The
ogrammers

New Programmer’s
Survival Manual

Navigate Your Workplace,
Cube Farm, or Startup

Josh Carter

Edited by Susannah Davidson Pfalzer

What Readers Are Saying About
New Programmer’s Survival Manual

I'love the pragmatic tone and content.

» Bob Martin
President, Object Mentor, Inc., and author of The Clean Coder

An excellent overview of the “big picture” and the many facets of software
development that a lot of new developers lack. A great primer for starting
an exciting career in software development.

> Andy Keffalas
Software engineer and team lead

A funny, honest, inside look at the ever-growing, ever-changing industry
of writing code. If you just got handed your CS degree, this book is a must-
have.

» Sam Rose
Computer science student, University of Glamorgan

This book has everything I should have sought out to learn when I started
in the industry. A must-read for new developers and a good read for
everyone in the industry.

» Chad Dumler-Montplaisir
Software developer

New Programmer’s

Survival Manual

Navigate Your Workplace,
Cube Farm, or Startup

Josh Carter

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

\ Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http:/pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David] Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-81-4

Printed on acid-free paper.

Book version: P1.0—November 2011

http://pragprog.com

For Daria and Genevieve.

Acknowledgments

Introduction

Part | — Professional Programming

Program for Production

Tip 1. Beat Up Your Code

Tip 2. Insist on Correctness

Tip 3. Design with Tests

Tip 4. Tame Complexity

Tip 5. Fail Gracefully

Tip 6. Be Stylish

Tip 7. Improve Legacy Code

Tip 8. Review Code Early and Often

Get Your Tools in Order .

Tip 9. Optimize Your Environment
Tip 10. Speak Your Language Fluently
Tip 11. Know Your Platform

Tip 12. Automate Your Pain Away

Tip 13. Control Time (and Timelines)
Tip 14. Use the Source, Luke

Contents

ix

xi

11
21
27
35
41
48
53

59
61
69
77
83
87
92

viii * Contents

Al.

Part Il — People Skills

Manage Thy Self

Tip 15. Find a Mentor

Tip 16. Own the Image You Project
Tip 17. Be Visible

Tip 18. Ace Your Performance Review

Tip 19. Manage Your Stress
Tip 20. Treat Your Body Right

Teamwork e
Tip 21. Grok Personality Types
Tip 22. Connect the Dots

Tip 23. Work Together

Tip 24. Meet Effectively

Part Ill — The Corporate World

Inside the Company
Tip 25. Know Your Peeps

Tip 26. Know Your (Corporate) Anatomy

Mind Your Business
Tip 27. Get with the Project
Tip 28. Appreciate the Circle of (a Product’s) Life

Tip 29. Put Yourself in the Company’s Shoes

Tip 30. Identify Corporate Antipatterns

Part IV — Looking Forward

Kaizen
Tip 31. Mind Your Head
Tip 32. Never Stop Learning
Tip 33. Find Your Place

Bibliography

Index

101
103
107
110
114
121
127

133
135
141
144
148

155
157
163

181
183
189
200
203

211
213
217
222

227

231

Acknowledgments

First, I must thank my ever-patient editor, Susannah
Davidson Pfalzer. This book couldn’t have happened without
her clear-minded guidance, words of encouragement, and
occasional swift kick in the rear to keep me going. Susannah,
thank you so much for helping this first-time author bring
a book to life.

Next, numerous reviewers ranging from new programmers
to industry pros provided tremendous help. They read (or
should I say, endured) early drafts of this book and offered
their own viewpoints, expertise, and corrections. I'd like to
thank Daniel Bretoi, Bob Cochran, Russell Champoux, Javier
Collado, Geoff Drake, Chad Dumler-Montplaisir, Kevin Gisi,
Brian Hogan, Andy Keffalas, Steve Klabnik, Robert C. Mar-
tin, Rajesh Pillai, Antonio Gomes Rodrigues, Sam Rose, Brian
Schau, Julian Schrittwieser, Tibor Simic, Jen Spinney, Stefan
Turalski, Juho Vepsildinen, Nick Watts, and Chris Wright.
You have all made this book far, far better with your diligent
and thorough reviews. I—and every reader of this
book —appreciate your work.

From the beginning, several friends and co-workers allowed
me to pester them over and over again for advice, including
Jeb Bolding, Mark “The Red” Harlan, Scott Knaster, David
Olson, Rich Rector, and Zz Zimmerman. I truly appreciate
your patience.

Finally, an extra-special thanks for my two biggest fans. My
daughter, Genevieve, gave me grace many, many evenings
as I needed to duck away and write. And my wife, Daria,
not only gave me time to write, but she was the first to buy
and read the beta version of the book—in one sitting, no
less, starting at ten at night. She offered her thoughts and

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

x * Acknowledgments

perspective since this book was just an idea I was pondering
over the dinner table. And she provided her support and
encouragement through the whole process.

Daria and Genevieve, I couldn’t have done it without you.
Thank you from the bottom of my heart.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Introduction

It's day one on the job. You have programming chops, you've
landed the job, you're sitting at your workstation...now
what? Before you, a new jungle awaits:

¢ Programming at industry scale, with code bases mea-
sured in thousands (or hundreds of thousands) of lines
of code. How do you get your bearings and start con-
tributing quickly?

¢ Navigating an organization containing programmers
but also people in many, many other roles. When you
need guidance on a product feature, who do you ask?

¢ Building your portfolio of achievements each year. When
performance reviews lurk on the horizon, do you know
what your boss is looking for and how you’ll be judged?

...and so much more. Your programming skills are only one
part of what you'll need in these first years on the job.

The lucky among us have guides who already know the
landscape. This book is a virtual guide. It'll get you oriented,
point out the mountains and canyons ahead, and also save
you from some nasty pitfalls.

Where I'm Coming From

You may find some similarity between your experience and
where I stood in college in 1995: I started on a traditional
path, a computer science and electrical engineering program
at Duke University. I went to my advisor, asking about
classes that would best prepare me for working in industry.
He was a smart guy—a Rhodes scholar and rising star in
the engineering school—and he responded, “I have no idea.
I've never worked a day in industry in my life.”

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

xii ® Introduction

I was more than a little disillusioned. I wanted to build real,
shipping products—not write research papers. So, that
summer I managed to get my foot in the door at one of the
hottest start-ups in Silicon Valley, General Magic. It was
founded by some of the same guys who created the original
Macintosh computer, Andy Hertzfeld and Bill Atkinson. My
peers included some of the top players from Apple’s System
7 (operating system) team and the guy who would later
found eBay.

Ilearned more about programming in my two-month intern-
ship than I could have learned in two years of school. I called
Duke and said I wasn’t coming back. And so my wild ride
in industry began.

And Now About You
Readers of this book will fall into a few broad categories:

¢ College students and recent graduates taking computer
science classes and wondering, “Is this what program-
ming is like in the real world?” (Short answer: no.)

* Professionals from other backgrounds who got into
programming as a hobby or side job, now wanting to
take it on full-time.

* Others who are considering a job in programming but
want the skinny on what the books and classes aren’t
telling them.

Regardless of path, here you are: it’s time to pay the bills
with code. There are plenty of books out there on the code
part. There’s not so much on everything else that goes with
the job—and that’s where this book comes in.

For the professionals coming from other fields, some sections
won't apply as much to you—you don’t need me to tell you
what marketing does if your background is marketing.
However, you will still benefit from details about how things
run within the engineering department and how code
evolves from concept to release.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Introduction * xiii

Structure of This Book

This book is written in small mini-chapters, called tips, that
are designed to address a single topic within a few pages.
Some are longer by necessity. Related tips are close together,
but you can read them in any order. If you're going for the
big picture, go ahead and read it from cover to cover. But
feel free to flip around —when tips need to reference each
other, that’s stated explicitly in the text.

We start close to the code: Chapter 1, Program for Production,
on page 3 starts from your programming talent and gives

you guidance on making it production-ready. Nobody wants
to ship buggy code, but it’s especially challenging on indus-
trial-scale projects to ensure that your code is correct and
well-tested.

Next, Chapter 2, Get Your Tools in Order, on page 59 helps
with your workflow. You'll need to coordinate with others,

automate builds, and learn new technologies as you go. Plus,
you'll need to hammer out a fon of code. It pays to invest in
your tools up front.

Then we get into the squishier side of things. The one man-
ager you’'ll have throughout your life is you, and Chapter 3,
Manage Thy Self, on page 101 gets you started on issues such

as stress management and job performance.

No programmer is an island, so Chapter 4, Teamwork, on

page 133 focuses on working with others. Don’t discount
people skills—true, you were hired to be good at computers,
but industry is a team sport.

Then we get to the bigger picture. Chapter 5, Inside the
Company, on page 155 considers all the moving pieces that

make up a typical high-tech company and your part within
the whole. It ultimately tries to answer, “What do all these
people do all day?”

Closer to home is the business of software. Chapter 6, Mind
Your Business, on page 181 gets into who's paying your pay-
check and why, the life cycle of a software project, and how

your day-to-day programming changes with that life cycle.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

xiv ® Introduction

Finally, Chapter 7, Kaizen, on page 211 looks forward. The

Japanese Kaizen is a philosophy of continuous improvement,
and I hope to see you on that path before we part ways.

Conventions Used in This Book

I often use the Ruby programming language in tips that have
example code. I chose Ruby simply because it’s concise and
easy to read. Don’t worry if you don’t know Ruby; the intent
of the code should be self-evident. The examples are intend-
ed to demonstrate bigger-picture principles that may apply
to any programming language.

Throughout the book you'll encounter sidebars titled industry
perspective. These are voices from industry pros: program-
mers and managers who have been down this road before.
Each contributor has decades of experience, so consider their
advice carefully.

White Belt to Black Belt (and Back)

Throughout the book I use the notion of martial arts belts
to signify when you'll need to apply a certain tip. The color-
ing of belts has a story behind it that is helpful beyond the
martial arts. When a student begins, she starts with a white
belt, signifying innocence. White-belt tips, likewise, apply
from the very beginning.

Over years of practice, her belt becomes soiled. The brown
belt is an intermediate step where the belt is, frankly, dirty.
(We modern wimps just buy a new belt that’s colored
brown.) For this book, I expect brown-belt topics to become
relevant between years two and five.

As the artist practices further, her belt becomes darker and
darker until it’s black. At this point, she dons the title master.
For the book I draw the line rather early, where black-belt

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Introduction * xv

topics may apply around year five and onward. In real life,
true mastery begins more around year ten.

What happens as the new master continues to use her belt?
It becomes frayed and bleached from sunlight...it starts to
become white again. The masters of old discovered some-
thing about expertise that psychologists have only recently
studied: you need to get to a certain threshold before you
can know what you don’t know. And then you begin your
learning anew.

Online Resources
This book’s web page is located here:

http://pragprog.com/titles/jcdeg

From here you can participate in a discussion forum with
me and other readers, check the errata for any bugs, and
report any new bugs you discover.

Onward

Enough chatter about the book. You're sitting at your
workstation wondering, “Now what?” And your boss is
wondering why you're not working yet. So, let’s get going!

http://pragprog.com/titles/jcdeg
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Part1

Professional Programming

CHAPTER 1

Program for Production

When you program for fun, it’s easy to skimp on things such
as handling edge cases, error reporting, and so forth. It’s a
pain. But when you program for production—not to mention
a paycheck—you can't take the shortcuts.

Production-quality code seems like a straightforward goal,
but our industry has had a heck of a time figuring out how
to get it right. Windows 95, for example, had a bug that
would hang the OS after 49.7 days of continuous opera-
tion—which wouldn’t be especially surprising except that
this bug took four years to discover because other bugs would
crash Windows 95 long before 49.7 days could pass.'

You can take one of two approaches to quality: build it in
from the beginning, or beat it in afterward. The former
approach requires a lot of discipline in your day-to-day
coding. The latter requires a lot of testing and, in the end, a
lot of work after you thought you were done.

Beat-it-in-afterward is how it’s usually done. It’s implicit in
the waterfall development method that dominates industry:
specify, design, build, test. Test comes last. The product goes
to the test department and blows up quickly. It goes back
to engineering, you fix bugs, you give another version to the
test department, that blows up in some other way, and so it
goes back and forth for many months (even years).

Much of this chapter’s focus is on build-it-in techniques
because that’s how you build a product that you can have

1. http://support.microsoft.com/kb/216641

http://support.microsoft.com/kb/216641
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

4 * Chapter 1. Program for Production

confidence in, add features to, and maintain for years. Of

course, building production-quality software is a topic that

spans more than one book, and its scope is much larger than

testing. This discussion, however, is limited to things you
can do right now to improve the quality of your code:

Before getting into specific practices, we start with Tip
1, Beat Up Your Code, on page 6 to get you into the right
mind-set.

Next, in Tip 2, Insist on Correctness, on page 11, we focus

on verifying that your code does what it should.

You can also go the other way around; in Tip 3, Design
with Tests, on page 21, we look at starting from tests and
using those tests to drive your design.

Very soon you'll be swimming in a huge code base. Tip
4, Tame Complexity, on page 27 deals specifically with

the sheer mass of production-sized software projects.

Tip 5, Fail Gracefully, on page 35 takes us far off the

happy path, where your code needs to cope with prob-
lems outside its control.

Just when things get really gnarly, we take a short
breather: Tip 6, Be Stylish, on page 41 helps you keep

your code pretty—and that helps more than you'd
imagine over the long haul.

Back to the hard stuff. Tip 7, Improve Legacy Code, on
page 48 deals with code you've inherited from your

predecessors.

Finally, in Tip 8, Review Code Early and Often, on page

53 you’ll work with your team to ensure your code is
ready to deploy.

A Note on What's Not Here

There are other aspects to production-worthiness I don’t

have space to address, and within many industries there are

domain-specific standards you need to meet, too. The follow-

ing are examples:

Defensive programming against malicious code, network
activity, and other security concerns

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Chapter 1. Program for Production * 5

® Protection of users’ data from hardware and systems
failure, software bugs, and security breaches

¢ Deployment and scale-out performance of software put
under great load

e ...and so forth

Consult a senior programmer for advice: beyond writing
code that works—all the time, every time—what else does
it take for your code to pass muster?

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

6 ¢ Chapter 1. Program for Production

Tip 1

Beat Up Your Code

[White Belt] Assoon asyou write production
code, you need to prove it can take a beating.
You might think that writing solid code is an obvious job
requirement. It’s not like the job post said “Wanted: program-
mer with good attitude, team player, foosball skills. Optional:

writes solid code.” Yet so many programs have bugs. What
gives?

Before we get into detailed discussions of day-to-day prac-
tices for assuring code quality, let’s discuss what it means
to write solid code. It’s not just a list of practices; it’s a mind-
set. You must beat up your code, and the product as a whole,
before it goes out to customers.

The customer, after all, will beat up your product. They’ll
use it in ways you don't anticipate. They’ll use it for extended
periods of time. They’ll use it in environments you didn’t
test in. The question you must consider is this: how many
bugs do you want your customer to find?

The more you beat up your code right now, before it gets into
customers’ hands, the more bugs you’ll flush out, and the
fewer you'll leave for the customer.

Forms of Quality Assurance

Although much of this chapter focuses on code-level quality
and unit testing, assuring product quality is a much larger
topic. Let’s consider what your product will need to endure.

Code Review

The first obvious, simple way to assure code quality is to
have another programmer read it. It doesn’t need to be a
fancy review, either—even pair programming is a form of
real-time code review. Teams will use code reviews to catch

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Beat Up Your Code * 7

bugs, enforce coding style and standards, and also spread
knowledge among team members. We'll discuss code
reviews in Tip 8, Review Code Early and Often, on page 53.

Unit Tests

As you're building the business logic of your application,
class by class and method by method, there’s no better way
to verify your code than with unit tests. These innards-level
tests are designed to verify bits of logic in isolation. We’ll
discuss them in Tip 2, Insist on Correctness, on page 11 and
Tip 3, Design with Tests, on page 21.

Acceptance Tests

Where unit tests view the product from the inside out, accep-
tance tests are designed to simulate real-world users as they
interact with the system. Ideally, they are automated and
written as a narrative of sorts. For example, an automated
bank teller application could have an acceptance story like
this: given that I have $0 in my checking account, whenI go
to the ATM and select “Withdrawal” from “Checking Ac-
count,” then I should see “Sorry, you're eating Ramen for
dinner tonight.”

Shakespeare it is not, but these tests exercise the whole sys-
tem from the user interface down to business logic. Whether
they’re automated or performed by people, your company
needs to know —before any customers play with it—that all
system components are cooperating like they should.

Load Testing

Load tests put the product under realistic stress and measure
its responsiveness. A website, for example, may need to
render a given page in 100 milliseconds when there are a
million records in the database. These tests will uncover
correct-but-bad behavior, such as code that scales exponen-
tially when it needs to scale linearly.

Directed Exploratory Testing

Acceptance tests cover all of the product’s behavior that was
specified, perhaps via a product requirements document or
meetings. Yet programmers can usually think of ways to
break it—there are always dark corners that the specification

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

8 ¢ Chapter 1. Program for Production

I spent several years writing control software for industrial
robots. Unit tests would simulate the motor movements so I
could test the business logic on a workstation. Full-system tests,
of course, needed to run on real robots.

The great thing about robots is you can see your code at work.
The not-so-great thing is you can see (and hear and sometimes
smell) your code fail. But more importantly, robots are not a
perfect environment. Each robot is different—it’s a combination
of thousands of mechanical and electrical parts, each with some
variation. Therefore, it’s essential to test with multiple robots.

The same is true of more traditional systems: vendor software
can crash, networks have latency, hard disks can barf up bad
data. Your company’s test lab should simulate these less-ideal
environments, because ultimately your product will encounter
them in customers’ hands.

overlooks. Directed exploratory testing ferrets out those

corner cases.

This testing is often performed by a human, perhaps the
programmers themselves, to explore and discover problems.
Past the initial exploration, however, any useful tests are
added to the acceptance test suite.

There are specialized variations on this theme, such as a
security audit. In those cases, a specialized tester uses their
domain expertise (and perhaps code review) to direct their
testing.

Agency Testing

Hardware products need various agency certifications: the
FCC measures electromagnetic emissions to ensure the
product doesn’t create radio interference; Underwriter’s
Laboratories (UL) looks at what happens when you set the
product on fire or lick its battery terminals. These tests are
run before a new product is launched and any time a hard-
ware change could affect the certification.

Environmental Testing

Hardware products also need to be pushed to extremes in
operating temperature and humidity. These are tested with

report erratum - discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Beat Up Your Code * 9

You'll hear the terms white-box and black-box testing. In white-
box testing, you get to look inside the program and see whether
everything is working right. Unit tests are a good example.

Black-box testing, on the other hand, looks at the product as the
customer would see it; what goes on inside isn’t relevant, only
that the product does the right thing on the outside. Acceptance
and load tests are forms of black-box testing.

an environmental chamber that controls both factors; it goes
to each of the four extremes while the product is operating

inside.

Compatibility Testing

When products need to interoperate with other prod-
ucts—for example, a word processing program needs to
exchange documents with other word processors—these
compatibility claims need to be verified on a regular basis.
They may run against a corpus of saved documents or in
real time with your product connected to other products.

Longevity Testing

You'll notice that most of the tests mentioned here are run
as often and as quickly as possible. Some bugs, however,
show up only after extended use. Our 49.7-day bug is a good
example —that comes from a 32-bit counter that increments
every millisecond, and after 49.7 days it rolls over from its
maximum value back to zero.” You won't be able to find a
bug like that unless you run tests for extended durations.

Beta Test

Here’s where the product goes out to real customers—but
they’re customers who know what they're getting into, and
they’ve agreed to submit reports if they find problems. The
purpose of a beta test is exactly what we discussed at the
beginning of this tip: the beta tester will use the product in
ways you don't anticipate, test it for extended periods of
time, and test it in environments you didn't test in.

2. 2%- 4,294,967,296 milliseconds =49.7 days, assuming an unsigned
counter. See GetTickCount() on Windows as an example.

report erratum -« discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

10 * Chapter 1. Program for Production

Ongoing Testing

Your company may continue to test after a product ships.
For hardware products in particular, it’s useful to pull a unit
off the manufacturing line once in a while and verify that it
works. These ongoing tests are designed to capture problems
due to variations in parts or assembly process.

Practices vs. Mind-Set

Your team may have practices like “all code must have unit
tests” or “all code must be reviewed before checking in.”
But none of these practices will guarantee rock-solid code.
Think about what you'd do if there were zero quality prac-
tices at your company —how would you beat up your code
to make sure it’s solid?

This is the mind-set you need to establish before going fur-
ther. Commit to solid code. The quality practices are just a
means to an end —the ultimate judge will be the product’s
reliability in the hands of your customers. Do you want to
have your name associated with a product that hit the market
as a buggy piece of junk? No, of course not.

Actions

¢ Of all the forms of testing mentioned earlier, which of
these does your company use? Find the unit tests in the
source code, ask the test department for the acceptance
test plan, and ask how beta tests are done and where
that feedback goes. Also ask a senior engineer’s opinion:
is this enough to ensure a smooth experience for the
customer?

* Spend some time doing directed exploratory testing,
even if your “direction” is somewhat vague. Really use
the product to see whether you can break it. If you can,
file bug reports accordingly.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Insist on Correctness * 11

Tip2

Insist on Correctness

[White Belt] These considerations are essen-
tial to your coding from day one.

In toy programs it’s easy to tell the difference between correct
and incorrect. Does factorial(n) return the correct number?
That’s easy to check: one number goes in, and another
number comes out. But in big programs, there are potentially
many inputs—not just function parameters, but also state
within the system —and many outputs or other side effects.
That’s not so easy to check.

Isolation and Side Effects

Textbooks love to use math problems for programming
examples, partly because computers are good at math, but
mostly because it’s easy to reason about numbers in isolation.
You can call factorial(5) all day long, and it'll return the same
thing. Network connections, files on disk, or (especially)
users have a nasty habit of not being so predictable.

When a function changes something outside its local vari-
ables—for example, it writes data to a file or a network
socket—it’s said to have side effects. The opposite, a pure
function, always returns the same thing when given the
same arguments and does not change any outside state.
Obviously, pure functions are a lot easier to test than func-
tions with side effects.

Most programs have a mix of pure and impure code; how-
ever, not many programmers think about which parts are
which. You might see something like this:

Download ReadStudentGrades.rb
def self.import_csv(filename)
File.open(filename) do |file|
file.each line do |line]
name, grade = line.split(',"')

http://media.pragprog.com/titles/jcdeg/code/ReadStudentGrades.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

12 * Chapter 1. Program for Production

Convert numeric grade to letter grade
grade = case grade.to i

when 90..100 then 'A’

when 80..89 then 'B'

when 70..79 then 'C'

when 60..69 then 'D'

else 'F'
end

Student.add to database(name, grade)
end
end
end

This function is doing three things: reading lines from a file
(impure), doing some analysis (pure), and updating a global
data structure (impure). As this is written, you can’t easily
test any one piece.

Said this way, it’s obvious that each task should be isolated
so it can be tested separately. We'll discuss the file part
shortly in Interactions, on page 13. Let’s pull the analysis bit

into its own method:

Download ReadStudentGrades2.rb
def self.numeric_to letter grade(numeric)
case numeric
when 90..100 then 'A'
when 80..89 then 'B'
when 70..79 then 'C'
when 60..69 then 'D'
when 0..59 then 'F'
else raise ArgumentError.new(
"#{numeric} is not a valid grade")
end
end

Now numeric_to_letter_grade() is a pure function that’s easy to
test in isolation:

Download ReadStudentGrades2.rb
def test convert numeric to letter grade
assert equal 'A',
Student.numeric_to_letter_grade(100)
assert equal 'B',
Student.numeric_to letter grade(85)
assert _equal 'F',
Student.numeric_to letter grade(50)
assert_equal 'F',
Student.numeric_to letter grade(0)
end

http://media.pragprog.com/titles/jcdeg/code/ReadStudentGrades2.rb
http://media.pragprog.com/titles/jcdeg/code/ReadStudentGrades2.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Insist on Correctness * 13

def test raise on invalid input
assert raise(ArgumentError) do
Student.numeric_to letter grade(-1)
end

assert raise(ArgumentError) do
Student.numeric_to letter grade("foo")
end

assert raise(ArgumentError) do
Student.numeric_to_letter grade(nil)
end
end

This example may be trivial, but what happens when the
business logic is complex and it’s buried in a function that
has five different side effects? (Answer: it doesn’t get tested
very well.) Teasing apart the knots of pure and impure code
can help you test correctness both for new code and when
maintaining legacy code.

Interactions

Now what about those side effects? It’s a huge pain to aug-
ment your code with constructs like “If in test mode, don't
actually connect to the database....” Instead, most languages
have a mechanism for creating test doubles that take the place
of the resource your function wants to use.

Let’s say we rewrote the previous example so that import_csv()
handles only the file processing and passes the rest of the
work off to Student.new():

Download ReadStudentGrades3.rb
def self.import csv(filename)
file = File.open(filename) do |file|
file.each line do |line]
name, grade = line.split(',"')

Student.new(name, grade.to i)
end
end
end

What we need is a test double for the file, something that
will intercept the call to File.open() and yield some canned
data. We need the same for Student.new(), ideally intercepting
the call in a way that verifies the data passed into it.

Ruby’s Mocha framework allows us to do exactly this:

http://media.pragprog.com/titles/jcdeg/code/ReadStudentGrades3.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

14 * Chapter 1. Program for Production

Download ReadStudentGrades3.rb

def test import from csv
File.expects(:open).yields('Alice,99")
Student.expects(:new).with('Alice', 99)

Student.import csv(nil)
end

This illustrates two points about testing interactions between
methods:

* Unit tests must not pollute the state of the system by
leaving stale file handles around, objects in a database,
or other cruft. A framework for test doubles should let
you intercept these.

¢ This kind of test double is known as a mock object, which
verifies expectations you program into it. In this exam-
ple, if Student.new() was not called or was called with
different parameters than we specified in the test, Mocha
would fail the test.

Of course, Ruby and Mocha make the problem too easy.
What about those of us who suffer with million-line C pro-
grams? Even C can be instrumented with test doubles, but
it takes more effort.

You can generalize the problem to this: how do you replace
one set of functions at runtime with another set of functions?
(If you’re nerdy enough to think “That sounds like a dynamic
dispatch table,” you're right.) Sticking with the example of
opening and reading a file, here’s one approach:

Download TestDoubles.c
struct fileops {
FILE* (*fopen)
(const char *path,
const char *mode);
size t (*fread)

(void *ptr,
size t size,
size t nitems,
FILE *stream) ;

// ...
}
FILE*

stub_fopen(const char *path, const char *mode)

{

// Just return fake file pointer

http://media.pragprog.com/titles/jcdeg/code/ReadStudentGrades3.rb
http://media.pragprog.com/titles/jcdeg/code/TestDoubles.c
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Insist on Correctness * 15

return (FILE*) 0x12345678;

}

/] ..

struct fileops real fileops = {
.fopen = fopen

}

struct fileops stub fileops = {

.fopen = stub fopen
b

The fileops structure has pointers to functions that match the
standard C library API. In the case of the real_fileops structure,
we fill in these pointers with the real functions. In the case
of stub_fileops, they point to our own stubbed-out versions.
Using the structure isn't much different from just calling a
function:

Download TestDoubles.c

// Assume that ops is a function parameter or global
struct fileops *ops;

ops = &stub fileops;

FILE* file = (*ops->fopen)("foo", "r");

/]

Now the program can flip between “real mode” and “test
mode” by just reassigning a pointer.

Type Systems

When you refer to something like 42 in code, is that a num-
ber, a string, or what? If you have a function like factorial(n),
what kind of thing is supposed to go into it, and what’s
supposed to come out? The type of elements, functions, and
expressions is very important. How a language deals with
types is called its type system.

The type system can be an important tool for writing correct
programs. For example, in Java you could write a method
like this:

public long factorial(long n) {
// ...
}

In this case, both the reader (you) and the compiler can eas-
ily deduce that factorial() should take a number and return a

http://media.pragprog.com/titles/jcdeg/code/TestDoubles.c
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

16 * Chapter 1. Program for Production

The $60 Million Break Statement

On January 15, 1990, AT&T’s phone network was humming
along just fine. Until, that is, at 2:25 p.m. when a phone switch
performed a self-test operation and reset itself. Switches don’t
reset often, but the network can handle it, and the switch takes
amere four seconds to reset and resume normal operation. Only
this time, other switches started to reset, too, and within seconds
all 114 of AT&T’s backbone switches were endlessly resetting
themselves. The mighty AT&T phone system ground to a halt.

It turns out that when the first switch reset itself, it sent a message
to neighboring switches saying it was resuming normal opera-
tion. The exchange of messages caused the neighboring switches
to crash. They, in turn, automatically reset and sent messages to
their neighbors about resuming operation, and so on...thus cre-
ating an endless reset/resume/reset cycle.

It took AT&T engineers nine hours to get the phone system
working again. It’s estimated the outage cost AT&T $60 million
in dropped calls, and it’s impossible to gauge the economic
damage to others who relied on their phones to do business."

What was the cause of the problem? A mistaken break statement.
In C, someone had written this:

if (condition) {

// do stuff..
}
else {

break;
}

On the surface, the code reads like “If the condition is true, then
do stuff; else, do nothing.” But in C, break does not break out of
an if() statement; it breaks out of other blocks like while() or switch().
What happened is that the break broke out of an enclosing block
much too early, corrupted a data structure, and caused the phone
switch to reset. Because all the phone switches were running the
same software and this bug was in the code that handled mes-
sages from peers about a reset recovery, the failure cascaded
back and forth through the whole network.

a. http://users.csc.calpoly.edu/~jdalbey/SWE/Papers/att_col-
lapse.html

number. Java is statically typed because it checks types when
code is compiled. Trying to pass in a string simply won't
compile.

Compare this with Ruby:

http://users.csc.calpoly.edu/~jdalbey/SWE/Papers/att_collapse.html
http://users.csc.calpoly.edu/~jdalbey/SWE/Papers/att_collapse.html
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Insist on Correctness * 17

def factorial(n)
...
end

What is acceptable input to this method? You can't tell just
by looking at the signature. Ruby is dynamically typed because
it waits until runtime to verify types. This gives you
tremendous flexibility but also means that some failures that
would be caught at compile time won’t be caught until
runtime.

Both approaches to types have their pros and cons, but for
the purposes of correctness, keep in mind the following:

e Static types help to communicate the proper use of
functions and provide some safety from abuse. If your
factorial function takes a long and returns a long, the
compiler won't let you pass it a string instead. However,
it’s not a magic bullet: if you call factorial(-1), the type
system won't complain, so the failure will happen at
runtime.

¢ To make good use of a static type system, you have to
play by its rules. A common example is the use of const
in C++: when you start using const to declare that some
things cannot be changed, then the compiler gets really
finicky about every function properly declaring the
const-ness of its parameters. It’s valuable if you completely
play by the rules; it’s just a huge hassle if your commit-
ment is anything less than 100 percent.

* Dynamically typed languages may let you play fast and
loose with types, but it still doesn’t make sense to call
factorial() on a string. You need to use contract-oriented
unit tests, discussed in Tip 3, Design with Tests, on page

21, to ensure that your functions adequately check the
sanity of their parameters.

Regardless of the language’s type system, get in the habit of
documenting your expectations of each parameter—they
usually aren’t as self-explanatory as the factorial(n) example.
See Tip 6, Be Stylish, on page 41 for further discussion of

documentation and code comments.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

18 * Chapter 1. Program for Production

The Misnomer of 100 Percent Coverage

A common (but flawed) metric for answering “Have I tested
enough?” is code coverage. That is, what percentage of your
application code is exercised by running the unit tests? Ide-
ally, every line of code in your application gets run at least
once while running the unit tests—coverage is 100 percent.

Less than 100 percent coverage means you have some cases
that are not tested. Junior programmers will assume that the
converse is true: when they hit 100 percent coverage, they
have enough tests. However, that’s not true: 100 percent
coverage absolutely does not mean that all cases are covered.

Consider the following C code:

Download BadStringReverse.c
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void reverse(char *str) // BAD BAD BAD

{
int len = strlen(str);
char *copy = malloc(len);
for (int i = 0; i < len; i++) {
copy[i] = str[len - i - 1];
}
copyl[len] = 0;
strcpy(str, copy);
}
int main()
{
char str[] = "fubar";
reverse(str);
assert(strcmp(str, "rabuf") == 0);
printf("Ta-da, it works!\n"); // Not quite
}

The test covers 100 percent of the reverse function. Does that
mean the function is correct? No: the memory allocated by
malloc() is never freed, and the allocated buffer is one byte
too small.

Don’t be lulled into complacency by 100 percent coverage:
it means nothing about the quality of your code or your tests.

http://media.pragprog.com/titles/jcdeg/code/BadStringReverse.c
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Insist on Correctness * 19

Writing good tests, just like writing good application code,
requires thought, diligence, and good judgment.

Less Than 100 Percent Coverage

Some cases can be extremely hard to unit test. Here’s an
example:

e Kernel drivers that interface with hardware rely on
hardware state changes outside your code’s control, and
creating a high-fidelity test double is near impossible.

* Multithreaded code can have timing problems that
require sheer luck to fall into.

* Third-party code provided as binaries often can’t be
provoked to return failures at will.

So, how do you get 100 percent coverage from your tests?
With enough wizardry, it’s surely possible, but is it worth
it? That’s a value judgment that may come down to no. In
those situations, discuss the issue with your team’s tech lead.
They may be able to think of a test method that’s not too
painful. If nothing else, you will need them to review your
code.

Don't be dissuaded if you can’t hit 100 percent, and don’t
use that as an excuse to punt on testing entirely. Prove what'’s
reasonable with tests; subject everything else to review by
a senior programmer.

Further Reading

Kent Beck’s Test-Driven Development: By Example [Bec02]
remains a foundational work on unit testing. Although it
uses Java in its examples, the principles apply to any lan-
guage. (While reading it, try to solve the example problem
in your own way; you may come up with a more elegant
solution.) We’ll discuss the test-driven aspect in Tip 3, Design
with Tests, on page 21.

For complete coverage of the Ruby Way to unit testing, Ruby
programmers should pick up The RSpec Book [CADHO09].

C programmers should look to Test Driven Development for
Embedded C [Grel0] for techniques on TDD and building test
harnesses.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

20 ¢ Chapter 1. Program for Production

There’s anomenclature around test doubles; terms like mocks
and stubs have specific definitions. Martin Fowler has a good
article online® that explains the details.

There’s a whole theory around type systems and using them
to build correct code; see Pierce’s Types and Programming
Languages [Pie02] for the gory details. Also, Kim Bruce’s
Foundations of Object-Oriented Languages: Types and Semantics
[Bru02] has specific emphasis on OOP.

Actions

¢ Look up the unit testing frameworks available for each
programming language you use. Most languages will
have both the usual bases covered (assertions, test setup,
and teardown) and some facility for fake objects (mocks,
stubs). Install any tools you need to get these running.

¢ This tip has bits and pieces of a program that reads lines
of comma-separated data from a file, splits them apart,
and uses them to create objects. Create a program that
does this in the language of your choice, complete with
unit tests that assure the correctness of every line of
application code.

4. http://martinfowler.com/articles/mocksArentStubs.html

http://martinfowler.com/articles/mocksArentStubs.html
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Design with Tests * 21

Tip 3
Design with Tests

[Brown Belt] You may not start designing
new code right up front, but you will soon

enough.

Where our previous tip, Tip 2, Insist on Correctness, on page

11, focused on making sure your code does what it's sup-
posed to do, here we focus on the meta-question, “What
should this code do?”

On the surface, it would seem puzzling that a programmer
would write code without knowing, well ahead of time,
what it’s supposed to do. Yet we do it all the time. Faced
with a problem, we charge off writing code and figure things
out as we go. Programming is a creative act, not a mechanical
one, and this process is akin to a painter charging off on a
blank canvas without knowing exactly what the finished
painting will look like. (Is this why so much code resembles
a Jackson Pollock painting?)

Yet programming also requires rigor. Testing gives you tools
for both design and rigor at the same time.

Designing with Tests

Thanks to frameworks for test doubles, discussed in Interac-

tions, on page 13, you can start with a big programming

problem and start attacking it from whatever angle makes
sense first. Perhaps your program needs to grab an XML file
with customer statistics, wade through it, and produce
summary stats of the data. You're not sure offhand how to
parse the XML, but you do know how to calculate the average
customer age. No problem, mock the XML parsing and test
the calculation:

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

22 * Chapter 1. Program for Production

Download AverageCustomerAge.rb
class TestCustomerStats < Test::Unit::TestCase
def test mean age
data =
[{:name => 'A', :age => 33},
{:name => 'B', :age => 25}]
CustomerStats.expects(:parse xml).returns(data)
File.expects(:read).returns(nil)

stats = CustomerStats.load
assert _equal 29, stats.mean age
end
end

Now you can write that code:

Download AverageCustomerAge.rb
class CustomerStats
def initialize
@customers = []
end

def self.load
xml = File.read('customer database.xml')
stats = CustomerStats.new
stats.append parse xml(xml)
stats
end

def append(data)
@customers += data
end

def mean_age
sum = @customers.inject(0) { |s, c| s += c[:age] }
sum / @customers.length
end
end

Confident that you have that part nailed, you can move on
to parsing XML. Take a couple of entries out of the huge
customer database, just enough to make sure you have the
format right:

Download data/customers.xml
<customers>

<customer>
<name>Alice</name>
<age>33</age>

</customer>

http://media.pragprog.com/titles/jcdeg/code/AverageCustomerAge.rb
http://media.pragprog.com/titles/jcdeg/code/AverageCustomerAge.rb
http://media.pragprog.com/titles/jcdeg/code/data/customers.xml
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Design with Tests * 23

<customer>
<name>Bob</name>
<age>25</age>
</customer>
</customers>

Next, here’s a simple test to validate the parsing;:

Download AverageCustomerAge.rb
def test parse xml
stats = CustomerStats.parse xml(
canned data from 'customers.xml')
assert equal 2, stats.length
assert equal 'Alice', stats.first[:name]
end

From there you can start picking apart the XML:

Download AverageCustomerAge.rb
def self.parse_xml(xml)
entries = []
doc = REXML::Document.new(xml)

doc.elements.each('//customer') do |customer|
entries.push({
:name => customer.elements['name'].text,
rage => customer.elements['age'].text.to i })
end

entries
end

You have the flexibility to design from the top down, bottom
up, or anywhere in between. You can start with either the
part that’s riskiest (that is, what you're most worried about)
or the part you have the most confidence in.

Tests are serving several purposes here: first, they’re allow-
ing you to move quickly since you can do hand-wavy
mocking for your code’s interactions with outside compo-
nents. “I know I'll need to get this data from XML, but let’s
assume some other method did that already.” Second, the
tests naturally drive a modular style of construction—it’s
simply easier to do it that way. Last, the tests stick around
and ensure that you (or a future maintainer) don’t break
something on accident.

Tests As Specification

At some point you have a good idea of what each function
should do. Now is the time to tighten down the screws: what

http://media.pragprog.com/titles/jcdeg/code/AverageCustomerAge.rb
http://media.pragprog.com/titles/jcdeg/code/AverageCustomerAge.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

24 * Chapter 1. Program for Production

precisely should the function do in the happy path? What
shouldn't it do? How should it fail? Think of it as a specifi-
cation: you tell the computer—and the programmer who
needs to maintain your code five years from now—your
exact expectations.

Let’s start with an easy example, a factorial function. First
question: what should it do? By definition, factorial n is the
product of all positive integers less than or equal to 1. Facto-
rial of zero is a special case that’s one. These rules are easy
enough to express as Ruby unit tests:

Download Factorial.rb

def test valid input
assert equal 1, 0.factorial
assert equal 1, 1.factorial
assert _equal 2, 2.factorial
assert _equal 6, 3.factorial

end

In choosing values to test, I'm testing the valid boundary
condition (zero) and enough values to establish the factorial
pattern. You could test a few more, for the sake of illustra-
tion, but it’s not strictly necessary.

