/sequel_delinsert.rb
require 'rubygems'

require 'sequel'

url = '"jdbc:mysql://Tocalhost:3306/using_jruby?user=root&password="
DB = Sequel.connect(url)

blogs = DB[:blogs]

blogs.insert(:name => 'Databases',
rauthor => 'Pramod Sadalage')

blogs.filter(:name => 'Databases').delete

This code does an INSERT using the parameters specified, filters the
table, and then deletes the blogs selected by the filter. This just
scratches the surface on what is possible with filters in Sequel.

Sequel also offers models, like ActiveRecord does:
Download databases/sequel_simple_model.rb

require 'rubygems'
require 'sequel'

url = '"jdbc:mysql://Tocalhost:3306/using_jruby?user=root&password="
DB = Sequel.connect(url)

class Blog < Sequel: :Model
end

bTlog = Blog[1]
p blog

Here, we first define a class that will become a Sequel model. By default,
it will use the same naming conventions as ActiveRecord, so this code
will connect to the table called blogs, using the existing database con-
nection. The square brackets allow us to get a specific blog instance
based on the primary key. Sequel is fine with composite primary keys
but also “scales down” in simplicity: it will default to an id column as
the primary key.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

< 153

http://media.pragprog.com/titles/jruby/code/databases/sequel_delinsert.rb
http://media.pragprog.com/titles/jruby/code/databases/sequel_simple_model.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=153

RiBs <« 154

6.2

%ﬁ lan Says. ..

The Lazy Arms Race

Since Sequel came out, ActiveRecord has gained similar “lazy
loading” features. Starting with version 3, ActiveRecord will put
off as much work as it possibly can, until you absolutely need to
hit the database.* This allows both Sequel and ActiveRecord to
optimize their queries and avoid creating an excessive number
of Ruby objects.

*. http://m.onkey.org/2010/1/22/active-record-query-interface

You can use square brackets to find a model based on conditions. For
example, you could call Blog[:name => ‘Music’] to find any blog with the
name Music. Most of the familiar Sequel filtering operations work fine
inside square brackets. Sequel Model is quite a thin wrapper over reg-
ular Sequel, so most of the concepts should be recognizable.

Sequel models allow you to specify associations between them, much
in the same way as ActiveRecord does. This is very well documented on
the Sequel website, and it works exactly the same in JRuby as it does
in regular Ruby.!©

All in all, Sequel is a really nice database library. It takes a very different
approach than both DBI and ActiveRecord, but this approach makes it
a really advanced tool.

Ribs

Database libraries for Ruby generally share the same goal of making the
most common cases achievable with very little code, which is why we
have the table naming conventions, automatic primary keys, and so on.

Sometimes, however, you have legacy databases, unconventional col-
umn names, inconvenient mappings, or high-performance caching
needs. In these situations, wedging exotic behavior into ActiveRecord

10. http://sequel.rubyforge.org

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://m.onkey.org/2010/1/22/active-record-query-interface
http://sequel.rubyforge.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=154

would be more difficult than using a database framework that was
designed for this kind of use—like the Java Hibernate library.!!

The overhead of using Hibernate can be inconvenient, especially for
small projects. That's what the Ribs project aims to change.'? Simply
put, Ribs allow you to persist your Ruby objects using Hibernate. It’s
a wrapper around the real Hibernate database framework, not a port.
This means that Ribs is for JRuby only.

Using Hibernate means that you get a large amount of power out of the
box. But Ribs tries really hard to make its interface more Ruby-like,
intuitive, and easy to use. The goal is to be able to scale Ribs from the
absolutely simplest applications, all the way up to extremely complex
systems interacting with legacy databases.

Ready to get started? You can install a prebuilt Ribs gem, but we rec-
ommend building with the latest source instead. Either way, the instal-
lation will bring in Hibernate and its dependencies for you (the version
number in the last line may vary):

git clone git://github.com/olabini/ribs.git

cd ribs

ant jar

jruby -S gem install rake rspec

jruby -S rake gem

jurby -S gem install pkg/ribs-0.0.2.gem

A A A A A

The first thing you need to do when connecting to Ribs is to define
one or more databases. One of these must be named the default. For
example:

Download databases/ribs_connect.rb

require 'rubygems'
require 'ribs’'

Ribs::DB.define(:dbl) do |db|
Basic connectivity:
db.dialect = 'MySQL'
db.uri = '"jdbc:mysql://localhost:3306/using_jruby?user=root&password="
db.driver = 'com.mysql.jdbc.Driver'

Extra options:

db.default = true

db.properties['hibernate.show_sql'] = 'true'
end

11. http://www.hibernate.org
12. http://github.com/olabini/ribs

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ribs_connect.rb
http://www.hibernate.org
http://github.com/olabini/ribs
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=155

Y Ola Says. ..
Ribs vs. Ruby

Since Ribs builds on the strong base of Hibernate, | decided
early on to make a few things different from the way Ruby data-
base frameworks generally work with models. Some of these
decisions make the usage of Ribs look quite...different.

Making Ruby objects persistent with Hibernate is one side of the
coin. One day, I'd like to add the flip side: driving an existing
Hibernate domain model (written in Java) with Ribs. This would
dllow you to very easily use an existing Java model in your Rails
application, for example. Other future possibilities include both
a migrations framework and some way of handling validations.

There are a few things to notice here. First, in the manner of Hiber-
nate, you specify a dialect, a URI, and a driver class. You can add any
kind of extra properties for Hibernate here too. Here, we're using Hiber -
nate’s show_sqgl property to display all the generated SQL code. We're
also marking the database explicitly as the default.

The default database is the one Ribs will use for data operations that
don’t name a specific database. There’s an easier way to set the default,
which we’ll see in a moment.

The next few examples are all designed to build on one another. You'll
create a Ruby file with just the connection information and gradually
add code to it.

The program should work with little modification on just about any
database system. Setting up most commercial servers with Hibernate is
not for the faint of heart; it involves finding, installing, and configuring
both JDBC drivers and Hibernate dialect classes. Instead, we're going
to base our example on the lightweight Apache Derby database, which
is much easier to install.!® Just download a recent build, and copy
derbyjar into your project directory.