The next question to ask is, what’s invalid input? Negative
numbers come to mind. So do floats. (Technically there is
such a thing as factorial for noninteger numbers and complex
numbers,” but let’s keep this simple.) Let’s express those
constraints as well:

Download Factorial.rb
def test raises on negative input

assert raise(ArgumentError) { -1.factorial }
end

def test factorial does not work on floats
assert raise(NoMethodError) { 1.0.factorial }
end

I chose to raise an ArgumentError exception for negative inte-
gers and let Ruby raise a NoMethodError for calling factorial
on objects of any other type.

5. http://en.wikipedia.org/wiki/Factorial

http://media.pragprog.com/titles/jcdeg/code/Factorial.rb
http://media.pragprog.com/titles/jcdeg/code/Factorial.rb
http://en.wikipedia.org/wiki/Factorial
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Design with Tests ® 25

That’s a reasonably complete specification. In fact, from there
the code itself pretty much writes itself. (Go ahead, write a
factorial function that passes the tests.)

Over-Testing

When programmers start unit testing, a common question
arises: what are all the values I need to test? You could test
hundreds of values for the factorial function, for example,
but does that tell you anything more? No.

Therefore, test what’s needed to specify the behavior of the func-
tion. That includes both the happy path and the error cases.
Then stop.

Aside from wasting time, do additional tests do any harm?
Yes:

* Unit tests are valuable as a specification, so additional
clutter makes it hard for the reader to discern the impor-
tant parts of the specification from needless fluff.

¢ Every line of code is potentially buggy —even test code.
Debugging test code that doesn’t need to be there is a
double waste of time.

* If you decide to change the interface to your module,
you have more tests to change as well.

Therefore, write only the tests you need to verify correctness.

Further Reading

Growing Object-Oriented Software, Guided by Tests [FP09] has
extensive coverage of the design process with TDD and
mocking.

As before, Ruby programmers will benefit tremendously
from The RSpec Book [CADHO09].

If it occurred to you that “tests as specifications” sounds an
awful lot like inductive proofs, you're right. You can read a
lot more about inductive proofs in The Algorithm Design
Manual [Ski97].

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

26 * Chapter 1. Program for Production

A lot of people spend a lot of time up front designing and figur-
ing out how to break up a problem into pieces —nowadays, how
to break it up into classes—and I argue that whatever decisions
you make up front will be wrong.

My advice contradicts popular wisdom: start coding as soon as
possible. When you're looking at a problem, do it wrong first.

When I'm programming, I make a prototype with just a few big
classes. Then I write the production code once I have a better
picture of the problem. Too often now, programmers break things
up into classes up front, and then they force their implementation
onto a structure that they created when they didn’t have enough
information.

—Scott “Zz"” Zimmerman, senior software engineer

Actions

In the beginning of this tip, we used some data encoded in
XML. This is a very common task in industry, so it’s useful
to practice with loading and saving XML.

Start with a very simple structure, like the previous customer
list snippet. Use a prebuilt parser, like REXML for Ruby, for
the actual parsing, because you'll want to stick to the issues
of what to do with the parser’s results. Before you run off
and write any code, think of tests you'd construct for a
function that loads that XML:

¢ What happens when there are no customers in the list?
¢ How should you handle a field that’s blank?

¢ What about invalid characters, like letters in the age
field?

With those questions answered and expressed as tests, now
write the loader function.

Bonus round: build some tests for manipulating the customer
list and saving it back to a file. You can use an XML generator
like Builder for Ruby.

report erratum -« discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Tame Complexity * 27

Tip4

Tame Complexity

[White Belt] You'll be dealing with complex
code from day one.

If you've never met a program you couldn’t understand,
you haven’t been programming long enough. In industry,
it won't be long before you run into a mind-bogglingly
gnarly mess of code: The Behemoth, The Spaghetti Factory,
The Legacy System from Hell. I once inherited a program
whose previous owner, upon hearing that he’d have to add
a substantial new feature, quit his job instead. (And I couldn’t
blame him.)

Complexity in software systems is unavoidable; some
problems are just hard, and their solutions are complex.
However, much of the complexity you find in software is a
mess of our own making. In his book The Mythical
Man-Month [Bro95], Fred Brooks separates the two sources
of complexity into necessary and accidental complexity.

Here’s a way to think about the difference between necessary
and accidental complexity: what complexity is inherent in
the problem domain? Say you're faced with a program that
has date/time-handling code scattered all over the place.
There’s some necessary complexity when handling time:
months have different numbers of days, you have to consider
leap years, and so forth. But most programs I've seen have
loads of accidental complexity relating to time: times stored
in different formats, novel (and buggy) methods to add and
subtract times, inconsistent formats for printing times, and
much more.

The Complexity Death Spiral

It’s very common in programming that the accidental com-
plexity in a product’s code base gradually overwhelms the

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

28 * Chapter 1. Program for Production

Features
increases
Code Size
increases increases
Quick Fixes Complexity

culture _
responds increases
with

Bugs

Figure 1—The complexity death spiral

necessary complexity. At some point, things devolve into a
self-amplifying phenomenon that I call the complexity death
spiral, illustrated in Figure 1, The complexity death spiral, on

page 28.

Problem 1: Code Size

As you build a product, its code size will grow vastly beyond
any school or hobby project. Code bases in industry are
measured in thousands to millions of lines of code (LOC).

In Lions” Commentary on UNIX 6th Edition [Lio77], John Lions
commented that 10,000 lines of code is the practical limit of
program size that a single programmer can understand and
maintain. UNIX 6th Edition, released back in 1975, weighed
in at 9,000 LOC (minus machine-specific device drivers).

By comparison, in 1993 Windows NT had 4 to 5 million lines
of code. Ten years later, Windows Server 2003 had 2,000
developers and 2,000 testers who managed a whopping 50

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Tame Complexity * 29

million LOC.® Most industry projects aren’t as big as Win-
dows, but they’re well past the 10,000 mark that Lions drew
in the sand. This scale means that there is nobody in the com-
pany who understands the whole code base.

Problem 2: Complexity

As products grow in size, the conceptual elegance of the
original idea gets lost. What was once a crystal-clear idea to
the two guys in their garage becomes a murky swamp with
dozens of developers wading through it.

Complexity does not necessarily follow code size; it is possible
for a large code base to be broken into many modules, each
with a clear purpose, elegant implementation, and well-
known interactions with neighboring modules.

However, even well-designed systems become complex
when they become large. When no single person can under-
stand the whole system, then by necessity multiple people
must each keep their idea of their piece of the system in their
head —and nobody has exactly the same idea.

Problem 3: Bugs

As the product soars in complexity, bugs inevitably come
along for the ride. No way around it—even great program-
mers aren’t perfect. But not all bugs are created equal: the
ones in a highly complex system are especially nasty to track
down. Ever hear a programmer say, “I dunno, man, the
system just crashed.” Welcome to debugging in hell.

Problem 4: Quick Fixes

The question isn't whether the product will have bugs or
not—it will. The question is how the engineering team
responds. Under pressure to get the product out the door,
all too often programmers resort to quick fixes.

The quick fix patches over the problem rather than addresses
the root cause. Often the root cause isn’t even found. Here’s
an example:

6. http://en.wikipedia.org/wiki/Source_lines_of_code

http://en.wikipedia.org/wiki/Source_lines_of_code
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

30 ¢ Chapter 1. Program for Production

LOC Is a Measure of Weight, Not Progress

Managers strive to measure things, and since building a software
product means writing code, it makes sense —on the surface—to
measure a product’s progress by its lines of code. However, this
is a fundamentally misguided measure since good programmers
seek elegant solutions, and elegance tends to use fewer LOC
than brute-force solutions.

LOC is a useful measure of something, but it’s not progress: it’s
a measure of weight. Bill Gates observed that measuring pro-
gramming progress by lines of code is like measuring aircraft
building progress by weight.”

You don’t need to be an aerospace engineer to understand that
you should build an aircraft as light as possible—any extra
weight makes the plane less efficient. However, planes are still
heavy. An Airbus A380 weighs a whopping 610,000 pounds. It
also carries about 650 people. (A Cessna 172, by comparison,
weighs a measly 1,620 pounds and carries four—but not grace-
fully, and there’s no beverage cart.)

Likewise, a feature-rich product is going to have a lot of code in
it; there’s no getting around that. But the product should be as
lean as it can get away with, because every extra LOC will just
weigh down its future development.

a. http://c2.com/cgi/wiki?LinesOfCode

PROGRAMMER: The program crashes when it tries to put a job
on the network queue but the queue doesn’t respond within ten
seconds.

MANAGER: Make it retry the queue operation a hundred times.

What's the root cause? Who knows, with enough retries you
can patch over just about anything. But as with auto body
repair, at some point there’s more Bondo than actual car left.

The more insidious problem is that when a fix doesn’t ad-
dress the root cause of a problem, the problem usually
doesn’t go away at all —it just moves somewhere else. In the
previous dialogue, perhaps retrying a hundred times covers
up the problem pretty well, but what happens when 101
retries are needed? The manager just pulled the number out
of thin air, and the Bondo fix just made the problem harder
to see.

http://c2.com/cgi/wiki?LinesOfCode
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Tame Complexity ¢ 31

Pile on the quick fixes, and now we’ve come full-circle to
increased code size.

Toward Clarity

When people think of the opposite of complex, they usually
think simple. However, because of the necessary complexity
of our field, we can’t always write simple code. The better
opposite of complex is clear. Is it clear to the reader what
your code is doing?

Two facets to clarity help us reduce accidental software
complexity: clarity of thought and clarity of expression.

Clear Thought

When we reason about a problem, we seek to make a clear
statement like “There should be exactly one way to store a
time.” Why, then, does Unix C code have a mix of time
structures like time_t, struct timeval, and struct timespec?® That's
not so clear.

How do you reconcile your clear statement with the com-
plexity of Unix timekeeping? You need to fence off the
complexity, or abstract it into a single module. In C this might
be a structure and functions that operate on it; in C++ it
would be a class. Modular design allows the rest of your
program to reason about time in a clear manner without
knowing the innards of the system’s timekeeping.

Once you can reason about time as a separate module of
your program, you can also prove that your timekeeping is
correct. The best way to do this is with separate tests, but a
peer review or written specification would also work. It’s
far easier to test and rigorously prove a chunk of logic when
it's separate than when it’s embedded in a larger body of
code.

Clear Expression

As you think clearly about a module and isolate it from the
rest of your program, the resulting program also expresses
its purpose more clearly, too. Your code dealing with the
problem domain should truly focus on the problem domain.

8. http://en.wikipedia.org/wiki/Unix_time

http://en.wikipedia.org/wiki/Unix_time
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

32 Chapter 1. Program for Production

As you pull secondary code out into its own modules, the
remaining logic should read more and more like a specifica-
tion of the problem domain (though perhaps with more
semicolons).

Let’s look at a before-and-after comparison. I've seen this
kind of C++ code numerous times:

Download Time.cpp
void do stuff with progressl()

{

struct timeval start;

struct timeval now;

gettimeofday(&start, 0);

// Do stuff, printing a progress message

// every half second

while (true) {
struct timeval elapsed;
gettimeofday(&now, 0);
timersub(&now, &start, &elapsed);
struct timeval interval;
interval.tv_sec = 0;
interval.tv_usec = 500 * 1000; // 500ms
if (timercmp(&elapsed, &interval, >)) {

printf("still working on it...\n");
start = now;

}
// Do stuff..

}

}

The point of the loop is the “do stuff” part, but there’s
twenty lines of POSIX timekeeping gunk before you ever
get there. There’s nothing incorrect about it, but...ugh. Isn't
there a way to keep the loop focused on its problem domain
rather than timekeeping?

Let’s pull all the time gunk into its own class:

Download Time.cpp

class Timer

{

public:

Timer(const time t sec, const suseconds t usec) {

_interval.tv _sec = sec;
_interval.tv_usec = usec;
gettimeofday(& start, 0);

http://media.pragprog.com/titles/jcdeg/code/Time.cpp
http://media.pragprog.com/titles/jcdeg/code/Time.cpp
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Tame Complexity

bool triggered() {
struct timeval now;
struct timeval elapsed;

gettimeofday(&now, 0);
timersub(&now, & start, &elapsed);

return timercmp(&elapsed, & interval, >);

}

void reset() {
gettimeofday(& start, 0);

}

private:
struct timeval interval;
struct timeval start;

}

Now we can simplify the loop:

Download Time.cpp
void do stuff with progress2()

{
Timer progress timer(0, 500 * 1000); // 500ms
// Do stuff, printing a progress message
// every half second
while (true) {
if (progress timer.triggered()) {
printf("still working on it...\n");
progress _timer.reset();
}
// Do stuff...
}
}

The computer is doing the same stuff in both cases, but
consider what the second example does for the program’s

maintainability:

* The Timer class can be tested and proven independent

of its use in the program.

* The timekeeping in the “do stuft” loop has meaningful

33

semantics—triggered() and reset() —rather than a bunch

of get, add, and compare functions.

http://media.pragprog.com/titles/jcdeg/code/Time.cpp
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

34 e Chapter 1. Program for Production

¢ It's now clear where the timekeeping ends and the (fic-
tional) meat of the loop begins.

As you work on code that’s big and gnarly, consider this for
each part: what is this code trying to say? Is there a way to
say it more clearly? If it’s a problem of clear expression, you
may need to abstract out the bits that are getting in the way,
as with the Timer class shown earlier. If the code is still a
mess, it may be the product of unclear thought, and that
needs rework at the design level.

Actions

Focus on one aspect of programming—like timekeep-
ing —that can be isolated and reasoned about rigorously.
Dig through the project you're working on and identify
places where the code could be made clearer if that logic
was abstracted into its own module.

Try your hand at a more modular approach: take a couple
places where things are messy and separate the necessary
complexity from the accidental complexity. Don’t sweat the
details at this point; just see how clearly you can express the
necessary business logic, with the assumption that you have
separate modules to handle the supporting logic.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Fail Gracefully ¢ 35

Tip5

Fail Gracefully

[White Belt] Writing code that fails well is
just as important as writing code that works

well.

What happens when code fails? It's going to. Even if you
wrote your part perfectly, there are all kinds of conditions
that could cause the overall system to fail:

* Arogue mail daemon on computer, busy sending offers
of great wealth from some foreign country, consumes
all the RAM and swap. Your next call to malloc() returns
ETOOMUCHSPAM.

e Java Update 134,001 fills up the system’s hard drive.
You call write(), and the system returns ESWITCHTODECAF.

* You try to pull data off a tape, but the tape robot is on
a ship at sea, rolling waves cause the robot to drop the
tape, and the driver returns EROBOTDIZZY.

* Cosmic rays flip a bit in memory, causing a memory
access to return 0x10000001 instead of 0x1, and you dis-
cover that this makes for a very bad parameter to pass
into memcpy() after it returns EMEMTRASHED.

You may think, “Yeah, right” but all these cases actually
happened. (Yes, I had to fix a tape robot controller because
it would drop tapes when on a Navy ship.) Your code cannot
naively assume that the world around it is sane — the world
will take every opportunity to prove it wrong.

How your code fails is just as important as how it works.
You may not be able to fix the failure, but if nothing else,
your code should strive to fail gracefully.

Order of Operations

In many textbook programs, their environment is a clean
slate, and the program runs to completion. In many messy,

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

36 ¢ Chapter 1. Program for Production

nontextbook programs, the environment is a rugby match
of threads and resources, all seemingly trying to beat each
other into submission.

Consider the following example: you're creating a list of
customer names and addresses that will be fed to a label
printer. Your code gets passed a customer ID and a database
connection, so you need to query the database for what you
need. You create a linked list whose add() method looks like
this:

Download ListUpdate.rb
def add(customer id) # BAD BAD BAD, see text
begin
@mutex.lock
old head = @head
@head = Customer.new
@head.name =
@database.query(customer_id, :name)
@head.address =
@database.query(customer_id, :address)
@head.next = old head
ensure
@mutex.unlock
end
end

(Yes, I know this example is contrived. Bear with me.)

This code works in the happy path: the new element is put
at the head of the list, it gets filled in, and everything is
happy. But what if one of those queries to the database
raises an exception? Take a look at the code again.’

This code doesn'’t fail gracefully. In fact, it does collateral
damage by allowing a database failure to destroy the cus-
tomer list. The culprit is the order of operations:

¢ The list @head and @head.next are absolutely vital to the
list’s integrity. These shouldn’t be monkeyed with until
everything else is ready.

9. Answer: First, the head of the list has already been set to the new
element, so the head will have at least one blank field. Second,
the rest of the list will vanish because head.next gets updated only
after the database queries. And bonus badness: the list stays locked
for the duration of the database queries—operations that could
take an indeterminate amount of time to complete.

http://media.pragprog.com/titles/jcdeg/code/ListUpdate.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Fail Gracefully ¢ 37

¢ The new object should be fully constructed before insert-
ing into the list.

¢ Thelock should not be held during operations that could
block. (Assume there’s other threads wanting to read
the list.)

Transactions

In the previous section, the example had only one essential
bit of state that needed to stay consistent. What about cases
where there’s more than one? Consider the classic example
of moving money between two bank accounts:

Download Transaction.rb
savings.deduct(100)
checking.deposit(100)

What happens if the database croaks right after the money
has been deducted and the deposit into checking fails? Where
did the money go? Perhaps you try to solve that case by
putting it back into the savings account:

Download Transaction.rb
savings.deduct(100) # Happily works

begin
checking.deposit(100) # Fails: database went down!
rescue
begin
Put money back
savings.deposit(100) # Fails: database still dead
rescue
Now what???
end
end

Nice try, but that doesn’t help if the second deposit() fails,
too.

The tool you need here is a transaction. Its purpose is to allow
several operations, potentially to several objects, to be either
fulfilled completely or rolled back.

Transactions (here in a made-up system) would allow our
previous example to look like this:
Download Transaction.rb

t = Transaction.new(savings, checking)
t.start

http://media.pragprog.com/titles/jcdeg/code/Transaction.rb
http://media.pragprog.com/titles/jcdeg/code/Transaction.rb
http://media.pragprog.com/titles/jcdeg/code/Transaction.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

38 ¢ Chapter 1. Program for Production

Inject failure
checking.expects(:deposit).with(100).raises
begin

savings.deduct(100)

checking.deposit(100)

t.commit
rescue

t.rollback
end

You'll usually find transactions in databases, because our
example scenario is exceedingly common in that field. You
may find variations on this theme anywhere systems require
an all-or-nothing interlock.

Failure Injection

So far, we’ve talked about how your code responds to likely
failures. For purposes of testing, how do you ensure your
code responds well when an essential resource dies, passes
on, is no more, ceases to be, pushes up daisies, and becomes
an ex-resource?

The solution is to inject failures using an automated test
harness. This is easiest with a mock object framework,
because you can tell the mock to return good data several
times and then return something bogus or throw an excep-
tion. Likewise, in the code under test, you assert that the
appropriate exception is raised.

Revisiting our list update problem, here’s some test code
that simulates a valid database response for key 1 and a
failure on the query for key 2:

Download ListUpdate2.rb
require 'rubygems'
require 'test/unit'
require 'mocha’

class ListUpdateTest < Test::Unit::TestCase
def test database failure

database = mock()

database.expects(:query).with(1l, :name).
returns('Anand"')

database.expects(:query).with(1l, :address).
returns('"')

database.expects(:query).with(2, :name).
raises

http://media.pragprog.com/titles/jcdeg/code/ListUpdate2.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Fail Gracefully ¢ 39

g = ShippingQueue.new(database)
g.add(1)

assert raise(RuntimeError) do
g.add(2)
end

List is still okay
assert _equal 'Anand', q.head.name
assert equal nil, q.head.next
end
end

@ Injection of RuntimeError exception.

@ Call will raise; the assert_raise is expecting it (and will trap
the exception).

® Verify that the list is still intact, as if g.add(2) were never
called.

Failure injection of this sort allows you to think
through—and verify —each potential scenario of doom. Test
in this manner just as often as you test the happy path.

Test Monkeys

You can think through scenarios all day long and build
tremendously robust code. Yet most fool-proof programs
can be foiled by a sufficiently talented fool. If you don’t have
such a fool handy, the next best thing is a test monkey.

In my first job working on handheld computers, we had a
program called Monkey that would inject random taps and
drags into the Ul layer, as if they had come from the touch-
screen. There was nothing fancier than that. We'd run
Monkey until the system crashed.

Monkey may not have been a talented fool, but a whole
bunch of monkeys tapping like mad, 24 hours a day, makes
up for lack of talent. Alas, no Shakespeare (but perhaps some
E. E. Cummings) and a whole bunch of crashes. The crashes
were things we couldn’t have envisioned—that was the
point.

In the same way, can you create a test harness that beats the
snot out of your program with random (but valid) data? Let
it run thousands or millions of cycles; you never know what

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

40 ¢ Chapter 1. Program for Production

might turn up. I used this technique on a recent project and
discovered that once in a blue moon, a vendor API function
would return “unknown” for the state of a virtual machine.
What do they mean, they don’t know the state? had no idea
the function could return that. My program crashed when
it happened. Lesson learned...again.

Actions

Revisit the previous code with the customer list. How would
you fix it? Here’s a shell to work with:

Download ListUpdate2.rb
require 'thread'

class Customer
attr _accessor :name, :address, :next

def initialize
@name = nil
@address = nil
@next = nil
end
end

class ShippingQueue
attr reader :head

def initialize(database)
@database = database

@head = nil
@mutex = Mutex.new
end

def add(customer id)
Fill in this part
end
end

Use the test code from Failure Injection, on page 38 to see

whether you got it right.

http://media.pragprog.com/titles/jcdeg/code/ListUpdate2.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Be Stylish ¢ 41

Tip6

Be Stylish

[White Belt] Writing code with good style
helps well before the professional world.

These two functions do exactly the same thing:

Download Fibonacci.c

uint64_t
fibonacci(unsigned int n)
{
if (n =0 || n==1) {
return n;
}
else {
uint64 t previous = 0;
uint64 t current = 1;
while (--n > 0) {
uint64 t sum = previous + current;
previous = current;
current = sum;
}
return current;
}

}

Download Fibonacci.c
unsigned long long fbncci(unsigned int quux) { if

(quux == 0 || quux == 1) { return quux; } else {
unsigned long long foo = 0; unsigned long long bar
= 1; while (--quux > 0) { unsigned long long baz =

foo + bar; foo = bar; bar = baz; } return bar; } }
Which would you rather maintain?

Maybe that example is a little extreme, but it illustrates a
simple point: your code isn't just read by a compiler; it’s
read by other programmers, too. Writing code with good
style is a factor in software quality because you simply can’t
maintain code that you can’t read.

http://media.pragprog.com/titles/jcdeg/code/Fibonacci.c
http://media.pragprog.com/titles/jcdeg/code/Fibonacci.c
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

42 * Chapter 1. Program for Production

Factors to Style

The broad term style refers to all the things that the compiler
doesn’t care about but humans do. Here are some examples:

¢ Naming of classes, methods, variables, files, and so on
* Arrangement of functions within a file and across files
¢ Comments

* Braces and parentheses (where optional)

* Choice of control structures (where equivalent)

¢ Capitalization

* Indentation and other whitespace

The definition of good style varies depending on the pro-
grammers you're working with, project or corporate style
guides, and conventions established by the programming
language. However, there are some common themes we’ll
look at here.

Why Naming Matters

Well-written code won’t read like a human language, but it
shouldn’t read like alien hieroglyphics, either. Good naming
of classes, methods, parameters, and variables will go a long
way toward making the code read naturally to another
programmer. This doesn’t mean names need to be overly
wordy; they just need to be appropriate to the problem
domain.

Consider the Fibonacci code opening this tip. The variables
previous, current, and sum are descriptive to their purpose. The
parameter n is short but appropriate to the problem domain;
the purpose of the function is to return the nth Fibonacci
number. Similarly, i and j are often used as index variables
in loops.

If you're struggling to name something, that’s a tip-off that
the purpose of your code may be questionable. Here is an
example:

im = InfoManager.new
puts im.get customer name and zip code(customer id)

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Be Stylish ¢ 43

What exactly is an InfoManager? What do you do with one?
How do you reason about one? Vague names like InfoManager
usually indicate vague purpose. The method name should
similarly tip you off to questionable code. Contrast that code
with the following:

customer = Customer.find(customer id)
puts customer.name
puts customer.address.zip code

Objects like customers and addresses are things you can
reason about, and natural-sounding method names—find(),
name(), and so forth—should come, well, naturally.

Commentary

Legend speaks of the ultimate code comment of woe. It is,
of course:

i=1i+1; /* add one to i */

Comments shouldn't tell the reader how the code works. The
code should tell them that. If the code is not clear, fix the
code to make it clear. Instead, focus comments on the
following;:

* What is the purpose of this code, if it's not intuitive? For
example, the IMAP protocol defines the user’s inbox as
the special string INBOX, so a comment in your code could
refer the reader to the appropriate section in the specifi-
cation: list("INBOX"); /* mailbox INBOX is special, see RFC3501
section 5.1 */.

¢ What parameters and return values are expected? Some
of this may be inferred from the names of the parame-
ters, but for public APIs, a summary comment before
the function can be useful. Also, many documentation
generators can scan source files and generate summary
docs for public APIs. JavaDoc"’ and Doxygen'' are
common tools for this task.

¢ Is there something you need to remember temporarily?
Programmers will use strings such as TODO and FIXME to
make a reminder to themselves during development.

10. http://java.sun.com/j2se/javadoc/
11. http://www.stack.nl/~dimitri/doxygen/

http://java.sun.com/j2se/javadoc/
http://www.stack.nl/~dimitri/doxygen/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

44 e+ Chapter 1. Program for Production

However, fix these strings before checking in: if you
really need to do something later, put it in whatever
system your team uses for tracking tasks. If it’s a bug,
fix it or enter a bug report. Source code is not your to-

do list or bug database.

¢ What is the copyright and license for the file? It’s normal
practice to put a header comment in each file specifying
the copyright ownership (typically your company) and
any license terms. If in doubt, there is no license; it’s “all
rights reserved.” Code contributed to open source

projects needs to explicitly state a license.

Used properly, comments complement the code in a natural
manner, giving future readers a clear picture of what’s going

on and why.

Conventions for Exits and Exceptions

This is part style, part correctness. Some style guides, typi-
cally for C code, specify that a function can have only one
exit point. Often the origin for this rule is to ensure that any
allocated resources are released. I've seen code similar to
the following in several operating system kernels:

Download ExitPoints.c
int
function()
{
int err = 0;
char *str =
if (str == NULL) {
err = ENOMEM;
goto ERROR;
}

/..

FILE *file = fopen("/tmp/foo",

if (file == NULL) {

err = EIO;

goto ERROR FREE STR;
}

/] ...

err = write stuff(file);

malloc(sizeof(char) * 5);

')

http://media.pragprog.com/titles/jcdeg/code/ExitPoints.c
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Be Stylish ¢ 45

if (err !'=0) {

err = EIO;

goto ERROR CLOSE FILE;
}

/] ...

ERROR CLOSE FILE:
fclose(file);
ERROR FREE STR:
free(str);
ERROR:
return err;

}

In the happy path, execution falls through the fclose() and
free() at the bottom, releasing resources in the opposite order
of their creation. The use of labels at the end allows error
cases to simply set the desired return value and jump to
where the correct resources are released. This is conceptually
similar to throwing an exception, except that you call the
“destructors” yourself. This technique can be less error prone
than checking every return statement by hand.

Of course, other C style guides insist that you never, ever,
on penalty of death, use a goto statement. If the company
style guide insists on both a single exit point and no goto,
prepare for some painful acrobatics to fulfill both rules.

Exceptions can use a similar strategy if you are calling APIs
(like a C library) that don’t provide a class with a constructor
and destructor. However, it's often better to make a
lightweight class that wraps the appropriate resource. Here’s
an example in C++:

Download OpenFile.cpp
class open file
{
public:
open_file(const char *name, const char *mode) {
_file = fopen(name, mode);

// ...raise exception here if NULL...

}

~open_file() {
fclose(file);
}

http://media.pragprog.com/titles/jcdeg/code/OpenFile.cpp
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

46 ¢ Chapter 1. Program for Production

// Conversion operator so instances can
// be used as parameters to fprintf, etc.
operator FILE*() {

return file;

}

private:
FILE* file;
Iy

In this example, an open_file instance can be created on the
stack, and the file will be closed on return from a function,
no matter if you leave with a return or an exception—C++
will call the destructors of any instances on the stack.

If in Doubt...

If your company has no coding style guide, fall back to the
following;:

* Match the style of any code you're editing. Even more
annoying than poor style is a file with a mishmash of
multiple styles.

* Follow any established language conventions. Some
languages, like Ruby, have very well-established
precedent for naming and indentation. When writing
in Ruby, do like the Rubyists do.

* For languages with inconsistent precedent, like C++,
follow the precedent of major libraries you're using. The
C++ Standard Template Library has a consistent naming
style, so it makes sense to match their style when using
STL.

For projects with multiple languages, it still makes sense to
follow conventions for each language —make Ruby look like
Ruby, and make C++look like C++. This goes beyond issues
like naming and indentation; follow the idiom of each lan-
guage as well. See Idiomatic Programming, on page 71 for
further discussion. Provide a bridge layer if needed.

Further Reading

Take a look at Robert C. Martin’s Clean Code [Mar08]; it’s an
authoritative work on coding style.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Be Stylish ¢ 47

Consult Wikipedia'? for links to a large assortment of style
guides.

Actions

Find a style guide (sometimes under the name coding stan-
dards) for a language you use, preferably one that explains
the rationale for each of its rules. Some rules will be arbitrary,
but most have the intention of reducing accidental bugs or
improving readability. Read it for the why behind the rules
more than the what.

12. http://en.wikipedia.org/wiki/Programming_style

http://en.wikipedia.org/wiki/Programming_style
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

48 ¢ Chapter 1. Program for Production

Tip7

Improve Legacy Code

[White Belt] Maintaining and improving
legacy code is a day-one reality.

Your job would (seemingly) be a lot easier if you could
simply take all the crappy old code floating around, trash
it, and start over. But that’s not going to happen, so what do
you do about it?

The typical Godzilla legacy code base looks something like
this:

¢ Functions spanning thousands of lines, with a near-infi-
nite number of possible code paths.

¢ (lasses or modules with dependencies on twenty (or
more) other classes.

e A comment somewhere reads, “Don’t touch this or
everything will break!”

* Another comment reads, “Ask Bob before changing this
code,” where Bob is a programmer who left the company
a decade ago.

e ...and much, much more.

Sometimes when you need to fix a bug in code like this, the
path of least resistance —just making the change without
cleaning anything up —is the most prudent path. However,
consider the maxim “If you find yourself in a hole, stop
digging.” If this is code you’ll need to maintain for some
time, it’s best to make things better as you go.

Finding Seams

The key problem with legacy cleanup is where to start. If
everything depends on everything else, how can you sepa-
rate a module to work on? Let’s say you're working on a

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Improve Legacy Code ¢ 49

When getting started in a legacy project, pick some very minor
thing, make a very minor change, and observe the impact. It
would be nice if this legacy code base had a comprehensive suite
of tests, but it won’t. Worse, it may have been designed in such
a way that testing it is virtually impossible.

Adding test cases is likely to be difficult. The code will be tangled
and tightly coupled, and teasing apart even a little bit of it to put
into test will only put the parts into test that are relatively trivial
anyway. The truly hard stuff will be very resistant to being made
testable.

This is the hardest part of the battle. You have to find a place to
plant your flag of progress and write a test that sanely and
clearly controls the behavior of that part of the system and defend
it valiantly. Once you have made one inroad, find a direction to
grow that and doggedly pursue it.

—Rich Rector, engineering manager, Spectra Logic

legacy Win32 application and you're porting it to POSIX.

The system APIs are a good place to start. Perhaps start with
file I/O, looking for stuff like the following:

HANDLE hFile;

if (CreateFile(hFile, GENERIC READ, 0, 0,
OPEN_EXISTING, 0, 0)) =
INVALID HANDLE VALUE) {
// ...error handling. ..

}

Rather than replacing 100 calls to the Win32 API with 100
POSIX calls, take the opportunity to extract file I/O to its
own module. (Or, use an existing cross-platform library like
Apache Portable Runtime.”) Implement this module for
both Win32 and POSIX, because this will allow you to verify
the program’s behavior on both platforms.

The practice of extracting bits of functionality is sometimes
called finding the seams since you're looking for natural places
you can pull the legacy code apart. Although there may not
be many seams at first, it gets better as you go. Each newly

13. http://apr.apache.org/

report erratum -« discuss

http://apr.apache.org/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

50 ¢ Chapter 1. Program for Production

built module is modular and well-tested, thereby giving you
a bigger safety net when it’s time to pull at the next level of
seams.

Transition to New Platforms and Languages

The computing world never stays still, and legacy systems
sometimes need to migrate just to stay functional. Perhaps
it’s just porting from some ancient versions of Windows to
the current version; in a more ambitious project, it could be
moving a system from PCs to the Web.

Where possible, contain migration risk by reusing parts of
the old program. Here’s an example:

¢ If the old program is written in a common language like
C, many other programming languages have an option
for interfacing with C code (Java Native Interface, Ruby
extensions, and so on).

¢ If the old program has a network or console interface,
you could build a shim layer that interacts with that by
screen-scraping. You may laugh, but this is very com-
mon for building new front ends to ancient mainframe
systems.

These may not be the best solutions for creating a maintain-
able system, but they could possibly buy you time. Consider
an alternative scenario: the company’s legacy system is on
a version of Windows with a thousand known security flaws,
everyone is panicked about getting the system migrated now,
and they’re willing to cut every corner possible. Taking an
intermediate step—and buying your team the time to do the
job right—suddenly doesn’t sound so bad.

Bugs vs. Misfeatures

A common task for newbie programmers is bug patrol.
Lucky you. When fixing bugs in legacy code, be careful to
mentally separate bugs (clearly wrong behavior) from things
that are simply strange. Fixing strangeness can bite you in
ways you may not anticipate.

Let’s say you're working on a web browser, and it crashes
if it tries to generate a certain HTTP header field. That sounds
like an obvious bug to fix. However, while fixing that bug,

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Improve Legacy Code * 51

you also notice that the browser creates an HTTP header
labeled “Referer,” which is misspelled. Do you fix it?

In this case, no. Lots of web servers depend on that
misspelling—in fact, it dates back to RFC 1945, from the
mid-90s. “Fixing” that header would break all kinds of stuff.

That’s not to say you shouldn’t try to fix strangeness. Just
be conscious that the code might be strange for a reason. Ask
your mentor or a senior programmer. At a minimum, docu-
ment your change in the check-in comments so others can
find it quickly, just in case that bug was a misfeature in
disguise.

Further Reading

Most programming books focus on writing new code. You
can’t blame the authors or the programmers buying the
books; green-field programming is certainly a lot more fun.
However, there are a couple books dedicated to “brown-
field” programming.

Michael Feathers’ Working Effectively with Legacy Code [Fea04]
is the definitive text on dealing with legacy code. If you're
working on a big legacy project, this is the book for you.

On a more tactical level, Martin Fowler’s Refactoring:
Improving the Design of Existing Code [FBBO99] is helpful for
anyone maintaining code over time.

Actions

Some open source projects have a long history, yet they
haven’t devolved into the spaghetti mess of traditional
legacy code. Consider the Apache HTTP Server," initially
released in 1995, or FreeBSD," initially released in 1993. As
of this writing, both are actively developed.

A hallmark of both projects is their clean code base. Assum-
ing some knowledge of C, you can pick files at random and
readily understand what the code is doing. So, along those
lines:

14. http://projects.apache.org/projects/http_server.html

15. http://www.freebsd.org/

http://projects.apache.org/projects/http_server.html
http://www.freebsd.org/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

52 e Chapter 1. Program for Production

¢ Download source code for one of these projects, or view
code using their online source browser.

* Observe their adherence to a single coding style and
how that makes it easy to skim through pages of source
code.

* Note how they’ve abstracted common patterns into
separate libraries, for example the Apache Portable
Runtime,'® which makes the core code much easier to
follow.

* Consider: these projects may be old, yet unlike legacy
projects, there’s little drive to replace them with some-
thing newer. How have they managed to keep up with
the times?

* Consider: do these projects use programming techniques
or standards that you could adopt in your company?

16. http://apr.apache.org/

http://apr.apache.org/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Review Code Early and Often * 53

Tip 8

Review Code Early and Often

[Brown Belt] Your code may not be peer
reviewed on day one, but expect it within the

first several months.

Many programmers loathe, detest, and double-plus unlike
code reviews, but there’s really no reason to hate them. In
fact, experienced programmers look forward to code reviews
—we’ll see why shortly.

Person and Perspective

The reason so many code reviews go bad is because the
programmer makes a connection between their code’s worth
and their self~worth. When reviewers point out problems in
the code, the programmer takes it as an insult and gets
defensive, and things go downbhill quickly.

Let’s be very clear about this: reviewers will find fault in
your code. Gonna happen. I guarantee it. That does not mean
you suck. There’s always room for improvement, or at least
different perspectives, on how your code should be written.
Treat the code review as an open discussion, not a trial where
you're the defendant.

“Faults” can range from bugs to issues of style. The bugs
are easy; you have to fix them. Everyone, novice and expert
alike, screws up now and then, so nobody in the room thinks
you're an idiot. Just take a note and move on.

The more contentious problems arise with issues of style.
Maybe you're using a loop with a counter and a senior pro-
grammer reviewing your work suggests using an iterator
instead. Is your code wrong and the suggestion right? No,
matters of style are not so absolute.

Since this is an open discussion, go ahead and discuss the
merits of the suggestion. Perhaps the reviewer will say,
“Using an iterator eliminates the possibility of an off-by-one

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

54 e Chapter 1. Program for Production

problem.” Don't get defensive and argue “But my loop

doesn’t have an off-by-one problem!” The reviewer knows
that already. The point he’s trying to make is, it’s good style

to eliminate that possibility with a different approach.

Once you understand the point the reviewer is making,
thank him for the suggestion, take a note, and move on.
Consider your course of action after you’ve had time to let
the tension of the code review dissipate. Disagreements on
style become contentious because they become personal; if
you consider the merits of the disagreement without the
other person right there, you may discover the reviewer had
a valid point.

Perspective is essential: it's not about you being right and
the reviewer being wrong. It’s about good code and better
code.

Formats

I'll describe the formats I've seen for code reviews and give
you some tips for each.

The Ad Hoc Review

Often you're puzzled by something, and you just need
someone to help you through it. Or perhaps you've found
what you think is a good solution, but you're not sure. Go
grab a more experienced programmer. Even the grumpy
ones usually put their grumpiness on hold; the flattery of
being asked for their opinion softens even the most surly.

Buddy System

Some projects will require a “buddy” to sign off on any code
that’s checked into the source repository. You've made a
change, tested it, and now you need someone to review it
before check-in. Do not just go find your favorite pal who
will green-light anything you write. Go find someone who
is an expert in the area you're changing. Failing that, find
someone who hasn’t buddied for you in a while.

Use the buddy system as a way to get more people familiar
with your work. Especially when you're the new person,
there’s no better way to build your credibility than with

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Review Code Early and Often * 55

code. It doesn’t have to be brilliant, wicked, fancy code—just
solid code. Make sure people see it on a regular basis.

The High-Level Review

This is often a sit-down meeting with multiple people and
a projector. You're often reviewing weeks of work but at a
high level. You explain the design, explain how it translates
to code, and then review key portions of code. This is an
opportunity for discussions on design and style. Be prepared
for criticism, and keep in mind the issues I discussed about
people and perspective.

My favorite question, as a reviewer, is “Let me see the tests.”
I require automated tests for any project I lead, so if the
response to this question is a blank stare, the review is over,
and we’ll schedule a new one for the next week. However,
the experienced programmer will start the review by going
over the tests. Nothing instills confidence in your code better
than showing the tests.

The Line-by-Line Review

The most tedious, soul-crushing code review is where every-
one walks through the code line by line. In practice, this kind
of review tends to be held for code that’s already a disaster.
(Better not be your code.) Given that you're in bug-hunting
mode, ask of each line of code: what are the assumptions of
this line? What ways could it fail? What happens in the
failure case?

How do you avoid the line-by-line review of your code?
Easy: get your code reviewed early and often. Use ad hoc
or the buddy system, or schedule your own group reviews.
I started by saying that experienced programmers look for-
ward to code reviews. That’s because they prefer to get
feedback early and avoid getting into the mess that requires
the line-by-line review.

The Audit

I've heard about this practice from others but not used it
myself. In an audit, a senior programmer takes your entire
project and drills down on specific topics. And when I say
drill down, I mean way down. Why did you choose such-
and-such design? What data did you have to prove your

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

56 ¢ Chapter 1. Program for Production

assumptions? How do you prove (or test) that your imple-
mentation is correct? How much wood could it chuck per
second if it could chuck wood? You get the idea.

Preparing for an audit is a big deal because you don’t know
what the auditor is going to ask. You have to be prepared
for anything. My only advice here is to ask yourself the same
kinds of questions as you program. If your program is
reading data from a file, ask yourself, what assumptions am
I making of that file’s format? How am I testing those
assumptions? How big can the file be? Can I prove that?

Of course, you can follow the rabbit hole down only so far.
At some point there’s a diminishing return on this line of
thinking; that point will vary depending on the type of
project and the phase of its life cycle. Err on the side of cau-
tion with production code. Err on the side of git-er-done
with trade show demos or proofs of concept.

Code Review Policies

Policies surrounding code reviews range from nonexistent
to institutional. If the development style of the team is on
the chaotic end of the spectrum, they probably don’t do code
reviews unless absolutely necessary. That'’s when you have
the line-by-line review that saps your will to live. If the team
uses a development practice like Extreme Programming,
code review is constant: XP’s pair programming, in effect,
reviews the code as it’s written.

Some industries require code review for certification purpos-
es. If you're writing software for avionics or nuclear power
plants, there’s a grueling review process before you can ship.
You know how most software comes with an end user license
agreement that basically says the software has no warranty
and may blow up at any moment? In avionics, there’s no
such easy way out—people’s lives really do depend on your
code.

For the rest of us, however, there’s no One True Way to do
reviews. The best policy reviews code when it'll do the most
good, and that varies based on the team and the project.
(Tip: the answer is never “never.”) An experienced manager
or technical lead should set policy as needed.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Review Code Early and Often ¢ 57

Regardless, you can always call a review. When you want
extra eyes on your code, ask without shame. Experienced
programmers do it all the time. When a junior programmer
doesn't ask for reviews, that’s a certain sign of trouble
brewing.

Actions

Take the initiative for your next code review: ask someone
to buddy the next set of changes you want to check into your
team’s code base. But before you grab a buddy, do a little
homework:

1. Generate the list of files you've changed. The source
control system should tell you this readily; it'’s usually
the status command.

2. Pull up diffs for each file, preferably in a graphical diff
tool that lets you see both the original copy and your
copy with the changes highlighted.

3. Now, don't skip this step, look through the changes yourself,
and make sure you can explain every one of them. I'm
not talking about an audit-style drill-down on your
motivation for every line of code, but look for obvious
goofs. There’s also a good chance you left some cruft in
there on accident; fix that and pull new diffs.

Now grab a buddy. If your team doesn’t do this by policy,
just ask another programmer— preferably someone senior
to you—something like, “Would you mind looking over my
changes before I check them in?”

With your buddy nearby and the diffs on-screen, explain
the objective for your changes, and then walk through the
diffs for each file. You can drive or the buddy can, whatever
works best. Assuming you program with decent style (and
why wouldn’t you?), the buddy should be able to scan your
changes quickly.

In addition to explaining the code, explain how you tested
it. Ideally you have an automated unit test suite; review this
code too. If not, explain any testing you did by hand or any
reasoning about the correctness of your code.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

58 ¢ Chapter 1. Program for Production

Chances are you'll catch a couple goofs before you even call
your buddy over. Plus, your buddy will ask a question or
two you hadn’t thought of. You may find that you want a
check-in buddy for every commit.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

CHAPTER 2

Get Your Tools in Order

Tools don’t make a programmer great any more than a fancy
guitar makes a guitarist great. Put me on the fanciest guitar
you can find, and I'll make it sound like a washtub full of
cats. But have you noticed that most great guitarists still
have swank gear?

Great programmers are passionate about their tools in the
same way. The right tools multiply the productivity of a great
programmer. If you have the skills and a small effort can
crank up your output to eleven, you'd be crazy not to take
advantage of it, right?

This chapter introduces tools common to all software work.
The time you invest in considering each tool discussed here
will repay itself many, many times over during your career.
You should also keep the same openness of mind in the years
ahead; new tools will be created that may serve you better,
or your career may take you into specialized realms where
a different tool is better suited to the work.

e Tip 9, Optimize Your Environment, on page 61 starts us

off by making the most of your day-to-day tools.

* Next we step back and consider the source code itself:
Tip 10, Speak Your Language Fluently, on page 69 focuses

on polishing your use of programming languages.

* One more step back: Tip 11, Know Your Platform, on page

77 looks at the whole software (even hardware) stack.

¢ Sometimes slacking is good. In Tip 12, Automate Your

Pain Away, on page 83, we make the computer help out.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

60 ¢ Chapter 2. Get Your Tools in Order

I talk a lot about multiplying your productivity by using tools
better. However, there’s a trap that programmers can fall into:
endlessly fiddling with their tools instead of getting work done.
I've seen elaborate setups with virtual desktops, integrated
development environments, remote file replication, and all kinds
of mess that never seems to work quite right—yet the program-
mer keeps fiddling with it when he would be much better off if
he’d run vi and just start programming.

With any plan to multiply your productivity, you need to draw
a line in the sand; at some point, if it's not delivering, scrap it
and move on. Keep in mind this balance: what’s the fancy, pro-
ductivity-multiplying solution? And what’s the simplest thing
that could possibly work? Give the fancy solution a fixed amount
of time, and if that time expires, revert to simple.

e Tip 13, Control Time (and Timelines), on page 87 intro-
duces the version control system to help manage code
across time and among programmers.

¢ Finally, sometimes it’s best if you don’t do the work
yourself. Tip 14, Use the Source, Luke, on page 92 talks
about integrating open source software with your com-
mercial projects.

report erratum - discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Optimize Your Environment ¢ 61

Tip9

Optimize Your Environment

[White Belt] You use your development
tools every day. Take a mental step back—the
choices you made years ago may not be the

best going forward.

Let’s start at the beginning: when it’s time to work, what
program do you start? Visual Studio, Emacs, a terminal
window? Before you ever get to writing code, you have the
environment you program in. Your environment includes
your computer, text editor, compiler, debugger, and so forth.

Chances are you're using only a fraction of the capabilities
offered by each of these tools. You can make big gains in
efficiency with just modest investment.

Text Editor

A co-worker of mine who's a machinist taunts programmers:
“You have the easiest job in the world; it’s just typing.” In-
deed, we do spend a lot of time typing. There are some other
details involved, of course—programmers have an odd
aversion to vowels and a special fondness for semi-
colons—but sometimes your bottleneck truly is getting
characters on-screen.

Given all the time you spend typing, if you could make the
text editor do some of the tedious work for you—maybe
save 10 percent of your effort—can you imagine how much
that saves over the course of a year?

If you watch a master programmer at work, the first thing
you'll notice is not the wizardry of their code; it'll be their
wizardry of manipulating their code. The master seemingly
types ahead of the computer, because even as they zap code
from one place to another in an instant, they’re thinking five
steps ahead and could, quite literally, close their eyes for a
few seconds and let their fingers catch up.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

62 * Chapter 2. Get Your Tools in Order

Integrated Development Environments

Products like Visual Studio and Eclipse put a bunch of tools
under a single user interface. The integrated development environ-
ment (IDE) has its advantages; primarily, it’s easy to pick up and
use. Don't let an IDE limit your exploration, however. Discrete
tools, like Vim for text editing, have staying power among
programmers because they’re tremendously powerful. The dis-
cussion in this tip applies regardless of using an IDE or separate
tools.

The Programmer’s Editor

This ability to blaze through code requires, first, a program-
mer’s editor. There are plenty of these to go around, from
primitive-looking vi to fancy-pants TextMate. No matter
what generation you choose, common properties of a good
editor include the following:

¢ Keyboard-heavy operation. The mouse is optional. Learn
the keyboard shortcuts for common operations because
it’s a lot faster than constantly reaching for the mouse.
This is why the old-school Unix editors are still popular;
they make very good use of the keyboard. (If you think
this is just for programmers, consider that any graphic
designer worth their salt knows the keyboard shortcuts
for Adobe Photoshop and Illustrator by heart. They
work with one hand on the keyboard and the other on
a graphic tablet.)

¢ Complex movement and selection tools. A programmer’s
editor is smart enough to move among not just lines and
columns but also logical blocks of code. With the cursor
on a block, you should be able to select the block and
move it with just a few keystrokes. And again, hands
off the mouse.

* Language-aware syntax highlighting. For some, this
helps to see the “bigger picture” of the code that’s on-
screen; others don’t care. If nothing else, it makes your
code look a lot fancier so that snooty machinists think
you're doing something more than mere typing.

* Language-aware indentation. There’s no reason to hit
the spacebar a bunch of times to indent each line; a good

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Optimize Your Environment * 63

editor will assist you with indentation rules that match
your programming language and preferred style.

¢ Text completion. Once you've typed a long variable or
function name, there’s no reason to type it again. A
programmer’s editor will allow you to type part of the
name and hit a key to autocomplete the rest. (Where the
part you typed is ambiguous, usually hitting the auto-
complete key repeatedly will cycle through possible
matches.)

The second key to blazing through code is simple: put in
your time. Fancy editors take a long time to learn, so set
aside a little time each week to learn a new trick. You can’t
do it all at once, because you need to get the tricks into your
muscle memory. This means it’s instinctive; your fingers do
the actions automatically without your conscious mind
involved —your conscious mind stays focused on the code.

Finally, watch some of your senior peers at their editors. Do
some pair programming with them driving, and as soon as
you think, “I didn’t even know you could do that!” take a
note and figure out how they did it.

Editing Over SSH

It's common in a programmer’s workday that you need to
access a remote machine through a simple SSH, serial, or
other text-only console. You need to learn the basics of one
editor that can run in text-only mode. It doesn’t really matter
how many tricks you can make your GUI editor do when
you're on another machine at a console prompt.

For this purpose, I recommend vi.' vi is on any Unix-like
machine you’ll walk up to. Others (notably Emacs) may or
may not be there. Therefore, if nothing else, spend an hour
learning enough vi to make simple changes. It'll pay off the
next time you have a server that’s half-dead and only
bootable to a single-user console.

1. Onmany modern systems vi is actually Vim —uvi improved —which
has additional features.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

64 * Chapter 2. Get Your Tools in Order

Language Tools

We'll discuss programming languages in Tip 10, Speak Your
Language Fluently, on page 69, but for the moment let’s
briefly consider the tools that are part of your environment.

These commonly include compilers, debuggers, or inter-
preters. In an IDE, there’s usually a button for build that in-
vokes the build system, usually compiling code. Whatever
it is, learn the keyboard shortcuts, and don’t go hunting for
the mouse every time you need to build.

Some languages don’t have compilers; they are interpreted,
and they often have a Read, Evaluate, Print Loop (REPL)
that lets you type expressions and print the result immedi-
ately. The REPL is an essential time-saver because you can
get quick answers to questions without needing to run your
whole program. For example, if you need to do some fancy
transformations on data, pop open the REPL and try them
with some sample data.

Some environments integrate the development tools in
novel ways. First, they may bring the REPL into your text
editor and allow you to take the current line, evaluate it us-
ing the language interpreter, and print the results right in
the same window. Talk about immediate gratification.

Second, some environments include language-aware refac-
toring features that let you (for example) rename a method
and also rename all calls to the method. Behind the scenes,
the environment is constantly compiling or interpreting your
program so it refactors with real smarts—not just a global
search and replace.

Debuggers

Many environments include a source-level debugger. This
allows you to stop program execution—by crash or by
choice—and inspect the state of the program, such as the
call stack or values of variables. In a language like C where
a crash is typified with the unhelpful message “segmentation
fault,” a debugger is essential to getting even basic informa-
tion about a crash. Fancier languages will usually dump the
call stack, which may be all you need to identify the problem.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Optimize Your Environment * 65

Debuggers tend to come with a price—they slow down
execution of the program. This can cause timing-related
problems to pop up or go away. These are affectionately
known as Heisenbugs, bugs that you can either experience
or try to debug, but not both at the same time.

Depending on your platform, the debugger may be helpful
in doing post-mortem analysis, too. With C programs on
Linux, for example, a crash can generate a core file, which
includes a dump of system memory. The debugger can load
the core file and tell you the state of threads and variables
at the time of the crash. (The term core refers to magnetic
core memory, an early form of RAM that hasn’t been in use
since the 1970s. The term is still used to refer to RAM in
general.)

If you're good at writing unit tests, chances are you won't
need the debugger much; you'll catch most bugs with your
tests. Bugs of the simple duh! variety are easy to test. How-
ever, some classes of bugs—especially those dealing with
timing of 1O or threads—are extremely hard to catch with
automated tests. For those, hope for a good core file or stack
trace.

Profiling

What about situations where the program is technically
correct but too slow? Knuth wrote, “Premature optimization
is the root of all evil.” To this end, write your code to be
correct first. If you have a performance problem, measure the
problem before trying to fix it.

This is what a profiler does: it tells you how many times
each function is called and how much time is spent in each
function. The results will often surprise you. For example,
I profiled a toy Sudoku solver of mine and discovered it
spending most of its time iterating over its list of cells. A
small bit of caching made it run 3,000 times faster.

The most baffling performance problems are when your
program is just sitting there and doing nothing most of the
time. This can occur when there’s contention for a resource;
the profiler will show your program spending a lot of time
in the function used to lock the resource. Or it may show

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

66 * Chapter 2. Get Your Tools in Order

that the problem isn’t in your program at all—perhaps it’s
a network resource that’s slow, and the profiler will show
your program waiting in the network receive function.

Actions

Fortunately, you won't have any problem trying develop-
ment environments—you use one every day. However,
focused practice can help you get more out of your environ-
ment.

Text Editor Tricks

As mentioned, you need to do this one over time so you can
build muscle memory. Commit to learning one new trick a
week.

* Learn to move between files with only the keyboard.
Bonus points if your environment is smart enough to
know some relations between files, such as hopping
between application code and its unit tests. Then learn
to navigate quickly within a file: by page, by function,
by block of code. Then within a line: beginning and end,
word by word.

* Learn to select the current line and current code block.
For editors that have multiple clipboards, learn to cut
and paste more than one thing at a time. (In Emacs this
is known as the kill ring.)

* You can usually spare some typing with autocomplete
features. These may be language-aware; for example,
your editor may know the standard library functions
and allow you to select one from a list as you start typ-
ing. Others will allow you to complete a word based on
other text in the file, which is just as handy. Learn these
shortcuts; they’re a tremendous time-saver.

* Most editors can auto-indent your code. Turn this on,
configure it for your style, and say goodbye to your Tab
key.

Compiler/Interpreter Tricks

¢ The first trick is turning on warnings, a feature offered
by most programming compilers or interpreters. These
warnings aren’t always bugs, but you should check each

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Optimize Your Environment * 67

one to be sure—then fix the code to eliminate the
warning. (In legacy code this isn’t always an option, but
try when you can. “Warning spew” just causes program-
mers to ignore warnings, and you could miss something
important.)

e For projects with a build/compile step, learn the key-
board shortcut for building your project.

* When there are compile warnings or errors, they come
with a file and line number. Learn the keyboard shortcut
to hop to the source code indicated by the current error.

¢ If yourlanguage has a REPL, learn the keyboard shortcut
to start it.

¢ If your environment has refactoring features, learn the
keyboard shortcuts for renaming a method, renaming
a class, and extracting a block of code into its own
method.

Debugger Tricks

¢ Learn the keyboard shortcut for starting your program
in the debugger.

* Get a stack trace from a program crash. This shows the
nesting of functions and answers the essential question,
“How did I get here?”

* Set a breakpoint in your source code, and then run the
debugger and get there. Breakpoints are essential when
investigating a problem before the program crashes.

¢ If your platform supports core files, learn how to turn
them on. Force a crash to generate a core file, and then
load that into the debugger.

Profiler Tricks

You don’t need the profiler often, but you should know how
to run it and interpret the results.

¢ Programmers love sorting algorithms. Implement a
couple of list sorts—don’t forget bogosort’—and run
them with 10, 100, and 1,000 (or more) elements under

2. http://en.wikipedia.org/wiki/Bogosort

http://en.wikipedia.org/wiki/Bogosort
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

68 * Chapter 2. Get Your Tools in Order

the profiler. As the number of elements increases, you
should be able to clearly see the difference in execution
time between the algorithms. (Bonus points if you can
determine the order of growth—Big-O—for each algo-
rithm based on your data for number of elements vs.
execution time.)

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Speak Your Language Fluently * 69

Tip 10

Speak Your Language Fluently

[White Belt] You get paid to tell the comput-
er what to do, so you'd best tell it as effectively

as possible.

As programmers, we are translators in a way: we take a
description of a program expressed in human languages
and translate it to a real program expressed in a program-
ming language. Translators must be fluent in both languages
to be effective.

Fluency in programming languages is somewhat ill-defined,
however. Many books purport to teach you, for example,
Java in 21 days. I've even seen one that claims to teach Java
in 24 hours. Perhaps you could learn the syntax of Java and
some of its library calls, but would you call yourself fluent
after 24 hours, or even 21 days? No way.

No Shortcuts

Alanguage —or any skill for that matter —takes about 10,000
hours of dedicated practice to reach true competency. Mal-
colm Gladwell’ and Peter Norvig® both make a compelling
case for the 10,000-hour rule. This works out to about ten
years for most people.

Within those ten years, the mastery curve looks like Figure
2, Language/platform learning curve, on page 70. There’s a

couple notable points. First, you won't get far past “Hello
World” without hitting a wall of frustration. That’s normal;
there’s a base of knowledge you need to assimilate—syntax,
libraries, and such—in order to be productive at all. Past
that, you hit a plateau of competency where you can putter
along and pay the bills but you're not great. This is the long
grind where you're cutting the grooves in your mind so that

3. Outliers: The Story of Success [Gla08]
4. http://norvig.com/21-days.html

http://norvig.com/21-days.html
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

70 ¢ Chapter 2. Get Your Tools in Order

'
=" Pure
==~ awesomeness

Productive, paying
thebills . ———""
I

fHudyadwo)

~S————T

) Arrgh, | can't
//get nothin' done!

Hours of Practice 10,000

Figure 2—Language/platform learning curve

you can truly think in thatlanguage. If you stick with it, your
competency starts taking off again as you reach toward true
mastery.

There’s value in sticking with one language, or a set of relat-
ed languages, through the 10,000-hour mark. With every
additional language, you increase your skill as a programmer
across the board, but you need to take at least one past 10,000
hours. Consider, by contrast, 1,000 hours of practice in 10
languages: how effective would you be at your job as a
beginner in 10 languages?

By the same accord, you need to keep challenging yourself
to make those 10,000 hours count. It’s easy to keep yourself
challenged at first—everything is a challenge early on—but
some people get stuck on that early plateau. Consider the
website programmer who builds a site with a shopping cart,
then another, then another...twenty web sites later, he’s
paying the bills OK, but is he actually learning anything?

Andy Hunt writes in Pragmatic Thinking and Learning [Hun08]
that practice requires a well-defined task that’s challenging
but doable, feedback on how you're doing, and the chance
to repeat the task (or a similar one) and do better. Many
places I've worked are good at all but the feedback part. As
in Tip 8, Review Code Early and Often, on page 53, seek out

feedback from senior programmers early on to ensure you
keep learning.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Speak Your Language Fluently ¢ 71

Some skills carry over from one language to another. You can
argue, for example, that C++ and Java take a similar approach
to object-oriented programming. Thus, time spent in either one
counts toward your 10,000-hour mark in OOP skill. However,
only C++ counts toward your “adventures with pointers” skill.

There are many subskills wrapped up in learning a programming
language; thus, the 10,000-hour rule is fuzzier in practice than
it sounds in principle.

Idiomatic Programming

Once you get past the initial learning curve of a language’s
syntax, you get into learning its style, or its idiom. There’s a
maxim that “a good C programmer can write C in any lan-
guage.” I've seen it happen—and in my younger years have
been guilty of it myself. What the maxim is getting at is, if
you only ever think in terms of C programming, you miss
the different ways of thinking that other languages can offer.

For example, consider the following code snippets that all
add the numbers in a list. First there’s C and the classic for
loop:

Download SumArray.c

int a[] = {1, 2, 3, 4, 5};
int sum = 0;

for (int i = 0; i < sizeof(a) / sizeof(int); i++) {
sum += alil;

}

You could write largely the same thing in Ruby, but that’s
not idiomatic Ruby. In Ruby, you use a block for this kind of
thing:

Download SumArray.rb

sum = 0

[1, 2, 3, 4, 5].each do |i]
sum += i
end

But even that’s not truly idiomatic Ruby. The better way is
to use Enumerable.inject, which abstracts the concept of com-
bining all elements of a collection:

report erratum -« discuss

http://media.pragprog.com/titles/jcdeg/code/SumArray.c
http://media.pragprog.com/titles/jcdeg/code/SumArray.rb
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

72 * Chapter 2. Get Your Tools in Order

Download SumArray.rb
sum = [1, 2, 3, 4, 5].inject(:+)

In the same way, C programmers think of chewing through
an array in terms of for loops, Ruby programmers think in
terms of blocks, and Lisp and Scheme programmers think
in terms of recursion. Here’s what the same code would look
like in Scheme (without the reduce shortcut):

Download SumArray.scheme
(define (sum-array a)
(if (null? a)
0
(+ (car a) (sum-array (cdr a)))))

(sum-array (list 1 2 3 4 5))

The idiom of a language moves you toward thinking about
your program in the way the language’s designers intended.
Inlanguages that are conceptually similar (say, C++and Java)
many idioms are shared where the language’s features
overlap. With totally different languages (like C and Scheme
shown earlier), you truly need to change your thinking.

There are a couple ways to learn idiomatic programming:
first, if there’s a great book on the language, by all means
start there; for C that could be The C Programming Language
[KR98], and for Scheme I'd read Structure and Interpretation
of Computer Programs [AS96]. Study the examples and study
why the author writes the code the way they do.

Second, find open source projects written in the language
and study them. This can be tricky, because the quality of
code in the wild varies wildly. It can range from stupid and
buggy to wizardly and incomprehensible. A good resource
for small, straightforward code samples is the Rosetta Code’
website.

Balance Your Productivity with the Machine’s

Programmers often measure their mettle by how fast they
can make a program run or how small they can make it. An
often repeated example is Andy Hertzfeld rewriting a puzzle
game in 1983 from a 6,000-byte Pascal program to a 600-byte

5. http://rosettacode.org

http://media.pragprog.com/titles/jcdeg/code/SumArray.rb
http://media.pragprog.com/titles/jcdeg/code/SumArray.scheme
http://rosettacode.org
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Speak Your Language Fluently ¢ 73

assembly language program.’ This is good fun—for a suffi-
ciently geeky definition of “fun” —and sometimes essential
to the job.

Where trouble starts is when programmers think they need
to write all programs fast and small. More often than not,
the computer’s efficiency is less important than your efficien-
cy. Computers are cheap. Programmers are expensive. It’s
therefore a better bet to program using a high-level language
and in a clear, straightforward manner.

This is part of why languages like Ruby and Python have
become tremendously popular: they allow the programmer
to write programs quickly. As long as the program runs fast
enough, who cares if it takes longer to run than an assembly
language program?

Even Andy Hertzfeld’s story follows this model: he first
wrote his puzzle game in Pascal, the highest-level language
available on the Macintosh at that time. He wrote the assem-
bly version only when he needed it smaller.

There are some cases, however, where the computer should
trump the programmer:

* Any program that is too slow and can't be fixed by
adding more machines. Some problems can be fixed by
running more machines in parallel. (Most web applica-
tions fall into this category.) But other problems are in-
herently sequential. In the latter case, when the sequen-
tial part is too slow, you have to rewrite it to go faster.

* Data sets that can grow to unbounded sizes. When
you're developing a program, you usually test with
small data sets so everything fits in memory (possibly
even cache) and runs great. If the real-world use of the
program could include huge data sets, your design must
account for that.

* Anything in the operating system. System calls get called
constantly, and interrupts fire constantly, and it’s the
operating system’s job to service them quickly and
return control to applications.

6. http://www.folklore.org/StoryView.py?story=Puzzle.txt

http://www.folklore.org/StoryView.py?story=Puzzle.txt
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

74 ¢ Chapter 2. Get Your Tools in Order

Finally, consider the case where some of your program is
bound by the computer’s efficiency but most of it is not. Who
says all of your program must be written in the same lan-
guage? The use of hybrid designs is becoming popular.
Games, for example, have extreme demands on the machine
for their graphics, physics, and audio—this stuff is usually
written in C. Games also have a lot of “world logic” like how
a switch responds to the player pressing it. There’s no reason
to write the latter in C. Many games have started using
languages like Lua for their world logic because it’s more
efficient for the game designers to work with.”

Competitive Advantage

You've probably noticed a trend: despite the desire to achieve
competency in one programming language, you'll need to
learn more than one in your career. In part, this is because
the world keeps moving: the generally accepted languages
will change, and you, to be effective, will need to follow. In
part this is because you should diversify; a programmer who
can work in several languages will find more work than a
one-trick pony.

Mastery of at least one low-level language and one high-
level language will give you tremendous professional
flexibility. In some situations you're machine-bound, and
you’ll need the machine efficiency of a language like C to
make the program efficient enough. In other situations you're
programmer-bound, and the increased efficiency of a lan-
guage like Ruby will help you get the program written
quickly.

This all boils down to using the right tool for the job. With
several tools at your disposal, you have an advantage over
others who stubbornly try to bludgeon every problem into
submission using whatever language they learned first. This
requires you to learn more—usually on your own time —but
it pays off by making you a more effective programmer.

7. http://lua-users.org/wiki/LuaUses

http://lua-users.org/wiki/LuaUses
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Speak Your Language Fluently ¢ 75

Actions

Well, the 10,000-hour part is going to take a while, isn't it?
For now, let’s focus on your options: take the programming
language you know now and one or two that you're curious
about. For best effect, pick languages with very different
idioms.

Beyond “Hello World”

First, let’s not write a program that prints “Hello World” to
the console. (Well, OK, I bet you already did. “Hello” back.)
Here’s your first program: read a file that has an integer on
each line. Print the minimum, maximum, mean, and median
of the data set. Why? This exercises several basic principles
common to many computing tasks: working with IO, iterat-
ing over a collection, and doing a little math.

The key goal is to not just make some code work but to write
the program in the idiom of the language. As a secondary
goal, try this in a test-driven style. For example, you'll need
a function that returns the median of a collection. Write some
sample tests for that before writing the actual function. Test-
driven development is discussed further in Tip 2, Insist on
Correctness, on page 11.

Sudoku

Ben Laurie comments, Sudoku is “a denial-of-service attack

on the human intellect.”®

That may be so, but it’s also a fun
programming puzzle. You need to reason about data, con-

straints, and search heuristics.

Your task is to write a program that can read a Sudoku grid
from a file—with some cells filled in and others blank —and
then solve the puzzle and print the result. You can find
puzzles online; just search for easy sudoku and so forth. Start
with an easy puzzle; the generally accepted standard of easy
is that it can be solved without guessing. This should test
your solver’s ability to apply the rules of the game.

When you have the rules established, move onto hard puz-
zles. You'll need to search (guess) to solve the puzzle, and

8. http://norvig.com/sudoku.html—but don’t go looking here, try

to solve it yourself first!

http://norvig.com/sudoku.html
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

76 * Chapter 2. Get Your Tools in Order

your choice of search heuristic will have a dramatic impact
on the performance of the solver. This is a good opportunity
to apply the scientific method: make a hypothesis about a
heuristic, and then measure its performance vs. another.

The point of this exercise is partly to give your brain a
workout but to also give you a program sufficiently large
that idiomatic use of the language starts to pay off —if you're
on the right track, it should feel like you're using the language
right; if you're not, it should feel like you're fighting the
language. In the latter case, try to find an expert (in-person
or online) to help.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your Platform ¢ 77

Tip 11

Know Your Platform

[Brown Belt] For your first job, you'll focus
on one platform, but over time you'll need to

pick up more.

When most programmers think about development tools,
they immediately think about the programming language.
That’s only half the picture: the language is part of a larger
computing platform. Consider the olden days when comput-
ers were programmed only in assembly language; each type
of computer had its own instruction set, so depending on
your application, some computers could offer better instruc-
tions than others.

The same is true today. Consider Java: it’s not just a program-
ming language; it’s a language and a set of standard libraries
and a virtual machine to deploy your application on, as illus-
trated in Figure 3, Java software stack, on page 79. These layers

underneath your program are called the platform—it’s like
the foundation of a house. Java is a platform as much as it
is a language. (In fact, there are other languages like Scala
and Clojure that run on the Java platform, too.)

The platform stack goes all the way down to the hardware
and possibly further to the network and storage infrastruc-
ture as well. How far you need to think depends on your
application. Google, for example, needs to think all the way
down to how it distributes data centers across the world —as
of this writing, they build Lego-style data centers in shipping
containers that they can drop anywhere they can get enough
power and network bandwidth.’

Chances are you don’t need to fill shipping containers with
thousands of computers. But what if you need to, say, store
some data and query it later? Common problem. You could

9. USPatent 7,738,251

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

78 ¢ Chapter 2. Get Your Tools in Order

solve it with in-memory data structures, flat files on disk,
an embedded database, an external network database...you
get the idea. You need another component in your platform,
and your decision affects your product as dramatically as
your choice of programming language.

Platform Investment

Platforms require investment in the same way as program-
ming languages, both from the individual and from the
organization. At the individual level, it takes time to learn
each part of the stack and how they all interact. At the orga-
nizational level, there’s fiscal investment, deployed software
(either in the field or in the data center), and a whole bunch
of programmers who are familiar with the platform. Because
of this, it pays to take an economic view of platforms. The
usual investing advice is to do your research and diversify.

On the research front, you can't base a decision solely on
reading a few web pages; you can always find ten pages that
say component x rocks and another ten that say it sucks.
You need to do some firsthand investigation to see how well
each component works for you in your situation.

Then there’s diversification: research multiple options, and
keep your design as modular as possible. Down the road
you may need to switch out your database, change lan-
guages, or otherwise rip up and rework. The Internet is a
good example of modular design and diversification at work.
The standards for protocols like TCP, IP, and HTTP were
written so any computer could implement them; therefore,
every computer implemented them. This allowed Internet
protocols to flourish, and many vendor-unique protocols
died off.

Here are a few practical ways to choose platforms. First,
come up with three possible options and set aside a fixed
amount of time to try each. Setting aside the time is essential,
because it removes the pressure to solve the problem perfect-
ly from the start—you know that you’ll throw away two
options. At the end you’ve prototyped your solution several
different ways, you know a lot more about the problem
domain, and you can make an informed decision about the
best way to proceed.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your Platform ¢ 79

Source Java .
Code > Compiler —> Application

Java Libraries

Java Virtual Machine

-~

Figure 3—Java software stack

Second, make interfaces between components as generic as
possible. For example, when exchanging data between
components, consider using a generic format like XML or
JSON instead of a custom binary format. The generic format
is much easier to parse using a variety of languages and al-
lows for easier change down the road.

Actions

Let’s consider a handful of platforms and how to get started
in each. You'll notice big differences in the workflow and
programming style they demand. If possible, find a mentor
who knows the platforms and who can help you program
idiomatically.

Warm-up: Console Interface

First, get the program logic into shape on the simplest possi-
ble platform, a console application. This requires only one
program file and no GUI beyond printf(). You can pick any
language you like, but I'll discuss C.

The objective is the classic Fahrenheit/Celsius converter. Feel
free to do something fancier. Here’s a quick specification:

* The user should be able to specify the conversion as
command-line arguments, -c (degrees Celsius) or -f (degrees
Fahrenheit).

* The user should be able to specify the conversion as
command-line arguments, -c (degrees Celsius) or -f (degrees
Fahrenheit).

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

80 ¢ Chapter 2. Get Your Tools in Order

¢ If no arguments are supplied, the program should
prompt the user for degrees and unit.

¢ If the user provides arguments that cannot be converted
meaningfully (non-numeric, out of range), the program
needs to detect that and print an appropriate message.

This is mostly a warm-up exercise so you don’t get bogged
down in the platform itself, but even a simple console appli-
cation is built on a platform. In this case, it’s your C compiler
and the C standard library. On Unix-like platforms, you can
display your application’s dependencies with this:

1dd [program]

You should see something like libc. This is a shared library
that’s used to provide the C standard library for all programs
running on your machine.

Desktop GUI

From here things can diverge quickly depending on your
preferred operating system. Windows, Mac OS, Linux, and
others evolved with separate GUI programming interfaces,
so creating a native application means learning a separate
toolkit for each. (In the case of Mac OS, it requires learning
a new programming language, too: Objective-C.)

There are also ways to create cross-platform GUI programs
using a framework like Qt'"’ or a platform like Java.

Here’s a specification for your GUI temperature converter:

* The program should display a window with a text field,
a drop-down box for conversion, and a second text field
for the conversion result.

* The first text field should be editable but allow only
digits, decimal points, and plus/minus signs.

¢ The second text field should not be editable; it should
be used only for the program’s display.

* If the temperature entered is out of range, an error dialog
should tell the user why and then clamp the entered
value to the closest valid temperature.

10. httE://gt.nokia.com

http://qt.nokia.com
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your Platform ¢ 81

* (Bonus points) The conversion result field should update
as the user types each character.

* In your code, separate the conversion code from the
code that’s handling the GUI widgets and events.

The first thing to note is there’s no main() function where
you're waiting for the user to type something. Instead, you
get events from on-screen widgets when the user clicks or
types something. This style of programming will probably
feel strange because you're not driving the program flow;
the user is.

The second thing to note is the two-step processes where
you build the graphical part of the GUI first and then add
the code that makes it go. In geek terms, this is separating
the view from the model. (The model is all your “business
logic,” which in this case isn't much.)

Model/view separation'' becomes very important in large
projects, because the model is often used from multiple
places. Imagine a commerce application where orders are
coming in from point-of-sale terminals, shipping is pulling
orders out with their own application, and accounting is
pulling reports using a third application. There are three
views, but only one model is needed.

Web

The beauty of web applications is that you have a standard
presentation layer (HTML, CSS, JavaScript) and a standard
means of communicating with a server (HTTP). The ugly
side is that these technologies were originally created for
pages and not applications, so building your fancy web app
tends to involve a lot of late nights and cold pizza.

Web applications are here to stay, of course. It’s easy to get
a basic form on a page and then create a back-end server
that can both vend the page and accept a form submission.
That’s what we’ll do.

The specification is very similar to the previous desktop GUI
case. However, I will add the following;:

11. http://en.wikipedia.org/wiki/Model-view-controller

http://en.wikipedia.org/wiki/Model-view-controller
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

82 ¢ Chapter 2. Get Your Tools in Order

¢ The form should live on one page only, both for its initial
state and after the conversion.

¢ The temperature conversion must be done on the server,
not using JavaScript in the web browser.

* Do this first using a form and a submit button.

¢ (Bonus points) Instead of submitting the form, respond
to the user typing in the text field and update the con-
version using JavaScript and XMLHttpRequest (aka XHR
or Ajax). Again, the conversion should come from the
server.

The first wall people run into with web applications is that
all requests are independent. That means you cannot assume
that subsequent requests to your web server are coming
from the same user. You cannot assume the user will go to
a page you redirected them to. They can type anything in
their browser’s URL bar they please, and they can simply
leave your site, too.

The next problem you hit is usually complexity. Vending
one page is easy; vending a hundred turns into a real mess
if you don’t structure your application well. That’'s when
you're best off with a framework like Ruby on Rails. Such
frameworks have a large up-front learning curve. What you
getin return is a modular system that can grow in complex-
ity and scale to large traffic loads.

In all these scenarios, we’ve only scratched the surface of
what each platform can do; you could collect a whole shelf
of books on each one if you decide to go further. I hope
you've gotten a taste of each type of platform and where to
go to learn more.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Automate Your Pain Away ® 83

Tip 12

Automate Your Pain Away

[White Belt] You can start automating tasks
% for yourself no matter what your role or how
your project is structured. (Plus, it's a given
that newbies will be given some mundane

tasks—exactly the kind of tasks that beg for
automation.)

In any industry project, the program build is automated, so
you just need to type make or click a button. The tools used
for compiling source code, however, are generic automation
tools; they can be used for a lot more than running compilers.
Like many of the topics we've discussed, automation is a
productivity multiplier—use it well, and the time invested
up front multiplies your effort later.

There’s a famous Despair.com de-motivational poster that
says, “If a pretty poster and a cute saying are all it takes to
motivate you, you probably have a very easy job. The kind
robots will be doing soon."” If a robot can do the job you're
doing, then either you should make the robot or someone
else will. Your value as a programmer is in your thinking,
not your typing.

Automatic and Repeatable

The goal of automation is twofold: to eliminate tedium and
to give you repeatable results. On the tedium side, there are
alot of steps in a programmer’s workflow that look like this:

1. When someone changes a file in the version control
system (see Tip 13, Control Time (and Timelines), on page

87), then the installer package needs to be rebuilt.

2. When the package changes, it should be deployed to
the test servers.

12. http://despair.com/motivation.html

http://despair.com/motivation.html
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

84 * Chapter 2. Get Your Tools in Order

3. When atest server gets a new package, it should kill the
running application process and start the one in the new
package.

4. ..and so on.

How many times do you need to run these commands by
hand before you want to pull your hair out? As it turns out,
computers are great at these kinds of tasks. You can use
hooks in your source control system to trigger the package
build. Deploying the package should be as simple as copying
it to a network repository and telling the repository to update
itself. Restarting the application on each server could be a
step in the package’s post-install process.

Any time one action naturally follows another, you have an
opportunity for automation. Use your thinking to spare
yourself the typing.

Automation Reduces Error

Automation isn't just about eliminating tedium from your
day; it’s also about reducing error. There’s a rule in program-
ming that you should eliminate duplicate code wherever
possible, because inevitably someone will change one part
of the code and forget to change the other. The same is true
of processes. Let’s say you must increment a version number
each time you build a package; inevitably someone will build
the package but forget to increment the version number.
Now you have two packages floating around that are differ-
ent yet have identical versions.

Obviously, the way to eliminate this error is to make the
process automatic. The computer, when told it must incre-
ment the version each time it does a package build, will
repeatedly demonstrate its ability to follow orders.

Actions

The best automation tool depends entirely on the job you're
trying to automate. However, there are a few common tasks
that every programmer gets saddled with.

Build
(examples: Ant, Maven, Make, Rake) These are dependen-
cy-driven tools that are mostly used for compiling code.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Automate Your Pain Away ® 85

Generally, C programs use make, and Java programs use
ant or Maven, but there are no strict rules—the tools are
general purpose.

Starting with the tool your company uses, create a sim-
ple project from scratch and learn to automate some
tasks. For example, with C or Java, make a dependency
rule that automatically compiles files when they change.
Make a test target (make test or similar) that depends on
all files being compiled and then runs unit tests. Finally,
make a documentation target that runs JavaDoc—or
whatever is appropriate—to create doc files.

You'll notice that targets can have dependencies—for
example, unit tests require that all source files are com-
piled—and the tool will recurse as necessary to fulfill
them in the correct order.

Packaging
(examples: RPM, APT, InstallShield) Each operating sys-
tem has its favored packaging system, and it’s usually
an uphill battle to do your own thing, so don’t. Packag-
ing is mundane, but it’s a tremendous time-saver when
you need to deploy code. Further, its automatic depen-
dency resolution can save you from a whole host of
€erTorS.

Pick a packaging system and make a simple “Hello
World” application. Then package your application for
distribution. If you're on Linux, for example, make the
package install your app to /usr/bin/hello. Now for some
fun (for a very nerdy definition of “fun”). First, install
and uninstall your package. The application should get
removed when the package is uninstalled.

Install your package again. Next, increment the version
of your package and move the install target, for example,
to /usr/local/bin/hello. Now upgrade to the new version of
the package. Your old application should go away, and
the new one should be in its correct spot.

Finally, use your build automation tool to create the
package for you. Now you can use one command to go
from source code to a deployable package. Cool, huh?