13. http://db.apache.org/derby

RiBs <« 156

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://db.apache.org/derby
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=156

RiBs <« 157

As we did with the MySQL example a moment ago, we need to start by
connecting to the Derby database:

Download databases/ribs_use.rb

require 'rubygems'

require 'ribs’'

Ribs::DB.define do |db]|
db.dialect = 'Derby'’

db.uri = 'jdbc:derby:using_jruby;create=true’
db.driver = 'org.apache.derby.jdbc.EmbeddedDriver'
end

Let’s do a quick check to make sure Hibernate and Derby can find each
other. The following code should produce empty output, with no error
messages:

$ jruby -J-cp derby.jar ribs_use.rb

Now, we’ll execute some raw SQL. This practice is not recommended for
day-to-day operation but can be useful for creating tables, adding data
in batch form, and so on. The following code will create a new table,
add some rows, and then print the result of a SELECT:

Download databases/ribs_use.rb

Ribs::with_handle do |h]|
h.dd1 "DROP TABLE book" rescue nil

h.dd1 <<SQL
CREATE TABLE book (
id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY (START WITH 1, INCREMENT BY 1),
title VARCHAR(255) NOT NULL,
author VARCHAR(255) NOT NULL,
PRIMARY KEY (id)
)
SQL

stmt = "INSERT INTO book(title, author) VALUES(?, ?)"
h.insert(stmt,
["To Say Nothing Of The Dog", "Connie Willis"],
["A Confederacy Of Dunces", "John Kennedy Toole"],
["Ender's Game", "Orson Scott Card"])

p h.select("SELECT » FROM book™)
end

This code uses a database handle to manipulate the table structure.
(Only low-level Ribs calls require a handle.) We use the handle’s ddl
method to execute SQL queries. We remove and then create a table of

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=157

books, and then we use a prepared statement to insert three rows of
data. Finally, we extract the data with a simple SELECT statement. So far,
this looks more or less the same as the DBI database code. The main
difference is that it’s Hibernate doing all the work.

Ribs is easiest to use when you follow its conventions. In the simplest
case, you don’'t need to define any mappings at all between SQL and
Ruby. With the table of books have sitting in the database, we can
define a Ruby class and start using it directly with Ribs:

Download databases/ribs_use.rb

class Book
attr_accessor :id, :title, :author
end

p R(Book).all

This code will create a class called Book and add three accessors for
the book’s properties. Manually adding these isn’t strictly necessary—
if Ribs doesn’t find any accessors, it just uses the values of instance
variables directly instead. There is no need to define a mapping from
class fields to table columns here, because we're using the same names
for both.

Case doesn’t matter at all in this example, but in contrast to Sequel
and ActiveRecord, table names need to be singular for models to find
them. If you need to define custom behavior for a model, you can do so
completely outside the model class if you like—there is no tight coupling
between the database and the model.

The actual database call happens when we invoke the R method. This
gives us back a repository, an object that can be used to find out differ-
ent information based on the model we passed in. And that’s how you
work with Ribs: you wrap a plain Ruby object in a call to R and then
call methods on whatever you get back. In this case, the all method just
returns everything from the database. You can also filter out things by
passing arguments to all.

To access and manipulate data, you can do something like this:

Download databases/ribs_use.rb

dog = R(Book).get(1)
dog.title += ": How We Found the Bishop's Bird Stump at Last"
R(dog) .save

RiBs <« 158

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=158

Note that you can get an instance with a specific ID by calling get on
the class repository. You use regular Ruby accessors to change data
and wrap the instance in a repository to save to the database.

The easiest way to create new instances is through the class reposi-
tory’s create method:

Download databases/ribs_use.rb

R(Book) .create :id => 4,
:title => "Goedel, Escher, Bach",
rauthor => "Douglas Hofstadter"

This method will first create a new instance of the class, then set all the
values you've specified, and finally save it to the database. You don’t
have to use a repository to create instances, though. You can call new,
set up instance methods just like you’d do for any other Ruby object,
and involve repositories only when you're ready to touch the database:

Download databases/ribs_use.rb

snow = Book.new

snow.id = 5

snow.title = "Snow Crash"”
snow.author = "Neal Stephenson"
R(snow) .save

To remove a row from the database, you use the destroy!l method. This
will delete the row and remove any mention of the object in the Hiber-
nate caches.

Download databases/ribs_use.rb

R(snow) .destroy!

These examples have all shown how you can work with Ribs in a sim-
ple case where everything just happens to be named according to the
convention. What if that isn’'t the case, or what if you want to have
associations to other model classes?

Ribs allow you to handle these sorts of customizations too, of course—
but you need to provide some mappings for the process to work. Over
the next few pages, we’ll look at a few of the more common relationships
you can express.

The definitions for a model class go inside a block attached to the Ribs!
method. Before we get to the contents of the block, let's look at the
method’s options.

RiBs <159

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_use.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=159

Download databases/ribs_mappings.rb

class Blog
Ribs! :table => 'wp_blog',
:identity_map => true do |blog|

... mappings go here ...
end
end

The most commonly used option is :table, which specifies the name of
the database table for this model. The other setting shown here, :iden-
fity_map, makes sure that any given row in a database will always be
represented by the same Ruby instance. This makes object compari-
son easy but can cause surprises in code that expects more traditional
Ruby behavior.

The mappings themselves go inside the block. We describe the database
structure by calling methods on the Rib object that Ribs passes to us.
The first settings we’ll change have to do with column names:

Download databases/ribs_mappings.rb

bTog.blog_id.primary_key!

blog.title :column => :blog_title

Here, we set the blog_id column as the primary key. We also map the
fitle Ruby attribute to the blog_fitle SQL column. You can use the same
mapping mechanism to define associations among tables:

Download databases/ribs_mappings.rb

blog.belongs_to Owner
blog.has_one Layout, :name => :Took
blog.has_n :posts

For this model, we've specified that every blog belongs to an owner. This
code will create an association named owner and will expect the wp_blog
table to have a foreign key called owner_id. You can change the name of
this foreign key by providing a :column parameter.

Next, we've declared that every blog has one layout, accessible through
the look property. Ribs will expect there to be a column named blog_id
on the layout table.

The has_n notation defines one-to-many relationships, such as “A blog
has zero or more posts.” You can pass in a Ruby class name or (as
we've done here for readability) a plural noun. These definitions will

RiBs <« 160

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ribs_mappings.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_mappings.rb
http://media.pragprog.com/titles/jruby/code/databases/ribs_mappings.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=160

JDBC <161

6.3

give you Hibernate associations between models and will create proxies
to simplify working with these objects.

By default, Ribs will just slurp in all your columns. This might not
be what you want, especially if you have columns that are large or
security-sensitive. The final two declarations in our class show how to
deal with these situations:

Download databases/ribs_mappings.rb

blog.stats.avoid!
blog.auth :avoid, :default => 'abc'

Note that the :default parameter allows you specify a default value for
any skipped column.

This model has just one mapping. You can define multiple mappings
if you want to—for instance, you could have one for each database or
let models inherit definitions and mappings from one other. These are
quite advanced features, though, and beyond the scope of this chapter.

There are many more things you can do with Ribs, and there are also
a couple of interesting alternatives on the horizon if you need behavior
that Ribs doesn’t provide.'# But this introduction should at least make
it possible for you to start using Ribs to persist your Ruby objects.

JDBC

We've covered a lot of Ruby database libraries, plus one Java persis-
tence framework, that play well with JRuby. How about other Java
libraries? In many cases, you can just fall back on familiar Ruby-to-
Java method calls. Say you wanted to work with something like iBatis,
for instance. It would be simple to use the techniques from Chapter 2,
Driving Java from Ruby, on page 31 to call your generated iBatis objects
just like any other Java object.

Sometimes, though, you just want to go straight to the database and do
one or two queries, without the overhead of a big framework. Thanks
to JRuby’s outstanding Java integration support, you can work directly
with JDBC from your Ruby code. Even without the benefit of abstrac-
tion, the code ends up being a bit more tasteful than its Java equivalent
would be.