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

86 * Chapter 2. Get Your Tools in Order

System Administration
(examples: too many to list) Buy a book on system admin-
istration; you're guaranteed to find a lot of things your
operating system can do to relieve burden. On Unix,
cron can run tasks at regular intervals, ssh can run com-
mands on remote systems, find can find new or stale files
for you, and so forth. Learn ten new commands over
the next two weeks.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Control Time (and Timelines) ¢ 87

Tip 13

Control Time (and Timelines)

[White Belt] Good version control is central
to a good daily workflow. It's an essential orga-
nizational tool, and even better, it lets you

answer the age-old question, “Where the heck
did this code come from?”

The purpose of a version control system is simple: it tracks
some content (generally files) over time, allowing you to
commit new versions of content and roll back to previous
versions. A competent system will also track multiple time-
lines and assist with merging content between them. With
a basic understanding of how this works, it’s a fremendously
useful tool—one that you'll wonder how you ever lived
without.

Moving Through Time

There are a couple reasons you need to move back in time
with your source code—and any content, for that matter.
First, you may screw up and need to revert to a previous
version. It’s a fact of life; sometimes you'll work yourself
into a mess, and the easiest path is simply to throw away
your last day of work and start over. A version control sys-
tem allows you to do this easily.

Second, when you release code, you need the ability go back
and look at what you released. It’s entirely normal for
problems to crop up in the field that you need to fix but
without changing anything else. Thus, you need to stash
your current work, check out the released code, and make
a fix on that copy. Then you’ll want to merge that fix to your
in-progress code.

To move through time, you need to tell the version control
system when to take a snapshot of your work. This is known
as a commit. Usually you'll have a batch of changes, and
they’ll all get committed together as one version. If needed,

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

88 ¢ Chapter 2. Get Your Tools in Order

you can revert your changes or simply pull another copy of
the source code at any prior version.

When a version represents a milestone you want to refer to
later, for example a product release, you assign a fag to that
version. This is simply a convenient name that you can refer
to later. When you check out the released version of code,
you can specify the tag name instead of the version number.

Coordinating with Others

Programming is a group effort, and the version control sys-
tem is your hub for coordinating efforts on a shared code
base. When others have committed code, you'll update your
version to incorporate their changes. This is called a merge
operation, where two variants of a file are used to create a
new version incorporating all changes. Most of the time the
version control system will merge your co-workers’ changes
with yours automatically.

Sometimes two programmers will be working on the same
code, and their work will overlap. One lucky programmer
will need to manually merge the overlapping changes. The
version control system will mark overlapping changes in
the file, one section for the upstream changes and another
for your changes, and you edit the file to make it right.

Multiple Timelines

The final basic practice of version control is managing mul-
tiple timelines. The classic case goes like this: you release
version 1.0 of your product and start working on features
for 2.0. Customers report bugs, and you need to create a
bug-fix release to 1.0 without introducing the 2.0 changes.
Therefore, you create two parallel timelines in the version
control system: one for 1.0 bug fixes and another for 2.0
features.

Traditionally, the feature development timeline is called the
trunk, and the others are called branches. This is because the
trunk always continues on, whereas branches tend to have
alimited life span. If you plotted the relationships over time,
they’d have a treelike appearance with the trunk running
through the center.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Control Time (and Timelines) ¢ 89

There are two traditional uses for branches: first, as we
mentioned, is to control changes that go into a released ver-
sion of code. This is, unsurprisingly, called a release branch.
The second use is for more speculative feature development
that is considered too risky to do on the trunk. These feature
branches are developed to a point of good-enough stability
and then merged back to the trunk.

Centralized vs. Distributed

Version control systems have split into two competing
philosophies about who's in charge of your content. Tradi-
tionally, systems have been client/server, and the server has
the definitive copy of all content and its history. Clients can
check out copies and commit new versions, but it’s the
server that’s in charge of these transactions. Popular version
control systems following this centralized model include
Subversion and Perforce.

Another approach asserts that no one copy of the content is
the master; instead, all clients contain the full version history
so nobody (or everybody) is a definitive source. Popular sys-
tems following this decentralized model include Git and
Mercurial.

I couldn’t possibly address all the pros and cons of each
approach here—that would require its own book —but I will
say that the centralized approach is what you most often see
in industry right now, and I expect this will be true for some
time. Many programmers simply aren’t comfortable with
branching and merging on a frequent basis. (Distributed
version control implies, to a degree, that every programmer
has their own private branch.) However, these systems have
much to offer for the team that learns to use them well.

Whichever type of system your company uses, master that
first, including branch, merge, and tag operations. Then try
your hand with a system from the other camp. As you learn,
pay special attention to the motivation that drove the design
of each type of system; they're not trying to solve exactly
the same problem.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

90 ¢ Chapter 2. Get Your Tools in Order

1 2 3 4
repository
commlt Y/Pd‘"e
your copy |:|
thetkout
coworker Oo—go %%

Figure 4—Version control: day-to-day collaboration

Actions

Learning version control isn’t hard, but you do need to try
concepts on a simple project before tackling big problems
in the wild. Start with the system your company already
uses. If you're on your own, pick any free VCS with good
documentation — Pragmatic Version Control Using Subversion
[Mas06] or Pragmatic Version Control Using Git [Swi08] would
be a great starting point!

Fire up a terminal window and work through the following
exercises with a simple code base:

Create Repository
First, create a repository and add some files to it. This
will be your master repository, and you're working on
the trunk or default branch. Your first commit looks like
the left side of Figure 4, Version control: day-to-day collab-

oration, on page 90.

Work on Trunk
Make some changes and commit them. Now do a couple
more commits. Get a log to show your history; it should
include change-set (or revision) numbers and summaries
of your changes. Update to a prior version—exercise
your control over time.

Interact with a Co-worker
Either borrow a co-worker or play along using two
working trees. Make changes from both places and
commit; if using a distributed system, pull changes from
each other. Now we're at the right side of Figure 4, Ver-
sion control: day-to-day collaboration, on page 90.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Control Time (and Timelines) ¢ 91

tag: 1.0
trunk DO% DO?! g‘a zDO
branch\, merg¢7\
branch: 1.x g% gOA
tag: 1.1

Figure 5—Version control: branch and merge

Change different files and watch the VCS automatically
merge. See what happens when both you and your co-
worker make a change to the same parts of a file and
commit—you'll get a merge conflict you need to resolve.

Create a Branch
Let’s say it’s time to create a release to customers. Create
a version 1.0 tag and a release branch, as in Figure 5,
Version control: branch and merge, on page 91. You can

choose to have two working copies of your project on
disk, one for each branch, or just one copy that you can
flip between the branch and the trunk.

Merge Branch to Trunk
Now change a file on the branch. Say this is release 1.1
and tag it. Merge the change back to the trunk using the
version control system —you shouldn’t have to do any
copying and pasting.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

92 e Chapter 2. Get Your Tools in Order

Tip 14

Use the Source, Luke

[Brown Belt] This could be white belt for

% you in the right company; in others, you need
to build credibility before bringing in outside
software.

Open source software is an essential building block of
modern systems. You probably learned to program using
open source development tools. Your cell phone is likely
built using an open source kernel. Start-ups are building
their businesses around open source, and even the old-guard
tech companies like IBM are investing heavily in open source
projects.

Other companies won’t touch it. Open source presents a
minefield of legal issues, most of which have never been
tested in court.

Your company is probably somewhere in the middle, want-
ing to use a mix of open source and proprietary software,
each to their best advantage. This gives you, as an individual
programmer, several ways to build credibility and value
within the company:

* With an awareness of the legal issues surrounding open
source, you can give management all the license infor-
mation they need to make educated decisions and
reduce their legal risk.

* At the same time, you build their confidence that you
won't get the company into legal trouble, nor give away
company proprietary code on accident.

* By contributing improvements to open source projects,
you reduce the company’s ongoing code maintenance
burden and build cred in the community.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Use the Source, Luke ¢ 93

¢ Many open source projects have quality standards that
rival the best proprietary code. You'll learn a lot by
playing at that level.

The focus of this tip is twofold. First you need grounding in
the legal side so you don't get into trouble. Then we’ll discuss
workflow for a project that integrates open source software
with a proprietary product.

Proprietary vs. Open

When a company chooses to keep its source code to itself —or
said another way, they restrict others from using it—that’s
proprietary code. The company keeps the source code a secret,
and users of the software get only compiled code.

Assuming you have a traditional employment contract, all
code you write for the company is owned wholly by the
company. Treat it as proprietary unless you're specifically
told otherwise. Some companies have employment contracts
that cover all code you write for the duration of your employ-
ment, even stuff done on your own time and with your own
computer.

Open source code, on the other hand, is obviously posted
in the open—but there are some less-obvious qualifications.
Only public domain code is treated as having no owner; in
other words, the person who wrote it formally gave up any
rights of ownership.

Most open source code has a copyright, which is held by an
individual or a company. Code should have a comment
block at the top of each file that states the copyright holder.
It'll look something like this (from FreeBSD):

/*
* Copyright (c) 1989, 1993, 1994
* The Regents of the University of California.
* A1l rights reserved.
*
* Redistribution and use in source and binary forms,
* with or without modification, are permitted provided
* that the following conditions are met:
* [...more here...]

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

94 e Chapter 2. Get Your Tools in Order

That means the copyright of the file is owned by UC, which
has the exclusive right to determine the rules for how the
file can be copied (or otherwise used). Immediately following
are the rules they’ve chosen, known as the file’s license.

(Note: you'll also hear the term copyleft, but that’s not actu-
ally a form of copyright—it’s a philosophy of licensing.)

Licenses

Specific licenses change over time, and interpretations of
licenses change as well. Many have not been tested in court.
Therefore, I can’t give specific advice—you’ll need to consult
your management, and possibly legal department, to deter-
mine which licenses are acceptable to your company.

For any license, you'll want to answer questions such as
these:

¢ If you change any files covered by the license, does the
license require that you openly publish your changes?

¢ If you add your own features in new files, are there any
requirements that you make those changes public?

¢ If the licensed code contains any patented technologies,
do you get a license to those patents?

* Does the license require you to put a copyright notice
in your product or its documentation?

Fortunately, there are common licenses that are used by
many open source projects. If you're looking to use a dozen
open source components in your project, you may need to
research only three or four licenses.

The GNU Public License (GPL) is especially problematic in
commercial projects: it requires that all code linked to GPL
code also be GPL. A company may not be willing to open
source its own proprietary code under the GPL. You need
to be very careful about how you use GPL code; many com-
panies avoid the issue with a “no GPL code anywhere”

policy.

13. http://www.gnu.org/copyleft/

http://www.gnu.org/copyleft/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Use the Source, Luke * 95

If you're working on proprietary code that can’t have GNU
Public License (GPL) code touching it but there’s GPL code that
does what you need to do, you may be tempted to copy a few
snippets across.

Don't.

If there’s any contest about your product duplicating GPL code,
an audit that diffs your code base against the contested GPL
code would quickly reveal your action—putting you and your
company in hot water.

U
Note, however, that the Lesser GNU Public License (LGPL)
is similar but lessens the restrictions on other code that links
to LGPL code. For example, the GNU C Library (glibc) is
LGPL, so you can write a program that links to glibc, and it

doesn’t impose any licensing requirements on your program.

Licenses such as Apache, MIT, and BSD are more permissive.
You can usually integrate code using these licenses into your
own products without much trouble. The lawyers will still
need to approve it, of course, but it’s a much easier discus-
sion than GPL.

Now that we have some flags on the legal minefield, let’s
discuss workflow.

Tracking Upstream Projects

Say you need an XML parser for your company’s Ruby-based
product, and the built-in one doesn’'t do the job. You find
an open source XML parser, and it looks perfect—even the
license.

You happily download the current version (let’s say it’s 1.0),
write your code, and check the whole ball of wax into version
control. Great, problem solved...for today. A month later,
you run into a bug and discover it’s already fixed in the latest
version (1.2). So, you download the latest and then discover,
oh no, you've customized some things in the old version;
just shoving in the new version will wipe out your changes.
Now you need to merge.

report erratum -« discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

96 ¢ Chapter 2. Get Your Tools in Order

The problem here is you can only do a two-way merge: you
have your changed version based on 1.0, plus the new
version 1.2. Your merge tool only knows where lines are
different—it can’t tell where the differences originated from.
The burden is entirely on you to figure it out.

Your version control system can help if you use it correctly.
For the basics, see Tip 13, Control Time (and Timelines), on
page 87. The key for tracking external code is to create a
vendor branch that always tracks the upstream code exactly

as it comes from the open source project.

Figure 6, Tracking external code with a vendor branch, on page
97 shows how things should look. Now when you get to
merging your changes (1.0a) with the upstream changes

(1.2), the version control system can do a three-way merge
between these two plus their common parents. In many
cases, the tool can do a totally hands-off merge, saving you
a bunch of time. It's much less error-prone than manual
merging, too.

Contributing to Open Source Projects

So far, we’ve been concerned with pulling in open source
components. What about pushing changes back out? Say
you find a bug, fix it for your own use, and want to push it
back to the community. Sounds like a no-brainer, but your
company may treat all of your work as proprietary. You'll
need to get management’s permission first.

Then it’s time to prepare your change. The checklist will
depend on the project, but assume that you'll need to write
a detailed change description, demonstrate its quality based
on the project’s standards, and ensure the change compiles
and runs on other target machines (where applicable).

Then it’s time to submit. The mechanics depend on the
project, but they usually look like this:

* Generate a patch set and email it to a project mailing
list. Use your version control tool to generate the patch.
The project maintainers will consider the patch, and if
they like it, they’ll commit it to the project’s repository.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Use the Source, Luke

1.0 1.1 bua fix—= 1.2
ug fix
upstream -o Qo yot?nee q Qg timz
sync \/ \/
vendor branch -00 Qo Op >
checkout 3-way merge uses
common parent
trunk }_DO:%D Op >
1.0a 1.2a

Figure 6—Tracking external code with a vendor branch

97

Does your manager need some convincing on the value of con-
tributing to open source projects? The best argument isn’t a
philosophical “it’s the right thing to do” speech. Warm fuzzies
don't pay the bills.

Instead, keep it pragmatic: if you make changes to a project, you
have two options:

* Maintain your changes locally. Every time you pull a new
version of code from the community, you'll need to merge
in your changes.

e Contribute your changes. No locally maintained patch sets,
no merges.

The latter is a win in the long run. Convince management that
the changes aren’t trade secrets and that it’s less hassle to con-
tribute them to the community.

¢ For projects using a hosted version control system (like

GitHub'), you'll want to fork the project repository,
apply your changes, and then generate a pull request to
the project maintainer. This is a more automated version
than emailing patches but accomplishes the same thing.

* You may be granted commit privileges to the project’s
source code repository, allowing you to submit changes
directly. You'll need to establish a solid track record
first.

Project maintainers want contributions, and they’ll encourage

and help you get changes in, but they may reject a change

14. httE:// github.com/

report erratum -« discuss

http://github.com/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

98 * Chapter 2. Get Your Tools in Order

you submit. It could be a quality issue—treat this just like a
code review in your day job. Or your change may not fit
with their long-term plans.

You can choose whether you want to adapt your code to the
project’s desires or just keep your change in your own
repository. Where possible, use this as an opportunity to
learn from the project’s maintainers. (Also, a record of open
source contributions looks great on your resume.)

When you get a change into a project, you may get bug
reports. You'll need to investigate them and submit fixes,
again just like your day job. On the plus side, that’s a bug
your company could have hit, too.

Actions

Pick an open source project of your liking, and then do the
following;:

* Find its license and answer the questions from Licenses,
on page 94.

* Make your own copy of the project in a way that you
can track updates and also maintain your own changes.
With GitHub, this is as simple as cloning and creating
your own branch—so give that a shot. Other projects
may require a bit more work to create the vendor branch
and sync upstream changes.

¢ Investigate the process for submitting a change to the
project. (Bonus points: look at the project’s bug list, fix
one, and submit it.)

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

PartII

People Skills

CHAPTER 3

Manage Thy Self

Throughout your career you'll have a number of managers.
The manager who has the most vested interest in your suc-
cess over the long haul is you.

You get only a partial say in your management, of
course—the company-appointed manager will have their
own opinions. Your manager might be a great person, active-
ly working to help you succeed and grow in your career.
Let’s at least assume your manager is not evil. Most likely,
he’s busy and would like to help you succeed, but most of
the time he’s swamped by an ever-present backlog of meet-
ings and email.

That’s why the responsibility ultimately lies with you. You
don’t have to do everything solo—try to get regular one-on-
one time with your manager, and don’t be shy about asking
for advice—but don’t ever let your career and happiness
slide because someone else didn't take charge.

* We start by formalizing another source of advice. Tip
15, Find a Mentor, on page 103 gives you a reliable person
to ask about matters of code and company politics.

* Next, dress codes may not apply to programmers, but
in Tip 16, Own the Image You Project, on page 107 we

discuss how your self-presentation matters a lot more
than you may think.

* Next we step back to image as it’s projected over time:
Tip 17, Be Visible, on page 110 deals with how you’ll want
to project your image within the company.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

102 ¢ Chapter 3. Manage Thy Self

* About a year into your career, you'll get very interested
in how your manager perceives you. Tip 18, Ace Your
Performance Review, on page 114 helps you through the

annual performance review.

* Your first years should be filled with vigor and enthusi-
asm. When that wears down, Tip 19, Manage Your Stress,

on page 121 coaches you toward sustainable health.

¢ Finally, Tip 20, Treat Your Body Right, on page 127 gives

practical advice on ergonomics—and gives you an
excuse to go shopping.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Find a Mentor ¢ 103

Tip 15

Find a Mentor

[White Belt] Yourmentor can help you from

day one and ideally for years to come.
Where this book is a virtual guide, the most successful pro-
grammers will have a real-life guide for the journey, too.

Such a guide —or mentor —will provide wisdom and council
for you personally on your first programming job.

The mentor’s role is to do the following:

* Help you when you get stuck on the job. They’ve been
programming long enough to have great problem-
solving and debugging chops, so even when they don't
know all the answers, they can point out the next steps
you should take.

* Model behaviors and skills you want to learn. Time
spent watching over their shoulder will inspire you to
learn new programming tricks and new ways of thinking
about your problem domain.

* Keep your career pointed in the right direction. They
know how to get ahead in your company and can advise
you when opportunities to advance come up.

* Likewise, keep you from shooting yourself in the foot.
They’ll warn you of hazards specific to your company,
like the people you don’t want to make enemies with
or programming screw-ups that will especially irk your
manager. Your mentor has been around long enough
to know the turf.

This mentor may be one person, or it could be several —for
example, you might tag along with a senior programmer on
your team but learn the political lay of the land from your
manager. I'll speak of a singular mentor in this tip. The same
advice, however, applies to more than one.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

104 ¢ Chapter 3. Manage Thy Self

Qualities of a Great Mentor

Before we get into finding the mentor, let’s consider the
qualities of the person you want to find.

On Your Side

First and foremost, a great mentor is interested in your per-
sonal growth. This person needs to be on your side and will
always push for your success. Some companies have policies
that put peers in contest with each other; your mentor,
however, must be someone who has nothing to lose from
your success.

Technical Skill

Obviously, a great mentor for a programmer should be a
great programmer. Let’s distill that a little further: you're
looking for someone who has domain expertise for the
product you're working on, has a track record of delivering
solid code, and otherwise demonstrates the skills you want
to attain.

Under the umbrella of “programming” there are a zillion
subdomains of specialized knowledge. If you're working on
a large-scale website, for example, there’s a whole career’s
worth of skills you could learn about scalable server-side
programming. You'll want a mentor who has domain expertise
in this area.

The track record is equally important. There are genius
programmers who have rocket-science raw talent but just
can’t focus and get a product out the door. Industry is
pragmatic; you need to write solid code and you need to ship
the product. Look for a mentor who’s demonstrated skill at
both.

Looking for skill comes with a qualification: great program-
mers are not necessarily great teachers. Perhaps they can’t
explain how they work because they’re guided by intuition
more than a process. Or perhaps they simply don’t have the
patience to work with junior programmers. Make sure your
mentor is someone you can actually learn from.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Find a Mentor * 105

Knows the Lay of the Land

A key role of your mentor is passing on tribal knowledge—all
the undocumented stuff that gets passed on person to person
within the company. You've probably heard about specifica-
tions, style guides, wikis, and other documents that are
supposed to help programmers get up to speed. Nobody
wants to admit it, but they’re all out-of-date. You’ll need
someone who'’s been working on the product for a while to
show you around.

A great mentor has been with the organization long enough
to know the politics and has earned respect both within the
team and within the company. As we’ll discuss in Tip 22,
Connect the Dots, on page 141, it takes a while to discover

who’s pals with whom, but your mentor can give you a big
head start. Further, your mentor can warn you of political
strife that’s best to stay away from.

High Standards

To grow in skill, you need someone to hold you to a higher
standard than you're currently at. A great mentor will help
you first meet the needs of the product—which, in turn,
keeps your paycheck coming—but also tell you where you
can improve.

It takes some humility on your part to accept this above-and-
beyond guidance, but remember, the guidance of your
mentor isn't just for getting the job done todays; it’s also for
growing into a senior programmer later.

If you're looking for someone who will hold you to high
standards, look for people who hold themselves to high
standards. Who has a lot of books on their shelves? Who has
areputation for discovering new technologies and program-
ming practices?

Find Your Mentor

Now for finding your mentor. First, ask your manager. You
don’t need to get fancy; start with, “Who should I ask for
help if I get stuck?” Or more formally, “Is there someone on
the team who could mentor me as I get started?” A manager
will often have a mentor in mind.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

106 ¢ Chapter 3. Manage Thy Self

Second, consult your peers. When taking a task in a planning
meeting, ask, “If I need help on this task, can someone lend
me a hand?” Or ask of a senior peer, “You seem to know a
lot about [this domain], so can you give me any pointers
before I start on this task?”

Not all mentoring relationships are of the formal, long-term
variety. If your manager assigns a mentor, by all means take
it. But even in a casual environment you can find informal,
short-term mentoring to help you with a programming task.
Those informal mentors could be all of your peers on the
team, at various times.

If you're not given a long-term mentor, try to find one on
your own. You'll want the big-picture guidance and encour-
agement. Ask of someone who you'd like to mentor you, for
example, “I really appreciate the help you've been giving
me. Would you consider mentoring me on an ongoing
basis?” The key word mentoring is the cue that you're seeking
big-picture advice, not just help for hitting the next deadline.

Mentor vs. Manager

Some questions are more appropriate for your manager than
a mentor. When you need assistance in a more official vari-
ety, for example related to your benefits or pay, that’s the
domain of your manager. If there’s business-related issues
like a failed production system or you've discovered a critical
bug, your manager needs to know.

Your manager can provide a lot of mentoring, too. A good
manager will be looking out for everyone on their team
already, trying to eliminate short-term obstacles and helping
with long-term career goals. However, a manager also has
obligations to the business that can interfere with mentoring.
For example, if your manager is tasked with laying off 20
percent of the team, your manager is no longer an objective
source of advice on career planning.

Actions

Your first action should be clear: find a mentor! Start informal-
ly if you must. Try not to go longer than a year without a
more formal mentor.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Own the Image You Project ¢ 107

Tip 16

Own the Image You Project

[White Belt] Firstimpressions matter. Think
about this topic before your first day on the

job.

First, a disclaimer: there are “corporate image consultants”
who specialize in helping people dress for success. I'm not
one of them.

Programmers may not be judged by their clothes as much
as, say, executives or salespeople. Even so, the people around
us have their biases. You can choose to challenge them or
decide you're better off picking a different battle. Either way,
choose consciously.

Perceptions

We humans haven't lost our capacity for instinct—we will
make snap decisions about situations and people in a split
second. The R-mode, pattern-matching part of our brain will
make a decision before any conscious thought has time to
process. “That person looks scary” or “That person looks
professional” are thoughts that will run through our mind
before the person has time to say a word.

This value judgment may be right or may be wrong. Malcolm
Gladwell, in his book Blink [Gla06], describes this judgment
as a necessary way of dealing with the many people around
us. We simply can’t afford the time to get to know everyone
we meet on a deep, personal level before making any judg-
ment about them. However, we have a skill of forming first
impressions that serves us surprisingly well. It's not perfect,
but it has a darn good hit rate for taking only a couple
seconds.

Look at how you're dressed right now in the mirror. What
value judgment would a stranger make in the first two

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

108 ¢ Chapter 3. Manage Thy Self

seconds of meeting you? (Aside from shockingly attractive,
of course.) Is that the image you want to project?

Norms

Our perceptions are shaped by our environment; what is
“normal” for the region, industry, and company we occupy?
A design firm in San Francisco is a fundamentally different
environment—nearly a different universe —than a banking
firm in New York City.

There are times it pays to stick with the norm. Your first
couple weeks on the job is not the best time to make a bold
statement. Meeting with a customer (when those opportuni-
ties come up) is a good time to look professional. These are
times when you need to make good first impressions and/or
represent your company well.

You can challenge the norms once you’'ve earned some
credibility on your team. For most West Coast companies,
anything goes. (In East Coast and international settings, ask
and look around.) Programmers have more freedom than
most. At least in places I've worked, dying your hair purple
and wearing knee-high boots (regardless of your gender)
would hardly get a second look.

Of course, you may choose to stick with the norm on clothing
and be bold in other ways; you could be the woman who
gives Takahashi Method presentations with huge, bold text.
Or you could be the guy who writes meeting agendas in
Haiku.

Own Your Style

Whichever direction you choose for personal style, own it.
You need to be confident in the image you project. If you
can’t look in the mirror and think to yourself, “That’s me,”
then fix it.

An example from my own life: I took the advice of “dress
like the person whose job you want” and bought several
traditional, corporate-style patterned shirts. After a couple
months I stopped wearing them because I felt like a phony
in corporate blue with pinstripes, and I'm sure that showed
in my body language.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Own the Image You Project ¢ 109

If you make a change, “try on” your new style starting on a
Saturday. That gives you a few days out of the office to get
used to it. Monday might shock some of your co-workers,
but the key is it won’t shock you. I learned this tip after
shaving my head on a Tuesday. Mistake. Not only did my
co-workers hardly recognize me the next morning, I hardly
recognized myself.

Neatness Counts

No matter what your style, do it with style. No matter if it’s
jeans, dress, or slacks, keep them clean. Long hair or bald,
get a trim now and then. People make a subconscious link
between the neatness in your grooming and the neatness of
your work.

Furthermore, you make a mental shift when you put some
care into getting ready for work in the morning. If you roll
out of bed and stumble into the office disheveled and half
asleep, your work will reflect that. If you prepare thought-
fully for the day, your work will reflect that.

Actions

¢ Take a half hour—enough time to think about this for
real—and write down a description of the image you
want to project at work. If that’s not the image you're
projecting now, what do you need to change?

¢ Pull all the clothes out of your closet. Only put back the
pieces that are still your style and fit well. Donate or sell
the rest.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

110 ¢ Chapter 3. Manage Thy Self

Tip 17

Be Visible

[Brown Belt] You need to start with simply
doing your job well. Then you move onto

getting noticed for it.

Whatever role you have, you need to establish a positive
reputation. That reputation magnifies the visibility of your
role. Visibility is when people around the office know your
name — “I’ve heard of Emma; she does awesome work.” Not
only does it stroke your ego, but it gives you influence to
get the projects and roles you want down the road.

Visibility doesn’t require a fancy job title; it's far more subtle.
You, as a lowly programmer on the bottom of the org chart,
can have visibility all the way up to the CEO. If you're
working on a project the CEO has personal interest in, you
have visibility. You could have stumbled into it by accident;
this happened to me when I overhauled the user interface
graphics for a product I was working on. The graphics were
simply a hobby, not really part of my job, but the CEO loved
the new look, and I was in.

You don't always get visibility by accident, yet pushing for
visibility can backfire. It's something of a zen thing—people
who overtly seek it come off looking like phonies. You know
that guy in meetings who’s always piping up just so he gets
a word in and sounds smart, but really he sounds like a
meathead instead? Don’t be that guy.

The better approach is to let your work do the talking. First,
while you're new in your programming job, strive to get
some early wins. If you have any say in the matter, take on
some tasks that you know you can deliver quickly and
solidly. Follow the company coding style perfectly, write
unit tests that prove functionality, and make it really good
and deliver fast.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Be Visible * 111

Don’t Use Duct Tape, Velcro Looks Better

The year was 1996, well before cell phones did anything more
than make phone calls, and a company called Metricom was
selling a radio modem with inexpensive data service. I bought
one and started poking at it; it turns out its serial interface was
dead simple.

I was working on the networking stack for our company’s
handheld computer. It had a phone jack on it for connecting to
a dial-up ISP. (Back then, dial-up was the norm.) I looked at our
computer, looked at the radio modem, and it was blindingly
obvious that these two were made for each other. So, I got some
Velcro and stuck the two together.

It didn’t take long to attract attention. Everyone in the company
wanted to check it out. At a conference a couple months later I
wrote a small web server application and passed it around
—people could edit a web page on-screen, and others could
browse to it in real time. It was a hit.

If there’s one thing geeks can't resist, it’s plugging stuff together.
In this case, our handheld computer just begged to be untethered
from the phone line, so even nongeeks could appreciate the
coolness of this combo. I was still a lowly programmer, but
everyone in the company knew my name from then on.

Your manager will notice, and he’ll go bragging to his man-
ager about making a good hire. “Our new programmer
Emma has been here only a month, and her code went into
test with zero defects. Clearly I'm a genius for hiring her.”
(OK, that’s a little bit of an exaggeration, but only a little.)

Second, make a mark on the product where others will
notice. Let’s say you get stuck on bug patrol—a common
new-hire task, purportedly to help you “learn the code base,”
but really it's because the other programmers just don’t want
to fix the bugs themselves. Your first task is to fix some GUI
text fields that don’t validate correctly. Do that and check it
in, and then go through and make sure the GUI widgets line
up right—do some visual housekeeping that makes the in-
terface look nicer than you found it. “Emma went through
and polished this part of the GUI, and wow, it looks a lot
better!”

Finally, as you get more credibility in the group and freedom
to pick your tasks, pick some things that people in the

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

112 * Chapter 3. Manage Thy Self

Industry Perspective: Making an Impression

The most important thing you as a new/freshman programmer
can do is keep your head down and be certain you're doing the
task at hand. Any opinion, idea, or suggestion you may have
regarding the workflow of the company, or the product you are
on, should be withheld at least until after the first review cycle.

Any person straight out of school wants to make a big impres-
sion; you want to show the company that you're worth your salt
and said company is full of geniuses for hiring you. And that’s
great. The problem is that trying to make this impression can
throw you into over-reaction mode, especially if you have a
highly competitive personality.

New employees can (and do) have great, fresh ideas. The prob-
lem is you don’t know where the corporate land mines are, you
don'’t yet have awareness of what factions are competing within
the corporate climate, and you don’t have a good enough feel
for the corporate culture.

Putting it another way, what gets you a raise and kudos at
Google may well get you fired at Netflix.

Nothing, and I mean nothing, speaks louder than doing the job
you're assigned to the absolute best you possibly can.

—Mark “The Red” Harlan, engineering manager

company are passionate about. It could be as simple as tying
a couple features together in a novel way, like adding an
email gateway to a web application. “Emma made it so I can
email an update to the tracking system without having to
log in—what a great idea!” There’s always some itch that
people have wanted to scratch but haven't put in the effort.

Visibility may sound like shameless self-promotion. Yes, to
a degree it is. But when the next job opening comes up or
the next cool project is getting started, don’t you want a shot?
If your name has been circulating among the managers be-
cause of something cool you did, you're much more likely
to get that shot.

And let’s be honest, programmers love to build cool stuff.
When you’ve built something cool, it’s really fun to show it
off. So, show it off and enjoy your moment in the spotlight.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Be Visible * 113

Actions

Consider the work you have on your plate. Are there oppor-
tunities for early wins? Grab some tasks and truly nail them.

Looking ahead, can you make a dent in your product in a
way that others will notice? It may be a shiny new feature,
but it could also be fixing an annoying bug, too.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

114 ¢ Chapter 3. Manage Thy Self

Tip 18

Ace Your Performance Review

[White Belt] Your performance review isn't
for a year, but start logging your accomplish-

ments early.

Consider the poor, hapless software manager: once a year
she has to write reviews for all her employees and try to
state, in objective and quantifiable terms, how they did on
a job that’s intrinsically abstract.

Attempts to quantify programmer performance have never
gone well. For example, the junior manager might try to
measure how much code a programmer writes. During
Apple’s get-it-done push to ship the Lisa computer, man-
agers decided to track the lines of code written each week
by each programmer. Bill Atkinson reworked a good amount
of the graphics code, making it simpler and much faster
—and also shorter. He logged negative 2,000 lines of code
for the week.' What does a manager do with that?

Of course, that’s your manager’s problem—mostly. It be-
comes your problem when it’s your performance they're
trying to measure and your paycheck that’s affected.

When it’s time to review your performance for the year, you
have one essential goal: you need to give your manager the best
information possible so you get the best review possible. This has
nothing to do with greed; it’s simply making sure she’s
aware of your accomplishments for the year. You've worked
hard, so get credit for it.

Performance Review Mechanics

Companies do performance reviews for obvious reasons:
they want to identify who's doing great and who isn’t. They

1. http://folklore.org/StoryView.py?story=Nega-
tive_2000_Lines_Of_Code.txt

http://folklore.org/StoryView.py?story=Negative_2000_Lines_Of_Code.txt
http://folklore.org/StoryView.py?story=Negative_2000_Lines_Of_Code.txt
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Ace Your Performance Review ¢ 115

Industry Perspective: Performance Review Prep

Do your homework ahead of time. Learn what's in the review
process and especially who is expected to contribute to your
review. Take a look at a blank review form to see the kinds of
things you'll be graded on.

About a month ahead of time, informally poll all the people you
know who will be included in the process (including your boss)
and say, “Hey, man, my review is coming up; how does it seem
like I'm doing?” Do this in person, not by email. Make it seem
easy and offhanded —not serious like a heart attack. Be sure to
work on anything you hear that’s negative.

If your company has them, write your self-review with the formal
review in mind. Be sure to focus on numbers and productivity
(for example, “My applet makes the new build system go two
times faster”), but never exaggerate.

All companies care about timeliness and quality as well as your
ability to work both individually and as a team. Cover all those
bases.

Think about the way your boss sees your job. If there’s something
she doesn’t know about that’s important in what you do, be sure
to mention it in detail.

—Mark “The Red” Harlan, engineering manager

want to reward the great, and...we’ll get to the other side
later.

Raises in salary are usually tied to the performance review,
and the raise budget is usually a fixed amount for the whole
department. Assuming it’s been a good year for the business,
the department is allocated a budget for raises. Let’s say it
allows for a 3 percent overall raise. They could just give 3
percent to everybody and be done. Often, however, they
want to give more to the stars (like 5 percent) and less to the
slackers (like nothing).

Thus, we get back to the hapless manager: she has to docu-
ment who are the stars and who are the slackers. Let’s look
at common approaches used to create this document.

The Self-Review

The first approach is to punt the review to you. You get a
form that says, in formalish terms, “What have you done

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

116 ¢ Chapter 3. Manage Thy Self

for the company lately?” Take this review very seriously:
there’s a good chance that much of its content will be copied
and pasted into your official review.

As you go through the year, you need to be collecting mate-
rial for the self-review. There are five major buckets to fill.

Quality

Here we want anything that can show you're writing solid
code: defect rate per line of code, bugs fixed, test cases
written, and such. They don't need to be hard measures:
positive comments from co-workers, design principles you
started applying, or improvements you've made to your
team’s test infrastructure are all helpful.

Examples: “Fixed forty-two product defects, including five
severity-one defects.” “Consistently unit-tested code, with
2:1 average test case to application code ratio.”

Quantity

Fortunately, quantities are easier to measure: features com-
pleted, product releases shipped, source code commits, and
so forth, are good fodder. Don't forget the version control
system; it can give you lots of statistics about what you've
changed in the code base.

Also, keep in mind that code is only part of your job. Any-
thing that benefits the business is worth considering

Examples: “Shipped version 1.2 of Widget Factory in my
role as a widget programmer.” “Assisted customer support,
providing key information to resolve four support tickets.”

Timeliness

You don't get assignments without an expectation of when
you'll get it finished. Track your hit rate and —assuming it’s
not terrible—report it in your self-review. This is much eas-
ier in agile environments where you review progress every
couple weeks.

Examples: “Delivered on project commitments with 82 per-
cent success rate.” ”Completed tasks within 70 percent of
original estimates.”

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Ace Your Performance Review ¢ 117

Cost Savings to Company

Programmers have a reputation for driving costs up rather
than down. However, managers are always looking for ways
to stretch their budgets, so if you have something to brag
about here, brag.

Examples: “Improved message handling capability from 100
emails/second to 150 emails/second, thus making better use
of company servers.” “Compressed data in less-used
database columns, reducing storage footprint by 42 percent
with negligible impact to performance.”

Making the Team Look Good

Your team’s value within the company isn’t just an equation
like revenue contribution vs. cost. Perception counts just as
much as any numbers. Any kudos you bring in for the
team —and therefore your manager —are worth mentioning.

Examples: “Analyzed web server logs and identified top
bounce pages; improved these pages and increased visitor
retention.” “Improved GUI look-and-feel before important
trade show, earning positive comments from company rep-
resentatives at the show.”

Finally, one note about what not to include: don’t clutter the
self-review with tasks that are considered business overhead.
“Attended 942 meetings” can be left off.

When you get the self-review form, ask your manager how
much detail to include. If you've been good about logging
accomplishments over the year, you'll have more than
enough content, so pick the best. If not, jog your memory
by reviewing old email or scanning your commits in the
version control system.

The 360-Degree Review

The next review-writing approach is to punt the problem to
your peers. The manager picks a couple other programmers
and a couple people from other parts of the company that
have worked with you over the year.

Your manager may ask you for candidate reviewers. Who
in the company has the best impression of your work? You

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

118 ¢ Chapter 3. Manage Thy Self

need to know, well ahead of time, who your allies are across
the company.

Here’s where it pays to wander beyond the bounds of the
engineering cubes, as discussed in Tip 26, Know Your (Corpo-
rate) Anatomy, on page 163. If you can reply to your manager
with 360 reviewers that include your product’s support lead

and product manager, for example, you're well on your way
to an awesome review.

The Manager’s Review

Finally, having as much of the review written by other peo-
ple as possible, it’s the manager’s turn to craft the final
review. It may be —like many reviews I received —your self-
review with some annotations by the manager and a few
comments from the 360 reviews tacked onto the end. Your
manager isn’t getting paid to compose great literature here.

The review from your manager shouldn’t come as a surprise.
Any reasonable manager will be giving you kudos and tips
for improvement throughout the year. The document you
get handed should be a summary of those.

Ranking

Many larger companies require managers to rank their em-
ployees. It’s the same thing as grading on a curve: the human
resources department asserts that each team’s performance
follows a normal distribution with a couple rock stars, a
couple slackers, and a bunch of normal folks in the middle.

This will show up as something like a one to four rank indi-
cating which quartile you're in. If you're in the not-so-great
bucket, see Performance Improvement, on page 119. Otherwise,

don’t worry about it.

Here’s a dirty secret: every manager loathes ranking employees.
The manager puts a ton of effort into hiring an awesome
team, and then HR comes along and asserts that the team
must have a certain number of slackers.

Promotion

Some teams have designated technical leads or other promo-
tion roles where you still program for your day job. Your

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Ace Your Performance Review ¢ 119

Performance Improvement

There may come a day when you're told you need to improve.
If you receive anything written, for example a “performance
improvement plan,” that’s a warning shot that your job is on the
line. When it hits writing—email counts— that's management’s
way of creating the paper trail they need to fire somebody.

I assume you’re not slacking. Therefore, there must be a discon-
nect between what you're doing and what the company needs
you to do. The first step is identifying this disconnect in a way
that’s absolutely clear to both you and your manager. The per-
formance improvement document is a good place to start; this
should spell out specific areas that need improvement and spe-
cific measures of what that looks like.

Let’s say you rolled out buggy code to production. Everyone
lets a bug loose once in a while—but you had too many bugs in
too short a while. Together with your manager, come up with a
plan to make absolutely sure that the quality of your code doesn’t
come to further question. Examples: line-by-line peer review
before committing code, unit tests with 100 percent coverage
and peer review of boundary conditions, code inspection with
static analysis tools.