14. http://github.com/headius/jibernate

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/ribs_mappings.rb
http://github.com/headius/jibernate
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=161

To get a simple connection running with JDBC, you can use something
like the following:

Download databases/jdbc_connect.rb

require 'java'
java_import java.sql.DriverManager

DriverManager.register_driver(com.mysql.jdbc.Driver.new)

begin

url = "jdbc:mysql://Tocalhost/using_jruby"

conn = DriverManager.get_connection(url, "root", "'")
ensure

conn.close rescue nil
end

Even this low-level code looks a bit simpler than the equivalent Java
code. The lack of types make it quite readable. The next step would be

to get some data out of the database:
Download databases/jdbc_select.rb

require 'java'
java_import java.sql.DriverManager

DriverManager.register_driver(com.mysql.jdbc.Driver.new)

begin
url = "jdbc:mysql://Tocalhost/using_jruby"
conn = DriverManager.get_connection(url, "root", "'")
stmt = conn.create_statement
rs = stmt.execute_query("SELECT = FROM book™)

while rs.next
p [rs.get_int(1l), rs.get_string(2),
end

rs.get_string(3)

ensure
rs.close rescue nil
stmt.close rescue nil
conn.close rescue nil
end

Of course, this little piece of code makes it obvious that
to have some Ruby sugar on top of the Java ResultSet.

Download from Wow! eBook <www.wowebook.com>

]

it would be nice

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/jdbc_connect.rb
http://media.pragprog.com/titles/jruby/code/databases/jdbc_select.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=162

So, let’s make a new version:

Download databases/jdbc_select2.rb
require 'java'

java_import java.sql.DriverManager
java_import java.sql.ResultSet

DriverManager.register_driver(com.mysql.jdbc.Driver.new)

module ResultSet
include Enumerable

def each
count = self.meta_data.column_count
while self.next
yield((1..count).map { |n| self.get_object(n) })

end
end
end
begin
url = "jdbc:mysql://Tocalhost/using_jruby"
conn = DriverManager.get_connection(url, "root", "'")

stmt = conn.create_statement
p stmt.execute_query("SELECT = FROM book").to_a

ensure
stmt.close rescue nil
conn.close rescue nil
end

This code modifies ResultSet to support Ruby’s Enumerable behavior sim-
ply by adding an each method. This method is actually quite cute. It
fetches the column count from the result set metadata and then uses
this information to fetch all the column data on every iteration.

Once we have this method on ResultSet, we can use familiar Ruby idioms
like to_a on the result of our SELECT. The full range of Ruby collection
operations are available, including map, inject, and sort. In effect, we're
building our own framework on top of JDBC, in just a few lines of code.
In many cases, you don’t need anything more than a little Ruby magic
sprinkled on top of a Java library like this.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/databases/jdbc_select2.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=163

WRAPPING UP <« 164

6.4 Wrapping Up

Databases are in many ways a strange aspect of programming. Some
developers treat them as a low-level implementation detail. After all, our
customers don’t care that we're using SQL under the hood—they care
that our programs don’t forget their data. And yet, a typical RDBMS
is like a high-level programming system in its own right, with its own
environments, tools, and languages.

This chapter has provided a whirlwind tour of some of the better choices
for working with databases from JRuby. We first spent some time look-
ing at the different parts of ActiveRecord, the most mature Ruby data-
base library, and a good choice for many applications. We also looked
at DBI and Sequel to see how some of the existing Ruby libraries solve
the task of database connectivity quite differently.

After looking at the pure-Ruby libraries, we moved on to Ribs and
JDBC, two options that are available only in JRuby. It can sometimes
be hard to pick one framework among all the different choices avail-
able, but we hope that this chapter has shown you enough to make
an informed decision for your project. Of course, you don’t have to just
choose one of these and stick with it. Try them to see what fits best. Be
sure to reevaluate your choice as your application evolves.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=164

7.1

Chapter 7

Over the previous few chapters, we've journeyed together through the
process of writing software in JRuby. We hope you've had the chance
to try some of the techniques on programs of your own.

Once you've done the hard part of getting your code working, packag-
ing it up and getting it onto the target computer should be a breeze,
right? Well...yes, actually. Both Ruby and Java have established build
systems, which developers have been relying on for years. Over the next
several pages, we're going to see how these tools—Rake for Ruby, and
Ant and Maven for Java—relate to JRuby projects.

Rake

Rake is Ruby’s answer to the venerable UNIX make utility. Jim Weirich
began the project in 2003 as a special-purpose language for describing
software tasks and their dependencies. Why a new build tool? Consider
a simple C-style Makefile for sandwich making:

Download rake/sandwich/Makefile

Make a tasty lunch
sandwich: bread cheese
echo "Grilling the sandwich"

I guess sliced bread really is the greatest thing
bread:
echo "Slicing the bread"

Only the finest Emmentaler for our sandwich!
cheese:
echo "Grating the cheese”

http://media.pragprog.com/titles/jruby/code/rake/sandwich/Makefile

The sandwich task depends on the bread and cheese tasks, and so Make
will ensure that they run first. This method of building software has
stood solidly at the base of software development for decades. But it’s
not without its drawbacks. Make is fussy about exact indentation, tabs,
and spaces. It suffers from subtle variations from vendor to vendor. And
for any advanced features—such as making build decisions based on
what platform you're using—you're stuck. The result has been a series
of horrendous Makefile-makers, each with its own arcane syntax.

Now, let’s look at the same set of tasks expressed as a Rakefile:
Download rake/sandwich/Rakefile

desc 'Make a tasty Tlunch'

task :sandwich => [:bread, :cheese] do
puts 'Grilling the sandwich'

end

desc 'I guess sliced bread really is the greatest thing'
task :bread do

puts 'Slicing the bread'’
end

desc 'Only the finest Emmentaler for our sandwich!'
task :cheese do

puts 'Grating the cheese'
end

Sure, the notation is clearer. But there’s much more going on here than
just syntax. You have the entire power of the Ruby environment at your
disposal, should you need it. Conditional expressions, loops, functions,
classes, libraries, you name it. And of course, with JRuby, you have the
reach of the Java platform as well.

Getting Started with Rake

If you're coming to JRuby from Java, you'll find that the procedure
for kicking off a build with Rake is similar to what you've used with
Ant. The rake command looks in the current directory for a Rakefile—a
description of the tasks that can be performed here. If you name your
file Rakefile, Rakefile.rb, or a lowercase version of either of those, Rake
will find it automatically.

When you encounter a new Rakefile, it's a good idea to get the lay of
the land by running rake first with the -T option. This prints out a list of
top-level tasks:

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/sandwich/Rakefile
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=166

Download rake/sessions/rake_tasks.txt

$ jruby -S rake -T

(in code/rake/sandwich)

rake bread # I guess sliced bread really is the greatest thing
rake cheese # Only the finest Emmentaler for our sandwich!

rake sandwich # Make a tasty Tlunch

Notice how Rake helpfully prints each task’s description alongside it.
These came from the Rakefile, in the lines beginning with desc.