Then, relentlessly update your manager on progress. Send a
weekly email with progress on each issue identified in the per-
formance improvement plan. Your manager needs to know that
you take the problems seriously and that addressing them is
your top priority.

recent performance reviews will absolutely factor into dis-
cussions of promotion.

There’s one additional factor you can influence: you need
to act the role before you can get it. For a tech lead, that
means a wide breadth of knowledge, sound design decisions,
helping others get the project to its next milestone, and the
like.

When your manager is looking for a tech lead, she’s going
to gravitate to the programmer she can most easily visualize
in that role. If you're already serving in a fashion that’s
similar to a tech lead, guess who goes to the front of the list?

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

120 ¢ Chapter 3. Manage Thy Self

Actions

¢ Create a file, paper or electronic, where you can keep a
log of accomplishments for your next performance
review. Finish something on time? Make a note and file
it. Solve a gnarly bug? File it. Mine this file when it’s
time to write your self-review.

* As review time approaches, consider who you'd want
to give you 360 reviews, and have those ready if asked.
Pick two people from your team, two from other depart-
ments. Don’tjust pick friends —pick people who you've
done meaningful work with.

* Abouta month ahead of your review, ask your manager
directly, “Since my review is coming up, how am I
doing? Is there anything I can improve between now
and then?”

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Manage Your Stress ® 121

Tip 19

Manage Your Stress

[Brown Belt] Let'shope you have some time

before you need to stress about this topic.
You love programming, and you love your job. Most of the
time you should be having fun. Every job has its ups and

downs, however, and it’s important for your long-term
health to weather the storms gracefully.

Zen teachings have the concept of mushin no shin, sometimes
translated as “mind like water,” wherein you respond to
stimuli from your environment in exact proportion to each
stimulus. To a martial artist, she would block or strike her
opponent with exactly the right amount of force to accom-
plish the job—neither too little (thus allowing defeat) nor
too much (thus succumbing to anger or zeal).

In your own work, the mushin mind-set means acting and
reacting to the pressures of the job with neither defeat nor
anger but instead as a consummate professional.

Of course, this is easier said than done. Even the mushin
professional who keeps her cool on the job can carry a sub-
conscious burden. You need to recognize the burdens you
carry and deal with them in a constructive manner.

Recognizing Stress

Stress reactions may manifest themselves in physical ways:
grinding your teeth, tension headaches, or clenched shoulder
muscles, for example. While in a place you can relax, take a
mental inventory of your body and try to sense muscle ten-
sion. Open your jaw wide, and let it come back relaxed. Roll
your head gently. Bring your shoulders down. Check in with
your body a couple times a day, and over time you'll notice
where you tend to carry tension.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

122 * Chapter 3. Manage Thy Self

If I told you I could teach you to regulate your heart rate, change
the temperature of your skin, or beat a lie detector test, would
you believe me?

In biofeedback training, a therapist hooks you up to a bunch of
sensors like muscle activation (EMG), skin conductance, skin
temperature, exhaled CO2 pressure, and so forth. You're mea-
suring properties of your autonomic nervous system (ANS),
which are things you can’t consciously sense and control.

With the real-time feedback provided by the instrumentation,
you can learn to sense what your ANS is doing. For example, if
you carry tension in your shoulders, an EMG probe can show
you exactly what's going on there, even if you can't feel it. With
training, you can both learn to feel —and then control —problem
areas in your body.

(As an added bonus, a polygraph test also measures autonomic
nervous system responses. You get where I'm going.)

If you're struggling with stress, see whether there’s a biofeedback
therapist in your area. If nothing else, try a couple sessions just
because it’s truly fascinating. One last tip—don’t be afraid if you
notice the therapist is a psychiatrist instead of a doctor. They're
usually shrinks. Don'’t stress over it.

Observe your interactions with other people: are you quick

to anger with co-workers when you're normally mellow?
Are others angry with you? Maybe you notice yourself
skipping lunch when you used to hang with friends. Or
during team meetings you're usually the optimist in the
room, but lately you’ve taken on a tone of defeat.

Finally, observe patterns of your day that may have changed.
Most of us are creatures of habit—coffee in the morning,
walking to lunch, checking a couple blogs in the afternoon,
playing a favorite computer game. Have these changed
recently?

This kind of introspection takes a certain self-honesty that
may feel uncomfortable (or just goofy) at first. It’s a valid
feeling, and since you're being honest with yourself, go
ahead and acknowledge it. Then let it go.

report erratum -« discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Manage Your Stress * 123

Addressing Physical Stress

The physical component of stress is a symptom of psycho-
logical stress, but when it becomes a problem in itself, it
feeds back and creates more stress. There are a number of
ways to break the cycle:

* Massage therapy can be very therapeutic and have long-
lasting effects, depending on the practitioner and your
body’s response.

¢ Biofeedback techniques (see Biofeedback, on page 122) can
teach you to both recognize and release tension.

¢ Exercise can exhaust muscles and release tension—plus
give your mind a break from the computer. (Many tech
companies have gyms or provide discounted gym
memberships.)

* Fix any ergonomic problems with your workstation, as
discussed in Tip 20, Treat Your Body Right, on page 127.

You'll need to find what works for you, of course. But do
find something —your physical stress won’t go away on its
own.

Long Hours

When you work a salaried job, you are required to get the
job done, regardless of how many hours it takes. Reasonable
managers will work with you to match your duties to a
roughly forty-hour week. Some insist on specific hours (aka
butt-in-chair time); others don't care.

I've worked in start-ups that mandated sixty-hour minimum
work weeks. That’s part of the gig with start-ups —whether
they say it explicitly or not, be prepared for it.

When you're young, single, and love your job, long hours
aren’t a problem. I worked like crazy the first several years
of my career and had a great time doing it. If this is where
you're at, go nuts; that’s what the energy of youth is for!

Also, accept that, as a newbie, it’s going to take you longer
to get the job done than an experienced programmer. You'll
go down more dead-end paths, make more mistakes, and

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

124 * Chapter 3. Manage Thy Self

struggle more with debugging. That’s part of the learning
experience, and it takes time.

Later you'll pick up responsibilities outside of work —spouse,
kids, a house to maintain—and those long hours become a
real problem. You have several options to consider:

¢ Optimize your butt-in-chair time. Look at techniques
like Pomodoro’ and GTD’ to focus your time in the office
so you can leave earlier.

* Bring in lunch from home instead of going out. You can
eat at your desk in ten minutes; going out often takes
an hour. (However, do go out with your co-workers from
time to time just to shoot the breeze.)

¢ Take your crunch times in smaller, more frequent doses.
If you have project milestones every week or two, then
you may need to dedicate only a day every couple weeks
for crunch time. By contrast, when milestones are every
six months, that’s a lot of time for a project to get off-
track, and crunch times can last for weeks (or months).

* Find a company whose culture values work-life balance.
This doesn’t necessarily mean big, slow-moving compa-
nies with nine-to-five cultures; there are plenty of small
companies whose founders burned out on killer hours
themselves.

You can get a lot done in a focused forty hours. The young
bucks spending their lives at the office aren’t always that
productive —the office becomes a place of socialization and
recreation in addition to work; it’s not sixty straight hours
of coding.

Burnout

In cycling there’s a state of fatigue known as the bonk. Your
body uses glycogen to keep the muscles going, but after
hours of pedaling, it runs out. When that happens, the bonk
comes on suddenly, and you want to fall off the bike and
pass out.

2. Pomodoro Technique Illustrated [N609]
3. Getting Things Done: The Art of Stress-Free Productivity [Al102]

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Manage Your Stress ® 125

Burning out in your job feels much the same. All the sudden
you have an extreme compulsion to quit your job and
become a Tibetan yak herder. Or dig ditches. It doesn’t really
matter —just anything except typing another line of code.

It’s usually not the code that causes burnout. More often it’s
mismanagement: mandatory long hours, death march
scheduling, and the like. I'm sure you can stand occasional
periods of high stress, but when those periods stretch over
months or years, you will burn out.

In cycling you can avoid the bonk by eating simple carbs as
you ride. Likewise, you can avoid burnout by getting away
from the code and having some fun. (This is why so many
high-tech companies have foosball tables.) However, carbs
and fun only delay the inevitable: at some point you need
to take a real break and rest. I don’t mean a long weekend,
either: if you’ve been scrambling for months to ship version
1.0, you'll need weeks (or more) of vacation to let yourself
recover.

If you don't allow recovery time and you drive yourself to
burnout—you’ll know when you do—take some comfort
that it doesn't last forever. You may need to herd yaks for a
year, but you’'ll get the itch to start programming again.

Take a Vacation

Programmers—especially of the unmarried variety—are
terrible about taking vacations. It seems like you're always
in the middle of a big project and you'd get behind if you
took a week off. Face it, there’s never a good time to take vaca-
tion. Just go.

Don’t limit yourself to the “obligatory vacations” where you
visit family on holidays. Go do something interesting. Try
windsurfing, rock climbing, scuba diving, going over-
seas...anything to get your head out of computers for a
while. Try the Geek Atlas” if you're struggling for ideas. As
you get older, these opportunities are harder to come by, so
get going now.

4. http://www.geekatlas.com

http://www.geekatlas.com
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

126 * Chapter 3. Manage Thy Self

Why bother? Why spend the time and money? Vacations
are where you reset your perspective. You can't tell you're
in arut while you're in it—you need to see it from an outside
vantage point. Further, it’s a lot easier to stave off burnout
before you burn out.

Take It Seriously

Stress can be a good thing for motivating positive change in
your life. It can also be incredibly destructive. Depression,
like burnout, sends you into a downward spiral that’s ex-
tremely difficult to break out of.

If you've been heading downward for a while, get help from
trusted friends or a professional. Don’t be embarrassed or
pretend it’s not a problem —you'll pull out a lot faster with
help.

Actions

* Try to recognize your body’s physical stress responses.
If it's something you can directly control (like muscle
tension), then get in the habit of recognizing it and let-
ting it go. If it's an autonomic response (such as
increased heart rate or panic attack), then work with a
biofeedback therapist.

¢ Try this experiment: next week, when you hit forty hours
of office time, go home. Don’t return until next Monday.
Depending on your company’s culture, you may not be
able to pull this off regularly, but make it a goal.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Treat Your Body Right ¢ 127

Tip 20

Treat Your Body Right

[Brown Belt] You don't need to optimize
ergonomics on day one, at least if you're
young. However, don’t put it off more than a

year or two.

How is it that so many people get injured sitting behind a
desk? It’s not like you pull a muscle when trying to lift an
especially heavy line of code or bloody your forehead by
whacking into a nasty program fault. Instead, physical injury
for programmers is the sum of zillions of small things com-
pounded over time—more akin to being pecked to death by
ducks than going out in a bang.

Repetitive strain and stress-related problems are solvable.
Like most problems, they're best solved before they become
a problem. A little bit of attention to the issues now could
save you considerable trouble later.

Workstation Makeover

Computers are marketed on speed, memory, and sometimes
disk space. Never does a manufacturer tout its keyboard.
Yet you're a lot better off with a junker CPU and putting
money into a keyboard that fits your hand, a display
mounted at eye level, and a mouse that tracks well.

Choosing a Keyboard

Keyboards are notorious for their badness. Their arrange-
ment of keys has hardly changed since the days of mechan-
ical typebars. Key travel, the distance a key moves from its
up to down position, is often minimal and mushy. Worse,
so-called natural shapes often make even less sense than
their normal counterparts. Don’t put up with it; buy some-
thing that fits you. Usually the company will reimburse you,
but use your own cash if they won't.

Here are a few things to look for in a good keyboard:

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

128 ¢ Chapter 3. Manage Thy Self

¢ Appropriate travel and feel. Length of travel is a matter
of personal preference. Most people prefer a solid, tactile
click at the bottom and quick rebound. Try the keyboard
in a store if you can.

* Key positioning that makes sense. Oddly, the vast ma-
jority of keyboards have diagonal columns—you need
to look hard for keyboards that break from the norm.
True vertical rows match the flex of your fingers much
more naturally. Also, programmers use modifier keys
much more than most people, so keyboards with modi-
fier keys in the bottom corners do us a great disservice.

* Key bed that fits your hand. Hold your hand palm-down
and flex your fingers through their range of motion. If
you imagined a keyboard there, its keys would be in
the shape of a cup, right? Avoid “natural” keyboards
that have the opposite shape; they make you reach fur-
ther for the outer rows than a flat keyboard.

The only keyboard I've found that truly matches the hand
is the Kinesis Contoured. It's expensive and mail-order only.
I also like the action on certain generations of Apple key-
boards, even if their key arrangement is traditional. Others
swear by older generations of IBM keyboard. You'll probably
need to try a few and find what you like.

Don’t worry about connectors (PS/2, USB, and so on); find
what matches you and buy an adapter to match your com-
puter.

Display

We've seen a “two steps forward, one step back” trend in
displays. We’ve taken several steps forward in terms of LCD
technology, size, brightness, and contrast. We've taken a
few steps back in terms of resolution and screen finish.

Atleast one study has correlated increased display resolution
with increased productivity. It’s easy to imagine program-
ming scenarios where it’s helpful to see code, a debugger,
and your application all at once. However, there are plenty
of scenarios where it’s helpful to focus on one thing at a time.
Go high-res for the times you need it; hide background
applications when you need to focus.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Treat Your Body Right ¢ 129

Note that high-resolution and big are two different measures.
You might be tempted to buy an HDTYV, but keep in mind
that a 20-inch 1080p display and a 40-inch 1080p display
have exactly the same number of pixels. Bigger pixels don’t
buy you much unless your eyes are bad.

Look for an antiglare screen coating. Don’t be fooled by
glossy coatings; they’re a cheap trick to boost the perceived
contrast of the display. They act like a mirror for glare (and
everything else).

Finally, don’t look down at the monitor; mount it high
enough that you can look straight ahead at it. This might
require fiddling with your furniture or buying a mounting
arm.

Desk Rodent

Most people use a mouse or trackpad for cursor movement.
With good text editing habits, you won't need it much during
programming; see Text Editor, on page 61 for more details.

Mice and graphics tablets are preferable at the desktop
because you can use larger muscle groups to move them.

Scroll wheels on mice, unlike the mouse itself, require fine
muscle movement. Dinky scroll wheels aren’t worth using;
some mice have large, free-spinning scroll wheels that are
vastly superior. Other convenience factors like wireless
connections and optical tracking are tremendously nice.
Long gone are the days of tangled mouse cables and lint on
the wheels. If you're still putting up with either, upgrade.

If you notice wrist, arm, or shoulder pain on only one side
of your body, the mouse may be the culprit. Try switching
your mouse to the other hand. You can also set up your office
and home workstations with the mouse on opposite sides.
(There’s no need to buy a left-handed mouse; it’s not hard
to use a righty mouse with your left hand.)

Desk and Chair

You don't have to find a super-fancy chair; you just need to
find a chair that fits you. The Herman Miller Aeron chair is
legendary as the ultimate in fancy ergonomic chairs. How-
ever, it doesn’t fit me, and it may not fit you, either. I
discovered my perfect chair (the Herman Miller Equa) in

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

130 ¢ Chapter 3. Manage Thy Self

Measuring Muscle Activation

If you want to get really nerdy about ergonomics, find a
biofeedback or physical therapist with a surface electromyograph
(SEMQG). It's a machine that measures electrical impulses in your
muscles, and it can detect muscle activation that’s far too subtle
for you to perceive.

With sensors on your trapezius muscles, for example, the SEMG
can tell you whether your keyboard and chair positions are
correct for allowing those muscles to relax. Minor changes in
position make the difference between your traps idling at a
couple millivolts or spasming at tens of millivolts. You won't
notice it while you're sitting there—but over the course of many
days at your desk, that muscle activation can lead to pain and
tension headache.

Nerdy? Absolutely. But a couple sessions of in-office biofeedback
training will pay you back for decades to come.

the conference rooms at a previous company. It’s utilitarian
and absolutely not a status symbol, but it fits me.

Some people use exercise balls at their desk, kneeling chairs,
and other oddities. These are fine as long as you can maintain
a proper curve in your back. You may not know what
“proper” feels like, but a doctor or chiropractor can help.

Finally, no matter how good your chair, the human body
isn't built to sit at a desk all day long. Consider standing.
Cubicles are easy to modify; raise your work surface height
and give it a shot.

Optimize Yourself

Most guides to ergonomics focus entirely on your worksta-
tion and ignore the other component of the equation: you.
It's worth the time and expense to optimize your workstation
for minimum strain, but it’s equally worthwhile to optimize
your own body for the tasks you need it to perform.

Efficiency

The single best skill you can learn is proper touch-typing. I
know it sounds silly. Of course you can type; you're a pro-
grammer. But do you really type well? I found out the hard
way, when I switched to a Kinesis keyboard, that I didn't

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Treat Your Body Right * 131

actually type correctly —my left hand was shifted over a
column, and I never used my pinkie fingers. My accuracy
and speed increased considerably after retraining.

There’s no secret to touch-typing; it's more an exercise in
discipline (and, initially, frustration). One trick to keep you
honest: paint the keys on your keyboard. I painted mine all
different colors. It draws some attention in the office.

Some people also use alternative keyboard layouts; the
usual QWERTY keyboard isn't the only game in town. The
Dvorak layout, in particular, is designed to minimize finger
travel for English text. You can switch most any computer
to Dvorak just by looking in the keyboard layouts, usually
in system preferences under International keyboard support.

I use the Dvorak layout, and it delivers on its promise to
reduce finger travel and therefore to make typing more
comfortable in the long-run. The switch, however, was very
difficult. It took about two months to get my typing speed
back. Consider Dvorak if you need to use a laptop full-time.
On the desktop, buy a better keyboard first—it’s more effec-
tive to throw some cash at the problem than to tank your
productivity for two months.

Strength

I've seen tremendous benefit from strength training and
decent diet: my back stopped hurting, forearm pain from
typing is long gone, and I'm in better condition for every-
thing else in life, too. It may seem counterintuitive that
deadlifts would reduce back pain or kettlebells would reduce
forearm pain, but strong muscles hurt less.

There’s nothing fancy to getting strong: look for an old-
school strength coach to get you started.

Actions

Evaluate your workstation. How well does the keyboard
fit? Mouse? Monitor? Find out how much the company will
reimburse to improve things that aren’t up to par. Decide
how much of your own cash you should put in, if needed.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

132 ¢ Chapter 3. Manage Thy Self

Learn to touch-type properly. Really, I mean it. Commit to
getting those fingers on the home row and, one month from
now, not needing to look at the keyboard at all.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

CHAPTER4

Teamwork

Some programmers are successful as a one-person company.
The vast majority of us, however, need to play nice with
others.

Much of what you'll do in the professional world requires
interacting regularly with others. The introverted program-
mer might rather hole up in their cube and write code
instead. However, your ability to interact effectively can
accelerate—or limit—the coolness of the code you get to hole
up with.

These “soft skills” aren’t what programmers are known for,
and this chapter won’t make you a Dale Carnegie.' Instead,
it’s focused on hitting the high points of appreciating peo-
ple’s personality traits and how they interact in professional
contexts.

The golden rule “Do to others what you would have them
do to you” applies to teamwork, too. I'll add to that:

* InTip 21, Grok Personality Types, on page 135, we look at
some objective measures of personality. When you un-

derstand your own biases, and how others are different
from you, it’s easier to work with them.

¢ Tip 22, Connect the Dots, on page 141 then investigates
the connections between people, because the company
org chart only gives you a coarse picture of authority,

and what’s more interesting is a chart of influence.

1. Author of How to Win Friends and Influence People

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

134 ¢ Chapter 4. Teamwork

* Tip 23, Work Together, on page 144 gets much more spe-
cific about programming, and collaborating, within your

team.

* Finally, Tip 24, Meet Effectively, on page 148 gives you
action items for collaboration-gone-wrong, the much-

dreaded corporate meeting.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Grok Personality Types ¢ 135

Tip 21

Grok Personality Types

[Brown Belt] Appreciating personality differ-
ences will help you work more effectively with

others.

One thing about personalities is obvious: not everyone is like
you. But perhaps not so obvious is that there are various
measures of personality that can quantify just how much
everyone is not like you.

One very common measure is known as the Myers-Briggs
Type Indicator,” which measures how people perceive the
world and make judgments. You can take a test to determine
your MBTI, and it would certainly be handy to know the
MBTISs of people you work with, but those are luxuries you
probably won't get.

What’s more important is to understand the factors Myers-
Briggs—or other personality measurements—and use those
to assess the people around you based on observation. You
may not guess their types exactly, but you can get close
enough. If you get a rough picture of how you deal with the
world and how they deal with it, it can help you to relate to
that person in a meaningful way.

Temperament: Introversion/Extroversion

The first type measurement is the scale between introversion
and extroversion: inward-facing vs. outward-facing. These
are terms you've likely heard before, and you can probably
put yourself on the scale quite readily. In very general terms:

¢ Introverts recharge their batteries with alone or one-on-
one time; engaging with a larger group drains their
energy. They seek depth of knowledge and apply intel-
lect before action.

2. http://en.wikipedia.org/wiki/Myers-Briggs_Type_Indicator

http://en.wikipedia.org/wiki/Myers-Briggs_Type_Indicator
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

136 ¢ Chapter 4. Teamwork

¢ Extroverts recharge by spending time with people; alone
they stagnate. They seek breadth of knowledge and
apply action before intellectual reflection.

Introverts and extroverts can get along well when they
appreciate each other’s strengths. For example, programmers
and salespeople tend to be polar opposites on this scale, but
find two who respect each other and present a united front,
and you have a force to be reckoned with. In fact, some of
my best professional work was done in partnership with a
business development guy —he’d herd the personalities; I'd
take care of the technology side.

What's not so obvious about the I/E scale is that it’s not the
same thing as comfort in dealing with other people. We have
a view of introverts as shy and extroverts as gregarious.
That’s not necessarily true. Introverts can be outgoing and
expressive. Extroverts can be reserved.

I'm an introvert; I nearly pegged the scale in my MBTI test.
However, as I've grown older, I've become much more
outwardly expressive. This is partly a matter of train-
ing—trade shows are great for developing your skill in
starting a conversation and quickly finding common ground
with a complete stranger.

Perceiving: Sensing/Intuition

The next scale deals with how a person gathers data: sense
(or data) driven vs. intuition and association. This parallels
the L-mode and R-mode styles of thinking,’ often referred
to as “left brain” for linear and logical thought vs. “right
brain” for pattern recognition and artistic skill. In general
terms:

* People relying on sensing need to look at the data—pos-
sibly “data” from all five senses depending on what
they're perceiving—and extract meaning from those
sources. This is primarily an L-mode activity, using the
sequential, reasoning part of their brain to put together
the picture of what’s going on.

3. See Pragmatic Thinking and Learning [Hun08] by Andy Hunt.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Grok Personality Types ¢ 137

¢ People relying on intuition will rely on less data but
couple it with their instinctive reaction to the data they
have. This isn't the same as a wild-ass guess—that
instinct is coming from the brain, just another part. It’s
R-mode thinking, where the asynchronous, pattern-
matching part kicks in and gives them that “flash” of
insight.

The difference between these modes of thinking is
exquisitely illustrated in Malcolm Gladwell’s Blink [Gla06],
where he discusses the ability of art experts to sniff out
forgeries. Some take the sensing approach, going so far as
to write software that brings statistics to bear on analyzing
a suspect painting vs. a reference library of known authentic
paintings, looking at details like stroke lengths and density.
With enough data points, they can model a painter’s style
and sniff out fakes that may look visually identical —almost.

Other art experts can look at a suspect painting and intuitive-
ly know whether it’s real or a fake. They're not just flipping
a coin—whether they know it or not, they’re using the pat-
tern-matching engine in their brain, trained with decades of
experience. In effect, they’ve built up their own statistical
models. They can't tell you in rational terms how they do it;
they just intuitively know a fake when they see it. And usu-
ally they’re right.

How does this guide your interactions with others? Let’s
say you're trying to track down a bug. You're the data-
driven type and you're working with an experienced
co-worker who relies on intuition. If he says, “Hmmm...
let’s go poke in this other module” but can’t explain why,
try humoring him rather than pushing back. Just because
he can’t explain it doesn’t mean there isn't real thought be-
hind it—it’s just thought from a different part of the brain
than linear, logical thought. And if the hunch doesn’t pan
out, go collect some more data.

Note that most people tend to fall only mildly on one side
or the other of this scale—they use components of both
sensing and intuition on a regular basis.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

138 ¢ Chapter 4. Teamwork

Judging: Thinking/Feeling

What do you do once you've perceived the world around
you? You take action. (Or go watch TV, but let’s stick with
the former.) This scale examines how you decide what action
to take: logical analysis or empathy with the situation and
people. Here are the characteristics of each:

¢ The person relying primarily on thought will look at the
problem from the outside and reason through the best
course of action. They may be a very caring and compas-
sionate person, but their end decision is rooted more in
logic than their feelings about the situation.

* The person relying on feeling puts themselves emotion-
ally into situations, relating to people and circumstances
on a more personal level. They may have tremendous
reasoning horsepower, but they are fundamentally
guided by their feeling about the right thing to do.

Programming comes with many straightforward situations
where you have to think through a decision. I'm not talking
about those situations. It's the ambiguous ones where this
scale is meaningful. For example, youre working with
another programmer to implement a feature, and you and
she need to decide who does what.

The thinker’s decision might go like this: we need to break
apart the tasks so that each of us has a roughly equal load,
we need to parcel out the tasks to the person who has the
most expertise in each area, we need to make sure neither
of us is stuck waiting on the other...

The feeler’s decision, on the other hand, might go like this:
I know she likes to work on database stuff and wants to do
more of that, and the managers want to see visible progress
on this feature soon because theyre worried we can't pull
it off, so I should rough out the user interface while she’s
doing the database part...

In a way, the judging scale is sort of the flip side of perceiv-
ing scale: there’s how you see the world and what you do
about it. However, the scales are indeed orthogonal: there
are people who are sensing/feeling or intuition/thinking.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Grok Personality Types ¢ 139

Programmers most likely fall largely on the thinking side of
the scale, simply because we spend all day telling the com-
puter how to make decisions based on data. Surely some of
that seeps back into our own thought processes. However,
don’t discount the feeler’s method of decision as inferior: in
the big picture you're dealing with humans day in, day out,
and some empathy with them will go a long way.

Lifestyle: Perception/judgment

The final scale indicates a preference between a person’s
perception mode vs. their judging mode. Obviously, every-
one does some mix of perceiving and judging. You can’t
judge until you've perceived. However, when a situation
doesn’t need immediate judgment, does a person like to stay
in perception mode or immediately move to judgment mode
regardless of need?

* The perception-focused person likes to continue gather-
ing input (either via sensing or intuition) and is OK with
the situation staying undecided until a decision really
needs to be made. They like to keep their options open,
seeing no need to shut off additional opportunities for
perception.

¢ The judgment-focused person likes to make a decision
(either via thinking or feeling) and move on. Once
they’ve perceived enough of a situation to make the call,
leaving the situation open is just a source of stress.

This scale can be tremendously frustrating when two people
don’t recognize that they’re on different ends of this prefer-
ence. Let’s say your manager falls on the judgment side, and
you fall on the perception side. Your manager wants a deci-
sion on a certain technology to bring into the product. You'd
rather keep it open since there’s no immediate need to pick
one vs. the other, and more time means more experience
with the technologies in question.

Your boss gets frustrated, not understanding where you're
coming from. He may consider you a slacker. He may lay
down an artificial deadline. You, in turn, get equally frustrat-
ed. You think he’s getting authoritarian. You think he’s
rushing a decision.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

140 ¢ Chapter 4. Teamwork

Really, all that’s going on is a difference on the lifestyle scale.
In a perfect world, you'd both recognize your different
temperaments and compromise on making a decision time-
line that gives you your perception time but still closes the
decision before your manager gets overly stressed.

Common Combinations

If you think about the stereotypical programmer, all logic
and no heart, you'd think of IST]: introverted, sensing,
thinking, judgment. In fact, this is the most common combi-
nation for men in the United States, with an estimated 14 to
19 percent falling in this category." The second-most common
combination is EST] —the extroverted guy with all logic and
no heart—comprising another 10 to 12 percent of U.S. men.

The women aren’t dramatically different. ISF] is most com-
mon with 15 to 20 percent, replacing the guy’s thinking
manner of judgment with feeling. ESFJ is another 12 to 17
percent. Sensing and judgment are most common across
both sexes.

If you fall into one of the common categories, good
news—odds are you won’t have much trouble relating to
the person next to you. On the other hand, if you're one of
the outliers, recognize that early and understand that you'll
need to put extra emphasis on relating to other personality
types. Also, recognize that you may have a unique perspec-
tive on things —you may truly be the only person in the room
who responds to a situation in the way you do.

Actions

Take the Myers-Briggs Type Indicator assessment. The test
needs to be administered by a qualified tester. Your compa-
ny’s HR department may foot the bill—ask your manager.

See whether any of your friends have taken the MTBI assess-
ment. Take your best guess before they tell you their
type—were you right? Some of your friends might surprise
you. If so, are there any clues that you should have picked
up on? Try to figure out, for example, how to tell an expres-
sive introvert apart from an extrovert.

4. http://www.capt.org/mbti-assessment/estimated-frequencies.htm

http://www.capt.org/mbti-assessment/estimated-frequencies.htm
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Connectthe Dots * 141

Tip 22

Connect the Dots

[Brown Belt] It takes a while to observe the
connections between people. Further, you're
best served by focusing on tasks when you're

new to a job—influence will come later.

In Chapter 5, Inside the Company, on page 155 we discuss the
formal authority of people, that is, how they're structured
on an organizational chart. The real dynamics of influence

are often different. The connections between people exert
influence in ways that are hard to gauge when you're new
to the team, and you won't find a diagram of them on the
human resources website.

Let’s consider the charts in Figure 7, Formal and informal
connections, on page 142, where the top shows the formal
connections between people in a fictional engineering depart-

ment and the bottom shows some informal connections.
Formally, Alice is the big cheese, Bob and Cathy are frontline
managers, and the rest are programmers, testers, and so on.

Over time you’ll discover the informal connections: Alice
and Bob worked together at two prior jobs, so they have a
strong bond of trust based on that experience. Holly, Ian,
and Emma go out to lunch together every week, so they
have a bond of friendship.

Dr. Karen Stephenson’ studies these connections in a corpo-
rate environment. She goes into an organization, interviews
its employees, and diagrams all these informal connections.
Dr. Stephenson found that people tend to cluster, and there
are key connections between clusters.

Some people are hubs that have connections to a lot of others.
In our example, Frank is a hub—even though he’s just a
programmer, he has a lot of pals. Being a hub makes Frank

5. http://www.drkaren.us/

http://www.drkaren.us/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

142 ¢ Chapter 4. Teamwork

Alice (Director)
|
| |
Bob (Manager) Cathy (Manager)
| |
| | | | | |
Dave Emma Frank Gerard Holly lan
worked together at

two prior jobs

_(athy

Frank

Gerard Dave

go out to lunch
on Tuesdays

Figure 7—Formal and informal connections

an important connection point between the two teams since
he has pals on both. Perhaps Dave gets stuck on a problem
that Holly solved a week ago; Frank is the person who would
tell Dave, “Hey, you should chat with Holly; I think she
could help.”

Another type of connection is the gatekeeper, a person who
has a strong and unique connection to a key figure. Bob is
a gatekeeper to Alice. Because of their long-standing profes-
sional relationship and Alice’s lack of strong ties to others,
Bob has a lot of informal pull with Alice—much more than
his title would imply. Let’s say Cathy is trying to start a new
project within the department, but she knows it will be
costly. She would be wise to convince Bob of its value
because if he goes to Alice and says “Cathy has this great
idea...,” that carries a lot of weight.

The final connection is what Dr. Stephenson calls a pulse-
taker, one who's on the periphery but knows a lot about
what’s going on. Dave could be a pulse-taker, because he’s
pals with both Bob (the gatekeeper) and Frank (the hub).

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Connectthe Dots * 143

Dave’s conversation with these two gives him a big-picture
view of the department that neither Bob nor Frank have
themselves.

If this sounds like high school all over again...well, it sort
of is, because these connections are the normal social dynam-
ics of any group. (Fortunately there’s no homecoming dance
to fret over.) What this means to you is that your co-workers
have influence in ways that aren’t obvious on your first day.
An awareness of people’s informal connections can give you
insight —and eventually influence —even though you're low
on the org chart.

Actions

Try your hand at playing Dr. Stephenson: start with the org
chart as it exists formally. This may be on the company
intranet, or you could ask your manager to draw it on your
whiteboard.

Now ignore the org chart and start making a chart of connec-
tions. Mentally take note of day-to-day interactions like
these:

* Groups of people who go out to lunch together.

¢ The folks who chat around the coffee pot in the morning,.

¢ That one guy from the coffee pot group who then wan-
ders cube to cube with his coffee, chatting with anyone
he catches. (Every office has that guy.)

¢ The two programmers who always wind up at a white-
board debating technical issues.

¢ The person your manager goes to when he’s pissed off
and needs to vent.

Based on these connections, can you identify any hubs,
gatekeepers, or pulse-takers? I don’t advocate using this
knowledge to subversively try to exert influence—leave that
to the salespeople —but rather use it in a constructive man-
ner. For example, if you're stuck trying to figure out how to
deploy code to a server and you don’t know where to start,
ask someone you've identified as a hub. They may not know
the answer, but it’s very likely they’ll know who does know,
and they can introduce you.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

144 * Chapter 4. Teamwork

Tip 23

Work Together

[White Belt] Your effectiveness as a program-
mer is, to a degree, gated by your ability to

work with your team.

In most cases, you'll be one programmer among several,
and like rowing a boat, the sum of efforts depends on every-
one rowing the same direction. This is trite and easy to say.
In practice, coordinating a programming effort is less like
rowing a boat and more like herding cats.

Good programmers are opinionated and strong-willed. Ask
any two programmers to solve a problem, and they’ll solve
it differently. Yet the product depends on several (or many)
programmers working together and creating a cohesive
whole.

Divide and Conquer

The average product requires many talents, and every
programmer has unique skills, interests, and expertise.
Understanding what you bring to the table is essential to
contributing the most to the product.

When you're just starting out, your industry programming
experience is zilch, but you have enthusiasm. OK, let’s work
with that. Is there a part of the product nobody else has
experience in, either? This is usually in the gnarly parts; a
common example is software packaging and field upgrade.
It’s a hairy mess, and nobody wants to touch it. It sounds
like a good place to dig in and earn your stripes.

Taking on gnarly problems is how you build your expertise
and credibility within the team. Sticking with easy parts of
the project doesn’t. (Balance this, however, with some early
wins, as discussed in Tip 17, Be Visible, on page 110.) Look

for credibility builders when the team is divvying up work;

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Work Together ¢ 145

where is an unmet need that you can tackle? Consider the
following group planning meeting:

Manager: Any volunteers for the 3D flying icon rendering tool?
Dave, Emma, Frank (in unison): Me.

Manager: Now what about the part that imports 1986-vintage
DXF files and converts them to our current format?

(crickets chirping)

You: If1 take the lead on this one, can someone back me up if I get
stuck?

Frank: I wrote some DXF stuff a long time ago, and then my cat
choked on the floppy disk containing the code, and I'm still very
upset about that, but I should be able to help.

You: OK, I'll take it.

Now you have a gnarly project and also saved Frank—who
would have gotten the assignment otherwise—from a
month’s worth of lament over the fate of his cat.

Pair Programming

Sometimes you set out to tackle a problem and it tackles you
instead. No worries, it happens to all of us. Pair up with
another programmer and try again. Often, a second set of
eyes and a fresh perspective are all it takes to make the
breakthrough you need.

Pair programming is effective enough that some teams always
pair, one typing and the other observing and commenting.
Other teams will work individually and pair only when
someone gets stuck. I'll sometimes do a hybrid, with each
person on a laptop in a common area, each attacking a dif-
ferent aspect of the problem.

If your team doesn’t have an established practice for pairing,
it's usually easy to get some time from a co-worker. Here
are a couple tips:

* Try to find someone with experience in the area you're
working in. (“Frank, I heard you know a thing or two
about DXF. Could you watch over my shoulder for a
bit and advise me on this gnarly part of the DXF
importer?”)

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

146 ¢ Chapter 4. Teamwork

¢ If you need more than a few hours of time, run it by
your manager. (“Can I borrow some of Frank’s time?
I'm in a tough spot and could use his help.”)

The only unacceptable practice is floundering on your own,
not asking for help. Yes, some problems require tedious
investigation that takes a long time. Recognize, however,
when you’'ve gone past the point of diminishing return and
it’s time to get another set of eyes on the problem.

Concentration and Interruption

Collaboration necessarily involves both dividing work
between individuals and working together. In most teams,
this is a fluid thing, with unpredictable mixing of alone time
and collaborative time. It's where those meet that can cause
friction.

In programmer-speak, the “context switch overhead”
required to flip between modes can be very high, depending
on the person and the task at hand. Programming often
requires intense concentration, and getting into that state—
the flow or zone—takes time. This is why some companies
give programmers offices to minimize interruptions.

On the other hand, collaboration requires interruption. This
is why other companies put programmers in a large, open
room to maximize collaboration. Both philosophies have
truth to them, but you need to be conscious of the interplay
between concentration and interruption to perform well in
either environment.

First, when another team member is “in the zone,” try not
to bug them. Closed office doors or headphones are a good
clue. When you need some in-the-zone time, turn off email,
instant messaging, and your cell phone. If your company
culture allows it, work from home or a coffee shop.

Second, get used to interruptions. There’s tremendous value
in collaboration, and shutting your office door shuts you out
of the interactions going on around you. There are a number
of productivity techniques you can use to minimize the
impact of interruptions; Getting Things Done [All02] is a good
place to start.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Work Together ¢ 147

My very best working environment was precisely what most
programmers dread: a low-wall cube in the middle of the office.
I'was a couple years into my career, and I wanted to sit with the
main software team, so when a cube opened up—any cube—I

grabbed it.

My new cube was right in the middle, by a common area. Inter-
esting conversations would pop up, and I could participate
effortlessly. I got involved with many parts of the product,
gaining tremendous expertise and credibility very quickly. As
it happens, the easiest way to get in the middle of things is to
physically get in the middle of things.

I've been on the opposite end of the spectrum, too, working in
my basement office a thousand miles away from the rest of my
team. That was the worst job of my career—no matter what, I
couldn’t get into the action and participate in the design of the
product.

Americans value the corner office with the window, but my own
experience says the Japanese have it right: the most prized loca-
tion—the location with the most influence—is the one in the
center of things.

Actions

Here’s an easy one: most of what we’ve been talking about
boils down to talking. If you're in an office, make it a point
to chat with another programmer each day. Coffee, lunch,
and —in start-ups—dinner should provide ample opportu-
nity to chat. If your company is physically distributed, get
on instant messaging or the phone at least once a day.

The other part is dealing with interruptions. Take a survey
of some productivity techniques —ask your co-workers, read
some blogs, check out David Allen’s book®—and pick one
that you think meets your needs. Try it for four to six weeks;
that’s how long it takes to establish a new habit. If it’s still
more hassle than it’s worth after that time, chuck it.

6. Getting Things Done: The Art of Stress-Free Productivity [Al102]

report erratum -« discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

148 ¢ Chapter 4. Teamwork

Tip 24

Meet Effectively

[White Belt] You'll get invited to meetings
from day one, so this is stuff you can use early
—especially the bit about toilet flush timing.

Many consider meetings the bane of productivity; nowhere
else can so many people waste so much time together. This
isn’t entirely untrue. However, meetings are necessary, and
some are even productive.

The theory behind meetings is simple: decisions need to be
made, so get the right people in a room, hash out the issues,
and make a decision. In terms of “communication band-
width,” there’s nothing more effective than a face-to-face
talk. Email isn’t very expressive and has high latency. Phone
calls are somewhat more expressive, but it’s easy for people
to zone out. I've never been impressed with video confer-
ences. Face-to-face is definitely the best way to communicate.

If talking directly with people is so effective, then, where do
the meetings of endless tedium come from? You know, the
cross-functional task forces on employee productivity? I sat
through a meeting where twenty managers were involved
with this critical question: do we discount some machines
that have scratched covers, or do we spend the money to
repaint the covers? Consider the cost of twenty managers’
salaries for a fifteen-minute debate about paint. How much
does a can of spray paint cost?

You'll be involved in some stupid meetings; just accept that.
However, you can help keep meetings productive and, I
hope, set a good example for others.

Having a Purpose

When you're invited to a meeting, consider what the orga-
nizer is trying to get out of the meeting. Ideally that’s stated
clearly in the invitation. Most often it’s not.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Meet Effectively * 149

Meetings used to be a lot more productive back in the 1990s
when most people used desktop computers instead of laptops.
Now, you'll get twenty people in a room and nineteen of them
have their laptops open, checking their email or surfing the Web.
Usually a handful of people will dominate the meeting with
some trivium, and there’s no incentive for them to care about
wasting other people’s time because the other people aren’t
paying attention anyway.

Some companies have recognized this and instituted a “no lap-
tops in meetings” policy. It’s a good idea, because when you get
twenty people in a room with nothing but pen and paper to keep
them entertained, they have incentive to get business done and
get out of there.

Of course, there are valid exceptions: code reviews, product
demos, and the like. The litmus test is that the laptop must make
the meeting more efficient rather than less.

Let’s say you're invited to a “cross-functional planning

meeting” where you're supposed to “coordinate project
activities” with other departments. That sounds like a noble
cause, but what do people actually have to do? You can encour-
age a clearer purpose by asking the meeting organizer
one-on-one, either in person or in email:

e Can you clarify the desired outcome of the meeting?
* What do I need to prepare ahead of time?

Don’t be a smart-ass about it; keep your tone constructive.
Remember, the organizer may not be responsible for this
meeting monstrosity; they may be doing it just because they
were told to do it. Your polite inquiry about outcomes and
preparation will ideally nudge them to send out a real
agenda.

Obviously, if it’s you calling the meeting, ask yourself these
questions ahead of time and use the answers as the basis for
your agenda.

Having the Right Audience

Given a purpose, the other key ingredient is having the right
people in the room. If you're looking for information, who

report erratum -« discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

150 ¢ Chapter 4. Teamwork

has it? If you need a decision, who has the authority to make
it? If it's a cross-functional task force, what functions do you
forcefully want to cross?

You won't have much influence over the audience of other
people’s meetings, but you do have some control over your
attendance. Don't just skip it; that’s disrespectful. Instead,
if you're invited to a monster meeting that you don’t think
you can contribute to, ask the organizer (again, one-on-one)
if you need to attend.

Keep It Constructive

When you're in a meeting that devolves into whining and
complaining, ask yourself whether can you nudge the con-
versation in a constructive direction. Here’s an example:

Dave: The web servers can’t handle that kind of load; they suck.
Emma: No kidding, and the database server sucks, too.
(blah blah blah... more complaining here)

You: Is there another way we could solve the problem, like caching
more pages to reduce the load?

You don't have to come up with something brilliant; you
just need to steer the conversation toward solutions rather
than griping about problems. Programmers are great at
dwelling on problems because, frankly, it’s easy. Coming
up with solutions—even if they don’t pan out—requires
talent.

Conference Calls

When meeting attendees are scattered over the globe, com-
mon practice is to get people on a conference call. There’s
nothing very special about these calls, but a couple tips may
help. First, keep in mind that most people on a call are not
paying full attention. If you need to ask someone a direct
question, give them some lead-in: “I want to ask about our
test suite. Bob, can you tell me about...” Assuming Bob is
the test suite guy, that gives him a heads-up before you get
to the meat of your question.

Second, mute your phone when not talking, especially if
you're not paying full attention —it takes only one toilet flush
to completely derail a call. (While I've never been guilty of

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Meet Effectively * 151

the toilet flush myself, have “attended” boring conference

calls while laying in the bathtub.)

Actions

Try playing the role of meeting organizer. Surely, there’s

something about your project that could use feedback from

others in the company. When you have something worth

meeting about, try this:

1.

Schedule the meeting for no longer than you think you
need, even if it’s just fifteen minutes.

Invite only the people you think need to attend; don't
shotgun your address book.

Send out the agenda and the desired outcome one day
ahead of time.

When the meeting is over, it’s over—even if you didn't
use all the time you scheduled. Thank people for their
time and let them get back to work.

If appropriate, email meeting minutes to the attendees,
paying particular attention to any commitments made.
These “action items” let everyone know who’s on the
hook to do something about what was discussed in the
meeting.

Even if the attendees aren’t thrilled about going to another

meeting, they’ll be pleasantly surprised when you stick to

the agenda, get what you need, and let them go.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Part I1I

The Corporate World

CHAPTER 5

Inside the Company

One of my favorite children’s books is Richard Scarry’s What
Do People Do All Day? 1 still wonder that sometimes. As I
write this, for example, IBM has 426,751 employees.l What
do they do all day?

Well, let’s aim a little lower.

I'll be honest; you don’t need to know everybody. Many
programmers never venture to the other parts of the build-
ing; they saw the “Now Entering Marketing: Two Drink
Minimum” banner and thought it best to turn back.

That said, a master (and master-to-be) programmer benefits
tremendously from a more-traveled perspective. Marketing
and sales can tell you all about customers and how the
product is selling with them. PR can tell you how the press
is responding. Support can tell you what customers are
complaining about.

This chapter has only two tips, but they’re meaty ones:

* Tip 25, Know Your Peeps, on page 157 starts on your home

turf. There are lots of roles within the engineering
department besides the programmers. This tip covers
the common ones and gives a few pointers on how to
snag one of those roles for yourself.

* Then it’s time to steel your confidence and trek into the
lands previously unknown. Tip 26, Know Your (Corporate)

Anatomy, on page 163 gives you the major landmarks

outside of engineering: Where do press releases come

1. http://www.ibm.com/ibm/us/en/

http://www.ibm.com/ibm/us/en/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

156 ¢ Chapter 5. Inside the Company

from? Who keeps the lights on? And why do I keep
hearing that the sales guys have all the fun?

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your Peeps * 157

Tip 25

Know Your Peeps

[White Belt] You need perspective on your

peers (and their roles) very early in the job.
Programming is sometimes a solo activity, like the coding
cowboy who gets to call all his own shots. But for the vast
majority of the time, it’s a team of programmers building a

product together, and you’ll need to work in cooperation
with others to be effective.

Roles

First let’s talk about who’s on your team and what they do.
These roles vary depending on the company, and there may
be specialist roles at your company that I don't discuss, but
they usually go something like this.

Programmers

When most people think of “programmers,” they think of
nerds with thick glasses sitting at computers and typing
industriously. While the glamour part is all true, the typing
part is only half true —there’s also a lot of nonprogramming
time required to shepherd a product to completion. There’s
bug hunting, testing, meetings, and other duties. These vary
tremendously depending on the organization and your
product’s development stage. (Hint: the bug hunt right
before shipping always sucks.)

In an organization with minimal overhead —that is to say,
programmers get to spend most of their time on design and
implementation—this is quite a fun role. You must already
be halfway convinced if you're reading this book. People
can, and do, spend their entire career in this role. Progressive
companies will pay super-senior programmers the same
kind of money they pay directors and vice presidents.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

158 ¢ Chapter 5. Inside the Company

There are lots of titles that go with this role: programmer,
developer, software engineer, firmware engineer, and so
forth. They're mostly the same. “Engineer” doesn’t mean
anything special in the software world, because there’s no
special qualifications for an engineer vs. a programmer. (This
is different in fields that have licensing requirements, like
civil engineering.) “Firmware engineer” is usually reserved
for people working on embedded systems and operating
system components.

If this is the role you want but it’s not your first job, don’t
despair—you can get here. New product development
requires experience, so it's usually necessary to prove
yourself in another role first.

Tech Leads

A technical lead is just a programmer with some official
blessing to call the shots on technical matters. Frequently a
team with five or more programmers will have a tech lead
who has expertise in the problem domain or a track record
of good leadership. This person is not, however, a manager
with the authority to hire or fire.

Since this role is usually earned within the organization —as
opposed to being hired in from the outside —tech leads tend
to have solid experience and sound judgment. You would
do well to ask one to mentor you, as in Tip 15, Find a Mentor,

on page 103.

To get to this role yourself, you have to pay your dues. It
usually takes several years of solid work and informal team
leadership to attain this role.

Architects

The architect title has two distinct meanings. In some com-
panies, the architect is considered an analyst who collects
product requirements and drafts a detailed design document
that other programmers are supposed to go implement. Then
the architect receives a hefty consulting fee and leaves.

In other companies, the architect is just a team lead —some-
one who has demonstrated a knack for leadership and
design. This architect sticks with the product through its

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your Peeps ® 159

development. There’s no free pass to create a design and
leave—he has to eat his own dog food.

There are additional titles that boil down to the same thing:
chief scientist, fellow, and whatnot. These honorifics are
generally bestowed on a very small handful of people at
large companies.

Managers

Now we're stepping outside the realm of technical leadership
and into the management ranks—the folks who do the hir-
ing, firing, and performance reviews.

Programming managers come in two varieties: those who
are managers by trade —we call these “people managers” —
and those who used to be programmers. Both have advan-
tages. Good people managers may not understand the
technology, but they do understand team dynamics, such
as how to hire the right team and get them working together
well. (My very best manager was a people manager.)

Managers who used to be programmers are a mixed bag.
Some of them, frankly, would rather be programming but
got promoted into management, usually because they were
good technical leaders. This kind of manager is great at
guiding you on programming issues, but you’'ll need to look
elsewhere for guidance on long-term career issues. You may
want to find a more people-skilled mentor to help you on
that side, as discussed in Tip 15, Find a Mentor, on page 103.

If you want to move into management, consider that you
won't program anymore; you'll spend your time on project
planning, personnel, budget, and so forth. It's a very different
job. However, if you have the people skills and you want
more authority within the company, management could be
right up your alley.

Testers

Testers are responsible, obviously enough, for testing the
product before it gets released to customers. However,
there’s a lot of ways to test a product and therefore a lot of
variation in how testers do their job. At the simplest, they
read the user guide and poke around in the user interface.
At more advanced levels, they write automation scripts and

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

160 ¢ Chapter 5. Inside the Company

programs to do the testing for them—theyre not that
different from programmers.

Testers and programmers often have an antagonistic rela-
tionship. Programmers can get offended when testers find
bugs, but the programmer needs to remember that a bug
found in-house is far better than a bug found in the field.
Testers can consider it a victory to find a bug, but the tester
needs to remember that bugs are not victories to revel in;
they are failures. Both roles need to remember that they’re
playing on the same team and share a common goal: to ship
a high-quality product.

Testing is a common job for inexperienced new-hires. If
you're in this role and you were hoping for a programming
job instead, don’t worry —testing has its plus side. You get
to see the product from the end user’s perspective, and this
perspective is easily lost at the programmer’s point of view.
When it comes to the company’s bottom line, end-user value
is the only value that counts.

To move into programming, the path is straightforward:
program your way out. Automate manual tests, build test
tools, and do anything that involves writing code. In every
company I've seen, testers who can program, without fail,
get sucked into programming.

Build/Deployment

Larger engineering organizations may have dedicated people
for builds and tools. These folks have highly specialized
skills with version control, automation tools, packaging tools,
and release processes. They also get very grumpy when you
break the build —one build master I worked with had a
tomahawk she named Bad Mojo, and you didn’t want to see
the two of them walking toward your cube.

Another related specialization is deployment. Products that
run on hundreds or thousands of servers require a special
level of care and automation to keep them running. These
people make sure that new code will deploy correctly, roll
it out in stages, and manage any problems that come up.
This may look like system administration on the surface, but
it's far more technical; the issues with staged deployment

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your Peeps * 161

(and possible rollback) with thousands of servers could
easily be more difficult than the application itself.

To put these technical specializations in perspective, consider
a company that operates servers at Google’s scale. Some of
Google’s most advanced software are tools to help program-
mers distribute workload across the cluster or work with
data at the petabyte scale.

Your Role on the Team

Your first job won't be chief architect of a new product.
You'll get grunt work because, from square one, you need
to start on small things before you'll be trusted with large
things. It’s a natural cycle as old as the craft trades; appren-
tices need to work their way up.

A manager of mine put it this way: if you're a silversmith’s
apprentice, you won't start on casting; you’ll start on some-
thing much less glamorous, like filing. You get cast parts
from the master and file down the rough edges. When you
have that down, you can try your hand at casting. Of course,
your first molds and casts will suck—meaning you’ll have
a lot of rough edges to file down afterward. Then you see
firsthand, ah-ha, the better I make the mold and pour the
cast, the less filing I have to do!

In the same way, the budding programmer may start on
something like testing. You'll have to tediously figure out
how to test various parts of the code to make sure they work.
Then when you get moved up to writing some code—along
with their tests —you’ll be motivated to write modular code
that’s easy to test. If you don't, it’s only yourself that you're
punishing.

So, don't get discouraged when you enter the workforce
with wide eyes and idealism, only to get some role you think
is crummy. You won't be there forever; you just need to
work your way to the role you want.

Actions

If you're not yet in the professional world, you'll have to file
this one away for future use.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

162 ¢ Chapter 5. Inside the Company

¢ Step 0: Get a job.

 Step 1: Go chat with some of your teammates and figure
out what they do. There’s often a difference between a
person’s title and what they do. Alice and Bob may both
have the title “software developer,” but Alice may be
the database expert and Bob is the Unix guru. Simply
introduce yourself and ask what someone is working
on; with some time, you'll figure out people’s specialties.

* Step 2: Based on what you’ve seen people in your team
doing, what looks the most interesting to you? Write
down what you want to be doing in a couple years.

* Step 3: Brainstorm some short-term actions you could
take to get you closer to your goal. Pick three and act
on them over the next six months.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy * 163

Tip 26

Know Your (Corporate) Anatomy

[Brown Belt] For your first year you don't
need to know what marketing does. Once past

that, it's time to broaden your perspective.

Like people, every company will have its own personality,
but they all tend to have the same basic building blocks. At
a technology company, engineering tends to have a medieval
view of their place in the corporate universe: “everything
revolves around us.” However, it’s important to understand
that engineering is just one part of the company; there are
parts that are just as essential to the company’s success.
“Now the body is not made up of one part but of many...If
one part suffers, every part suffers with it; if one part is

honored, every part rejoices with it.”*

The first step in figuring out your company’s structure is to
dig up an organizational chart. Look on the corporate
intranet for something that looks like Figure 8, Abbreviated
org chart, on page 164 and use that to follow along with the

discussion. Since we discuss the engineering organization
in Tip 25, Know Your Peeps, on page 157, it’s the one group

not covered here.

Along the way I'll include conversation starters that can help
break the ice with people in other departments. If you're
naturally social, you won’t need them. In all cases, improvise
away.

Administrative Assistants

This isn’t an organization per se but rather a role that shows
up in many departments. The assistants are assigned either
to busy executives or to groups, and they handle all kinds
of stuff: scheduling, event planning, answering/placing
phone calls, booking travel, and much more.

2. 1 Corinthians 12:14-26

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

164 ¢ Chapter 5. Inside the Company

Board of Directors

x0
(Executives)
l _______ -
| | T .
VP VP VP
Engineering Marketing sales (...more...)
Product Director, Inside Channel
Devel Test MarCom PR Product Sales e

' '
——dmcqr=—4==q rm—t==q r=—4-- e i
CTTITTAITTUTTAITTUTTAUTTUTTY Mgt pe e rm T

—t—

Admin Product Product
Assistant ~ manager manager

Figure 8—Abbreviated org chart

These are people you need to know because they can help
with all kinds of stuff when you're in a jam. Need to file an
expense report but can’t figure out how to submit your
receipts? Need to ask the CTO a question about your project
but her calendar is booked solid? Need to find a conference
room that you've never heard of before? There’s an AA who
can help.

Several times I've known an AA who was later promoted
to a position of relative power. Disrespect an administrative
assistant at your own peril.

Support

The first time a product goes out the door, the company
needs an end-user support team. As a programmer, you'll
need to help them do their jobs. The support tech gets a call
with some vague description of “the program crashed” or
“the website spits out an error,” and this may be the first
time the problem has been seen. Guess who’s job it is to dig
into the code and figure out what went wrong? Lucky you.

Support is usually broken into several tiers: tier one is
responsible for logging the customer’s problem, verifying
the customer has a support contract, and other (mostly)
nontechnical stuff. They may have a script of common
troubleshooting questions they run through. (Chances are

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy * 165

Industry Perspective: Not Just Administrative

Be sure to make friends with your administrative assistant (AA).
It may seem tangential, but that individual runs far more of the
show than you realize and is heavily wound into the fabric of
the company. AAs are largely ignored —especially by techies
—but you will run across them forever. Remember, they’re on a
job path too—an easy and good relationship now may well pay
huge dividends in the future. Help this along by showing up at
your AA’s desk at times other than when you need something.

—Mark “The Red” Harlan, engineering manager

you’'ve been on the receiving end of one of these scripts.
“Yes, 1 tried rebooting my computer already!”)

Tier two and up is where the geeks live. When rebooting
doesn’t solve the problem, the call gets bounced to tier two.
While they may not have programming skills, they usually
have very good troubleshooting skills and lots of institutional
knowledge. “Oh, that error 96 usually means their frombaz-
zle driver is down-rev; we’ve seen that before.”

As a programmer, the best thing you can do to help the
support team is to make the product give them the details
they need to troubleshoot a problem. “Segmentation fault”
is not an error message the support person can work with.
However, a detailed message that the customer can email
to support is very valuable. Remember, if you don’t help
support troubleshoot the problem, some unlucky program-
mer —like you —is going to have to troubleshoot it.

Note that it’s easy for the support staff to get disillusioned
with the product they’re supporting. Understand their posi-
tion: they get calls all day long from people who are having
problems with the product. The people who are using the
product just fine don't call to say, “Just letting you know;
all’s good here, and I'm happy.” The support staff has a
skewed perception of the product’s quality. Don't let this
infect your outlook.

Conversation Starters

You may not need any conversation starters for support;
they may come beating down your door. Consider yourself

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

166 ¢ Chapter 5. Inside the Company

lucky if you get to start the conversation on your own terms.
Here are a few ways to open:

You: Hi, Iwork on [Product x]. What have you been hearing from
the field lately about it?

You might get an earful in return. Don’t feed the fire; instead,
follow with something constructive:

You: What are some ways the product could help make your job
easier?

Finally, if you make pals with a tier-two or three support
person, I suggest the following:

You: Would you mind if I sat in on a few calls or listened to some
recorded ones?

These folks are talking to end users of your product all day
long—wouldn’t you like to hear what the users are saying?
Keep in perspective, however, that these are only the users
who are having problems. Don't let it beat you down.

Marketing

Engineers tend to have a dim and distorted view of market-
ing. Most engineers also don’t know what marketing actually
does. Let’s fix that.

The overall goal of the marketing department is to influence
people’s perceptions about your company and the stuff it
sells. Those people include both customers and the press. In
a good marketing organization, the feedback from people
—the market —also drives the development of new products
and services.

Marketing Communications (aka MarCom)

This is what most people think of when they think of “mar-
keting.” MarCom does the advertising, the product
brochures, the logos, and so forth. The typical sarcastic
response to marketing communications is that they’re there
to put lipstick on a pig. But really their role is to put lipstick
on whatever the engineering team gives them. If it’s a pig,
then what choice do they have?

Another thing to keep in mind is that marketing communi-
cations wants to make the product look good to the customer.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy * 167

Your perception of the product’s value and the customer’s
perception of value are probably very different. Before you
complain that MarCom ignored the feature you spent a year
working on, remember that a lot of engineering features
aren't directly relevant to the customer; they're part of the
supporting cast that makes the end-user features possible.

Public Relations

Where the MarCom team is primarily interested in commu-
nicating to potential customers, the PR team is responsible
for talking with press and analysts. Chances are you won't
interact much with PR; however, you'll see their press releases
on your company’s website.

The press release will say lots of glowing things about, for
example, your latest product. There will be some made-up
quotes from executives and information on your company.
If you think the press release sounds corny, remember you
are not the target audience; it’s for the press.

To a writer at some industry trade magazine, press releases
are a constant stream of “here’s what happened today,” and
they’ll cherry-pick some to write about. They need tidbits
on what’s new and some quotes for emphasis. The press
release gives them this raw material. The writer (supposedly)
puts their own spin on it and voila! —news is made.

Product Management

This team’s role varies greatly from company to company.
A classic product manager is responsible for determining
market needs and specifying what the product should do
to meet those needs—this a product’s strategy. When engi-
neering gets the directive “the product needs to do [x],”
that’s usually coming from a product manager.

In the technology world, however, the product strategy is
sometimes determined by engineering management, and
the resulting product is pushed into marketing. In this envi-
ronment, the product manager sticks to more tactical tasks
such as supporting MarCom and sales.

Some product managers come from programming back-
grounds; this can be a uniquely strong role for a person
who’s skilled in building products and can see the technology

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

168 * Chapter 5. Inside the Company

Product managers document the customer needs and the prob-
lems—as opportunities—in the market. Engineers are “problem
solvers” and are quick to jump into solutions. Someone with a
marketing background usually realizes they should not cross
that line—a product manager needs to thoroughly understand
the problem without trying to solve it.

—Jim Reekes, product manager, The 280 Group

from the customer’s point of view. If that sounds interesting

to you, we'll discuss it further in Tip 33, Find Your Place, on

page 222.

Conversation Starters

Knowing a few people in marketing is the first step to under-
standing the customers you build products for. First and
foremost, know your product’s product manager. Here’s a
simple intro:

You: Hi, Iwork on [Product X]. Can you tell me some of the ways
customers use the product?

Don'tjust talk about features; talk about customers and their
needs. Product managers get frustrated by engineers who
endlessly talk about features without understanding the
customer first.

MarCom folks are promoting the product, so ask about that:
You: What's the next marketing campaign you're working on?
Or perhaps:
You: How do you think our customers perceive our company?

In the case of PR, substitute “the press” in place of customers.

Sales

At first glance, it would appear that salespeople are mostly
skilled at looking good in suits. Get to know them better,
and you’ll find they’re also good at drinking and eating
steak. For this reason, when you're at a trade show and it’s
the end of the day, go find a sales guy chatting up an important

report erratum - discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy * 169

Marketing Is You, Too

There may be a whole department at your company called
“marketing,” but the truth is, everyone at the company represents
the company. When you're at a trade show wearing the company
logo, you influence your company’s image with everyone you
meet. When you're in a mailing list conversation about some
programming nugget and your email address ends with your-
company.com, you influence your company’s image with everyone
who reads that email.

In all those interactions, do you project the image you should?
You're a professional, and your image should reflect that.
Whatever strife or arguments you may have within the company,
leave that out of your dealings with the outside world. While
programmers get paid to write good code and not to look pretty,
the company still expects you to act like a pro while representing
them.

customer and get into the conversation. That way, he’ll invite
you along, and you’ll get to drink and eat steak on his ex-
pense account.

The nature of sales depends a lot on the company’s products
and business model. If your company sells direct to cus-
tomers, you may have a direct sales team that does just that.
Many companies sell through distributors or value-added
resellers; thus, they’ll have a channel sales team to manage
that business. Other companies may have a business develop-
ment team that develops more strategic relationships with
other companies.

In all cases, if you wonder what motivates a sales guy, find
out about his compensation plan. Most all salespeople make
meager salary but have big financial incentives tied to their
performance. It’s not that the sales guys are a bunch of
money-grubbing scoundrels, it’s that they have to bring
home the moolah, or they’ll wind up making less than a
McDonald’s fry cook. If your contribution to the company’s
top line could be measured so readily, the company might
motivate you in a similar manner, too.

Sales performance, as with company performance, is usually
tracked by quarter and by year. Don’t screw with a sales
guy near the end of March, June, September, and December.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

170 ¢ Chapter 5. Inside the Company

On the flip side, if you're asked to talk to a customer or give
a demo and you help the sales guy land a deal, you'll have
a pal for life (or at least until next quarter).

Conversation Starters

Salespeople are the easiest people in the world to start a
conversation with. You probably won't have to say a word;
they’ll start the conversation for you —it's what they do best.
In the rare case that you need to take the initiative, here’s
one surefire way:

You: Want to go out for a beer?

I'm joking, sort of—just introduce yourself and ask how
sales are going this quarter. Also ask what parts of the
product are most compelling to customers. Programmers
focus on what’s cool; the sales team can tell you what cus-
tomers really pay for, which may be very different.

One thing to keep in mind is that talking to the average
salesperson requires some bravado. They speak boldly and
confidently —again, that’s what they do best—so it's easy
for them to dominate the conversation. If you're not so out-
going, toughen up and don't let their bluster intimidate you.

Information Technology

Known by many names: information technology (IT), man-
agement information support (MIS), and so forth. These are
the people who manage the company’s computing infras-
tructure: the computers and network. This work varies from
simple (keeping inventory) to very hard (tuning a clustered
database). If your company’s product is a computing service,
for example, cloud compute hosting, then you may have
separate groups for general company IT needs and product-
specific IT.

Note that the role of Unix system administrator has a history
and lore to it. The role, epitomized by the Bastard Operator
From Hell (BOFH’), is a cantankerous uber-sysadmin who
will pOwn any luser who gets in his way. Unfortunately, the
BOFH is much less common these days, having been
replaced by more point-and-click Windows sysadmins.

3. http://en.wikipedia.org/wiki/Bastard_Operator_From_Hell

http://en.wikipedia.org/wiki/Bastard_Operator_From_Hell
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy ¢ 171

They're too weary from pointing and clicking to be devious
and evil like the BOFH of the past.

If system administration is your first job out of school, be
careful not to get pigeonholed here. When you apply for a
programming job and what you have on your resume is
sysadmin, many hiring managers will trash your resume
before they notice your computer science degree.

Conversation Starters

First, make sure you understand one thing about the IT guy:
Unix or Windows. The easy way to tell is to look at their
bookshelves:

Unix:
GNU Emacs, DNS and BIND, sendmail...or no books at
all, just a tomahawk. (Warning: in the latter case, you've
probably dealing with a BOFH, so tread carefully.)

Windows:
Windows Server Administration, Active Directory Adminis-
tration, SQL Server Administration, and so forth (each
about six inches thick).

That established, here’s how you might chat up a Unix
sysadmin:

You: What's your favorite Linux distribution?
Or Windows:
You: Have you tried the latest PowerShell?

Obviously you'll need to improvise here for current technolo-
gies. Specifically, do not go over to IT and start whining
about the Internet connection or email server if you're trying
to make friends.

Facilities

You'll see people from the facilities team roaming the
building on a regular basis. You'll need their help when
moving offices or cubes, and they’re also the folks to contact
when a toilet is flooding and threatening to take out the
server room. Every facilities guy I've met has been gruff and
grumpy on the outside, and you can understand why: all

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

172 * Chapter 5. Inside the Company

day long they get calls about toilets flooding. Wouldn't you
be grumpy too?

However, the same grumpy facilities guys I've known have
also been very laid back once I got to know them. Just be
cool and show them some respect. Why is it good to have
allies in facilities? For one thing, they’re much more likely
to “look the other way” when they catch you working on a
office prank. I was once standing on a conference room table
with a bunch of ceiling tiles popped out, with spools of wire
and tools at my feet, rewiring an office intercom speaker.
Our facilities guy, Yer, came wandering through:

Me: Hi, Yer, how’s it going?

Yer: Ummm... (puzzled look) going fine...anything wrong?
Me: No, no, not at all. You didn’t see anything here, OK?
Yer: No problem. (walks off)

Conversation Starters

Honestly, I've always gotten to know the facilities people
with a simple “Hi, how’s it going?” as I run into them.
They’re always wandering the building, so those encounters
come up often. Then you’'ll surely run into something truly
bizarre —fried squirrel in the building’s power transformer,
for example—and have a good opportunity for a real conver-
sation. Be sure to ask about the most bizarre thing they’ve
seen on the job.

Manufacturing

You'll have a manufacturing department only if your com-
pany makes hardware (obviously), and even then it’s likely
the manufacturing will be halfway around the world. You
may have a model shop in-house, however, for building
prototypes.

I enjoy making pals with the model shop folks, partly
because it’s tremendous fun to run a mill. Also, there’s
usually someone who can rework circuit boards with surface-
mount parts, which takes tremendous skill. If you work on
hardware, you will fry aboard, and these people can usually
fix it.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy ¢ 173

If you have manufacturing in-house, it’s likely you'll get
roped into debugging problems that show up on the assem-
bly line when a product enters production. It takes a while
to get the kinks worked out of building a new product at
production scale. Tip: during development of a hardware
product, you always write isolation tests for various hard-
ware components —leave those in, hidden if need be, because
they’ll be useful on the manufacturing line.

Conversation Starters

On manufacturing floors there’s a lot going on, and it can
be hard to not get in the way. Because of this, I'd ask your
manager to take you on a tour. Find the line lead for your
product and start with something like this:

You: I've always been curious how these go together. What’s the
hardest part about building this product?

I've found tremendous value in checking in with manufac-
turing from time to time. Little decisions from engineering
can have big impacts on the manufacturing floor; you might
be shocked at the stuff these guys and gals have to put up
with when building your stuff. You’ll uncover opportunities
for easy product improvements that can save manufacturing
a lot of hassle.

Human Resources

The first person you talked to at your company was probably
in human resources (HR). They do the legwork on setting
up interviews and moving the hiring process along. While
they don’t make the final decision to hire, they will tell the
hiring manager if you act like a jerk. Just follow along with
the process and be polite.

HR also manages the benefits package: your health insur-
ance, 401(k), and related stuff. Feel free to ask questions
about these things; they’re complex, and you need to under-
stand what you're signing up for.

The other duty of HR is to mediate the process of employee
conflicts. However, if you have a problem with a co-worker,
do not go to HR first. When HR is notified of a conflict, it starts
a process rolling that can spiral way past your intent. Talk
to the co-worker or your manager instead. When HR gets

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

174 * Chapter 5. Inside the Company

involved, that's when people start getting fired. The vast
majority of problems are best solved without going nuclear.

Of course, if the conflict is serious—harassment, violence,
that kind of thing —then it’s time to go to HR. Be aware that
many levels of management will get involved and jobs will
be on the line.

Conversation Starters

You won’t need any help here; HR will be your first point
of contact with a company, and they’ll also get you started
on day one.

Finance and Accounting

Now we're really getting outside the realm of your day-to-
day interaction. This domain gets very complicated very
fast, so I'll stick to the two-minute overview.

First, finance and accounting are two different things. Finance
is focused on the future: budgeting and securing money for
product development. Accounting is focused on the present
and past: how the business performed and where all the
money went.

Second, businesses don't treat money like you treat your
checking account. You can look at a receipt from the ATM
machine and know how much money you have in the bank.
A business, on the other hand, breathes money like a living
being —there is constantly money flowing in and out. The
accounting folks generate two key documents that show the
health of the company: the profit and loss statement that is a
snapshot in time of the company’s money, and a cash-flow
statement that shows more of the dynamic flow of money.

Why should you care? For starters, the executives are always
rah-rah-rah about the company’s potential, right up to the
“We ran out of money today” speech where everyone gets
laid off. The numbers from the accountants, however, don’t
lie (unless there’s some real shady stuff going on). Ask your
manager if you can see the P&L and cash-flow statements.
In a privately held company, you may not get to see them.
In a public company, they're freely available; it’s required
by law.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy * 175

I'll be frank; I don’t look at these documents often. It takes
education to make heads or tails of them, and if you want
to know how the product is selling, it’s a lot easier to ask a
product manager. The numbers, however, give you a raw,
unfiltered perspective on where the company stands, and
it's good to see them at least once.

Conversation Starters

Let me come clean; I have no idea how to start a conversation
with a finance person. I'm even friends with one. I'm not
sure how that happened.

On the surface, finance seems like the most boring job in the
world, and the finance folks know it. They usually can’t
articulate their attraction to the field. To a programmer,
though, there’s a parallel that might help you relate: a good
finance person understands the flow of money through a
company like you understand the flow of data through a
computer. Have you ever visualized the flow of a complex
program in your head? They do that with things like money
and credit.

I've failed you on a good conversation starter here, but trust
me, getting to know a finance person can be quite interesting.
Just don't ask them to help you with your taxes —that’s their
equivalent to “Oh, you're a programmer, can you help me
fix my computer?”

The Executives

Executives come in many flavors, and their titles vary
depending on the company. We’ll look at some of the most
common.

One thing to keep in mind is that these are the officers of the
company, which has some specific ramifications —especially
with companies whose stock is publicly traded —since they
are considered the ultimate insiders. For example, they can’t
sell stock except for very specific windows of time, as gov-
erned by the SEC.

Since the officers of the company give the orders, they are
also the ones who ultimately need to answer for any major
screw-ups. The “I didn't know” excuse doesn'’t fly since

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

176 * Chapter 5. Inside the Company

they’re supposed to know everything that’s going on. These
are high-stress jobs.

Chief Executive Officer (CEO)

The CEO is the big cheese; decisions from here cannot be
over-ruled. The CEO is responsible for the company at a
strategic (big-picture) level and ultimately the company’s
success.

I've observed two main types of CEOs in high-tech compa-
nies: the founder and the numbers guy. The founder is one
who has been with the company from the start and truly
“gets” the vision of the company and its products. If the
company was funded by venture capital, chances are this
founder will get ousted within two to five years. The
numbers guy comes in second. He’s known for execution
(delivering product, making money) and generally doesn’t
give a damn about vision or products—he’s there to make
sure the investors get their money’s worth.

Both styles have their advantages. Obviously the founder
CEO is more inspiring to work for. The numbers CEO is
going to be more reliable for making sure your paycheck
doesn’t bounce. Personally I prefer to take my chances with
the founder.

If you get an opportunity to talk with the CEO, by all means
take it. Most CEOs who are worth anything are curious to
hear how things are going in the trenches—they’re so busy
with the other executives that it’s a rare opportunity for them
to get the lowdown directly from a programmer.

Chief Technology Officer (CTO)

This is the lesser-cheese but the most important one to you.
The CTO is responsible for the company’s technology devel-
opment. She can be execution-oriented or may be more of a
visionary; again, both have their benefits.

I highly recommend talking with the CTO at some point;
just email and say you'd like a bit of her time to chat when
she’s free. Ask about where she sees the company’s
technology going and where the market is going. In turn,
the CTO will probably ask you how things are going in the

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy ¢ 177

trenches. Be honest, and maybe brag a little about something
cool you've done lately.

One thing to beware: most CTOs came up through the
ranks—they’ve been programmers before—so don't try to
B.S. this person. Just tell things straight, even when it’s not
good news.

Chief Information Officer (CIO)

Not all companies have a CIO. This executive is responsible
for all the information within the company, not product
development. The CTO is about product, the CIO is about
information. For example, if you have massive databases
that contain hard-won proprietary info (say customer or
financial data), the CIO is responsible for protecting it and
using it to the business’s full advantage.

If you're working on a data mining project, chances are that
came from the CIO. Most companies don’t have a problem
with collecting data—they can collect data at a prodigious
rate. The problem is making sense of it. This sometimes goes
by the name of business intelligence, and if you're good at
statistics, you could become the CIO’s hero.

Chief Operations Officer (COO)

Operations is all about getting stuff done. It’s one thing to
have great ideas or great data; it’s another thing entirely to
keep a whole company running smoothly. The COO is
responsible for the day-to-day operations of pretty much
everything. A good COO can take a lot of burden off the
other executives, freeing the CEO to focus on business
strategy and CTO to focus on product strategy. Without a
COOQ, they spend a lot of time just trying to figure out what
the heck is going on across the company.

Chief Financial Officer (CFO)

This is the executive who knows everything about the com-
pany’s money, both where things are at now (the accounting
side) and how they’re going to fund projects that are under-
way (the finance side).

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

178 ¢ Chapter 5. Inside the Company

Chief Legal Officer (or General Counsel)

All the companies I've worked at have had a general counsel
instead of a CLO. Same thing: this is the head lawyer. Most
any business arrangement that needs “the i’s dotted and the
t's crossed” will cross the general counsel’s desk.

You may interact with the general counsel to go over soft-
ware licenses. These days, it’s increasingly common to
integrate open source software when building a technology
product, and the sharp GC will ask about the licenses for
each component. It makes everybody’s life easier if someone
on the team tracks these (for example on a wiki page) for
easy reference when the lawyers come calling. If youre the
one who has been tracking licenses, you're the one who will
sit down with the GC (and probably CTO) to go over them
before the product ships. It's an easy opportunity to get
executive-level visibility.

Chief [x] Officer

There are lots of other officers who could exist at your
company: security, compliance, dog washing, and so on. For
these specialist roles you'll need to ask your manager what
they do.

Board of Directors

Not all companies will have a board of directors. Mom-and-
pop shops won't have one. When investors start to pile
money into a company, however, they demand some level
of oversight, and this is where the board comes into play.
In publicly held companies, the board is elected by the
shareholders.

The board isn't involved with day-to-day decisions; in fact,
they generally meet only once a quarter. The board meeting
is where the executives (company officers) present how the
business did last quarter and what they’re planning for next
quarter.

Since the board of directors is there to represent the share-
holders, most board members don’t work for the company.
They could come from investment firms (that is, strictly
money guys), or they could be executives at companies in
related businesses (that is, domain experts). The latter,

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Know Your (Corporate) Anatomy ¢ 179

especially, are there to provide advice to the executives and
also call B.S. if the company is doing something stupid.

If there’s one thing the CEO is scared of, it’s the board of
directors. If they don’t think the CEO is leading the company
well —in other words, protecting the investments and inter-
ests of the shareholders—they will bring in someone new.

Actions

Throughout this tour of the company we’ve encountered a
lot of people to talk to. Your assignment, should you choose
to accept it, is to go start some conversations with people
outside of engineering. Start close to home, with test and
support. Then branch out, for example with the product
manager for the product you work on. Before long you’ll
get introduced to plenty of others and discover the rest of
the org chart organically.

Along the way, keep in mind Tip 22, Connect the Dots, on
page 141. Notice how these connections spider throughout

the company —and you’ll discover why the administrative
assistants hold so much power.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

CHAPTER 6

Mind Your Business

Many programmers fear an MBA —the master of business
administration. These are people who will corner you by
the watercooler and tell you about seed funding, venture
capital, and stock option dilution. Run!

But the truth is, the master programmer has to know a thing
or two about business. Much like our investigation into
other roles within the company, it pays to understand the
context of your work: When is my product going to ship?
Who's going to buy it? How does the company make money
from it?

As a programmer, most of your contribution is toward the
product. This chapter, accordingly, takes a product-heavy
bias. Even if you program internal systems—for example,
the trading software used by an investment firm —you can
consider your software a product whose customers happen
to be inside the company.

I'm not looking to give you an MBA, of course. We'll cover
just the high points you'll want early in your career:

* We start with your first, most pressing issue: Tip 27, Get
with the Project, on page 183 focuses on practical advice

for estimating and scheduling your work. Time is
money, and the company tracks both closely.

* Tip 28, Appreciate the Circle of (a Product’s) Life, on page

189 looks at the product as it evolves over time. Your job

looks a bit different depending on where your product
currently lives within this cycle.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

182 ¢ Chapter 6. Mind Your Business

* Then we get into purely business matters. Tip 29, Put
Yourself in the Company’s Shoes, on page 200 addresses
what the company is doing and why we programmers

have jobs.

* Finally, something the MBA'’s b-school doesn't like to
admit, Tip 30, Identify Corporate Antipatterns, on page 203
points out some recurrent patterns of business gone

wrong.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Get with the Project * 183

Tip 27

Get with the Project

[White Belt] Before you write a line of code,
someone will be asking you how long it'll take.

“Are we there yet?”

On the family road trip, your dad may have quipped that
it’s the journey, not the destination, that you should focus
on. That’s not the case for your project manager.

It turns out there’s a lot of ways to answer that question.
Software projects are notoriously hard to estimate, and the
industry moves so fast that a product’s specification rarely
stays the same for even a month —this is why many teams
have given up on writing specs. So, the answer to “Are we
there yet?” is often something between “No” and “It depends
on what your definition of there is.”