Rake tasks can perform any actions that you find useful, even things
unrelated to building software. Rails uses Rake for all kinds of house-
keeping: populating databases, running tests, launching web servers,
and so on. To run a task, pass its name to rake on the command line:

Download rake/sessions/rake_sandwich.ixt

$ jruby -S rake sandwich
(in code/rake/sandwich)
Slicing the bread
Grating the cheese
Grilling the sandwich

If the Rakefile has a task called :default:

Download rake/sandwich/Rakefile

task :default => :sandwich
...then you can invoke it by running rake with no arguments.

Like Ant and Make, Rake will run all of a task’s dependencies first. You
can see this for yourself by invoking Rake with the --frace option:

Download rake/sessions/rake_trace.txt

$ jruby -S rake --trace

(in code/rake/sandwich)

#% Invoke default (first_time)
#% Invoke sandwich (first_time)
#% Invoke bread (first_time)
«x Execute bread

STicing the bread

#% Invoke cheese (first_time)
«x Execute cheese

Grating the cheese

#% Execute sandwich

Grilling the sandwich

#% Execute default

Here you can see how Rake looks for the :default task, finds and runs
its prerequesities, and then ends up back in :default.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/sessions/rake_tasks.txt
http://media.pragprog.com/titles/jruby/code/rake/sessions/rake_sandwich.txt
http://media.pragprog.com/titles/jruby/code/rake/sandwich/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/sessions/rake_trace.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=167

Making sandwiches is all well and good, but what does that have to do
with Java? Let’s look at something more pertinent: using Rake to build
a Java program.

Files and Processes
Consider the following Java class:
Download rake/baseball/Pitcher.java

public class Pitcher {
/7’: *

% Tosses a pitch across the plate.

% @return a description of the pitch
% @see Catcher
%/
public String pitchQ {
return "curveball";
}
}

To teach Rake how to compile this code into Pitcher.class, you create a
file task:
file 'Pitcher.class' => 'Pitcher.java' do

sh 'javac Pitcher.java'
end

Since we've marked the .closs file as depending on the .jova file, Rake
will use the two files’ modification times to decide whether the code
needs to be recompiled.

If you're used to using Ruby’s backtick operator for launching external
programs (for example, ‘rake javac Pitcherjava‘), you might wonder why
Rake defines its own alternative, sh. The answer is that sh does more
than just running programs. It checks exit codes so that the entire
build will halt if jovac detects a syntax error in the .jova file. It also
understands Rake’s --dry-run option, which prints out what each task
would do if invoked for real.

Directories

When you're using Rake with external tools such as compilers and doc-
umentation generators, you naturally end up juggling files and direc-
tories a lot. Rake can help you out here by automatically creating any
directory structure you need. For example, consider the following Ruby
code that generates Java documentation:

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/baseball/Pitcher.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=168

Download rake/baseball/rakelib/doc.rake

sh 'javadoc -d doc =.java'

Imagine that this step required the doc directory to be in place before
javadoc would run. (It doesn’t, but bear with us here.) By wrapping this
code up in a Rake task and making it dependent on a directory task,
you can ensure that the directory structure will be in place when you
need it:

Download rake/baseball/rakelib/doc.rake

directory 'doc'

desc 'Build the documentation'
task :javadoc => 'doc' do

sh 'javadoc -d doc =.java'
end

Rake is smart enough to create just the directories you need. If you
have a directory task with foo/bar/baz and some other task requires only
foo/bar, then Rake will skip creating baz.

Rules
Now, let’s add a second Java class to the mix. Here’s the Java code:
Download rake/baseball/Catcher.java

public class Catcher {
V£
* Describes what kind of pitch the {@link Pitcher} tossed.
:’:/
public static void main(String args[]) {
Pitcher pitcher = new Pitcher();
System.out.println("The pitcher threw a

+ pitcher.pitch());

}
...and here’s the Rake task:

file 'Catcher.class' => 'Catcher.java' do
sh 'javac Catcher.java'
end

Notice how similar this is to the task for Pitcher. How can we trim out
some of this repetition? By using another Rake feature, the rule task.
Think of it as a template for file tasks.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/doc.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/doc.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/Catcher.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=169

Download rake/baseball/rakelib/compile.rake

rule '.class' => '.java' do |t|
sh "javac #{t.source}"
end

Descriptions and Access

As we've seen, you can use the desc function just before defining a Rake
task to give a description of that task:

Download rake/baseball/rakelib/jar.rake

desc 'Build the application into a .jar file'

task :jar => ['Pitcher.class', 'Catcher.class', 'Manifest'] do
sh 'jar -cfm baseball.jar Manifest Pitcher.class Catcher.class'

end

This serves a couple of different purposes. It documents the Ruby code
as a comment would, but it also gives Rake something to report when
you use the -T option to ask for a list of available tasks.

If you skip the desc tag and define a task with no description, Rake
leaves it out of the -T listing altogether. This comes in handy for dis-
tinguishing public tasks, which you invoke directly from the command
line, from private tasks, which are used only by other tasks. For exam-
ple, the Manifest file is needed only by the :jor task shown previously—it
makes sense to leave the Manifest task private:

Download rake/baseball/rakelib/manifest.rake

file 'Manifest' do

File.open 'Manifest', 'w' do |f|
f.puts 'Main-Class: Catcher'
end
end

Just because your private tasks are left out of the -T report doesn’t
mean you can’t run them. Rake gives you the tools to stay organized
but doesn’t force organization on you.

Multitasking

Right now, our Java project has two main build targets: :jor for the
program and :javadoc for the documentation. Let’s put in a top-level
:default task to tie these together:

Download rake/baseball/Rakefile

task :default => [:jar, :javadoc]

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/compile.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/jar.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/manifest.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/Rakefile
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=170

Rake will run the two subtasks, one right after the other. If each one
takes six seconds, you can’t do any better than twelve seconds total.
But these two actions are independent; there’s no real reason to make
Rake wait for one to finish before starting the next.

So let’s create a new task, called :parallel, that runs these two subtasks
in separate threads. (In plain Ruby, this wouldn’t buy us much, but
JRuby uses Java’s threads—which are significantly more powerful.) All
you have to do to mark a group of tasks as independent of one another
is to define it with multitask in place of task:

Download rake/baseball/Rakefile

multitask :parallel => [:jar, :javadoc]

If you run this example with rake parallel on a multicore machine, you
should see two of your cores doing work here.

Multiple Files

As a passionate developer, you no doubt care about modularity in your
software and want to apply the same principle to your build scripts as
well. Breaking a complicated Rakefile into a group of related files makes
a lot of sense. But how do you tie them all together?

Since Rake is just Ruby, you could use Ruby’s built-in require mecha-
nism to load a file full of subtasks into your main Rakefile. You could
also use Rake’s alternative, which is called import and has slightly dif-
ferent semantics.