Our industry has put considerable effort into estimating
software projects because there’s a lot of money at stake: the
company makes a gamble on each project, estimating how
much money it'll make vs. how much money it spends.
When the project schedule blows up, the company’s cost
blows up as well. Plus, there’s the cost of lost business. Plus,
opportunity cost...you get the idea.

The project manager’s job is to plan and execute the project.
This person knows what needs to be done and knows where
things stand right now. It’s not his job, however, to define
the project’s goals—that belongs to the product manager
and company stakeholders. It’s also not his job to manage
the people. To you, the project manager is the guy who
hounds you every week, asking “Are we there yet?”

Waterfall Project Management

The traditional method of managing software projects is to
manage them just like any other engineering project:

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

184 e Chapter 6. Mind Your Business

Many people confuse project and product management. They're
very different:

Project management is about scheduling and tracking. A project
is a planned undertaking with a goal; it is something that exists
in time with a distinct beginning and end.

Product management is about defining and marketing the things
your company sells. It has nothing to do with the actual building
of the product.

Write a specification.

Write the code.

Test the code against the specification.
Ship it!

Ll NS

This method is called waterfall based on the Gantt charts
used to illustrate it, as in Figure 9, Waterfall Gantt chart, on
page 185. (Real Gantt charts are often hundreds of tasks in
size.) This method of project management collects all the
tasks, time estimates for each task, and dependencies be-

tween tasks. Then it’s a straightforward matter to lay them
out and determine how long the whole project will take.

This style works well when the tasks are well-known and
there isn't a lot of risk in the time estimates. In other fields
of engineering, for example, building a road, the road engi-
neers have a good idea of what they need to do and how
long it takes. Likewise, if your team writes software to do
customer billing and it already supports five methods of
billing, adding another would be a project well-suited to
waterfall management.

The key advantage of waterfall is its predictability: everyone
has a shared understanding of what’s to be done, how long
it will take, and therefore how much it will cost.

Waterfall has a couple key vulnerabilities, too: first, when
new invention is involved, it's impossible to tell at the outset
of the project what tasks will be required or how long they’ll
take. Programmers must resort to guessing, and the com-
pounded effect of hundreds of guesses is a huge wild-ass
guess. At best.

report erratum -« discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Get with the Project * 185

write spec

staff project %

server code [1[1L
client code [
load test

verification test

shipiit! ¢

Figure 9—Waterfall Gantt chart

Second, waterfall leaves testing until the end. Technically,
that testing is supposed to be a verification test, and there
should be few surprises. It never works that way. In practice,
engineering gets slack on quality —especially whole-system
integration —because they assume the test phase will shake
out the bugs. However, finding and fixing bugs becomes
increasingly difficult as the software gets larger and worse
when it’s supposedly “done.”

Your Role

In a waterfall project, you'll be given some chunk of the
project requirements and then asked the following:

* What tasks does it take to meet the requirements?
¢ How long will each of them take?

The totally honest answer to both questions is, “I don’t know.”
But your project manager won't take that one.

You'll have to take your best guess. Try to communicate the
unknown factors as best you can. When almost everything
is unknown, communicate that, too. I suggest doing this via
email so you have a written record, in case someone later
claims you didn’t warn them of schedule risks.

When the schedule starts to fall apart—and it will —be sure
to tell the project manager as soon as you know that a task is
going to be late. The worst-case scenario for a six-month
project is to be five months into it before the manager realizes
there are another six months left to go. If you see the writing
on the wall at month three, speak up, at least to your direct
manager.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

186 ¢ Chapter 6. Mind Your Business

Agile Project Management

Programmers have questioned waterfall project manage-
ment—a defined process control model—for years. In 2001
crystallized it with the Agile Manifesto,' which issued a clear
challenge to reject our waterfall ways.

Agile is a form of empirical process control. The process is
started with whatever data you have, and then it'’s measured
while underway and adjusted based on those measurements.
W. Edwards Deming applied this style of process control to
manufacturing starting in the 1950s; his work was very
influential to the Toyota Production System, the manufactur-
ing process that Toyota used to become the world’s largest
automaker.

Agile starts with these assumptions:

* You can't specify anything more than about a month’s
worth of work, because you simply don't have enough
information to do it accurately.

¢ The product requirements change often, so rather than
resist that, just take it as a given.

* After-the-fact testing is wasteful; you should test from
the beginning.

“Agile” is an over-arching term for this approach. There are
many implementations: Scrum, Lean, and Extreme Program-
ming,” for example. For a big-picture view, refer to The Agile
Samurai [Ras10].

Central to agile is the concept of an iteration. This is simply
a regular unit of time, with a single day as its smallest unit.
Days are gathered into sprints (using Scrum parlance) of
one to four weeks typically. Some number of sprints are
needed to finish the features needed for a release. The itera-
tions can be visualized like the nested circles of Figure 10,
Agile iterations, on page 187.

1. http://agilemanifesto.org/
Agile Project Management with Scrum [Sch04]
Lean Software Development: An Agile Toolkit for Software Development
Managers [PP03]
Extreme Programming Explained: Embrace Change [Bec00]

http://agilemanifesto.org/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Get with the Project * 187

project
release
sprint

day

Figure 10—Agile iterations

Iterations in agile are opportunities for measurement and
adaptation. A daily stand-up meeting is used to check in,
across the team, each day. A sprint review is used to check
in with stakeholders, and that’s also the point where the
sprint’s software goals needs to be done. A goal may be very
small in scope, but it should be production quality —the
overall product should be potentially shippable to customers
that very day.

It takes a lot of discipline across the whole team to get to a
“done” that’s production quality. Done includes develop-
ment, integration, test, and documentation. The stakeholders
may not choose to ship to customers at the end of a
sprint—that’s the larger topic of release planning —but part
of the agreement in agile is that the product’s quality never
wavers.

Your Role

Working in an agile team is both demanding and rewarding,.
When you sign up for work, you'll still need to answer what
tasks are needed and how long they’ll take, but you're only
answering for a small period of time (usually one to four
weeks). At first you'll get it wrong, but you get quick feed-
back, so your ability to estimate will get better quickly.

When you consider your estimates, remember to include
test time. Ideally your team uses automated tests, so that
means more code you need to write. In my experience,
there’s about a 1:1 to 1:2 ratio between production code to
automated test code. That means your optimistic thinking
about the production code needs to be tempered by 100
percent to 200 percent to account for writing test code.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

188 ¢ Chapter 6. Mind Your Business

Finally, there’s one sure thing about each agile iteration:
when you finish one on Friday, there’s another one starting
next Monday. Sometimes you’ll need to work long hours to
meet your Friday commitment. Each time, however, learn
from the experience and make better-educated estimates the
next time. Long hours on a regular basis is a formula for
burnout. Agile projects sustain an intense pace because
you're held accountable to your commitments every couple
weeks, so strive for working a solid forty hours but rarely
more—those forty will be hard enough.

Actions

With this big-picture view of waterfall and agile, which style
best matches your company? If it feels like some kind of
hybrid —for example they use the term sprints but there’s
also a Gantt chart on the wall —then try to tease it apart by
thinking in terms of defined vs. empirical process control.

Next, keep track of how accurately you estimate your work.
You'll start by vastly underestimating. Use some empirical
process control to improve: measure and adapt.

Finally, if you haven’t met your project manager yet, go
introduce yourself!

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Appreciate the Circle of (a Product’s) Life ¢ 189

Tip 28

Appreciate the Circle of (a Product’s) Life

[Brown Belt] While you'll bury yourself in
small-picture tasks at first, understanding the
place of your project in the big-picture time-

line will become important to your daily
decision making.

Every product and service begins as a spark of inspiration
in somebody’s head. It's a long road between there and
version 1.0, and longer still to version 10.0. This tip will take
you on a tour of the life cycle for a product from a program-
mer’s perspective.

The big-picture of a successful product is circular, as in Fig-
ure 11, The product life cycle, on page 190. Someone starts with
a concept, builds prototypes, develops one into a product,
and then releases it. It's a wild success, of course, and the

company both maintains that product and starts developing
new concepts. Eventually a product’s time has passed, and
it goes end-of-life; in the meantime, the company has built
a stable of other successful products.

Not every product’s life cycle is quite so complete; Silicon
Valley is filled with the smoking craters of start-up compa-
nies that failed to get a product shipped or customers to buy.
But we'll take the optimistic route and discuss a product
with a long and healthy life.

Concept

In traditional product management, people research a market
and look for opportunities. The market is short for marketplace;
in practice, it’s a definition of your customer. Who do you
sell to? That’s your market.

Opportunities, then, are products or services your customer
is willing to pay for. At a market-driven company, they may
do interviews, data mining, trend analysis, and other stuff

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

190 ¢ Chapter 6. Mind Your Business

Developme

Figure 11—The product life cycle

that programmers generally find boring. Once they find a
new opportunity for ka-ching, a product concept is born.

For dreamers and programmers, on the other hand, the
concept phase goes the other way: a great product concept
is born in someone’s head; then they go looking for a market.
This way is also known as “a solution looking for a prob-
lem.” If there’s a market for the product, there’s nothing
wrong with this technique—in fact, it’s the way many dis-
ruptive technologies get created.

Your Role

Let’s say you have some cred and you’ve been invited to
join a team in the concept phase. What do the programmers
do when there’s nothing yet to program? Eat pizza and drink
beer while the marketing department figures things out?

I can’t argue with the pizza or beer part—take that if you
can get it. But to earn your keep in this phase, you need to
be evaluating each concept and figuring out what'’s actually
possible, lest marketing dream up something that would
require a quantum computer to actually build.

You can contribute concepts, too. The technology world is
constantly changing, and new concepts become possible as
aresult. For example, as computers have advanced in speed,
more and more has become possible in gaming industry
graphics. Text-based games gave way to iconic 2D graphics.
Static graphics gave way to dynamically rendered graphics.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Appreciate the Circle of (a Product’s) Life * 191

Our discussion here is about the product life cycle, which is dif-
ferent from the project life cycle discussed in Tip 27, Get with the
Proz'ect, on page 183. With waterfall-style development, the dis-
tinction is academic; there’s one project whose purpose is to
build the product.

In agile development, there’s an continuous cycle of iterations
that are smaller, fixed-length projects. What we're discussing in
this tip is a release rather than a project. Release planning is done
by the product owner.

2D gave way to 3D...each of these revolutions in gaming
started with some programmer saying, “Hey, now that we
have [x], I bet we could use that to do [y].”

Driving Spikes

Another important job in concept stage is what we call
driving spikes. It's a form of research where you go deep but
narrow, usually for the purpose of evaluating a new technol-
ogy or possibility. Say you've read about threaded network
IO vs. event-driven IO, and you want to know which would
be best for your web application. The only way to find out
is to try.

Driving a spike is different from academic research, because
you're not trying to become an expert in the field; you're
trying to answer a specific question. It’s not the same as
prototyping, because you're not building a whole product
mock-up, just a small piece.

You may need to drive a spike at any time in the product
life cycle, but the concept phase in particular is where you
have a world of options open to you, and it’s your job to
figure out which are feasible and which are not. It’s also
possible you'll discover something unexpected and create
a new concept from it.

Finally, when you’re new and have a lot to learn, driving
spikes is a great way to get some experience. Say you've
read about threaded vs. event-driven network IO, but you
haven't written any networking programs before. While the
rest of the team is evaluating product concepts, ask your

report erratum -« discuss

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

192 ¢ Chapter 6. Mind Your Business

manager for some time to drive a spike on networking. Then
bust out the books and get busy.

Prototype

A concept may look great on paper, but a working prototype
is where it comes to life. The purpose of the prototype phase
is twofold: first, it’s to teach prospective customers (and your
company’s stakeholders) what the product will do. This is
great for getting market feedback, promoting the product
ahead of its release, and showing your financiers that you're
doing something useful with their money.

The second purpose is learning how to build the real product.
It’s a fact of life that you always get some stuff wrong the
first time around; the prototypes are where you get to crash
and burn and then try again. Fortunately, in our industry,
the “crash and burn” part is usually only figurative. (I've
worked on hardware projects where it was literal.)

Sometimes products get killed at the prototype phase
because, with prototype in hand, it becomes clear that the
product isn’t compelling to the customer. It’s better to learn
these things sooner than later; assuming your company
wasn’t founded on this one product concept, you move onto
the next concept and start again.

Your Role

Now you definitely have to work to earn your pizza. Proto-
types need programming, with an emphasis on covering a
lot of ground fast. When you're junior, you'll probably be
working under a tech lead who is responsible for the overall
design of the prototype, but the lead will need help filling
in all the gaps. The prototype may be the digital equivalent
of cardboard and duct tape, but when the job requires a whole
lot of duct tape, junior engineers are often selected to help.

The best thing you can do is shadow the tech lead or archi-
tect—get the cube next to him, ask to move into his office,
whatever it takes to be right there. Your goal in prototype
phase is to bang out something quick, and that requires
constant communication with the rest of the team, especially
the lead.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Appreciate the Circle of (a Product’s) Life * 193

Development

After the prototypes are made and the executives have con-
fidence that the product concept has some meat to it, it’s
time to start building the real thing. This is where the project
staffs up, where plans and schedules are established, and
where you get down to the business of “real” programming.
You'll spend much of your career in this stage.

While prototype programming and development program-
ming both boil down to programming, there’s a critical shift
in mind-set. Your goals are longer-term, and shortcuts are
guaranteed to bite you in the ass later. This is code that’s
going to ship to paying customers, and they have assumptions
about product quality: it can’t suck.

Quality is a big enough topic that we cover it separately in
Chapter 1, Program for Production, on page 3. Likewise, the

processes used to manage development are covered in Tip
27, Get with the Project, on page 183.

Your Role

Now you have a pretty clear picture of what you need to
do, so it’s time to execute. We often speak of programming
as a craft and creative work, but you also have to deliver
what’s required for the product. If you're told to write the
installer, for example, it’s not going to require tremendous
creativity. To the contrary, that’s a pretty standardized task,
and “creative” solutions will get you into more trouble than
following established conventions.

Where established best practices exist, follow them unless you
really have a compelling reason not to (and I mean really
compelling). At the beginning, you won’t know where best
practices exist and where they don't, so think of it this way:
is your task something that has probably been done a thou-
sand times before?

Installer programs? Check, been done before.

In cases like this, go find a book —the company will pay for
it. Really, there’s no point in reinventing the wheel, not on
a commercial product. This mistake is common enough that
it has its own name: not invented here syndrome (NIHS). I
was at a company that invented a novel user interface for

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

194 e Chapter 6. Mind Your Business

A Steve Jobs mantra during the development of the Macintosh
was “real artists ship.”” The creators of the Macintosh had the
not-so-humble goal of making a dent in the universe, but they
knew that you couldn’t make a dent if you didn’t get the product
out the door.

Programmers are always tempted to add one more feature or
fix one more bug. We don’t want to let the product out the door
because we keep thinking of ways to make it better. Management,
on the other hand, always wants to ship one day sooner. Who's
right?

Both viewpoints make the product better. It's a maxim of the
technology world that version 1.1 of any product is what version
1.0 should have been. That’s true because real-world feedback to
1.0 drives the improvements in 1.1. There’s no shortcut; you have
to ship 1.0—warts and all—and let customers tell you what 1.1
should be.

a. http://c2.com/cgi/wiki?Real ArtistsShip
mobile computing (a worthy pursuit), but we also invented
our own operating system, our own networking protocols,
our own network, our own silicon to run everything on...the
result? A $200-million crater in the middle of Silicon Valley.

Instead of NIHS, focus your creativity on where your pro-
gram is different from the other stuff out there. Ask your
manager or peers: what’s novel about what we’re doing?
That’s where creativity pays off. As the new person, you
may not be assigned to work on the creative stuff —the senior
engineers have called dibs on that—but you can still play
with ideas and take some time to experiment. That’s showing
initiative, and most teams reward it.

For all tasks, novel or not, craftsmanship still plays a central
role. When you're plodding through the installer program,
following established conventions and not getting fancy,
you still have to get it right. That means paying careful atten-
tion to detail, thorough testing, proper integration with your
company’s release control process, and so forth. Use the
project as an opportunity to build cred as a solid engineer.

report erratum -« discuss

http://c2.com/cgi/wiki?RealArtistsShip
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Appreciate the Circle of (a Product’s) Life * 195

Release

Project managers have a saying: the software is done when
you rip it out of the programmer’s hands. Your team will
never be fully ready for release, but at some point manage-
ment decides they’re done waiting, so they rip it out of your
team’s hands and ship it. Have a party, drink a beer—you’ve
earned it!

While a product release might seem like a one-day event,
it's actually a huge logistical challenge for the entire compa-
ny: manufacturing (for hardware) gets their line going, the
deployment team (for websites) stages the rollout of the site,
marketing does a big push to get the message out, sales starts
booking orders, support responds to customer problems,
and so forth.

While that’s going on, you’ll have enough work within
engineering to keep you plenty busy. Your team will have
a release process that goes something like this:

1. (Before release) The build master or tech lead will use
the version control system to create a “stable” release
branch separate from the mainline code. There will be
some policy on the release branch to control changes,
usually requiring code review and sign-off from the tech
lead.

2. When the team thinks the release branch is ready, it’s
tagged as a release candidate, and someone does an official
RC build. This gets unique version number, something
like “1.0-RC1.”

3. The test department and possibly external beta testers
beat on RC1 and flush out bugs.

4. (Repeat these steps until management calls it done.)

5. The final release candidate gets one final change in
source control; the version number becomes 1.0, and
someone does the gold master build.

6. Ship it!

For web companies, the process is a bit more fluid, but the
same principles apply: branch the code to control changes,

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

196 ¢ Chapter 6. Mind Your Business

test the snot out of the branch, and then push the code to
the public-facing servers.

The final step is both a “we’re done” and a “we’re just begin-
ning” moment at the same time. Yes, version 1.0 was called
done and shipped. But as soon as the first customer starts
using the product, you start to respond to problems. (You
probably know of some looming problems already—no
product ships completely bug-free.) Congratulate yourself
on the “we’re done” part, but don't be surprised, or discour-
aged, when a day later it shifts to “we’re just beginning.”

Your Role

This varies depending on the kind of product and the size
of your company. In a small hardware company, you could
get recruited to help build the first batch of products. (I've
been there, actually soldering boards to fill a big order.) In
a web company, you may be on the hook to babysit some
of the servers, update their code, and watch to see whether
they barf.

I've never worked in a company where the release was a
“throw it over the wall” moment where everything was just
done and I could slack. As a junior guy, I was on the hook to
help support the rollout. As a senior guy, I'm on the hook
to go to trade shows and key customers to promote the
release.

To that end, you won’t need to look for where to help with
the release; it'll be obvious. Help where you can and figure
on some long hours. Consider it a bonding experience with
the team.

Maintenance

Up to now we’ve been talking about the product life cycle
leading to initial release. However, if a product drives a
healthy business, you don’t just ship 1.0 and call it done.
Customer demand fuels ongoing development of new ver-
sions of the product. For example, Microsoft Windows 1.0
was released in 1985, but it’s a product that has evolved
greatly over time. If Microsoft has its way, Windows will
never be done.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Appreciate the Circle of (a Product’s) Life ¢ 197

At this point the development cycle branches: part of the
company goes back to concept phase to develop the next
version of the product; another part takes care of the existing
customers. The latter part is maintenance phase. This is a
common job for junior programmers.

Maintenance takes various forms depending on the kind of
product you make. For hardware this includes support and
repair. It can also include feature-neutral product develop-
ment, either for cost reduction or because upstream parts
are no longer available. CPUs, for example, have a very short
life cycle, so hardware with embedded CPUs often needs to
be revised to use newer parts.

For software there are bug fixes and updates for compatibil-
ity. If you sell a Windows application and Microsoft releases
a new version of Windows, you may need to update your
software. Websites have the same issues—new versions of
web browsers come out constantly. Added to this, most
software products make use of upstream vendors, for exam-
ple for payment processing or server hosting.

A common complaint is “You have to run just to stay in the
same place.” It can be frustrating trying to keep pace with
the world changing around you—especially when you're
trying to keep customers happy and build the next version
of the product at the same time.

The Maintenance Life Cycle

The maintenance phase looks like its own mini life cycle:
you start from a concept, maybe build prototypes, develop
and test, and then release. The only real difference between
the maintenance phase and new product development is the
“new” part. Some maintenance efforts can include enough
features that the line gets very blurry indeed.

Your role doesn’t change much either way: you're still
building a product and releasing it to the world. In some
ways, incremental releases can be easier than 1.0 because
they’re smaller in scope. In other ways, they can be harder
because real customers have your product and you can’t
break something that is working for them today.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

198 ¢ Chapter 6. Mind Your Business

Your Role

Maintenance is a common training ground for new hires.
There’s usually less time pressure to get to the next release,
plus the senior engineers have already called dibs on what-
ever new project is spinning up. Thus, you get to maintain
the existing product.

Unlike the Maytag repairman, there’s always stuff to do on
software. Version 1.0 didn’t ship because it was perfect; to
the contrary, it shipped with a ton of bugs that your cus-
tomers are probably already raising a ruckus about. Most
likely, your primary responsibility will be bug patrol.

This is an opportunity to get to know the software and prove
you can work on it effectively. As you fix problems, docu-
ment the following in the bug-tracking system or version
control system:

¢ The bug should already contain detailed observations
about the problem. Elaborate in the problem description
if needed.

* Analysis of the problem; explain the root cause if possi-
ble. Sometimes this can’t be determined conclusively.
Do your best to explain your hypothesis and supporting
evidence.

¢ Explanation of your fix. This should include an overview
of code changes and any effects users might observe.

* How to test your changes.

This is simply the scientific method as applied to software.
Deliver on these points, and you'll quickly earn a reputation
for solid thinking and programming.

End of Life

Sometimes a product is just “done.” This could happen for
any number of reasons: the company goes belly-up, the
product is not profitable, the company replaces a product
with a new product, and so forth. This is a strategy-level
decision, which you may contribute to later in your career,
but for now it’s merely informational.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Appreciate the Circle of (a Product’s) Life * 199

For hardware, EOL is a fact of life; no hardware product
stays relevant for very long. For example, when Intel makes
a CPU, there’s little guarantee you'll be able to buy the same
CPU a year later—competition forces them to constantly
move on.

Software is a little fuzzier; usually software versions go EOL
but the software product as a whole continues with new
versions. Websites are the ultimate extension of this. They
continuously roll new versions, and unless the front end
changes, the user isn’t even aware of it.

Your Role

The EOL decision belongs to the executives —you’ll just come
into work one day and find out you're on a new project. (Or
out of a job, in the unhappy case where the company goes
belly-up.)

However, programmers aren’t always off the hook at EOL.
Your team may be tasked with helping the customer transi-
tion to the next generation of products. For example, Apple
set an excellent example with CPU transitions: in the 1990s
it switched CPUs from Motorola 68K to PowerPC, a com-
pletely different architecture. However, Apple included an
emulator that allowed customers to run their existing 68K
applications on PowerPC, thus giving their users several
years to upgrade their software. Apple did the same thing
in the 2000s, switching from PowerPC to Intel x86. Apple
programmed the customer’s pain out of migrating to new
hardware.

Actions

Now that you have a big-picture map, it’s time to figure out
where your product is at. Talk with your manager —or even
better, the product manager—about where they see the
product in its life cycle. Also, review the appropriate your
role section in this tip.

That established, where’s the product going next? And in
what kind of timeframe? This question is best addressed to
the product manager; if you don’t know that person yet, refer
to Product Management, on page 167.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

200 ¢ Chapter 6. Mind Your Business

Tip 29

Put Yourself in the Company’s Shoes

[Black Belt] Once in a while, you'll want to
mentally check in with the company’s big-
picture goals. Do you understand why and

where it's going?

Let’s say you've joined a company that’s setting out to
change the world. When your product ships, it'll revolution-
ize the way people communicate, keep track of their kids,
and do their laundry. That’s fine and good, but your product
is not the underlying reason the company exists.

“Why are we here?” is perhaps the biggest of big-picture
questions. Its answer, however, is simple: the role, the
underlying raison d’étre, of any company is to protect the
investment and interests of its shareholders.

You may think, “Am I merely the tool of greedy capitalist
investors?” Well, most likely, to a degree...yes. But before
pledging your undying allegiance to Richard Stallman and
free software, let’s back up and consider that the role stated
earlier is true even for altruistic organizations.

Take a nonprofit organization like One Laptop Per Child
(OLPC), whose mission is “to create educational opportuni-
ties for the world’s poorest children by providing each child
with a rugged, low-cost, low-power, connected laptop with
content and software designed for collaborative, joyful, self-
empowered learning.”*

For shareholders in OLPC, they’'ve put in money, time,
and/or expertise. Protecting their investment means keeping
OLPC afloat—OLPC needs to keep bringing in money so
they can keep pumping out laptops. Protecting the share-
holder’s interests means keeping OLPC true to the cause.
The kids need laptops for learning; that's what OLPC

4. http://laptop.org/en/vision/index.shtml

http://laptop.org/en/vision/index.shtml
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Put Yourself in the Company’s Shoes * 201

shareholders signed up for, so the organization can’t switch
to One Toaster Per Child (even if the toaster runs NetBSD).

Now with a more-profit-the-better company, the role can be
simplified to: ka-ching! ka-ching! ka-ching! The investors may
not care if they're investing in technology or investing in
soap, so long as they get some ROI. Now we're talking
callous: is money your ultimate goal? If not, how do your
interests match up with the shareholders?

Let’s say you're truly the tool of greedy capitalists; you
program so they can profit. There’s another side to the deal:
they’re paying your salary. They’ve taken a risk by paying
you good money so you can go program and maybe the
resulting product or service will pan out.

Frankly, this can be a perfectly good deal. If you're building
the right product the right way and the rest of the business
works out as planned, you get your satisfaction and the
shareholders get their money. Everyone wins. And if the
business doesn’'t work out, it turns out you get to keep the
money they paid you anyway. Both you and the shareholders
move onto the next job.

Actions

Let’s try to bring some of this abstract stuff closer to home.
For this exercise, you may need help from your manager.

Let’s pick apart the statement that a company’s purpose is
to protect the investment and interests of its shareholders:

¢ Shareholders: who are they? If your company is publicly
traded, they’re obvious: anyone who owns stock. Can
you pick that apart any further and find out who has
most of the stock? (This may take some research.) If your
company is private, it still has stock; the difference is
that its stock is not traded in an open market. The bulk
of the stock is usually owned by the founders, angel
investors, and/or venture capitalists.

¢ Investment and interests: Now that you know who the
shareholders are, can you figure out what it means to
protect their investment and interests? The investment
part is obvious—don’t waste their money. The interest

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

202 ¢ Chapter 6. Mind Your Business

Figure 12—Fictional company’s purpose

part can be more complicated. (With a venture capitalist,
it’s easy: ka-ching!)

A more complex case could be a partner company; their
interest in your success may indirectly benefit another
part of their business. For example, CPU maker AMD
was an early sponsor of the One Laptop Per Child
project. This was partly so OLPC would use AMD chips
(ka-ching!) but also for the more strategic purpose of
establishing AMD’s brand in developing countries.

¢ Connect the dots: here’s where the rubber meets the
road. Can you connect the dots from the shareholders
and their interests to the product you're making? Or to
putit another way, how will the success of your product
protect the investment and interests of the company’s
shareholders?

Figure 12, Fictional company’s purpose, on page 202 is a mind

map for an imaginary company founded by a couple people
(Bob, Joe, Susan) and funded by a venture capital firm.
They're doing a social networking website (isn't everybody?)
that they hope will make money from advertising and pre-
mium subscriptions.

In your map you could follow each branch a few more levels
down. (To learn more about mind mapping as a tool for
generating ideas and associations, see Pragmatic Thinking
and Learning [Hun08].)

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Identify Corporate Antipatterns ¢ 203

Tip 30

Identify Corporate Antipatterns

[White Belt] Keep awatchful eye for stupid-
ity—it could strike at any moment.

You may have heard of programming design patterns, where
people have identified recurring patterns of programming
solutions that have proven useful. This section is the oppo-
site, a collection of recurring patterns of business practices
that have often proven counterproductive, misinformed, or
downright stupid.

You won't be able to fix these yourself; problems at this scale
can take years and many hands to build. I document these
as a warning, in the same way that wilderness survival
guides include pictures of poisonous plants.

Will any of this business buffoonery kill you? No, but it
foretells rough times ahead. If you hear “The schedule is
king,” your project is heading for a death march. The hockey
stick sales curve is often followed by flat sales.

So, take note, and be prepared for a new job search if your
company turns poisonous.

The Schedule Is King

Project managers love Gantt charts. Remember the simple
one from Waterfall Project Management, on page 183? Imagine
that with 500 lines and 100 cross-dependencies. That’s the
kind of Gantt charts project managers actually make.

Then management buys off on the intricate schedule that
says the product will ship in eighteen months. But there’s a
catch: the product really has to ship in eighteen months.
After all, there’s this scientific-looking graph proving it can
ship in eighteen months, right? The rallying cry is, “The
schedule is king.”

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

204 ¢ Chapter 6. Mind Your Business

Nobody can predict a complex project eighteen months out.
The intricate Gantt chart is based on wild guesses and as-
sumptions that couldn’t possibly be validated. The schedule
falls apart within months.

However, management sticks doggedly to the schedule—
after all, the schedule is king. Throw out features, throw out
testing, throw out whatever it takes to ship something on the
scheduled end date. Then leave it to the beleaguered sales
and marketing teams to figure out how to put lipstick on
the pig.

What do you do when faced with “the schedule is king”? I
would not recommend telling management which bodily
orifice you think they pulled the schedule out of. Instead,
be honest to management when scheduled tasks take longer
than expected (they will) or quality is slipping (it will). Don’t
say “I told you so” —just stick to the facts. A good manager
will take the facts back to the rest of the company and figure
out where to go from there.

Furthermore, when it comes time to cut features (and it will),
then don’t immediately suggest cutting the features that are
hard to implement. As much as possible, think about the
product as a customer and what features you'd really want.
Some of them will be hard. Regardless, stick up for the fea-
tures in proportion to the value they’d give the customer.

The Mythical Man-Month

The Mythical Man-Month [Bro95] by Fred Brooks is a famous
book in the high-tech world. It seems like everyone has read
it. It seems like everyone has forgotten it, too.

The premise is that management sees a schedule slipping,
and since the schedule is king, they decide to add more
programmers to the project. If it takes five programmers ten
months to develop the product, shouldn't it take ten pro-
grammers five months? Fred Brooks, however, asserts that
adding programmers to a late project makes the project later.

The problem is that programming in a team requires a great
deal of communication and coordination. Managers will
lament that it’s like herding cats. It’s not that programmers
are stupid or dysfunctional; it’s just the nature of creating

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Identify Corporate Antipatterns ¢ 205

complex systems. Pile more people in the room, and now
you have a complex system and a complex coordination
problem on your hands.

What do you do when faced with management adding a
bunch of programmers to your project? Honestly, you won't
get much say in the matter. The very best thing you can do,
however, is talk frequently with your other team members.
When possible, get people chatting around a whiteboard.
Or pair up with someone when writing complex code.
However you can do it, keep communication channels open.
This will benefit the project but also establish you as a person
who knows what’s going on.

The Hockey Stick Sales Curve

This one is my favorite, because I actually heard it at General
Magic, and it was later immortalized in a Dilbert cartoon.
The guy puts up a chart like Figure 13, Don’t believe the
hockey stick, on page 206 and begins his pitch:

We expect the adoption rate to be slow for the first couple
quarters, but then the product’s popularity reaches a critical
mass and sales take off, like a hockey stick!

Yea, right. The hockey stick does indeed happen for some
companies, but a company can’t make that hockey stick
happen through wishful thinking. Ultimately, the market
needs to drive it. The company can't predict if or when that
will even happen. Great products sometimes wither and die;
mediocre products can take off. Who knows which will
hockey stick and which won’t?

An honest business case may include the hockey stick as a
best-case scenario, but it will also include the reality-check
scenario where the product doesn’t go gangbusters all of a
sudden.

What do you do when faced with the hockey stick presenta-
tion? That depends. In my case, I was having a great time
and the company was still flush with cash, so who cares? I
kept on programming. But if your company is small, product
sales are needed to pay your paycheck and you get this
pitch.. .start thinking about other jobs.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

206 ¢ Chapter 6. Mind Your Business

ot Ka-Ching!

Sales (Millions $)

0 1 2 3 4 5 6 7 8 9 0 11 12

Months After Release

Figure 13—Don’t believe the hockey stick

The Big Rewrite

Programmers mired in legacy code often wish they could
throw it all away and start over. Once in a while, they con-
vince the stakeholders that it’s the right thing to do.

The Big Rewrite ensues. Programmers hold lots of design
meetings. New technologies are chosen. Things are really
fun because the sky is the limit on the new code base.

Then things get hard: it turns out that a lot of that gnarly
code in the previous product was actually needed for
something. All that nasty GUI setup code was needed by an
old version of Windows, and your biggest customer still
runs that version of Windows. All the special cases in the
workflow code is there because those special cases are intrin-
sic to the problem domain. Oh no...the new version is
becoming legacy, and it hasn’t even shipped yet!

Making problems worse, nobody figured on all this extra
work up front. When the stakeholders agreed to the Big
Rewrite, they thought it would take six months. Now the
team is six months in but not halfway done yet. Not-too-
kind questions are being asked by management. Your work
hours get longer. And in everyone’s haste to finish, quality
goes down the drain. Things are really not fun anymore.

What do you do in the face of a big rewrite? First, read Tip
7, Improve Legacy Code, on page 48. There are techniques for

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Identify Corporate Antipatterns ¢ 207

dealing with legacy code that don't involve throwing every-
thing out and starting over.

Second, refer to Tip 4, Tame Complexity, on page 27, with a

special emphasis on separating necessary complexity from
accidental complexity. You can't throw out the necessary
complexity. But ask the team: are there ways you can model
it better?

Actions

As mentioned up front, by the time you spot one of these
business-level antipatterns, it’s probably too late, and a lone
programmer wouldn’t be able to fix it anyway. So, I leave
you with one action: when your peers begin jumping ship,
ask them, “Are there any more jobs open at that company?”

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Part IV

Looking Forward

CHAPTER 7

Kaizen

Kaizen is a Japanese term for continuous improvement. No
matter your level of programming mastery, you can always
do better. Obvious, perhaps, but I've met programmers who
appeared to peak about five to ten years into their career
and then.. .just stick there.

Continuous improvement and mastery of our trade takes
some obvious forms: learning a new programming language,
broadening your skills in a new area of computing, or
building your chops by contributing to an open source
project. These are all great ways to challenge yourself and
keep fresh. However, think of kaizen in broader terms.

By mastery, I'm not just referring to technologies. There are
programmers who mastered C decades ago and have been
writing system software ever since. Are they stagnant? Not
necessarily —we continue to see tremendous feats of engi-
neering in operating systems. C itself may not be new and
shiny, but it’s still a foundational language used to build
new and shiny stuff.

Further, by improvement, I don’t just mean learning things
at an intellectual level. Your attitude toward your work
dramatically affects your productivity and the quality of the
code you write. Your interactions with other people likewise
affect your professional development and ability to deliver
products. These are areas you can improve, even though
they deal with the messy, irrational, and emotional aspects
of life.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

212 * Chapter 7. Kaizen

In our final section of the book, we look forward. You're
already improving —kaizen is about keeping that ball rolling.

* We start on a tip with attitude: Tip 31, Mind Your Head,
on page 213 argues the “glass half-full” point of view.
You may choose the “Glass is twice as large as it needs
to be” perspective if you prefer.

* Just when you thought you could take a break from the
books, Tip 32, Never Stop Learning, on page 217 looks at

ways to continue honing your skills.

* Tip 33, Find Your Place, on page 222 closes our book with

some future opportunities for the career programmer.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Mind Your Head ¢ 213

Tip 31

Mind Your Head

[White Belt] Your attitude affects both your
productivity and your future all day, every day.
In the 1990s Bare Bones Software released a text editor called
BBEdit with the tagline “It Doesn’t Suck.” It retains the

tagline to this day. Truly brilliant marketing. Who's their
market? Programmers.

Programmers are a pessimistic and sarcastic lot. The vast
majority will tell you about 100 things that suck for every
one thing that doesn’t. The highest praise a programmer
will give a product is, “It doesn’t suck.”

Pessimist programmers are in good company. I've read
various reports saying the vast majority of projects fail,' 80
or 90 percent. Adding insult to injury, it's not the good 10
or 20 percent that succeed; it's some hodgepodge of good
and bad. It almost seems that bland to downright crappy
products are more successful, on average, than really good
ones. When a programmer says such-and-such sucks,
chances are she’s right.

The gambler would simply say everything sucks—playing
those odds isn’t rocket science. But here’s the problem: you
don’t win anything for picking losers.

Balancing the Odds

When I was an industry newbie, my first manager told me,
“Being a pessimist is the easiest thing in the world. It’s the
easy way out. It's much harder to be an optimist.” Those

1. The most common source is the Standish Group’s CHAOS Report,
http://www.standishgroup.com/. However, there are numerous
challengers of the CHAQOS report, e.g., http://doi.acm.org/10.
1145/1145287.1145301 and http://dx.doi.org/10.1109/MS.2009.154
and others.

http://www.standishgroup.com/
http://doi.acm.org/10.1145/1145287.1145301
http://doi.acm.org/10.1145/1145287.1145301
http://dx.doi.org/10.1109/MS.2009.154
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

214 * Chapter 7. Kaizen

words—and that challenge—changed my tone and my
career.

When you shift your perspective from “It sucks” to
“Wouldn't it be cool if...,” you shift from a defeatist mind-
set to a creative mind-set. The best you can do from a sucks
attitude is create something that sucks slightly less. From a
cool attitude, you can create something completely new.

Creating new things is a practiced skill. Starting from school,
you’ve been trained to follow examples and create small bits
of new work. With practice, you'll create larger works and
also deviate further from prior examples into work wholly
of your own imagination.

Your rate of learning is largely determined by how much
you want to push yourself, and that push comes from your
attitude.

Structure for Creation

Robert Fritz, in his book The Path of Least Resistance [Fri89],
identifies two structures for how we interact with our world.

Reactive/Responsive

This is our default structure, where we react to circum-
stances. To a programmer, this could go something like this:
you want to reduce the number of bugs in the product
(responding to testers), and likewise you want to get the
product out the door (responding to management pressure).
Pulled between these forces—forces pulling in opposite
directions—you make fixes that are good enough to fix the
bugs without jeopardizing the schedule.

This is also known as fire-fighting mode. You may put out the
fire today, but you never get around to addressing system-
atic, big-picture problems in the product.

Creative

Rather than immediately responding to present circum-
stances, in the creative mode you acknowledge the present
state and visualize a better future state. For example, you
visualize a product that is more modular and therefore eas-
ier to test and reason about. Guided by this creative vision,
you go into the code looking for opportunities to make it

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Mind Your Head * 215

modular as you're fixing the bugs. (See Tip 7, [mprove Legacy

Code, on page 48 for some advice on finding seams in legacy
code.)

What's the difference? In the long run, the reactive/respon-
sive bug fixing will leave you with a code base that’s even
more gnarly to maintain than when you started. The hard
bugs will just be patched over, not really fixed. In the creative
structure, on the other hand, you have a guiding vision that
will improve the code base —including the hard bits—over
time.

Creating a vision engenders—in fact, it requires—a positive
attitude. You can't create anything out of pessimism. It also
requires hard work to bring that creative vision into reality,
but the work is no harder than you’d be doing anyway. The
bonus is that when you're driving toward a vision of a better
future, the hard work is fulfilling in a way that you don’t
get from reactive work.

Evangelism

The next level of creative vision is bringing others along for
the ride. Early in your career, you may be on the receiving
end of technology evangelism. I would hope so, because it’s
tremendously fun to believe in what you're doing. Later,
you'll create and evangelize on your own.

Evangelism is tremendously underrated in the technology
world. People think of computers as, well, boring machines,
so what'’s there to get excited about? But think about your
early, wide-eyed play with computers: didn’t you dive in
with vigor and passion? Of course...that’s why you're here
today, reading this book.