But the simplest thing to do is just dump all the files containing your
various Rake tasks into a directory called rakelib, just below the direc-
tory where your Rakefile sits. Rake will automatically look for and load
all the tasks from there. This is the technique we used for defining the
tasks in this example.

Namespaces

As your Rakefile grows, you may start running out of good names for
tasks. You end up with either synonym syndrome (tasks named :build,
:generate, :creafe, and so on) or unpalatably long names (generate_class_
files, generate_jar_file, generate_docs, and so on).

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/baseball/Rakefile
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=171

Fortunately, Rake offers a better way to avoid collisions: namespaces.
The idea is to partition your tasks into logical groups—:jar for compila-
tion tasks, :doc for documentation. Then you can have both a jar.create
and a doc:creafe, with no ambiguity.

It's a little bit of overkill to use namespaces for a project as small as
this one, but just for fun, let’'s see what it would look like:

jar = namespace :jar do
tasks for .class and Manifest go here

desc 'Compile the Java code'
task :compile => ['Pitcher.class', 'Catcher.class']

desc 'Create a .jar file from the compiled code'
task :create => [:compile, 'Manifest'] do
sh 'jar -cfm baseball.jar Manifest Pitcher.class Catcher.class'
end
end

javadoc = namespace :doc do
directory 'doc'

desc 'Build the documentation'
task :create => 'doc' do
sh 'javadoc -d doc =*.java'
end
end

task :default => [jar[:create], javadoc[:create]]

As is the case with any Ruby function, namespace has a return value: a
Rake::NameSpace object. We store our namespaces in the jor and jovadoc
variables so that we can refer to them later when we define our :default
task.

Cleanup and File Lists

After our .jor file finishes building, we have no need for the intermedi-
ate .class or Manifest files. We could define our own :cleanup task that
deletes a bunch of hard-coded filenames. But once again, Rake gives
us a handy shortcut for cleanup: the rake/clean add-on.

Download rake/baseball/rakelib/clean.rake

require 'rake/clean’

CLEAN.include "w#.class', 'Manifest'
CLOBBER.include '=.jar', 'doc'

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/clean.rake
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=172

7.2

When you load this file, Rake defines two new tasks, clean and clobber—
plus two new lists for you to add filenames to. When you run rake clean,
Rake will delete anything you've add to the CLEAN list. The even more
destructive rake clobber deletes everything on both lists.

What'’s the difference between clean and clobber? The first one is meant
for deleting just the intermediate .class and Manifest files and leaving
your final .jor intact. clobber, on the other hand, deletes all generated
files, leaving you with only the source code in your project directory.

Behind the scenes, CLEAN and CLOBBER are Rake::FileList objects. They act
like arrays, but they understand wildcards (such as asterisks) and can
be expressed with the intuitive include and exclude notation.

So, there you have it: a minimal Java project that has managed to touch
on all the important features of Rake. Now, let's see how to integrate
Rake more deeply with Java’s build systems.

Ant

No matter what specialized task you need to perform to build your Java
project, chances are that it's been done before with Ant. Ant is the
oldest, most established Java build tool. It was originally created during
the open sourcing of the Tomcat Java web server and was later released
as a stand-alone project. Ant solved a lot of make’s portability problems
by implementing commonly used build tasks in Java.

As Ant continued to mature, it amassed a wide library of portable,
reusable functions (“tasks”) for every conceivable software development
function. These include checking out, compiling, testing, and packag-
ing code; downloading, uploading, and deploying build artifacts; and
more.

Of course, Ant is also notorious for the fact that its build scripts are
written using verbose XML. With small to medium-sized projects, Ant
XML seems fairly innocuous. Let’s consider the simplest possible Ant
build file:

Download rake/ant/hello/build.xml

<?xml version="1.0"?>
<project name="hello" default="hello">
<target name="hello_from_ant">
<echo message="Hello from Ant!"/>
</target>
</project>

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/ant/hello/build.xml
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=173

That’s a fair number of pointy angle brackets just to print out some text.
At least the intent is fairly clear. When you run ant inside the directory
containing build.xml, you get the following:

Download rake/sessions/ant_hello.txt

$ ant
Buildfile: build.xml

hello:
[echo] Hello Ant!

BUILD SUCCESSFUL
Total time: O seconds

Great! Now you have quick, repeatable cross-platform builds. Ant adop-
tion benefits greatly from a shallow learning curve and spreads and
multiplies from readily available copy-and-paste examples. However,
veterans of Ant build scripts know from experience that they can
quickly grow to become unwieldy beyond a few hundred lines of script.
Today, JRuby’s own build.xml clocks in at almost 1,500 lines!

Of course, code readability suffers in any code project once your files
grow too large. With Ant, the problem is compounded because it’s not a
true programming language. It lacks flow control and abstraction mech-
anisms, so scripts get verbose and full of duplication more easily.

Just because doing our builds in XML suddenly doesn’t feel so com-
fortable, should we abandon Ant outright? Certainly not! The best part
of Ant is its huge library of reusable tasks. Why not put those to use
in Ruby code as well? With JRuby’s Ant integration, you can run Ant
tasks from inside your Rakefile or indeed any Ruby file.

Ruby-Colored Ants
To begin using the Ant integration library, just require it:

' r

require 'ant

The main entry point that library provides is a single ant method. This
returns a shared instance of an Ant object through which we can invoke
Ant tasks. Here’s how you’d invoke Ant’s built-in echo task. Note the
use of a Hash to pass parameters into the task.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/sessions/ant_hello.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=174

Nick Says. ..
me Assembly R ired

JRuby does not ship with Ant; you still need to have it installed
separately. JRuby will detect where Ant is installed by attempt-
ing to invoke the ant program, so make sure it’s installed and
available on your PATH. Modern versions of Mac OS X come
with Ant preinstalled, and Ant is available on many flavors of
Linux through your distribufion’s package manager. On Win-
dows, you'll probably have to still download and install Ant and
make sure the ant executable is on the PATH.

Download rake/ant/examples/echo.rb

r

require 'ant'

ant.echo :message => "Hello from Ruby!"

The ant method also accepts a block, so you can run multiple tasks
conveniently:

Download rake/ant/examples/setup.rb

require 'ant
ant do
echo :message => "Setting up new project"
echo :message => "Project description goes here.", :file => "README.txt"
mkdir :dir => "Tib"
mkdir :dir => "test"
end

If the Ant task uses nested elements, simply use nested blocks.

Download rake/ant/examples/javac.rb

r r

require 'ant

ant.javac :srcdir => "src", :destdir => "build" do
classpath do
fileset :dir => "1ib" do
include :name => "=*.jar"
end
end
end

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/ant/examples/echo.rb
http://media.pragprog.com/titles/jruby/code/rake/ant/examples/setup.rb
http://media.pragprog.com/titles/jruby/code/rake/ant/examples/javac.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=175

: - Nick Says. ..

: Free Your Mind

A fun way to compare the XML and Ruby versions of the build
file is to open both in your text editor of choice and quickly
cycle back and forth between the two files in a single window,
effectively animating the minor differences between the two.
If you're like me, watching the angle brackets disappear rein-
forces the subtle power of omitting extra line noise. That stream-
lining frees up your mind to be able to see the frue intfent of the
program.