An evangelist reignites that passion and directs it to a vision
of something new and cool. (It may be a vision that would
be profitable once created, but the focus of evangelism is
more about the spirit than the dollars.) This isn’t just the job
of CEOs and marketing folks; programmers can be just as
talented at evangelism as anyone. It’s that conversation that
starts with “Wouldn't it be cool if...,”

There’s absolutely nothing deceitful about evangelism; it’s
just painting a picture of a better future state so that others

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

216 ¢ Chapter 7. Kaizen

can understand it and believe in it. Terence Ryan’s Driving
Technical Change [Ryal0] is a great resource for learning this
skill. Guy Kawasaki, one of Apple’s early evangelists, gives
a big-picture view of evangelism in his book Selling the Dream
[Kaw92].

Now “It Doesn’t Suck” doesn’t seem like such a brilliant
product tagline after all. (To its credit, it still makes me
laugh.) Think hard about the reputation you want to estab-
lish. Visualize —yes, create—in your mind the you five years
from now. Are you the naysayer, or are you the one inspiring
people to make something cool?

Actions

Think about your most inspiring teacher (in school or other-
wise). What was it about them that made them so great?
Write in your journal characteristics of how they talked about
their subject and how that inspired you to think about the
subject.

Watch some recorded presentations of great product
announcements, for example Steve Jobs introducing the
Macintosh. Observe how the presenter doesn’t sell the
product so much as the vision of the product—the dream
behind the product. That’s evangelism at work.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Never Stop Learning ¢ 217

Tip 32

Never Stop Learning

[Brown Belt] Youalready haveatontolearn
on the job; focus on those near-term needs
first. However, don’t put off sharpening your

skills for long—they’ll get dull faster than you
think.

You might puzzle over the title of this tip, thinking “I'll
always keep on learning.” However, it’s easy to lose this in
the shuffle. The job gets busy, you have family and hobbies
after work, and next thing you know it’s been five years
since you put effort into learning a new skill.

It’s up to you to keep learning. Do it on company time, do it
on your own time, or do whatever it takes to keep fresh. Part
of the goal is to keep yourself marketable in an ever-changing
industry, but an even larger part is to keep up your ability
to learn.

Learn How You're Wired

The right way to learn varies from person to person; some
learn best by reading books, others do well in the classroom,
and still others need to get hands-on. If you struggled in
school, consider that the way they taught may not match
the way you naturally learn.

You owe it to yourself to pick up a copy of Andy Hunt’s
Pragmatic Thinking and Learning [Hun08] to discover your
optimal learning style. Unlike the force-feeding nature of
school, this learning is driven by you so you can do it in the
style that suits you.

If you don't already know your learning style, consider a
personality test like Myers-Briggs (described in Tip 21, Grok
Personality Types, on page 135). There are also less-formal
surveys floating around the Internet. Or, simply take the

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

218 ¢ Chapter 7. Kaizen

empirical approach: grab a book, download some podcasts,
find a video or screencast. Which one do you gravitate to?

Keep Current

It’s said (a bit too often, admittedly) that “You need to run
just to stand still” in the technology world. It’s true. If you
get cozy in a job and stop keeping abreast of new develop-
ments, your next job hunt could prove very difficult. It makes
sense to dedicate time to exploring new technologies simply
for risk mitigation.

Since you can’t keep abreast of everything, how do you prior-
itize? On the one hand, you want to track new technologies
while they’re still trending up. On the other hand, some fads
come and go without making a dent in industry. So you
want to find technologies that have reached a tipping point’
of critical mass.

My personal bellwether is watching recently published
books—the paper kind —since publishers are looking for the
same sweet spot. They want to keep their books on the
leading edge but need a large enough audience to offset the
cost of making a book. Blogs aren’t as reliable because you’ll
always find someone who will blog about anything, making
it hard to tell the difference between critical mass and pass-
ing fads. Job listings follow much too late, because they’re
usually written by managers who don’t keep close tabs on
technology.

Broaden Your Thinking

Where keeping current is mostly about risk mitigation, there’s
also tremendous merit—and fun—to learning technologies
that have nothing to do with economic interests. Sometimes
you should step out of the world of commercial tech and
flex your brain muscles.

Do a gut-feel check: are there things you're curious about
but never spent the time to research? Maybe it’s Scheme. Or
microcontrollers. Or even learning a new text editor. Make
a weekend project out of one of these and dive into it. If

2. For a complete discussion, see The Tipping Point [Gla02] by
Malcolm Gladwell.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Never Stop Learning * 219

Coding is like playing guitar: you have to do it to learn it. The
more you do it, the better you get. You can’t just read books and
become a better coder. There’s absolutely no shortcuts, so if you
don't enjoy coding right now, you probably won't get good at it
later.

—Scott “Zz” Zimmerman, senior software engineer

you’ve been brought up on C++ and Java, I assure you that
diving into Scheme with Structure and Interpretation of
Computer Programs [AS96] will make your head spin.

The real magic is that digging into Scheme with SICP won't
just make you a better Scheme programmer. Forcing yourself
out of your comfort zone and reasoning about code in a
different manner will improve your ability to reason about
all code, not just Scheme.

Community

School provides a tremendous support structure for students.
It has your peers, professors, and a huge library to help back
you up. Your day job, on the other hand, is geared toward
shipping it. It's up to you to build the support structure you
need for learning.

Look around at your programmer friends. Do any of them
have the same learning style as you? If you're a reader, form
a book club. Visual learners can have a lot of fun problem
solving at the whiteboard. Auditory learners need to talk
and listen, which is a lot more fun when you have someone
to talk to.

Next, cast your net wider. Most technologies have some
combination of blogs, forums, news groups, IRC channels,
and user groups. Where available, an in-person user group
often has the best signal-to-noise ratio. Websites like MeetUp’
can help you find a local user’s group.

3. http://www.meetup.com/

report erratum -« discuss

http://www.meetup.com/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

220 * Chapter 7. Kaizen

Then you need some motivation. Open source projects are
a great way to give purpose to your learning. You obviously
can’t jump into a project without building up some skill, but
even at junior skill levels you can find ways to contribute,
for example by writing documentation. By working in the
open, you build ad hoc peer groups that keep you engaged
and active.

You can find tons of open source projects on websites like
GitHub"* and SourceForge.” Many programming languages
also have directories of projects written in that language, for
example RubyForge’ for Ruby projects.

Conferences

Technology conferences range from expensive weeklong
affairs in exotic vacation spots to one-day freebies at a local
hotel. (Your company will occasionally pay for an expensive
one.) These are great opportunities for learning and meeting
programmers from other companies.

Many conferences have multiple fracks with sessions of a
similar theme. Pick a track or just cherry-pick the sessions
that look interesting. All conferences also have an additional
track—the hallway track. That's all the interesting stuff you
learn just by chatting with folks in the hallway between
sessions. Often the hallway track is more interesting than
anything else at the conference.

(Keep in mind that conferences are partly for your benefit
but largely for the benefit of the vendors sponsoring the
thing. The email address you use to register for the confer-
ence will forever be a target for vendors’ promotional emails.)

Bill the Company

While learning is primarily for your benefit, don’t forget
that your current employer has some self-interest, too. As
you learn new skills, the company is getting a more skilled
programmer. Thus, they’ll often foot the bill. Books, classes,
and conferences are all fair game —ask your manager.

4. http://github.com
5. http://sourceforge.net

6. http://rubyforge.org

http://github.com
http://sourceforge.net
http://rubyforge.org
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Never Stop Learning ¢ 221

Many managers, in fact, have an ongoing task to send their
employees to training. Much like your own learning, it’s
easy for this to get lost in the shuffle. Therefore, when you
take the reins, you do your manager a favor as well as
yourself.

Actions

Make a mind map of the skills you have right now: program-
ming languages, platforms, tools, and so forth. Some of your
map’s branches will look sparse. Identify a couple areas
where you're lacking—and you're motivated to improve
—and commit to improving them over the next six months.

Set aside some money each month as a self-improvement
fund. This could be for books, software, or other resources
you need. (Beer does not count as a self-improvement
resource.) Then you won't need to worry about shelling out
some cash when you have time to pick up something new.
You have the money ready to go.

Research a programming language that is as different as
possible from the language you use at your day job. For C++
(statically typed, compiled, object-oriented), this might be
Scheme (dynamically typed, interpreted, functional); for
Ruby, it might be Haskell. Buy a book or two (Bruce Tate’s
Seven Languages in Seven Weeks [Tat10], for example), dedicate
some time, and flex those brain muscles.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

222 ¢ Chapter 7. Kaizen

Tip 33

Find Your Place

[Black Belt] This topic looks far into the
future. Don't worry about it yet—but don't

ignore it forever, either.

At this point, you're getting your footing in the industry.
Figure on five to ten years of building experience and credi-
bility. What lies past that for a programmer? I mean, aside
from obscene wealth, a big house, and a fast car?

Programming to...Programming

First of all, there’s programming. For some, that’s what
you're put on Earth to do, and you can make a good living
doing it, so why stop? Many companies have acknowledged
the value of very skilled programmers, and your pay can
keep climbing—you don’t need to go into management to
get the bucks.

However, some companies are not so progressive. If you
stay in programming more than ten years, you'll need to
shop around more for jobs. I've talked to a number of tech
companies whose pay simply tops out no matter how good
you are, and I've talked with managers who won’t pay a
programmer more than the manager makes. There’s no use
in trying to convince them otherwise; just move along.

Another option is contracting. You bid on jobs either by the
hour or by completion of the job. The upside is you (usually)
make a lot more money per hour. The downside is you need
to look for jobs a lot more often—and in lean times you may
not be able to find any. Before considering this route, you
must have a sufficient professional network for finding jobs,
plus enough money in the bank to sustain your household
when a job falls through.

The best resource for advancing your programming career
is Chad Fowler’s The Passionate Programmer: Creating a

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Find Your Place * 223

Remarkable Career in Software Development [Fow09]. He'll help
you develop both the skills and the self-marketing required
to command the higher salaries.

Next, you won’t spend your career at one company, and
there’s a special skill to finding and landing jobs. Most of us
have learned this the hard way, after taking a few jobs that
weren’t a good match. Save yourself the trouble! Andy Lester
teaches job-hunting skills in Land the Tech Job You Love
[Les09].

Technical Lead

As you gain skill and experience —and increased salary —you
will be expected to provide leadership as well. While leader-
ship of the technical form doesn’t come with the privilege
of bossing people around, it does come with the privilege of
bossing the product’s design around.

Design is a separate skill than programming. The technical
lead must work at both the big-picture level (seeing how the
bricks fit together) and down at the guts level (building the
bricks). Think of it as doing the right thing in the right way.

Of course, a product’s design is merely a concept in people’s
minds; it’s the manifestation of that concept—the code your
team writes—that really counts. The second essential skill
of a technical lead is shepherding a design as it is built. This
isn'tjust documentation with pretty pictures at the front end
of a project; it's hands-on writing code with people and
making sure that the code develops over time toward the
design and that the design evolves as project needs shift,
too.

Management

If the technical lead role sounds like a bunch of responsibil-
ity with no authority, there’s always management. Managers
do get the privilege of bossing people around. (It doesn’t
work very well, but one can try.) Some programmers move
into management because that’s the only path upward in
their company, and others genuinely have a talent for it.

That talent is a delicate balancing act between leading a team
and serving the team. The leadership authority is pretty

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

224 e+ Chapter 7. Kaizen

straightforward: people (mostly) do what the manager tells
them to do. The service part, however, is just as important:
the manager must match the work with the skills and inter-
ests of the workers, must provide them with equipment and
training for both near-term goals and long-term growth,
must fend for the team’s budget and other resources, and
must do much, much more.

If meetings and office politics drive you crazy, management
is not your path. Much of a manager’s work is accomplished
in meetings: meetings with team members to make sure the
right things are getting done the right way (aka managing
down), meetings with superiors to ensure the team’s work
is aligning with the business needs (managing up), and
meetings with peers to make sure the work is coordinated
with the rest of the company (managing across).

Some managers attempt to also keep programming at the
same time. I've never seen this work well; both their
management work and their programming work get short-
changed. Managing even a small team —and doing a good
job at it—is a full-time job. Do one job or the other; don't try
to do half of two jobs.

Product Management

While product management is in the domain of marketing
(egad!), it’s a natural transition for programmers who want
to get into what products the company builds more than how
the products are built. In fact, many product managers start
their careers in engineering.

You probably have a gut feel for what your product should
do. That’s a good start. However, much like programming,
the role of a product manager is part taste (aka gut feel) and
part science. You'll need some education on marketing to
fill in the latter half.

If your company attends trade shows or hosts conferences,
that’s a good opportunity to get out and talk with customers
and the sales team. Try it. If you have fun, product manage-
ment may be a path for you.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

Find Your Place * 225

You should only look at graduate school for these reasons: you
want a break from industry, you want to go into teaching, or
you want to go into research. Your choice of school depends on
your aim.

If you just want a break for a couple years and want to get a
usefuljob credential, an MBA might be attractive. Here industry
experience is extremely helpful. Be selective in choosing a school.

If you want to teach, any accredited PhD granting school will
do. Here your industry experience will be very helpful to better
understand researchable issues.

If your goal is major-league research, Carnegie Mellon, USC,
Berkeley, and MIT are good places to start.

—David Olson, Department of Management, University of Nebraska

Academia

Some programmers will hit industry and decide they had a
lot more fun in school. Teaching/research has its own pres-
sures and rewards; if this is your gig, you can make a good
living there. See David Olson’s advice in Academic Perspective:

Graduate School, on page 225.

Even for programmers who stay in industry, it's worth
paying attention to research coming from academia—those
underpaid and overworked grad students turn out some
good ideas. Consider joining associations like ACM’ and
IEEE’ to keep abreast of the latest research.

Actions

This tip isn’t something you can act on today —ideally you're
having a great time with programming. However, make a
note to do a gut-check every year or so: do you enjoy the
role you're in? Where do you see yourself going next? Is
there any strategic-level learning or experience you can start
on now to help you get there?

7. http://www.acm.org/

8. http://www.ieee.org/

report erratum -« discuss

http://www.acm.org/
http://www.ieee.org/
http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

[AS96]

[ALI02]

[Bec00]

[Bec02]

[Bro95]

[Bru02]

[CADH09]

[FBBO99]

[FP09]

APPENDIX 1

Bibliography

Harold Abelson and Gerald Jay Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cam-
bridge, MA, 2nd, 1996.

David Allen. Getting Things Done: The Art of Stress-Free
Productivity. Penguin Group (USA) Incorporated, USA,
2002.

Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Longman, Reading, MA, 2000.

Kent Beck. Test Driven Development: By Example. Addi-
son-Wesley, Reading, MA, 2002.

Frederick P. Brooks Jr.. The Mythical Man Month: Essays
on Software Engineering. Addison-Wesley, Reading, MA,
Anniversary, 1995.

Kim B. Bruce. Foundations of Object-Oriented Languages:
Types and Semantics. MIT Press, Cambridge, MA, 2002.

David Chelimsky, Dave Astels, Zach Dennis, Aslak
Hellesoy, Bryan Helmkamp, and Dan North. The RSpec
Book. The Pragmatic Bookshelf, Raleigh, NC and Dallas,
TX, 2009.

Martin Fowler, Kent Beck, John Brant, William Opdyke,
and Don Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Reading, MA, 1999.

Steve Freeman and Nat Pryce. Growing Object-Oriented
Software, Guided by Tests. Addison-Wesley Longman,
Reading, MA, 2009.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

228 ¢ Appendix 1. Bibliography

[Fea04]

[Fow09]

[Fri89]

[Gla02]

[Gla06]

[Gla08]

[Grel0]

[Hun08]

[KR9S]

[Kaw92]

[Les09]

[Lio77]

[Mar08]

[Mas06]

Michael Feathers. Working Effectively with Legacy Code.
Prentice Hall, Englewood Cliffs, NJ, 2004.

Chad Fowler. The Passionate Programmer: Creating a Re-
markable Career in Software Development. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2nd, 2009.

Robert Fritz. The Path of Least Resistance: Learning to Be-
come the Creative Force in Your Own Life. Ballantine
Books, New York, NY, USA, 1989.

Malcolm Gladwell. The Tipping Point: How Little Things
Can Make a Big Difference. Back Bay Books, New York,
NY, USA, 2002.

Malcolm Gladwell. Blink. Little, Brown and Company,
New York, NY, USA, 2006.

Malcolm Gladwell. Outliers: The Story of Success. Little,
Brown and Company, New York, NY, USA, 2008.

James W. Grenning. Test Driven Development for Embed-
ded C. The Pragmatic Bookshelf, Raleigh, NC and Dallas,
TX, 2010.

Andrew Hunt. Pragmatic Thinking and Learning: Refactor
Your Wetware. The Pragmatic Bookshelf, Raleigh, NC
and Dallas, TX, 2008.

Brian W. Kernighan and Dennis Ritchie. The C Program-
ming Language. Prentice Hall, Englewood Cliffs, NJ,
Second, 1998.

Guy Kawasaki. Selling the Dream. Harper Paperbacks,
New York, NY, USA, 1992.

Andy Lester. Land the Tech Job You Love. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2009.

John Lions. Lions’ Commentary on UNIX 6th Edition. Peer-
to-Peer Communications Inc., Charlottesville, VA, 1977.

Robert C. Martin. Clean Code: A Handbook of Agile Soft-
ware Craftsmanship. Prentice Hall, Englewood Cliffs, NJ,
2008.

Mike Mason. Pragmatic Version Control Using Subversion.
The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX,
2006.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

[N509]

[PPO3]

[Pie02]

[Ras10]

[Ryal0]

[Scho4]

[Ski97]

[Swi08]

[Tat10]

Appendix 1. Bibliography ¢ 229

Staffan Noteberg. Pomodoro Technique Illustrated: The
Easy Way to Do More in Less Time. The Pragmatic Book-
shelf, Raleigh, NC and Dallas, TX, 2009.

Mary Poppendieck and Tom Poppendieck. Lean Software
Development: An Agile Toolkit for Software Development
Managers. Addison-Wesley, Reading, MA, 2003.

Benjamin C. Pierce. Types and Programming Languages.
MIT Press, Cambridge, MA, 2002.

Jonathan Rasmusson. The Agile Samurai: How Agile
Masters Deliver Great Software. The Pragmatic Bookshelf,
Raleigh, NC and Dallas, TX, 2010.

Terrence Ryan. Driving Technical Change: Why People on
Your Team Don’t Act on Good Ideas, and How to Convince
Them They Should. The Pragmatic Bookshelf, Raleigh,
NC and Dallas, TX, 2010.

Ken Schwaber. Agile Project Management with Scrum.
Microsoft Press, Redmond, WA, 2004.

Steve S. Skiena. The Algorithm Design Manual. Springer,
New York, NY, USA, 1997.

Travis Swicegood. Pragmatic Version Control Using Git.
The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX,
2008.

Bruce A. Tate. Seven Languages in Seven Weeks: A Prag-
matic Guide to Learning Programming Languages. The
Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2010.

http://pragprog.com/titles/jcdeg/errata/add
http://forums.pragprog.com/forums/jcdeg

A

academia, as career path,
225

acceptance tests, 7

accounting department,
174-175

ad hoc code review, 54

administrative assistants,
163-165

agency tests, 8

agile project management,
186-188, 191

antipatterns, 203-207

appearance, see clothing,
appropriate

architects, 158-159

attitude
toward code reviews,
53-54
toward program-
ming, 213-216
audit code review, 55
automation, 83-86

B

bad practices, see antipat-
terns

Bastard Operator From
Hell (BOFH), 170

benefits package, 173

beta tests, 9

“big rewrite” antipattern,
206-207

biofeedback
muscle activation
measured with, 130
stress reduced by, 122

black box testing, 9
board of directors, 178

BOFH (Bastard Operator
From Hell), 170

bogosort, 67

break statement, example
of bug using, 16
buddy system code re-
view, 54
bugs
difficulty of, related
to code complexity,
29
Heisenbugs, 65
inlegacy code, fixing,
48, 50
quick fixes for, 29
tracking and fixing,
198
build specialists, 160
builds, automating, 84
burn out, 124-125

business development
team, 169

C

C

books about, 19, 72

build tools for, 84

complexity, reducing,
31

crashes in, 64

function exits points
in, 44

goto statements in, 45

idiomatic, 71

migrating from, 50

test doubles with, 14

Index

C++
complexity, reducing,
31
conventions for, 46
learning, 71
lightweight classes in,
45
static type system of,
17
call stack, 64
career paths, 118, 222-225
cash-flow statement, 174
CEO (Chief Executive Offi-
cer), 176
certification
agency tests for, 8
code reviews for, 56
CFO (Chief Financial Offi-
cer), 177
chair, ergonomics of, 129—
130

channel sales team, 169

Chief Executive Officer
(CEO), 176

Chief Financial Officer
(CFO), 177

Chief Information Officer
(CI1O), 177

Chief Legal Officer (CLO),
178

Chief Operations Officer
(COO0), 177

chief scientists, see archi-
tects

Chief Technology Officer
(CTO), 176

CIO (Chief Information
Officer), 177

clarity of code, 31-34

232 * Index

CLO (Chief Legal Officer),
178
clothing, appropriate, 107
109
code examples in this
book, xiv
code quality, see quality of
code
code reviews, 6
attitude regarding,
53-54
formats for, 54-56
policies for, 56
collaboration, 144-147
concentration and,
146
divide and conquer
strategy, 144-145
interruptions and, 146
number of program-
mers affecting, 204
office location affect-
ing, 147
pair programming
strategy, 145-146
comments, 43-44
company
antipatterns of, 203
207
goals of, 200-202
shareholders of, 200-
202
company structure, 141,
163, see also team mem-
bers
accounting depart-
ment, 174-175
administrative assis-
tants, 163-165
board of directors,
178
connections between
people, 141-143
executives, 175-179
Facilities, 171-172
finance department,
174-175
HR (Human Re-
sources), 173-174
IT (Information Tech-
nology), 170-171
manufacturing depart-
ment, 172-173
MarCom (Marketing
Communications),
166-167
marketing depart-
ment, 166-169

PR (Public Relations),
167
product management,
167-168
sales department,
168-170
support team, 164—
166
compatibility tests, 9
compilers, 64, 66
complexity of code, 27-34
accidental, 27
death spiral of, 27
difficulty in debug-
ging related to, 29
multiple people re-
quired to under-
stand, 29
necessary, 27
quick fixes contribut-
ing to, 29
size of code contribut-
ing to, 28-30
concentration, 146
concept stage, product life
cycle, 189-192
conference calls, 150
conferences, 220-221
console interface, 79-80
context switch overhead,
146
conventions used in this
book, xiv—xv
COO (Chief Operations
Officer), 177
core file, 65
corporate organization,
see company structure
counterproductive prac-
tices, see antipatterns
coverage, code, 18-19
creativity, 214-215
CTO (Chief Technology
Officer), 176
customers, see users

D

data sets, very large, 73
debuggers, 64-65, 67
defined process control,
186
deployment specialists,
160
design
as architect’s job, 158

clarity of, 31

high-level code re-
view for, 55

as programmer’s job,
157

prototyping for, 26

as technical lead’s job,
223

test-driven design,
21-26

desk, ergonomics of, 129-
130

desktop GUI, 80-81
destructive patterns,
see antipatterns
developers, see program-
mers

development environ-
ment, 61-68
debuggers, 64—65, 67
IDE (integrated devel-
opment environ-
ment), 62
language tools, 64
profiler, 65, 67
text editor, 61-63, 66
development stage, 193—
194
direct sales team, 169
directed exploratory tests,
7,10
display, ergonomics of,
128-129
divide and conquer strate-
gy, 144-145
dress, see clothing, appro-
priate
driving spikes, 191-192
durations, testing for,
see longevity tests
dynamic dispatch tables,
14
dynamic type system, 17

E

Eclipse, 62
editors
auto-indentation for,
62, 66
autocompletion for,
63, 66
programmer’s editor,
62-63
syntax highlighting
in, 62

text editor, 61, 66
for text-only consoles,
63
empirical process control,
186
End of Life (EOL) stage,
198-199
engineers, 158, see also pro-
grammers

environmental tests, 8

EOL (End of Life) stage,
198-199
ergonomics, 127-132
of body mechanics,
130-131
of chair, 129-130
of desk, 129-130
of display, 128-129
of keyboard, 127-128
of mouse, 129
of workstation, 127—
130
errors
automation reducing,
84
failing gracefully, 35—
40
evangelism, 215-216
exceptions, style for, 44-46
executives, 175-179
exits, style for, 44-46
Extreme Programming,
see agile project manage-
ment
extroversion component
of personality, 135-136

F
Facilities, 171-172

failing gracefully, 35-40
order of operations
for, 35-37
testing, with failure
injection, 38-39
testing, with test
monkeys, 39-40
transactions for, 37—
38
fellows, see architects

files, test doubles for, 13—
15,21-23

finance department, 174—
175

fire-fighting mode, 214

firmware engineers, 158,
see also programmers

first impressions, 107-108

firstjob, 161, see also career
paths

formal connections, 141
401(k) plans, 173
full system tests, 8

G

Gantt charts, 184

gatekeepers, in informal
connections, 142

General Counsel, 178

GNU Public License
(GPL), 94

goto statement, 45

GPL (GNU Public Li-
cense), 94

graduate school, 225

H

Harlan, Mark
on administrative as-
sistants, 165
on making an impres-
sion, 112
on self reviews, 115

health insurance, 173
Heisenbugs, 65

Hertzfeld, Andy, game
example by, 72-73

high-level code review, 55

“hockey stick sales curve”
antipattern, 205

HR (Human Resources),
173-174

hubs, in informal connec-
tions, 141

Human Resources (HR),
173-174

I

IDE (integrated develop-
ment environment), 62

idiomatic programming,
71-72

impressions, see percep-
tions

impure code, 11

informal connections, 141—
143

Information Technology
(IT), 170-171

injuries at work, 127

Index ¢ 233

integrated development
environment (IDE), 62

interactions, books about,
214

interpreters, 64, 66

interruptions, 146

introversion component
of personality, 135-136

intuition component of
personality, 136-139

IT (Information Technolo-
gy), 170-171

]

Java, as platform, 77

Jobs, Steve, “real artists
ship” mantra by, 194

JSON format, 79

judgment component of
personality, 139-140

K

Kaizen, 211

keyboard
ergonomics of, 127—
128
typing mechanics, 130

keyboard shortcuts, 62,
64, 66

kill ring, 66

L

languages, 69-76
compilers for, 64, 66
debuggers for, 64, 67
highlighting for, in

editor, 62
idiom of, 71-72
indentation for, in
editor, 62
interpreters for, 64, 66
learning curve for,
69-70
migration to, 50
multiple, in one pro-
gram, 74
multiple, learning, 74
refactoring features
for, 64
text completion for,
in editor, 63
laptops, not allowing in
meetings, 149
Lean project management,
see agile project manage-
ment

234 * Index

learning
books about, 69-70,
217
community for, 219-
220
conferences for, 220—
221
continuous, 211, 213—
221
individual style of,
217
programming lan-
guages, 69-70
technologies, 218-219
legacy code, 48-52
“big rewrite” antipat-
tern, 206-207
books about, 51
bugs in, fixing, 48, 50
migrating, 50
misfeatures in, identi-
fying, 50
seams in, to start
cleanup, 48-50
LGPL (Lesser GNU Public
License), 95
licenses, for open source
software, 94-95
lifestyle component of
personality, 139-140
line-by-line code review,
55

lines of code (LOC), 28-30
load tests, 7

LOC (lines of code), 28-30
longevity tests, 9

M

maintenance stage, 196—
198
Management Information
Support (MIS), see IT
(Information Technolo-
8y)
management, as career
path, 223-224
management, self, see self
management
manager, 101, 159
mentoring from, 106
role in performance
review, 114, 118
manufacturing depart-
ment, 172-173

MarCom (Marketing
Communications), 166—
167

marketing department,
166-169
MBTI (Myers-Briggs Type
Indicator), 135-140
meetings, 114, 148-151, see
also performance re-
views
audience for, 149
conference calls for,
150
constructiveness of,
150
no-laptop rule for,
149
purpose of, 148
mentor, 103-106
finding, 105-106
manager as, 106, 159
qualities of, 104-105
role of, 103
technical lead as, 158
migration, of legacy code,
50
mind mapping, books
about, 202
MIS (Management Infor-
mation Support), see IT
(Information Technolo-

8y)
mock objects, 14
monitor, see display, er-
gonomics of

mouse
ergonomics of, 129
not using, 62, 66
muscle activation, measur-
ing, 130
muscle memory, 63
mushin no shin, 121
Myers-Briggs Type Indica-
tor (MBTI), 135-140

The Mythical Man-Month,
204-205

N

naming, 4243

neatness in appearance,
109

NIHS (not invented here
syndrome), 193

O

Object-Oriented Program-
ming (OOP), books
about, 20, 25

objects, mock, 14

office location, 147
officers, see executives

Olson, David, on graduate
school, 225
ongoing tests, 10
online resources, xv
coding style guides,
47
Rosetta Code, 72
test doubles, terminol-
ogy for, 20
OOP (Object-Oriented
Programming), books
about, 20, 25
open source software, 92—
98
contributing to, 96-98
copyright of, 93
legal issues with, 92
licenses for, 94-95
tracking upstream
projects using, 95—
96
operating system, perfor-
mance of, 73
optimism, 213
order of operations, 35-37
organizational chart, 141,
163, see also company
structure
over-testing, 25

P
packaging, automating, 85
pair programming strate-
gy, 145-146
perceiving component of
personality, 136-139
perceptions, 107-108
books about, 107
personality compo-
nent, 139-140
of you, 107-109
performance of code
balancing with pro-
ductivity, 72-74
load tests for, 7
operating system, 73
performance of program-
mer, improving, 119
performance reviews, 114—
120
manager’s role in,
114,118
preparation for, 114—
115

promotions affected
by, 118
rankings resulting
from, 118
self reviews, 115-117
360 degree reviews,
117
personality types, 135-140
pessimism, 213-214
platforms, 77-82
choosing, 78-79
console interface, 79—
80
desktop GUI, 80-81
web interface, 81-82

PR (Public Relations), 167

problematic practices,
see antipatterns

product life cycle, 189-199
concept stage, 189—
192
development stage,
193-194
driving spikes dur-
ing, 191-192
EOL (End of Life)
stage, 198-199
maintenance stage,
196-198
prototype stage, 192
release stage, 194-196
product management,
167-168
as career path, 224
compared to project
management, 184

production-quality code,
see quality of code

productivity
balancing with code
performance, 72-74
books about, 146
tools decreasing, 60
tools increasing, 59
profiler, 65, 67
Profit and Loss Statement,
174
programmer’s editor, 62—
63
programmers, 157-158
programming, as career
path, 158, 222-223

project management, 183—
188
agile method, 186—
188, 191

compared to product
management, 184
The Mythical Man-
Month, 204-205
“schedule is king”
antipattern, 203-
204
waterfall method,
183-185, 191
promotions, 118-119, see
also career paths
proprietary software, 93
prototype stage, 26, 192
public domain software,
93
Public Relations (PR), 167
pulse-takers, in informal
connections, 142
pure code, 11

Q

quality of code, 3-5, 7, see
also testing
code review for, 6
commitment to, 6, 10
company practices
for, 10
when to incorporate,
3

R

rankings from perfor-
mance reviews, 118

Read, Evaluate, Print Loop
(REPL), 64

“real artists ship” mantra,
by Steve Jobs, 194

Rector, Rich, on legacy
code, 49

Reekes, Jim, on product
management, 168

relationships between
people, see company
structure

release stage, 194-196

REPL (Read, Evaluate,
Print Loop), 64

reputation, 110-113

research, as career path,
see academia, as career
path

researching technologies
or possibilities, see driv-
ing spikes

Index ¢ 235

reviews, see performance
reviews
Rosetta Code website, 72
Ruby
books about, 19, 25
dynamic type system
of, 16
idiomatic, 71
test doubles with, 13
unit tests in, 24

Ruby on Rails, 82

S

sales department, 168-170
“hockey stick sales
curve” antipattern,
205

scaling, load tests for, 7

“schedule is king” antipat-
tern, 203-204
Scheme
books about, 72, 219
idiomatic, 72
Scrum project manage-
ment, see agile project
management
self management, 101
clothing, appropriate,
107-109
performance reviews,
114-120
visibility, 110-113
self reviews, 115
self-management
ergonomics, 127-132
mentor’s role in, 103—
106
stress management,
121-126
SEMG (surface electromyo-
graph), 130
sensing component of
personality, 136-139
shareholders, 200-202
shipping stage, see release
stage
side effects, 11-13
size of code, see LOC (lines
of code)
software, see tools
software engineers,
see programmers
sorting algorithms, 67

specifications, tests as, 23—
25

236 * Index

spikes, driving, 191-192
stack trace, 64
static type system, 15, 17

Stephenson, Karen, on in-
formal connections, 141

strength training, 131

stress
biofeedback reducing,
122
burn out resulting
from, 124-125
exercise reducing, 123
long hours increas-
ing, 123-124
massage therapy re-
ducing, 123
physical, 123, 127-132
recognizing in your-
self, 121-122
taking seriously, 126
vacations reducing,
125
style, coding, 41
books about, 46
comments, 43-44
conventions for, 46
exits and exceptions,
44-46
naming, 4243
style, of a programming
language, see idiomatic
programming
style, of clothing,
see clothing, appropriate
support team, 164-166

surface electromyograph
(SEMG), 130

system administration,
automating, 86

T

teaching, see academia, as
career path
team members, 157-162,
204, see also collabora-
tion
architects, 158-159
build specialists, 160
connections between,
141-143
deployment special-
ists, 160
manager, 159
programmers, 157—
158
technical leads, 158

testers, 159-160
your role with, 161
teamwork
collaborating, 144—
147
golden rule for, 133
importance of, 133
meeting effectively,
148-151
personality types,
recognizing, 135—
140
technical leads, 158, 223

temperament component
of personality, 135-136
10,000 hour rule, 69
test-driven design, 21-26
testers, 159-160
testing, 7
acceptance tests, 7
agency tests, 8
beta tests, 9
black box testing, 9
books about, 19
compatibility tests, 9
coverage of, 18-19
directed exploratory
tests, 7, 10
dynamic dispatch ta-
bles for, 14
environmental tests,
8
failure injection, 38—
39
full system tests, 8
load tests, 7
longevity tests, 9
mock objects for, 14
ongoing, 10
over-testing, 25
pure and impure
code affecting, 11
side effects affecting,
11-13
specifications using,
23-25
test doubles for, 13—
15,20-23
test monkeys, 3940
unit tests, 7, 14
white box testing, 9

text editor, 61-63, 66
360 degree reviews, 117

tools, 59-60
compilers, 64, 66
debuggers, 64-65, 67

IDE (integrated devel-
opment environ-
ment, 62
interpreters, 64, 66
productivity affected
by, 59-60
profiler, 65, 67
text editor, 61-63, 66
transactions, 37-38
type systems, 15-17, 20
typing, mechanics of, 130

u

unit tests, 7, 14
user interface, testing, 7

users, see also support
team

beta testing by, 9

bugs found by, 6

features requested by,
194

perspective of, from
marketing and
sales, 155, 166, 170

perspective of, in
concept stage, 189

perspective of, in
maintenance stage,
196

talking to, at trade
shows, 168, 224

V

vacations, 125

version control, 87-91
books about, 90
centralized, 89
collaboration with

multiple program-
mers, 88, 90
distributed, 89
for external code, 96
modifying released
versions, 87
multiple branches in,
88-89, 91
reverting to previous
version, 87

vi editor, 63

visibility, 110-113

Visual Studio, 62

W

waterfall project manage-
ment, 183-185, 191

web interface, 81-82

website resources, see on-
line resources

white box testing, 9
workstation, ergonomics
of, 127-130
writing on the wall,
see antipatterns

X
XML format, 79

Index ¢ 237

Z

Zimmerman, Scott
on practicing coding,
219
on prototyping, 26

Be Agile

Don't just “do” agile; you want to be agile. We’ll show you how.

The best agile book isn’t a book: Agile in
a Flash is a unique deck of index cards
that fit neatly in your pocket. You can
tape them to the wall. Spread them out
on your project table. Get stains on them
over lunch. These cards are meant to be
used, not just read.

Jeff Langr and Tim Ottinger
(110 pages) ISBN: 9781934356715. S15
http://pragprog.com/titles/olag

Agile in a Flash
Speed-Learning Agile
Software Development

Agile Cards for
- AgiJgTeams

Jeff Langr and

Here are three simple truths about soft-
ware development:

1. You can’t gather all the requirements
up front. 2. The requirements you do
gather will change. 3. There is always
more to do than time and money will al-
low.

Those are the facts of life. But you can
deal with those facts (and more) by be-
coming a fierce software-delivery profes-
sional, capable of dispatching the most
dire of software projects and the tough-
est delivery schedules with ease and
grace.

Jonathan Rasmusson

(280 pages) ISBN: 9781934356586.
$34.95

http://pragprog.com/titles/jtrap

Tim Oftinger
The Agile Samurai
How Agile Masters
Deliver U

A

\

oh

Great Software

Jonathan Rasmusson
e by Susannai Devdson Biter

http://pragprog.com/titles/olag
http://pragprog.com/titles/jtrap

Get Results

Reading about new techniques is one thing, making them work in your company
and in the real world is another matter entirely. Here’s the help you need.

If you work with people, you need this
book. Learn to read co-workers’ and

users’ patterns of resistance and disman-
tle their objections. With these tech-
niques and strategies you can master
the art of evangelizing and help your or-
ganization adopt your solutions.

Driving Technical Change

Why People On Your Team Don't Act on Good Ideas,
and How To Convince Them They Should

Terrence Ryan

(200 pages) ISBN: 9781934356609.
$32.95

http://pragprog.com/titles/trevan

Terrence Ryan
Fted by dacqueyn Carter

Technical Blogging is the first book to
specifically teach programmers, techni-
cal people, and technically-oriented en-

trepreneurs how to become successful TeChni_Cal

bloggers. There is no magic to successful Bloggmg

blogging; with this book you’ll learn the o b lise

techniques to attract and keep a large e

audience of loyal, regular readers and

leverage this popularity to achieve your g \
goals.

Antonio Cangiano
(250 pages) ISBN: 9781934356883. $33 Antonio Canglano
http://pragprog.com/titles/actb pe—

http://pragprog.com/titles/trevan
http://pragprog.com/titles/actb

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http://pragprog.com/titles/jcdeg
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http:/pragprog.com/titles/jcdeg

Contact Us

Online Orders: http://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http://pragprog.com/write-for-us

Or Call: +1 800-699-7764

http://pragprog.com/titles/jcdeg
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/jcdeg
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Where I'm Coming From
	And Now About You
	Structure of This Book
	Conventions Used in This Book
	White Belt to Black Belt (and Back)
	Online Resources
	Onward

	Part 1—Professional Programming
	1. Program for Production
	Tip 1. Beat Up Your Code
	Tip 2. Insist on Correctness
	Tip 3. Design with Tests
	Tip 4. Tame Complexity
	Tip 5. Fail Gracefully
	Tip 6. Be Stylish
	Tip 7. Improve Legacy Code
	Tip 8. Review Code Early and Often

	2. Get Your Tools in Order
	Tip 9. Optimize Your Environment
	Tip 10. Speak Your Language Fluently
	Tip 11. Know Your Platform
	Tip 12. Automate Your Pain Away
	Tip 13. Control Time (and Timelines)
	Tip 14. Use the Source, Luke

	Part 2—People Skills
	3. Manage Thy Self
	Tip 15. Find a Mentor
	Tip 16. Own the Image You Project
	Tip 17. Be Visible
	Tip 18. Ace Your Performance Review
	Tip 19. Manage Your Stress
	Tip 20. Treat Your Body Right

	4. Teamwork
	Tip 21. Grok Personality Types
	Tip 22. Connect the Dots
	Tip 23. Work Together
	Tip 24. Meet Effectively

	Part 3—The Corporate World
	5. Inside the Company
	Tip 25. Know Your Peeps
	Tip 26. Know Your (Corporate) Anatomy

	6. Mind Your Business
	Tip 27. Get with the Project
	Tip 28. Appreciate the Circle of (a Product's) Life
	Tip 29. Put Yourself in the Company's Shoes
	Tip 30. Identify Corporate Antipatterns

	Part 4—Looking Forward
	7. Kaizen
	Tip 31. Mind Your Head
	Tip 32. Never Stop Learning
	Tip 33. Find Your Place

	A1. Bibliography
	Index