See how the nested pattern of the blocks matches the nested structure
of XML elements but without all the angle brackets? This technique is
used in several Ruby libraries that manipulate XML, such as Builder
and Markaby. Ruby blocks are a natural way to indicate grouping.

So, we have a way to execute chains of Ant tasks, but what about defin-
ing build targets? We can do that, too. Here’s the equivalent to the
build.xml example earlier:

Download rake/ant/hello/build.rb

r r

require 'ant
ant :name => "hello", :default => "hello" do
target :name => "hello" do
echo :message => "Hello Ant!"
end
end

A nice feature of the Ant library is that if you run the file containing
your Ant code as a script, it becomes a full-fledged Ant build. Let’s run
our aptly named build.rb.

Download rake/sessions/jruby_hello.txt

$ jruby build.rb

hello:
Hello Ant!

To run a specific target, add it to the end of the command as an argu-
ment to the script. If you don’t provide an argument, the default target

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/ant/hello/build.rb
http://media.pragprog.com/titles/jruby/code/rake/sessions/jruby_hello.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=176

is executed. Of course, if there’s no default target and you don’t specify

one, then nothing gets run.

Rake with Ant

So far, we've had a taste of how easy Rake makes scripting builds,
and we've seen the power of calling portable Ant tasks from a Ruby
environment. Now, let’s bring Rake and Ant together by revisiting our
Baseball example. We'll see how mixing in a little Ant can improve the
project. If you're unfamiliar with Ant, you might want to have the Ant
user manual handy as you put it to use and discover the myriad tasks
that are available.!

One of the problems with using Make-like rules to compile .java files
is that there are many more Java source files in a typical project.
Spawning the Java compiler individually on every file is inefficient. So,
although our Rake rule for compiling the Pitcher and Catcher classes is
clever, it won’t scale up well. The Ant jovac task is ideally suited for
compiling Java sources. Let’s put it to use in our Rakefile, in a task
called ant:compile.

Download rake/baseball/rakelib/ant_compile.rake

' r

require 'ant
namespace :ant do
task :compile do
ant.javac :srcdir =>
end
end

As we can see, the javac task has some smart defaults built in to look
for .java files. We can compile more files with less code than we did
before.

DownTload rake/sessions/ant_compile.txt

$ jruby -S rake ant:compile
(in code/rake/baseball)
Compiling 2 source files

The javac task also knows not to recompile files whose source hasn’t
changed; if we run the task again, no work is done.

1. http://ant.apache.org/manual/

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/ant_compile.rake
http://media.pragprog.com/titles/jruby/code/rake/sessions/ant_compile.txt
http://ant.apache.org/manual/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=177

Download rake/sessions/ant_compile2.ixt

$ jruby -S rake ant:compile
(in code/rake/baseball)

Next, let’s take a look at how to generate documentation. Ant also comes
with a built-in jovadoc task:

Download rake/baseball/rakelib/ant_doc.rake

namespace :ant do
task :javadoc do
ant.javadoc :sourcefiles => FileList["*.java"], :destdir => "doc"
end
end

There are a couple points to be made about this example. One thing
you’ll notice is that we're starting to use a little bit of Rake where it feels
right. In this case, Ant’s javadoc task takes a comma-separated list of
files in its sourcefiles attribute. JRuby’s Ant library treats FileLists spe-
cially, by passing them to the underlying Ant task as comma-separated
values.

Finally, to complete the Baseball build, we need to create a .jor file. Here
we can make use of Ant’s jar task, which allows you to specify manifest
attributes inline—so we don’t need an extra task to create the manifest
file, like we did with plain Rake.

Download rake/baseball/rakelib/ant_jar.rake

namespace :ant do
task :jar => :compile do

ant.jar :basedir => ".", :destfile => "baseball.jar", :includes => "=x.class" do
manifest do
attribute :name => "Main-Class", :value => "Catcher"
end
end
end

end

Working with Legacy Ant Builds

Another situation where combined Rake/Ant integration can help is
by streamlining existing Ant-based builds. Suppose your Ant build has
become too heavyweight and full of duplication. Or perhaps you need to
do some custom logic that is not manageable with Ant tasks. In many
cases, throwing away your build.xml is not feasible. At times like these,
making a bridge between Rake and Ant can let each tool do what it’s
best at.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/sessions/ant_compile2.txt
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/ant_doc.rake
http://media.pragprog.com/titles/jruby/code/rake/baseball/rakelib/ant_jar.rake
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=178

Importing Ant Tasks into Rake

Ant from Rake—didn’t we just cover that? Yes, the ant method can
blindly hand a task name off to Ant and say, “Run the task that has
this name.” But the Ruby side isn’t aware of the Ant tasks at all; it’'s
just throwing requests over the wall and waiting for answers. So, you
couldn’t make a Rake task depend on an Ant task using this technique.
If you're using Rake to package a gem that has a .jar dependency, for
instance, you wouldn’t be able to have a :gem Rake task that depends
on a ‘compile’ Ant task.

Fortunately, there is a way to make Rake more Ant-aware: ant_import.
This method parses your build.xml (or any other filename you hand to it)
for top-level Ant tasks and gives them names in the Ruby namespace
that you can refer to for dependencies. For instance, if you have an Ant
task called hello_from_ant, you can use it in Rake like so:

' '

require 'ant

ant_import

task :goodbye_from_rake => :hello_from_ant do
puts 'Goodbye from Rake!'
end

Importing Rake Tasks into Ant

How about going the other direction—making Ant aware of the names
and dependencies of your Rake tasks? Piece of cake! Just as Rake has
ant_import, JRuby makes a rakeimport task available to Ant. Assuming
your Rakefile contains a task called hello_from_rake, here’s how you’'d
call it from Ant:

<?xml1 version="1.0"?>

<project name="hello" default="hello">

<taskdef name="rakeimport" classname="org.jruby.ant.RakeImport"/>
<rakeimport/>

<target name="goodbye_from_ant" depends="hello_from_rake'>
<echo message="Goodbye from Ant!"/>
</target>
</project>

Now that we've discussed the most popular Ruby build system, the
most popular Java build system, and how they can work together, it’s
time to move to other tools.

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=179

MAVEN <« 180

7.3 Maven

Maven—the popular build, dependency, and release management tool
for Java projects—has become a staple in the Java development land-
scape. Maven is used to build many open source Java projects, and
Maven repositories are often the de facto place to download and man-
age library dependencies. Let’s look at a few ways that we can interact
with Maven with JRuby.

Extending Maven with Rake

Maven is well known to be opinionated and unwieldy if you need your
build process to do anything out of the ordinary. Since we’ve shown how
easy it is to manipulate files, execute commands, and invoke arbitrary
chains of tasks with Rake, why not extend your Maven project with it?
The jruby-rake-plugin for Maven allows you to do just that.

Add the Plug-in to Your POM

Here we need to assume you know a bit about how Maven pom.xml files
are structured and are sufficiently vaccinated for angle-bracket syn-
drome. We’ll be adding some plug-in configuration and wiring up Rake
tasks to specific phases of the Maven build. If you need some back-
ground, you can visit the main Maven website (http://maven.apache.org/
pom.html) for details.

To start, ensure your pom.xml has a /project/build/plugins section, and
add the jruby-rake-plugin as shown. You can freeze to a specific JRuby
release by specifying a value in the <version> tag (as we've done here) or
just omit it to pick up the latest release.

Download rake/maven/pom-outline.xml
<project>
<build>
<plugins>
<plugin>
<groupId>org.jruby.plugins</groupId>
<artifactId>jruby-rake-plugin</artifactId>
<version>1.5.5</version>
</plugin>
</plugins>
</build>
</project>

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://maven.apache.org/pom.html
http://maven.apache.org/pom.html
http://media.pragprog.com/titles/jruby/code/rake/maven/pom-outline.xml
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=180

MAVEN <« 181

Add an Execution

Each Maven plug-in declaration allows for one or more executions. Each
execution is bound to a build phase. This means we can bind and trig-
ger the rake plug-in to more than one phase of our build. For example,
we might want to do some copying or processing of resources to be
included in a .jar file during the generate-resources phase, but we might
also want to use Rake to launch a custom testing framework during the
test phase. We'll write one execution for each phase of the build where
we’d like to use Rake.

Each execution declaration should have at least three parts: an ID,
a phase, and a goal. Give your execution a unique ID to keep Maven
happy, and name the phase of the build where you want to attach the
plug-in. A full list of phases appears in the Maven life-cycle reference.?
Specify rake in the goals/goal section.

Download rake/maven/pom-simple.xml

<plugin>
<executions>
<execution>
<id>my-custom-resource-step</id>
<phase>generate-resources</phase>
<goals><goal>rake</goal></goals>
</execution>
</executions>
</plugin>

This setup assumes you have a companion Rakefile in the same direc-

tory as your pom.xml, and it contains a default Rake task. Maven will
invoke this task during the generate-resources phase.

OK, that’s a pretty good start, but let’s say you want to do a little more
than rely on defaults. You can add a configuration section, with one or
more of these tags inside:

¢ script: Rather than using an external Rakefile, just embed your Rake
tasks right inside pom.xml.

¢ rakefile: Specify a Rakefile rather than falling back on Rake’s stan-
dard search mechanism.

* args: Pass arguments to Rake, either task names to execute or
NAME=VALUE environment variables.

2. http://maven.apache.org/guides/infroduction/intfroduction-to-the-lifecycle html#lifecycle_Reference

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/maven/pom-simple.xml
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=181

As a more extended example, here’s some plug-in configuration to test
your Java code using the expressive RSpec testing library. (We’ll discuss
RSpec in Section 8.1, RSpec, on page 202.)

DownTload rake/maven/pom-rspec.xml

<plugin>
<executions>
<execution>
<id>rspec</id>
<phase>test</phase>
<goals><goal>rake</goal></goals>
<configuration>
<script>
require 'rspec/core/raketask’
RSpec::Core: :RakeTask.new do |t|
t.pattern = 'src/spec/ruby/%%/%_spec.rb'
end
task :default => :spec
</script>
</configuration>
</execution>
</executions>
</plugin>

Maven launches the JRuby process with the appropriate classpath so
that any dependencies and Java classes compiled by Maven will be
visible to JRuby and RSpec automatically.

Ensure Gems Are Installed

Sometimes your Rake or Ruby code will need to rely on additional Ruby
gems in order to function. The install-gems goal can be used to make
sure these gems are present. The jruby-rake-plugin will install these gems
into SHOME/.gem/jruby/1.8.

Download rake/maven/pom-gem.xmi

<plugin>
<executions>
<execution>
<id>install-gems</id>
<phase>generate-resources</phase>
<goals><goal>install-gems</goal></goals>
<configuration>
<gems>activerecord activerecord-jdbc-adapter</gems>
</configuration>
</execution>
</executions>
</plugin>

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/maven/pom-rspec.xml
http://media.pragprog.com/titles/jruby/code/rake/maven/pom-gem.xml
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=182

PACKAGING FOR DEPLOYMENT <« 183

That’s enough on building software for the moment. Let’s now move on
to deployment.

7.4 Packaging for Deployment

Conceptually, software deployment in regular Ruby isn’t complicated.
The general steps go something like this:

1. Install Ruby.
2. Install the required libraries.
3. Copy your .rb files onto the target machine.

Depending on the kind of app, though, things can really break down
during steps 1 and 2. The Mac you designed your GUI on may have
shipped from the factory with Ruby on it, but your customer’s Windows
box probably didn’t. Your web app might lean on a C-based XML library
that your ISP doesn’t allow you to compile on their machine.

With JRuby, a lot of these problems go away. Most desktop machines
already have a Java runtime on them, so you might get away with-
out asking your users to install any extras. If youre using a Ruby
library that contains compiled code, at least it's compiled Java code—
you won’t have to ship multiple DLLs for different platforms. Now, the
procedure looks something more like this:

1. Copy jruby-completejar and a bunch of .rb files onto the target
machine.

So, you can reduce a bunch of hemming and hawing over version num-
bers and DLLs into a few simple file copies. For desktop programs, this
means handing users a .zip file, which they can extract and run with a
single command:

$ java -jar jruby-complete.jar my_program.rb

For web apps, you just scp a directory of source files up to the server or
use a tool like Capistrano to do the copying for you.®

Java Archives

Although these approaches remove the risk and heartache of Ruby
deployment, they still expose Ruby filenames and directory structures

3. http://www.capify.org

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://www.capify.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=183

PACKAGING FOR DEPLOYMENT

to the owner of the target machine. Wouldn't it be nice to use a mech-
anism Java developers are already familiar with, like .jor files? Fortu-
nately, you can.

The App

We're going to build a tiny program that nonetheless has a couple of
the same kinds of dependencies—external Ruby libraries and compiled
code—that real-world projects do. Specifically, we're going to do a bit of
web scraping with the Hpricot library, which uses a mix of Ruby and
Java code.* Go ahead and install Hpricot first:

$ jruby -S gem install hpricot

Now, let’s write a small program that uses the library to get a list of
recent books published by the Pragmatic Programmers. Create a new
project directory, and copy a freshly downloaded or built version of jruby-
complete jar into it (remove any version numbers from the filename).
Now, put the following code in scrape.rb:

Download rake/scrape/scrape.rb
require 'rubygems'
require 'open-uri'
require 'hpricot'

doc = open('http://pragprog.com/categories/upcoming') do |page]|
Hpricot page
end

(doc/'div.book ") .each do |book|
title = book.at('div.details/h4') .inner_html
href = book.at('div.thumbnail/a')['href']

puts "#{title} is at #{href}"
end

We're not going to spend a lot of time dissecting the code here. A quick
glance should give you the basic idea: we fetch a specific URL and then
search through it for the HTML tags we're interested in.

Before we move on to packaging, make sure the program works:

$ jruby scrape.rb
Cocoa Programming is at http://pragprog.com/titles/dscpqg/cocoa-programming
ExpressionEngine 2 1is at http://pragprog.com/titles/riexen/expressionengine-2

4. http://github.com/whymirror/hpricot

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/scrape/scrape.rb
http://github.com/whymirror/hpricot
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=184

PACKAGING FOR DEPLOYMENT <« 185

Hello, Android is at http://pragprog.com/titles/eband3/hello-android
iPad Programming is at http://pragprog.com/titles/sfipad/ipad-programming
SQL Antipatterns is at http://pragprog.com/titles/bksqla/sql-antipatterns
The RSpec Book is at http://pragprog.com/titles/achbd/the-rspec-book

During development, the line require ‘hpricot’ loads a library from your
system’s RubyGems path. Your end user’s system is not likely to have
Ruby or any gems on it. You'll need to put Hpricot somewhere in the
final product where scrape.rb can find it. Following common Ruby prac-
tice, we’ll install a private copy of Hpricot to a vendor subdirectory of
our project for later inclusion in the build.

Download rake/scrape/Rakefile

directory 'vendor'

desc 'Install Ruby gems into vendor/'
task :install_gems => 'vendor' do

sh 'jruby -S gem install -i vendor hpricot'
end

With that in place, we're ready to build the .jar.

A Minimal .jar

Recall that a .jor file is basically a renamed .zip file that follows a few con-
ventions. The convention that interests us here is the Manifest, which
contains (among other things) the name of the Java class to run when
the user launches the .jar. Notice that we said “Java class.” Alas, there’s
no direct way to give the name of a Ruby class instead.

If you've been following along with the embedding chapter, you're prob-
ably thinking, “Why not just write a tiny Java program that uses the
JRuby embedding API to launch the main Ruby class from inside the
Jar?” You're right; that’s exactly what we're going to do.

Download rake/scrape/Launcher.java

import org.jruby.embed.ScriptingContainer;
public class Launcher {
public static void main(String[] args) {

ScriptingContainer container = new ScriptingContainer();
container.runScriptlet("require 'scrape'");

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/Launcher.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=185

PACKAGING FOR DEPLOYMENT

We've already seen how to create a Rake task to compile this Java code:
Download rake/scrape/Rakefile

desc 'Build Java launcher that will start the Ruby program'
task :build_Tauncher do

sh 'javac -cp jruby-complete.jar Launcher.java'
end

Now, we just combine the newly built .closs file, our Ruby program, and
the Hpricot library into a .jar:

Download rake/scrape/Rakefile

desc 'Combine app and Tauncher into one jar'
task :small_jar => [:install_gems, :build_launcher] do

sh 'jar -cfm scrape.jar small.manifest Launcher.class scrape.rb -C vendor .
end

The task requires a new file, small.manifest. This is where we provide
startup information, which Java uses to find the Launcher class and the
supporting JRuby libraries:

Download rake/scrape/small.manifest

Manifest-Version: 1.0
Class-Path: jruby-complete.jar

Main-Class: Launcher

With that addition, we can build the .jar file:
$ jruby -S rake small_jar

Once that’s done, you can run the program. You'll need a copy of jruby-
complete jar in the same directory.

$ java -jar scrape.jar

Cocoa Programming is at http://pragprog.com/titles/dscpg/cocoa-programming
ExpressionEngine 2 1is at http://pragprog.com/titles/riexen/expressionengine-2
Hello, Android is at http://pragprog.com/titles/eband3/hello-android

iPad Programming is at http://pragprog.com/titles/sfipad/ipad-programming

SQL Antipatterns is at http://pragprog.com/titles/bksqla/sql-antipatterns

The RSpec Book is at http://pragprog.com/titles/achbd/the-rspec-book

Now, all you have to do to share your program with someone is hand
them these two .jor files and tell them what command to run. But why
deliver two files when we can deliver one?

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

< 186

http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/small.manifest
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=186

PACKAGING FOR DEPLOYMENT

One Big Jar

All we have to do to combine the two .jars into one is extract JRuby into
a temporary directory:

DownTload rake/scrape/Rakefile

directory 'tmp

desc 'Extract jruby-complete so we can combine it with the app'
task :extract_jruby => "tmp' do
Dir.chdir('tmp') do
sh 'jar -xf ../jruby-complete.jar'
end
end

...and rerun the jor command, telling it to include the new path as well:
Download rake/scrape/Rakefile

desc 'Combine app, Tlauncher, and JRuby into one jar'
task :big_jar => [:install_gems, :build_launcher, :extract_jruby] do
sh '"jar -cfm scrape.jar big.manifest Launcher.class scrape.rb \
-C vendor . -C tmp .'
end

Since we’re just using one .jor now, the manifest is even simpler than
the previous one:

Download rake/scrape/big.manifest

Manifest-Version: 1.0
Class-Path:
Main-Class: Launcher

And that’s it! One deliverable .jor file, containing your app and every-
thing it needs. If you need to repeat this procedure from project to
project, you may be interested in the Rawr library, which automates
some of these tasks.?

Creating Web Archives with Warbler

Now that you have an inkling of how a Ruby application can be easily
packaged into a single archive, why not extend that portable goodness
to web applications? Warbler is a packaging tool that does just that.

If you're a Java web developer, you're familiar with web archives. Web
archives, usually called .war files, are the web application equivalent

5. http://rawr.rubyforge.org

Report erratum

Download from Wow! eBook <www.wowebook.com> this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/Rakefile
http://media.pragprog.com/titles/jruby/code/rake/scrape/big.manifest
http://rawr.rubyforge.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=187

PACKAGING FOR DEPLOYMENT <« 188

of .jar files. .war files are simply .zip-format files with web content (for
example, images and style sheets) in addition to application code. De-
ployment of a .war file usually means simply presenting the file to your
Java application server, either by copying it into a “blessed” autodeploy
directory or by using a deployment tool specific to the server you're
using.

Every .war file has a common structure. The root directory of the archive
is the “document root” where you place .html, .css, JavaScript, images,
and any other static content that your application requires. The archive
has a specially named WEB-INF directory that contains application code,
including Java classes, Java .jar libraries, configuration files, and any
other content that you don’t want to be directly visible to your end
users.

Contrast this structure with the one we've already presented for Rails
applications. The root of a Rails application contains directories like
app and config full of code and configuration, along with a single public
directory that represents the document root of the application. It’s as if
a web archive is the Rails application structure turned inside out.

And so this is the primary function of Warbler—to take a directory con-
taining all the loose files and directories of a Rails application and turn
it into a .war file that will run in any Java application server.

Getting Started

The whole point of Warbler is to make it easy to get started—from Rails
application to .war file in one command! First, you need to install the
warbler gem:

Download rake/sessions/gem_install_warbler.ixt

$ jruby -S gem install warbler
Successfully installed jruby-jars-1.5.
Successfully installed jruby-rack-1.0.
Successfully installed rubyzip-0.9.4
Successfully installed warbler-1.1.0
4 gems installed

0
1

(You probably noticed the jr